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In this chapter, we discuss tools aimed at interpolating incidents, using the kernel 
density approach. Interpolation is a technique for generalizing incident locations to an 
entire area. Whereas the spatial distribution and hot spot statistics providc statistical 
summaries for the data incidents themselves, interpolation techniques generalize those 
data incidents to the entire region. In particular, they provide density estimates for all 
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z- 
value, that is estimated at  a particular location. Consequently, it can be displayed by 
either surface maps or contour maps that show the intensity at all locations. 

There are many interpolation techniques, such as Kriging, trend surfaces, local 
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; 
Cleveland, Grosse and Shyu, 1993; Venables and Riplcy, 1997). Most of these require a 
variable that  is being estimated as  a function oflocation. However, kernel density 
estimation is an interpolation technique that is appropriate for individual point locations 
(Silverman, 1986; Hardle, 1991; Bailey and Catrell, 1995; Burt and Barber, 1996; Bowman 
and Azalini, 1997). 

Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical 
function, and summing the value of all the surfaces for that reference location. This 
procedure is repeated for all reference locations. It is a technique that was developed in 
the late 1950s as an  alternative method for estimating the density ofa  histogram 
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of 
a frequency distribution. A continuous variable is divided into intervals of size, s (the 
interval OF bin width), and the number of cases in each interval (bin) are counted and 
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying 
distribution (a density function). However, in order to estimate a smooth density function 
from the histogram, traditionally researchers have linked adjacent variable intervals by 
connecting the midpoints of the intervals with a series oflines (Figure 8.1). 

Unfortunately, doing this causes three statistical problems (Bowman and Azalini, 
1997): 

1. Information is discarded because all cases within an interval arc  assigned to 
the midpoint. The wider the interval, the greater the information loss. 

2. The technique ofconnecting the midpoints leads to a discontinuous and not 
smooth density function even though the underlying density hnction is 
assumed to be smooth. To compensate for this, researchers will reduce the 
width ofthe interval. Thus, the density function becomes smoother with 
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smaller intervali widths, although still not very smooth. Further, there are 
limits to  this technique as  the sample size decreases when the bin width gets 
smaller, eventually becoming too small to produce reliable estimates. 

3. The technique is dependent on an arbitrarily defined interval size (bin 
width). By making the interval wider, the estimator becomes cruder and, 
conversely, by making the interval narrower, the estimator becomes finer. 
However, the underlying density distribution is assumed to be smooth and 
continuous and not dependent on the interval size of a histogram. 

To handle this problem, Rosenblatt (1 956), Whittle (1 958) and Parzen (1 962) 
developed the kernel density method in order to avoid the Erst two of these difficulties; the 
bin width issue still remains. What they did was to  place a smooth kernelfunction, rather 
than a block, over each point and sum the functions for each location on the scale. Figure 
8.2 illustrates the process with five point locations. As seen, over each location, a 
symmetrical kernel function is placed; by symmetrical is meant that is falls off with 
distance from each point at an equal rate in both directions around each point. In this 
case, it is a normal distribution, but other types of symmetrical distribution have been 
used. The underlying density distribution is estimated by summing the individual kernel 
functions at  all locations to produce a smooth cumulative density function. Notice that the 
functions are summed at every point along the scale and not just a t  the point locations. 
The advantages of this are that, first, each point contributes equally to  the density surface 
and, second, the resulting density function is continuous a t  all points along the scale. 

The third problem mentioned above, interval size, still remains since the width of 
the kernel knction can be varied. In the kernel density literature, this is called bandwidth 
and refers essentially to  the width of the kernel. Figure 8.3 shows a kernel with a narrow 
bandwidth placed over the same five points while figure 8.4 shows a kernel with a wider 
bandwidth placed over the points. Clearly, the smoothness of the resulting density 
function is a consequence of the bandwidth size. 

There are  a number of different kernel functions that have been used, aside from 
the normal distribution, such as  a triangular function (Burt and Barber, 1996) or a quartic 
function (Bailey and Gatrell, 1995). Figure 8.5 illustrates a quartic function. But the 
normal is the most commonly used (Kelsall and Diggle, 1995a). 

The normaZ distribution function has the following functional form: 

where d,, is the distance between an incident location and any reference point in the region, 
h is the standard deviation of the normal distribution (the bandwidth), W, is a weight at  
the point location and I, is an intensity at the point location. This function extends to  
infinity in all directions and, thus, will be applied to any location in the region. 
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In Crimestat, there are four alternative kernel functions that can be used, all of 
which have a circumscribed radius (unlike the normal distribution). The quar t i c  function 
is applied to a limited area around each incident point defined by the radius, h. It falls off 
gradually with distance until the radius is reached. Its functional form is: 

I. Outside the specified radius, h: 

II. Within the specified radius, h: 

where d,J is the distance between an incident location and any reference point in the region, 
h is the radius of the search area (the bandwidth), W, is a weight at the point location and 
I, is a n  intensity at the point location. 

The ~ r i a n g u ~ a ~  (or conical) distribution falls off evenly with distance, in a linear 
relationship. Compared to the quartic function, it falls off more rapidly. It also has a 
circumscribed radius and is, therefore, applied to a limited area around each incident 
point, h. Its functional form is: 

I1 Outside the specified radius, h: 

11. Within the specified radius, h: 

g(xJ = 2 [K - wh] * d, ( 8 - 5 )  

where K is a constant. In CrimeStat, the constant K is initially set to  0.25 and then re- 
scaled to ensure that either the densities or probabilities sum to their appropriate values 
(i.e., N for densities and 1.00 €or probabilities). 

The negative  exponential  (or peaked) distribution falls off very rapidly with 
distance up to the circumscribed radius. Its functional form is: 

I1 Outside the specified radius, h: 

II. Within the specified radius, h: 
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where A is a constant and K is an exponent. In CrimeStar’s implementation, K is set to  3 
while A is initially set to 1 and then re-scaled to ensure that either the densities or 
probabilities sum to their appropriate values (ie., N for densities and 1.00 for 
probabilities). 

Finally, the ~~~~~~~ distribution weights all points within the circle equally. Its 
functional form is: 

I1 Outside the specified radius, h: 

11. Within the specified radius, h: 

g(xj) = E K  (8.9) 

where K is a constant. Initially, K is set to 0.1 but then re-scaled to ensure that either the 
densities or probabilities sum to their appropriate values (Le., N for densities and 1.00 for 
probabilities). 

The user can select these five different kernel functions to  interpolate the data t o  
the grid cells. They produce subtle differences in the shape of the interpolated surface or 
contour. The normal distribution weighs all points in the study area, though near points 
are weighted more highly than distant paints. The other four techniques use a 
circumscribed circle around the grid cell. The uniform distribution weighs all points within 
the circle equally. The quartic function weighs near points more than far points, but the 
fall off is gradual. The triangular function weighs near points more than far points within 
the circle, but the fall off is more rapid. Finally, the negative exponential weighs near 
point much more highly than far points within the circle. 

The use of any of one of these depends on how much the user wants to weigh near 
points relative to  far points. Using a kernel function which has a big difference in the 
weights of near versus far points (e.g., the negative exponential or the triangular) tends t o  
produce finer variations within the surface than functions which are weight more evenly 
(e.g., the  normal distribution, the quartic, or the uniform); these latter ones tend to smooth 
the distribution more. 

However, Silverman (1986) has argued that it does not make that much difference 
as long as the kernel is symmetrical. There are also edge effects that can occur and there 
have been different proposed solutions to this problem (Venables and Ripley, 1997). 

There have also been variations of the size of the ofbandwidth with various 
formulas and criteria (Silverman, 1986; Hardle, 1991; Venables and Ripley, 1997). 
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Generally, bandwidth choice fall into either fixed or adaptive (variable) choices (Kelsall and 
Diggle, 1995a; Bailey and Gatrell, 1995). Crimestat follows this distinction, which will be 
explained below. 

The kernel function can be expanded to more than two dimensions (Hardle, 1991; 
Bailey and Gatrell, 1995; Burt and Barber, 1996; Bowman and Azalini, 1997). Figure 8.6 
shows a three-dimensional normal distribution placed over each of five points with the 
resulting density surface being a sum of all five individual surfaces. Thus, the method is 
particularly appropriate for geographical data, such a s  crime incident locations. The 
method has also been developed to  relate two or more variables together by applying a 
kernel estimate to each variable in turn and then dividing one by the other to produce a 
three-dimensional estimate of risk (Kelsall and Diggle, 1995a; Bowman and Azalini, 1997). 

Significance testing of density estimates is more complicated. Current techniques 
tend to focus on simulating surfaces under spatially random assumptions (Bowman and 
Azaline, 1997; Kelsall and Diggle, 199%). Because of the still experimental nature of the 
testing, Crimestat does not include any testing of density estimates in this version. 

GrimeStat  Kernel 

Crimestat has two interpolation techniques, both based on the kernel density 
technique. The first applies t o  a single variable, while the second to the relationship 
between two variables. Both routines have a number ofoptions. Figure 8.7 shows the 
interpolation page in Crimestat.  Users indicate their choices by clicking on the tab and 
menu items. For either technique, it is necessary to have a reference file, which is usually 
a grid placed over the study region (see chapter 3). The reference file represents the region 
to which the kernel estimate will be generalized (figure 8.8). 

S i n g l e  D e n s i t y  E s t i m a t e s  

The single kernel density routine in Crimestat is applied to  a distribution ofpoint 
locations, such as  crime incidents. It can be used with either a primary file or a secondary 
file; the primary file is the default. For example, the primary file can be the location of 
motor vehicle thefts. The points can also have a weighting or an associated intensity 
variable (or both). For example, the points could represent the location of police stations 
while the weights (or intensities) represent the number ofcalls for service. Again, the user 
must be careful in having both a weighting variable and an intensity variable as the 
routine will use both variables in calculating densities; this could lead t o  double weighting. 

Having defined the file on the primary (or secondary) file tabs, the user indicates 
the routine by checking the ’Single’box. Also, it is necessary to define a reference file, 
either an existing file or one generated by Crimestat (see chapter 3). There are other 
parameters that must be defined. 

310 

 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 



 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 

In this chapter, we discuss tools aimed at interpolating incidents, using the kernel 
density approach. Interpolation is a technique for generalizing incident locations to an 
entire area. Whereas the spatial distribution and hot spot statistics providc statistical 
summaries for the data incidents themselves, interpolation techniques generalize those 
data incidents to the entire region. In particular, they provide density estimates for all 
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z- 
value, that is estimated at  a particular location. Consequently, it can be displayed by 
either surface maps or contour maps that show the intensity at all locations. 

There are many interpolation techniques, such as Kriging, trend surfaces, local 
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; 
Cleveland, Grosse and Shyu, 1993; Venables and Riplcy, 1997). Most of these require a 
variable that  is being estimated as  a function oflocation. However, kernel density 
estimation is an interpolation technique that is appropriate for individual point locations 
(Silverman, 1986; Hardle, 1991; Bailey and Catrell, 1995; Burt and Barber, 1996; Bowman 
and Azalini, 1997). 

Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical 
function, and summing the value of all the surfaces for that reference location. This 
procedure is repeated for all reference locations. It is a technique that was developed in 
the late 1950s as an  alternative method for estimating the density ofa  histogram 
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of 
a frequency distribution. A continuous variable is divided into intervals of size, s (the 
interval OF bin width), and the number of cases in each interval (bin) are counted and 
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying 
distribution (a density function). However, in order to estimate a smooth density function 
from the histogram, traditionally researchers have linked adjacent variable intervals by 
connecting the midpoints of the intervals with a series oflines (Figure 8.1). 

Unfortunately, doing this causes three statistical problems (Bowman and Azalini, 
1997): 

1. Information is discarded because all cases within an interval arc  assigned to 
the midpoint. The wider the interval, the greater the information loss. 

2. The technique ofconnecting the midpoints leads to a discontinuous and not 
smooth density function even though the underlying density hnction is 
assumed to be smooth. To compensate for this, researchers will reduce the 
width ofthe interval. Thus, the density function becomes smoother with 
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The user must indicate whether the primary file or the secondary file (ifused) is to  
be interpolated. 

The user must indicate the method of interpolation. Five types ofkernel dcnsity 
estimators are used: 

1. Normal distribution (bell; default) 
2. Uniform (flat) distribution 
3. 
4. 
5 .  Negative exponential (peaked) distribution 

Quartic (sp her ica 1) distribution 
Tr ia ngu la r (conica 1) distribution 

In our experience, there are advantages to each. The normal distribution produces 
an estimate over the entire region whereas the other four produce estimates only for the 
circumscribed bandwidth radius. If the distribution of points is sparse towards the outer 
parts of the region, then the four circumscribed functions will not produce estimates for 
those areas, whereas the normal will. Conversely, the normal distribution can cause some 
edge effects to  occur (e.g., spikes at  the edge of the reference grid), particularly if there are 
many points near one of the boundaries of the study area. The four circumscribed 
functions will produce less of a problem at the edges, although they still can produce some 
spikes. Within the four circumscribed functions, the uniform and quartic tend to smooth 
the data more whereas the triangular and negative exponential tend to emphasize ’peaks’ 
and ‘valleys’. The differences between these different kernel functions are  small, however. 
The user should probably start with the default normal function and adjust accordingly to 
how the surface or contour looks. 

The user must indicate how bandwidths are to be defined. There are two types of 
bandwidth for the single kernel density routine, fixed interval or adaptive interval. 

With a fixed bandwidth, the user must specify the interval to be used and the units 
of measurement (squared miles, squared nautical miles, squared feet, squared kilometers, 
or squared meters). Depending on the type of kernel estimate used, this interval has a 
slightly different meaning. For the normal kernel function, the bandwidth is the standard 
deviation of the normal distribution. For the uniform, quartic, triangular, or negative 
exponential kernels, the bandwidth is the radius of the search area to be interpolated. 

There are few guidelines for choosing a particular bandwidth other than by visual 
inspection (Venables and Ripley, 1997). Some have argued that the bandwidth be no larger 
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than the finest resolution that is desired and others have argued for a variation on random 
nearest neighbor distances (see Spencer Chainey application later in this chapter). Others 
have argued for particular sizes (Silverman, 1986; Hardle, 1991; Kadafar, 1996; Farewell, 
1999; Talbot, Kulldorff, Forand, and Haley, 2000).’ There does not seem to be consensus 
on this issue. Consequently, Crimestat leaves the definition up to  the user. 

Typically, a narrower bandwidth interval will lead to  a finer mesh density estimate 
with all the little peaks and valleys. A larger bandwidth interval, om the other hand, will 
lead to  a smoother distribution and, therefore, less variability between areas. While 
smaller bandwidths show greater differentiation among areas (e.g., between ‘hot spot’and 
low spot’zones), one has to keep in mind the statistical precision of the estimate. If the 
sample size is not very large, then a smaller bandwidth will lead t o  more imprecision in the 
estimates; the peaks and valleys may be nothing more than random variation. On the 
other hand, if the sample size is large, then a finer density estimate can be produced. In 
general, it is a good idea to experiment with different fixed intervals to  see which results 
make the most sense. 

An adaptive bandwidth adjusts the bandwidth interval so that a minimum number 
of points are  found. This has the advantage of providing constant precision of the estimate 
over the entire region. Thus, in areas that have a high concentration of points, the 
bandwidth is narrow whereas in areas where the concentration ofpoints is more sparse, 
the bandwidth will be larger. This is the default bandwidth choice in CrimeStat since we 
believe that consistency in statistical precision is paramount. The degree of precision is 
generally dependent on the sample size of the bandwidth interval. The default is a 
minimum of 100 points within the bandwidth radius. The user can make the estimate 
more fine grained by choosing a smaller number of points (e.g., 25) or more smooth by 
choosing a larger number ofpoints (e.g., 200). Again, experimentation is necessary to  see 
which results make the most sense. 

utput Units 

The user must indicate the measurement units for the density estimate in points 
per squared miles, squared nautical miles, squared feet, squared kilometers, or squared 
meters. The default is points per square mile. 

eightin g Variables 

If an intensity or weighting variable is used, these boxes must be checked. Be 
careful about using both an intensity and a weighting variable t o  avoid ‘double weighting’. 
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The user must indicate the type of output for the density estimates. There are three 
types of calculation that can be conducted with the kernel density routine. The 
calculations a re  applied t o  each reference cell: 

1. The kernel estimates can be calculated as absolute density estimates using 
formulas 8.1-8.9, depending on what type of kernel hnction is used. The 
estimates at  each reference cell are re-scaled so that the sum of the densities 
over all reference grids equals the total number of incidents; this is the 
de fau It va h e .  

2 .  The kernel estimates can be calculated as relative density estimates. These 
divide the absolute densities by the area ofthe grid cell. It has the  advantage 
of interpreting the density in terms that are familiar. Thus, instead of a 
density estimate represented by points per grid cell, the relative density will 
convert this t o  points per, say, square mile. 

3 .  The densities can be converted intoprobabilities by dividing the density at 
any one cell by the total number of incidents. 

Since the three types of calculation are directly interrelated, the output surface will 
not differ in its variability. The choice would depend on whether the calculations are used 
to  estimate absolute densities, relative densities, or probabilities. For comparisons 
between different types ofcrime or between the same type of crime and different time 
periods, usually absolute densities are the unit ofchoice (Le., incidents per grid cell). 
However, to  express the output as a probability, that is, the likelihood that an incident 
would occur at any one location, then outputing the results as probabilities would make 
more sense. For display purposes, however, it makes no difference as both look the same. 

Output Files 

Finally, the results can be displayed in an output table or can be output into two 
formats: 1) Raster grid formats for display in a surface mapping program- Surferfor 
Windows ‘.dat’ format (Golden Software, 1994) or ArcView Spatial Analyst ‘asc’ format 
(ESRI, 1998); or 2 )  Polygon grids in ArcViav ‘.shp’, MapZnfo ‘.mif’or Atlas*GZS ‘.bna’ 
formats.2 However; all but s w f e r f o r  Windows require that the reference grid be created 
by Crimestat.  

Example 1: Kernel Density Estimate of Street Robberies 

An example can illustrate the use of the single kernel density routine. Figure 8.9 
shows a Surferfor Windows output ofthe 1180 street robberies for 1996 in Baltimore 
County. The reference grid was generated by Crimestat and had 100 columns and 108 
rows. Thus, the routine calculated the distance between each of the 10,800 reference cells 
and the 11 80 robbery incident locations, evaluated the kernel function for each measured 
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Figure 8.9: 
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distance, and summed the results for each reference cell. The normal distribution kernel 
function was selected for the kernel estimator and an adaptive bandwidth with a minimum 
sample size of 100 was chosen as the parameters. 

There are three views in the figure: 1) a map view showing the location of the 
incidents; 2) a surface view showing a three-dimensional interpolation of robbery density; 
and 3) a contour view showing contours of high robbery density. The surface and contour 
views provide different perspectives. The surface shows the peaks very clearly and thc 
relative density of the peaks. As can be seen, the peak for robberies on the eastern part of 
the County is much higher than the two peaks in the central and western parts of the 
County. The contour view can show where these peaks are located; it is difficult to identify 
location clearly from a three-dimensional surface map. Highways and streets could be 
overlaid on top of the contour view to identify more precisely where these peaks are 
located. 

Figure 8.10 shows an ArcViewSpatial Analyst map of the robbery density with the 
robbery incident locations overlaid on top of the density contours. Here, we can see quite 
clearly that there are three strong concentrations of incidents, one spreading over a 
distance of several miles on the west side, one on northern border between Baltimore City 
and Baltimore County, and one on the east side; there is also one smaller peak in the 
southeast corner of the County. 

From a statistical perspective, the kernel estimate is a better ‘hot spot’identifier 
than the cluster analysis routines discussed in chapter 6 .  Cluster routines group incidents 
into clusters and distinguish between incidents which belong to  the cluster and those 
which do not belong. Depending on which mathematical algorithms are used, different 
clustering routines will return differing allocations of incidents to  clusters. The kernel 
estimate, on the other hand, is a continuous surface; the densities are calculated at all 
locations; thus, the user can visually inspect the variability in density and decide what to 
call a ‘hot spot’without having to  define arbitrarily where to cut-off the “hot spot’zone. 

Going back t o  the Surfer for Windows output, figure 8.1 1 shows the effccts of 
varying the bandwidth parameters. There a re  three fixed bandwidth intervals (0.5, 1 ,  and 
2 miles respectively) and there are  two adaptive bandwidth intervals (a minimum of 25 
and 100 points respectively). As can be seen, the fineness of the interpolation is affected by 
the bandwidth choice. For the three fixed intervals, an  interval of 0.5 miles produces a 
finer mesh interpolation than an interval of 2 miles, which tends to ‘oversmooth’the 
distribution. Perhaps, the intermediate interval of 1 mile gives the best balance between 
fineness and generality. For the two adaptive intervals, the minimum sample size of 25 
gives some very specific peak locations whereas the adaptive interval with a minimum 
sample size of 100 gives a smoother distribution. 

Which of these should be used as  the best choice would depend on how much 
confidence the analyst has in the results. A key question is whether the ’peaks’are real or 
merely byproducts of small sample sizes. The best choice would be to produce an 
interpolation that fits the experience of the department and oEcers who travel an area. 
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In this chapter, we discuss tools aimed at interpolating incidents, using the kernel 
density approach. Interpolation is a technique for generalizing incident locations to an 
entire area. Whereas the spatial distribution and hot spot statistics providc statistical 
summaries for the data incidents themselves, interpolation techniques generalize those 
data incidents to the entire region. In particular, they provide density estimates for all 
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z- 
value, that is estimated at  a particular location. Consequently, it can be displayed by 
either surface maps or contour maps that show the intensity at all locations. 

There are many interpolation techniques, such as Kriging, trend surfaces, local 
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; 
Cleveland, Grosse and Shyu, 1993; Venables and Riplcy, 1997). Most of these require a 
variable that  is being estimated as  a function oflocation. However, kernel density 
estimation is an interpolation technique that is appropriate for individual point locations 
(Silverman, 1986; Hardle, 1991; Bailey and Catrell, 1995; Burt and Barber, 1996; Bowman 
and Azalini, 1997). 

Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical 
function, and summing the value of all the surfaces for that reference location. This 
procedure is repeated for all reference locations. It is a technique that was developed in 
the late 1950s as an  alternative method for estimating the density ofa  histogram 
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of 
a frequency distribution. A continuous variable is divided into intervals of size, s (the 
interval OF bin width), and the number of cases in each interval (bin) are counted and 
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying 
distribution (a density function). However, in order to estimate a smooth density function 
from the histogram, traditionally researchers have linked adjacent variable intervals by 
connecting the midpoints of the intervals with a series oflines (Figure 8.1). 

Unfortunately, doing this causes three statistical problems (Bowman and Azalini, 
1997): 

1. Information is discarded because all cases within an interval arc  assigned to 
the midpoint. The wider the interval, the greater the information loss. 

2. The technique ofconnecting the midpoints leads to a discontinuous and not 
smooth density function even though the underlying density hnction is 
assumed to be smooth. To compensate for this, researchers will reduce the 
width ofthe interval. Thus, the density function becomes smoother with 
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Mike Sawada 
Laboratory for Paleoclimatology and Climatology 

University of Ottawa, Department of Geography, Canada 

Sphagnum moss, the dominant species of bogs, thrives under certain ranges of 
temperature and precipitation. Sphagnum releases spores for reproduction and these are 
transported, often long distances, by wind and water. Thus, the presence of a spore in  the 
fossil record may not indicate nearby Sphagnum plants. However, spores should be most 
numerous near Sphagnum plants. Over time, these spores and pollen from other plants 
accumulate in lake and bog sediments and leave a fossil record of vegetation history. 

We wanted t o  use the amount of fossil Sphagnum spores in different parts of North 
America to infer past climates. To do so, we had to first show that Sphagnum spores are 
most abundant in climates where Sphagnum plants thrive and secondly, that this center of 
abundance is not biased sampling because of under sampling in parts of climate space. 
First, we developed a Sphagnum spore response surface showing the relative abundance of 
spores along the axes of temperature and precipitation (Fig. A). 

Crimestat was used in  the second stage to develop a kernel density surface using a 
quartic kernel for 3007 sample sites within climate space (Fig. B). These were smoothed 
and visualized in Surfer. The surface showed that the intensity of points is higher in  
regions surrounding the response maximum. This gave us confidence that the Sphagrtum 
response was real since other parts of climate space are well sampled but unlikely to  
produce high spore proportions. This fact allowed climate inferences to be made within the 
fossil record for past time periods using the amount of Sphagnum spores present. 

----I z 
i 

Figures modified from Gajewski, Eau,  Sawada et al. 2001. Global Biogeochemical Cycles, 
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Renato AssungQo, Glhudio Beato, BrAulio Silva 
CRISP, Universidade Federal de Minas Gerais, Brazil 

We used the kernel density estimate to visualize time trends for crime 
occurrences on a typical weekday. We found markedly different spatial distributions 
depending on the time, with the amount of crime varying and the hot spots, 
identified by the ellipses, appearing in different places. 

The analysis used 11 14 weekday robberies from 1995 to 2000 in  downtown 
Belo Horizonte. Breaking the data into hours, we used the normal kernel, a k e d  
bandwidth of 450 meters and outputted densities option (points per square unit of 
area). Note that the latter option could be useful if one is interested only in  the hot 
spot locations, and not in the distribution during the day. To make the ellipses, we 
used the nearest neighbor hierarchical spatial clustering technique with a minimum 
of 35 incidents. We output the results to Maphffo, keeping the same scale for all 
maps. Four of them are shown below. 

7:OO PM 61:OO PM 
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Spencer Ghainey 
InfoTech Enterprises Europe 

London, England 

Crimestat offers an  effective method for creating kernel density surfaces. The 
example below uses residential burglary incidents in the London Borough of 
Croydon, England for the period June 1999 - May 2000 (N=3104). The single kernel 
routine was used to  produce a kernel density surface representing the distribution of 
residential burglary. 

The kernel function used was the quartic, which is favoured by most crime 
mappers as it applies added weight to crimes closer to the centre of the bandwidth. 
Rather than choosing an  arbitary interval it is useful to use the mean nearest 
neighbour distance for different orders of K, which can be calculated by Crimestat as  
part of a nearest neighbour analysis. For the Croydon data, an  interval of 269 
metres was chosen, which relates to a mean nearest neighbour distance a t  a K-order 
of 13. The output units were densities in square kilometres and was output to 
Arc View . 

Kernel density estimation is a particularly useful method as it helps to 
precisely identify the location, spatial extent and intensity of crime hotspots. It is 
also visually attractive, so helping to invoke further enquiry and the reasoning 
behind why crime and disorder is concentrated. The density surface that is created 
can reflect the distribution of incidents against the natural geography of the area of 
interest, including representing the natural boundaries, such as reservoirs and 
lakes, or an  alignment that follows a particular street in which there is a high 
concentration of offending. The method is also less subjective if clear guidelines are 
followed for the setting of parameters. 
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Again, experimentation and discussions with beat officers will be necessary to establish 
which bandwidth choice should be used in future interpolations. 

Note in all five of the interpolations, there is some bias at the edges with the City of 
Baltimore (the three-sided area in the central southern part  of the map). Since the 
primary file only included incidents for the County, the interpolation nevertheless has 
estimated some likelihood at  the edges; these are  edge biases and need to be ignored or 
removed with tan ASCII e d i t ~ r . ~  Further, the wider the interval chosen, the more bias is 
produced a t  the edge. 

The dual kernel density routine in CrimeStat is applied to two distributions of point 
locations. For example, the primary file could be the location of auto thefts while the 
secondary file could be the centroids of census tracts, with the population of the census 
tract being an intensity variable. The dual routine must be used with both a primary file 
and a secondary file. Also, it is necessary to define a reference file, either an existing file 
or one generated by CrimeStat (see chapter 3). Several parameters need to be defined. 

File to be ~ ~ t ~ ~ p o ~ a t e ~  

The user must indicate the order of the interpolation. The routine uses the 
languagefirst file and second file in making the comparison (e.g., dividing the first file by 
the second; adding the first file to  the second). The user must indicate which is the first 
file, the primary or the secondary. The default is that the primary file is the first file. 

The user must indicate the type of kernel estimator. As with the single kernei 
density routine, five types ofkernel density estimators are  used 

4. Normal distribution (bell; default) 
5 .  Uniform (flat) distribution 
6 .  
7. Triangular (conical) distribution 
8. 

Quartic (sph erica 1) distribution 

Negative exp on entia 1 (pea ked) distribution 

In our experience, there are advantages to each. The normal distribution produces 
an estimate over the entire region whereas the other four produce estimates only for the 
circumscribed bandwidth radius. If the distribution of points is sparse towards the outer 
parts of the region, then the four circumscribed functions will not produce estimates for 
those areas, whereas the normal will. Conversely, the normal distribution can cause some 
edge effects to occur (e.g. ,  spikes a t  the edge of the reference grid), particularly if there are 
many points near one of the boundaries ofthe study area. The four circumscribed 
functions will produce less of a problem at the edges, although they still can produce some 
spikes. Within the four circumscribed functions, the uniform and quartic tend to  smooth 
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the data more whereas the triangular and negative exponential tend to  emphasize 'peaks' 
and 'valleys'. The differences between these different kernel functions a re  small, however. 
The user should probably start with the default normal function and adjust accordingly to 
how the surface or contour looks. 

The user must define the bandwidth parameter. There are three types of 
bandwidths for the single kernel density routine - fixed interval, variable interval, or 
adaptive interval. 

Fixed interval 

With a fixed bandwidth, the user must specify the interval to be used and the units 
of measurement (squared miles, squared nautical miles, squared feet, squared kilometers, 
or squared meters). Depending on the type of kernel estimate used, this interval has a 
slightly different meaning. For the normal kernel function, the bandwidth is the standard 
deviation of the normal distribution. For the uniform, quartic, triangular, or negative 
exponential kernels, the bandwidth is the radius of the search area to be interpolated. 
Since there are  two files being compared, the fixed interval is applied both to the first file 
and the second file. 

