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ABSTRACT 

The expected response time to a call for service (CFS) for 

a given configuration of police beats is developed. The effect of 

downtime calls on the response time to a CFS is determined. Con-

sideration is given to both travel tiroe and waiting time. Travel 

time and service time distributions are isolated. The model is 

,valid for Poisson arrivals and arbitrary service time distribu­

tions. A probabilistic assignroent policy is determined for each 

beat. The fraction of incoming calls arriving in beat k answered 

by unit ~ is obtained. Pre-emptive priorities are allowed. 

Application to the Aurora, Illinois, Police Department is shown. 

i 

INTRODUCTION 

For the purpose of law enforcement, the city is di-

vided into a number of police d;str;cts. ' ...... A d~strict in 

turn is divided into a number of beats. ~ b ~ , 
nea~ 1S an area 

within a district to which a patrol unit is assigned. 

Calls for police service are telephoned into the communica­

tion center at police headquarters. If the patrol unit of 

the beat of occurrence of call is ava.ilable, it is dis­

patched to answer the call. If it iS,unavailable, a unit 

from an adjOining beat answers the call. After the comple-

tion of an out-of-beat assignment the patrol unit returns 

to its beat. When not answering calls for service, the 

unit patrols the beat. A patrol unit may be unavailable 

for dispatching if it is presently servicing a call, or if 

it is off duty for administrative or personal reasonR. 

CRITERIA FOR DESIGNING RRATS 

.The International City Manager's Associationl 'classified 

objectives of the patrol division under six headings: 

(1) prevention of crime, (2) suppression of criminal 

activity, (3) apprehension of criminals, (4) preservation 

of the peace, (5) regulation of conduct (non-criminal), and 

(6) protection of life and property. The criteria to be 

chosen for designing beats should have a high measure of 

effectiveness with respect to these six objectives. 

Probability of arrest seems to be inversely related 

to response time in the relevant range. In a study conducted 

by the Los Angeles Police Department2 i~ was found tha.t 

when response time was 1 minute, 62 perdent of the cases 
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resulted in arrest; whereas, when all cases with response 

time under 14 minutes were groups together, only 44 

percent led to arrest. Arrest probability as a function 

of response time is plotted in Figure l~ 

It is proposed that patrol beats of a police depart­

ment be designed to minimize response time of the patrol 

units. Minimization of response time should result in 

higher probability of arrest as shown in Figure 1. 

Assuming that the conditional probability of being convicted 

given that a citizen is arrested is unchanged, the proba­

bility of a criminal being convicted increases with the 

minimization of response time. Actually, the conditional 

probability of being convicted given that a citizen is 

arrested is likely to increase with reduced response time 

because of 'being able to gather more evidence with quick 

arrival. An increased probability of being convicted 

reduces the utility of committing a crime to a potential 

criminal. Thus, the minimization of response time results 

in an increase in the prevention and suppression of criminal 

activities. Peace is preserved by preventing crimes, 

by quick arrival of police at the location of crime, and 

by arresting criminals. Regulation of non-criminal conduct 

should also be improved by more rapid response to calls. 

Life and property have an increased degree of protection 

when a reduction in response time takes place. Minimization 

of response time, thus, satisfies the six objectives listed 
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by the International City Managers' Association and also' 

reduces crime disutility to the citizen. As suggested by 

Smith3 response time has the additional advantage of being 

policy sensitive. That is, it is directly affected by 

decisions on the size and distribution of the patrol force. 

Response time is the time elapsed from when need 

for police service arises until a patrol unit arrives 

at the location of the call. It is composed of (1) delay 

in reporting the incident to the cOIT~unication center, 

(2) delay in the communication center in filling a 

report and in waiting for a patrol unit if all units in the 

district are unavailable, and (3) the travel time of the pa­

trol unit from its present location to the scene of the 

incident. Delay in reporting incidents of crime to the po-

lice could be improved by strat~gic locati~n of telephones, 

the ability to call the police without having to deposit a 

coin, and by greater cooperation by the citizenry. 

In this paper it is assumed that we have no control 

over the delay in reporting incidents to the communication 

center. We also assume no control over the time spent in 

filling reports at the communication center. 

If a call for service occurs when all patrol units in 

the district are unavailable, then there is a wa'i ting time 

at the communication center. This waiting time is a func­

tion of how soon units become available again after an as­

signment. It is assumed that the service time at the scene 

of incident does not depend on the configuration of beats. 

-5-

The fraction of the total response time that is due 

travel time is a function of the average service time, the 

number of units deployed and the geography of the city. This 

model was based on information available from the city of 

Aurora, Illinois. Aurora has a population of about 80,000 

and is fifty miles from Chicago. The average service time 

for calls for service was 17.4 minutes. For sixteen patrol 

units deployed during the busiest shift an average travel 

time of 2.0042 minutes was noted when the average response 

time was 3.4915 minutes. Thus the travel time was 57 percent 

of the total response time and certainly warrant~d inclusion 

in the objective function. Further, travel time for the six­

teen patrol units varied from a low of 0.9352 minutes to a 

high of 4.9548 minutes with ten of sixteen units having travel 

time within 30 percent of the average. 
11 

In a large city like Chicago, Nilsson~ reported a 

service time of about 40 minutes. The highel: service time may 

tend to make patrol units busier than those in Aurora (unless 

beats and their arrival rates are proportionately reduced in 

size). For busier units the average response time would be 

higher and the percentage of total response time that is due 

to travel time may be less than the .5",7 percent observed in Aurora. 

This would reduce the importance of travel" time in the objective 

function but we feel that it would still be meaningful to 

include it in the optimization. 

As reported by Smith3 , using minimum average response time 

as the objective function raises certain problems. 
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Calls for service do not tend to be distributed evenly over 

a city, but rather are usually heavily concentrated in 

certain areas. Minimizing average response time would lead 

,to a heavy concentration of patrol units in heavy-crime areas 

and sparse deployment .in low-crime areas. This could result 

in unacceptably long response times for calls from low-crime 

areas. Furthermore, this could lead to a rise in crime in 

these previously low-crime areas as criminals would probably 

shift their activities to areas which they find offer less 

risk of arrest. 

In order to protect against these kinds of results, a 

constraint was added to the objective. Ideally, we would 

like the constraint to be that maximum response time will 

not exceed a specified upper limit anywhere in the city, but 

this proved to add very substantially to the cost of compu­

tation. Therefore, we substituted the constraint that maximum 

travel time will not exceed a specified upper limit anywhere 

in the city. This accomplishes almost the same result, as 

response time in low-crime areas tends to be largely travel 

time. This constraint is treated by making sure that for 

every beat the travel time between the centers of any two nodes 

does not exceed the pre-defined maximum. 

So the objective for the predictive and optimization models 

for the police response function is to minimize average response 

time throughout the city and in all time periods, subject to a 

constraint that maximum travel time will nowhere exceed a 

specified upper limit. 

~7-' 

PREVIOUS PREDICTIVE MODELS 

5 Larson developed a number of quantitative models for use 

in the allocation of police patrol forces. He wrote a simulator 

\n the MAD (Michigan Algorithm Decoder) language. Larson's first 

model determined the probability law for travel distances to an incident 

in a beat and the corresponding optimal beat design on the assumptions 

that calls for service (CFS) and car location are independent and 

are uniformly distributed over the beat. He also assumed that the 

unit is always available. 

