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Abstract: This is an essay on the hypothesis that a suspect profile has been contributed 

to an STR mixture. One type of result is, for example, that the maximum random “match” 

likelihood for a suspect profile having 13 loci, of which 3 are homozygous, is  

(0.38
3
  0.19

10  
= ) 3.410

-9
. Consequently, the minimum likelihood ratio regarding the 

hypothesis that the suspect contributed to the mixture is 3.010
8
.  
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Monte Carlo Interpretation of STR mixtures  

Donald I. Promish  

 

This article is an attempt to deal with a problem which appears to underly STR mixture 

interpretation. The approach has its origins in detection theory, particularly as it relates to the 

detection of targets in the presence of extraneous signals. (See,  for example, [1]
1
.)  

At issue is the hypothesis that a suspect profile has been contributed to an STR mixture.  

The evidence related to the hypothesis is that all of the alleles in the profile, as defined 

above, appear in the mixture. The profile has N complete loci, and n of those loci are 

homozygous. A “complete” locus possesses a pair of alleles. In the context of this essay, a 

locus possessing an unpaired allele is uninformative, because information can be gotten only 

from the difference (which may be zero) between members of a pair.  

Let the expression (uv) denote an allele pair at any locus of a profile. Let u denote the 

length of the shorter allele; let v denote the length of the longer allele, if the locus is 

heterozygous. Otherwise, u = v. Then the difference between the alleles, which is denoted 

|Δuv|, is found by subtracting u from v; that is, |Δuv| = v - u. For example, suppose STR 

locus D18S51 has alleles 14 and 17. Then |Δuv| for this locus is (17 - 14 = ) 3.  

Also, let the expression p(uv) denote the elementary probability that the allele pair (uv) 

will occur, at random, at the locus. Further, let the expression (u and v) denote the 

appearance of the alleles u and v in a forensic STR mixture at the same locus and let  

P(u and v) denote the probability that (u and v) occurs at random in the mixture.  

The elementary probability p(uv) can be obtained with the Monte Carlo Bayesian 

(MCB) identification method as applied to STR profiles, by positing a single-locus “profile”, 

(uv), and setting the prior probability of identity to 0.5 . [The MCB method is explained in 

the Appendix.  The related software is freely available from the author.] As mentioned 

above, the MCB method shows that the random occurrence probability of any STR allele pair 

(uv) depends only on the absolute difference, |Δ(uv)|, between its members, and not their 

actual sizes. Thus, random occurrence probabilities p(uv) can be tabulated for as many values 

of |Δ(uv)| as is necessary. Table 1 gives the values of p(uv) for the |Δ(uv)| values  

{0, 1, 2, ..., 10}.  
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|Δ(uv)| p(uv) 

0 1.1(3)  10
-1

* 

1 1.1(0)  10
-1

* 

2 1.9  10
-2

 

3 4.1  10
-3

 

4 1.6  10
-3

 

5 8.3  10
-4

 

6 4.3  10
-4

 

7 2.8  10
-4

 

8 2.2  10
-4

 

9 1.7  10
-4

 

10 1.5  10
-4

 

 

* Third figures are shown in parentheses merely to demonstrate monotonicity.  

 

Table 1. Probability of random occurrence of STR allele pair (uv), p(uv), as a function of the 

absolute difference, |Δ(uv)|, between the alleles.  
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Now suppose that alleles (a, b, c, d, ... ) appear at a locus of an STR mixture. Suppose, 

also, that a known suspect has the allele pair (ab) at that locus, as well as similarly 

“matching” pairs at all other loci. Let the probability that (a and b) occurs at random in the 

mixture if the suspect pair (ab) is heterozygous (i.e., a ≠ b) be denoted by P(a and b | a ≠ b). 

Then  

 

   ...p(bd)p(bc)p(bb)...p(ad)p(ac)p(aa)p(ab)b)a|bandP(a  , (1)  

 

where the elementary probabilities on the right-hand side of the equation cover all possible 

ways that allele a and allele b can enter the mixture. In addition to (ab) alone, for example, 

allele a and allele b could randomly enter the mixture by way of contributions (ac) and (bd), 

with probability p(ac)p(bd).  