Variable interval 

With a variable interval, each file (the first and the second) have different intervals. 
For both, the units of measurements must be specified (squared miles, squared nautical 
miles, squared feet, squared kilometers, or squared meters). There is a good reason why a 
user might want variable intervals. In comparing two kernel estimates, the most common 
comparison is to divide one by the other. However, if the density estimate for a particular 
cell in the denominator approaches zero, then the ratio will blow up and become a very 
large number. Visually, this will be seen as spikes in the distribution, the result, usually, 
of too few cases. In this case, the user might decide to smooth the denominator more than 
numerator in order to  reduce these spikes. For example, the interval for the first file (the 
numerator) could be 1 mile whereas the interval for the second file (the denominator) could 
be 3 miles. Experimentation will be necessary to see whether this is warranted. But, in 
our experience, it frequently happens when either there are two few cases or there is an  
irregular boundary to the region with a number of incidents grouped at one of the edges. 

Adaptive interval 

An adaptive bandwidth adjusts the bandwidth interval so that a minimum number 
of points (sample size) is found. This sample size is applied t o  both the first file and the 
second file. It has the advantage ofproviding constant precision ofthc kernel estimate 
over the entire region. Thus, in areas that have a high concentration of points, the 
bandwidth is narrow whereas in areas where the concentration of points is more sparse, 
the bandwidth will be larger. This is the default bandwidth choice in Crimestat since 
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consistency in statistical precision is important. The degree of precision is generally 
dependent on the sample size of the bandwidth interval. The default is a minimum of 100 
points. The user can make the estimate finer by choosing a smaller number ofpoints (e.g., 
25) or smoother by choosing a larger number ofpoints (e.g., 200). 

Note: with a duel kernel calculation, particularly the ratio of one variable to 
another, be careful about choosing a very small bandwidth. This could have the effect of 
creating spikes at  the edges ofthe study area or in low population density areas. For 
example, in low population density areas, there will probably be fewer events than in more 
built-up area. For the denominator of a ratio estimate, an extremely low value could cause 
the ratio to be exaggerated (a Spike’) relative to neighboring grid cells. Using a larger 
bandwidth will produce a more stable average. 

The user must indicate the measurement units for the density estimate in points 
per squared miles, squared nautical miles, squared feet, squared kilometers, or squared 
meters. 

~ n ~ e n ~ i t y  or W e i g ~ t ~ n g   variable^ 

If an intensity or weighting variable is used for either the first file or the second file, 
these boxes must be checked. Be careful about using both an intensity and a weighting 
variable to  avoid ‘double weighting’. 

ens it y Ca le ula ti on s 

The user must indicate the type of density output. There are six types ofdensity 
calculations that can be conducted with the dual kernel density routine. The calculations 
are  applied to each reference cell: 

1 .  There i s  the ratio of densities, that is the first file divided by the second file. 
This is the default choice. For example, if the first file is the location of auto 
thefts incidents and the second file is the location of census tract centroids 
with tlie population assigned as  an intensity variable, then ratio of densities 
would divide the kernel estimate for auto thefts by the kernel estimate for 
population and would be an estimate of auto thefts risk. 

2. There is also the log ratio of densities. This is the natural logarithm of the 
density ratio, that is 

Log ratio of densities = Ln [ g(xj) I g(yj) ] (8.10) 
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where g(x,) is the density estimate for the first file and g(y,) is the density 
estimate for the second file. For a variable that has a spatially skewed 
distribution, such that most reference cells have very low density estimates, 
but a few have very high density estimates, converting the ratio into a log 
function will tend to  mute the spikes that occur. This measure has been 
used in studies of risk (Kelsall and Diggle, 199%). 

3 .  There is the absolute difference in densities, that is the first file minus the 
second file. This can be a useful output for examining differential effects. 
For example, by using the centroids of census block groups (see example 2 
below) with the population ofthe census block group assigned as  an  intensity 
or weighting variable, there is a slight bias produced by the spatial 
arrangements of the block groups. The U. S .  Census Bureau suggests that 
census units (e.g., census tracts, census block groups) be drawn so that there 
are approximately equal populations in each unit. Thus, block groups 
towards the center of the metropolitan area tend to be smaller because there 
is a higher population density at those locations. Thus, the spatial 
arrangement ofthe block groups will tend to produce a kernel estimate 
which has a higher value towards the center independent of the actuaf 
population ofthe block group; the bias is very small, less than 0.1%, but it 
does exist. Amore precise estimate could be produced by subtracting the 
kernel estimate for the block group centroids without using population as the 
intensity variable from the kernel estimate for the block group centroids with 
population as the intensity variable. The resulting output could then be read 
back into Crimestat and used as a more precise measure of population 
distribution. There are othcr uses of the difference function, such as 
subtracting the estimate for thc population-at-risk from the incident 
distribution rather than taking thc ratio or by calculating the net change in 
population between two censuses. 

4. There is the relative diff’erencc in densities. Like the relative density in the 
single-kernel routine (discussed above), the relative difference in densities 
first standardizes the densities of each file by dividing by the grid cell area 
and then subtracts the secondary file relative density fkom the primary file 
relative density. This can be useful in calculating changes between two time 
periods, for example in calculating a change in relative density between two 
censuses or a change in the crime density between two time periods. 

5 .  There is the sum of the densities, that is, the density estimate for the first file 
plus the density estimate for the second file. Again, this is applied to each 
reference cell a t  a time. A possible use ofthe sum operation is t o  combine 
two different density surfaces, for example the density of robberies plus the 
density of assaults; 

6 .  Finally, there is the relative sum of densities between the primary file and 
the secondary file. The relative sum of densities first standardizes the 
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densities of each file by dividing by the grid cell area and then subtracts the 
secondary file relative density from the primary file relative density. This 
can be useful for identifLing the total effects of two distributions. For 
example, the total impact of robberies and burglaries on an area can be 
estimated by taking the relative density of robberies and adding it to the 
relative density ofburglaries. The result is the combined relative density of 
robberies and burglaries per unit area (e.g., robberies and burglaries per 
square mile). 

~ ~ t p ~ t  Files 

Finally, the user must specify the file formats for the output. The results can be 
output in three forms. First, the results are displayed in an output table. Second, the 
results can be output into two raster grid formats for display in a surface mapping 
program: Surfer for Windows format as a ‘.dat’file (Golden Software, 1994) and Arcview 
Spatial Analyst format as  a ‘.asc’file (ESRI, 1998). Third, the results can be output as 
polygon grids into Arcview ‘.shp’, MapInfo ‘.mil? and AtEas*GIS ‘.bna’format (see footnote 
1). All but Surjer for Windows require that the reference grid be created by Grimestat. 

ensity Estimates Q ~ V e h i ~ ~ e  Thefts 
Relative to Populatiola 

As an  example of the use of the dual kernel density routine, the duel routine is 
applied in both the City of Baltimore and the County of Baltimore t o  14,853 motor vehicle 
theft locations for 1996 relative to  the 1990 population of census block groups. Again, a 
reference grid of 100 columns by 108 rows was generated by Crimestat.  

Figure 8.12 shows the resulting density estimate as a Surfer for Windows output; 
again, there is a map view, a surface view, and a contour view. The normal kernel function 
was used and an  adaptive bandwidth of 100 points was selected. As seen, there is a very 
high concentration of auto theft incidents within the central part ofthe metropolitan area. 
The contour view suggest five or six peak areas that  are close to  each other. 

Much ofthis concentration, however, is produced by high population density in the 
metropolitan center. Figure 8.13, for example, shows the kernel estimate for 1349 census 
block groups for both the City of Baltimore and the County of Baltimore with the 1990 
population assigned a s  the intensity variable. Again, the normal kernel function was used 
with an  adaptive bandwidth of 100 points being selected. The map shows three views: 1) a 
surface view; 2) a contour view; and 3) a ground level view looking directly north. The 
distribution of population is, of course, also highly concentrated in the metropolitan center 
with two peaks, quite close to each other with several smaller peaks. 

When these two kernel estimates are compared using the dual kernel density 
routine, a more complicated picture emerges (figure 8.14). This routine has conducted 
three operations: 1)  it calculated the distance between each ofthe 10,800 reference cells 
and the 14,853 auto theR locations, evaluated the kernel function for each measured 
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Dietrich Oberwittler and Marc Wiesenhutter 
Max Planck Institute for Foreign and International Criminal Law 

Freiburg, Germany 

When estimating the density of street crimes within a metropolitan area by interpo- 
lating crime incidents, the result is usually a very high concentration in  the city center. 
However, there is also a very high concentration of people either living or pursuing their 
daily routine activities in these areas. The question emerges how likely is a criminal event 
when taking into account the number of people spending their time in these areas. The 
Crimestat duel kernel density routine is able to estimate a ratio density surface of crime 
relative to the 'population at risk'. 

In this example, data on 'calls to the police' for assault and battery from April 1999 to 
March 2000 (W6363 calls) and population from Cologne were used. Exact information on 
the number of people spending their time in the city does not exist. Therefore, 1997 counts of 
passengers entering and leaving the public transport system a t  each of 550 stations and bus 
stops in the city was used as a proxy variable. The number of persons at each station or bus 
stop was assigned to adjacent census tracts and added to the resident population resulting in 
a crude measure of the 'population at risk'. 

In  the dual kernel routine, the density estimate of crime incidents is compared to the 
density estimate of the population at risk, defined by the centroids of census tracts with the 
number of persons as an  intensity variable. We chose the normal method of interpolation 
and adaptive intervals with a minimum of five points. The adaptive bandwidth adjusts for 
the fact that there are fewer incidents and census tracts at the edges of the city, resulting in 
a relatively smoother density surface for the ratio. The results were output to ArcView. 

The effect of adjusting the crime distribution for the underlying 'population at risk' 
becomes quite visible. Whereas the conceiLtratioii of crime is highest in  the city center (left 
map), the crime risk (right map) is in fact much higher in several more distant areas that are 
known for high concentrations of socially disadvantaged persons. Given the imperfect nature 
of the population data these results should be interpreted as a broad view on the distribution 
of crime risk that, nevertheless, has important policy implications. 

Single kernel density of crime incidences 
(assault & battery, Cologne 199912000) 

Dual kernel density of crime incidences 
relative to population at risk 
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Gast6n Pezzuchi 
Crime Analyst 

Buenos Aires Frovince Police Force 
Buenos Aires, Argentina 

One of our first tryouts with the Crimestat software involved the calculation 
of both single and dual kernel density interpolations using data on 1999 
confrontations with the police within Buenos Aires Province, an area that covers 29 
counties around the Federal Capital. The confrontations include mostly gun fights 
with the police but also other attacks (e.g.; knives, rocks, sticks). In  the last three 
years, there has been an  increase in confrontations with the police. The single 
interpolation shows a density surface that  gives a good picture of the ongoing level of 
violence while the duel interpolations shows a risk surface using the personnel 
deployment data; the latter are confrontations relative to the number of police 
deployed. Typically, police are allocated to areas according to crime rates.\ 

Examgle: Kernel Density Estimation 
(crimestat) 

Single Interpolation - Density of Events h a t  Interpolation - Ratio of densities (Risk: 

_f., 

0 -= 

Both images are quite different, suggesting varying policing strategies. For 
example, though there are two well-defined hot spot areas in the Province (one in 
the north, the other in the south), the high levels of risk detected in the southern 
areas came as a complete surprise. The northern area has a higher crime rate than 
the southern area, hence a high police deployment. However, the level of 
confrontation are approximately equal between the two areas. 
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distance, and summed the results for each reference cell; 2) it calculated the distance 
between each of the 10,800 reference cells and the 1349 census block groups with 
population a s  an intensity variable, evaluated the kernel function for each intensity- 
weighted distance, and summed the results for each reference cell; and 3)  divided the 
kernel density estimate for auto thefts by the kernel density estimate for population for 
each reference cell location. 

While the concentration ofmotor vehicle thefts relative to population (hotor  vehicle 
theft risk”) is still high in the metropolitan center, there are bands ofhigh risk that spread 
outward, particularly along major arterials. There are now many ‘hot spot ’areas which 
have a high distribution of motor vehicle thefts relative to the residential population. We 
could, of course, refine this analysis further by taking, for example, employment as a 
baseline variable rather than population; employment is a better indicator for the daytime 
population distribution whereas the residential population is a better indicator for 
nighttime population distribution (Levine, Kim, and Nitz, 1995a; 1995b). 

The final example shows how the duel kernel interpolation compares with the risk- 
adjusted nearest neighbor clustering, discussed in chapter 6. Figure 8.15 shows 7 first- 
order risk-adjusted clusters overlaid on the a duel kernel estimate of 1996 robberies 
relative to 1990 p~pu la t ion .~  As seen, there is a correspondence between the identified 
risk-adjusted clusters and the duel kernel interpolation of the ratio of robberies to 
population. For a broad regional perspective, the interpolation produces an  adequate 
model ofwhere there is a high robbery risk. At the neighborhood level, however, the risk- 
adjusted clusters are  more specific and would be preferable for use by police in identifying 
high -r is k locations . 

The advantage ofa  dual kernel density interpolation routine is that  two variables 
can be related together. By interpolating one variable to a reference grid and then 
interpolating a second variable to the same reference grid, the two variables have been 
interpolated to  the same geographical units. The two interpolations can then be related, by 
dividing, subtracting, or summing. As has been mentioned throughout this manual, one of 
the problems with techniques that depend on the concentration of incidents is that they 
ignore the underlying population-at-risk. With the dual routine, however, we can start to 
examine the risk and not just the concentration. 

~ ~ $ ~ ~ l l y  P r e s e n t i n g  K e r n e l  Estimates 

Whether the single- or duel-kernel estimate is used, the result is a grid 
interpretation of the data. By scaling these values by color in a GIS program, a 
visualization of the data is obtained. Areas with higher densities can be shown in darker 
tones and those with lower densities can be shown in lighter tones; some people do the 
opposite with the high density areas being lighter. 
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Silvana Amaral, Anthnio Miguel V. Monteiro, Gilbert0 CGmara, Josh A. Quintanilha 
INPE, Instituto Nacional de Pesquisas Espaciais, Brazil 

The Brazilian Amazon rain forest is the world's largest contiguous area of 
tropical rain forest in the world. During the last three decades, the region has 
experienced the largest urban growth rates in Brazil, a process that has reorganized 
the network of human settlements in the region. We used the CrimeStat single and 
duel kernel density routines to visualize trends in urbanization from 1996 to 2000 in 
Amazonia. Two variables were used to measure urbanization: 1) the concentration 
of urban nuclei (city density); and 2) the ratio of urban to total population. 

The concentration of cities was spatially associated withfederal roads in the 
eastern and southern portions, and along the Amazonas River in the middle of the 
region. Additionally, the surfaces of urban population show that city density is not 
always associated with large urban populations. From 1996 to 2000 city density 
increased in the western Amazonia (Par& state) at a greater rate than the growth of 
the urban population. In the southeastern part of the region (Rondhnia state), there 
were many urban centers. But the ratio of urban to total population was small, 
indicating that they are predominately agricultural regions. 
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To make the visualization even more realistic, one could use a GIs  program to cut 
out those grid cells that are outside the study area or are on water bodies. Before doing 
this, however, be sure to re-scale the estimated ‘z” values so that they will sum to the total 
of the original grid. For example, if the original sample size was 1000, then the grid cells 
will sum to 1000 if the absolute density option is chosen. If, say, 20% of these cells are 
then removed to improve the visualization, then the grid cell Z values have to be re-scaled 
so that their sum will continue to  be 1000. A simple way to do this is to, first, add up the Z 
values for the remaining cells and, second, multiply each grid cell Z by the ratio of the 
original sum t o  the reduced sum. 

The visualization is useful for a broad, regional view. It is not particularly useful 
for micro analysis. The use of one of the cluster routines discussed in chapters 6 and 7 
would be more appropriate for small area analysis. 

Kernel density estimation is one of the ’modern’spatial statistical techniques. 
There is currently research on the use ofthis technique in both the statistical theory and in 
developing applications. For crime analysis, the technique represents a powerful way of 
conducting both got  spot’analysis as well as  being able to link the %ot spots’to an 
underlying population-at-risk. It can be used both for police deployment by targeting areas 
of high concentration of incidents as well as for prevention by targeting areas with high 
risk. It can also be used as a research tool for analyzing two or more distributions. More 
development ofthis approach can be expected in the next few years. 
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1. 

notes t o  Cha 

There are  differences in opinion about how wide a particular fixed bandwidth 
should be determined. The smoothing is done for a distribution ofvalues, Z. Ifthere 
are only unique points (and, hence, there is no Z value at a point), the distances 
between points can be substituted for Z .  Thus, MeanD is the mean distance, sd(D) 
i s  the standard deviation of distance, and iqr(D) is the inter-quartile range of 
distances between points. These would be substituted for MeanZ, sd(Z), and iqr(Z) 
respectively 

Silverman (1986; 45-47; Hardle, 1991; Farewell, 1999) proposed a bandwidth, h,  of: 

1 0 N-1" 
W Z t )  

h = 1.06 * rnin { sd(Z), -------- 
1.34 

where min is the minimum ofthe next two terms, sd(2) is the standard deviation of 
the variable, Z, being interpolated, iqr(2) is the inter-quartile range of Z, and N is 
the sample size. 

Bowman and Azzalini (1997; 31) defined a slightly different optimal bandwidth for a 
norm a1 kern el. 

To avoid being influenced by outlier, they suggested using the median absolute 
deviation estimator for sd(Z) 

Scott (1992) suggested an upper bound on the normal kernel of 

h = 1.144 * sd(Z) * N-'15 

Bailey and Gatrell(1995,85-87) offered a rough choice for the bandwidth of 

h = 0.68 * 

but suggested that the user could experiment with different bandwidths to explore 
the surface. 

On the other hand, the concept ofan adaptive bandwidth is based more on sampling 
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theory (Bailey and Gatrell, 1995). By increasing the bandwidth until a fixed 
number of points are counted ensures that the level of precision is constant 
throughout the region. As with all sampling, the standard error of the estimate is a 
function of the sample size; a larger sample leads to smaller error. In general, if 
there was independent sampling, the 95% confidence interval of a bandwidth for a 
normal kernel could be approximated by 

.5 
95% C.I. = Mean(Z) I-/- 1.96 * --------- * sd(Z) 

N(h)"z 

where N(h) is the adaptive sample size (the number ofpoints counted within the 
bandwidth for the adaptive kernel). This assumes that a point has an equal 
likelihood of falling within the bandwidth of one cell compared to  an adjacent cell 
(i.e., it sits on the boundary of the bandwidth circle). The adaptive bandwidth 
criteria requires that the ban~wid th  be increased until it captures the specified 
number of points. On average, if there are N points in a region of area, A, and if the 
adaptive sample size is N(p), then the average area required to  capture N(p) points 
is 

and the average bandwidth, Mean(h), is 

Each of these provide different criteria for the bandwidth size with the adaptive 
being the most conservative. For example, for a standardized distribution with 
1000 data points, a standardized mean o f Z  of 0 and a standardized standard 
deviation of 1, the Silverman criteria would produce a bandwidth of 0.2663; the 
Bowman and Azzalini criteria would produce a bandwidth of 0.2661; the Scott 
criteria would produce a bandwidth of0.2874 and the Bailey and Gatrell criteria 
would produce a bandwidth of 0.1708. For the adaptive interval, i f the required 
adaptive sample size is 25, then the average bandwidth would be approximately 
0.3162 (this assumes that the area is a circle with a radius o f 2  standardized 
standard deviations). 

2. CrimeStad. will output the geographical boundaries of the reference grid (a polygon 
grid) and will assign a third-variable (called Z )  as the density estimate. Of the 
three polygon grid outputs, ArcView '.shp'files can be read directly into the 
program. For Muplnfo, on the other hand, the output is in MapInfo Interchange 
Format (a '.mirand a '.mid' file); the density estimate (also called Z) is assigned to 
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the ‘.mid’file. The files must be imported to convert it to a MapInfo ‘.tab’filc. For 
Atfas*GIS ‘.bna’format, however, there are two files that are output - a ‘.bna’file 
which includes the boundaries ofthe polygon grid and a ‘,dbf’file which includes the 
grid cell names (called gridcell) and the density estimate (also called Z ) .  The ‘.bna’ 
file must be read in first and then the ‘.dbf file must be read in and matched to the 
value ofgridcell. For a l l  three output formats, the values of Z can be shown as a 
thematic map but the ranges must be adjusted to illustrate the likely locations for 
the offender’s residence (Le., the default values in the GIS programs will not display 
the densities very well). On the other hand, the default interval values for Surfer 
for Windows and ArcView Spatial Avralyst provide a reasonably good visualization of 
the densities. 

3. All the CrimeStat outputs except for AreView “shp’ files are in ASCII. There are 
usually ‘edge effects’and values interpreted outside the actual geographical area. 
These can be removed with an ASCII editor by substituting ‘0’ for the values a t  the 
edges or outside the study region. For ‘shp’files, the values at  the edges can be 
edited within the AmVi’iav program. Another alternative is to ‘cut out’the cells that 
are beyond the study area. Care must be taken, however, to not edit an output file 
too much otherwise it will bear little relationship to the calculated kernel estimate. 

4. The risk-adjusted hierarchical clustering (Rnnh) method defined the largest search 
radius but a minimum of 25 points being required tu be clustered. The kernel 
estimate for both the Rnnh and the duel-kernel routines used the normal 
distribution function with an  adaptive bandwidth of 25 points. 
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The Journey to Crime (Jtc) routine is a distance-based method which makes 
estimates about the likely residential location of a serial offender. It is an application of 
Eocation theory, a framework for identifying optimal locations &om a distribution of 
markets, supply characteristics, prices, and events. The following discussion gives some 
background to the technique. Those wishing t o  skip this part can go to  page 13 for the 
specifics of the J tc  routine. 

Location theory is concerned with one of the central issues in geography. This 
theory attempts to  find an optimal location for any particular distribution of activities, 
population, or events over a region (Haggett, Cliff and Frey, 1977; Krueckeberg and 
Silvers, 1974; Stopher and Meyburg, 1975; Qppenheim, 1980, Ch. 4; Bossard, 1993). In 
classic location theory, economic resources were allocated in relation to idealized 
representations (Anselin and Madden, 1990). Thus, von Thiinen (1826) analyzed the 
distribution of agricultural land as  a function ofthe accessibility to  a single population 
center (which would be more expensive towards the center), the value of the product 
produced (which would vary by crop), and transportation costs (which would be more 
expensive farther from the center). In order to maximize profit and minimize costs, a 
distribution of agricultural land uses (or crop areas) emerges flowing out from the 
population center as  a series of concentric rings. Weber (1909) analyzed the distribution of 
industrial locations as  a function of the volume of materials to be shipped, the distance 
that the goods had to  be shipped, and the unit distance cost ofshipping; consequently, 
industries become located in particular concentric zones around a central city. Burgess 
(1925) analyzed the distribution ofurban land uses in Chicago and described concentric 
zones of both industrial and residential uses. Their theory formed the backdrop for early 
studies on the ecology of criminal behavior and gangs (Thrasher, 1927; Shaw, 1929). 

In more modern use, the location of persons with a certain need or behavior (the 
‘demand’ side) is identified on a spatial plane and places are  selected as t o  maximize value 
and minimize travel costs. For example, for a consumer faced with two retail shops selling 
the same product, one being closer but more expensive while the other being farther but 
less expensive, the consumer has to trade off the value to be gained against the increased 
travel time required. In designing facilities or places of attraction (the ‘supply’side), the 
distance between each possible facility location and the location of the relevant population 
is compared to the cost of locating near the facility. For example, given a distribution of 
consumers and their propensity to spend, such a theory attempts to locate the optimal 
placement of retail stores, or, given the distribution of patients, the theory attempts to  
locate the optimal placement of medical facilities. 
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One can also reverse the logic. Given the distribution of demand, the theory could 
be applied to estimate a central location from which travel distance or time is minimized. 
One of the  earliest uses ofthis logic was that ofJohn Snow, who was interested in the 
causes of cholera in the mid-19th century [Cliff and Haggett, 1988). He postulated the 
theory that water was the major vector transmitting the cholera bacteria. After 
investigating water sources in the London metropolitan area and concluding that there was 
a relationship between contaminated water and cholera cases, he was able to  confirm his 
theory by an  outbreak of cholera cases in the Soh0 district. By plotting the distribution of 
the cases and looking for water sources in the center ofthe distribution (essentially, the 
center of minimum distance; see chapter 4), he found a well on Broad Street that  was, in 
fact, contaminated by seepage from nearby sewers. The well was closed and the  epidemic 
in Soh0 receded. Incidently, in plotting the incidents on a map and looking for the center of 
the distribution, Snow applied the same logic that had been followed by the London 
Metropolitan Police Department who had developed the famous ’pin’map in the 1820s. 

Theoretically, there is an optimal solution that minimizes the distance between 
demand and supply (Rushton, 1979). However, computationally, it is an almost impossible 
task to define, requiring the enumeration of every possible combination. Consequently in 
practice, approximate, though sub-optimal, solutions are obtained through a variety of 
methods (Everett, 1974, Ch. 4). 

ing 

A sub-set oflocation theory models the travel behavior ofindividuals. It actually is 
the converse. If location theory attempts to allocate places or sites in relation to  both a 
supply-side and demand-side, travel demand theory attempts to model how individuals 
travel between places, given a particular constellation of them. One concept that  has been 
frequently used for this purpose is that of the gravityfunetion, an application of Newton’s 
fundamental law of attraction (Oppenheim, 1980). In the original Newtonian formulation, 
the attraction, F, between two bodies of respective masses M ,  and M,,  separated by a 
distance D, will be equal to  

where g is a constant or scaling factor which ensures that the equation is balanced in 
terms of the measurement units (Oppenheim, 1980). As we all know, of course, g is the 
gravitational constant in the Newtonian formulation. The denominator of the equation, dZ, 
is known as the distance decay function and indicates that  the attraction between the two 
bodies falls off as a function oftheir squared distance. 
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The gravity model has been the basis of many applications to  human societies and 
has been applied to  social interactions since the 19‘h century. Ravenstein (1895) and 
Andersson (1897) applied the concept to the analysis of migration by arguing that the 
tendency to  migrate between regions is inversely proportional to  the squared distance 
between the regions. Reilly’s ‘law of retail gravitation’(1929) applied the Newtonian 
gravity model directly and suggested that retail travel between two centers would be 
proportional to the product of their populations and inversely proportional t o  the square of 
the distance separating them: 

where M,, is the interaction between centers i andj ,  P, and P, are the respective 
populations, D, is the distance betwecn them raised to the second power and K is a 
balancing constant. In the model, the initial population, P,,  is called a production while the 
second population, Pj, is called an attraction. 

Stewart (1950) and Zipf (1949) applied the concept to a wide variety of phenomena 
(migration, freight traffic, exchange of information) using a simplified form of the gravity 
equation 

where the terms are  as in equation 9.2 but the exponent of distance is only 1 .  In doing so, 
they basically linked location theory with travel behavior theory. Given a particular 
pattern of interaction for any type of goods, service or human activity, an optima1 location 
of facilities should be solvable. 

In the StewartlZipf framework, the two P’s were both population sizes and, 
therefore, their sums had to be equal. However, in modern use, it’s not necessary for the 
productions and attractions to  be identical units (e.g., P, could be population while PJ could 
be employment). 

The total volume ofproductions (trips) .from a single location, i, is estimated by 
summing over all destination locations, j: 

= (’Jm4J) (9.4) 
J 

Over time, the concept has been generalized and applied to many different types of 
travel behavior. For example, Huff (1963) applied the concept to retail trade between 
zones in an urban area using the general form of 
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where A,J is the number of purchases in location j by residents of location i, S, is the 
attractiveness of zone j (e.g., square footage of retail space), D, is the distance between 
zones i and j ,  p is the exponent of S,, and L is the exponent ofdistance (Bossard, 1993). D,,-' 
is sometimes called an inverse distance function. This is a single constraint model in that 
only the attractiveness of a commercial zone is constrained, that  is the sum of all 
attractions for j must equal the total attraction in the region. 

Again, it can be generalized to  all zones by, first, estimating the total trips 
generated from one zone, i, to another zone, j, 

(9 .4)  

where M,, is the interaction between two locations (or zones), H, is productions of trips from 
location/zone i, S, is the attractiveness of location/zone j ,  D, is the distance between zones i 
and j, p is the exponent of S,, p is the exponent of E,, a is the exponent of distance, and K is a 
constant . 

Second, the total number oftrips generated by a location, i, to all destinations is 
obtained by summing over all destination locations, j: 

Mi = K HIP (Sjp/Dij ') (9.7) 
j 

This differs from the traditional gravity function by allowing the exponents ofthe 
production -from location i, the attraction fi-om location j, and the distance between zones to  
vary. Typically, these exponents are  calibrated on a known sample before being applied to 
a forecast sample and the locations are  usually measured by zones. Thus, retailers in 
deciding on the location of a new store can use this type of model to  choose a site location to 
optimize travel behavior ofpatrons; they will, typically, obtain data on actual shopping 
trips by customers and then calibrate thc model on the data, estimating the exponents of 
attraction and distance. The model can then be used to predict future shopping trips if a 
facility is built at a particular location. 

This type of function is called a double constraint model because the balancing 
constant, K, has to be constrained by the number of units in both the origin and 
destination locations; that is, the sum of P, over all locations must be equal t o  the total 
number of productions while the sum of P, over all locations must be equal to  the total 
number of attractions. Adjustments are usually required to have the sum of individual 
productions and attractions equal the totals (usually estimated independently). 
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The equation can be generalized to other types of trips and different metries can be 
substituted for distance, such as  time, effort, or cost (Isard, 1960). For example, for 
commuting trips, usually employment is used for attractions, frequently sub-divided into 
retail and non-retail employment. In addition, for productions, median household income 
or car ownership percentage is used as  an additional production variable. Equation 9.7 can 
be generalized to include any type of production or attraction variable (9.8 and 9.9): 

Mi = K, Pip Z (K, Aja/D, ’) (9 * 9) 

where M,, is the number oftrips produced by location i that travel to  location j, P I  is either 
a single variable associated with trips produced from a zone or the cross-product of two or 
more variables associated with trips produced from a zone, A, is either a single variable 
associated with trips attracted to  a zone or the cross-product of two or more variables 
associated with trips attracted to  a zone, D,, is either the distance between two locations or 
another variable measuring travel effort (e.g., travel time, travel cost), p, p, and h are  
exponents of the respective terms, IC, is a constant associated with the productions to  
ensure that the sum of trips produced by all zones equals the total number of trips for the 
region (usually estimated independently), and K2 is a constant associated with the 
attractions to ensure that the sum of trips attracted to all zones equals the total number of 
trips for the region. Without having two constants in the equation, usually conflicting 
estimates o fK  will be obtained by balancing the equation against productions or 
attractions. The summation over all destination locations, j (equation 9.9), produces the 
total number oftrips from zone i. 