In his second model,Larson considered an infinitely large 

command comprised of square beats, each of unit area. He assumed 

a IIstrict center of mass" dispatching strategy in which the unit 

is assumed to be at the center of its beat and the call is assuroed 

to be' at the center of the beat of occurrence. The dispatching 

strategy is then to choose that available unit with the minimum 

total travel distance. 

After defining deterministic and probabilistic assign­

ment policies and determining some state probabilities, Lar-

son concludes that a model involving queueing considerations 

for N servers is difficult to solve. 

Next, he finds an approximate solution for a finite 

command with the following additional assumptions: (1) de-

mands for service are generated within the command by a 

simple Poisson process with parameter A demands per hour, c 

(2) average total time to service a call = (1!ll c ), (3) the 

"busy" probability of each patrol unit is approximated to 

be independent of the state (busy or patrolling) of every 

other patrol unit. The busy probability of each of the N c 
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that a queue of wa't' 
1 ~ng calls will form is very small, and 

that either the b t 
ea car associated with the incident or ~ 

at least one car in the f 
r OUr contiguous beats is alwaY$ 

available for dispatch. 

A dynamic progrq,rruning d 1 ' 
mo e 1S developed to assign 

patrol units to geographically dist;nct 
.... corrunands by mini-

mizing achievable delay cost per hour. 
The assumptions of 

the priority queueing model used 

(2) negative 
are (I) POisson arrivals 

exponential services (same service rate for 

all priority classes) (3) f' 
I ~rst-come , first-served queue 

discipline within each pr~or't 1 
• ~'y c ass, and (4) no pre-

emption. 
Application to the New York City Police 

Department is shown. 

OverlapPing beats are explored in a 
system where car 

, 

positions are known exactly. It' ' 
~~ shown that the expected 

travel time in such a system' b 
~s a out the same as ~n a dis-

patching system with mutually exclusive b~ats and no car 

Position information. 
In a previous model Larson showed 

that perfect car position ' f 
~n ormation reduces travel time 

by 10 to 20 percent. 
It could be inferred, then, that for 

the same dispatching system overlapping b 
eats involve larger 

travel times. 

Larson also discusses repositioning~reassignment or 

patrol units to areas other than they are currently assigned) 

and preventive patrol. 

A more detailed discussion of dispatching across beat 

bound~~~e: (intersector dlspatching) and other concepts 

J • 

appear in Larson 6 . He finds th~ optimal beat design for 

two beats to minimize the average travel distance under 

intersector cooperation and repositioning. Larson7 

anplyzed spatially distributed queueing systems with up to 

12 response units for Poisson arrivals and negative 

exponential service times. 

PREDICTIVE MODEL OF RESPONSE 

Before an attempt can be made to minimize response 

time there needs to be developed a procedure that will de~ 

termine the expected response time for a particular configu-

ration of beats. 

A district can be divided into a number of mutually 

exclusive and collectively exhaustive contiguous geographi­

cal units. If each geographical unit is represented by a 

node, the district can be viewed as a network of nodes. A 

beat will be formed by combining a number of these nodes. 

A feasible configuration of beats should cover all the nodes 

in the district with the available patrol units. Division 

d ' d' A d' A of Bamm J.·8. of a district into nodes is ~scusse J.n ppen 1X .,~" 

It will be assumed that arrivals of calls for service 

are Poisson. The theoretical reasoning for this is that 

there is a large population capable of producing calls for 

servic~, and anyone of them has a small probability of 

producing a call for service in a short interval of time t. 

Larson
9 

showed that the Poisson distribution was a 

good approximation for Boston. The Poisson assumption ,for 
.- .. -.~- -- ..... ..,~ .. --- .. -

arrival~ 6£ calls for service was validated for Aurora, 

. 10 IllinoJ.s by Thomopoulos 
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The 
9 ," 

Larson 

service-time distributions will be left arbitrary. 

and Nilsson4 both showed that the service-

time 

Louis 

distributions are not negative exponential. The st. 

project1l used a Poisson input, negative exponential 

service time, multiserver model in which the mean service 

rate is the same for all patrol units. 

Queueing Model for Independent Beats 

tion: 

4. 

the following assumptions in this sec­We will rr·-;ke 

1. 

2. 

3. 

4. 

5. 

Each beat has one patrol unit; 

11 at a node fol low the Poisson Arrivals of ca s 

distribution 

Each patrol unit will service its own beat calls 

. there will be no dispatching across only, ~.e., 

beat boundaries; 

Calls of all types are serviced with the same 

pr,iority; 

Time to service a call is a function only of the 

type of call and not a function of the node of 

f the p.atrol. unit assigned the cillo . occurrence ,or ~ 

models we will drop assumptions 3 and In subsequent 

The notations used in this pap'er appear in, thE! section 

titled summar¥ of definitions. 

-J..L-

Expectation and Variance of Service Time in Beat k. 

Information on arrival rate of calls, and expectation 

and variance of service time can be obtained for each node 

by analysis of historical data on calls for service. 

For Poisson arrivals, the arrival rate of calls in 

beat k can be obtained by summing the arrival rate of 

calls at each of the Ik nodes within beat k. See for 

1 C t al12. examp e, onway. ~ Thus, 

A(k) -

... 
~. 
E fl.. 

. 1 ~ 
~= 

- \" 

The expected service time for a call in a beat is a 

function of the expected service time for calls at each 

of its constituents nodes, weighted by the fraction of 

total calls in the beat at each node. For Poisson arrivals 

we have 

E (ts (k)) = 

Similarly, variance of service time for a call in a 

beat is given by 

V(tS(k)) 
2 = E (t s (k) ) 

2 
E(ts(k)) 

Collection of data based on nodes is essential to 

allow for different beat designs. Further, sinc~ a node is a 

smal~ eDough geographical unit, statistical.analysis on calls 

for service by nodes helps Ithe poliae administrator perceive 

changes in crime trends over time ... 
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Expect.ation and Variance of Travel Time in Beat k. 

To determine the expected travel distance per call for a 

patrol unit answering calls in its own beat we need to de­

termine the probability qimk of patrol unit k traveling 

. from node i to node m, ~-1,2,3, ... , I k , m-l,2,3, ... ,I
k

, 

given that the unit travels from node i to m. 

F 11 ' . p' 13 a ow~ng · .. arzen . we have the expected travel dis-

tance of patrol unit k to answer a call in its own beat 

Ik 
Z q'mkE(d. ) 

mml ~ ~m 

The probability of unit k travel{ng from node i to m is 

equal to the probability of unit k being at node i multiplied 

by the probability of unit k traveling from node i to node m, 

given that it is at node i; i.e., 

Neglecting the strategic aspects of crime locatioh on the 

part of the criminals, the arrival of calls in different 

nodes of a beat phould be .independent. For independent Poisson 

arrivals the probability of unit k traveling from node i to 

node m given'that it'±~ at node i; will be equal to the 

fraction .of calls of beat k that occur at node m. 

Thus, 

(2) 
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For Poisson arrivals, the fraction of time unit k is 

at node i while it services a call in its own beat equals 

When a patrol unit is not answering a call for service 

it might be on downtime or on preventive patrol. These can 

be carried out under one of the two following policies: 

(1) preventive patrol or downtime is concentrated in 

various nodes in proportion to the fraction of 

time unit k spends servicing a call in that node, 

(2) preventive patrol or downtime is distr~buted 

uniformly over all nodes in the beat. 