If, however, the suspect pair (ab) is homozygous (i.e., a = b), then the alleles a and b are 

identical. Thus, the probability, P(a and b|a = b), that (a and b) occurs at random in the 

mixture, reduces to:  

 

  ...p(ad)p(ac)p(aa))P(ab)a|b and P(a   .   (2)  

 

It is possible, using Table 1, and equations (1) and (2), to calculate the probability of a 

random “match” between a specific STR profile and an STR mixture. However, it may be 

useful merely to estimate the maximum likelihood of such an event. For a single 

homozygous locus, the maximum value is 0.38 . For a single heterozygous locus, the 

maximum value is 0.19 .  

Let N be the number of loci in the profile and let n be the number of homozygous loci 

among them (0  n  N). Then the maximum random “match” likelihood is:  

 

 P max (random “match”; N loci, n homozygous) = 0.38
n
  0.19

(N-n)
 .  (3)  
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As an example, the maximum random “match” likelihood for an individual profile 

having 13 loci, of which 3 are homozygous, is (0.38
3
  0.19

10  
= ) 3.410

-9
. Consequently, the 

minimum likelihood ratio regarding the hypothesis that an individual contributed to the 

mixture is 3.010
8
. Bayes’s theorem for this likelihood ratio is plotted in Figure 1, below. It 

gives, for any prior (“input”) value, the minimum (“output”) probability that an individual 

contributed that profile to the mixture.  

 

Bayes's theorem (Likelihood ratio: 3.0*10^8)
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Figure 1. Bayes’s theorem for a minimum likelihood ratio of 3.0*10^8.  
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Appendix: Calculating the value of the elementary probability p(uv)  

The probability, p(uv), that an allele pair (uv) will occur at random at a locus of a 

forensic mixture, can be obtained with the Monte Carlo Bayesian (MCB) method as applied 

to STR profiles. This is true because the pair (uv) can be regarded as a single-locus “profile”, 

which the MCB method can analyse as well as it does, say, a 13-locus profile. That being the 

case, the question, “What is the value of p(uv)?”, is identical to that which may be asked in 

court regarding the random occurrence of a potentially incriminating simple STR profile.  

In a criminal trial, the question may arise, “What is the likelihood of a match, given that 

the culprit is not the suspect?” In other words, “What is the likelihood of a random match?” 

The random match likelihood is easily obtained with the MCB method because of its 

eqivalence with Bayes’s theorem. However, the random match likelihood, by itself, is not 

enough to make an identification; it must first be compared with the likelihood of a match 

between suspect and culprit by means of the likelihood ratio in order to estimate the culprit-

suspect identity probability; and then the likelihood ratio must be combined with a prior 

probability derived from non-DNA sources to complete the Bayesian calculation.  

The equivalence of the “standard” Bayesian calculation and the MCB method is 

illustrated in Figure A1, below. The Input axis shows the culprit-suspect identity probability 

prior to obtaining the STR profile; the Output axis shows the identity probability as affected 

by the profile.  
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 Budowle - Moretti ID #: C003  

 Markers: D3 (14,18); vWA (17,17); FGA (18,24); D8 (13,13)  

 STRMCBAIN random match probability for those markers: 4.0*10
-10

  

 STRMCBAIN likelihood ratio (LR) for those markers: 2.5*10
9
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Figure A1. Comparison of Bayes’s theorem (using STRMCBAIN LR) with STRMCBAIN 

(using Budowle - Moretti ID # C003 markers) [Reference 2]. 
2
  

 

 

Bayes’s theorem, stated in terms of odds instead of probabilities, tells us that if the prior 

odds on a hypothesis are even (“50-50”, 1/1, “same chance either way”), then the posterior 

odds are numerically equal to the likelihood ratio. Therefore, setting the prior probability of 

identity to 0.500... results in the following relationship between the posterior probability, 

Ppost, 0.5, and the random match likelihood, L(match|non-suspect):  

 

L(match|non-suspect) = (1 - Ppost, 0.5 )/ Ppost, 0.5 .     (A1)  
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For example, the MCB method assigns a maximum random match likelihood of  

8.05  10
-10

 to a 13-locus STR profile. An 8-locus profile has a maximum random match 

likelihood of 9.58  10
-7 

; and a 5-locus profile has a maximum random match likelihood of 

1.48  10
-4

. The trend, not surprisingly, is toward increased random occurrence likelihood as 

profile size decreases.  