In &e rv e n in g Bpp po rt un i tie s 

Stouffer (1940) modified the simple gravity function by arguing that the attraction 
between two locations was a function not only ofthe characteristics of the  relative 
attractions of two locations, but of intervening opportunities between the locations. His 
hypothesis “..assumes that there is no necessary relationship between mobility and 
distance ... that the number of persons going a given distance is directly proportional to  the 
number of opportunities at  that distance and inversely proportional to  the number of 
intervening opportunities”(Stouffer, 1940, p. 846). This model was used in the 1940s to 
explain interstate and intercounty migration (Bright and Thomas, 1941; Isbell, 1944; Isard, 
1979). Using the gravity type formulation, we can write this as: 

(9.10) 

where A,, is the attraction of location j by residents of location i, S, is the attractiveness of 
zone j, S, is the attractiveness of all other locations that are intermediate in distance 
between locations i and j, D, is the distance between zones i andj ,  p is the exponent of S,, 4 
is the exponent of S,, and his the exponent ofdistance. While the intervening 
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opportunities are  implicit in equation 9.5 in the exponents, p and a, and coefficient, K, 
equation 9.10 makes the intervening opportunities explicit. The importance of the concept 
is that  the interaction between two locations becomes a complex function ofthe spatial 
environment of nearby areas and not just of the two locations. 

This type of model is incorporated as a formal step in the urban transportation 
planning process, implemented by most regional planning organizations in the United 
States and elsewhere (Stopher and Meyburg, 1975; Krueckeberg and Silvers, 1974; Field 
and MacGregor, 1987). The step, called trip distribution, is linked to a five step model. 
First, data are  obtained on travel behavior for a variety of trip purposes. This is usually 
done by sampling households and asking each member t o  keep a travel diary documenting 
all their trips over a two or three day period. Trips are aggregated by individuals and by 
households. Frequently, trips by different purposes are  separated. Second, the volume of 
trips produced by and attracted t o  zones (called traffic analysis zones) is estimated, usually 
on the basis of the number of households in the zone and some indicator of income or 
private vehicle ownership. Third, trips produced by each zone are distributed to  every 
other zone usually using a gravity-type function (equation 9.9). That is, the number of 
trips produced by each origin zone and ending in each destination zone is estimated by a 
gravity model. The distribution is based on trip productions, trip attractions, and travel 
kesistance'(measured by travel distance or travel time). Fourth, zone-to-zone trips are 
allocated by mode of travel (car, bus, walking, etc); and, fifth, trips are  assigned to 
particular routes by travel mode (i.e., bus trips follow different routes than private vehicle 
trips). The advantage ofthis process is that trips arc allocated according to origins, 
destinations, distances (or travel times), modes of travel and routes. Since all zones are 
modeled sim u It an eou s ly , a 11 intermediate destinations (Le ., intervening opportunities) are 
incorporated into the model. 

istance Decay Functions 

One ofthe problems with the traditional gravity formulation is in the measurement 
of travel resistance, either distance or time. For locations separated by sizeable distances 
in space, the gravity formulation can work properly. However, as the distance between 
locations decreases, the denominator approaches infinity. Consequently, an alternative 
expression for the interaction has been proposed which uses the negative exponential 
function (Hagerstrand, 1957; Wilson, 1970). 

(9.1 1) 

where 4% is the attraction oflocation j for residents of location i, S, is the attractiveness of 
location j, I),, is the distance between locations i andj ,  p is the exponent of S, ,  e is the base 
of the natural logarithm (Le., 2.7183 ...), and a is an  empirically derived exponent. 
Sometimes known as entropy maximization, the latter part ofthe equation is a negative 
exponential function which has a maximum value of 1 (Le., e-' = 1). This has the 
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advantage of making the equation more stable for interactions between locations that are 
close together. For example, Cliff and Waggett (1988) used a negative exponential gravity- 
type model to describe the diffusion ofmeasles into the United States from Canada and 
Mexico. It has also been argued that the negative exponential function generally gives a 
better fit to urban travel patterns, particularly by automobile (Foot, 1981; Bossard, 1993). 

Other functions have also be used to describe the distance decay -negative linear, 
normal distribution, lognormal distribution, quadratic, Pareto function, square root 
exponential, and so forth (Haggett and Arnold, 1965; Taylor, 1970; Eldridge and Jones, 
1991). Later in the chapter, we will explore several different mathematical formulations 
for describing the distance decay. One, in fact, does not need to use a mathematical 
€unction at  all, but could empirically describe the distance decay fi-om a large data set and 
utilize the described values for predictions. The use ofmathematical functions has evolved 
out of both the Newtonian tradition of gravity as well as various location theories which 
used the gravity function. Arnathematical function makes sense under two conditions: 1) 
if travel is uniform in all directions; and 2) as  an approximation if there is inadequate data 
from which to calibrate an empirical function. The first assumption is usually wrong since 
physical geography (i.e., oceans, rivers, mountains) as well as asymmetrical street 
networks make travel easier in some directions than others. As we shall see below, the 
distance decay is quite irregular for journey to crime trips and would be better described by 
an  empirical, rather than mathematical function. 

In short, there is a long history ofresearch on both the location ofplaces as well as  
the likelihood of interaction between these places, whether the interaction is freight 
movement, land prices or individual travel behavior. The gravity model and variations on 
it havc been used to describe the interactions between these locations. 

Journey to Crime Trips 

The application of travel behavior theory to crime has a sizeable history as  well. 
The analysis ofdistance for journey to crime trips was applied in the 1930s by White 
(1932), who noted that property crime offenders generally traveled farther distances than 
offenders committing crimes against people, and by Lottier (1938), who analyzed the ratio 
of chain store burglaries to the number of chain stores by zone in Detroit. Turner (1969) 
analyzed delinquency behavior by a distance decay travel function showing how more crime 
trips tend t o  be close to the offender’s home with the frequency dropping off with distance. 
Phillips (1980) is, apparently, the first to use the term journey to crime is describing the 
travel distances that offenders make though Harries (1980) noted that the average 
distance traveled has evolved by that time into an analogy with the journey to  work 
statistic. 

Rhodes and Conly (1981) expanded on the concept of a criminal commute and 
showed how robbery, burglary and rape patterns in the District of Columbia followed a 
distance decay pattern. LeBeau (1987a) analyzed travel distances ofrape offenders in San 
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Diego by victim-offender relationships and by method of approach. Boggs (1965) applied 
the intervening opportunities model in analyzing the distribution of crimes by area in 
relation to the distribution of offenders. Other empirical descriptions of journey to crime 
distances and other travel behavior parameters have been studied by Blumin (1973), 
Curtis (1974), Repetto (1974), Pyle (1974), Capone and Nichols 1975), Rengert (1975), 
Smith (1976), LeBeau (1987b), and Canter and Earkin (1993). It has generally been 
accepted that property crime trips are longer than personal crime trips (LeBeau, 1987a), 
though exceptions have been noted (Turner, 1969). Also, it would be expected that 
avcrage trip distances will vary by a number of factors: crime type; method of operation; 
time of day; and, even, the value ofthe property realized (Capone and Nichols, 1975). 

ffelnder Search Area 

Conceptual work on the type ofrnodel have been made by Brantingham and 
Brantingham (1981) who analyzed the geometry of crime and conceptualized a criminal 
search area, a geographical area modified by the spatial distribution of potential offenders 
and potential targets, the awareness spaces of potential offenders, and the exchange of 
information between potential offenders. In this sense, their formulation is similar to that 
of Stouffer (1940), who described intervening opportunities, though their’s is a behavioral 
framework. An important concept developed by the Brantingham’s is that of decreased 
criminal activity near to a n  offender’s home base, a sort of a safety area around their near 
neighborhood. Presumably, offenders, particularly those committing property crimes, go a 
little way from their home base so as  to  decrease the likelihood that they will get caught. 
This was noted by Turner (1969) in his study of delinquency in Philadelphia. Thus, the 
Brantingham’s postulated that there would be a small safety area (or ‘buffer’zone) of 
relatively little offender activity near to the offender’s base location; beyond that zone, 
however, they postulated that the number of crime trips would decrease according to a 
distance decay model (the exact mathematical form was never specified, however). 

Crime trips may not even begin at  an offender’s residence. Routine activity theory 
(Cohen and Felson, 1979; 1981) suggests that crime opportunities appear in the activities 
of everyday life. The routine patterns of work, shopping, and leisure affect the convergence 
in time and place of would be offenders, suitable targets, and absence of guardians. Many 
crimes may occur while an  offender is traveling from one activity to  another. Thus, 
modeling crime trips as if they are referenced relative to a residence is not necessarily 
going to  lead to better prediction. 

The mathematics ofjourney to  crime has been modeled by Rengert (1981) using a 
modified general opportunities model: 

Pij = K Ui Vj f(D,j) (9.12) 

where P,, is the probability of an offender in location (or zone) i committing an offense at 
location j, U, is a measure of the number of crime trips produced a t  location i (what Rengert 
called em issiveness), Vj is a measure of the number of crime targets (attractiveness) at  
location j, and RD,J is an unspecified function ofthe cost or effort expended in traveling 
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from location i to location j (distance, time, cost). He did not try to operationalize either 
the production side or the attraction side. Nevertheless, conceptually, a crime trip would 
be expected to involve both elements a s  well as the cost ofthe trip. 

In short, there has been a great deal of research on the travel behavior ofcriminals 
in committing acts a s  well as a number of statistical formulations. 

icting the Location sf Serial Offenders 

The journey to crime formulation, as in equation 9.9, has been used to  estimate the 
origin location o f a  serial offender based on the distribution ofcrime incidents. The logic is 
to plot the distribution of the incidents and then use a property of that distribution to 
estimate a likely origin location for the offender. Inspecting a pattern of crimes for a 
central location is an intuitive idea that police departments have used for a long time. The 
distribution of incidents describes an activity area by an offender, who lives somewhere in 
the center of the distribution. It is a sample from the offender’s activity space. Using the 
Brantingham’s terminology, there is a search area by an offender within which the crimes 
are committed; most likely, the offender also lives within the search area. 

For example, Canter (1994) shows how the area defined by the distribution of the 
‘Jack the Ripper’murders in the east end ofLondon in the 1880s included the key suspects 
in the case (though the case was never solved). Kind (1987) analyzed the incident locations 
of the Yorkshire Ripper’who committed thirteen murders and seven attempted murders in 
northeast England in the late 1970s and early 1980s. Kind applied two different 
geographical criteria to  estimate the residential location of the offender. First, he estimated 
the center of minimum distance. Second, on the assumption that the locations of the 
murders and attempted murders that were committed late at  night were closer to the 
offender’s residence, he graphed the time of the offense on the Y axis against the month of 
the year (taken as  a proxy for length of day) on the X axis and plotted a trend line through 
the data to account for seasonality. Both the center of minimum distance and the murders 
committed a t  a later time than the trend line pointed towards the LeedslBradford area, 
very close to where the offender actually lived (in Bradford). 

RQSSYIIO Model 

Rossmo (1993; 1995) has adapted location theory, particularly travel behavior 
modeling, to serial offenders. In a series of papers (Ftossmo, 1993a; 1993b; 1995; 1997) he 
outlined a mathematical approach to  identifying the home base location of a serial 
offender, given the distribution of the incidents. The mathematics represent a formulation 
of the Brantingham and Brantingham (1981) search area model, discussed above in which 
the search behavior of an offender is seen as  following a distance decay function with 
decreased activity near the offender’s home base. He  has produced examples showing how 
the model can be applied to serial offenders (Rossmo, 1993a; 1993b; 1997). 
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The model has four steps (what he called crim inal geographic targeting): 

1 .  First, a rectangular study area is defined that extends beyond the area ofthe 
incidents committed by the serial offender. The average distance between 
points is taken in both the Y and X direction. Half the U inter-point distance 
is added to the maximum Y value and subtracted from the minimum Y 
value. Half the X inter-point distance is added to the maximum X value and 
subtracted from the minimum X value. These are based on projected 
coordinates; presumably, the directions would have to be adjusted if 
spherical coordinates were used. The rectangular study defines a grid from 
which columns and rows can be defined. 

2. For each grid cell, the Manhattan distance to each incident location is taken 
(see chapter 3 for definition). 

3 .  For each Manhattan distance from a grid cell to an incident location, MD,,, 
one of two functions is evaluated: 

A. If the Manhattan distance, MD,, is less than a specified buffer zone 
radius, B, then 

where P,J is the resultant ofoffender interaction for grid cell, i; c is the 
incident number, summing to  T; 4 = 0; k is an empirically determined 
constant; g is an empirically determined exponent; and f i s  an 
empirically determined exponent. 

The Greek letter, 11, is the product sign, indicating that the results for 
each grid cell-incident distance, MD,,, are multiplied together across 
all incidents, c. This equation reduces to 

T 

Pij = II Q(l-O)(B"") / (2B - I xi - x,I f I yi - y,I )g ] (9.14) 
c=l 

(9.15) 

Within the buffer region, the function is the ratio of a constant, k, 
times the radius of the buffer, By raised to another constant (g-f), 
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divided by the difference between the diameter of the circle (2B) and 
the Manhattan distance, MD,, raised to a constant, g. This is a non- 
linear function. 

B. If the Manhattan distance, MD,, is greater than a specified buffer 
zone radius, B, then 

(9.16) 

where P, is the resultant of offender interaction for grid cell, i, and 
incident location, j; c i s  the incident number, summing t o  T; (1, = 1; k is 
an empirically determined constant (the same as in equation 9.15 
above); andf i s  an  empirically determined exponent (the same as  in 
equation 9.15 above). 

Again, the Greek letter, , indicates that  the results for each grid cell- 
incident distance, MD,, are multiplied together across all incidents, c. 
This equation reduces to 

(9.17) 

(9.18) 

Outside of the buffer region, the function is a constant, k, divided by 
the distance, MD,,, raised to an exponent, f. It is an  inverse distance 
function and drops off rapidly with distance 

4. Finally, for each grid cell, i, the functions evaluated in step 3 above are 
summed over all incidents. 

For both the Swithin buffer zone’(near to home base) and ‘outside buffer zone’(far 
from home base) hnctions, the coefficient, k, and exponents, f and g, are  empirically 
determined. Though he doesn’t discuss how these are  calculated, they are presumably 
estimated from a sample ofknown offender locations where the distance to each incident is 
known (e.g., arrest records). 

The result is a surface model indicating a likelihood of the offender residing at  that 
location. He  describes it as a probability surface, but it is actually a density surface. Since 
the probability of interaction between any one grid cell, i, and any one incident, j, cannot be 
greater than 1, the surface actually indicates the product of individual likelihoods that the 
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offender uses that location as the home base. To be a n  actual probability function, it would 
have to be re-scaled so that the sum ofthe grid cells was equal to 1. 

The second function - ‘outside the buffer zone’(equati0n 9.14) is a classic gravity 
function, similar to equation 9.5 except there is no attraction definition. It is the distance 
decay part  ofthe gravity function. The first function, equation 9.13, is an increasing 
curvilinear function designed to model the area of decreased activity near the offender’s 
h om e bas e. 

Strengths  and weaknesses  o f t h e  

The Rossmo model has both strengths and weaknesses. First, the model has some 
theoretical basis utilizing the Brantingham and Brantingham (1981) fi-amework for an 
offender search area a s  well as the mathematics of the gravity model and distinguishes two 
types of travel behavior - near to home and farther from home. Second, the model does 
represent a systematic approach towards identifying a likely home base location for an 
offender. By evaluating each grid cell in the study area, an independent estimate of the 
likelihood is obtained, which can then be integrated into a continuous surface with an  
interpolation graphics routine. 

There are problems with the particular formulation, however. First, the exclusive 
use of Manhattan distances is questionable. Unlcss the study area has a street network 
that follows a uniform grid, measuring distances horizontally and vertically can lead to  
overestimation of travel distances; further, the more the layout differs fi-om a north-south 
and east-west orientation, the greater the distortion. Since many urban areas do not have 
a uniform grid street layout, the method will necessarily lead to overestimation of travel 
distances in places where there are diagonal or irregular streets.’ 

Second, the use ofa product term, II, complicates the mathematics. That is, the 
technique evaluates the distance fi-om a particular grid cell, i, to a particular incident 
location, j. It then muZtipZies this result by all other results. The process, if strictly 
applied, would be a compounding of probabilit ies with overestimation of the likelihood for 
grid cells close to incident locations and underestimation ofthe likelihood for grid cells 
farther away. In the description of the method, however, Rossmo actually mentions 
summing the terms. Thus, the substitution of a summation sign, E, for the product sign 
would help the mathematics. 

A third problem is in the distance decay function (equation 9.16). The use of an 
inverse distance term has problems a s  the distance between the grid cell location, i, and 
the incident location, j, decreases. For some types ofcrimes, there will be little or no buffer 
zone around the offender’s home base (e.g., rapes by acquaintances). Consequently, the 
buffer zone radius, B, would approach 0. However, this would cause the model t o  become 
unstable since the inverse distance term will approach infinity. 

Fourth, the use of a mathematical function to describe the distance decay, while 
easy to  define, probably oversimplifies actual travel behavior. A mathematical function to 
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describe distance decay is an approximation to actual travel behavior. It assumes that 
travel is equally iikely in each direction, that travel distance is uniformly easy (or difficult) 
in each direction, and that, similarly, opportunities are uniformly distributed. For most 
urban areas, these conditions would not be true. Few cities form a perfect grid (Salt Lake 
City is, of course, an  exception), though most cities have sections that are grided. Both 
physical geography limit travel in certain directions as does the historical street structure, 
which is often derived from earlier communities. A mathematical function does not 
consider this structure, but rather assumes that the Zmpedance’in al l  directions is 
uniform. 

This latter criticism, of course, would be true for all mathematical formulations of 
travel distance. There are corrections that can be made to adjust for this. For example, in 
the urban transportation planning system model, trip distribution between locations is 
estimated by a gravity model, but then the distributed trips are constrained by, first, the 
total number oftrips in the region (estimated separately), second, by mode oftravel (bus v. 
single driver v. drivers plus passengers v. walk, etc.), and, third, by the route structure 
upon which the trips are eventually assigned (Krueckeberg and Silvers, 1974; Stopher and 
Meyburg, 1975; Field and MacGregor, 1987). Calibration at  all stages against known data 
sets ensures that the coefficients and exponents fit kea1 world’data as  closely as possible. 
It would take these types of modifications to make the travel distribution type of model 
postulated by Rossmo and others be more realistic. 

Fifth, the model imposes mathematical rigidity on the data. While there are  two 
different functions that could vary from place to place, the particular type of distance decay 
function might also vary. Specifying a strict form for the two equations limits the 
flexibility of applying the model t o  different types of crime or to places where the distance 
decay does not follow the form specified by Rossmo. 

A final problem is that opportunities for committing crimes - t h e  attractivcncss of 
locations, are never measured. That is, there is no enumeration of the opportunities that 
would exist for an  offender nor is there an attempt tomeasure the strength of this 
attraction. Instead, the search area is inferred strictly from the distribution of incidents. 
Because the distribution of offender opportunities would be expected to vary from place to 
place, the model would need to  be re-calibrated at each location. In this sense, both the 
Canter model and my journey to  crime model (both described below) also share this 
weakness. It is understandable in that victimitarget opportunities are  diEcult t o  definc a 
priori since they can be interpreted differently by individuals. Nevertheless, a more 
complete theory ofjourney to  crime behavior would have to incorporate some measure of 
opportunities, a point that  both Brantingham and Brantingham (1981) and Rengert (1981) 
have made. 

(Canter Model 

Canter’s group in Liverpool (Canter and Tagg, 1975; Canter and Larkin, 1993; 
Canter and Snook, 1999; Canter, Coffey and Huntley, 2000) have modified the distance 
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decay function for journey to  crime trips by using a negative exponential term, instead of 
the inverse distance. Their Dragnet program uses the negative exponential function 

where Y is the likelihood of an offender traveling a certain distance to commit a crime,, D,, 
is the distance (from a home base location to  an incident site), CI is a n  arbitrary constant, p 
is the coefficient of the distance (and, hence, an exponent of e), P is a normalization 
constant, and e is the base of the natural logarithm. The model is similar to equation 9.1 1 
except, like Rossmo, it does not include the attractiveness of the location. 

Using the logic that most crimes are committed near the offender’s home base, 
Canter, Coffey and Huntley (2000) use a five step process to  estimate a search strategy: 

1. The study area is defied by a rectangle that is 20% larger in area than that 
defined by the minimum and maximum xpr’ points. A grid cell structure of 
13,300 cells is imposed over the rectangle. Each grid cell is a reference 
location, i. 

2. A decay coefficient is selected. In equation 9.19, this would be the coefficient, 
0, for the distance term, Dii, both of which are exponents of e. Unlike 
Rossmo, Canter uses a series ofdecay coefficients from 0.1 to 10 to estimate 
the sensitivity of the model. The equation indicates the likelihood with which 
any location is likely to be the home base of the offender based on one 
incident. 

3. Because different offenders have different search areas, the measured 
distances for each cell a re  divided by a normalization coefficient, P, that 
adjusts all  offenses to  a comparable range. Canter uses two different types 
of normalization function: 1) mean inter-point distance between all offenses 
(across a group of offenders); and 2) the QRange, which is an index that 
takes into account asymmetry in the orientation ofthe incidents. 

4. For each reference cell, i, the distance between each grid cell and each 
incident location is evaluated with the function and the standardized 
likelihoods are summed to  yield an  estimate of location potential. 

5 ,  A search cost index is defined by the proportion of the study area that has to  
be searched to find the offender. By calibrating the model against known 
cases, an estimate of search efficiency is obtained. 

Additional modifications can be added to the functions to make them more flexible 
(Canter, Coffey and Huntley, 2000). For example, ‘steps’are distances near to home where 
offenders are not likely to  act while ’plateaus’are constant distances near to home where 
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there is the highest likelihood of acting. For example, Canter and Larkin (1993) found an 
area around serial offenders'homes ofabout 0.61 mile in radius within which they were 
less likely to commit crimes. 

Canter and Snook (1999) provide estimates of the search cost (or efficiency) 
associated with various distance coefficients. For example, with the known home base 
locations of 32 burglars, a p of 1.0 yielded a mean search cost of 18.06%; that is, on average, 
only 18.06% of the study area had to  be searched to find the location of32 burglars in the 
calibration sample. Clearly, for some of them, a larger area had to be searched while for 
others a smaller area; the average was 18.06%. Conversely, the mean search cost index for 
24 rapists was 21.10% and for 37 murderers 28.28%. They further explored the marginal 
increase in locating offenders by increasing the percentage of the  study area that had to be 
searched. They found for their three samples (burglary, rape, homicide) that more than 
half the offenders could be located within 15% of the area searched. 

The Canter model is different from the Rossmo model is that it suggests a search 
strategy by the police for a serial offender rather than a particular location. The strength 
of it is to indicate how narrow an area the police should concentrate on in order to optimize 
finding an offender. Clearly, in most cases, only a small area needs bc searched. 

Sbrengtks aiad wesknesses o f t h e  Canter  model 

The model has both strengths and weaknesses. First, the model provides a search 
strategy for law enforcement. By examining what type offunction best fits a certain type 
of crime, police can target their search efforts more efficiently. The model is relatively easy 
to implement and is practical. Second, the mathematical formulation is stable. Unlike the 
inverse distance function in the Rossrno model, equation 9.19 will not have problems 
associated with distances that are close to 0. Further, the model does provide a search 
strategy for identifying an offender. It is a useful tool for law enforcement officers, 
particularly as they kame a search for a serial offender. 

There are also weaknesses to the model. First, it lacks a theoretical basis. Canter's 
research has provided a great deal in terms of understanding the activity spaces of serial 
offenders (Canter and Larkin, 1993; Canter and Gregory, 1994; Canter, 1994; Hodge and 
Canter, 2000). However, the empirical model used is strictly pragmatic. Second, 
mathematically, it imposes the negative exponential function without considering other 
distance decay models. 
numbers so that, in theory, any function can be explored. However, the default is a 
negative exponential. The negative exponential has been used in many travel behavior 
studies (Foot, 1981; Bossard, 1993), but it does not always produce the best fit. Later on, 
IT1 show examples of trave1 behavior which show a distinctly non-monotonic function, even 
beyond a home base 'buffer zone'. While the model can be adapted to be more flexible by 
different exponents and including steps and plateaus, for example, it is still tied to the 
negative exponential form. Thus, the model might work in some locations, but may fail in 
others; a user can't easily adjust the model to make it fit new data. 

In the Dragnet program, the decay function is a string of 20 
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Third, the coefficient of the negative exponential, a, is defined arbitrarily. In the 
Dragnet program, it is usually set as 0.5. While this ensures that the result never exceed 
1.0 for any one incident, there is a limit on the location potential summation since the total 
potential is a function of the number ofincidents (i.e., it will be higher for more incidents). 
Thus, the use of a ends up being arbitrary. It would have been better if the coefficient were 
calibrated against a known sample. 

Fourth, and finally, also similar to the Rossmo model (and to  my J tc model below), 
criminal opportunities (or attractions) are never measured, but are inferred &om the 
pattern of crime incidents. As a pragmatic tool for informing a police search, one could 
argue that this is not important. However, in a different location, the distance coefficient 
is liable to differ as is the search cost index. It would need to be re-calibrated each time. 

Nevertheless, the Canter model is a useful tool for police department and can help 
shape a search strategy. I t  is different from the other location models in that it is not 
focused so much on the best prediction for a location of an offender (though the summation 
discussed above in step 4 can yield that) as it does in defining where the search should be 
optimized , 

Ge o gr a ph ie P ro fi li ng 

Journey to  crime estimation should be distinguished from geographical profiiling. 
Geographical profiling involves understanding the geographical search pattern of criminals 
in relation to  the spatial distribution of potential offenders and potential targets, the 
awareness spaces of potential offenders including the labeling of ’good’ targets and crime 
areas, and the interchange of information between potential offenders who may modify 
their awareness space (Brantingham and Brantingham, 1981). According t o  Rossmo: 

“...Geographic profiling focuses on the probable spatial behaviour of the offender 
within the context of the locations of, and the spatial relationships between, the 
various crime sites. A psychological profile provides insights into an offender’s 
likely motivation, behaviour and lifestyle, and is therefore directly connected to 
hislher spatial activity. Psychological and geographic profiles thus act in tandem to 
help investigators develop a picture of the person responsible for the crimes in 
quest ion” (Ross m 0, 1 997). 

In other words, geographic profiling is a framcwork for understanding how an 
offender traverses an area in searching for victims or targets; this, of necessity, involves 
understanding the social environment of an area, the way that the offender understands 
this environment (the ‘cognitive map’) as well as the offender’s motives. 

On the other hand, journey to crime estimation follows a much simpler logic 
involving the distance dimension of the spatial patterning of a criminal. It is a method 
aimed a t  estimating the distance that serial offenders will travel to  commit a crime and, by 
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implication, the likely location from which they started their crime "trip'. In short, it is a 
strictly statistical approach to  estimating the residential whereabouts of an offender 
compared to understanding the dynamics of serial offenders. 

It remains an empirical question whether a conceptual framework, such as 
geographic profiling, can predict better than a strictly statistical framework. 
Understanding of a phenomena, such as  serial murders, serial rapists, and so forth, is an 
important research area. We seek more than just statistical prediction in building a 
knowledge base. However, it doesn't necessarily follow that understanding produces better 
predictions. In many areas of human activity, strictly statistical models are better in 
predicting than explanatory models. I will return to this point later in the section. 

The journey to crime (Jtc) routine is a diagnostic designed to aid police departments 
in their investigations of serial offenders. The aim is to estimate the likelihood that a 
serial offender lives at any particular location. Using the location of incidents committed 
by the serial offender, the program makes statistical guesses a t  where the offender is liable 
to live, based on the similarity in travel patterns to a known sample of serial offenders for 
the same type of crime. The Jtc  routine builds on the Rossmo (1993a; 1993b; 1995) 
framework, but extends its modeling capability. 

1. Agrid is overlaid on top ofthe study area. This grid can be either imported 
or can be generated by Crimestat (see chapter 2). The grid represents the 
entire study area. Unlike Rossmo or Canter and Snook, there is no optimal 
study area. The technique will model that which is defined. Thus, the user 
has t o  select an area intelligently. 

2. The routine calculates the distance between each incident location 
committed by a serial offender (or group of offenders working together) and 
each cell, defined by the centroid of the cell. Rossmo (1993a; 1995) used 
indirect (Manhattan) distances. However, this would be appropriate only 
when a city falls on a uniform grid. The J tc  routine allows both direct and 
indirect distances. In most cases, direct distances would be the most 
appropriate choice as  a police department would normally locate origin and 
destination locations rather than particular routes that are taken (see 
be low). 

3. A distance decay function is applied to each grid cell-incident pair and sums 
the values over all incidents. The user has a choice whether to model the 
travel distance by a mathematical function or an empirically-derived 
function. 

4. The resultant ofthe distance decay function for each grid cell-incident pair 
are summed over all incidents to produce a likelihood (or density) estimate 
for each grid cell. 
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5 .  In both cases, the program outputs the two results: 1) the grid cell which has 
the peak likelihood estimate; and 2 )  the likelihood estimate for every cell. 
The latter output can be saved as a Surfer@ for Windows ‘dat’, ArcView 
Spatial AnaZyst” ‘asc’, ASCII ‘grd’, Arcview’ ‘shp’, MapInfo@ ‘.mif , 
Atlas*GIS” ‘.bna’file or as  a n  Ascii grid ‘grd’ file which can be read by many 
CIS packages (e.g., ARC/INFO@, Vertical Mapper”). These files can also be 
read by other GIS packages (e.g., Maptitude). 