It seems policy 1 for preventive patrol would be more 

effective in combatting crime than policy 2. A third policy 

for downtime could be one which shows a higher proportion 

of downtime for some specific nodes such as nodes contain-

ing city courts or some popular restaurants. 

. Under policy 1, the fraction of time unit k is at 

node i while on preventive patrol or downtime is equal to 

the fraction of time unit k Is at nod~ i while servicing 

calls in its. own bea t. 
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Under policy 1 of preventive patrol and policy 1 of 

downtime we have 

(3) 

Under policy 1 of preventive patrol and policy 2 of 

downtime, we have 

(4 )1 

where P d is the fraction of time the patrol unit is down' 

and not available. 

Under policy 2 of preventive patrol and policy 1 of 

downtime, we have 

(A. E.[ t . J ) J. SJ. (5) 

+ (l-p .... p )/1 
(kJ d k 

,Under policy 2 of preventive patrol and policy 2 of 

downtime, we have 

0 .. E l t .J) J. S J. 

+ (6) 

-15-

The expected travel distance between two nodes i and m is 

derived in 'Bammi 8 • Dividing it by the average velocity 

we obtain the travel time t. between nodes. Then, J.m 

modifying equation (1) and using equation (2) and one of 

the equations (3), (4), (5) or (6), we obtain the expected 

travel time of patrol unit k to answer a call in its own 

beat. For Aurora, Illinois, the police administrators chose 

equation (4) so that preventive patrol was concentrated in 

various nodes in proportion to workload at the nodes, and 

cowntime was uniformly distributed over the beat. 

Similarly, 

2 E (trkk ) = 

and 

V (trkk ) = 

Ik Ik 
:.B Z 

i=l m=l qimk tim 

Ik Ik 
2 :z:: i,; t. qimk 

i=l m=l J.m 

E (trkJ) - E (trkk) 2 

Exp8cted Response Time. Since we assumed that unit k 

answers all calls in its beat, utilization rate of unit k 

assigned to beat k while servicing its own calls 
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If travel time and service time distributions are inde-

pendent, the variance of calls 'answered by unit k 

Downtime.. We distin9'uish two types of oO'lJlmti.me. 

Fixed downtime represents the type of duties that have to 

be answered by the patrol. force during a given shift and is 

not dependent on the number of patrol units in oper.ation. 

Variable downtime is that part of downtime which increas·es 

linearly with the number of units in operation. The arrival 

rate of downtime calls is given by 

where Afd is the arrival rate of fixed downtime calls per 

unit when the number of average units in operation was Co' 

K is the number of units for which beats are being designed. 

AVd is the average arrival rate of variable downtime calls 

per unit. E[t fd ] and E(tvd ] are the expectations of fixed 

downtime and variable downtime calls. 

The utilization factor for downtime calls is given by 

(8) 

'The expectation of a downtime call is given by 

(9) 

The variance of a downtime call is given by 

[l 
11 
f' 
i' 

:-17-
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Average' Number of ,-lai ting Calls. In determining the 

average,number of waiting calls, we must distinguish two 

types of calls: calls for service (source 1) and downtime 

calls (source 2). Response time is to be calculated only 

for calls for service (source 1). The average number of 

waiting calls for source 1 is affected by the arrival of 

downtime calls (source 2). If no precedence is assumed, the 
, , 

Pollaczek-Khintchine formula may be used to give the average 

number of ,waiting calls for both sources in beat k (see" for 
, 14 

example, Saaty) as 

2 co 

.Lei (k) 
(A~kl+ Ad) f t 2 l? (t) dt ('J.lr = 

2 (l-P (k) - Pd) 
0 

where b (t) is the service-time density, i. e. I 

b (t) ... A(ki hk (t) + 
Ad 

h ~ (t) 
A(k)+ A X (k)+ d d a 

where hk(t) is the service-time density of calls for service 

answered by unit k, and hd(t) is the density of downtime 

calls. 

, If hk(t) is the m-th member of the Erlang family of 

service time distributions and hd(t) is the n-th member of 

the Erlang family 

.... (It m m mit ' t 
A (k) I"'kk ~' tm-le -"""kk 

A (k) + Ad . (m-l) : 
b(t) = 

+ 
Ad «(E [tdJ ) ~ln)n\. n-l -n ~El td])-l t 

X(k) + Ad (n-l)! t e 
(12) 
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where 

Substituting equation (12)' in (1';') and integrating 

where 

a= 

, 

('P(k) + a p
d ) (P{k) ~+~ ~) 

(l-PO<) -Pd ) 

Since the variance of the m-th member of the Erlang 

family is (m~2)-1 

2 (m J.L2 )-1 0" (k) = 
kk 

and 2 2 -1 
'm = (a (k) J.L kk ) 

and v[tdJ- -1 E[t
d

]2 n 

n = 

Substit~ting va.1ues of m and n we optaih 

Le.{ (k) = 
(p (k) + 

I, 1 ,. a2 J.L 2 
a P ) (p ____ (k), kk 

d (k)_ 2 
(1 - P (k) - P d) , 

The average number of waiting calls from SOurce 1 

(calls for service) 

~k) 

(13) 
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1+ a ~kt~· 
P (k) (p (k) ----''''':::2:.L-....::.::.:....-- t 

Pd 
a 

(1 P .;. P ) 
(k) d 

If the service-time density of calls for service and 

the 'density of downtime calls are both distributed nega~ 

tive exponentially 

(11' , , I 

• If we assume ,that the calls for service have prece-

dence over downtime calls and we have Poisson arrivals and 
. 

,negative exponential services,. it has been shown that the 

average number of waiting calls fro~_source I (calls for 
, 

service) is (see for example, saaty),lil. 

P (k) (p (k) + P diu) 

(1 - P (k) ) 

(16) 

Comparing equations (15)' and (16)1 we note that the 

Lq,(k) differ only by a factor in the denominator. If 

this same factor holds for arbitrary service time distri-

butions l the average number of waiting calls from source 1 

(calls for service) when calls.for service have precedence 

over downtime calls 

. P (k) {P (k) 

(17) 
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Equations (13) t (14), U.S), G..6), ('17) are valid :for 

P(k)' Pd < 1, k = 1,2,.· .. ,K, where K is the number of beats 

in the district. 

A simulation model was developed to compare the 

value of Lq(k) given by equation (17) and that obtained 

from simulation. The model simulated one beat having 

Poisson arrivals of calls for service and downtime calls. 

Calls for service had precedence over downtime calls. 

Several distributions were used to generate service time 

on calls for service and downtime calls. When calls for 

service followed the negative exponential distribution 

there was 2.13 percent difference between the value of 

the average number of clalls for service in waiting 

line obtained from simulation and that obtained from 

equation (17). When the Erlang 2 distribution was used 

the percent error was 3.22 The Erlang 5 distribution 

yielded a percent error of 1.89 The uniform distribution 

calls for service showed an error of 1.57 percent. From 

these results we concluded that the computer simulation 

validated the assumption made in deriving equation (17). 

