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Abstract

A computer program has been designed for specifying the number of
police patrol cars that should be on duty in each geographical command
of a city at various times of day on each day of the week. The program
is a synthesis of the best features of previous patrol car allocation
models, with several improvements, including the capability to prescribe
allocations when one tour in each day in each geographical command over-
lays two other tours. The program was designed to be inexpensive and

readily transferable.
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I. INTRODUCTION

During the last decade, a considerable amount of effort has been
devoted to methods for allocating police patrol cars. Out of this work
have evolved several computer programs for specifying the number of
patrol cars that should be on duty in each geographical command of a
city at various times of day on each day of the week. These programs
were intended to substitute for the use of "hazard" or "workload" for-
mulas, which are still widely popular although their failings have been
pointed out repeatedly [2,7,16,21].

Most of the programs were based on, or were similar to, either the
resource allocation system of the St. Louis Police Department [27] or
a program designed by Richard Larson [21]. The most widely known pro-
gram based on the St. Louis system waslthe Law Enforcement Manpower
Resource Allocation System (LEMRAS), a proprietary IBM package [13]
that was withdrawn at the end of 1974. Larson's program spawned the

following offspring:

0 The Police Resource Allocation Program (RAP), a proprietary
program of Urban Sciences, Inc. [31]

0 A New York City Police Department RMP (Radio Motorized Patrol)
allocation program written by Richard Mudge at The New York
City-Rand Institute [28]

o A program designed for the Los Angeles Police Department by
a UCLA class "Public Systems Analysis" [1]

o) A program written for the Rotterdam Police Department [26].

While all of the programs were similar in many ways, each one had
several minor features that were considered either especially desirable
or particularly inadequate by some analysts or police departments.

These features related to the program's mode of operation (batch or in-
teractive), input requirements, assumptions underlying its calculations,
or capabilities to take certain performance measures into account. As

a result, police departments considering a patrol car allocation program



had several competing alternatives, none of which was entirely satis-
factory.

After carefully reviewing all the patrol car allocation programs
that had been used by police departments up to late 1974, we designed a
general-purpose program that we call PCAM (Patrol Car Allocation Model).
This model incorporates, by user option, nearly all the features present
in earlier programs, together with several improvements. In addition,
we followed cerfain principles that, based on our review, appeared likely
to enhance transferability of a new model. First, it could not be pro-
prietary or restricted in any way. Second, it had to be written in a
language that could be compiled on nearly any computer system and was
likely to be familiar to programmers in municipal government. We chose
FORTRAN. Third, it had to operate in either batch or interactive mode,
at user option. Fourth, it could not require large amounts of core
storage or lengthy processing times. Fifth, it had to adapt flexibly
to varying terminology (such as precinct, division, district, area,
bureau, sector, station, and foreign-language words that mean the same
thing). Sixth, it had to have a complete, detailed user's manual per-
mitting applications by police departments without outside assistance.

In the first four months after its release, PCAM had been adopted
by most users of the earlier programs and by several additional depart-
ments. By January 1976, it was in use at TLarson's nonprofit firm Public
Systems Evaluation (for applications in Wilmington, Delaware), at The
Institute for Public Program Analysis (for training purposes and pos-
sible application in several cities), and at police departments in
Seattle, Atlanta, Toledo, Minneapolis, the Netherlands, and Edmonton,
Alberta. In addition, data bases were being prepared in anticipation
of its use in Los Angeles, New York, and Jacksonville, and the program
was made available to time-sharing customers of Urban Sciences, Inc.,
and Compu-Serv Network, Inc.

In this paper we present a brief history of patrol car allocation
programs to show how our model was synthesized from prior models and
then describe its features, capabilities, and algorithms. Further de-
tails are available in the documentation of the Patrol Car Allocation

Model, which includes an executive summary for police administrators



and planning officers [4], a user's manual [5], and a programmer's
manual providing installation instructioms, file specifications, and

an annotated program listing [6].

TI. HISTORY OF PREVIOUS PATROL CAR ALLOCATION PROGRAMS

Characteristics of the System

All the programs under consideration in this paper allocate patrol
cars to independent geographical commands. For clarity of exposition,
we shall call these commands ”précincts," although terminology varies
widely among police departments. A precinct is not the area covered
by a single patrol car, but rather is a larger area, ordinarily contain-
ing a station house to which the patrolmen report before and after their
tours of duty. The important characteristics defining a precinct are
(a) that its commander has the capability or authority to decide how
many patrol cars will be fielded at various times, and (b) that the
dispatchers of patrol cars treat the precinct as an independent command
by sending only precinct cars to incidents in the precinct, except under
unusual circumstances. Some police departments consist of a single pre-
cinct.

Each precinct is modeled as a queuing system in which the servers
are the patrol cars and the customers are calls for service (cfs) to
the police arising from the precinct. Typical assumptions are that the
calls for service can be distinguished by priority level, that each call
is served by a single patrol car from the precinct, that calls are placed
in queue when all the precinct's cars are unavailable, and that queued
calls are subsequently served according to a first—-in-first-out discipline
within priority levels.

Ordinarily, some or all of these assumptions fail to be precisely
correct in practice. Every police department receives at least a few
calls that require more than one patrol car to be dispatched. 1In addi-

tion, if a high-priority call arrives when all the precinct cars are busy,



it will not actually be placed in queue. 1Instead, an additional car
will be fielded specifically to answer the call, a sergeant's car will
be dispatched, a patrol car from a neighboring precinct will be dis-
patched, a special-purpose unit such as a traffic car or plainclothes
unit will be sent to the scene, or some other way will be found to
respond to the call.

If these variations from the assumptions in the programs occur
infrequently, then they may be ignored without affecting the accuracy
of the output substantially. However, if the variations are large,
then either the input to the program must be adjusted to account for
departmental practices or the output must be interpreted differently.
For example, if the department dispatches two cars to every incident
and both of them remain at each incident for the same length of time,
the output can simply be interpreted as indicating how many pairs of
patrol cars should be fielded.

