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Chapter 8
Kernel Density Interpolation

In this chapter, we discuss tools aimed at interpolating incidents, using the kernel
density approach. Interpolation is a technique for generalizing incident locations to an
entire area. Whereas the spatial distribution and hot spot statistics provide statistical
summaries for the data incidents themselves, interpolation techniques generalize those
data incidents to the entire region. In particular, they provide density estimates for all
parts of a region (i.e., at any location). The density estimate is an intensity variable, a Z-
value, that is estimated at a particular location. Consequently, it can be displayed by
either surface maps or contour maps that show the intensity at all locations.

There are many interpolation techniques, such as Kriging, trend surfaces, local
regression models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992;
Cleveland, Grosse and Shyu, 1993; Venables and Ripley, 1997). Most of these require a
variable that is being estimated as a function of location. However, kernel density
estimation is an interpolation technique that is appropriate for individual point locations
(Silverman, 1986; Hirdle, 1991; Bailey and Gatrell, 1995; Burt and Barber, 1996; Bowman
and Azalini, 1997).

Kernel Density Estimation

Kernel density estimation involves placing a symmetrical surface over each point,
evaluating the distance from the point to a reference location based on a mathematical
function, and summing the value of all the surfaces for that reference location. This
procedure is repeated for all reference locations. It is a technique that was developed in
the late 1950s as an alternative method for estimating the density ofa histogram
(Rosenblatt, 1956; Whittle, 1958; Parzen, 1962). A histogram is a graphic representation of
a frequency distribution. A continuous variable is divided into intervals of size, s (the
interval or bin width), and the number of cases in each interval (bin) are counted and
displayed as block diagrams. The histogram is assumed to represent a smooth, underlying
distribution (a density function). However, in order to estimate a smooth density function
from the histogram, traditionally researchers have linked adjacent variable intervals by
connecting the midpoints of the intervals with a series of lines (Figure 8.1).

Unfortunately, doing this causes three statistical problems (Bowman and Azalini,
1997):

1. Information is discarded because all cases within an interval are assigned to
the midpoint. The wider the interval, the greater the information loss.

2. The technique of connecting the midpoints leads to a discontinuous and not
smooth density function even though the underlying density function is
assumed to be smooth. Tocompensate for this, researchers will reduce the
width ofthe interval. Thus, the density function becomes smoother with
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Figure 8.1:
Constructing A Density Estimate From A Histogram
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smaller interval widths, although still not very smooth. Further, there are
limits to this technique as the sample size decreases when the bin width gets
smaller, eventually becoming too small to produce reliable estimates.

3. The technique is dependent on an arbitrarily defined interval size (bin
width). By making the interval wider, the estimator becomes cruder and,
conversely, by making the interval narrower, the estimator becomes finer.
However, the underlying density distribution is assumed to be smooth and
continuous and not dependent on the interval size of a histogram.

To handle this problem, Rosenblatt (1956), Whittle (1958) and Parzen (1962)
developed the kernel density method in order to avoid the first two of these difficulties; the
bin width issue still remains. What they did was to place a smooth kernel function, rather
than a block, over each point and sum the functions for each location on the scale. Figure
8.2 illustrates the process with five point locations. As seen, over each location, a
symmetrical kernel function is placed; by symmetrical is meant that is falls off with
distance from each point at an equal rate in both directions around each point. In this
case, it is a normal distribution, but other types of symmetrical distribution have been
used. The underlying density distribution is estimated by summing the individual kernel
functions at all locations to produce a smooth cumulative density function. Notice that the
functions are summed at every point along the scale and not just at the point locations.
The advantages of this are that, first, each point contributes equally to the density surface
and, second, the resulting density function is continuous at all points along the scale.

The third problem mentioned above, interval size, still remains since the width of
the kernel function can be varied. In the kernel density literature, this is called bandwidth
and refers essentially to the width of the kernel. Figure 8.3 shows a kernel with a narrow
bandwidth placed over the same five points while figure 8.4 shows a kernel with a wider
bandwidth placed over the points. Clearly, the smoothness of the resulting density
function is a consequence of the bandwidth size.