Figure 9.1 shows the logic of the routine and figure 9.2 shows the Journey to Crime 
(Jtc) screen. There are two parts to the routine. First, there is a calibration model which is 
used in the empirically-derived distance function. Second, there is the Journey to Crime 
(Jtc) model itself in which the user can select either the already-calibrated distance 
function or the mathematical function. The empirically-derived function is, by far, the 
easiest to use and is, consequently, the defau1.t choice in CrimeStat. The discussion ofit is 
on p. 35. However, the mathematical function can be used if there is inadequate data to 
construct an  empirical distance decay function or if a particular form is desired. 

We41 start  by illustrating the use of the mathematical functions because this has 
been the traditional way that distance decay has been examined. The CrimeStat Jtc 
routine allows the user to define distance decay by a mathematical function. 

The user selects one of five probability density distributions to define a likelihood 
that the offender has traveled a particular distance to commit a crime. The advantage of 
having five functions, as  opposed to only one, is that  it provides more flexibility in 
describing travel behavior. The travel distance distribution followed will vary by crime 
type, time of day, method of operation, and numerous other variables. The five functions 
allow an approach that can simulate more accurately travel behavior under different 
conditions. Each ofthese has parameters that  can be modified, allowing a very large 
number of possibilities for describing travel behavior of a criminal. 

Figure 9.3 illustrates the five types.2 Briefly, they are: 

Linea Y 

The simplest type of distance model is a linear function. This model postulates that 
the likelihood of committing a crime at  any particular location declines by a constant 
amount with distance from the offender’s home. It is highest near the offender’s home but 
drops off by a constant amount for each unit of distance until it falls to zero. The form of 
the linear equation is 

f(dij) = A +B *d, (9.20) 
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Figure 9.1: t nter 
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In this chapter, we discuss tools aimed at interpolating incidents, using the kernel 
density approach. Interpolation is a technique for generalizing incident locations to an 
entire area. Whereas the spatial distribution and hot spot statistics providc statistical 
summaries for the data incidents themselves, interpolation techniques generalize those 
data incidents to the entire region. In particular, they provide density estimates for all 
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z- 
value, that is estimated at  a particular location. Consequently, it can be displayed by 
either surface maps or contour maps that show the intensity at all locations. 

There are many interpolation techniques, such as Kriging, trend surfaces, local 
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; 
Cleveland, Grosse and Shyu, 1993; Venables and Riplcy, 1997). Most of these require a 
variable that  is being estimated as  a function oflocation. However, kernel density 
estimation is an interpolation technique that is appropriate for individual point locations 
(Silverman, 1986; Hardle, 1991; Bailey and Catrell, 1995; Burt and Barber, 1996; Bowman 
and Azalini, 1997). 

Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical 
function, and summing the value of all the surfaces for that reference location. This 
procedure is repeated for all reference locations. It is a technique that was developed in 
the late 1950s as an  alternative method for estimating the density ofa  histogram 
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of 
a frequency distribution. A continuous variable is divided into intervals of size, s (the 
interval OF bin width), and the number of cases in each interval (bin) are counted and 
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying 
distribution (a density function). However, in order to estimate a smooth density function 
from the histogram, traditionally researchers have linked adjacent variable intervals by 
connecting the midpoints of the intervals with a series oflines (Figure 8.1). 

Unfortunately, doing this causes three statistical problems (Bowman and Azalini, 
1997): 

1. Information is discarded because all cases within an interval arc  assigned to 
the midpoint. The wider the interval, the greater the information loss. 

2. The technique ofconnecting the midpoints leads to a discontinuous and not 
smooth density function even though the underlying density hnction is 
assumed to be smooth. To compensate for this, researchers will reduce the 
width ofthe interval. Thus, the density function becomes smoother with 
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where f(dJ is the likelihood that the offender will commit a crime at a particular location, 
i ,  defined here as  the center of a grid cell, d ,  is the distance between the offender’s 
residence and location i ,  A is a slope coefficient which defines the fall off in distance, and B 
is a constant. It would be expected that the coefficient B would have a negative sign since 
the likelihood should decline with distance. The user must provide values for A and B .  
The default for A is 10 and for B is -1. This function assumes no buffer zone around the 
offender’s residence. When the function reaches 0 (the X axis), the routine automatically 
substitutes a 0 for the function. 

Neg a t ive Exp on en t ia 

A slightly more complex function is the negative exponential. In this type of model, 
the likelihood is also highest near the offenders home and drops off with distance. 
However, the decline is at  a constant rate of decline, thus dropping quickly near the 
Offender’s home until is approaches zero likelihood. The mathematical form of the negative 
exponential is 

f(dij) = 
-B”d,, 

A*e (9.2 1) 

where f(dJ is the likelihood that the offender will commit a crime at a particular location, i, 
defined here as the center ofa  grid cell, d,, is the distance between each reference location 
and each crime location, e is the base of the natural logarithm, A is the coefficient and B is 
an exponent of e. The user inputs values for A - the coefficient, and B - the exponent. The 
default for A is 10 and for B is 1. This function is similar to the Canter model (equation 
9.19) except that the coefficient is calibrated. Also, like the linear function, it assumes no 
buffer zone around the offender’s residence. 

N o r m a l  

A normal distribution assumes the peak likelihood is at some optimal distance from 
the offender’s home base. Thus, the function rises to that distance and then declines. The 
rate of increase prior to the optimal distance and the rate of decrease from that distance is 
symmetrical in both directions. The mathematical form is: 

(9.23) 

where f(d,,) is the likelihood that the offender will commit a crime at  a particular location, i 
(defined here as  the center o fa  grid cell), d,, is the distance between each reference location 
and each crime location, MeanD is the mean distance input by the user, S ,  is the standard 
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deviation ofdistances, e is the base of the natural logarithm, and A is a coefficient. The 
user inputs values for MeanD, S,, and A. The default values are 1 for each of these 
par am eters. 

By carefully scaling the parameters of the model, the normal distribution can be 
adapted to a distance decay function with an increasing likelihood for near distances and a 
decreasing likelihood for far distances. For example, by choosing a standard deviation 
greater than the mean (e.g., MeanD = 1,S, = 2), the distribution will be skewed to the left 
because the left tail of the normal distribution is not evaluated. The function becomes 
similar t o  the model postulated by Brantingham and Brantingham (1981) in that it is a 
single function which describes travel behavior.. 

The lognormal function is similar to the normal except it is more skewed, either to 
the left or to the right. It has the potential of showing a very rapid increase near the 
offender's home base with a more gradual decline from a location ofpeak likelihood (see 
Figure 9.3). It is also similar to the Brantingham and Brantingham (1981) model. The 
mathematical form of the function is: 

1 -[ ln(dliJ) - MeanD l2 / 2 *sd2 
e (9.24) 

where f(d,,) is the likelihood that the offender will commit a crime at  a particular location, i, 
defined here a s  the center of a grid cell, d,, is the distance between each reference location 
and each crime location, MeanD is the mean distance input by the user, S, is the standard 
deviation of distances, e is the base of the natural logarithm, and A is a coefficient. The 
user inputs MeanD, S, , and A. The default values are 1 for each of these parameters. 

f(dij) = A * _____________________I___ * 
dZiJ * S,* SQRT(2n) 

Truncated Negat ive  Exponential  

The truncated negative exponential is a joined function made up of two distinct 
mathematical functions - the linear and the negative exponential. For the near distance, a 
positive linear function is defined, starting at  zero likelihood for distance 0 and increasing 
to  d,, a location ofpeak likelihood. Thereupon, the function follows a negative exponential, 
declining quickly with distance. The two mathematical functions making up this spline 
function are 

Linear: f(d,) = 0 + B*d,, = B*d, for d, ;L 0, d,ji d, (9.25) 

Negative -G*d, 
Exponential: f(d,,) = A*e for X, > d, 

where d,, is the distance from the home base, B is the slope of the linear function 
(default=+l) and for the negative exponential function A is a coefficient and C is an 
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exponent. Since the negative exponential only starts a t  a particular distance, Maxdi,, A, is 
assumed to  be the intercept i f the  Y-axis were transposed to that distance. 

This function is the closest approximation to the Rossmo model (equations 9.13 and 
9.16). However, it differs in several mathematical properties. First, the ’near home base’ 
function is linear (equation 9.25), rather than a non-linear function (equation 9.13). It 
assumes a simple increase in travel likelihoods by distance from the home base, up to the 
edge of the safety zone.3 Second, the distance decay part ofthe function (equation 9.26) is a 
negative exponential, rather than an inverse distance function (equation 9.13); 
consequently, it is more stable when distances are very close to zero (e.g., for a crimc where 
there is no hear home base’offset). 

Cali b rat ina g an Ap p r o pr ia t e r o ~ a ~ i l i ~ y  Distance ~ ~ ~ c ~ ~ Q ~  

The mathematics are relatively straightforward. However, how does one know 
which distance function to use? The answer is to  get some data and Calibrate it. It is 
important to obtain data from a sample ofknown offenders where both their residence at  
the time they committed crimes as well as the crime locations are  known. This is called 
the calibration data set. Each of the models are then tested against the calibration data 
set using an approach similar to that explained below. An error analysis is conducted to 
determinc which of the models best fits the data. Finally, the ‘best fit’model is used to 
estimate the likelihood that a particular serial offender lives at  any one location. Though 
the process is tedious, once the parameters are calculated they can be used repeatedly for 
predict ions. 

Because every jurisdiction is unique in terms of travel patterns, it is important to 
calibrate the parameters for the particular jurisdiction. While there may be some 
sim ilar it ies bet ween cities (e.g. , E a st ern “centralized” cities v. West ern “automobile” cities), 
there are always unique travel patterns defined by the population size, historical road 
pattern, and physical geography. Consequently, it is necessary to calibrate the parameters 
anew for each new city. Ideally, the sample should be a large enough so that a reliable 
estimate of the parameters can be obtained. Further, the analyst should check the errors 
in each of the models to ensure that the best choice is used for the Jtc routine. However, 
once it has been completed, the parameters can be re-used for many years and only 
periodically re-checked. 

Data Se t  from altirnsre County 

I’ll illustrate with data .from Baltimore County. The steps in calibrating the Jtc  
parameters were as follows: 

1 .  49,083 matched arrest and incident records from 1992 through 1997 were 
obtained in order to provide data on where the offender lived in relation to 
the crime location for which they were a r r e ~ t e d . ~  
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2. The data set was checked to ensure that there were X and Y coordinates for 
both the arrested  individual,^ residence location and the crime incident 
location for which the individual was being charged. The data were cleaned 
to eliminate duplicate records or entries for which either the offender’s 
residence or the incident location were missing. The final data set had 
41,424 records. There were many multiple records for the same offender 
since an individual can commit more than one crime. In fact, more than half 
the records involved individuals who were listed two or more times. The 
distribution of offenders by the number of offenses for which they were 
charged is seen in Table 9.1. As would be expected, a small proportion of 
individuals account for a sizeable proportion of crimes; approximately 30% of 
the offenders in the database accounted for 56% of the incidents. 

3. The data were imported into a spreadsheet, but a database program could 
equally have been used. For each record, the direct distance between the 
arrested individual’s residence and the crime incident location was 
calculated. Chapter 2 presented the formulas for calculating direct 
distances between two locations and are  repeated in endnote 5.’ 

4. The records were sorted into sub-groups based on different types of crimes. 
For the Baltimore County example, eleven categories of crime incident were 
used. Table 9.2 presents the categories with their respective sample sizes. 
Of course, other sub-groups could have been identified. Each sub-group was 
saved as  a separate file. The same records can be part ofmultiple files (e.g., 
a record could be included in the ‘all robberies’ file as  well as  in the 
‘commercial robberies’ file). All records were included in the ‘all crimes’ file. 

5. For each type of crime, the file was grouped into distance intervals of 0.25 
miles each. This involved two steps. First, the distance between the 
offender’s residence and the crime location was sorted in ascending order. 
Second, a frequency distribution was conducted on the distances and grouped 
into 0.25 mile intervals (often called bins). The degree ofprecision in 
distance would depend on the size of the data set. For 41,426 records, 
quarter mile bins were appropriate. 

6 .  For each type of crime, a new file was created which included only the 
frequency distribution of the distances broken down into quarter mile 
distance intervals, d,. 

7 .  In order to  compare different types of crimes, which will have different 
frequency distributions, two new variables were created. First, the 
frequency in the interval was converted into the percentage of all crimes of in 
each interval by dividing the frequency by the total number ofincidents, N ,  
and multiplying by 100. Second, the distance interval was adjusted. Since 
the interval is a range with a starting distance and an  ending distance but 
has been identified by spreadsheet program as  the beginning distance only, a 
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Table 9.2 

Number of 
0 ffe IP s e s 

1 
2 
3 
4 
5 
6-10 
11-15 
16-20 
2 1-25 
26-30 
30+ 

~ ~ m b e r  of 

18,174 
4,443 
1,65 1 

764 
388 
482 

61 
10 

0 
1 

Percent of 
ffe n de rs 
70.0% 
17.1% 
6.4% 
2.9% 
1.5% 
1.9% 
0.2% 

<O.O% 
4 . 0 %  
<0.0% 
<0.0% 

~ u ~ b e r  of 

18,174 
8,886 
4,953 
3,056 
1,940 
3,383 

757 
175 
67 

0 
33 

43.9% 

12.0% 
7.4% 
4.7% 
8.2% 
1.8% 
0.4% 
0.2% 
0.0% 

4 . 0 %  

2 1.5% 

25,977 4 1,424 

le 9.2 

Crime T v ~ e  
All crimes 
Homicide 
Rape 
Assault 
Robbery (all) 
Commercial robbery 
Bank robbery 
Burglary 
Motor vehicle theft 
Larceny 
Arson 

Sample Size 
41,426 

137 
444 

8,045 
3,787 
1,193 

176 
4,694 
2,548 

19,806 
338 
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small fraction, representing the midpoint of the interval, is added to  the 
distance interval. In our case, since each interval is 0.25 miles wide, the 
adjustment is half of this, 0.125. Each new file, therefore, had four variables: 
the interval distance, the adjusted interval distance, the frequency of 
incidents within the interval (the number of cases falling into the interval), 
and the percentage ofall crimes ofthat type within the interval. 

8. Using a general statistical program, a series of regression equations was set 
up t o  model the frequency {or the percentage) as a function ofdistance. In 
this case, I used Systat (Systat, Inc, 19941, but other statistical packages 
could equally have been used. Again, because comparisons between different 
types ofcrimes were of interest, the percentage ofcrimes (by type) within an 
interval was used as the dependent variable (and was defined as a 
percentage, is . ,  11.51% was recorded as 11.51), Five equations testing each 
of the five models were set up. 

Linear  

For the linear function, the test was 

Pct, = A f Bd, (9.27) 

where Pct, is the percentage of all crimes of that type falling into interval i, di 
is the distance for interval i ,  A is the intercept, and B is the slope. A and B 
are  estimated directly from the regression equation. 

Negat ive  Exponent i a I 

For the negative exponential function, the variables have to be transformed 
to estimate the parameters. Thc function is 

-B"d, 
Peti = A * e (9.28) 

A new variable is defined which is the natural logarithm of the percentage of 
all crimes of that  type falling into the interval, EnrPctt). This term was then 
regressed against the distance interval, di. 

Ln(Pct,) = K - B*d, 

However, since the original equation has been transformed into a log 
function, B is the coefficient and A can be calculated directly from 

ln(Pcti) = ln(A) - B*d, 

A = e  K 
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If the percentage in any bin was 0 (Le., Pct, = 0), then a value of -16 was 
taken since the natural logarithm of 0 cannot be solved (it approximates -16 
as  the percentage approaches 0 .OOOOOOl) .  

For the normal function, a more complex transformation must be used. The 
normal function in the model is 

1 -0.5 *Zij2 
e pet, = A * -l_----___----- ___- -_-_ * 

Sd5 SQRT(2x) 

First, a standardized Z variable for the distance, di, is created 

(9.32) 

(9.33) 

where MeanD is the mean distance and S ,  is the standard deviation of 
distance. These are  calculated from the original data file (before creating the 
file of frequency distributions). Second, a normal transformation of 2 is 
con st ruct ed with 

(9.34) 

Finally, the normalized variable is regressed against the percentage of all 
crimes ofthat type falling into the interval, Pcti with no constant 

Pct, = A* Normal(Zi) (9.35) 

A is estimated by the regression coefficient. 

E og n or m a I 

For the lognormal function, another complex transformation must be done. 
The lognormal function for the percentage of all crimes of a type for a 
particular distance interval is 

1 -[ln(d?,) - MeanD ]'/ 2 *Sd2 
(9.36) A *  ____-_______________________ * e Pct, = 

d2, * S,* SQRT(2n) 

The transformation can be created in steps. First, create L 

L = ln(d:) (9.37) 
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Second, create M 

M = (1 - MeanD)2 

Third, create 0 

Fourth, create P by raising e to the Oth power. 

0 P = e  

Fifth, create the lognormal conversion, Lnormal 

(9.38) 

(9.39) 

(9.40) 

(9.41) 

Finally, the lognormal variable is regressed against the percentage of all 
crimes of that type falling into the interval, Pct, with no constant 

Peti 2 A* Enormal(d,) (9.42) 

A is estimated with the regression coefficient. 

Truncated Negat ive  Exponential  

For the truncated negative exponential function, two models were set up. 
The fust applied to the distance range from 0 to  the distance at which the 
percentage (or frequency) is highest, Maxd,. The second applied to all 
distances greater than this distance 

Linear: Peti = A + Bd, for d, 2 0, d j i  Maxd, 

Negative -C*di 
Exponential: Pct, = A*e for dj> Maxdjj 

(9.43) 

(9.44) 

To use this fbnction, the user specifies the distance a t  which the peak 
likelihood occurs, d, (the peak distance) and the value for that peak 
likelihood, P (the peak likelihood). For the negative exponential function, the 
user specifies the exponent, C. 
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In order to splice the two equations together (the spline), the CrimeStat 
truncated negative exponential routine starts the linear equation at  the 
origin and ends it at  the highest vafue. Thus, 

A = O  (9.45) 

B = P/d, (9.46) 

where P is the peak likelihood and d, is the peak distance. 

The exponent, C, can be estimated by transforming the dependent variable, 
Pct,, as  in the negative exponential above (equation 9.28) and regressing the 
natural log of the percentage (ln(Pct,) against the distance interval, d,, only 
for those intervals that are greater than the peak distance. I have found that 
estimating the transformed equation with a coefficient, A in 

-C”di 
Pcti = A * e (9.47) 

In(Pct,) = Ln(A) - C*di (9.48) 

gives a better fit to the equation. However, the user need only input the 
exponent, C, in the J tc routine as the coefficient, A, ofthe negative 
exponential is calculated internally to produce a distance value at  which the 
peak likelihood occurs. The formula is: 

In(P) + C*(d, - di) 
A = e  (9.49) 

where P is the peak likelihood, d, is the distance for the peak likelihood, C is 
an exponent (assumed to be positive) and d i  is the distance interval for the 
histogram. 

9. Once the parameters for the five models have been estimated, they can be 
compared to see which one is best at  predicting the travel behavior for a 
particular type of crime. It is to be expected that different types of crimes 
will have different optimal models and that the parameters will also vary. 

Examples from  more County 

Let’s illustrate with the Baltimore County data. Figure 9.4 shows the frequency 
distribution for all types of crime in Baltimore County. As can be seen, at the nearest 
distance interval (0 to 0.25 miles with an assigned ‘adjusted’midpoint of 0.125 miles), 
about 6.9% of all crimes occur within a quarter mile of the offender’s residence (it can be 
seen on the Y-axis). However, for the next interval (0.25 to 0.50 miles with an assigned 
midpoint of 0.375 miles), almost 10% of all crimes occur a t  that distance (9.8%). In 
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subsequent intervals, however, the percentage decreases, a little less than 6% for 0.50 to 
0.75 miles (with the midpoint being 0.625 miles), a little more than 4% for 0.75 to 1 mile 
(the midpoint is 0.875 miles), and so forth. 

The best fitting statistical function was the negative exponential. The particular 
equation is 

-0.229 "d, 
Pet,= 5.575 "e (9.50) 

This is shown with the solid line. As can be seen, the fit is good for most of the distances, 
though it underestimates at close to zero distance and overestimates from about a half mile 
to  about four miles. There is only slight evidence of decreased activity near to the location 
of the offender. 

However, the distribution varies by type of crime. With the Baltimore County data, 
property crimes, in general, occur farther away than personal crimes. The truncated 
negative exponential generally fit property crimes better, lending support for the 
Brantingham and Brantingham (1981) framework for these types. For example, larceny 
offenders have a definite safety zone around their residence (figure 9.5). Fewer than 2% of 
larceny thefts occur within a quarter mile of the offender's residence. However, the 
percentage jumps to about 4.5% from a quarter mile to a half. The truncated negative 
exponential function fits the data reasonably well though it overestimates .from about 1 to  
3 miles and underestimates &om about 4 to1 2 miles. 

Similarly, motor vehicle thefts show dccrcased activity near the offender's resident, 
though it is less pronounced than larceny theft. Figure 9.6 shows the distribution ofmotor 
vehicle thefts and the truncated negativc exponential function which was fit to the data. 
As can be seen, the fit is reasonably good though it tends to underestimate middle range 
distances (approximately 3-12 miles). 

Some types of crime, on the other hand, are very difficult to fit. Figure 9.7 shows 
the distribution of bank robberies. Partly becausc there were a limited number of cases 
(N=l76) and partly because it's a complex pattcrn,.the truncated negative exponential gave 
the best fit, but not a particularly good one. As can be seen, the linear ('near home? 
function underestimates some of the near distance likelihoods while the negative 
exponential drops off too quickly; in fact, to make this function even plausible, the 
regression was run only up to  21 miles (otherwise, it underestimated even more). 

For some crimes, it was very difficult to fit any single function. Figure 9.8 shows 
the frequency distribution of 137 homicides with three functions being fitted to the data - 
the truncated negative exponential, the lognormal, and the normal. As can be seen each 
function fits only some of the data, but not all of it. 
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nal Errors in the el  

In short, the five mathematical functions allow a user to fit a variety of distance 
decay distributions. Each ofthe models will predict some parts of the distribution better 
than others. Consequently, it is important to conduct an error analysis to  determine which 
model is best’. In an error analysis, the residual error is defined as 

Residual error = Vi - E(Yl) (9.5 1) 

where ‘d, is the observed (actual) likelihood for distance i and E(Yl) is the likelihood 
predicted by the model. If raw numbers of incidents are used, then the likelihoods a re  the 
number of incidents for a particular distance. If the number of incidents a re  converted into 
proportions (Le., probabilities), then the likelihoods are the proportions of incidents for a 
particular distance. 

The choice of ‘best model’will depend on what part of the distribution is considered 
most important. Figure 9.9, for example, shows the residual errors on vehicle theft for the 
five fitted models. That is, each of the five models was fit to the proportion of vehicle thefts 
by distance intervals (as explained above). For each distance, the discrepancy between the 
actual percentage of vehicle thefts in that interval and the predicted percentage was 
calculated. If there was a perfect fit, then thc discrepancy (or residual) was 0%. If the 
actual percentage was greater than the predicted (Le., the model underestimated), then the 
residual was positive; if the actual was smaller than the predicted (Le., the model 
overestimated), then the residual was ncgativc. 

As can be see in figure 9.9, the truncated negative exponential fit the data well from 
0 to about 5 miles, but then became poorer than other models for longer distances. The 
negative exponential model was not as good as the truncated for distances up to about 5 
miles, but was better for distances beyond that point. The normal distribution was good 
for distances fiom about 10 miles and farther. The lognormal was not particularly good for 
any distances other than at  0 miles, nor was the linear. 

The degree of predictability varied by type of crime. For some types, particularly 
property crimes, the fit was reasonably good. I obtained R2 in the order of 0.86 to 0.96 for 
burglary, robbery, assault, larceny, and auto theft. For other types of crime, particularly 
violent crimes, the fit was not very good with R’ values in the order of 0.53 (rape), 0.41 
(arson) and 0.30 (homicide). These R2 values were for the entire distance range; for any 
particular distance, however, the predictability varied from very high t o  very low. 

In modeling distance decay with a mathematical function, a user has to  decide 
which part of the distribution is the most important as  no simple mathematical function 
will normally fit all the data  (even approximately). In these cases, I assumed that the near 
distances were more important (up to, say, 5 miles) and, therefore, selected the model 
which ‘best’fit those distances (see table 9.2). However, it was not always clear which 
model was best, even with that limited criteria. 
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Brent Snook, Paul J. Taylor & Craig Bennell 
Department of Psychology, University of Liverpool 

A challenge for researchers providing investigative support is to use 
information about crime locations to  prioritize geographic areas according to how 
likely they are to contain the offender's residence. One prescient solution to this 
problem uses probability distance fumtions to assign a likelihood value to the 
activity space around each crime location. A research goal is to identify the function 
that assigns the highest likelihood to the offender's actual residence, since this 
should prove more efficient in future investigations. 

CriineStat was used to test of the effectiveness of two functions for a sample 
of 68 German serial murder cases, using a measure known as error distance. The top 
slgures below illustrate the two functions used and the bottom figures portray the 
corresponding effectiveness of the functions by plotting the percentage of the sample 
'located' by error distance. A steeper effectiveness curve indicates that  home 
locations were closer to the point of highest probability and that, consequently, the 
probability distance function was more efficient. In  this particular test, no difference 
was found between the two functions in  their ability to classif$ geographic areas. 
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There are several reasons that mathematical models of distance decay distributions, 
such as illustrated in the Jtcroutine, do not fit data very well. First, as mentioned earlier, 
few cities have a completely symmetrical grid structure or even one that is approximately 
grid-like (there are exceptions, of course). Limitations of physical topography (mountains, 
oceans, rivers, lakes) as well as different historical development patterns makes travel 
asymmetrical around most locations. 

Second, there is population density. Since most metropolitan areas have much 
higher intensity of land use in the center (i.e., more activities and facilities), travel tends to 
be directed towards higher land use intensity than away from them. For origin locations 
that are not directly in the center, travel is more likely to go towards the center than away 
from it. 

This would be true of an offender as well. If the person were looking for either 
persons or property as ’targets’, then the offender would be more likely to travel towards 
the metropolitan center than away from it. Since most metropolitan centers have street 
networks that  were laid out much earlier, the street network tends to be irregular. 
Consequently, trips will vary by location within a metropolitan area. One would expect 
shorter trips by an offender living close to the metropolitan center than one living farther 
away; shortcr trips for offenders living in more built-up areas than in lower density areas; 
shorter trips for offenders in mixed use neighborhoods than in strictly rcsidential 
neighborhoods; and so forth. Thus, the distribution of trips of any sort (in our case, crime 
trips from a residential location to a crime location), will tend to  follow an irregular, 
distance decay type ofdistribution. Simple mathematical models will not fit the data very 
well and will make many errors. 

Third, the selection of a best mathematical function is partly dependent on the 
interval size used for the bins. In the above examples, an interval size of 0.25 miles was 
used to calculate the frequency distribution. With a different interval size (e.g., 0.5 miles), 
however, a slightly different distribution is obtained. This effects the mathematical 
function that is selected as  well as  the parameters that are estimated. For example, the 
issue of whether there is a safety zone near the offender’s residence from which there is 
decreased activity or not is partly dependent on the interval size. With a small interval, 
the zone may be detected whereas with a slightly larger interval the subtle distinction in 
measured distances may be lost. On the other hand, having a smaller interval may lead to 
unreliable estimates since there may be few cases in the interval. Having a technique 
depend on the interval size makes it vulnerable to mis-specification. 

ematical Distance Decay Functions 

Does this mean that one should not use mathematical distance functions? I would 
argue that under most circumstances, a mathematical function will give less precision than 
an empirically-derived one (see below). However, there are two cases when a 
mathematical model would be appropriate. First, if there is either no data or insufficient 
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data to model the empirical travel distribution, the use of a mathematical model can serve 
as an approximation. I f the user has a good sense ofwhat the distribution looks like, then 
a mathematical model may be used to  approximate the distribution. However, if a poorly 
defined function is selected, then the selected function may produce many errors. 

A second case when mathematical models of distance decay would be appropriate is 
in theory development or application. Many models of travel behavior, for example, 
assume a simple distance decay type of fbnction in order simplify the allocation oftrips 
over a region. This is a common procedure in travel demand modeling where trips from 
each af many zones are assigned to every other zone using a gravity type of function 
(Stopher and Meyburg, 1975; Field and MacGregor, 1987). Even though the model 
produces errors because it assumes uniform travel behavior in all directions, the  errors are 
corrected later in the modeling process by adjusting the coefficients for allocating trips to 
particular roads (traffic assignment). The model provides a simple device and the errors 
are corrected down the line. Still, I would argue that an empirically-derived distribution 
will produce fewer errors in allocation and, thus, require less adjustment later on. Errors 
can never help a model and its better to get it more correct initially to have to adjust it 
later on; the adjustment may be inadequate. Nevertheless, this is common practice in 
transport at  ion planning. 

The J o u r n e y  l o  C r i m e  R o u t i n e  Usirag a a t h e m a t i c  a1 F o r m u l a  

The J tc  routine which allows mathematical modeling is simple to use. Figure 9.10 
illustrates how the user specifies a mathematical fimction. The routine requires the use of 
a grid which is defined on the reference file tab of the program (see chapter 3). Then, the 
user must specify the mathematical function and the parameters. In the figure, the 
truncated negative exponential is being defined. The user must input values for the peak 
likelihood, the peak distance, and the exponent (see equations 9.43 and 9.44 above). In the 
figure, since the serial offenses were a series of 18 robberies, the parameters for robbery 
have been entered into the program screen. The peak likelihood was 9.96% (entered as  a 
whole number - Le., 9.96); the distance at which this peak likelihood occurred was the 
second distance interval 0.25-0.50 miles (with a mid-point of 0.38 miles); and the estimated 
exponent was 0.177651. As mentioned above, the coefficient for the negative exponential 
part of the equation is estimated internally. 

Table 9.3 gives the parameters for the best’models which fit the data for the 11 
types of crime in Baltimore County. For several of these (e.g., bank robberies), two or more 
functions gave approximately equally good fits. Note that these parameters were 
estimated with the Baltimore County data. They will not fit any other jurisdiction. If a 
user wishes to apply this logic, then the parameters should be estimated anew from 
existing data. Nevertheless, once they have been calibrated, they can be used for 
predictions. 