Further assumptions must be made to produce a manageable analytic
model of the queuing properties of this system. Generally, the arrival
of calls for service in each precinct is described as a time-dependent
Poisson process, and the service times in the precinct are assumed to
have a negative exponential distribution whose mean may alsc vary with
time but is independent of other characteristics of the system. The
assumption of Poisson arrivals is confirmed by data [20], but actual
scrvice times are nmeither exponentially distributed nor identical for
all calls. 1In particular, the assumption that the service time is in-
dependent of the system state is not correct, because the service time
includes the length of time required for the patrol car to travel to
the scene of the incident, which is a function of the number of avail-
able servers (patrol cars). Thus, conflicts arise between validity
and analytic simplicity of the models; these are resolved in various
ways that will be described.

A consequence of these assumptions is that the programs require
as input the average call rate and service time for each precinct, as
a function of the time of day. The computer programs for patrol car
allocation can be distinguished according to whether they do or do not

assist the user in estimating these input parameters. Those that make



no predictions have sometimes been operated simply by using averages of
past data, and sometimes a separate program has been used to make the
required predictions. The details of prediction capabilities will be
described below in the discussion of individual programs.

Another important system characteristic is that, from the point
of view of queuing, the number of servers is not constant over time.
Rather, patrol cars may be unavailable for reasons other than calls
for service (meals, auto repairs, on-view incidents requiring police
intervention, special assignments by a commanding officer, and the like).
We shall call these events 'non-cfs" unavailabilities and describe how
they are handled in each of the programs. One approach that has been
taken is to ignore non-cfs unavailabilities altogether. However, in
this case, the resulting output of the program may bear no relationship
to reality [1], in which case it is virtually'useless as an aid to
planning.

A second approach is to consider non-cfs unavailabilities as if
they were calls for service. If the estimates of arrival rates and
service times for non-cfs events are accurate, this method tends to work
well. However, it is not appropriate to make such estimates for the
future by projecting data from the past, because the number of non-cfs
events will change if the number of cars on duty is changed. Particu-
larly in departments where patrol cars are unavailable for dispatch
during meal times, it is apparent that increasing the number of cars
on duty will increase the number of non-cfs events, quite independent
of how many there were in the past. The importance of this effect
varies from department to department.

A third approach to handling non-cfs events in a patrol allocation
program is to assume that cars busy on non-cfs work are not "effectively"
present. This means that the number of servers, from the point of view
of queuing, is estimated as some fraction of the number of patrol cars
fielded in the precinct. The advantage of this method is that the cal-
culations can be performed so as to take into account automatically the
change in the amount of non-cfs work that will occur as the number of
fielded cars is changed. Details of the method will be given as we

discuss the various patrol car allocation programs.
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St. T.ouis Police Department

The computer programs for the St. Louis Police Department were
initially proposed and documented by Richard F. Crowther [11] in 1964.
(See also Shumate and Crowther [30].) During the four years that fol-
lowed, these methods were refined, programmed for the department's
computer, and applied in one precinct (called "district" in St. Louis)
by a project team at the police department [27]. While the total re-
source allocation project covered many topics, we shall describe only
those that were related to determining the number of patrol cars needed
in each precinct. These programs performed certain basic functions
needed for any patrol car allocation system. They were operated by the
department in batch mode on a regular basis for at least five years.
The programs had two components, one to predict call rates and service
times and the other to calculate queuing statistics.

Prediction. The city was divided into small areas (called Pauly
Areas) about the size of several blocks. Dispatchers' records were
coded according to the Pauly Area in which the incident occurred, and
a program was written to determine the number of incidents in each of
eight different categories that occurred in each Area in each hour of
the week. Exponential smoothing was used to project these counts into
the future, and the service times of incidents were similarly smoothed [257.
Since a precinct can in principle be any collection of Pauly Areas, the
hourly call rate in a precinct was estimated by aggregating the call
rates for the corresponding Areas, and the service time was estimated
as a weighted average.

Queuing. The system was modeled as being in steady state in each
hour, with Poisson input and exponential service times whose means were
given by the estimates from the prediction program. A program was
written to generate tables from Erlang's formula [12] showing the per-
centage of calls in each tour that would experience a delay for differ-
ent numbers of servers. (A "tour' is a period of time, commonly eight
hours, during which a patrol car may be on duty. The fraction of calls
delayed during a tour was estimated as the weighted average of the
hourly figures.) Department policy was established that at least enough

cars should be fielded to keep the number of calls placed in queue under



15 percent of the total number of calls. By consulting the tables it was
possible to determine the number of cars needed to accomplish this objective.
For purposes of comparison with programs to be described below, we
shall point out certain details of the St. Louis program. First, the occa-

sional dispatch of more than one patrol car to an incident was handled by
counting each dispatch in the data as if it represented an incident. Thus,
an incident requiring three patrol cars would count as three incidents.
This method appeared satisfactory, and it can be used with any of the pa-
trol car allocation programs.

Second, no attempt was made to take account of non-cfs work in the St.
Louis patrol allocation programs. The extent to which this led to actual
delays being higher than those predicted by the computer program has not
been reported, to our knowledge. However, the department apparently had
adequate resources to keep the actual number of calls encountering a queue
well under 10 percent.

Third, although calls were divided into categories that could poten-
tially be distinguished by importance or priority, the particular perfor-
mance measure used (namely, the percentage of calls delayed) does not vary
according to the priority of a call. Therefore, there was no operational
reason to distinguish among types of calls in the program output.

Finally, the exponential smoothing technique was found to be adequately
accurate, through a comparison of the actual number of incidents and service
times with the predictions. Apparently the St. Louis Police Department

experienced 1ittle difficulty in selecting suitable smoothing parameters.

LEMRAS (Law Enforcement Manpower Resource Allocation System)

This IBM software package was based on the St. Louis system and in-
cluded all of its features, together with a number of improvements [13].
Once again, cities were divided into small areas (which were called
"reporting areas'" instead of Pauly Areas), and the number of incidents
and their service times were predicted by exponential smoothing. Inci-
dents could be divided into a large number of event codes, corresponding
to the names given to incidents by dispatchers, and these were aggregated
into, at most, 20 "event classes'" for purposes of statistical analysis.