The MCB method consists of iterative Bayesian analysis of stratified random sample 

arrays. A verbal description is given here, followed by the mathematics of the method.  

Typically, the method, in the form of a computer program, is applied to a criminal case 

in which there are an unknown culprit and a known suspect whose DNA profiles are 

identical. The investigator might first ask: “How inbred is the group which produced the 

culprit?” The answer to this question is useful in the search for other possible suspects. 

Ultimately, the investigator has to decide whether culprit and suspect are actually the same 

person, so she/he asks, “Could any group, whether or not it  produced the culprit, have 

produced someone else with exactly the same profile?”  

In this article, in order to answer the first of these questions, the MCB program uses a 

mathematical array consisting of 10 discrete, equal-sized homozygosity ranges, called 

“demes”*. The demes divide the entire homozygosity range from 0 to 1 into 10 equal-sized 

parts. So the first question becomes: “What is the chance that the culprit is a member of this 

or that deme?”  

The program applies Bayes’ theorem to each of several Monte Carlo samples taken from 

the deme array, in order to get the culprit’s deme membership probabilities. Each deme 

contributes one randomly-generated group to a sample array. Each group differs from all the 

others in the sample array in terms of its profile allele frequencies.  

Each sample array, when processed according to Bayes’ theorem, yields a set of 10 

probabilities with respect to culprit membership. Each probability is assigned to a different 

randomly-generated group in the sample array.  

In essence, the program has evaluated each group for its ability to produce the profile.  
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By making repeated samples, the program develops a collection of probability sets on 

sample arrays of groups. By taking the average of this collection, deme by deme, the MCB 

program calculates the set of probabilities, with respect to culprit membership, on the array 

of demes. This set answers the investigator’s question: “What is the chance that the culprit is 

a member of this or that deme?”  

Next, in order to answer the question, “Could any group, whether or not it produced the 

culprit, have produced someone else with exactly the same profile?”, the investigator 

instructs the MCB program to add an eleventh, distinct element to the array of 10 demes.  

The eleventh element is unusual because it contains only one group,  in contrast to the 

essentially infinite number of possible groups in any deme. Further, that single group is 

unusual because it contains only one member, that is, it contains only the suspect. Also, the 

suspect’s DNA profile exactly matches the culprit’s, and therefore the likelihood of getting 

the profile from this group, given that the culprit is indeed the suspect, is always exactly one. 

There is no need to calculate the suspect’s profile likelihood from allele frequencies.  

This 11th array element is called “the singular group”. Adding it to the deme array is as 

simple as making its prior probability non-zero. For example, if the investigator gets a “cold 

hit” profile match from a DNA data base, she/he may say, conservatively, that the smallest 

chance of getting such a match at random is one out of the estimated world population in the 

year 2050. She/he would then input 0.0000000001, as the prior probability for the singular 

group, into the MCB program. In order to obtain a random match likelihood, the investigator 

would input a prior probability of 0.5 .  

(When a non-zero prior is assigned to the singular group, the program automatically 

adjusts the deme priors so that they all add up to 1.000... .)  

The program now applies Bayes’ theorem to expanded sample arrays that comprise, not 

only groups from the 10 demes, but also the singular group. It then collects the results and 

takes the average of the collection, as before. The investigator thus finds the chances that the 

culprit is either the suspect or someone other than the suspect. (Again, an input prior 

probability of 0.5 will also result in a random match likelihood.)  
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Each MCB computation for this essay comprised 500 iterations on a MicroSoft Excel 

spreadsheet, and took less than 20 seconds.  