The routine can be output toArcView, NapInfo, Atlas *CIS, Surfer for Vindows, 
Spatial Analyst, and as a n  Ascii grid file which can be read by many other GIS packages. 
All but Surfer for Windows require that the reference grid be created by Crimestat. 
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le 9.3 

~1~~~~~~ ~~~~~y 

(Sample Sizes in Parentheses) 

Negative Exponential: Coefficient: 
E xp onen t : 

5.575107 
0.229466 

Truncated 
Negative Exponential: Peak likelihood 14.02% 

Peak distance 0.38 miles 
Exponent 0.064481 

RAPE 

Lognormal: Mean 3.144959 
Standard Deviation 4.546872 
Coefficient 0.062791 

Truncated 
Negative Exponential: Peak likelihood 27.40% 

Peak distance 0.38 miles 
Exponent 0.181 738 

ROBBERY 

Truncated 
Negative Exponential: Peak likelihood 9.96% 

Peak distance 0.38 miles 
E xp men  t 0.17765 1 

Truncated 
Negative Exponential: Peak likelihood 4.9455 % 

Peak distance 0.625 miles 
E xp on en t 0.1513 19 
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Table 9.3 (continued) 

Truncated 
Negative Exponential: 

Truncated 
Negative Exponential: 

AUT EFT 

Truncated 
Negative Exponential: 

Truncated 
Negative Exponential: 

ARSON 

Truncated 
Negative Exponential: 

Peak likelihood 9.96% 
Peak distance 5.75 miles 
Exponent 0.139536 

Peak likelihood 20.55% 
Peak distance 0.38 miles 
Exponent 0.162907 

Peak likelihood 4.81% 
Peak distance 0.63 miles 
E xp on en t 0.212508 

Peak likelihood 4.76% 
Peak distance 0.38 miles 
E xp on en t 0.1930 15 

Peak likelihood 38.99% 
Peak distance 0.38 miles 
E xp orsent 0.093469 
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An alternative to mathematical modeling of distance decay is to empirically describe 
the journey to crime distribution and then use this empirical fanction to estimate the 
residence location. CrirneStat has a two-dimensional kernel density routine that can 
calibrate the distance function ifprovided data on trip origins and destinations. The logic 
of kernel density estimation was described in chapter 8, and won’t be repeated here. 
Essentially, a symmetrical function (the lcernel’) is placed over each point in a distribution. 
The distribution is then referenced relative to a scale (an equally-spaced line for two- 
dimensional kernels and a grid for three-dimensional kernels) and the values for each 
kernel are summed a t  each reference location. See chapter 8 for details. 

G ra li b rat e Ke an el  ensity Function 

The Crimestat calibration routine allows a user to describe the distance distribution 
for a sample ofjourney to crime trips. The requirements are  that: 

1. The data set must have the coordinates ofboth an origin location and a 
destination location; and 

2 .  The records ofall origin and destination locations have been populated with 
legitimate coordinate values (i.e,, no unmatched records are allowed). 

The steps are  relatively easy. First, the user defines a calibration data set with 
both origin and destination locations. Figure 9.1 1 illustrates this process. As with the 
primary and secondary files, the routine reads Arcview ‘shp’, dBase ‘dbf’, Ascii ‘txt’, and 
Maphfo  ‘dat’files. For both the origin location (e.g., the home residence of the offender) 
and the destination location (Le., the crime location), the names ofthe variables for the X 
and Y coordinates must be identified as well as  the type of coordinate system and data unit 
(see chapter 3). In the example, the origin locations has variable names of HorneX and 
Homey and the destination locations has variable names of IncidentX and IncidentY for 
the X and Y coordinates ofthe two locations respectively. However, any name is acceptable 
as long as the two locations are distinguished. 

The program will calculate the distance between the origin location and the 
destination location for each record. If the units are  spherical (i.e., lat/lon), then the 
calculations use spherical geometry; i f the units are projected (either meters or feet), then 
the calculations are Euclidean (see chapter 3 for details). 

Kernel PaPam eters 

Next, the user must define the kernel parameters for calibration. There are  five 
choices that have to be made (Figure 9.12): 
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In this chapter, we discuss tools aimed at interpolating incidents, using the kernel 
density approach. Interpolation is a technique for generalizing incident locations to an 
entire area. Whereas the spatial distribution and hot spot statistics providc statistical 
summaries for the data incidents themselves, interpolation techniques generalize those 
data incidents to the entire region. In particular, they provide density estimates for all 
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z- 
value, that is estimated at  a particular location. Consequently, it can be displayed by 
either surface maps or contour maps that show the intensity at all locations. 

There are many interpolation techniques, such as Kriging, trend surfaces, local 
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; 
Cleveland, Grosse and Shyu, 1993; Venables and Riplcy, 1997). Most of these require a 
variable that  is being estimated as  a function oflocation. However, kernel density 
estimation is an interpolation technique that is appropriate for individual point locations 
(Silverman, 1986; Hardle, 1991; Bailey and Catrell, 1995; Burt and Barber, 1996; Bowman 
and Azalini, 1997). 

Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical 
function, and summing the value of all the surfaces for that reference location. This 
procedure is repeated for all reference locations. It is a technique that was developed in 
the late 1950s as an  alternative method for estimating the density ofa  histogram 
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of 
a frequency distribution. A continuous variable is divided into intervals of size, s (the 
interval OF bin width), and the number of cases in each interval (bin) are counted and 
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying 
distribution (a density function). However, in order to estimate a smooth density function 
from the histogram, traditionally researchers have linked adjacent variable intervals by 
connecting the midpoints of the intervals with a series oflines (Figure 8.1). 

Unfortunately, doing this causes three statistical problems (Bowman and Azalini, 
1997): 

1. Information is discarded because all cases within an interval arc  assigned to 
the midpoint. The wider the interval, the greater the information loss. 

2. The technique ofconnecting the midpoints leads to a discontinuous and not 
smooth density function even though the underlying density hnction is 
assumed to be smooth. To compensate for this, researchers will reduce the 
width ofthe interval. Thus, the density function becomes smoother with 
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In this chapter, we discuss tools aimed at interpolating incidents, using the kernel 
density approach. Interpolation is a technique for generalizing incident locations to an 
entire area. Whereas the spatial distribution and hot spot statistics providc statistical 
summaries for the data incidents themselves, interpolation techniques generalize those 
data incidents to the entire region. In particular, they provide density estimates for all 
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z- 
value, that is estimated at  a particular location. Consequently, it can be displayed by 
either surface maps or contour maps that show the intensity at all locations. 

There are many interpolation techniques, such as Kriging, trend surfaces, local 
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; 
Cleveland, Grosse and Shyu, 1993; Venables and Riplcy, 1997). Most of these require a 
variable that  is being estimated as  a function oflocation. However, kernel density 
estimation is an interpolation technique that is appropriate for individual point locations 
(Silverman, 1986; Hardle, 1991; Bailey and Catrell, 1995; Burt and Barber, 1996; Bowman 
and Azalini, 1997). 

Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical 
function, and summing the value of all the surfaces for that reference location. This 
procedure is repeated for all reference locations. It is a technique that was developed in 
the late 1950s as an  alternative method for estimating the density ofa  histogram 
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of 
a frequency distribution. A continuous variable is divided into intervals of size, s (the 
interval OF bin width), and the number of cases in each interval (bin) are counted and 
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying 
distribution (a density function). However, in order to estimate a smooth density function 
from the histogram, traditionally researchers have linked adjacent variable intervals by 
connecting the midpoints of the intervals with a series oflines (Figure 8.1). 

Unfortunately, doing this causes three statistical problems (Bowman and Azalini, 
1997): 

1. Information is discarded because all cases within an interval arc  assigned to 
the midpoint. The wider the interval, the greater the information loss. 

2. The technique ofconnecting the midpoints leads to a discontinuous and not 
smooth density function even though the underlying density hnction is 
assumed to be smooth. To compensate for this, researchers will reduce the 
width ofthe interval. Thus, the density function becomes smoother with 
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1. The method of interpolation. As with the two-dimensional kernel technique 
described in chapter 8, there are five possible kernel functions: 

A. Normal (the default); 
B. Quartic; 
C. Triangular (conical); 
D. 
E. A uniform (flat) distribution. 

A negative exponential (peaked); and 

2 .  Choice ofbandwidth. The bandwidth is the width of the kernel function. For 
a normal kernel, it is the standard deviation of the normal distribution 
whereas for the other four kernels (quartic, triangular, negative exponential, 
and uniform), it is the radius of the circle defined by the kernel. As with the 
two-dimension kernel technique, the bandwidth can be fixed in length or 
adaptive (variable in length). However, for the one-dimensional kernel, the 
fixed bandwidth is the default since an even estimate over an equal number 
ofintervals (bins) is desirable. I f  the fixed bandwidth is selected, the interval 
size must be specified and the units (in miles, kilometers, feet, meters, and 
nautical miles). The default is 0.25 mile intervals. I f  the adaptive 
bandwidth is selected, the user must identify the minimum sample size that 
the bandwidth should incorporate; in this case, the bandwidth is widened 
until the specified sample size is counted. 

3. The number of interpolation bins. The bins are the intervals along the 
distance scale (fkom Q up t o  the maximum distance for a journey to crime 
trip) and are  used to  estimate the density function. There are  two choices. 
First, the user can specify the number ofintervals (the default choice with 
108 intervals). In this case, the routine calculates the maximum distance (or 
longest trip) between the origin location and the destination location and 
divides it by the specified number of intervals (e.g., 100 equal-sized 
intervals). The interval size is dependent on the longest trip distance 
measured. Second, the user can specify the distance between bins (or the 
interval size). The default choice is Q.25 miles, but another value can be 
entered. In this case, the routine counts out intervals of the specified size 
until it reaches the maximum trip distance. 

4. The output units. The user specifies the units for the density estimate (in 
units per mile, kilometer, feet, meters, and nautical miles). 

5 .  The output calculations. The user specifies whether the output results are  in 
probabilities (the default) or in densities. For probabilities, the sum of all 
kernel estimates will equal 1.0. For densities, the sum of all kernel 
estimates will equal the sample size. 
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Third, the user must define an output file to save the empirically determined 
function. The knction is then used in estimating the likely home residence of a particular 
function. The choices are to save the file as  a ‘dbf or Ascii text file. The saved file then can 
be used in the J tc  routine. Figure 9.13 illustrates the output file format. 

Calibrate 

Fourth, the calibrate button runs the routine. A calibration window appears and 
indicates the progress ofthe calculations. When it is finished, the user can view a graph 
illustrating the estimated distance decay function (Figure 9.14). The purpose is to  provide 
quick diagnostics to the user on the function and selection ofthe kernel parameters. While 
the graph can be printed, it is not a high quality print. If a high quality graph is needed, 
the output calibration file should be imported into a graphics program. 

Examples from 

Let’s illustrate this method by showing the results for the same data sets that were 
calculated above in the mathematical section (figures 9.4-9.8). In  all cases, the normal 
kernel function was used. The bandwidth was 0.25 miles except for the bank robbery data 
set, which had only 176 cases, and the homicide data set, which only had 137 cases; 
because of the small sample sizes, a bandwidth of 0.50 miles was used for these two data 
sets. The interval width selected was a distance of 0.25 miles between bins (0.5 miles for 
bank robberies and homicides) and probabilities were output. 

Figure 9.15 shows the kernel estimate for ail crimes (41,426 trips). A frequency 
distribution was calculated for the same number ofintervals and is overlaid on the graph. 
It was selected to be comparable to the mathematical function (see figure 9.4). Note how 
closely the kernel estimate fits the data compared to the negative exponential 
mathematical function. The fit is good for every value but the peak value; that is because 
the kernel averages several intervals together to produce an estimate. 

Figure 9.16 shows the kernel estimate for larceny thefts. Again, the kernel method 
produces a much closer fit a s  a comparison with figure 9.5 will show. Figure 9.17 shows 
the kernel estimate for vehicle thefts. Figure 9.18 shows the kernel estimate for bank 
robberies and figure 9.19 shows the kernel estimate for homicides. An inspection of these 
graphs shows how well the kernel function fits the data, compared to the mathematical 
function, even when the data are irregularly spaced (in vehicle thefts, bank robberies, and 
homicides). Figure 9.20 compares the distance decay functions for homicides committed 
against strangers compared to homicides committed against known victims. 

In short, the J tc  calibration routine allows a much closer fit to the data than any of 
the simpler mathematical functions. While it’s possible to produce a complex 
mathematical function that will fit the data more closely (e.g., higher order polynomials), 
the kernel method is much simpler to  use and gives a good approximation to the data. 

389 

 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 



~ w w w w w w 1 1 1 1 . w ~ . I w w ~ w w w w w . 1 w . . ' I I ~  

Figure 9.13: li 

 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 



 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 

In this chapter, we discuss tools aimed at interpolating incidents, using the kernel 
density approach. Interpolation is a technique for generalizing incident locations to an 
entire area. Whereas the spatial distribution and hot spot statistics providc statistical 
summaries for the data incidents themselves, interpolation techniques generalize those 
data incidents to the entire region. In particular, they provide density estimates for all 
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z- 
value, that is estimated at  a particular location. Consequently, it can be displayed by 
either surface maps or contour maps that show the intensity at all locations. 

There are many interpolation techniques, such as Kriging, trend surfaces, local 
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; 
Cleveland, Grosse and Shyu, 1993; Venables and Riplcy, 1997). Most of these require a 
variable that  is being estimated as  a function oflocation. However, kernel density 
estimation is an interpolation technique that is appropriate for individual point locations 
(Silverman, 1986; Hardle, 1991; Bailey and Catrell, 1995; Burt and Barber, 1996; Bowman 
and Azalini, 1997). 

Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical 
function, and summing the value of all the surfaces for that reference location. This 
procedure is repeated for all reference locations. It is a technique that was developed in 
the late 1950s as an  alternative method for estimating the density ofa  histogram 
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of 
a frequency distribution. A continuous variable is divided into intervals of size, s (the 
interval OF bin width), and the number of cases in each interval (bin) are counted and 
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying 
distribution (a density function). However, in order to estimate a smooth density function 
from the histogram, traditionally researchers have linked adjacent variable intervals by 
connecting the midpoints of the intervals with a series oflines (Figure 8.1). 

Unfortunately, doing this causes three statistical problems (Bowman and Azalini, 
1997): 

1. Information is discarded because all cases within an interval arc  assigned to 
the midpoint. The wider the interval, the greater the information loss. 

2. The technique ofconnecting the midpoints leads to a discontinuous and not 
smooth density function even though the underlying density hnction is 
assumed to be smooth. To compensate for this, researchers will reduce the 
width ofthe interval. Thus, the density function becomes smoother with 
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Figure 9.18: 
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Figure 9.49: 
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Yongrnei Lu 
Department of Geography 

Southwest Texas State University 
San Marcos, TX 

The study of vehicle theft recovery locations can fill a gap in  the knowledge 
about criminal travel patterns. Although the journey-to-crime routine of CrimeStat 
was designed to analyze the distance between offense location and offender's 
residential location, it can be used to describe the distance between vehicle theft 
location and the corresponding recovery location. 

There were more than 3000 vehicle.thefts in the City of BuBalo in 1998. 
Matching the offenses with vehicle recoveries in the same year, 1600 location pairs 
were identified for a journey-after-vehicle-theft analysis. To evaluate the 
randomness of the distances, 1000 groups of simulations were conducted. Every 
group contains 1600 simulated trips of journey-after-vehicle-theft. The results 
indicate that 1) short distances dominate journey-after-vehicle-theft, and 2) the 
observed trips are significantly shorter than the random trips given the distribution 
of possible vehicle theft and recovery locations. 
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Renato Assunqiio, Clhdio  Beato, Braulio Silva 
CRISP, Universidade Federal de Minas Gerais , Brazil 

Crimestat offers a method for analysing the distance between the crime scene 
and the residence of the offender using the journey to crime routine within the 
spatial modeling module. We analysed homicide incidents in  Belo Horizonte, a 
Brazilian city of 2 million inhabitants, for the period January 1996 - December 
2000. We used 496 homicide cases for which the police identified an offender who 
was living in  Belo Horizonte, and for which both the crime location and offender 
residence could be identified. The cases were divided into three groups according to  
the offender's age: 1) 14 to 24 @J=ZOl); 2) 25 to 34 (N=176); and 3) 35 or older 
(N=119). The journey to crime calibration routine was used to produce a probability 
curve P(d) that  gives the approximate chance of an  offender travelling 
approximately distance d to commit the crime. 

We used the normal kernel, a fixed bandwidth of 1000 meters, 100 output 
bins, and the probability (or proportion of all points) option, rather than densities. 
This is to allow comparisons between the three age groups since they have different 
number of homicides. We tested for each age group separately and directed the 
output to a text file to analyse the three groups simultaneously. 

The green, blue, and purple curves are associated with the 1424,25-34, 35+ 
year olds respectively. There are more similarities than differences between the 
groups. Most homicides are committed near to the residence of the offenders with 
between 60% t o 70% closer than one mile from their home. However, the curve does 
not vanish totally even for large distances because there are around 15% of 
offenders, of any age group, travelling longer than 3 miles to commit the crime. The 
oldest offenders travel longer distances, on average, followed by the youngest group, 
with the 25-34 year olds travelling the shortest distances. 

Journey to homicide probabilities in Belo Horizonte, Brazil 
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After the distance decay function has been calibrated and saved as a file, the filc can 
be used to calculate the likelihood surface for a serial offender. The user specifies the name 
of the already-calibrated distance function (as a ‘dbfor an Ascii text file) and the output 
format. As with the mathematical routine, the  output can be to  Arcview, Mapinfo, 
Atlas *GIs, Surfer for Windows, Spatial Analyst, and as  an Ascii grid file which can be read 
by many other GIS packages. All but Surfer for Windows require that the reference grid be 
created by Crimestat. 

The result is produced in three steps: 

1. The routine calculates the distance between each reference cell of the grid 
and each incident location; 

2. For each distance measured, the  routine looks up the calculated value from 
the saved calibration file; and 

3.  For each reference grid cell, it sums the values of all the incidents to produce 
a single likelihood estimate. 

Application of the ~ o ~ t i N @  

To illustrate the techniques, the results of the two methods on a single case are  
compared, The case has been selected because the routines accurately estimate the 
offender’s residence. This was done to demonstrate how the techniques work. In the next 
section, I’ll ask the question about how accurate these methods are in general. 

The case involved a man who had committed 24 offenses. These included 13 thefts, 
5 burglaries, 5 assaults, and one rape. The spatial distribution was varied; many of the 
offenses were clustered but some were scattered. Since there were multiple types of crimes 
committed by this individual, a decision had to  be made over which model to use to 
estimate the individual’s residence. In this case, the theft (larceny) model was selected 
since that was the dominant type ofcrime for this individual. 

For the mathematical function, the truncated negative exponential was chosen from 
table 9.3 with the parameters being: 

Peak likelihood 4.76% 
Peak distance 0.38 miles 
Exponent 0.193015 

For the kernel density model, the calibrated function for larceny was selected (figure 9.16). 

Figure 9.21 shows the results of the estimation for the two methods. The output is 
from Surferfor Windows (Golden Software, 1994). The left pane shows the results of the 
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Figure 9.21 : 

Mathematical Model: 
Truncated Negative Exponential Kernel Density Model 
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mathematical function while the right pane shows the results for the kernel density 
function. The incident locations are shown as circles while the actual residence location of 
the offender is shown as  a square. Since this is a surface model, the highest location has 
the highest predicted likelihood. 

In both cases, the models predicted quite accurately. The discrepancy (error) 
between the predicted peak location and the actual residence location was 0.66 miles for 
the mathematical function and 0.36 miles for the kernel density function. For the 
mathematical model, the actual residence location (square) is seen as  slightly off from the 
peak of the surface whereas for the kernel density model the discrepancy from the peak 
cannot be seen. 

Nevertheless, the differences in the two surfaces show distinctions. The 
mathematical model has a smooth decline from the peak likelihood location, almost like a 
cone. The kernel density model, on the other hand, shows a more irregular distribution 
with a peak location followed by a surrounding ‘trough’ followed a peak ‘rim’. This is due to 
the irregular distance decay function calibrated for larceny (see figure 9.16). But, in both 
cases, they more or less ident ie  the actual residence location of the offender. 

The calibration sample is critical for either method. Each method assumes that the 
distribution of the serial offender will be similar to a sample of like’offenders. Obviously, 
distinctions can be made to make the calibration sample more or less similar to the 
particular case. For example, if a distance decay function of all crimes is selected, then a 
model (ofeither the mathematical or kernel density form) will have less differentiation 
than for a distance decay function from a specific type of crime. Similarly, breaking down 
the type of crime by, say, mode ofoperation or time ofday will produce better 
differentiation than by grouping all offenders of the same type together. This process can 
be taken on indefmitely until there is too little data to make a reliable estimate. An 
analyst should try to find as close a calibration sample to the actual as is possible, given 
the limitations of the data. 

For example, in our calibration data set, there were 4,694 burglary incidents where 
both the offender’s home residence and the incident location were known. The approximate 
time of the offense for 2,620 ofthe burglaries was known and, ofthese, 1,531 occurred a t  
night between 6 pm and 6 am. Thus, if a particular serial burglar for whom the policc are 
interested in catching tends to commit most of his burglaries at night, then choosing a 
calibration sample of nighttime burglars will generally produce a better estimate than by 
grouping all burglars together. Similarly, of the 1,53 1 nighttime burglaries, 409 were 
committed by individuals who had a prior relationship with the victim. Again, if the 
analysts suspect that  the burglar is robbing homes ofpeople he knows or is acquainted 
with, then selecting the subset of nighttime burglaries committed against a known victim 
would produce even better differentiation in the model than taking all nighttime burglars. 
However, eventually, with further sub-groupings there will be insufficient data. 
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This point has been raised in a recent debate. Van Koppen and De Keijser (1997) 
argued that a distance decay function that combined multiple incidents committed by the 
same individuals could distort the estimated relationship cornpared to  selecting incidents 
committed by different individuals! Rengert, Piquero and Jones (1999) argued that such a 
distribution is nevertheless meaningful. In our language, these are  two different sub- 
groups - persons committing multiple offenses compared to persons committing only one 
offense. Combining these two sub-groups into a single calibration data set will only mean 
that the result will have less differentiation in prediction than if the sub-groups were 
separated out. 

Actually, there is not much difference, at  least in Baltimore County. From the 
41,426 cases, 18,174 were committed by persons who were only listed once in the database 
while 23,251 offenses were committed by persons who were listed two or more times (7,802 
individuals). Categorizing the 18,174 crimes as committed by ‘single incident offenders 
and the 23,251 crimes as committed by ’multiple incident offenders’, the  density distance 
decays functions were calculated using the kernel density method (Figure 9.22). 

The distributions are  remarkably similar. There are some subtle differences. The 
average journey to  crime trip distance made by a single incident offender is longer than for 
multiple incident ogenders (4.6 miles compared to 4.0 miles, on average); the difference is 
highly significant (p~.OOOl), partly because ofthe very large sample sizes. However, a 
visual inspection ofthe distance decay functions shows they are similar. The single 
incident offenders tend to have slightly more trips near their home, slightly fewer for 
distances between about a mile up to three miles, and slightly more longer trips. But, the 
differences are not very large. 

There are several reasons for the similarity. First, some of the “single incident 
offenders’are actually multiple incident offenders who have not been charged with other 
incidents. Second, some of the single incident offenders are in the process of becoming 
multiple incident offenders so their behavior is probably similar. Third, there may not be a 
major difference in travel patterns by the number ofoffenses an individual commits, 
certainly compared to  the major differences by type of crime (see graphs above). In other 
words, the distinction between a single offender crime trip and a multiple offender crime 
trip is just another sub-group comparison and, apparently, not that  important. 
Nevertheless, it is important to choose an appropriate sample from which to  estimate a 
likely home base location for a serial offender. The method depends on a similar sample of 
offenders for comparison. 

atsa Sets for Journey to Crime Routines 

Three sample data sets from Baltimore County have been provided for the journey 
to crime routine. The data sets a re  simulated and do not represent real data. The first file 
- JtcTestl.dbf, are 2000 simulated robberies while the second file - JtcTest2.dbf7 are 2500 
simulated burglaries. Both files have coordinates for an origin location (HomeX, HomeY) 
and a destination location (IncidentX, IncidentY). Users can use the calibration routine to 
calculate the travel distances between the origins and the destinations. A third data set - 
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Gate UY 

Bryan Hill 
Glendale Police Department 

Glendale, AZ 

The City of Glendale, Arizona recently had a string of auto thefts committed 
by the same individual. The map shows known auto theft suspects and their home 
address. The red area in the map shows the most probable home address. Prior to 
the analysis, the Phoenix Police Department’s Crime Analysis Unit was able to 
calibrate the CriineStat J t c  routine with known offender robbery suspect data. 

Monthly citation data was used to search for anyone that lived within the 
area identified by the routine who also drove a red Saturn. A suspect with a felony 
warrant was identified and proved to be also the suspect in  a series of armed 
robberies and a homicide that  occurred in  the Phoenix and Glendale jurisdictions. 
When he was arrested for the felony warrant at his home, evidence of the robberies 
and homicide were found. 
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Seriall.dbf, are simulated incident locations for a serial offender. Users can use the Jtc 
estimation routine to  identify the likely residence Iocation for this individual. In running 
this routine, a reference grid needs to  be overlaid (see chapter 3). For Baltimore County, 
appropriate coordinates for the lower-left corner are -76.31" longitude and 39.19O latitude 
and for the upper-right corner are -76.32'' longitude and 39.72' latitude. 

A critical question is how accurate are these methods? The journey to crime model 
is just that, a model. Whether it involves using a mathematical function or an  empirically- 
derived one, the assumption in the J t c  routine is that the distribution ofincidents will 
provide information about the home base location ofthe offender. In this sense, it's not 
unlike the way most crime analysts will work when they are trying to  find a serial 
offender. A typical approach will be to plot the distribution of incidents and routinely 
search a geographic area in and around a serial crime pattern, noting offenders who have 
an arrest history matching case attributes (MO, type weapon, suspect description, etc.). 
Because a high proportion of offenses are  committed within a short distance of offender 
residence's, the method can frequently lead to  their apprehension. But, in doing this 
method, the analysts a re  not using a sophisticated statistical model. 

est S a m p l e  of Ser ia l  

To explore the accuracy of the approach, a small sample of 50 serial offenders was 
isolated from the database and used as a target sample to test the accuracy of the methods. 
The 50 offenders accounted for 520 individual crime incidents in the database. To test the 
J tc  method systematically, the following distribution was selected (table 9.4). The sample 
was not random, but was selected t o  produce a balance in the number of incidents 
committed by each individual and to, roughly, approximate the distribution of incidents by 
serial offenders. Each of the 50 offenders was isolated as a separate file so that each could 
be analyzed in CrimeStat. 

Identifying the Crime Type 

Each of the 50 offenders was categorized by a crime type. Only two of the offenders 
committed the same crime for all their offenses; most committed two or more different 
types of crimes. Arbitrarily, each offender was typed according to the crime type that 
he/she most frequently committed; in the two cases where there was a tie between two 
crime types, the most severe was selected @e., personal crime over property crime). While 
I recognize that there is arbitrariness in the approach, it seemed a practical solution. Any 
error in categorizing an offender would be applicable to all the methods. The crime types 
for the 50 offenders approximately mirrored the distribution of incidents: larceny (29); 
vehicle theft (7); burglary (5) ;  robbery (5);  assault (2); bank robbery (1); and arson (1). 
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22 
24 
33 

50 5 20 

identifying the Home Base and Incident Locations 

In the database, each ofthe offenders was listed as having a residence location. For 
the analysis, this was taken as the origin location of the journey to crime trip. Similarly, 
the incident location was taken as the destination for the trip. Operationally, the crime trip 
is taken as the distance from the origin location to the destination location. However, it is 
very possible that some crime trips actually started from other locations. Further, many of 
these individuals have moved their residences over time; we only have the last known 
residence in the database. Unfortunately, there was no other information in the digital 
database to  allow more accurate identification of the home location. In other words, there 
may be, and probably are, numerous errors in the estimation of the journey to crime trip. 
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However, these errors would be similar across all methods and should not affkct their 
relative accuracy. 

Evaluated Methods 

Ten methods were compared in estimating the likely residence location of the 
offenders. Four of the methods used the J tc  routines and six were simple spatial 
distribution methods (table 9.5). 

Table 9.5 

Journey to Crime Methods 

Mathematical model for all crimes 

Mathematical model for specific crime type 

Kernel density model for all crimes 

Kernel density model for specific crime type 

is  trib u tion Methods 

Mean center 

Center of minimum distance 

Directional mean (weighted) calculated with ‘lower left corner’ 
as origin 

Triangulated mean 

Geometric mean 

Harmonic mean 

The mean center and center of minimum distance are discussed in chapter 4. The 
center of minimum distance, in particular, is more or less the geographic center of 
distribution in that it ignores the values of particular locations; thus, locations that are far 
away &om the cluster (extreme values) have no effect on the result. The directional mean 
and triangulated mean is part of the directional mean routine, discussed in chapter 4 and 
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in the update release notes; the routine has now been modified so that it can be used with 
ordinary X/Y coordinates. The geometric and harmonic means are  discussed in the update 
release notes; they are both means which discount extreme values. 

The Test 

Each of these ten methods were run against each of the files created for the serial 
offenders. For the six ’means’(mean center, geometric mean, harmonic mean, directional 
mean, triangulated mean, center of minimum distance), the mean was itself the best guess 
for the likely residence location of the offender. For the four journey to crime functions, the 
grid cell with the highest likelihood estimate was the best guess for the likely residence 
location of the offender. 

For each of the 50 offenders, error was defined a s  the distance in miles between the 
‘best guess’and the actual location. For each offender, the distance between the estimated 
home base (the ‘best guess’) and the actual residence location was calculated using direct 
distances. Table 9.6 presents the results. The data show the error by method for each of 
the 50 offenders. The three right columns show the average error of all methods and the 
minimum error and maximum errors obtained by a method. The method with the 
minimum error is boldfaced; for some cases, two or three methods are  tied for the 
minimum. The bottom two rows show the average error and the standard deviation of the 
errors for each method across all 50 offenders. 