< • 

Expected number of calls in system (beat) for beat k 

where either equation (17)" or U4) is used to obtain 

Lq(k)' depending on whether or not there is precedence of 

calls for service over downtime calls. For Aurora, Illinois 

p.recedence was assumed. 

In order that a unit may respond to a call that just 

arrived in the beat, it must first service all the calls 

in the system (the system being defined as the beat), it 

must travel to all calls in the waiting line and finally 

travel to the new call. Thus, the expected response time 

to a call in beat k 

then 

E(tw{k» - L(k)E(ts(k» + Lq(k)E(trkk) + E(trkk) 

= (Lq(k) + P (k» E (ts (k» + (Lq(k) + l)E (trkk) 

k = 1,2,3, .•. ,K 

The expected response time to a call in the district 

becomes 

K K 
E (t ) :2 1,; (A(k)E (tw(k»)/ 

:g; 
A(k) w k=l k .. l 

K - :E (A(k)E(tW(k»)/A 
k=l 

where the response times have been weighted by the arrival 

rates in the various beats. 

~"" , ... . _- ..... _-_ .... _- . .,.-
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Queueing Model with Dispatching Across Beat Boundaries 

Having developed a model for independent beats (here-

in referred to as the "non-flying" problem) we relax the 

assumption that patrol units cannot be dispatched across 
, . 

beat boundaries+ (herein ref~rred to as the "flyingll prob-

lem). If a call occurs in. beat k and patrol unit k is not 

busy, it services the call. If patrol unit k is busy, 

then an adjoining beat unit is questioned next regarding 

its availability. If this adjoining beat unit is not busy, 

it services the call. If it is busy, then another adjoin-

ing unit is questioned. This is continued until a patrol 
, 

unit is assigned the call or it is found thi3.t all units 

are busy. In the latter cas~, the call joins a queue of 

'waiting calls and is assigned the first available unit 

when its turn comes. As soon as a patrol unit finishes 

servicing a call~ it returns 'to its own beat and starts 

preventive patrol 

We make the following assumptions in this section: 

1. each beat has one patrol unit, 

2. arrival of calls at ,a node follows the PoissQn 

distr ibution, 

3. calls of all types are serviced with the same 

priority, 

4. time to service a call is a function only of 

the type o~ call and not a function of the node 

of occurrence or of the patrol unit assigned to 

the call. 

Service distributions are kept arbitrary. 

22(a) 

Footnote for Page 22 

+ 6 
Larson refers to dispatching across beat boundaries 

as intersector dispatching. He solves for the amount of 

intersector dispatching under certain special conditions and 

places bounds on it for a generalized dispatching algorithm. 
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Determination of "Flying" Probabilities. In order to 

solve this problem we need to determine the II flyingll proba­

bilities, Qk£' fraction of calls arriving in beat k answered 

by unit 1. .. 

Two Beat Problem. The fraction of incoming calls 

in beat I answered by patrol unit I is equal to the proba-

bility of unit I being available for dispatch plus the 

probability that patrol unit I ~s busy multiplied by the 

probability that unit 2 is busy multiplied by the probabil­

ity that a queued call is answered by unit 1 (a call is 

termed "queued" if both patrol units 1 and 2 are unavail-

able for dispatch). A unit is unavailable i£ it is busy 

servicing ~ call or~_f ~t is on a type of administrative 

downtime which obviates its dispatch. This dispat.ch policy 

is shown in Fig. 2. 

(18 ) 

Where ~ the probability that a queued call is answered by 

unit l is given by equation (22) below, 1=1,2, and pi=Pl+
P
d' 

• P;<l,l=l,2 • ... 

In equation (la) we multiplied the probability of unit 

1 be~pg busy by the probability of unit 2 being bu~¥ to ob-
.. ; ,-: ~ 

tain the probability of bo~hQ~its being busy. ~his is an 

approximation insofar as we can multiply probabilities of 

two events directly, only it 'they are independent. Recog­

nization of these two events being dependent is taken when 

we evaluate PI and P2 in equations (30). For example, in 

order to determine PI we consider the calls that unit 1 

Call arrives 

in beat 1 

Yes I-p'" 
1 

Call in beat 1 
answered by 

unit 1 

Call arrives 

in beat 2 

Call in 
answered 

unit 2 

yes 

No 

answered 
by unit 2 

.. 
1- P 

1 

Call in beat 
2 answered 

by unit 1 

CalI q neue s 
up 

Queued co.II 
answered 

by unit 1 

Queued call 
answered 

by unit 2 

Figure 2. A Dispatch Policy fora Two~Beat District 

~ ........... --~.~,,---.. -
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answers in its own beat as well as those it answers ~n 

-beat 2. 

The fraction of incoming calls in beat 1 answered by 

unit 2.is equal to the probability that unit 1 is busy and 

unit 2 is available for dispatch plus the probability that 

both units 1 and 2 are busy multi~lied by the probability 

that a queued call is ,answered by unit 2 

also, 

.... "', 
.;:;1-PIP2 + P1 P2 
:::1 ' 

. Similarly for ca,l.1,s arriving., in be~t 2 we have 

021 ;:; P2(1-P{) + PiP2v l 

- .. '" '" °22 ;:; I-P2 tP1 P2v2 

also 021 t 022 ;:; 1 

If all units Qre busy and unit ~ is the first to 

finish servicing a call, it will be assigned to one of 

(19 ) 

(20) 

(21) 

the queu~d calls. ~Slnce, the event that unit 1 is assigned 

a queued call occurs if and only if unit 1 is the first to 

finish servicing a call"we can say that the probability 

\1 
1: 
r ,\ 

Ii 
~ .~ 

Ii 
1 
\ 

{: 
I' 

), 
l' n 
!' 
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that a queued call is assigned to unit t should be the same 

as the probability that unit 1 is the first to finish 

servicing a call. 

In some situations there may be a built-in bias 

such that if all units are busy, it may be more likely 

that a particular unit is the first to become free. 

One way this may occur is if the dispatcher tends to 

assign the central (downtown) units more often to a 

call in an adjoining beat than an outlying unit because 

of a closer center-of-mass for the central units. 

Also, if some beats haVing low arrivals of calls are 

constrained not to be large geographically they may 
~ 1 

" have a lower utilization factor than other beats 

1\1 ~-----;----a-n-d-m-a-y-be the last ones to become busy and therefore among 

ilry: the last to become free again. This built-in bias could be \1 'Ii 

~\ corrected (if present) by estlmating the workload of each unit 
n ;\ 
II: 
l'q 

lP 
\L 
l ~\ 

" H: 
Ii' 1 ~ ; 

\ i'~ 

\1: ii,' 
0: 
\1 
}-

\f 
H 
I! 

H 
)')' 

1;1 

L 
H 
U 
IT 
I 

\ 

(from non-flying model) and applying a correction factor to 

equation (22) or (23). However, as later estimates show, the 

need to use these equations arises less than .39 percent of the 

time so this additional modification is probably not 

necessary from a practical point of view 

) 



·, 

By the above argument then, 

vl = probability that .l,lnit 1." finishes servicing a call 

before unit 1 1 , I. = 1 2 3 L 1. ..t 1. 1 "., ... , t I' 

- probabili ty (.t 1 < t t t I' 2""" I 1 I·" I t L , I' . 

joint probability density function 

(t
1
,t

2
, ... ,tL) dt dt . dt d~ L L-l" :r. "'Q. 