Each event class could be assigned to one of three priority levels.



In an advancement over the St. Louis system, the LEMRAS program
operated on the assumption that calls of a given priority class are
not assigned to patrol cars until all higher-priority calls have been
assigned. For each specified number of patrol cars on duty, the LEMRAS
program estimated the distribution of queuing delays, presented as his-
tograms with five-minute intervals for each priority class. By taking
into account the number of calls in each event class expected to occur
in each hour, this information was then summarized for each event ciass
on a weekly basis, or whatever was desired by the user. Thus a depart-
ment using the LEMRAS system could, if it wished, allocate cars to ful-
fill criteria relating to the proportion of calls delayed and the
distribution of delay within priority classes. Some LEMRAS users chose
not to take advantage of its capabilities related to priority levels;
they simply classified all calls as priority 1. In such applications,
the departments had essentially the same patrol allocation system as
St. Louis had.

Aside from the priority queuing feature, most of the other im-
provements in the LEMRAS system were not conceptual in nature but were
for the purposes of assisting the user in preparing data for input,
providing flexible output formats, etc. Like its St. Louis predecessor,
LEMRAS was a batch program. LEMRAS was withdrawn by IBM at the end of
1974 because the program was not compatible with the latest generation
of operating systems being marketed by the corporation, and most cus-
tomers were interested in an on-line interactive program, while LEMRAS
operated in batch mode.

Some LEMRAS users developed their own programs to format and print
only such LEMRAS output information as was of interest to them. For
example, if a department wanted to allocate enough cars to assure that
under 10 percent of calls were queued, it might not have any use for
tables showing the delays that would occur under allocations that did
not meet the objective.

Some LEMRAS users entered all patrol car work, whether for calls
for service or not, into the data input and were satisfied with both
the predictions and the recommendations for the number of cars to be

fielded. Other departments, such as the Los Angeles Police Department
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(LAPD) [1], found the predictions for non-cfs work to be frequently
very much in error, and therefore did not use them. Even the predic-
tions for call-for-service arrival rates and service times, while usu-
ally acceptably accurate, sometimes were incorrect in Los Angeles.
This led to some concern that the technique of exponential smoothing
was itself inappropriate for the Los Angeles data, but a more likely
explanation is that the exponential smoothing parameters had not been
set properly, and the city lacked the statistical expertise required to
correct the situation. In regard to non-cfs work, as was pointed out
earlier, it is conceptually erroneous to try to make predictions from
past data. Departments that found their non-cfs predictions satis-
factory presumably did not vary the number of cars on duty in a given
precinct and tour to any great extent, or for some other reason they
were lucky to have a slowly varying pattern of non-cfs work. The LAPD
happened not to fall into this group.

In Los Angeles, the amount of time devoted to non-cfs work varies
from 40 to 60 percent of the total time cars are in the field. This
is too large an amount of work to ignore in the program. As a result,
when the LEMRAS program was operated using only cfs data, it would
specify how many cars should be fielded to assure that under 5 percent
of calls would be queued, but the department found that fielding the
recommended number of cars led to about 40 percent of calls being queued.
The problem was that the LAPD was fielding the number of cars specified
by LEMRAS without realizing the distinction between "effective' and
"actual" cars. This is simply an illustration of the fact that if a
program is used in a way that was not intended, it may fail in dramatic

fashion.

Larson's Program

In 1968 and 1969, Richard Larson designed a program for patrol car
allocation and applied it, as a test case, to data from New York City [20].
Later, he described the program, together with potential improvements

that could be made, in his book Urban Police Patrol Analysis [21].

Larson's program does not perform any estimations of call rates or ser-—

vice times, but requires such information as input. In regard to its
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queuing formulation, Larson's program is similar to LEMRAS, except that
more than three priority levels are permitted, and the program calculates
the average length of time a call of each priority level will wait in
queue, rather than a histogram of the delay distribution.

The two major advances over LEMRAS incorporated in Larson's pro-
gram were (1) consideration of performance measures other than queuing
delays, and (2) capability to allocate a fixed total number of patrol
cars among precincts.

Additional Performance Measures. Larson recognized that queuing

delays wére not the only measure of performance of a patrol car system,
and indeed might be unimportant compared to others. For example, if a
precinct were large enough that the average time it took a patrol car
to travel to ap incident was 15 minutes, it would be of little interest
that the average wait in queue was 20 seconds.

lLarson discussed in general a variety of performance measures that

could be considered, but included only three in his program:

a. Average travel time to incidents,

b. Average patrol frequency (how often a car passes the most
heavily patrolled points in the precinct while on preventive
patrol), and

¢. Patrol hours per outside crime.

These were estimated from approximate analytical models based on prin-
ciples of geometrical probability.

In one method of using the program, called the descriptive mode,
the user could try various numbers of patrol cars in each precinct,
and the program would calculate these three performance measures, to-
gether with the percentage of calls that would have to wait in queue.
If the user had in mind a desired maximum or minimum for some of the
measures, he could inspect the tables and see how many cars were needed
to accomplish the objectives. Thus, the descriptive mode represented
in itself an improvement over the output capabilities of the St. Louis
program. In practice, because of additional capabilities of Larson's

program, the descriptive mode was mainly used to find out the values
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of the performance measures for the number of cars currently fielded
in each precinct.

A technically modest, but important, improvement introduced by
Larson was the capability to permit the user to enter, as input, his
desired maximum or minimum for each of the three measures in each pre-
cinct. In addition, he could establish administratively a minimum per-
missible number of patrol cars for some or all precincts. The program
would then calculate how many patrol cars were needed in each precinct
to meet all the specified comstraints, without the user having to in-
spect a large number of descriptive tables.