There are a number of conclusions from the results. First, the degree of precision 
for any of these methods varies considerably. The precision of the estimates vary from a 
low of 0.0466 miles (about 246 feet) to a high of 75.7 miles. The overall precision of the 
methods is not very high and is highly variable. There are a number of possible reasons for 
this, some of which have been discussed above. Each of the methods produces a single 
parameter from what is, essentially, a probability distribution whereas the distribution of 
many of these incidents are widely dispersed. Few of the offenders had such a 
concentrated pattern that only a single location was possible. Since these are probability 
distributions, not everyone follows the ‘central tendency’. Also, some of these offenders 
may have moved during the period indicated by the incidents, thereby shifting the spatial 
pattern of incidents and making it difficult t o  identi@ the last residence. 

A second conclusion is that, for any one offender, the methods produce similar 
results. For many of the offenders the difference between the best estimate (the minimum 
error) and the worst estimate (the maximum error) is not great. Thus, the simple methods 
are generally a s  good (or bad) as the more sophisticated methods. 

Third, across all methods, the center ofminimum distance had the lowest average 
error. Thus, the approximate geographic center of the distribution produced as  good an 
estimate as the  more sophisticated methods. However, it wasn’t particularly close (3.8441 
miles, on average). The worst method was the triangulated mean; it had an average error 
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Table 9.6 

(N= 50 Serial Offenders) 
Accuracy of Methods for Estimating Serial Offender Residences 

All Methods Number Primary * Mean Center of Mini- Triangulated Geometric Harmonic Jtc Kernet: Jtc Kernel: Jtc Math: Jtc Math: 
of Crime * Center mum Distance Mean Mean Mean All Crimes Crime Type Ail Crimes Crime Type * Average Minimum Maximum 

LhtSSet Crimes TYp * Error (mllerl Error (mll8st Error (miles) Errar (miles) Error (mlles) Efwr (miles) Error(mIles) Enor (miles) Error (miles) * Error Error Error 
I... * "~~..-"--"- I I -I I..." --.-..-..--..-..-. .---I.--..-. _I I -...-_ "__. -"__^_". I-.̂  --..- * ."""-~.- -ll.l"--- --___-... 
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of 7.6472 miles. The triangulated mean is produced by vector geometry and will not 
necessarily capture the center of the distribution. Other than this, there were not great 
differences. This reinforces the point above that the methods are  all, more or less, 
describing the central tendency of the distribution. For offenders that  don’t live in the 
center oftheir distribution, the error of a method will necessary be high. 

Looking at  each of the 50 offenders, the methods vary in their efficacy. For 
example, the J tc  kernel function for all crimes was the best or tied for best for 17 of the 
offenders, but was also the worst or tied for worst for 9. Similarly, the J tc  kernel function 
for the specific crimes was best or tied for best for 8 of the offenders, but worse for 4. Even 
the most consistent was best for 4 offenders, but also worst for one. On the other hand, 
the triangulated mean, which had the worst overall error, produced the best estimate for 9 
of the individuals while it produced the worst estimate for 25 of the individuals. Thus, the 
triangulated mean tends t o  be very accurate or very inaccurate; it had the highest 
variance, by far. 

Fourth, the amount of error varies by the number of incidents. Table 9.7 below 
shows the average error for each method as  a function of three size classes: 1-5 incidents; 
6-9 incidents; and 10 or more incidents. As can be seen, for each of the ten methods, the 
error decreases with increasing number of incidents. In this sense, the measured error is 
responsive to  the sample size from which it is based. It is, perhaps, not surprising that 
with only a handful of incidents n o  method can be very precise. 

Fifth, the relative accuracy of each of these methods varies by sample size. The 
method or methods with the minimum error are boldfaced. For a limited number of 
incidents (1-5), the J tc  mathematical function for all crimes (Le., the negative exponential 
with the parameters from table 9.5) produced the estimate with the least error, followed by 
the J tc kernel function for all crimes; the was the third best. The differences in error 
between these were not very great. For the middle category (6-9 incidents), the  center of 
minimum distance produced the least error followed by the J tc  mathematical function for 
the specific crime type. For those offenders who had committed ten or more crimes, the J tc  
kernel function for the specific crime type produced the best estimate, followed by the 
center of minimum distance. The two mathematical functions produced the least accuracy 
for this sub-group, though again the differences in error are not very big (2.2 miles for the 
best compared to 2.7 miles for the worst). In other words, only with a sizeable number of 
incidents does the J tc  kernel density approach for specificcrimes produce a good estimate. 
It is better than the other approaches, but only slightly better than the simple measure of 
the center of minimum distance. 

Cautionary Notes 

Of course, this is a limited test. It was a small sample (only 50 cases) .from a single 
jurisdiction (Baltimore County). The sample wasn’t even randomly selected, but chosen to 
examine the accuracy by a range of sample sizes. Thus, the conclusions are  only tentative 
and must be seen as hypotheses for further work. Clearly, more research is needed. 
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Table 9.7 
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Nevertheless, there are certain cautions that must be considered in using either of 
these journey to crime methods (the mathematical or the empirical). First, a simple 
technique, such as the center of minimum distance, may be as good as a more sophisticated 
technique. It doesn’t always follow that a sophisticated method will produce any more 
accuracy than a simple one. For the time being, I would advise crime analysts who are 
trying to  detect a pattern in the distribution of the incidents of a serial offender to do 
exactly what they have been doing, basically looking at the data and making a subjective 
guess about where the offender may be residing. The kernel density J tc routine needs an 
adequate amount of information (ie,  at  least 10 incidents) to  produce somewhat precise 
estimates. These techniques should be seen for now as research tools rather than a s  
diagnostics for identifying the whereabouts ofan offender. They are just too imprecise and 
unreliable to depend on, at least until more definitive results are obtained. 

Second, there are other limitations to the technique. The model must be calibrated 
for each individual jurisdiction. Further, it must be periodically re-calibrated to account 
for changes in crime patterns. For example, in using the mathematical model, one cannot 
take the parameters estimated for Baltimore County (Table 9.3) and apply them to another 
city or if using the kernel density method take the results found at one time period and 
assume that they will remain indefinitely. The model is a probability model, not a 
guarantee of certainty. It provides guesses based on the similarity to other offenders of the 
same type of crime. In this sense, a particular serial offender may not be typical and the 
model could actually orient police wrongly if the offender is different from the calibration 
sample. It will take insight by the investigating officers to know whether the pattern is 
typical or not. 

Third, as  a theoretical model, the journey to  crime approach is quite simple. It is 
based on a distribution of incidents and an assumed travel distance decay function. From 
the perspective of modeling the travel behavior of offenders, it is limited. As mentioned 
above, the method does not utilize information on the distribution of target opportunities 
nor does it utilize information on the travel mode and route that an offender takes. Et is 
purely a statistical model. The research area of geographic profiling attcmpts to go beyond 
statistical description and understand the cognitive maps that offenders use as well as how 
these interact with their motives. This is good and should clearly guide future research. 
But it has to  be understood that the theory of offender travel behavior is not very well 
developed, certainly compared to other types of travel behavior. Further, some types of 
crime trips may not even start from an  offender’s residence, but may be referenced from 
another location, such a s  vehicle thefts occurring near disposal locations. Routine activity 
theory would suggest multiple origins for crimes (Cohen and Felson, 1979). 

The existing models oftravel demand used by transportation planners (which have 
themselves been criticized for being too simple) measure a variety of factors that  have only 
been marginally included in the crime travel literature - the availability of opportunities, 
the concentration of offender types in certain areas, the mode oftravel (Le., auto, bus, 
walk), the specific routes that are taken, the interaction between travel time and travel 
route, and other factors. It will be important to incorporate these elements into the 
understanding ofjourney to  crime trips to build a much more comprehensive theory ofhow 
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offenders operate. Travel behavior is very complicated and we need more than a statistical 
distance model to adequately understand it. 

Also, it’s not clear whether knowing an  offender’s ‘cognitive map’ will help in 
prediction. There have been no evaluations that have compared a strictly statistical 
approach with an approach that utilizes information about the offender as  he or she 
understands the environment. I t  cannot be assumed that integrating information about 
the perception of the environment will aid prediction. i n  most travel demand forecasts 
that  transportation engineers and planners make, cognitive information about the 
environment is not utilized except in the definition of trip purpose (Le., what the purpose of 
the trip was). The models use the actual trips by origin and destination as the basis for 
formulating predictions, not the understanding of the trip by the individual. 
Understanding is important from the viewpoint ofdeveloping theory or for ways to  
communicate with people. But, it is not necessarily use&l €or prediction. In short, 
understanding and prediction are not the same thing. 

On the other hand, the journey to crime routine, particularly the kernel density 
approach, can be useful for police departments ifused carefully. I f  there are sufficient 
cases to build an estimate (i.e., 10 or more incidents), it can provide additional information 
to officers investigating a serial offender by reducing the number of possible suspects that  
might be linked to a series of crimes. It can also provide some direction in orienting the 
deployment of officers and  detectives investigating what appear to be serial offenses. It 
provides guesses about where the offender might be living, but based on similarities with 
previous offenders for the same type of crime. It’s not going to  give an exact estimate of 
where an offender is living, but will provide some insights into which areas the individual 
might be located. The J tc  model should be seen as a supplement to other techniques, not a 
complete solution. Like a11 the statistical tools in Crimestat, it must be used carefully and 
intelligently. The philosophy of crime analysis must always be to use a technique with 
thought and with a systematic procedure. 

414 

 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 



1. It should also be pointed out that the use ofdirect distances will underestimate 
travel distances particularly if the street network follows a grid. 

2 .  There are, of course, many other types of mathematical functions that can be used 
to describe a declining likelihood with distance. In fact, there are  an infinite 
number of such functions. However, the five types of functions presented here are 
commonly used. We avoided the inverse distance fiinction because of its potential to 
distort the likelihood relations hip. 

where k is a power (e.g., li ,2,2.5). For large distances, this function can be a useful 
approximation of the lessening travel interaction with distance. However, for short 
distances, it doesn’t work. As the distance between the reference cell location and 
an incident location becomes very small, approaching zero, then the likelihood 
estimate becomes very large, approaching infinity. In fact, for d ,  = 0, the function is 
unsolvable. Since many distances between reference cells and incidents will be zero 
or close to zero, the function becomes unusable. 

3. It is actually the inverse of the inverse distance function. If a distance decay 
function drops off proportional to  the inverse of the distance, 

Yij = AX l/d, 

where Y,, is the travel likelihood, A is coefficient, and d,j is the distance from the 
home base, then the opposite - a distance increase is just the inverse ofthis function 

4. There are several sources of error associated with the data set. First, these records 
were arrest records prior to  a trial. Undoubtedly, some of the individuals were 
incorrectly arrested. Second, there are  multiple offenses. ln fact, more than half 
the records were for individuals who were listed two or more times in the database. 
The travel pattern of repeat offenders may be slightly different than for apparent 
first-time offenders (see figure 9.19). Third, many of these individuals have lived in 
multiple locations. Considering that many are  young and that most are socially not 
well adjusted, it would be expected that these individuals would have multiple 
homes. Thus, the distribution of incidents could reflect multiple home bases, rather 
than one. Unfortunately, the data we have only gives a single residential location, 
the place at which they were living when arrested. 
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5 .  If the coordinate system is projected with the distance units in feet, meters or miles, 
then the distance between two points is the hypotenuse ofa  right triangle using 
Euclidean geometry. 

d,, = d (X, - &)* + (Y, - YB)* (3.1) 
repeat 

where each location is defined by an X and Y coordinate in feet, meters, or miles. 

If the coordinate system is spherical with units in latitudes and longitudes, then the 
distance between two points is the Great Circle distance. All latitudes and 
longitudes are converted into radians using 

(3.2) 
repeat 

(3.3) 
repeat 

Then, the distance between the two points is determined fkom 

d,, = 2” Arcsin {Sin’[(@, - @,)/2] + Cos @,*Cos@,*Sin*[(A, - A,)/2]1’2 (3.4) 
repeat 

with all angles being defined in radians (Snyder, 1987, p. 30,5-3a). 

6. They also argued that the combination of incidents - which they called ‘aggregation’, 
would distort the relationship between distance and incidence likelihood because of 
the ecological fallacy. To my mind, they are incorrect on this point. Data on a 
distribution of incidents by distance traveled is an individual characteristic and is 
not ‘ecological’in any way. An ecological inference occurs when data are aggregated 
with a grouping variable (e.g., state, county, city, census tract; see Langbein and 
Lichtman, 1978). A frequency distribution of individual crime trip distances is an 
individual probability distribution, similar, for example, to a distribution of 
individuals by height, weight, income or any other characteristic. Of course, there 
are sub-sets of the data that have been aggregated (similar to heights of men v. 
heights of women, for example). Clearly, identifying sub-groups can make better 
distinctions in a distribution. But, it is still an  individual probability distribution. 
This doesn’t produce bias in estimating a parameter, only variability. For example 
if a particular distance decay function implies that 70% of the offenders live within, 
say, 5 miles of their committed incidents, then 30% don? live within 5 miles. In 
other words, because the data are individual level, then a distance decay hnction, 
whether estimated by a mathematical or a kernel density model, is an individual 
probability model (i-e., an attempt to describe the underlying distribution of 
individual travel distances for journey to  crime trips). 
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In this chapter, we discuss three techniques that are used t o  analyze the 
relationship between space and time. Up to this point, we have analyzed the distribution 
of incidents irrespective of the order in which they appeared or in which the time frame in 
which they appeared. The only temporal analysis that was conducted was in Chapter 4 
where several spatial description indices, including the standard deviational ellipse, were 
compared for different time periods. 

As police departments usually know, however, the spatial patterning of incidents 
doesn’t occur uniformly throughout the year, but instead are often clustered together 
during short time periods. At certain times, a rash ofincidents will occur in certain 
neighborhoods and the police often have to respond quickly to these events. In other 
words, there is both clustering in time as well clustering in space. This area of research 
has been developed mostly in the field ofepidemiology (Knox, 1963, 1988; Mantel, 1967; 
Mantel and Bailar, 1970; Besag and Newell, 1991; Kulldorf and Nargawalla, 1995; Bailey 
and Gattrell, 1995). However, most ofthese techniques are applicable to crime analysis 
and criminal justice research as  well. 

GrimeStat includes three space-time techniques: the Knox Index, the Mantel index, 
and Correlated Walk Analysis. Figure 10.1 shows the Space-Time Analysis screen. 

e a s M ~ e ~ e n ~  of  Time in CrimeSta t  

Time can be defined as hours, days. wccks, months, or years. The default is days. 
However, please note that for any of these techniques, in CvimeStat, time must be 
measured as an  integer or real variable, as mentioned in Chapter 3. Time cannot be 
defined by a formatted date code (e.g., 11/06/01, J u l y  30, 2002). Each of the three space- 
time routines expect time t o  be an integer or real variable (e.g., 1, 2,34527,2.8). Ifgiven 
formatted dates, they will calculate an answer, but the result will not be correct. 

If the time unit is days, a simple transformation is to use the number of days since 
January 1, 1900. Most spreadsheet and data base programs usually assign an  integer 
number from this reference point. For example, November 12, 2001 has the integer value 
of 37207 while January 30,2002 has the integer value of 37286. These are the number of 
days since January I ,  1900. Any spreadsheet program (e.g., Excel or Lotus 1-2-3) can 
convert a date format into a real number with the Value function. Also, any arbitrary 
numbering system will work (e.g., 1,2,3).  

S p ace -Ti m e Inter actio n 

There are  different types of interaction that could occur between space and time. 
Four distinctions can be made. First, there could be spatial clustering all the time. 
Certain communities a re  prone to certain events. For example, robberies often are 
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concentrated in particular locations as are  vehicle thefts. The hot spot methods that were 
discussed in chapters 6, '9 and 8 are  useful for identifying these concentrations. In this 
case, there is no space-time interaction since the clustering occurs all the  time. 

Second, there could be spatial clustering within a specific timeperiod. Hot spots 
could occur during certain time periods. For example, motor vehicle crashes tend to occur 
with much higher frequencies in the late afternoon and early evening, often as  a by-product 
of congestion on the roads. Crash hot spots will tend to  appear at certain times because of 
the congestion. At most other times, the concentration does not occur because the 
congestion levels are lower. 

Third, there could be space-tim e clustering. A number of events could occur within a 
short time period within a concentrated area. This type of effect is very common with 
motor vehicle thefts. A car thief gang may decide to  attack a particular neighborhood. 
After a binge of car thefts, they move on to another neighborhood. In this instance, there 
are a number of theft incidents that  are occurring within a limited p e r i d  in a limited 
location. The cluster moves from one location to another. In this case, there is a n  
interaction between space and time in that spatial hot spots appear a t  particular times, 
but are temporary. The ability t o  detect this type of shift is very important to  police 
departments since it affects their ability to respond. 

Fourth, there could be space-time interaction in which the relationship between 
space and time in more complex. The interaction could be concentrated, as in the spatial 
clustering mentioned above, or it could follow a more complex pattern. For example, there 
could be a diffusion ofdrug sales from a central location to  a more dispersed area. 
Whereas initially, the drug dealing is concentrated in a few locations, it starts to  diffuse to 
other areas. However, the diffusion may occur at different times ofthe year (e.g., 
Christmas and New Years). Alternatively, vehicle thefts may shift towards seaside 
communities during the summer months when the number of vacationers increases. We 
saw an example ofthis in chapter 4 where the ellipse ofmotor vehicle thefts shifted 
between June and July to the communities along the Chesapeake River near Baltimore. 
This type of diffusion is not clusteringpev se, in that it may be spread over a very large 
coastline. But it is a distinct space-time interaction. 

The importance of these distinctions is that many of the space-time tests that  exist 
only measure gross space-time interaction, rather than space-time clustering. For 
example, the Knox and Mantel tests that  follow test for spatial interaction. The 
interaction could be the result of spatial clustering, but doesn't necessarily have to be. The 
interaction could occur in a very complex way that would not easily lend itself t o  more 
focused intervention by the police. Still, the ability to identify the interaction is an 
important step in planning an intervention strategy. 

Knox Index 

The Knox Index is a simple comparison ofthe relationship between incidents in 
terms of distance (space) and time (Knox, 1963; 1964). That is, each individual pair is 
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compared in terms of distance and in terms of time interval. Since each pair ofpoints is 
being compared, there are N*{N-1)1/2 pairs. The distance between points is divided into two 
groups -Close in distance and Not close in distance, and the time interval between points 
is also divided into two groups - Close in time and Not close in time, The definitions of 
‘close’ and Wot close’ are left to the user. 

A simple 2 x 2 table is produced that compares closeness in distance with closeness 
in time. The number ofpairs that  fall in each of the four cells are  compared (Table 10.1). 

Table 10.1 

Log ica l  $ ~ r ~ c ~ ~ r e  of Knox I 

Close 

Close in time Not close in ti 

_ _ I ~  - - ,  -- -- 

I 
~ 

i 
0, 

I 
0 4  I s2 
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4 

s,= o,+04 

The actual number of pairs that falls into each of the four cells are then compared to 
the expected number if there was no relationship between closeness in distance and 
closeness in time. The expected number ofpairs in each cell under strict independence 
between distance and the time interval is obtained by the cross-products of the columns 
and row totals (table 10.2). 

Table 10.2 
E x p e c t e d  Fre u e n c i e s  f o r  Knox Index  

Close in time Not close in time 

Close 
in Distance 

Not close 
in distance 

, E, j i 

1 ., . i  

I 
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E, 
......... .. ......................... --&.,---- I 

I E4 I 
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S , * S , f N  
z =  S , * S , i N  

E , =  S , * S , I N  
E,= S , * S , l N  

The difference between the actual (observed) number ofpairs in each cell and the 
expected number is measured with a Chi-square statistic {equation 10.1). 

(10.1) 

onte Carlo S ~ ~ u ~ ~ t ~ o ~  of Critical Chi-square 

Unfortunately, the usual probability test associated with the Chi-square statistic 
cannot be applied since the observations are not independent. Interaction between space 
and time tend to be compounded when calculating the Chi-square statistic. For example, 
we've noticed that the Chi-square statistic tends to  get larger with increasing sample size, 
a condition that would normally not be true with the independent observations. To handle 
the issue ofiaterdependency, there is a Monte Carlo simulation of the chi-square value for 
the Knox Index under spatial randomness (Dwass, 1957; Barnard, 1963). I f the  user 
selects a simulation, the routine randomly selects M pairs of a distance and a time interval 
whcre M is the number of pairs in the data set (M = N* Q!4-1]/2) and calculates the Knox 
Index and the chi-square test. Each pair of a distance and a time interval are selected from 
the range between the minimum and maximum values for distance and time interval in 
the data set using a uniform random generator. 

The random simulation is repeated IS times, where K is specified by the user and 
Usually, it is wise to run the simulation 1000 or more times. The output includes: 

1 .  The sample size 
2. The number of pairs 
3. 
4. 
5. 
6 .  

The calculated chi-square value of the Knox Index fkom the data 
The minimum chi-square value of the Knox Index from the simulation 
The maximum chi-square value of the Knox Index from the simulation 
Ten percentiles from the simulation: 

a. 0.5% 
b. 1% 
C. 2.5% 
d. 5% 
e. 10% 
f. 90% 
g. 95% 
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h. 97.5% 
1. 99% 
j. 99.5% 

For an example, vehicle thefts in Baltimore County for 1996 were taken. There 
were 1855 vehicle thefts for which a date was recorded in the data base. The data base 
was further broken down into twelve separate monthly subsets. Using the median for both 
distance and time interval, the Knox Index was calculated for the entire set of 1855 
incidents. Then, using the median distance for the entire year but a month-specific median 
time interval, the Knox Index was calculated for each of the twelve months. Table 10.3 
presents the  Chi-square values and their pseudo-significance levels. 

To produce a better test of the significance of the results, 1000 random simulations 
were calculated for the vehicle theft for the entire year. Table 10.3 below shows the 
results. Because an extreme value could be obtained by chance with a random distribution, 
reasonable cut-off points are usually selected from the simulation. In this case, we want a 
cut-off point that approximates a 5% significance level. Since the Knox Index is a one- 
tailed test (Le., only a high chi-square value is indicative of spatial interaction), we adopt 
an upper threshold of the 95 percentile. In other words, only i f the  observed chi-square 
test for the Knox Index i s  larger than the 95 percentile threshold will the null hypothesis of 
a random distribution between space and time be rejected. 

i s tance  a n d  Time 

In the Crimestat implementation of the  Knox Index, the user can divide distance 
and time interval based on the three criteria: 

1.  The mean (mean distance and mean time interval). This is the default. 

2. The median (median distance and median time interval) 

3. User defined criteria for distance and time separately. 

There are advantage to each of these methods. The mean is the center of the 
distribution; it denotes a balance point. The median will divide both distance and time 
interval into approximately equal numbers of pairs. The division is approximate since the 
data may not easily divide into two equal numbered groups. A user-defined criteria can fit 
a particular need ofan analyst. For example, a police department may only be interested 
in incidents that occur within two miles of each other within a one week period. Those 
criteria would be the basis for dividing the sample into ‘Close’and ‘Not close’distances and 
time intervals. 
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Table 10.3 

ore ~0~~~~ ~ g ~ ~ $ ~ e  T 
~ ~ d i a ~  Split  

N = 1,855 with 1,719,585 comparisons 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Actual 
Chi -quare  

0.26 
0.00 
0.00 
0.50 
1.04 
0.01 
8.43 
5.91 
0.27 
3.33 

10.79 
0.00 

Chi-sauare 
6.95 
6.61 
6.86 
6.56 
7.25 
6.02 
8.20 
8.29 
5.41 
6.43 
6.15 
6.87 

e 
n.s. 
n.s. 
n.s. 
n.s. 
n.s. 
n.s. 
.01 
.025 
n.s. 
n.s .  
.01 
ns. 

All of 11996 8.69 41.89 n.s. 

For the entire year, there was not a significant clustering between space and time. 
Approximately, 26.7% of the incidents were both close in distance (k, closer than the 
median distance between pairs of incidents) and close in time (Le., closer than the median 
time interval between pairs of incidents). However, when individual months are examined, 
three show significant relationships: July, August and November. During these months, 
there is an interaction between space and time. Typically, incidents that cluster together 
spatially tend also to  cluster together temporally. However, it could be the opposite (Le., 
events that  cluster together temporally tend to be far apart spatially). 

The next step would to  identify whether there are particular clusters that occur 
within a short time period. Using one of the ‘hot spot’ analysis methods discussed in 
chapters 6 and 7, an analyst could take the events for the three months and try to identify 
whether there is spatial clustering during those three months that does not normally occur. 
We won’t do that here, but the point is that the Knox Index is useful t o  identify whea there 
is spatial clustering. 

Problems with the Knox Index 

The Knox Index is a simple measure ofspace-time clustering. However, because it 
is only a 2 x 2 table, different results can be obtained by varying the cut-off points for 
distance or time. For example, using the mean as the cut-off, the overall Chi-square 
statistic for all vehicle thefis was 8.67, reasonably close. However, when a cut-off point for 
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distance of 1000 meters and a cut-offpoint for time of 80 days was used, the Chi-square 
statistic dropped to 3.16. In other words, the Knox Index will produce different results for 
different cut -off points. 

A second problem has to do with the interpretation. As with any Chi-square test, 
differences between the observed and expected frequencies could occur in any cell or any 
combination of cells. Finding a significant relationship does not automatically mean that 
events that were close in distance were also close in time; it could have been the opposite 
relationship. However, a simple inspection of the table can indicate whether the 
relationship is as expected or not. In the above example, all the significant relationships 
showed a higher proportion of events that  were both close in distance and close in time. 

The Mantel Index resolves some of the problems of the Knox Index. Essentially, it 
is a correlation between distance and time interval for pairs of incidents (Mantel, 1967). 
More formally, it is a general test for the correlation between two dissimilarity matrices 
that summarizes comparisons between pairs of points (Mantel and Bailrtr, 1970). It is 
based on a simple cross-product of two interval variables (e.g., distance and time interval): 

N N  

T = 11 (X, - MeanX)(Y,, - MeanU) 
i=l j=] 

(10.2) 

where X,, is an index ofsimilarity between two observations, i and j, for one variable (e.g., 
distance) while Y, is an index of similarity between the same two observations, i and j, for 
another variable (e.g., time interval). 

The cross-product is then normalized by dividing each deviation by its standard 
devi at  ion : 

1 N N  

r =  2 53 (Tj - MeanX)/S, * CYij - MeanY)/S, 
(N-1) i=I  j = ~  

(1 0.3) 

where qj and Y,j are  the original variables for comparing two observations, i and j, and Z, 
and are the normalized variables. 

In Crimestat, the Mantel Index routine calculates the correlation between distance 
and time interval. To illustrate, table 10.4 examines the Mantel correlation for the 1996 
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N = 1,855 and 1,719,585 Comparisons 

~ Q n t ~  
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

F - 
-.0047 
-.0023 
-.0245 

0.0077 
0.001 8 
0.0043 
0.0348 
0.0544 
0.001 3 
0.0409 
0.0630 
0.0086 

~ i ~ u i a t ~ Q n  Si 
- 2.5% 97.5% Ib -lev e 1 
-0.033 0.033 n.s. 
-0.037 (3.042 n.s. 
-0.032 0.039 n.s. 
-0.040 0.041 n.s. 
-0.038 0.043 n.s. 
-0.035 0.041 n.s. 
-0.034 0.033 .025 
-0.034 0.035 .01 
-0.044 0.046 n.s. 
-0.037 0.043 n.s. 
-0.042 0.040 .oo 1 
-0.035 0.038 n.s. 

All of 1996 0.0015 -0.009 0.010 n.s. 

vehicle thefts in Baltimore County that was illustrated above. As seen, the correlations are 
all low. However, as with the Knox Index, July, August and November produce relatively 
higher correlations. If used a s  a n  index, rather than an estimate of variance explained, the 
Mantel Index can identify time periods when spatial interaction is occurring. 

Even though the Mantel Index is a Pearson product-moment correlation between 
distance and time interval, the measures are not independent and, in fact, are highly 
interdependent. Consequently, the usual significance test for a correlation coefficient is 
not appropriate. Instead, the Mantel routine offers a simulation of the confidence intervals 
around the index. If the user selects a simulation, the routine randomly selects M pairs of 
a distance and a time interval where M is the number of pairs in the data set (M = N* [N- 
1]/2) and calculates the Mantel Index. Each pair of a distance and a time interval are 
selected from the range between the minimum and maximum values for distance and time 
interval in the data set using a uniform random generator. 

The random simulation is repeated K times, where K is specified by the user. 
Usually, it is wise to run the simulation 1000 or more times. The output includes: 

1. The sample size 
2. The number of pairs 
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3.  
4. 
5.  
6.  

The calculated Mantel Index from the data 
The minimum Mantel value from the simulation 
The maximum Mantel value from the simulation 
Ten percentiles &om the simulation: 

a. 
b. 

d. 
e. 
f. 
g- 
h .  

C. 

1. 

J -  

0.5% 
1 Yo 
2.5% 
5% 
10% 
90% 
95% 
97.5% 
99% 
99.5% 

To illustrate, 1000 random simulations were calculated for each month using the 
same sample size as  the monthly vehicle theft totals. Table 10.4 above shows the results. 
Because an extreme value could be obtained by chance with a random distribution, 
reasonable cut-off points are usually selected from the simulation. In this case, we want 
cut-offpoints that  approximate a 5% significance level. Since the Mantel Index is a two- 
tailed test (i.e., one could just as easily get dispersion between space and time a s  
clustering), we adopt a lower threshold of the 2.5 percentile and an upper threshold of 97.5 
percentile. Combined, the two cut-off points ensure that approximately 5% ofthe cases 
would be either lower than the lower threshold or higher than the upper threshold under 
random conditions.' In other words, only i f the observed Mantel Index is smaller than the 
lower threshold or larger than the upper threshold will the null hypothesis of a random 
distribution between space and time be rejected. 

In Table 10.4, for the entire year, the observed Mantel Index (correlation between 
space and time) was 0.0015. The 2.5 percentile was -.009 and the 97.5 percentile was 0.01. 
Since the observed value is between these two cut-offpoints, we cannot reject the  null 
hypothesis of no relationship between space and time. However, for the individual months, 
again, July, August and November have correlations above the upper cut-offthreshold. 
Thus, €or those three months only, the amount of space-time clustering in the vehicle theft 
data is most likely greater than what would be expected on the basis of a chance 
distribution. One wbuld, then, have to explore the data further to find out where those 
vehicle thefts were occurring, using one the hot spot routines in Chapter 6 .  