If the service distribution of calls answered b • y unit 1 and 

11 are independent, 1.. jt J.· 1 , 1 1 .. I 2 L I 1 I 1"··# 

co QQ 00 co 

vJ. = fh~(t) fh. (t.) {h' (t ) .... fht ( ) 
_00 N 9. t 1 lIt 2 2 1 t J. • • • 

co 1 t 1 

J hL (tL) dtL • •• dt.( ..• dt dt .tdt 
ta 1 2' 1 Q.. 

"" 
where t , t

2
, 1 ...... , tn, .•. ,t

L 
are the service t~me ... N .>. rema~n~ng 

till completion. 

Since tJ. cannot be negative 

00 co 00 

f h. (t. ) !h (t.) Jh (t .) fOOhl (t ) 
R:Jl, 11 i···· 1 

o , 00 tl tl 2 tl 1 1 

... f hL (tL ) dtL ·" .dtJ. •• ". dt dt. dt. 
tl ,1"2 1 g, 

The service time distributions of calls answered by 

uni t 1., 1. = 1 2 . . I , ••• , L, can be obtained by a linear combina-

tion of the service time distributions of calls arriving in 

beat k, k= 1,2" •• 1.· K. Thes·e ~n' tur b • n can e obtained from 

, 

sampled data. If we assume negative exponential services, 

the distribution for the service time remaining till 

coroplet~Qn is the same as the total service time distribu­

tion. For negative exponential services, 

1.- 1,2, •.• ,L 

Equation (23) is only approximately true for service 

time distributions other than negative exponential. 

However, if the service rates are the same the approxima-

tion is exact for all Erlang distributions. If service 

rates are about the same the approximation is fairly 

close. For example, with three units each following the 

Erla!lg 2 distribution with 112=0.8111 and l.l3 :::: 1.211 1 , the 

probability that unit 1 is assigned a queued call is 

0.3304 by equation (22) and 0.3333 by the approximate 

equation (23). Similarly, for three units each following 

the Erlang 3 distr·ibution with 112=0.8111 and 113,,=1. 2~ll , 

the probability that unit 1 is assigned a gueued call is 

0.3033 by equation (22) and 0.3333 by the approximate 

equation (23). Our experience has shown that the service 

rates for different units do not deviate more than 

20 percent from the average service rate so testing for 

112=.8111 and 113=1.2111 seems adequate. 

In any cas~, equations (22) or "(23) are used only 

if all units are busy. For a city (or district) deploy­

ing sixte~n units which are busy about 15 percent of the 
•. ~iII"-'~_ 



-29-

time(a typical figure for Aurora, Illinois) the probability 

that all of them are busy (assuming independence) is 

only 656;x 10-16 . Even if a police department has its 

units busy on the avera,ge 50 t f perc en 0 the time, the 

probability of all being busy is still only 0.0039 

for eight units and .000015 for sixteen units. 

Thus, since the approximation of equation (23) 

is needed only very seldom (less than one-half percent 

of,the times) and the approximation itself is not bad 

for operating conditions, we can say that the model is 

for the most part valid fo!.' b" ar ltrary service time 

distributions. 

-30-

Three Beat Problem. A call arriving in beat 1 is answered 

by patrol unit 1 if it is available. If unit 1 is busy then the 

dispatcher must decide whether unit 2 or unit 3 should be 

questioned next regarding its availability. If the dispatcher 

knew the exact location of both units 2 and 3 at the time the 

call occurred in beat ~,then the nearest unit could be dispatched .. 

However, in most police stations the dispatcher does not know 

the exact location of all units. Individual police departments 

have developed, either formally or informally, an assignment 

policy. We will allow here the possibility of a probabilistic 

assignment policy. 

For example, if un';t 1 " • 1 lS not available then unit 12 
, 

should be questioned next regarding its availability a frac-' 

tionWll~2 of the time, 1 1 ,1 2 IUl,2, ••. ,L. For ins't.ance, if 

the expected travel distance from beat 2 to beat 1 is the 

same as that fram beat 3 to beat 1, then if unit 1 is not 

available the dispatcher may question unit 2 next with proba-

bility 0.5 and unit 3 next with probability 0.5 Also, if 

the expected travel distance from beat 2 to beat 1 is m~ch 

less tha~ the expec~ed travel ~istance from beat 3_to beat 1, 

then if bnit 1 is ,not available the dispatcher may question 

unit 2 next always. 

A more accurate representation of actual dispatching pol­

cies is obtained by determining an assignment ,policy for each 

node. If a ca-ll occurs at node i in 'beat k and unit k is 

not available, then the dispatcher questions that unit next 

which has the closest "center of mass" to this node. Center 

,J 
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" 
of mfss of a beat is defined here as the center of gravi~¥ 

of the beat weighted by the "workload" of its component 

nodes.+ Workload of a node 'is obtained by multiplying the 

arrival rate of calls at that node by the expected service 

time at the node •. By summing the assignment policies for 

its component nodes, a probab~listic a~signrnent policy fo~ 

ca~ls'arriving in a beat is developed. The programs in 

Bammi ~i, ,demonstrate l?ow this can be done on a digital 
" , 

computer. 

The fraction of incoming calls in beat 1 answered by 

patrol unit 1 is equal to the probability of unit 1 being 

available for dispatch plus the probabili.ty that a,llthree 

~ri'i'ts are busy multiplied by tl:J.e probability that a: queued 

callis answered by unit 1. The dispatching policy for 

incoming calls to be~t 1, is sh.own in Fig. ;3. 

Thus 1 

= 

t 

= 

~ , ~ , 
l-P l + Pl P2P3 vI 

w12 P~ (l-P;> t WI3P~P~ (l-P~) 

w12 P1PiP3 ·v2 + w13 P{P3P2' v 2 

w12 P1(1-P2)t w13 P{P3(1-P2')t 

w12 P1Pi(I-P3)t W13 P{{1-P3)t 

3l(a) 

Footnote for Page 31 

+we are assuming here of-hat, the a,verage 
~ of the above fUnction 

is a function of the average. A more t 
acoura e representation 

of the dispatching policy would be to find the expected dis-

tance between node i in beat k and unit 1 in beat 1 by 

summing the distance between node i in beat k and each of the 

nodes in beat L weighted by the probability of unit 1 

being at each of the nodes in its beat. 
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A Dispatch Policy for a Three-Beat District.' Arivals 
'in Beat 1 
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, where, 

where, , 

where, 
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.. .. .... .. .. , '" 
°21 - w21 P2 (1-P1) t w23 P2 P3 (1-P1) + P1PZP3 -

.. .. .. .. 
°22 = I-P 2 + P1P2P3 Vz 

°23 
.... .. 

+ w23 P2 (l-P~) = w2I P2P1 (I-P3) 

~ .. .... .. 
°31 = w31 P3 (l~PI) + w32 P3P

2 
(I-P1) 

.. , .. 
P"'(l-P'} °32 - w31 P3P1 (1-P 2) + w32 - 3, 2 

w12 ;. w
13 

= 1 

'W21 + w23 = 1 

1. • 1,2 t 3,_ •• ,L,. 

+ P .. P "'P .. 
123 

+ .. '" .. 
P1PZP3 

.. , .. 
t'P1P2P3 

'. 