Allocation of a Fixed Number of Cars. Larson was the first to

recognize the fact that the total number of patrol cars available for
fielding in the city was an important consideration in allocating cars
to precincts. Therefore, in the prescriptive mode of Larson's program,
the user specified the total number of cars to be allocated in the whole
city (or some collection of precincts) during the tour in question.
The program then allocated cars to precincts in such a way that, first,
all the constraints discussed above were met, and, second, the addi-
tional cars (if any) were allocated so as to minimize the city-wide
average time a call would wait in queue. (Actually, the user could
specify weights for each priority level, and the program would minimize
the weighted average waiting time.) The optimization was accomplished
by a dynamic programming algorithm.

larson's program did not utilize hourly data varying over a tour,
as did the two programs described above, but assumed a steady-state
situation with fixed call rate and service time over the period for
which allocations were being made. This is a disadvantage, because
in many cases call rates vary by 50 percent or more over a tour. If the
user operated Larson's program separately for each hour of the tour,
he might not be able to vary the number of cars as suggested by the out-
put. On the other hand, if he entered the average call rate for the
tour, the resulting output would be less accurate. Larson's program
also had no special capabilities for handling non-cfs work, other than

by including such work in the call rate and the service time.
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This program was written in the Michigan Algorithm Decoder (MAD)
language and ran in an interactive mode on the Massachusetts Institute
of Technology computer system. It could be accessed from New York by
telephone lines, but the NYCPD never used this particular version for
any planning purposes. The MAD language was unpopular and was eventu-

ally abandoned by MIT, at which time the program "died."

Urban Sciences, Incorporated

Urban Sciences, Inc., rewrote Larson's program in FORTRAN and
greatly enhanced its interactive capabilities [31]. This program was
made accessible to police departments by contract, but the source code
was proprietary. In all conceptual aspects it was identical to the

program just described above.

New York City Police Department (Mudge's Program)

This program was written in 1972 by Richard Mudge at The New York
City-Rand Institute [28]. While based on Larson's program, Mudge's

program was not exactly the same. The two primary differences were:

o Mudge's program would not allocate a specified total number
of patrol cars. In prescriptive mode, this program simply
calculated the number of patrol cars needed in each precinct
to meet constraints entered by the user.

o Mudge's program distinguished between "effective' cars and
"actual" cars, as follows. The user specified a fraction
(the same for all precincts) representing the fraction of
time that cars are busy on non-cfs work. This fraction was
used to compute the effective number of cars, which was then

rounded to an integer.

Minor differences were as follows: Mudge included more information in
descriptive output than was available from Larson's program, and the

measures of performance subject to constraint by the user were expanded
to include several measures related to queuing. In a sense, this pro-

gram returned to the philosophy underlying the St. Louis and LEMRAS
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programs, namely, that a department would want to field enough cars
to keep queuing delays under specified limits.

This program also permitted only three priority levels, but the
average queuing delay for priority 1 calls was not displayed. Mudge
realized that priority 1 calls would be handled in a special way if
all the precinct cars were busy, and thus the program's estimates for
the delay of such calls would be inaccurate.

Mudge's program is similar to Larson's in that it does not assist
the user in predicting call rates or service times and it uses average
data for a tour, rather than hourly data. It was written in FORTRAN
and was available in two versions, batch and interactive. The NYCPD
used this program from time to time over a two-year period for long-term

planning purposes.

UCLA Program

As mentioned above, the LAPD had for several years used the LEMRAS
program, as modified by its own input and output routines, and was hav-
ing some difficulty with it. In 1974, a class at the University of
California, Los Angeles, prepared a patrol car allocation program for
consideration by the LAPD [1]. It was based on the Mudge and Larson
programs. In common with the Mudge program, it permitted the user to
specify constraints on queuing delays as well as other performance mea-
sures. In common with the Larson program, it permitted the user to
allocate specified total resources. The primary differences between

this program and the other two are as follows:

o] The UCLA program allocated car-hours across tours instead of
cars across precincts. This means that the user specified
the total number of car-hours available in a precinct during
a day, and the program prescribed how many cars should be on
duty during each tour. Or, alternatively, the user specified
constraints on performance measures and the program prescribed
how many cars are needed in each tour, adding these to show
total car-hours in a day for the precinct in question. This
facility permits the number of hours in a tour to differ among

tours.
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o The UCLA program operated on the assumption that the amount
of non-cfs work performed by a car would vary according to the
amount of cfs work. (This was found to be true in Los Angeles,
by analysis of available data.) The relationship between the
fraction of time busy on non-cfs work and the fraction on calls
for service was modeled as a linear equation, separately for
each precinct, using data from the precinct [1]. The conver-

"actual' cars was then

sion between ''effective' cars and
calculated from the linear equation. While the linearity of
this relationship is simply an empirical observation, one can
understand that there must be some relationship by realizing
that patrol cars cannot engage in non-cfs work unless they

are otherwise available. The more free time a patrol officer

has, the larger will be the number of non-cfs events that come

to his attention.

This program was written in PL/I and operated in batch mode. It
did not make predictions of call rates or service times, which were
available from LEMRAS in any event. However, it accepted as input
hourly data rather than averages for a tour. It did not have descrip-
tive capabilities, although the output displayed the performance mea-

sures for the recommended allocations.

Interim Version of PCAM

During the process of programming PCAM, an interim version of the
program was provided to the New York City Police Department and the
Seattle Police Department [29]. This program was an improvement over
Mudge's program in that it would allocate a specified number of cars
as well as determine the number of cars needed to meet constraints.

It also included many of the technical improvements incorporated in
the final program, including a linear relationship between non-cfs work
and call-for-service work.

However, it was limited to allocations across precincts (i.e., it
would not allocate car-hours across tours), and it used average call

rates and service times for tours rather than hourly data. The interim
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version was available only as an interactive program. This model was
used in Seattle for over a year, where it was validated against actual

data for travel times and the fraction of calls entering queue.