There are a number of different kernel functions that have been used, aside from
the normal distribution, such as a triangular function (Burt and Barber, 1996) or a quartic
function (Bailey and Gatrell, 1995). Figure 8.5 illustrates a quartic function. But the
normal is the most commonly used (Kelsall and Diggle, 1995a).

The normal distribution function has the following functional form:

1
go)=2{ [W,*L]* e —*e o} 8.1)

where d; is the distance between an incident location and any reference point in the region,
h is the standard deviation of the normal distribution (the bandwidth), W, is a weight at
the point location and I, is an intensity at the point location. This function extends to
infinity in all directions and, thus, will be applied to any location in the region.
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Figure 8.2:

Kernel Density Estimate
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Figure 8.3:

Kernel Density Estimate
Smalier Bandwidth
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Figure 8.4:
Kernel Density Estimate
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Figure 8.5:

Kernel Density Estimate
Summing of Quartic Kernel Function
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In CrimeStat, there are four alternative kernel functions that can be used, all of
which have a circumscribed radins (unlike the normal distribution). The quartic function
is applied to a limited area around each incident point defined by the radius, h. It falls off
gradually with distance until the radius is reached. Its functional form is:

I. Qutside the specified radius, h;

gx)=0 (8.2)

II. Within the specified radius, h:

3 d;
— 2
g(x;) = Z{ (W, *I]*[ ‘K;-;-;T-.-} *1- --il-;--] } (8.3)
where d, is the distance between an incident location and any reference point in the region,

h is the radius of the search area (the bandwidth), W, is a weight at the point location and
I, is an intensity at the point location.

The triangular (or conical) distribution falls off evenly with distance, in a linear
relationship. Compared to the quartic function, it falls off more rapidly. It alsohas a
circumscribed radius and is, therefore, applied to a limited area around each incident
point, h. Its functional form is:

11 Qutside the specified radius, h:

g(x)=0 8.4)

1I. Within the specified radius, h:

gx)= 2 [K- Kh]*d, . (8.5)
where K is a constant. In CrimeStat, the constant K is initially set to 0.25 and then re-

scaled to ensure that either the densities or probabilities sum to their appropriate values
(i.e., N for densities and 1.00 for probabilities).

The negative exponential (or peaked) distribution falls off very rapidly with
distance up to the circumscribed radius. Its functional form is:

I Qutside the specified radius, h:

gx) =0 (8.6)
il. Within the specified radius, h:

g(x) = X Axe ™ (8.7)
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where A is a constant and K is an exponent. In CrimeStat’s implementation, K is set to 3
while A is initially set to 1 and then re-scaled to ensure that either the densities or
probabilities sum to their appropriate values (i.e., N for densities and 1.00 for
probabilities).

Finally, the uniform distribution weights all points within the circle equally. Its
functional form is: '

11 QOutside the specified radius, h:
gx)=10 (8.8)

1I1. Within the specified radius, h:

g(x) = 2K (8.9)

where K is a constant. Initially, K is set to 0.1 but then re-scaled to ensure that either the
densities or probabilities sum to their appropriate values (i.e., N for densities and 1.00 for
probabilities).

Weighting Effects

The user can select these five different kernel functions to interpolate the data to
the grid cells. They produce subtle differences in the shape of the interpolated surface or
contour. The normal distribution weighs all points in the study area, though near points
ar¢ weighted more highly than distant points. The other four techniques use a
circumscribed circle around the grid cell. The uniform distribution weighs all points within
the circle equally. The quartic function weighs near points more than far points, but the
fall off is gradual. The triangular function weighs near points more than far points within
the circle, but the fall off is more rapid. Finally, the negative exponential weighs near
point much more highly than far points within the circle.

The use of any of one of these depends on how much the user wants to weigh near
points relative to far points. Using a kernel function which has a big difference in the
weights of near versus far points (e.g., the negative exponential or the triangular) tends to
produce finer variations within the surface than functions which are weight more evenly

(e.g., the normal distribution, the quartic, or the uniform); these latter ones tend to smooth
the distribution more.