In a like fashion we can determine Qk~ for-an 

arbitrary number of beats. 

vJ. 

v,3 

VI 

v 2 

: (24 L. 

A simulator which validated values of Qk~ obtained 

from equaitons (18), (19), (20), (21) I and (24) is described 

in the Appendix. 

In order to determine Qk~ we need the combined 

utilization factor of unit ~ considering calls for service 

and downtime calls. But the utilization factor of unit ~ 

depends on Qk~ (see equation (30». As a first approxi­

mation, we obtained the utilization factor of unit i 

from the non-flying problem (independent beats). To 
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this was added the percent of time spent on downtime 

to obtain pi the combined utilization factor for unit ~ 

to be used in equation (24) for determining Qk~' 

Next p~ is found from equation (30). A series of 

computer runs we·ie made to test the convergence of 

Qk~ by repeatedly using equation (24) for Qk~ and 

equation (30) for 'P~ after the first iteration. It 

was found that Qk~ converged very fast, and to save 

computer time only the first iteration was retained in 

the programs. 

EXpectation and Variance 0 f Service Time 0 f Calls 

Answered by Unit ~. When units are allmved to answer 

calls in beats other than their own, the input stream 

of calls generated for each unit is poisson if the 

input stream 0 f calls in each beat is poisson. This 

can be seen by repeatedly applying two theorems 

proved by Conway et al. 12 
1 viz., (i) the probabilistic 

selection 0 f jobs from a sing Ie poisson stream into 

se '\,Bral output paths yield independent poisson strlaams, 

and (ii) the aggregation of se'\,Bral poisson input 

streams results in poisson stream. 

In partie ular r if the arri vals 0 f calls for ser vice 

in beat k follow the poisson distribution with parameter 

A (k)' k = 1,2, 3, ... , K, then the calls answered by unit ~ 

fullow the poisson distrib ution with Parameter ~ Qk~ A(k) , 
k=l 

~= I, 2 ( 3, •.. , L. 

I, 
I 

I 

I 
\ 

I 

, .. 
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.Then, expectpn ~prvice :time 0 f calls answered by unit ~. 
K K . 

= E [t 1~ = k~l (Qk1 A.(k) E lts (~) J) / k~l Q1<1 '\k) 

K 
Variance of calls. answered by ul1i t ~ :I cr/ 

=k~l (Qkl A.(k) (V (trkl ] + V [ts (k)] )) / ZJ (Qk1 "'(k) ) 
k=l 

. . 
The covariance is zero if the arrival of calls in beat k is 

independent of the arrival of calls in beat I.. 

Expectation and Variance of Tt'avel Time for Calls 

Arriving in Beat k and ~nswered by Unit 2., The expected 

travel distance of unit 1. to answer a call in beat k is 

given by' 
, 

1.(. Ik 
.,. 

E:
k1 

[ d ] = i: 2: QUrnk . E(d. } (27 ) lorn 
i=l m=l 

-vrhere the summation is over all nodes in beat 1. and 

all nodes in beat k. ~Il ... 1,2,3, .... ,K. 

(28) 

______________ b ______________________ • ____________ ~ ________ • ___ ,~ ____________________ _ 
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Patrol unit 1 answers Q,L£ " (i) calls 'in its own beat.. 

For ~oisson arrivals these Q,U {'(1 ) calls are divided among 

the It nodes in beat 1. in the same. proportion as the total 

"(11 calls in beat!, i.e., unit 1 answers 

node i. , Then, the fraction of time unit 1 

it services a call in its own beat equals 

},i Qll calls at 

is at node i while 
11 

')" E [t ,J/ 2:. 
J. s~. 1 

~.:: 

As before, equations (3), (4)" (S), and' ,(6) are used 

to determine qit' the probability of being at node i in ' 

beat ~. 
••• ". t • 

For Poisson arrivals, the probability of unit 1 trave..l.-

ing fiCom node i in beat 1. to node m in beat k given that it.. 

is at node i 

qk1 (i-mli) :: 

'where we have cancelle~ Qk1. 

nator, 

from the numerator and denomi-

... _-------- .-.~----------------------
Modi :Eying equation (27) as be fore and using equations 

(28) and (29) and one 0 f the equations (3) t (4) I (5), 

or (6), we obtain 'the expected travel time of patrol unit'\!' 

to answer a call in beat k. 

" 

'·'1 

I 
.1 

" 

34 
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Similarly, 

and 

also, trave 1 time of calls ansv{erecl by unit f. I 

c:<pected 

K K 
E l't }:::: Z} (Q"o An>') E [t k.e)) /.E Q](£ t\ (k) 

rf. k=l IV- \"'- r k:::::l 

Expected Response Time. The utilization rate of 

unit .£ is given by 

(30) 
(Q t\ (E( tr"J + E[ tr~ fk») ») 

k1 (k) ~ - \ 

, 1 rate utilization factor, As before, the arr~va , 
f downtime are obtained from 

expectation and variance 0 

(9? I and (10) . 
equations 

(8 ) 
. , 

dens ity in the flying case is 
The service-time .... 

given by 

b (t) = K t\ 

wherB 

i:; (Q,.o A (k))t d 
k"" 1 JV. 

-1 
IL = (E[t 1 + E[t,.e]) 
r1 rf.. 
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Thus, thE;~ average number of waiting 11 f' 
't.41 ca s or service and 

dO\'lnti ... ·ne calls for unit .t 

p 
( p 1 + a P

d
) (P b mt 1 + -.SL n+ 1 

L'" = ---_~ __ ..torr_.=.2~m~_:_-.::a::-.-=2!;n:...__.: 
ql ' (1 - P 1. - P ) 

d 

where 

a = _E_[ t-:r:7~-:-] _+ ,...E_[_t-.:1:.-J _ 
Et tdJ , 

A.s before, 

L" 
q.t 

The average number of waiting calls from source 1 

(calls for service) without precedence 

Lq,t 

The average nLimber of ~aitin~f:6~lls from source 1 (CFS) 

when the CFS have precedence ov~r downtime calls 

L 
CIt 

t""tJ I. 

, 1+.a;J.L1 ' P d 1 + v[t
d

]' El tdJ -2 
p 1 (P 1 " 2 + U ----:;;;.2:::----=---) 

) 

whe re P1 , P d < L 1 .., I 2 3 L h L' h . , , , ..• , , w ere ~s t e num-

ber of units in the district. 

Expected number of calls in system for unit 1 

i ) , 
r 
i' , , 

, ; 

,i 

.. ' .. 
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The expected response time for calls answered by 

unit 1. 

E[t
w1

J= Ll E[t1 ] 

=(L + Pi.') 
qi. 

+ L E[t n] + E[tr~J 
q.1. . r..to " 

E[ t.e] + (Lq,1.+ 1) E[ txt] 

1 = 1,2,3, ... ,L 

The expected response t~me to a call in the district 

then becomes 

L K 
E [t ] = L: (7: 

w 1=1 k=L 

= 

where the response times have been weighted by the 

calls answered by the various units. 