Limitations of the Mantel Index 

The Mantel Index is a useful measure of the relationship between space and time. 
But it does have limitations. First, because it is a Pearson-type correlation coefficient, it is 
prone to the same types of problems that befall correlations. Extreme values of either 
space or time could distort the relationship, either positively, if there are one or two 
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observations that are extreme in both distance in time interval, or negatively, if there are 
only one or two observations that are extreme in either distance or in time interval. 

Second, because the test is a comparison of all pairs of observations, the correlations 
tend to  be small, as noted above. This makes it less intuitive as  a measure than, say, a 
traditional correlation coefficient which varies between -1 and +l  and in which high values 
are expected. For most analysts, it is not very intuitive to have an index where 0.05 is a 
high value. This doesn’t fault the statistic as much make it a little non-intuitive for users. 

Third, as with any correlation coefficient, the same size needs to be fairly large to 
produce a stable estimate. In the above, example, one could further break down monthly 
vehicle thefts by week or, even, day. However, the number of cases will decrease 
considerably. In the above example, with 1,855 vehicle thefts over a year, the weekly 
average would be around 36, which is a small sample. Intuitively, a crime analyst wants to  
know when space-time clustering is occurring and a short time frame is critical for 
detection; a week would be the largest time interval that would be useful. However, as the 
sample size gets small, the index becomes unstable. For one thing, the sample size makes 
the index volatile. While the Monte Carlo simulation will adjust for the sample size, the 
range of the cut-offthresholds will vary considerably from one week to another with small 
sample sizes. The analyst will have to run the simulation repeatedly to adjust for the 
varying sample sizes. For another thing, the shortened time frame allows fewer 
distinctions in time; ifone takes a very narrow time frame (e.g., a day), there can be 
virtually no time differences observed. One would have to switch to  an hourly analysis to 
produce meaningfbl differences. 

One way to get around this is to have a moving average where the time frame is 
adjusted to fit a constant number ofdays (e.g., a 14 day moving average). The advantage is 
that the sample size tends t o  remain fairly constant; one could therefore reduce the 
number of recalculations of the cut-off thresholds since they would not vary much from one 
day to another. To make this work, however, the data base must be set up to  produce the 
appropriate number of incidents for a moving average analysis. 

Nevertheless, the Mantel Index remains a useful tool for analysts. It is still widely 
used for space-time analysis and it has been generalized to many other types of 
dissimilarity analysis than just space and time. If used carefully, the index can be a 
powerful tool for detection of clusters that are also concentrated in time. 

Corre la ted  Walk ~ n a l y s i $  

Correlated Walk Analysis (CWA) is a tool that is aimed a t  analyzing the spatial and 
temporal sequencirig of incidents committed by a single serial offender. In this sense, it is 
the ‘flip side’of Journey to crime analysis. Whereas journey to crime analysis makes guess 
about the likely origin location for a serial offender, based on the spatial distribution of the 
incidents committed by the offender, the CWAroutine makes guesses about the time and 
location of a next event, based on both the spatial distribution of the incidents and the 
temporal sequencing of them. 
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Tbe statistical origin ofCWA is Random Walk Theory. Random Walk Theory has 
been developed by physicists to  explain the distribution ofmolecufes in a rapidly changing 
environment (e.g., the movements of a particle in a gas which is diffusing - Brownian 
movement). Sometimes called a ‘drunkard’s walk’, the theory starts with the premise that 
movement is random in all directions. From an arbitrary starting point, a particle (or 
person) moves in any direction in a series of steps. The direction of each step is 
independent of the previous steps. After each step, a random decision is made and the 
person moves in a random direction. This process is repeated ad infinitum until an 
arbitrary stopping point is selected (Le., the observer quits looking). It has been shown 
mathematically that all one and two dimensional random walks must eventually return to 
their original starting point (Spitzer, 1963; Henderson, Renshaw, and Ford, 1983).’ This is 
called a recurrent random walk. On the other hand, independent random walks in more 
than two dimensions are not necessarily recurrent, a state called transient random walk. 

Figure 10.2 illustrates a random walk of2000 steps. For a large number ofsteps in 
a two-dimensional walk, the likely distance of a person (or particle) from the starting point 
is 

E(d) = d,,, * J N  (10.4) 

where d,,, = $( I: d,’ I N ). The term, d,,, is the root mean square of distance. 

There are a number of different types of random walks. The simplest is a 
movement of uniform distance only along a grid cell (Le., a Manhattan geometry). The 
person can only move North, South, East or West for a unit distance of 1. Amore complex 
random walk allows angular distances and an even more complex random walk allows 
varying distances (e.g., normally distributed random distances, uniformly random 
distances). The walk in figure 10.2 was ofthis latter type. Xand Y values were selected 
randomly from a range of -1 to +I using a uniform random number generator. For a 
conceptual understanding of Random Walk Theory, see Chaitin (1990) and, for a 
mathematical treatment, see Spitzer (1976). Malkiel(1999) applied the concepts of 
Random Walk Theory to stock price fluctuations in a book that has now become a classic. 

Henderson, Renshaw and Ford (1983; 1984) have introduced the concept of a 
correlated random walk. In a correlated random walk, momentum is maintained. If a 
person is moving in a certain direction, they are  more likely to continue in that direction 
than to reverse direction or travel orthogonally. In other words, at any one decision point, 
the probabilities of traveling in any direction are not equal; the same direction has a higher 
probability than an orthogonal change (Le., turning 90 degrees) and those, in turn, have a 
higher probability than completely reversing direction. By implication, the same is true for 
distance and distance. A longer step than average is likely to be followed by another longer 
step than average while a shorter step than average is likely to be followed by another 
short step. Similarly, there is consistency in the time interval between events; a short 
interval is also likely to be followed by a short interval. In other words, a correlated 
random walk is a random walk with momentum (Chen and Renshaw, 1992; 1994). These 
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Figure 10.2: 1 
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authors have applied the theory to  the analysis of the branching of tree roots (Henderson, 
Ford, Renshaw, and Deans, 1983; Renshaw, 1985). 

Correlated Walk Analysis is a set of tools that can help an analyst understand the 
sequencing of sequential events in terms of time interval, distance and direction. In 
CrimeStat, there are three CWA routines. The first two help the analyst understand 
whether there are  patterns in time, distance or direction while the last routine allows the 
analyst to  make a guess about the next likely event, when it will occur and where it will 
occur. The three routines are: 

1. GWA - Correlogram 
2. CWA - Diagnostics 
3. CWA - Prediction 

The Correlogram routine calculates the correlation in time interval, distance, and 
bearing (direction) between events. It does this through Zags. A lag is a separation in the 
intervals between events. The difference between the first and second event is the first 
interval. The difference between the second and third events is the second interval. The 
difference between the third and fourth events is the third interval, and so forth. For each 
successive interval, there is a time difference; there is a distance; and there is a direction. 
One could extend this to all the intervals, comparing each interval with the next one; that 
is, we compare the first interval with the second, the second interval with the third, the 
third interval with the fourth, and so on until the sample is complete. When comparing 
successive intervals, this is called a Zag o f l .  It is important to keep in mind the distinction 
between an event (e.g., an incident) and an interval. It takes two events to  create an 
interval. Thus, for a lag of 1, there are M= N-1 intervals where N is the  number ofevents 
(e.g., for 3 incidents, there are 2 intervals). 

A lag of two compares every other event. Thus, the first interval is compared to the 
third interval; the second interval is compared to the fourt; the third interval is compared 
to the fifth; and so on until there are  no more intervals left in the sample. Again, the 
comparison is for time difference, distance, arid direction separately. We can extend this 
logic to a lag of 3 {every third event), a lag of 4 (every fourth event), and so forth. 

The CWA - Correlogram routine calculates the Pearson Product-Moment correlation 
coefficient between successive events. For a lag of 1, it compares successive events and 
correlates the time interval, distance, and bearing separately for these successive events. 
For a lag of2,  it compares every other event and correlates the time interval, distance, and 
bearing separately for these successive events. The routine does this until it reaches a 
maximum of 7 lags (Le., every seventh event). However, if the sample size is very small, it 
may not be able t o  calculate all lags. It will require 12 incidents (events) to calculate all 
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seven lags since it requires at  least four observations per lag (Le., N - L - 4 where N is the 
number of events and L is the maximum number of lags calculated). 

Adjusted C‘orrelogram 

The Correlogram calculates the raw correlation between intervals by lag for time, 
distance, and bearing. One of the problems that may appear, especially with small 
samples, is for higher-order lags to  be very high, either positive or negative. There are 
probably two reasons for this. For one thing, with each lag, the sample size decreases by 
one; with a very small sample size, correlations can become very volatile, jumping from 
positive to negative, and from low to high. Another reason is that periodicity in the data 
set is compounded with higher-order lags in the form of ‘echos’. For example, if a lag of 2 is 
high, then a lag of 4 will also be somewhat high since there is a compounding of the lag 2 
effect. When combined with a small sample size, it is not uncommon to have higher-order 
lags with very high correlations, sometimes approaching +/- 1.0. The user must be careful 
in selecting a higher-order lag because there is an apparent effect which may be due to the 
above reasons, rather than any real predictability. One of the key signs for spurious 
higher-order effect is a sudden jump in the strength of the correlation from one lag to the 
next (though sometimes a high higher-order lag can be real; see examples below). 

To minimize these effects, the output also includes an adjusted correlogram that 
adjusts for the loss of degrees of freedom. The formula is: 

M - L - 1  

N - 1  
A = (10.5) 

where M is the number of intervals (N-I) and L is the number of lags. For example, for a 
sample size of 13, there willbe 12 intervals (M). For a lag of 1, the adjustment will be 

The effect of the adjustment is to  reduce tbe correlation for higher-order lags. I t  
won’t completely eliminate the effect, but it should help minimize spurious effects. As will 
be shown below, however, sometimes high higher-order lags are  real. 

CWA - Gosrelogram Ostprct 

The routine outputs 10 parameters: 

1 .  
2.  Number of intervals; 
3. 
4. 

The sample size (number of events); 

Information on the units of time, distance, and bearing; 
Final distance t o  origin in meters (distance between last and first event); 
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5 .  

6. 

7. 
8. 

9. 
I O .  

Expected random walk distance from origin (if sequence was strictly 
ran dom ); 
Drift (the ratio ofactual distance fkom origin to expected random walk 
dis t a nee); 
Final bearing from origin (direction between last event and first event); 
Expected random walk bearing. Defined as  0 because there is no expected 
direction. 
Correlations by lag for time, distance, and bearing (up to  7 lags); and 
Adjusted correlations by lag for time, distance, and bearing (up to 7 lags). 

The aim of the CWA - Correlogram is to examine repetitive sequences, whether for 
time interval, distance or direction. It is possible to have separate repetitions for time, 
distance and direction. For example, an offender may commit crimes every 7 days or so, 
say, on the weekend. In this case, the individual is repeating himselfherself about once 
every week. Similarly, an individual may alternate directions, first going East then going 
West, then going back to the East, and so forth. In other words, what we%e asking with 
the routine is whether there are  any repetitions in the sequence of incidents committed by 
a serial offender. Does he/she repeat the crimes in time? If so, what is theperiodicity (the 
repititious sequence? Does he/she repeat the crimes in distance? Is so, what is the 
periodicity? Finally, does he/she repeat the crimes in direction? If so, what is the 
periodicity? The CWA-Correlogram, therefore, analyzes the sequence of incidents 
committed by an individual and does this separately for time interval, distance, and 
direction. 

d e r  repetition 

Why is this important? Most crime analysis is predicted on the assumption that 
offenders (people in general) repeat themselves, consciously or unconsciously. That is, 
individuals have specific behavior patterns that tend to be repeated. If an individual acts 
in a certain way (e.g., committing a burglary), then, most likely , the person will repeat 
himselfherself again. There is no guarantee, of course. But, because human beings do not 
behave spatially or temporally random but tend to  operate in somewhat consistent ways, 
there is a likelihood that the individual will act in a similar manner again. 

This assumption is the basis of profiling which aims at understanding the MO of an 
offender. I f  offenders were totally random in their behavior, detection and apprehension 
would be made much more difficult than it already is. SO, between the two extremes of a 
totally random individual (the kandom walk person’) and a totally predictable individual 
(the ‘algorithmic person’), we have the bulk of human behavior, at least in terms of time, 
distance and direction. 

The Diagnostics routine is similar to the CWA - Correlogram except that it 
calculates an Ordinary Least Squares autoregression for a particular Zag. That is, it 
regresses each interval against a previous interval. The user enters the lag number (the 
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default is 1) and the routine produces three regression models for the successive event as 
the dependent variable against the prior event as the independent variable. There are 
three equations, for time interval, distance, and bearing separately. The output includes: 

1. 
2.  
3. 
4. 
5 .  
6 .  
7.  
8 .  
9. 
10. 
11. 

12. 

13. 

The sample size (number of events); 
The number of intervals; 
Information on the units of time, distance, and bearing; 
The multiple correlation coefficient; 
The squared multiple correlation coefficient (i.e., R’); 
The overall standard error of estimate; 
The regression coefficient for the constant and for the prior event; 
The standard error of the regression coefficients; 
The t-values for the regression coefficients; 
The p-value (two-tail) for the regression cocfficients; 
An analysis of variance test for the h l l  model. This includes sum of squares 
for the regression term and for the residual; 
The ratio of the regression sum of squares to the residual sum of squares (the 
F-ratio); and 
The p-value associated with the F-value. 

What the regression diagnostics provides is an indicator of the amount of 
predictability in the lag. It has the same information as  the Correlogram (since the square 
ofthe correlation, r2, is the same as RZ for a single independent variable regression 
equation), but it is easier to interpret. Essentially, it is argued below that, unless the RZ in 
the regression equation is sufficiently high, that one is better off using the mean or median 
lag for prediction. Conversely, if the R2 is very high, then the user should be suspicious 
about thc data. 

CWA - Prediction 

Finally, after having analyzed the sequential pattern of events, the user can make a 
prediction about the time and place of the next event. There are  three methods for making 
a prediction, each with a separate lag: 

1. Mean difference 
2. Median differ en ce 
3. Regression equation 

The method is applied to the last event in the data set. Thc mean difference applies 
the mean interval of the data for the specified lag to the last event. For example, for time 
interval and a lag of 1, the routine calculates the interval between each event and takes 
the average. It then applies the mean time interval to the last time in the data set as  the 
prediction. The median difference applies the median interval of the data for the specified 
lag t o  the last event. For example, for bearing and a lag of 1, the routine calculates the 
direction (bearing) between each event, calculates the median bearing, and applies that  
median average to the location of the last event in the data set as  the predicted value. 
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The regression equation calculates a regression coefficient and constant for the 
specified lag and uses the data value for the last interval as input into the regression 
equation; the result is the  predicted value. For example, for distance and a lag of 1, the 
routine calculates the regression coefficient and constant for a regression equation in which 
each event is compared to the previous event. The last distance in the data set (Le., 
between the last event and the previous event) is used as an input for the regression 
equaticm and the predicted distance is marked off from the coordinates of the last event. 

In other words, the routine takes the time and location of the last event and adds a 
time interval, a direction, and a distance as a predicted next event (next time, next 
location). The method by which this prediction is made can be the mean interval, the 
median interval, or the regression equation. If the user species a lag other than I ,  that  lag 
is applied to  the last event. For example, for time with a mean difference and a lag of 2, 
the routine calculates the time interval between each event and every other event, 
calculates the average and applies that average to the last event in the data set. 

The CWA - Prediction routine outputs five graphical objects in khp’, knif, or ‘bna’ 
formats. The user provides a file name and the routine adds five prefixes t o  the name in 
‘shp’, ’mif‘or ‘bna’output: 

1. 

2. 
3 .  
4. 

Events - a line indicating the sequence of events. If the user also brings in 
the points in the data set, it will be possible to number each ofthese steps; 
PredDest - the predicted location for the next event; 
Fath - a line from the last location in the data set to the predicted location; 
POrigL - a point representing the center of minimum distance of the data 
set. The center of minimum distance is taken as a proxy for the origin 
location of the offender; and 
PW - a line from the expected origin to the predicted destination 5. 

For example, if the user provides the file name WightRobberies’and specifies a ’shp’ 
output, there will be five objects output: 

E v en t s N i gh t Rob be r i es . s h p 
PredDestN ightaobberiesshp 
PathNightRobberiesshp 
POrigLNight Robberiesshp 
P WNight Robberies .s hp 

Example 1: A Completely Predictable ~ n d i v i d ~ ~ l  

The simplest way to illustrate the logic of the CWA is to start with a completely 
predictable individual. This individual commits crimes on a Completely systematic basis. 
Table 10.5 illustrates the behavior ofthis individual. 
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Starting a t  an  arbitrary origin with an X coordinate of1 and a U coordinate of 1 and 
on day 1, the individual commits 13 incidents in total. In the table, these a re  numbered 
events 1 through 13. Let’s start with direction and distance. From the origin, the individual 
always travcls in a Northeast direction of 45 degrees (clockwise from due North - 0 
degrees). The individual’s second incident is a t  coordinate X=2, Y=2. Thus, the individual 
traveled at 45 degrees from the previous incident and for a distance of 1.4142 (the 
hypotenuse ofthe right angle created by traveling one unit in the X direction and one unit 
in the V direction). For the third incident, the individual commits this at X=4, Y=4. Thus, 
the direction is also at 45 degrees from the previous location but the distance is now 2.8284 
(or the square root of8 which comes &om a step of 2 along the X axis and a step of 2 along 
the Y axis). For the fourth incident, the individual commits the crime a t  X=7, Y=7. Again, 
the direction is 45 degrees, but the distance is 4.2426 (or the square root of 18 which comes 
from a step of 3 along the X axis and a step of 3 along the Y axis). 

Table 10.5 

Event 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

X B I  
1 1  
2 2  
4 4  
7 7  
8 8  

10 10 
13 13 
14 14 
16 16 
19 19 
20 20 
22 22 
25 25 

Distance 

1.4 142 
2.8284 
4.2426 
1.4142 
2.8284 
4.2426 
1.4142 
2.8284 
4.2426 
1.4142 
2.8284 
4.2426 

- 

Time 
ays Interval 

1 
3 2 
7 4 
9 2 
13 4 
15 2 
19 4 
21 2 
25 4 
27 2 
31 4 
33 2 
37 4 

- 

For the fifth incident, again the individual travels at 45 degrees to the previous 
incident, but repeats himselfherself with a step of only 1 unit in both the X and Y 
directions. The individual then continues the sequence, always traveling in a 45 degree 
orientation t o  due North. For distance, a step of 1 in both the X and Y directions is 
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followed by a step of 2 in both directions, and is followed by a step of 3 in both directions. 
In other words, the individual repeats direction every time and repeats distance every 
third time. There is a periodicity of 1 for direction and 3 for distance. 

For time interval, this individual repeat himkerself every other time. The second 
event occurs 2 days after the fKst event. The third event occurs 4 days after the second 
event; the fourth event occurs 2 days after the third event; the fifth events occurs 4 days 
after the fourth event; and so forth. In other words, for time interval, the individual 
repeats himlherself every other interval (i-e., the periodicity is 2). Figure 10.3 illustrates 
the sequence; the number at each event location is the number of the day that the 
individual committed the offense (starting at an arbitrary day 1). 

Since this fictitious individual is completely predictable, we can easily guess when 
and where the next event will occur (see table 10.5 above). The direction will, of course, be 
at 45 degrees from the previous location. Looking at  the last known event (event 13), the 
distance traveled was 4.2426. Thus, we predict that the individual will revert to a move of 
1 in the X direction and 1 in the Y direction, or coordinates X=26, Y=26. Finally, for time 
interval, since the last known time interval was 4 days, then this individual will commit 
the next event 2 days later, or day number 39. 

Example P: Analysis 

The first step is to analyze the sequencing of the events. There are 13 events and 12 
intervals. The correlogram produces the following output (table 10.6). 

Looking at the unadjusted correlations, it can be seen that time shows an 
alternating pattern of perfect correlations. The first repeating positive 1.0 correlation is for 
lag 2, which is the exact periodicity that was specified in the example. This offender 
repeats the time sequence every other time. Thus, i f the individual alternates between 
committing offenses 2 and 4 days after the last, then knowing the time interval for the last 
offense, it can be assumed that the next event will repeat the next-to-the-last time interval. 

For distance, the highest correlation is for a lag of 3.  This offender repeat 
himselfherself every third time, which is exactly what was programmed into the example. 
Thus, knowing the location ofthe last event, it can be assumed that the individual will 
choose the same distance for the next interval as three earlier. Finally, all lags show a 
perfect 1.0 correlation for bearing. The lowest one is taken, which is a lag of 1. That is, 
this individual repeats the direction every single time (Le., he/she always travels in the 
same direction). Thus, in summary, the correlogram shows that the individual repeats the 
time interval every other time, the distance every third time, and the direction every time. 

The CWA - Diagnostics routine merely confirms these correlations. The regression 
equations yield an R2 of 1.0 (unadjusted) for each of three variables, for the appropriate lag. 
For example, table 10.7 above shows the regression results for distance for a lag of 3 
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The adjusted correlogram show a similar pattern, though the absolute correlations 
have been reduced. The best decision would still be for a lag of 2 for time, a lag of 3 €or 
distance, and a lag of 1 for bearing. Figure 10.4 shows a graph ofthe correlograrn. 
CrimeStat has a built-in graph function for the correlogram and adjusted correlogram. 

Table 10.7 

Coefficient 
Constant 0.000000 
coefficient 1 .OOOOOO 

Std Error t P(2 Tail) 
0.00000 0.00000 0.00000 
0.00000 0.00000 0.00000 
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Finally, for prediction, it is apparent that the best method would be to use a 
regression equation with lags of 2 for time, 3 for distance, and 1 for bearing. Table 10.8 
shows the output. As can be seen, the routine predicts exactly the next time and location. 
The next event for this completely predictable serial offender will be on day 39 at the 
location with coordinates X=26, Y=26. 

Table 10.8 
icted Results for Serial Offen 

egression Eq M atio n w itb 
Lags of 2 for Time, 3 for Distance, 1 for 

Time interval 2.00000 13 Regression 2 
Distance interval 1.41421 13 Regression 3 
Bearing interval 44.99997 13 Regression 1 

Predicted time ............. : 39.00000 
Predicted X coordinate : 26.00000 
Predicted Y coordinate : 26.00000 

The regression equation is the best model in this case. The other methods produce 
reasonably close approximations, however. Table 10.9 shows the results of using other 
methods for prediction. As seen, a model where all three components (time, distance, 
bearing) were lagged by 1 as  well as a model where all three components were lagged by 3 
also produces the expected correct answer. The mean interval and median interval 
methods also produce reasonably close, though not exact, answers. In this particular case, 
the regression method with the best lags produced the optimal solution. 

Example 2: Another Completely Predictable Individua~ 

A second example is also a perfectly predictable individual. This time, the 
directional component changes. The directional trend is northward, but with changes in 
angle every third event. The time pattern is completely consistent with subsequent events 
occurring every two days. Table 10.10 presents the pattern and the logical next event 
while figure 10.5 displays the pattern 

The correlogram reveals that  both distance and bearing repeat themselves every 
third event while the time interval is repeated every time. The regression diagnostics 
show that there is perfect predictability for time and for distance, and high predictability 
for bearing (not shown). Finally, a regression model is used for prediction with lags of 1 for 
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Table 10.9 
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14* 26-.tjc 26.6. _ _  
Lag=2 14 27.0' 27.0 - 
Lag=3 . 14* 26.0"- 26.0, 

&2,d=3,b=Ij 14- 26 0 26 Ql- 

~ - -  2.3: 2 .o - 4  
2 3 ;  - I" 2 0  4 

-70"- -1- 

1.4 I 39.0 45.0 
1 4, x1 39.0 I 2 0  45 0 

Table 10.10 
redictable Serial Offender: 2 
(N = 14 incidents) 

Event X Y ~ i s ~ a n c ~  ays Interval 

Example o f a  

Time 

- 1 3 1  1 - 
2 1 3 2.8284 3 2 
3 1 5 2.0000 5 2 
4 3 7 2.8284 7 2 
5 1 9 2.8284 9 2 
6 1 11 2.0000 1 1  2 
7 3 13 2.8284 13 2 
8 1 15 2.8284 15 2 
9 1 17 2.0000 17 2 

10 3 19 2.8284 19 2 
I 1  1 21 2.8284 21 2 
12 1 23 2.0000 23 2 
--------------------____I_______________---------------------- 

Logica 1 
prediction 
for 
next event 13 3 25 2.8284 25 2 
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time, 3 for distance, and 3 for bearing. The model correctly predicts the expected time 
(days=25) and location (X=3, Y=25). Table 10.4.1 shows the results. 

o d s h g y  for G 

These two examples illustrate what the CWA routine is doing. There are three 
steps. First, the  sequential pattern is analyzed with the correlogram. This shows which 
lags have the strongest correlations between lags for time, distance, and bearing separately. 
Second, the pattern is tested with a regression model. The purpose is to determine how 
strong a relationship is any particular model. As will be suggested below, if a model is too 
weak or, conversely, too strong, it most likely will not predict very well. Third, a prediction 
model is selected. The user can utilize the regression model or use the mean interval or 
median interval. 

forneltt event 13 3 25 2.8284 25 - 2' 45 

- - " " ~  " 

"gllession: 
La$& 13 3 0  250 

i Lap2 13 1.9 2 5 2  

. . . .  . .., " , "  ~ .,,,. ~ .. ,, 

2 5  25.0 28.6 
2.8 25.0 2 .o 45.0 

^ -  

2 8  25.0 2.0 45.0 
2.4 25.2 2.0 22.5' 

Example 3: A Real Serial Offender 

How well does the CWA routine work with real serial offenders? People are not as 
predictable as  these examples; the examples are  algorithmic and people don't work like 
algorithms. But, to the extent to which there is some predictability in human behavior, the 
CWA routine can be a useful tool for crime analysis, detection, and apprehension. 
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To illustrate this, a serial offender was identified from a large data set obtained from 
Baltimore County (see Chapter 9). The individual committed 16 offenses between 1992 and 
1997 when he was eventually apprehended. The profile ofcrimes committed by this 
individual were quite diverse. There were f 1 larceny incidents (shoplifting and bicycle 
theft), 1 residential burglary, 1 commercial burglary, 2 assaults, and 1 robbery. 

To test the model, the first 15 incidents were used to  predict the 16'h. This allowed 
the error between the observed and predicted values for time and location to be used for 
evaluation. Figure 10.6 shows the sequencing of actions of the first 15 incidents committed 
by this individual, most ofwhich occurred in the eastern part ofBaltimore County. 

The correlogram revealed a complicated pattern (figure 10.7). The adjusted matrix 
was used because of the high correlations a t  higher-order lags. Nevertheless, the optimal 
lags appeared to be 1 for time, 3 €or distance, and 6 for bearing. A regression model was 
used to  test these parameters. Figure 10.6 also shows the predicted location for the next 
likely location (the red plus sign) and the location where the individual actually committed 
the 161h event (green triangle). The error in prediction was good. The distance between the 
actual and predicted locations was 1.8 miles and the error in predicting the time of the next 
location was 3.9 days. Overall, the model did quite well for this individual. 

Event Sequence as an Analogy to a Correlated Walk 

Nevertheless, there are problems in the model for this case. First, this is not a true 
sequence of actions, but a pseudo-sequence. The individual doesn't go from the first event to 
the second event to the third event, and so forth. A considerable time may elapse between 
events. Similarly, distance and direction are conceptual only, not real. For example, in 
figure 10.6, the individual did not actually travel across the inlets of the Chesapeake Bay as 
the lines indicate. Distance between the events was actually much greater than estimated 
by the model and direction was more complex. Nevertheless, to the extent to which an 
individuaI makes a spatial decision about where to  go, implicitly he or she is making a 
directional and distance decision. In other words, the decision making process may take 
into account prior locations. In this case, the CWA routines would be useful. 

Example 4: A Second Real Serial Offender 

A second real example confirms that the method can produce reasonably close 
predictions. An offender committed 13 crimes, including three incidents of shoplifting, eight 
incidents oftheft from a vehicle, one residential burglary, and one highway robbery. The 
correlogram showed that a lag of 1 was strongest for time, distance, and bearing (figure 
10.8). The R-squares were moderate (0.45 for time; 0.18 for distance; 0.18 for bearing). 
Using the regression method with a lag of 1 for each component, the likely location of the 
next event was predicted (Figure 10.9). The error between the predicted event and the 
actual event was, again, reasonable with a difference in time of 3.3 days and a difference in 
distance of 2.4 miles. 
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Bryan Hill 
Glendale Police Department 

Glendale, AZ 

The space-time analysis tools provided with Crimestat I1 add an  important 
element to a n  analyst’s review of a tactical prediction effort. Although the method 
for calculating the Correlated Walk Analysis (CWA) is still more experimental than 
proven, it allows the analyst to see potential patterns in relation to a suspect’s crime 
travel in terms of time, distance, and direction. I n  a recent burglary series involving 
several jurisdictions in our county, the CWA technique was used as part of an 
aggregate process referred to as the Probability Grid Method. That method 
combines results from several models to  predict the next likely area for a new hit in 
a crime series. One of the most confusing aspects of these burglaries was the fact 
that several jurisdictions were involved and the offenders seemed to bounce back 
and forth from one jurisdiction to the next. 

There were also 2 19 offenses in the series, providing considerable complexity. 
Because there were so many events, the distances could be anywhere from 0.5 miles 
to 20 miles, I  odd never really put my finger on what direction or distance the 
offender would hit next, but was confident a pattern existed and was likely changing 
over time. The following map shows the probability grid areas predicted and the 
CWA points predicted. The triangles shown represent the last four hits. The first hit 
was near the probability grid prediction in the northern portion of the map; however 
the subsequent hits were all very close to where the GWA routine predicted they 
would be. This was also a brand new area for these offenders and was a surprise to 
the department investigating these incidents. This area was not what was expected 
based on the SD ellipses and other methods used to predict the next event. The 
CWA tool requires more testing to determine the accuracy of its predictions, however 
it may turn out to be a valuable tool in a crime analyst’s arsenal. 
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However, it’s important not to  be overly optimistic about the technique. It is always 
possible to  find cases that fit a method very well. The above mentioned cases appear to do 
that.  Unfortunately, the method is not a magic elixir for predicting serial offenders. Like 
any method, it has error. It is also a fairly new tool in crime analysis so that we don’t have 
a lot ofexperience with it. The one example ofits  use was by Helms (1999), who also is 
cautious about its utility. 