However, Silverman (1986) has argued that it does not make that much difference
as long as the kernel is symmetrical. There are also edge effects that can occur and there

have been different proposed solutions to this problem (Venables and Ripley, 1997).

There have also been variations of the size of the of bandwidth with various
formulas and criteria (Silverman, 1986; Hiardle, 1991; Venables and Ripley, 1997).
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Generally, bandwidth choice fall into either fixed or adaptive (variable) choices (Kelsall and
Diggle, 1995a; Bailey and Gatrell, 1995). CrimeStat follows this distinction, which will be
explained below.

The kernel function can be expanded to more than two dimensions (Hérdle, 1991;
Bailey and Gatrell, 1995; Burt and Barber, 1996; Bowman and Azalini, 1997). Figure 8.6
shows a three-dimensional normal distribution placed over each of five points with the
resulting density surface being a sum of all five individual surfaces. Thus, the method is
particularly appropriate for geographical data, such as crime incident locations. The
method has also been developed to relate two or more variables together by applying a
kernel estimate to each variable in turn and then dividing one by the other to produce a
three-dimensional estimate of risk (Kelsall and Diggle, 1995a; Bowman and Azalini, 1997).

Significance testing of density estimates is more complicated. Current techniques
tend to focus on simulating surfaces under spatially random assumptions (Bowman and
Azaline, 1997; Kelsall and Diggle, 1995b). Because of the still experimental nature of the
testing, CrimeStat does not include any testing of density estimates in this version.

CrimeStat Kernel Density Methods

CrimeStat has two interpolation techniques, both based on the kernel density
technique. The first applies to a single variable, while the second to the relationship
between fwo variables. Both routines have a number of options. Figure 8.7 shows the
interpolation page in CrimeStat. Users indicate their choices by clicking on the tab and
menu items. For either technique, it is necessary to have a reference file, which is usually
a grid placed over the study region (see chapter 3). The reference file represents the region
to which the kernel estimate will be generalized (figure 8.8).

Single Density Estimates

The single kernel density routine in CrimeStat is applied to a distribution of point
locations, such as crime incidents. It can be used with either a primary file or a secondary
file; the primary file is the default. For example, the primary file can be the location of
motor vehicle thefts. The points can also have a weighting or an associated intensity
variable (or both). For example, the points could represent the location of police stations
while the weights (or intensities) represent the number of calls for service. Again, the user
must be careful in having both a weighting variable and an intensity variable as the
routine will use both variables in calculating densities; this could lead to double weighting.

Having defined the file on the primary (or secondary) file tabs, the user indicates
the routine by checking the ‘Single’ box. Also, it is necessary to define a reference file,
either an existing file or one generated by CrimeStat (see chapter 3). There are other
parameters that must be defined.
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Figure 8.6:

Kernel Density Surfaces
Summing of Normal Kernel Surfaces for 5 Points
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Figure 8.8:

Grid Cell Structure for Baltimore Region
108 Width x 100 Height Grid Cells
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File to be Interpolated

The user must indicate whether the primary file or the secondary file (if used) is to
be interpolated.

Method of Interpolation

The user must indicate the method of interpolation. Five types ofkernel density
estimators are used:

Normal distribution (bell; default)
Uniform (flat) distribution

Quartic (spherical) distribution

Triangular (conical) distribution

Negative exponential (peaked) distribution

o WD e

In our experience, there are advantages to each. The normal distribution produces
an estimate over the entire region whereas the other four produce estimates only for the
circumscribed bandwidth radius. Ifthe distribution of points is sparse towards the outer
parts of the region, then the four circumscribed functions will not produce estimates for
those areas, whereas the normal will. Conversely, the normal distribution can cause some
edge cffects to occur (e.g., spikes at the edge of the reference grid), particularly ifthere are
many points near one of the boundaries of the study area. The four circumscribed
functions will produce less of a problem at the edges, although they still can produce some
spikes. Within the four circumscribed functions, the uniform and quartic tend to smooth
the data more whereas the triangular and negative exponential tend to emphasize peaks’
and ‘valleys’. The differences between these different kernel functions are small, however.
The user should probably start with the default normal function and adjust accordingly to
how the surface or contour looks.