Priority and Non-Priority Calls 

If calls for service can be classified as either pri-

ority or non-priority then we can determine the expected 

response time to the two types. of calls. we do this by run­

ning the models in two steps. In 'the' first step we feed as 

input ?nly the priority calls and determine the expected 

response time to priority calls. This proced~re of obtain­

ing the response time to priority calls is valid if priori-

ty calls preempt non-priority calls and there is a first­

come-first-served queue discipline. Next we feed as input 
. '. 

the.total calls for service and obtain the expeqted response 

time to all calls for service. Non-priority .calls which 

were interrupted during service due to the arrival of a 
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priority call resume service at a later time and appear as 

a new call for service. These repeater calls are included 

in thE)". total calls for service. By subtracting the response 

,time for priorit.y calls from the response time to all calls 

we obtain the increase in response time due to non-priority 

calls. 

The measure of effectiveness can then incorporate the 

weights ~o be given to priority and non-priority calls. 

If up represents the weight to priority calls and an the 

weight to non-priority calls, the measure of effectiveness 

is a x (expected response time to priority calls) plus 
p 

a X (increase in expected response time due to non-priority 
n 

calls), 0 < a < 1, 0 < a < 1. If a and a are both p - n- p n 

equal to one it implies that all calls are weighted 

equally. If only priority calls are to be used in design-

ing beats we would set n equal to one and a equal to p n 

zero. 

OPTl.HIZATION ~.1QDEL 
'," . 

The predictive m.odel developed in this paper determines 

the objective function J$ed in the optimization model by 

Bammi 8 . In thismod~l police patrol beats are designed 

to minimize the respons~~time to calls for service in the 

city. The measure of response time may be the average for all 

calls for service, or for a weighted function of priority and 

non-priority calls for service. Optimization is subject to 

constraints on the maximum travel time within beats and on the 

numbers of men and cars "available. An efficient computer 

program has been written and applied to the design of beats 

for the Aurora, Illinois Police Department. 

. , 
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The number of iterations and the total reduction 

in response time from the initial to optimal s?lution 

was found to be a function of how well the initial beat 

configu;ation was designed. A good initial solution 

was obtained by equalizing the workload (arrival rate 

of calls for service multiplied by expected service 

time) ·for the beats. We also found that since response 

time is a function of travel time as well as workload, 

beats with large areas should have a workload slightly 

less than the average workload for a beat to account for 

their larger travel times. A good initial solution sometimes 

afforded half of the total reduction in response time. 

Based on such an initial solution we found a 

reduction of 6.46 percent in response time from initial 

to optimal solution when using sixteen beats. Similarly, 

a reduction of 5.1 percent was observed when deploying 

eight beats. On comp~ring the bptimal solution for 

eight beats with the beats which Aurora was using before 

this study was made, we found a reduction of f2.2 percent 

in -response time. This is approximately equal to a 

saving of two patrol units per shift which implies a saving 

about $162,000 a year. 
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SUMMARY OF DEFINITIONS 

Subscript for node number 

Subscript for type of call 

Subscript for beat number 

Subscript for unit number 

Prior'ity calls 

Non-Prio~ity calls 

Number of nodes in beat k 

Number of types of calls 

Number of beats in the district 

Number of units in the district 

Number of types of calls that are priority 

Nurr~er of types of calls that are non-priority 

E . . State of the k l ,k2 , ••• ,k1.""',kL ,ml ,m2 , •• ,-' ~I .••• '~' • 

t.. .. 
~J 

A,. 
~ 

,\ (k) 

A 
fd 

system, where k1. = location of unit i., 

mk 
= number of calls for 

service in beat k 

Arrival rate of calls of type j at node i 

Arrival rate of calls of all types at node i 

Arrival rate of calls of all types at all nodes 

in beat k 

Arrival rate of all calls in the district 

Arrival rate of fixed downtime calls per unit 

when the average number of units in operation 

was C 
o 

I 
I 
i 
H 

ij 

~ 
II 
~ 

I 
II 
r 

1 

I 
II 
t 
I 
! 

A 
vd 

A 
d 

t .. 
. s~J 

t . 
s~ 

tl, 
lm 

~w(k) 
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Arrival rate- of variable downtime calls per 

unit 

Arrival rate of downtime calls 

Time to service (not including travel) a call 

of type j at node i 

Time to service a call at node i 

Time to service a call in beat k 

Time to service a call by unit 1. 

Time to service a call in the district 

Downtime 

Travel time between nodes i and m 

Travel time for a call in beat k answered by 

uni t .e. 

Travel time for a call answered by unit 1 

Utilization rate of unit k (for independent 

beats), arrival rate of calls in beat k multi­

plied by the expected service time and travel 

time to answer those calls 

Utilization rate of unit i., arrival rate of 

calls answered by unit.e multiplied by the ex-

pected service time and tra vel t'ime for those calls 

Utilization factor for downtime calls 

Combined utilization'factor of unit 1. consid-

ering CFS and downtime calls 

Waiting time (response time) to a call in 

beat k 
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v( ) 

2 
a (k) 

a2 
1 

Qki 
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waiting time (response time) to a call for 

unit 1. 

Waiting time (response time) to a call in the 

district 

Expected number of calls in syste"m for beat k 

Expected number of calls in system for unit '-

Expected number of calls in waiting line for 

beat k considering CFS and downtime calls 

Expected number of calls in waiting line (not 

including the one in service) for beat k 

Expected number of calls in waiting line for 

unit 1. considering CFS and downtime calls 

Expected number of calls in waiting line for 

unit 1. 

Expected value 

Variance 

Variance of beat k calls 

Variance of unit l calls 

Fraction of calls arriving in beat k answered 

by unit 1, 

Probability of questioning unit i regarding 

its availability for dispatch if call arrives 

in beat k and units 11 and 12 are busy 

Probability that a queued call is answered by 

unit '1 
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Service time distribution of calls answered by 

unit 1. 

Density of downtime calls 

Weighted service time density of calls for 

service and downtime calls 

'rotal service rate of calls arriving in beat k 

answered,by unit 1. 

Total service rate of all calls answered by 

unit 1. 

Probability of unit k being at node i given 

that unit k is in beat k . 

Probabilit¥ of unit k traveling from node i 

to node m given that unit k answers a call 

in its own beat 

qk(i-rn\i) Probability of unit k traveling from node i 

to node m given that it is at node i 

q'lI k ~.r.m • Probabili ty of unit· 1. traveling from node i in 

beat 1 to node m in beat k given that unit 1. 

answers a call in beat k 

Qk1.(i-m i i) Probability of unit 1. traveling from node i 

in beat t. to node m in beat k given that unit 

E (d, ) 
~m 

Ek1. (d) 

u. 
~m 

1 is at node i 

Expected travel distance from node i to node m 

Expected travel distance of unit ! to answer 

a call in beat k 

average velocity of travel betwe'en nodes i and m 
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Weighting factor for priority calls 

Weighting factor for non-priority calls 

Coordinates of patrol unit when dispatch 

order i~ received 

Coordinates of the call for service 

Travel distance in x-direction 

Travel distance in y-direction 

Travel distance 

Density function 

~ 
lJ 
II 
II 
'I II 
Ii 
)1 
II 
'] 

11 
II 

1 
!' 
t 

, . 
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APPENDIX 

A simulator was written in the FORTRAN language to evaluate 

values of Qki obtained from equations (18), (19), (20) , (21) , 

and (24). It takes as input the arrival rates and distributions 

of calls for service in various beats and the service rates and 

distributions of calls answered'by each unit in every beat. 

The program is written to run for any number of eight 

hour shifts. An initialization period at the beginning of 

each shift ensures an operating state when collecting statistics. 