Dynamic Queuing Model

All the programs described above assumed the system to be in
steady state, either for each hour or for an entire tour. Kolesar,
Rider, Crabill, and Walker [18] developed a dynamic queuing model that
eliminates this assumption. It calculates time-varying queuing statis-
tics by numerical integration of the differential equations for a system
having time-dependent Poisson arrivals, exponential service times, and
a time-varying number of servers. This program is especially useful
for analysis of tour starting times and scheduling of meal hours, but
it is too elaborate to form part of an inexpensive patrol car allocation
program. Since the dynamic queuing model does not calculate performance
statistics such as travel time and preventive patrol frequency, it is
not in itself a suitable substitute for any of the programs that follow
the principles elucidated by Larson.

Fortunately, by comparing the output of the dynamic queuing model
with calculations performed by assuming steady state in each hour, it
has been found that both methods produce approximately the same average
statistics for anm entire tour [17]. This is because the coupling between
tours is quite weak. As a result, allocations derived by incorporating
the dynamic queuing model in a patrol car allocation program would be
jdentical, for all practical purposes, to those derived by hourly
steady-state calculations. Therefore, we took the latter approach for

our own model.

TIT. CAPABILITIES AND APPLICATIONS

The above history indicates a variety of technical reasons why

no patrol car allocation model has as yet achieved general acceptance.
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Some models were implemented to suit the requirements of one department,
with no consideration given to generality. (In Mudge's program, for
example, one has to modify the source code in order to change the num-
ber of precincts, and in the UCLA program the values for constraints on
performance measures are in the source code.) Prescriptive and descrip-
tive capabilities present in some models were lacking in others. Pro-
grams were written in computer languages or dialects for which translators
are not widely available, or the source code was kept proprietary.

While there are many obstacles to implementation of computer models
in police departments that have nothing to do with the characteristics
of the models themselves [8], in this case we felt that a general-purpose
model would enhance the chances of implementation. Our work consisted
of determining which features of the previously existing models were
the most useful, identifying desirable capabilities that did not exist
in previous models, and combining all of these in a package that could
be used on most computer systems and would be easy to install and run.
Our Patrol Car Allocation Model incorporates, by user optiom, nearly all
the features of the programs described in the previous section, except
that it will not predict call rates or service times.

We provided for wide usability by writing the program in a standard
version of FORTRAN without recourse to language features peculiar to one
computer system or compiler. Ease of installation was accomplished by
a system of dynamic allocation of array storage which allows the program
to adjust array dimensions for a particular city and type of analysis.
The program was made readily usable by providing for user control through
a sequence of easily learned natural-language commands that can be en-
tered at an interactive terminal or on punched cards. In addition, the
program provides for the inclusion of terminology used by a particular
department in commands and output table headings. The amount of core
storage required by the program varies according to the size of the
user's data base but is generally under 160K bytes on an IBM System 370
machine. The cost for typical runs of the program is well under $10.

In the rest of this section we describe the capabilities and func-
tions included in the PCAM program, and examples of applications of the

model.
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Descriptive Capabilities

Descriptive capabilities of the Patrol Car Allocation Model permit
displaying quantitative information about any allocation of patrol cars
by time of day and geographical command. This information may refer to
the current allocation, any allocation proposed by the user, or alloca-
tions that are suggested by the program when operated in prescriptive
mode. This information permits the user to compare allocations and
determine which one he thinks is best.

When the model is operated in descriptive mode, it can provide

the following information for each tour in each precinct:

0 The number of patrol cars assigned
o The average fraction of time patrol cars are busy on calls for

service (actual utilization)

o The average number of cars available (not busy on either cfs
work or non-cfs work)

o Preventive patrol frequency

o] Average length of time from the dispatch of a patrol car until
its arrival at the scene of an incident (travel time)

o The probability that a call will enter queue

0 The average time in queue of calls, by priority level

o The average total response time (time in queue plus travel

time).

The model provides for great flexibility in the selection and sum-
marizing of information that is displayed. Information can be selected
by precinct, time of day, day of week, or any combination thereof. Thus,
the user can examine performance measures for all precincts for one tour
on a particular day or look at one precinct for all tours of a day or
several tours of each day of the week, etc.

The output information is calculated from simple analytical models

that are described in the User's Manual [5]. For example, preventive

pattol frequency in a precinct is calculated from the formula originally
developed by Larson [21]. The average travel time is calculated from

a relationship known as the square-root law [19], which is a function
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whose variables are the area of the precinct, the effective number of
patrol cars on duty, and the effective travel speed of the cars. This
relationship has been validated against both real and simulated travel-
time data [14,19]. The model's calculations of queuing statistics when
there is no non-cfs work are based on an M/M/N formulation. These
statistics have been validated against data from a simulation model [19]
which itself has been validated against real data in New York City [10].
When non-cfs work is present, an adjustment is made to queuing statis-
tics as described in Section IV, below. A limited validation of these
adjusted statistics against real data has been conducted in Seattle,

but further experience in other cities is required before this part of

the program can be considered fully validated.

Prescriptive Capabilities

The Patrol Car Allocation Model allocates car-hours to shifts,
where a shift is defined as a combination of a specific tour on a
specific day in a specific precinct. The purpose of allocating car-
hours rather than cars is to permit tours to have any duration desired
by the user, not necessarily all the same. If all tours have the same
length, the user can allocate cars, rather than car-hours, to shifts
by adding one line to the source program.

The two basic prescriptive capabilities of the model are (a) deter-
mining the minimum number of cars that must be on duty in each shift
to meet constraints on performance measures specified by the user, and
(b) allocating a user-specified total number of car-hours among shifts
so as to minimize an objective function. A variant of the second capa-
bility permits the user to add a specified number of car-hours to a
previously determined allocation. Thus, minimization subject to con-
straints, which was accomplished in a single step in Larson's program,
requires two steps when operating the PCAM program. This separation
into two steps was designed to permit flexibility. For example, it is
easy for the user to specify that each shift is to be allocated at
least as many cars as are currently present; this capability permits
allocation of added manpower, such as a newly graduated class of re-

cruits.
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The performance measures subject to constraint by the user are all
the descriptive output items listed above, except for actual utilization.
For example, the PCAM program will specify the minimum number of cars
needed in each shift so as to keep the fraction of calls that are queued
under .2 and the average travel time under 8 minutes.