* [“Deme” fits Sewall Wright’s concept of the “neighborhood” of the singular group. He 

writes, “A term is needed to designate the local population of which the parents may be 

representative. ... An essential property of the population in question is that the individuals 

are neighbors in the sense that their gametes may come together.” (Isolation by distance 

under diverse systems of mating,  Genetics,  January 1946,  Volume 31,  pp. 39 - 59.)]  
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The following version of Bayes’ theorem is the core of the method described in this 

work. Let  

 

 (1) P0(gk | h) be the prior probability, on the basis of knowledge, h, from  sources 

other than the culprit’s STR data, that the culprit is a member of the group gk.  The index k 

runs from 1 through 11; when 1  k  10, gk is a deme; when k = 11,  gk is the singular group.  

 

 (2) P(gk | h, d) be the posterior probability that the culprit is a member of the group 

 gk, given the culprit’s STR data, d, in addition to h.  

 

 (3) L(d | gk) be the likelihood of the STR data, d, if the culprit were, in fact, a 

 member of the group gk.  

 

Then Bayes’ theorem appears as  

 

   











11

1

jj0

kk0

k

)g|L(d)h|g(P

)g|L(d)h|g(P
  d)h,|P(g

j

j

      .     (A2)  

 

By setting P0(g11|h), the prior probability for the singular group, equal to zero, one can 

obtain the posterior probability that the culprit is a member of each of the 10 demes. This is a 

useful result, because each deme represents a different one of the 10 homozygosity intervals 

{(0.0-0.1),(0.1-0.2),(0.2-0.3), ... ,(0.7-0.8),(0.8-0.9),(0.9-1.0)}.  

Calculating the likelihood L(d | gk),  for 1  k  10, is the main computational task of the 

method presented here. In particular, the likelihood of a single locus involves the product of 

the frequencies of the two alleles, at that locus, that are part of the culprit’s STR profile.  

Because only the homozygosity interval of a deme is given, the method samples, at each 

locus and within each interval, the space of all possible allele frequency products, as follows.  
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The allele frequency distribution at each STR locus is modelled by a Gaussian density 

function f(x |  , ) as is illustrated in Figure A2. The figure shows two alleles. The midpoint 

between the alleles is defined as the origin of the length variable, x, i.e.,  

(x  0). The smaller allele of the two is at (x = -a) and the larger is at (x = +a). The difference 

in their lengths is thus 2a. It is this difference, not the lengths themselves, that affects the 

product of the alleles’ frequencies.  

 

 
Figure A2. Relation of allele-pair having length difference 2a = 4 with Gaussian density 

function having mean  = -1 (i.e. offset with respect to midpoint between allelele lengths) 

and standard deviation .  
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(NOTE: Number of STR repeats is the measure of length, x. All frequency calculations 

are thus referred to the same scale, regardless of locus. That is,  they are independent of the 

physical lengths of repeats.)  

The homozygosity of each deme is determined by the Gaussian function’s standard 

deviation, . Because demes belong to homozygosity intervals, the median homozygosity of 

each interval is chosen to represent any homozygosity within the interval. For example, a 

deme belonging to the interval (0.0 - 0.1) is represented by the median value 0.05, for which 

the Gaussian standard deviation, , is 5.60. By way of contrast, a deme belonging to the 

interval (0.9 - 1.0) is represented by the median value 0.95, for which  = 0.41 .  

The mean,  , of the Gaussian function is defined as a random variable whose value is 

zero at the midpoint between the two STR profile alleles at a locus. The value of  for each 

locus is chosen independently of that of any other locus, including those belonging to other 

demes.  

Thus, for a 13-locus profile, for example, one iteration of the sampling process 

comprises a random, i.e.“Monte Carlo”, selection of (13 loci  10 demes = ) 130 values of . 

The likelihood, L(d | gk), of the STR data with respect to each deme can then be calculated as 

the product of the likelihoods of its 13 loci, each locus having an independently and 

randomly chosen value of . Because the product is independent of the order of the locus 

likelihoods, the entire profile can be encrypted by shuffling, or interchanging, the loci.  

In the present context of a single-locus “profile” (uv), only 10 randomly-generated 

values of  are needed for each iteration.  

Taking into account the prior probability and likelihood of the singular group, a single 

iteration’s calculation then generates a posterior probability for each deme and also for the 

singular group.  
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