The program simulates the operations in the same shift on 

successive days. The program has been coded for Poisson 

arrivals and for either negative exponential or general service 

time distributions. Two beat, three-beat, and four-beat 

districts were analyzed. 

Travel time is treated by feeding as input the increase 

in total service time when a call is answered by a unit out-

side the beat rather than by the unit assigned the beat. 

The average utilization factor for the district is obtained by 

the formula 

K 

E A (k) (E[ ts (k) ] + E,[ trkkJ ) /K 
k=l 

The fraction of calls answered by a patrol unit in its 

own beat, Qkk' decreases as the arrival rate of calls increases. 

When the average utilization for the district approaches or 

exceeds one, we find that calls in a beat are shared equally 

by all units. 

• 
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Table 1 shows a set of runs for a three-beat district 

where the service rates are about the same for calls in 

different beats but the arrival rates are not. In fact, 

the arrival rate in beat 1 in one and a half times the 

arrival rate in beat 2 and three times the arrival rate in 

beat 3. It is seen that the fraction of calls answered by 

unit 1 in its own beat, Qll' is smaller than the fraction 

of calls answered by unit 2 in its own beat, Q22' which in turn, 

is smaller than the fraction of calls answered by unit 3 in 

its own beat, Q33. This happens because more calls arrive 

in beat 1 than in beat 2 or 3 and thus units 2 and 3 are available 

to answer calls in beat 1 when unit 1 is busy. 

A probabilistic assignment policy, wki i i' is input 
1 2 

to the simulation model. This is determined by examining a 

particular beat configuration to be simulated. All other 

parameters being equal, Q
12 

in a run is less than Q12 in another 

run if w
12 

(probability of questioning unit 2 regarding its 

availability for dispatch if call arrives in beat 1 and unit 

1 is busy) in the first run is less than the w12 in the second 

run. For example, in a three-beat district for a run with w12 

equal to zero, Q
12 

(fraction of calls in beat 1 answered by 

unit 2) was 0.0188 whereas when w12 was 0.5 a Q12 of 0.0528 

was observed. Q
12 

is non-zero when w12 is zero because even 

though unit 3 is always questioned next regarding its availability 

for dispatch (w
12 

= 0, w
13 

= 1) there are cases when both 

units 1 and 3 are busy and unit 2 is assigned. 
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Table 1. Simulated Q~ Three Beats , Poisson Arriva1s , 
General Service Time Distribution. 

A 
Utilization {k} Qll 

Q
12 Q13 Q

21 Q22 Q23 Run Pav k=l k=2 k=3 
No. 

9Al .0638 3 2 I .8925 .0448 .0627 .0331 .9256 .0413 
9A2 .1276 6 4 ') .7800 .1100 .1100 .0557 .8734 .0709 ,e.. 

9A3 .1914 9 6 3 .7674 .1103 .1224 .0918 .7762 .1320 
9A4 .2552 12 8 4 .6834 .1418 .1748 .1245 .7094 .1660 
9A5 .3190 15 10 5 .5882 .1947 .2170 .1392 .6833 .1775 
9A6 .3828 18 12 6 .5492 .2100 .2408 .1755 .6182 .2063 

9A7 .4466 21 14 7 .5112 .2411 ... 2477 .1997 .5592 .2411 
9A8 .5104 24 16 8 .4900 .2379 .2721 .2138 .5279 .2582 
9A9 .5742 27 18 9 .4677 .2832 .2491 .2237 .5125 .2638 
9AIO .6380 30 20 10 .4408 .2543 .3050 .2670 .4471 .2859 U1 

9A11 .7018 33 22 11 .4420 .2871 .2710 .3002 .4147 .2851 N 

9A12 .7656 36 24 12 .4064 .2870 .3065 .2778 .4358 .2864 

9A13 .8294 39 26 13 .3862 .3172 .2966 .3037 .3845 .3118 

9A14 .8932 42 28 14 .3620 .3284 .3096 .2854 .4136 .3011 
9AIS .9570 45 30 15 .3824 .3098 .3078 .3602 .3280 .3119 
9A16 1. 0208 48 32 16 .3434 .3214 .3352 .3098 .3647 .3255 

9A17 1.0846 51 34 17 .3312 .3229 .3459 .3304 .3481 .3215 

9A18 1.1484 54 36 18 .3434 .3204 .3362 .3244 .3509 .3248 

~A19 1. 2122 57 38 19 .3497 .3237 .3266 .3351 .3560 .3090 

9A20 1.2766 60 40 20 .3414 .3416 .3170 .3097 .3645 .3258 

9A21 1..9140 90 60 30 .3398 .3485 .3117 .. 3383 . .3455 .3163 
~ 

Total service time distribution of calls occurring in beat 1 "" 8e 
-30t 

+ 32 -40t + -e 3 
16 -20t + -- e 3 

10e-SOt 

Total service ·time distribution of calls occurring in beat 2 = 6e -30t 

+ 10e -40t +' 5e .... 20t + 15e-50t 
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Table 1. (Continued) • 

Run ~k~ Q
31 

Q32 
Q

33 No. Pav k=1 k=2 k=3 

9Al .0638 3 2 1 .0194 .0097 ~9709 

9A2 .1276 6 4 2 .0735 .0343 .8922 
9A3 .1914 9 6 3 .0842 .0471 .8687 
9A4 .2552 12 8 4 .1188 .0668 .8144 
9A5 .3190 15 10 5 .1607 .1059 .7335 
9A6 .3828 18 12 6 .2019 .1341 .6640 
9A7 .4466 21 14 7 .2471 .1672 .5858 
9A8 .5104 24 16 8 .2510 .2162 .5328 
9A9 .5742 27 18 9 .2443 '.2443 :5115 

9AI0 .6380 30 20 10 .2619 .2376 .5005 \..il 
w 

9Al1 .7018 33 22 11 .3127 .2518 .4354 

9A12 ,,7656 36 24 12 .3051 .2542 .4407 
9A13 .8294 39 26 13 .3092 .3110 .3798 
9A14 .8932 42 28 14 .2947 .3221 .3832 

9A15 .9570 45 30 15 .3449 .3218 .3333 

9A16 1. 0208 48 32 16 .3308 .3092 .3599 

9A17 1.0846 51 34 17 .3256 .3073 .3671 
9A18 1.1484 54 36 18 .2969 .3205 .3825 
9A19 1. 2122 57 38 19 .3058 .3606 .3336 
9A20 1. 2766 60 40 20 .3261 .3331 .3408 

9A21 1. 9140 90 60 30 .3625 .3462 .2913 

':l.'ota1 service time distribution of calls occurring in beat 3 ::. 6e~30t 

+ 12e-40t + 4e-20t, + 15e-50t 

W12='O.5,. W21 ~ 0.5, W31=·Q.5i E[tS(l)]+ E (t'r11 ] .:::. 0.0328, E [ts (2) ] + E ltr2i.J 
:::. 0.0314, 

E [ts (3)] + E [tr33 ) :::. 0.0302 



A total 114 runs each lasting for 100 shifts (an elapsed 

time of 10.4 years) were analyzed. The average difference 
"1: 

between analytical values (calculated from equations such 

as (18), (19), (20), (21), and (24)) and simulated values of Qkl 
was 5.5 percent. 
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