The objective functions that can be minimized by the model are:

o Probability of calls entering queue
o Average queue delay for all calls or calls of a specified
priority level

o Average total response time.

When minimizing an objective function, the user specifies the subset
of shifts to which the car~hours are to be allocated. For example,

he can fix the tour and day, in which case car-hours will be allocated
across precincts; or he can fix the precinct, in which case car-hours
will be allocated across all tours in all days of the week for that
precinct; or he can allocate car-hours across precincts, tours, and

days simultaneously.

Overlay Tours

PCAM's greatest technical innovation is its ability to deal with
overlay tours. ‘That is, it will describe performance measures and pre-
scribe allocations if there is a tour that begins during one ''mormal"
tour and ends during the following tour. For example, if all tours are
eight hours in length and begin at midnight, 0800, 1600, and 1900, then
the tour from 1900 to 0300 is an overlay tour. (See Fig. 1.) Overlay
tours are most commonly used by police departments to synchronize peak
manpower with maximum workload when the lengths of tours worked are
inflexible.

While a department with an overlay tour can use the earlier pro-
grams by artificially imagining shorter "tours' (for example, the time
intervals labeled Block 1, ..., Block 5 on Fig. 1), allocations pre-
scribed for these time intervals would not necessarily be compatible.

In other words, it is not possible to achieve arbitrary allocations to
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Fig. 1—Time blocks with an overlay tour.
A block is a time interval during which
the number of patrol cars does not change.
Twenty-four-hour ‘“days’ are defined in such
a way that the overlaid tours (Tour 2 and
Tour 3) are both in the same day.
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five time intervals by starting patrol cars on duty at four different
times. PCAM will recommend only feasible allocations in the case of
a single overlay tour, although police departments with more than one
overlay must resort to the same 'trick'" when using PCAM.

In descriptive mode, PCAM computes performance measures taking into
account changes in the number of cars on duty caused by the starting
and ending of overlay tours. There is no particular difficulty inherent
in these computations. In prescriptive mode, however, problems arise.
These result from the fact that simple marginal allocation algorithms
do not work due to the inseparability of the objective functions for
tours involved in overlays. This problem is fully explained in the
next section, and an algorithm for solving the allocation problem is
deseribed. The algorithm is not optimal under all assumptions, but
appears "sensible" in typical applications. More complex algorithms,
which could also have solved the optimization problem for multiple over-—
lay tours, were judged too expensive (in terms of computer processing

time) for incorporation in the model.

Applications
The primary judgmental problem for police departments using PCAM

is selecting suitable constraints and objective functions. Most depart-
ments have some relatively large precincts with few calls for service,
as well as small, densely populated precincts with many calls for ser-
vice. Citywide minimization of any queuing statistic tends to concen-
trate the patrol cars in the precincts with many calls for service,
resulting in possibly unacceptable queuing delays and travel times in
the precincts that have a large area but few calls for service.

PCAM's facility for setting constraints on performance measures
permits the user to introduce aspects of equity into the allocation.
In fact, by iteratively restricting the constraint on any one performance
statistic, one can achieve an allocation that approximately equalizes
that statistic over time and geography. However, the simultaneous
equalization of all performance statistics is in general impossible,
so the user is forced to consider the trade-offs among performance

measures.
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Some departments have found that an acceptable allocation is
achieved by minimizing total response time (queuing plus travel time)
without any constraints. This is because the total response time in a
precinct is calculated from its geographical area as well as ifs call-
for-service workload. Moreover, total response time is believed to be
correlated with ultimate measures of the quality of police patrol opera-
tions, such as the probability that a criminal offender will be arrested
at the scene of a crime [9,15].

Once a police department has established the objective functions
and/or constraints it wants to use, a variety of applications of PCAM
are possible. It can be used during budget preparation to determine
the total number of patrol officers a department needs to meet speci-
fied performance levels. Once the department's total number of patrol
officers has been determined, the program can allocate them among pre-
cincts. Either at the same time or later, it can allocate the patrol
officers in a precinct to the various tours omn different days of the
week. It can be used to analyze proposed changes in tour starting times
or the possibility of introducing an overlay tour in a department that
currently does not have one. Tt can also indicate the effects of chang-
ing the priority structure for calls for service or "screeming out"
certain calls (refusing to dispatch a patrol car to specific types of
low—priority calls).

Since PCAM's calculations are insensitive to the locations of cars
within a precinct, the program cannot be used to design patrol areas of
police cars. Discussions of suitable models for this purpese and for
other analyses of patrol car operations that cannot be accomplished with

PCAM are given elsewhere [2,3,8,21,22,23,24].

IV. COMPUTATIONAL ALGORITHMS

In this section we describe briefly the calculations performed by

the Patrol Car Allocation Model, with emphasis on the situation when an
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overlay tour is present, since mathematically this is the only unique
feature of the model. Although cars are allocated to shifts by the
program, when én overlay tour is present the number of cars on duty
can change during the period of time covered by a shift. For example,
in Fig. 1 we might have 5 cars allocated to Tour 2 in Precinct 1 on
Monday and 3 cars allocated to the Overlay Tour; in this case the num-
ber of cars on duty increases from 5 to 8 at 1900 hours, which is in
the midst of Tour 2. To discuss these possibilities we use the term
time block to refer to a period of time during which the number of
patrol cars on duty does not change. Thus, Tour 2 in Fig. 1 consists

of two time blocks, Block 2 and Block 3.

Assumptions

For a single hour in a single precinct, calls for service are
assumed to arrive according to three independent Poisson processes
(representing three priority levels) with sum rate X and to have iden-
tical, independent, exponentially distributed service times with mean
1/u. In a standard steady-state queuing formulation with a fixed num-
ber of servers, the mean arrival rates and service time permit calcu-
lating any desired queuing statistics for each priority class. (See

the PCAM User's Manual [5] for details.)