Therefore, at this point, I cannot give conclusive results about whether the method is 
accurate or not and under what conditions it is best used. It will take some experience to 
know how effective it is for crime analysis. 

To explore the accuracy of the method, 50 serial offenders were identified from a 
large data base ofmore than 41,000 incidents in Baltimore County between 1993 and 1997 
(see Chapter 9). The 50 offenders were identified based on knowing the dates on which they 
committed crimes, or at  least on which they committed crimes for which they were charged 
and eventually tried. The number of incidents varied from a low of 7 incidents to a high of 
38 incidents. An attempt was made to produce balance in the number ofincidents, though 
the actual distribution of cases did reflect the availability ofcandidates in the data base. 
For the fifty individuals, the distribution of incidents was 7 (five individuals), 8 (four 
individuals), 9 (six individuals), 10 (two individuals), 11 (five individuals), 12 (five 
individuals), 13 (six individuals), 14 (three individuals), 15 (six individuals), 17 (two 
individuals), and one individual each for 20, 21,24, 29 and 38 incidents. 

To test the CWA model, the last event Committed by these individuals was removed 
so that N-1 events could be used to  predict event N. In this way, it is possible to  evaluate 
the accuracy of the method. 

Ten methods were compared: 

1. 

2. 

3 .  
4. 
5. 
6 .  
7. 
8. 
9. 
10. 

The optimal regression method for time with the lag having the strongest 
relationship being selected; 
The optimal regression method for location (distance and bearing) where the 
with the lags for distance and bearing having the strongest relationship being 
selected; 
A regression model for time with a lag of 1; 
A regression model for location with a lag of 1 (for both distance and bearing); 
The mean interval for time; 
The mean interval for location (distance and bearing); 
The median interval for time; 
The median interval for location (distance and  bearing); 
The mean center of the incidents (for location only); and 
The center of minimum distance of the incidents (for location only). 

The latter two methods were used for reference. In Chapter 9, we saw that center of 
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minimum distance, particularly, was among the best, ifnot the best, at predicting the origin 
location of serial offenders. The reason is because this statistic minim izes the distance to all 
incident locations. The mean center was close behind, though not quite as  good. As an 
estimate, the center ofminimum distance is a very good index when there is a single origin 
that is being predicted. On the other hand, where the purpose is to predict the location of a 
next event, the center of minimum distance and mean center may be less than useful since 
they will not generally predict the actual next location. They minimize error, but are rarely 
accurate. For example, in the above mentioned cases (two theoretical and two real), these 
statistics did not predict accurately the location of the next event. Instead, they identified a 
point in the middle of the distribution where the sum of the distances t o  all incident 
locations was small. 

Error Analysis 

Each of the models was compared to  the actual time and location of the last, removed 
incident. For time, the error measure was in days (the absolute difference between the 
actual day and the predicted day). For location, the error measure was in miles (Le., 
absolute distance between the actual and predicted location). The results were mixed. 
Overall, error was moderate. Table 10.12 summarizes the overall error. 

Overall, the center of minimum distance and the mean center do produce, as  
expected, smaller errors for distance than any ofthe CWAmethods; as noted above, 
locations in the middle of the distribution of incidents will minimize error, but they won't 
predict accurately the location of a next event nor indicate in which direction it will occur 
from the last event. On the other hand, the CWA methods are particularly accurate, either. 
They work very well for a completely predictable offender, as was seen in the examples 
above, but not necessarily for real offenders. 

Among the CWA methods, the mean interval, median interval and the lag 1 
regression appears to  give better results for time than the optimal regression. Overall, the 
median interval produces the lowest median error, which is about a month and half. In 
terms of location, the mean interval and median intervals produce slightly better results 
than the optimal regression, though the lag 1 regression was just as good. 

Comparison of CWA 

At this point, 'it is unclear as  when it is best to use this technique. Three variables 
seem to explain part of the error variation. First, a larger sample size leads t o  better 
prediction, a s  would be expected (Table 10.13). 

For time, there is definitely an improvement in predictability with larger sample 
sizes. Among these methods, the mean interval and lag 1 regression show the smallest 
error for the largest samples (14 cases). For distance, on the other hand, generally, the 
error increases with increasing sample size. The one exception is for the optimal regression 
method where medium-sized samples (10-13 cases) produce the lowest error. 

45 1 

 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 



verage an 

Average edian 
Error Error 

Tim e (dleys) 
Opt ima 1 regression : time 112.2 79.8 
Lag 1 regression: time 88.1 70.0 
Mean interval: time 89.7 64.9 
Median interval: time 91.2 45.5 

Dista M C C  (miles)  
Optimal regression : location 6.4 5.4 
Lag 1 regression: location 5.7 4.2 
Mean interval: location 5.8 4.7 
Median interval location 5.3 3.9 

Reference Locat ion (miles) 
Mean center 3.3 I .7 
Center of minimum distance 3.1 1.2 

Variables Affecting Predictabi l i ty  

Long t i m e  span 

There are a variety ofreasons for these strange results, but one reason may be the 
time span ofthe events. Some ofthese offenders committed crimes over a long period, up to  
five years. Sample size is intrinsically related to the time span (r=0.55). The longer the 
time span that an offender commits crimes, the more incident he/she will perpetrate. With 
increasing time, the individual’s behavior patterns may change. 

For those offenders with many incidents, a separate analysis was conducted of the 
events occurring within the last year. Many of these individuals appeared to have moved 
thcir base ofoperation over time, so the isolation ofthe most recent events was done in 
order to  produce a clearer behavior pattern. The results, while promising, were not 
dramatic. Accuracy was improved a little compared to using the full sequence, particularly 
spatial accuracy. However, even with the last few events, these frequently occurred over a 
long time period (up t o  two years). Consequently, the idea of isolating a ‘clean’set of events 
did not materialize, at least with these data. On the other hand, with a data set ofonly 
recent events, it may be. possible to  improve predictability. 
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A second variable that appears to have an effect is the strength of predictability, 
based on the first N-1 cases. For the diagnostics routine, a s  the overall R-square for the 
regression equation increases, the regression equation does better. However, with very high 
R-square coefficients, the error is worse. Table 10.14 shows the relationship. 

The lowest error is obtained with moderate R-square coefficients, for both time and 
distance. This is why one has t o  be careful with very high lagged correlations in the 
correlogram and high R-squares in the diagnostics. Unless one is dealing with a perfectly 
predict able in div id u a 1 (as the two t h eor et ica 1 examples illu s tr  a t  ed), h igh correlations may 
be a result of a very small sample size, rather than any inherent predictability. 

i t ~ t ~ ~ ~ s  o f t b e  Technique 

In short, users should be careful about using the CWA technique. It can be useful for 
identifying repeating patterns by an offender, but it won’t necessarily predict accurately the 
offender’s next actions. There are a variety of reasons for the lack ofpredictability. First, 
there may be intermediate events that  are unknown. With each of these offenders in the 
Baltimore County data base, there is always the possibility that  the individuals committed 
more crimes for which they were not charged. The sequential analysis assumes that all the 
events a re  known. But this may not be the case. 

A simulation on several cases was conducted by removing events and then re-running the 
correlogram and prediction models. Removing one event did not appreciably alter the 
relationship, but removing more than one event did. In other words, if there are unknown 
events, the true sequential behavior pattern ofthe offender may not be properly identified. 
Considering that most offenders commit fewer than 10 incidents before they get caught, the 
st atistical effect of missing information may be critical. 

A second reason has been alluded to already. In applying the model to crime events, 
it is not a true sequential model, but apseudo-sequential model since much time may 
intervene between events. Distance and direction are conceptual in the sense that the 
individual doesn’t directly orient from one event to the other, but returns to hidher living 
patterns. Thus, what may appear to  be a repeating pattern may not be. Here, the issue of 
sample size is critical. If there are only a few incidents on which to  base an analysis, one 
could see a pattern which actually doesn‘t exist. One has to be careful about drawing 
inferences from very small samples. 

A third reason is that  people are inherently unpredictable. The two algorithmic 
examples produced excellent results, but few persons are  that systematic about their 
behavior. Therefore, we must be cautious in expecting too much out of the model. 
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Table 10.13 
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B.8 85.1, 667 71.2 * 61 68 61 * 4.3 4.1 

T a b ~ e  10.14 

ietion Error 
Reg r e s si o n Metb o d s 

Time (days) Distance (miles) 

R-Sauare Repression Repression Repression Repression 
~ ~ ~ ~ r n a ~  Lag 1 ~ ~ t i ~ a ~  Lag 1 

8 - 0.29 93.7 90.9 6.7 6.3 

8.30 - 0.59 89.3 33.8 6.0 5.0 

0.60 + 164.3 122.7 6.3 5.2 

Conclusion 

Nevertheless, the model has utility. First, it can help police identify whether there is 
a pattern in an offender's behavior. Knowing that there is a pattern can help in planning 
an arrest strategy. Even if the strategy does not pay off every time, it may improve police 
effectiveness. In  short, the CWA can help a police department analyze the sequential 
behavior of an offender they are trying to catch. They may be able to anticipate a new event 
and may be able to warn people who are more likely to be attacked by this individual. If 
used carefully, the model can be useful for crime analysis and detection. 

Second, it can encourage the development of additional predictor tools for 
individuals. As mentioned above, the center of minimum distance produces a 'best guess' 
estimate in the sense that it minimizes the distance to  the next event. It usually doesn't 
predict the next event, but it does produce a minimal error. If used in conjunction with the 
CWA, it may be possible to narrow the search area for the next event. 
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Third, the CWAmodel can stimulate research into crime prediction. Police are 
always trying to predict the next event by an offender and will use multiple techniques and 
a lot ofintuition in trying to ‘out-guess’an offender. It is hoped that the CWA model will 
stimulate more research into predicting the sequence of offender behavior as  well into how 
those sequences aggregate into a large spatial pattern, Most ofthis text has been devoted 
to analyzing the spatial patterns of a large number of events. The statistics have, perhaps 
naively, assumed that each ofthose events were independent. In reality, they aren‘t since 
many crimes are Committed by the same individuals. In theory, a distribution of crime 
incidents could be disaggregated into a distribution ofsequences of events committed by the 
same offenders, if we had enough information. Understanding how aggregate distributions 
is a by-product of the behavior of a limited number of individuals is an important research 
goal that needs to be addressed. 
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1. It would be possible to make a one-tailed test with the simulation. For example, if 
one is only interested in the degree of clustering, one could adopt the 95 percentile 
as  the threshold. An observed Mantel value that was lower than this threshold 
would be consistent with the null hypothesis. 

2. Henderson, Renshaw and Ford (1981) defined the correlated walk as a two- 
dimensional walk where the sum of the probabilities in four directions along a 
lattice are: 

P = p + q + 2r = 1 

where P is the total probability (l), p is the probability of continuing in the same 
direction, q is the  probability ofmoving in an opposite direction, and T is the 
probability of moving one unit to the right or to  the left. The advantage of this 
formulation is that the probabilities do not have to be equal (Le., p could exceed q or 
r). Nevertheless, the individual steps can be considered a special case of a 
correlated random walk in the plane (Henderson, 1981). 

The non-lattice two dimensional case can also be considered a recurrent random 
walk since a step in any direction (not just along a lattice) can be considered the 
result of two steps, one in the X direction and one in the Y (or, alternatively, a 
pairing ofall steps in the X direction with all steps in the Y direction). 
Unfortunately, this logic does not apply to more than two dimensions. Such multi- 
dimensional walks do not have to return to their origin. However, Spitzer (1963) has 
shown that an  independent walk is recurrent if the second moment around the 
origin is finite. 
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Y IC 1 
Crimestat supports Dynamic Data Exchange (DDE). This allows the program to be 

linked to another program, which can call up CrirPzeStat as a routine. The following are the 
programming codes used to support DDE commands. 

DE Topics That Sup 
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CrimeStat’s DDE Topics That Suppart the DDE “request” Command 

Crimestat’s DDE Topics That Support the DDE “execute” Command 
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Example: ~ o ~ ~ r o l l ~ ~ ~  CrimeStat from within Visual basic 

Public Function OpenCrimeStat(topic As String) As Variant 
On Error Resume Next 
Dim channel, I 
Dim file As String 
file = "CrimeStat.exe" 
channel = D DE In it ia t e("Cr im e S t a t 'I, topic) 
If Err Then 

Err = 0 
I = Shell(file, 1) 
If Err Then 

Return 
End If 
channel = DDEInitiate("CrimeStat", topic) 

End If 
OpenCrimeStat = channel 

End Function 

Public Sub TestCrimeStatDde(foo As String) 
On Error Resume Next 
Dim file As String 
Dim channel 

file = "SampleData.dbf' 
channel = OpenCrimeStatC'Primary File") 
DDEPoke channel, "Coordinate", "Projectedl Feet" 
DDEPoke channel, "File", "RemoveAlf" 
DDEPoke channel, "File", "AddDbfFilel 'I & file 
DDEPoke channel, "X", file & "1 LON" 
DDEPoke channel, "Y", file & "1 LAT" 
DDEP oke channel, "Coordinate", 'Xongtitude, latitude1 Decimal degrees" 
DDETerm inate channel 

file = "Grid.dbf" 
channel = OpenCr im eStat ("Refer ence File") 

A-3 

 and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 
 been published by the Department. Opinions or points of view expressed are those of the author(s) 
This document is a research report submitted to the U.S. Department of Justice. This report has not 



DDEPoke channel, "Source", "From File" 
DDEPoke channel, "True Grid", "0" 
DDEPoke channel, "File", "RemoveAll" 
DDEPoke channel, "File", "AddDbflFileI I' & file 
DDEPoke channel, "X", file & "1 LON" 
DDEPoke channel, "Y", file & "1 LAT" 
DDEPoke channel, "True Grid", "108" 
DDEPoke channel, "Source", "Generated" 
DDEPoke channel, "Bound", "-78.51 22.41 -75.31 24.2" 
DDEP oke channel, "Cell Specification", "By cellspacingl 0.5" 
DDEPoke channel, "Cell Specification", "By number of columns1 20" 
DDETer m ina t e channel 

channel = OpenCrimeS ta t ("Measuremen t Parameters $7 
DDEP ok e chann el, "Me astir em en t Type", "Direct 
DD E P oke channel, "Me a sur em en t Type", "Indirect 
DDEPoke channel, ''Area'', "734.121 Square meters" 
DDEPoke channel, "Length", "1734.121 meters" 
DDETer mina t e c h a m  el 

ch an ne 1 = Open Cr im eS t a t ("In t erp olat ion 'I) 
DD EE xe cu t e channel, "select " 
DDETerminate channel 

End Sub 

Private Sub Cr im es t  at Qu it-Click () 
On Error Resume Next 
Dim channel 
channel = OpenCrimeStat("System") 
DDEExecut e channel, "quit" 
DDETerminate channel 

End Sub 
Private Sub Test Cr im eS t at-Click() 

End Sub 
Test Cr im eS t at Dd e '%a r " 
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s 

The following presents methods for testing the spatial differences between two 
distributions. At this point, Crimestat  does not include routines for testing the differences 
between two or more samples. The following is provided for the reader's information. 
Chapter 4 discussed the calculation of these statistics as a single distribution. 

ifferences in t ean Center of Two Samples 

For differences between two samples in the mean center, it is necessary to test both 
differences in the X coordinate and differences in the Y coordinates. Since CriineStat 
outputs both the mean X, mean U, standard deviation of X, and standard deviation of Y, a 
simple t-test can be set up. The null hypothesis is that the mean centers are  equal 

and the alternative hypothesis is that the mean centers are  not equal 

Because the true standard deviations of sample A, o~~ and C T ~ ~ ,  and sample B, a,, 
and oYB, are not known, the sample standard deviations are taken, SxA,  SYA, S,, and Sy8. 
However, since there are two different variables being tested (mean of X and mean of Y for 
groups 1 and 2), the alternative hypothesis has two fbndamentally different 
interpretations: 

Comparison I: That EITHER pXA # pXB OR pyA$ pys is true 

Comparison 11: That BOTH pXA + pxB AND pyA+ pyB are true 

In the first case, the mean centers will be considered not being equal if either the 
mean of X or the mean of Y are significantly different. In the second case, both the mean of 
and the mean of Y must be significantly different for the mean centers to  be considered not 
equal. The first case is clearly easier to fidfill than the second. 

S i g ~ i ~ i c a n c ~  levels 

By tradition, significance tests for comparisons between two means are made at  the 
cts.05 or as.01 levels, though there is nothing absolute about those levels. The significance 
levels are selected to minimize Type I Errors, inadvertently declaring a difference in the 
means when, in reality, there is not a difference. Thus, a test establishes that the 
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likelihood of falsely rejecting the null hypothesis be less than one-in-twenty (less strict) or 
one-in-one hundred (more strict). 

However, with multiple comparisons, the chances increase for finding ‘significance’ 
due to the multiple tests. For example, with two tests - a difference in the means of the X 
coordinate and a difference in the means of the Y coordinate, the likelihood of rejecting the 
first null hypothesis (pxa f pxB) is one-in-twenty and the likelihood of rejecting the second 
null hypothesis (puA$ kB) is also one-in-twenty, then the likelihood ofrejecting either one 
null hypothesis or the other is actually one-in-ten. 

To handle this situation, comparison I - the ‘either/or’condition, a Bonferoni test is 
appropriate (Anselin, 1995; Systat, 1996). Because the likelihood of achieving a given 
significance level increases with multiple tests, a ’penalty’must be assigned in finding 
either the differences in means for the X coordinate or differences in means for the Y 
coordinates significant. The Bonferoni criteria divides the critical probability level by the 
number of tests. Thus, i f the a1.05 level is taken for rejecting the null hypothesis, the 
critical probability for each mean must be .025 (.05/2); that is, differences in either the 
mean of X or mean of Y between two groups must yield a significance level less than .025. 

For comparison 11 - t h e  “both/and’condition, on the other hand, the test is more 
stringent since the differences between the means o fX and the means ofY must both be 
significant. Following the logic of the Bonferoni criteria, the critical probability level is 
multiplied by the number of tests. Thus, if the a=.05 level is taken for rejecting the null 
hypothesis, then both tests must be significant at the as.10 level (i.e., .05*2).’ 

Tests 

The statistics used are for the t-test of the difference between means (Kanji, 1993). 

a. First, test for equality of variances by taking the ratio of the variances 
(squared sample standard dcviat ions) of both the X and Y coordinates: 

with (N, - 1) and (NB - 1) degrees of freedom for groups A and B respectively. 
This test is usually done with the larger of the variances in the numerator. 
Since there are  two variances being compared (for X and Y, respectively), the 
logic should follow either I or I1 above (Le., if either are to be true, then the 
critical a will be actually a12 for each; ifboth must be true, then the critical a 
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will be actually 2*a for each). 

b. Second, if the variances are considered equal, then a t-test for two group 
means with unknown, but equal, variances can be used (Kanji, 1993; 28). 
Let 

where the summations are  for i=l to N within each group separately. Then 
the test becomes 

with (N, + N, - 2) degrees of fieedom for each test. 

c. Third, if the variances are not equal, then a t-test for two group means with 
unknown and unequal variances should be used (Kanji, 1993; 29). 
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with degrees of freedom 

for both the X and Y test. Even though this latter formula is cumbersome, 
in practice, if the sample size of each group is greater than 100, then the t- 
values for infinity can be taken as a reasonable approximation and the above 
degrees of freedom need not be tested (t=l.645 for a=.05; t=l.960 for a=.Ql). 

d. The significance levels are those selected above. For comparison I - that  
either differences in the means of X or differences in the means of Y are 
significant, the critical probability level is a/2 (e.g., .OW2 = .025; .01/2 = . O M ) .  
For comparison TI - that both differences in the means of X and differences 
in the means of Y are significant, the critical probability level is a*2 (e.g., 
.05*2 = .lo; .01*2 - -02). 

e. Reject the null hypothesis if: 

Comparison I: Either tested t-value (t, or ty) is greater than the 
Critical t for a/2 

Comparison 11: Both tested t-values (t, and tY) are greater than the 
cr it ica 1 t for a*2 
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To illustrate, compare the distribution of burglaries in Baltimore County with those 
of robberies, both for 1996. Figure B.l shows the mean center of all robberies (blue square) 
and all residential burglaries (red triangle). As can be seen, the mean centers are located 
within Baltimore City, a property of the unusual shape of the county (which surrounds the 
city on three sides). Thus, these mean centers cannot be considered an unbiased estimate 
of the metropolitan area, but unbiased estimates for the County only. When the relative 
positions d t h e  two mean centers are compared (figure 4.12 in chapter 41, the  center of 
robberies is south and west of the center for burglaries. Is this difference significant or 
not? 

To test this, the standard deviations of the two distributions are first compared and 
the F-test of the larger to the smaller variance is used (equations 3.1 and B.2). CrimeStat 
provides the standard deviation of both the X and Y coordinates; the variance is the square 
ofthe standard deviation. In this case, the variance for burglaries is slightly larger than 
for robberies for both the X and Y coordinates. 

Because both samples are  fairly large (1180 robberies and 6051 burglaries), the 
degrees offreedom are  also very large. The F-tables are a little indeterminate with large 
samples, but the variance ratio approaches 1.00 as the sample reaches infinity. An 
approximate critical F-ratio can be obtained by the next largest pair ofvalues in the table 
(1.22 for ps .05  and 1.32 for ps.01). Using this criteria, differences in the variances for the 
X coordinate are probably not significant while that  for the Y coordinates definitely a re  
significant. Consequently, the test for a difference in means with unequal variances is 
used (equations B.7, B.8 and B.9). 
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Figure 8.1: 
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0.0136 

0.0018 
_--- -- = 7.36 (p1.005) - - 

Therefore, whether we use the ‘either/or’test (critical ~11.025) or the %oth/and’ test 
(critical as . l ) ,  we find that the difference in the mean centers is highly significant. 
Burglaries have a different center of gravity than robberies in Baltimore County. 

Since the standard distance deviation, S,, (equation 4.6 in chapter 4) is a standard 
deviation, differences in the standard distances oftwo groups can be compared with an 
equality of variance test (Kanji, 1993, 37). 

with (N, - 1) and (N, - 1) degrees of freedom for groups A and B, respectively. This test is 
usually done with the larger of the variances in t h e  numerator. Since there is only one 
variance being compared, the critical c1 are as listed in the tables. 

From CrimeStat, we find that the standard distance deviation ofburglaries is 8.44 
miles while that for robberies is 7.42 miles. In  chapter 4, figure 4.12 displayed these two 
standard distance deviations. As can be seen, the dispersion ofincidents, a s  defined by the 
standard distance deviation, is greater for burglaries than for robberies. The F-test of the 
difference is calculated by 

with 6050 and 11 80 degrees of freedom respectively. Again, the F-tables are slightly 
indeterminate with respect to large samples, but the next largest F beyond infinity is 1.25 
for ps.05 and 1.38 for p1.01. Thus, it appears that burglaries have a significantly greater 
dispersion than robberies, at least at  the ps.05 level. 
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In a standard deviational ellipse, there are actually six variables being compared: 

Mean of X 
Mean of Y 
Angle of rotation 
Standard deviation along the transformed X axis 
Standard deviation along the transformed Y axis 
Area of the ellipse 

Differences in the mean centers 

Comparisons between the two mean cehters can be tested with the above statistics. 

ifferences in t e angle o f r o t a t ~ o n  

Unfortunately, to our knowledge, there is not a formal test for the difference in the 
angle of rotation. Until this test is developed, we have to rely on subjective judgements, 

Differences in the standard deviations along the transformed axes 

The differences in the standard deviations along the transformed axes (X and Y )  can 
be tested with an equality of variance test (Kanji, 1993,37). 

(B. 1 1 )  

(B.12) 

with (N, - 1) and (NB - 1) degrees offreedom for groups A and B respectively. This test is 
usually done with the larger of the variances in the numerator. The example above for 
comparing the mean centers of Baltimore County burglaries and robberies illustrated the 
use ofthis test. 

Differences in the areas of the two ell ipses 

Since an area is a variance, the differences in the areas of the two ellipses can be 
compared with an equality of variance test (Kanji, 1993,37). 
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(B.13) 

with (N, - 1) and (N, - 1) degrees offreedom for groups 1 and 2 respectively. This test is 
done with the larger of the variances in the numerator. 

The testing of each ofthese parameters for the difference between two ellipses is 
even more complicated than the difference between two mean centers since there are up to 
six parameters which must be tested (differences in mean X, mean Y, angle of rotation, 
standard deviation along transformed X axis, standard deviation along transformed Y axis, 
and area of ellipse). However, as with differences in mean center of two groups, there are 
two different interpretations of differences. 

Comparison I: That the two ellipses differ on ANY of the parameters 

Comparison 11: That the two ellipses differ on ALL parameters. 

In the first case, the critical probability level, a, must be divided by the number of 
parameters being tested, alp. In theory, this could involve up t o  six tests, though in 
practice some of these may not be tested (e&, the angle of rotation). For example, if five of 
the parameters are  being estimated, then the critical probability level a t  as.05 is actually 
ai .Q1 (.05/5). 

In the second case, the critical probability level, a, is multiplied by the number of 
parameters being tested, a*p, since aEE tests must be significant for the two ellipses t o  be 
considered as  different. For example, if five ofthe parameters are being estimated, then 
the critical probability level, say, at  as.05 is actually w.25 (.05*5). 

Differences in ean Direction Between Two Groups 

Statistical tests of different angular distributions can be made with the directional 
mean and variance statistics. To test the difference in the angle of rotation between two 
groups, a Watson-Williams test can be used (Kanji, 1993; 153-54). The steps in the test are 
as follows: 

1 .  All angles, €Ii, are  converted into radians 

Radian , - Angle, * d l 8 0  (33.14) - 

2. For each sample separately, A and B ,  the following measures are  calculated 
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N ,  N, 
cj = 22 cos 0, sj = sin oj 

A= 1 A=l 

N, N, 
c, = z c o s  8, s,= Zsine, 

(B.15) 

(B. 16) 
B= 1 B=l 

where 0, and 8, are the individual angles for the respective groups, A and B. 

3 .  Calculate the resultant lengths of each group 

R, = SQRT[ C,’ + SAz ] (B.17) 

R, = SQRT[ CB2 + SB2 ] (B-18) 

4. Resultant lengths for the combined sample are calculated as well as the 
length of the resultant vector. 

c = c, + CB (B.19) 

s = s, + s, 
R =  SQRT[ C2 + S‘] 

(B.20) 

(B.21) 

5 .  An F-test of the two angular means is calculated with 

(B.23) 

(B.24) 

(B.25) 

with k being identified from a maximum likelihood Von Mises distribution by 
referencing R* with 1 and N-2 degrees of freedom (Mardia, 1972; Gaile and 
Burt, 1980). Some ofthe reference k’s a re  given in table B.l (from Mardia, 
1972; Kanji, 1993, table 38). 
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axi ikeli Estimates for Given R" in t 
(from Mardia, 6972; Kanji, 1993, table 38) 

- R' k 
0.00 0.00000 
0.05 0.1001 3 
0.10 0.20101 
0.15 0.30344 
0.20 0.40828 
0.25 0.5 1649 
0.30 0.62922 
0.35 0.74783 
0.40 0.87408 
0.45 1.01022 
0.50 1.15932 
0.55 1.32570 
0.60 1.51574 
0.65 1.73945 
0.70 2.0 1363 
0.75 2.36930 
0.80 2.87129 
0.85 3.68041 
0.90 5.3047 
0.95 10.2716 
1-00 in finit y 

Table B.2 

~ o ~ p a r i s o n  of  Two Groups for Angular Measurements 
Angle of Deviation From Due North 

Group A 
Me asu red 

Incident . Angle 

160 
184 
240 
100 
95 

120 

B-1 1 

Grouo B 
Measured 

Incid en  t Anple 

196 
212 
297 
280 
235 
353 
190 
340 
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4 .  Reject the null hypothesis of no angular difference if the calculated F is 
greater than the critical value F,,N-2. 

Example 2: ~ ~ g ~ ~ ~ r  ~ ~ ~ ~ a r i s o ~ s  between two groups 

A fourth example is that of sets of angular measurcmcnls from two different groups, 
A and B. Table B.2 provides the data for the two sets. The angular mean for Group A is 
144.83" with a directional variance of 0.35 while the angular mean for Group B is 258.95' 
with a directional variance of 0.47. The higher directional variance for Group B suggests 
that  there is more angular variability than for Group A. 

Using the Watson-Wheeler test, we compare these two distributions. 

1. All angles are converted into radians (equation €3.14). 

2. The cosines and sines of each angle are taken and are summed within groups 
(equations B.15 and B.16). 

C, = -3.1981 
C, = -.8078 S , =  4.1381 

SA = 2.2533 

3. The resultants are calculated (equations B.17 and B.18). 

R, = 3.9121 
R, = 4.2162 
Combined sample characteristics are defined (equations B.19 through B.23). 4. 

C = 4.0059 

R = 4.4271 
N = 1 4  
R" = 0.5806 

S = -1.8848 

5 .  Once the parameter, k, is obtained (approximated from table 4.1 or obtained 
from Mardia, 1972 or Kanji, 1993), g is calculated, and an  F-test is 
constructed (equations B.24 and B.25). 

k =  1.44 
g = 0.7396 
F = 5.59 

4 .  The critical F for 1 and 12 degrees of freedom is 4.75 (pr.05) and 9.33 
bs.01). The test is significant at  the p1.05 level and we reject the null 
hypothesis of no angular differences between the two groups. Group A has a 
different angular distribution than Group B. 
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1. There a re  limits to  the Bonferoni logic. For example, if there were l Q  tests, having 
a threshold significance level of .005 (.05 / 10) for the ‘either/or’conditions and a 
threshold significance level of “50 (.05 * 10) for the ‘bothfand’would lead to an 
excessively difficult test in the first case and a much too easy test in the second. 
Thus, the Bonferoni logic should be applied to only a few tests (e.g., 5 or fewer). 
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