To model the stochastic variation in the number of servers due to

non-cfs work, the fraction of time each of N patrol cars will be unavail-
able on non-cfs work is assumed to be a function U(Ax, u, N). For queuing
purposes, the number of servers is then n = (1 - U)N. We refer to n as
the "number of effective cars" and N as the "number of actual cars."
If n is not an integer, queuing statistics for n servers are estimated
by linear interpolation of steady-state statistics for [n] servers and
[n] + 1 servers, where [n] denotes the integer part of n. These calcu-
lations cannot be performed unless A/[n]u < 1.

In accordance with the findings of the UCLA class, the function U
is assumed to have the form

U(A, u, N) = B, A/Nu + B

1 2°
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The constants Bl and B2 are determined separately for each precinct from

data showing the actual fraction of calls delayed in gqueue for various

achieved values of », p, and N. This is accomplished by numerical inver-
sion of Erlang's formula for the probability of delay, which determines
the number of effective cars.* In this way the constants adjust for non-
cfs unavailability (whether non-cfs events are recorded by the police
department or not) and also for the inaccuracy introduced by assuming
identically distributed exponential service times. In other words, the
constants Bl and B2 automatically assure that the calculation of queuing

statistics in the model will match the true performance of patrol cars,

at least in regard to the probability that a call enters queue.

Meeting Constraints

When the user specifies constraints on performance measures, the
program assures that the constraints are met in every time block speci-
fied. This is accomplished by a simple iterative procedure in which
the number of cars is increased by 1 in each step. The initial assign-
ment is either the current allocation or the minimum number of cars
needed to keep A/[n]u under 1 in each hour, depending on instructions
from the user.

Once the required allccations to blocks are determined, they are

converted to an allocation to shifts with the following properties:

1. At least as many cars are assigned to each block as are
required.
2. The shift allocation consumes the smallest possible number

of car-hours consistent with (1).

Allocating a Specified Number of Car-Hours

To allocate car-hours across shifts, the user of the model speci-
fies the total number of car-hours to be allocated, the shifts over

which the allocation is to take place, and the objective function F to

oL

A computer program to perform this inversion, which is not part
of the Patrol Car Allocation Model, is listed in the Program Descrip-
tion [6].
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be minimized by the allocation, which, as mentioned earlier, may be

chosen as one of the following:

Fl = average fraction of calls queued
F2 = average waiting time in queue

FZ . = average waiting time for priority p calls, p =1, 2, 3
>

F3 = average total response time.

The user also specifies whether car-hours are to be allocated in addi-
tion to those already allocated, or whether the allocation is to begin
as if no cars were currently allocated.

The program then follows a heuristic algorithm that is intended
to minimize F by allocating an integer number of cars to each shift in
such a way as to consume all the car-hours specified.* However, the
algorithm has been proved optimal only in the cases (a) when there are
no overlay tours or (b) when the overlay tour has the same duration as

the two tours it overlays. To describe the algorithm, we denote by

Bl’ B2, eeny BK the time blocks over which the allocation is to take
place. An allocation to shifts induces a specification of the number
of cars assigned to each block: Ny, Dys eees Do Denote by Fi(ni)

the average value of the objective function F over block Bi when n,
cars are assigned to Bi' Then the objective function F has the follow-

ing properties:
Property 1. The value of F is a weighted average of the fi's:

K K
n,) = X w.f. (n.) X w
jop Bi0d

F(n,, N,y s>
1’ 72 K =1

3

“In some cases a small number of car-hours may remain unallocated
if they are not enough to equal one car working for one shift. Ordinar-
ily a police department would have no use for noninteger allocations to
shifts, which is why PCAM allocates integers. However, if the initial
allocation has noninteger allocations (e.g., it may be an average of
actual allocations over several weeks), the user can, if he wishes,

ask PCAM to add integers to the existing allocation, resulting in a
noninteger allocation.



—27-

Here vy is the total number of calls in block Bi when F = Fl, F2’ or
F3, and v, is the total number of priority p calls in block Bi when
F=F, . ’
2,p

Property 2. Each fi is convex decreasing. More precisely, if n < n'

then fi(n') < fi(n), and if n < n’” < n” < n" then fi(n") - fi(n"ﬁ <

f(n) - £f(n'").

With No Overlay Tours. When there are no overlay tours, every

10 o BK' The

model's allocation algorithm begins with an initial allocation Ny, N,

shift is the same as a time block, so the shifts are B

-y Oy that is the same as is calculated when meeting constraints and
depends on whether the user wants to start with the current allocation
or not.

Then the model calculates, for each shift Bi’ a number Ai repre-
senting the amount by which the weighted objective function will improve

per car—hour if one car is added to shift Bi:
= - +
by wi(fi(ni) fi(ni l))/hi,

where hi is the number of hours in shift Bi' The algorithm adds omne
car to the (or a) shift having the largest value of Ai and then repeats
the process until all the car-hours are consumed.

It is well known that this iterative process (marginal allocation)
leads to an optimal solution, because the objective function is separable
and convex. However, a proof for this particular case is also given in

the User's Manual [5].

With Overlay Tours. To describe the difficulties with overlay

tours, we shall indicate the problems that would arise if we attempted
to use the procedure that we have just described for the case of no
overlays. First, it is possible to determine an initial allocation

of cars to time blocks exactly as before, but then this initial al-
location might not be feasible. This means there might be no way to
achieve the indicated assignments to blocks by starting cars to work
at the beginning of tours. Among the feasible allocations that have

at least as many cars in each block as are needed for the initial
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allocation, some have fewer car-hours than others. Among those that have
the smallest possible number of car-hours, some may have a lower value

of the objective function than others. In short, some care had to be
exercised in selecting the initial allocation.

Second, if we add cars iteratively to blocks so as to minimize the
objective function, we again encounter the problem that the resulting
allocation may not be feasible. TIf we convert this optimal allocation
into a feasible one, we find (a) the feasible allocation may have more
car-hours than we intended to allocate, and (b) there is no guarantee
that the feasible allocation is optimal for the number of car-hours it
does have.

If, on the other hand, we attempt to add cars iteratively to shifts
instead of time blocks, it turns out that the marginal allocation pro-

cedure described above does not work. To be more specific, it is not

true, in the case of overlays, that the optimal allocation of N + 1 cars
can necessarily he found by starting with the optimal allocation of N
cars and adding one car to one shift. The reason the method fails in
this case is that the objective function is no longer separable with
respect to the decision variables, which are the numbers of cars assigned
to each shift. For example, suppose two shifts are on duty during block
Bi. Then block Bi contributes wifi(Nl + Nz)/z wj to the objective
function, where Nl is the number of cars assigned to one of the shifts

in the block, and N2 is the number of cars in the second. This cannot

be expressed as the sum of a function of Nl and a function of NZ'

Third, if the overlay tour does not have the same length as the
tours it overlays, the standard definition of the word "optimal™ will
lead to unsatisfactory allocations. Figure 2 illustrates this problem
by showing the fraction of calls delayed for various allocations in an
example precinct having 4 tours, one of which is an overlay. The lengths
of the tours in the overlay segment* are as follows: Tour 1 is 6 hours

long, Tour 2 is 10 hours long, and the overlay tour is 12 hours long.

From the figure, it can be seen that the minimal allocation to the

%
An overlay segment is a collection of three shifts, one of which
is an overlay and the other two of which are overlaid.
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Fig. 2—Average queuing probability for an overlay segment

in which the tours do not have the same length. The call
rates and service times in each hour were determined from
actual data in a test city. The smallest number of car-
hours needed to keep effective utilization under 1 in each
hour is 182. The other points on the graph correspond to
allocations having between 182 and 240 car-hours. Some
allocations having a large queuing probability were not
graphed.
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overlay segment requires 182 car-hours, the next feasible allocation
requires 188 car-hours, and the following one requires 192. Since
there is only one feasible allocation with 192 car-hours, it might be
said that it is the "optimal' allocation of 192 car-hours. However,
no police department would be interested in this allocation, because

a smaller number of car-hours (namely, 188) can be allocated to give

a lower value of the objective function Fl. Also note that there is
an allocation of 212 car~hours that has a lower value of the objective
function than any allocation of a smaller number of car-hours, and vyet
it does not look ''desirable."

Basically, "desirable" allocations are those that lie on the piece-
wise linear curve shown on Fig. 2. This curve can be defined as the
graph of the maximal convex function ¢ such that ¢(x) is less than or
equal to the value of the objective function for every feasible allo-
cation of x car-hours. Then the problem of finding the optimal alloca-
tion of H car-hours can be stated as follows: Choose an allocation of
H' car-hours for which (1) the value of the objective function is ¢(H'),
and (2) H' is as large as possible, subject to the constraint H’ < H.

We did not solve this problem in full generality. Instead, we developed
an algorithm that is optimal when the overlay tour is the same length

as the overlaid tours (the most common case). In other realistic cases
that we have tested (including that shown in Fig. 2) where tours in an
overlay segment differ in length, the algorithm recommends allocations
that lie on the maximal convex function ¢. However, it is not difficult
to generate unusual examples (such as an overlay tour that is half as
long as the overlaid tours) where the algorithm fails.

The algorithm we have developed works in the following way. The

initial allocation for each time block is found as in the case of no

overlay tours. Then the initial assignment to blocks is converted into

an allocation of cars to shifts with the following properties:

1. Every block has at least the number of cars in the initial
assignment.
2. The number of car-hours assigned to an overlay segment 1s as

small as possible, consistent with 1.
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3. The value of the objective function is as small as possible,

consistent with 2.

This is accomplished essentially by finding one shift allocation that
meets condition 1 and then searching through all allocations that have
the same number of car-hours or fewer car-hours and also meets condi-
tion 1.

Then the algorithm iteratively adds car-hours by checking (a) the
change in the weighted objective function per car-hour added, assuming
that one car is added to each shift in turn, and (b) for each overlay
segment the change in the weighted objective function when one car is
added to each of the overlaid tours and (simultaneously) one car is
removed from the overlay tour. As an example, suppose the algorithm
has proceeded to a point where an overlay segment has 8 cars assigned
to tour 1, 6 cars to tour 2, and 4 cars to the overlay. The algorithm
would then calculate the change in the weighted objective function per

car-hour added for the following four possibilities?

Tour 1 Tour 2 Overlay
9 6 4
8 7 4
8 6 . 5
9 7 3

A proof that this algorithm is optimal when the overlay tour has

the same duration as the tours it overlays is given in the User's Manual

for the Patrol Car Allocation Model [5].

Potential Future Improvements

Some police departments have begun to adopt ten-hour tours. Typi-
cally these departments have a tour that overlaps another tour but is
not an "overlay" because during some of its hours it is the only tour
on duty. For example, Tour 1 could be from 0600 to 1600, Tour 2 from
1600 to 0200, and Tour 3 from 2000 to 0600. While Tour 3 overlaps
Tour 2, during the hours 0200-0600 it is the only tour on duty. The

current version of the Patrol Car Allocation Model cannot allocate cars
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in such arrangements, but the required modifications are not conceptually
difficult.

More challenging is to handle the allocation problem for police
departments that have complex arrangements of several overlays. For
example, eight-hour tours might start every four hours, such as midnight,
0400, etc. In this case every tour can be viewed as an overlay. Design-
ing a suitable patrol car allocation procedure for such departments re-
quires the development of a computationally efficient algorithm for
optimizing an objective function having the form described in this paper.
Since allocation models are usually operated under severe constraints
of core storage and computer run time, general solutions using nonlinear
integer programming packages tend to be impractical. However, formu-
lating the problem as one of nonlinear integer programming might lead
to insights and simplifications from which a suitable algorithm could
be devised. Such an algorithm would also presumably handle a single
overlay tour whose duration differs from that of the overlaid tours,

a situation which is solved heuristically, but not necessarily optimally,

in the current model.
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