Choice of Bandwidth

The user must indicate how bandwidths are to be defined. There are two types of
bandwidth for the single kernel density routine, fixed interval or adaptive interval.

Fixed interval

With a fixed bandwidth, the user must specify the interval to be used and the units
of measurement (squared miles, squared nautical miles, squared feet, squared kilometers,
or squared meters). Depending on the type of kernel estimate used, this interval hasa
slightly different meaning. For the normal kernel function, the bandwidth is the standard
deviation of the normal distribution. For the uniform, quartic, triangular, or negative
exponential kernels, the bandwidth is the radius of the search area to be interpolated.

There are few guidelines for choosing a particular bandwidth other than by visual
inspection (Venables and Ripley, 1997). Some have argued that the bandwidth be no larger
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than the finest resolution that is desired and others have argued for a variation on random
nearest neighbor distances (see Spencer Chainey application later in this chapter). Others
have argued for particular sizes (Silverman, 1986; Hirdle, 1991; Kadafar, 1996; Farewell,
1999; Talbot, Kulldorff, Forand, and Haley, 2000).! There does not seem to be consensus
on this issue. Consequently, CrimeStat leaves the definition up to the user.

Typically, a narrower bandwidth interval will lead to a finer mesh density estimate
with all the little peaks and valleys. A larger bandwidth interval, on the other hand, will
lead to a smoother distribution and, therefore, less variability between areas. While
smaller bandwidths show greater differentiation among areas (e.g., between hot spot’and
‘Jow spot’zones), one has to keep in mind the statistical precision of the estimate. If the
sample size is not very large, then a smaller bandwidth will lead to more imprecision in the
estimates; the peaks and valleys may be nothing more than random variation. On the
other hand, if the sample size is large, then a finer density estimate can be produced. In
general, it is a good idea to experiment with different fixed intervals to see which results
make the most sense.

Adaptive interval

An adaptive bandwidth adjusts the bandwidth interval so that a minimum number
of points are found. This has the advantage of providing constant precision of the estimate
over the entire region. Thus, in areas that have a high concentration of points, the
bandwidth is narrow whereas in areas where the concentration of points is more sparse,
the bandwidth will be larger. This is the default bandwidth choice in CrimeStat since we
believe that consistency in statistical precision is paramount. The degree of precision is
generally dependent on the sample size of the bandwidth interval. The default is a
minimum of 100 points within the bandwidth radius. The user can make the estimate
more fine grained by choosing a smaller number of points (e.g., 25) or more smooth by
choosing a larger number of points (e.g., 200). Again, experimentation is necessary to see
which results make the most sense.

QOutput Units

The user must indicate the measurement units for the density estimate in points
per squared miles, squared nautical miles, squared feet, squared kilometers, or squared
meters. The default is points per square mile.

Intensity or Weighting Variables

If an intensity or weighting variable is used, these boxes must be checked. Be
careful about using both an intensity and a weighting variable to avoid ‘double weighting’.
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Density Calculations

The user must indicate the type of output for the density estimates. There are three
types of calculation that can be conducted with the kernel density routine. The
calculations are applied to each reference cell:

1. The kernel estimates can be calculated as absolute density estimates using
formulas 8.1-8.9, depending on what type of kernel function is used. The
estimates at each reference cell are re-scaled so that the sum of the densities
over all reference grids equals the total number of incidents; this is the
default value.

2. The kernel estimates can be calculated as relative density estimates. These
divide the absolute densities by the area ofthe grid cell. It has the advantage
of interpreting the density in terms that are familiar. Thus, instead ofa
density estimate represented by points per grid cell, the relative density will
convert this to points per, say, square mile.

3. The densities can be converted into probabilities by dividing the density at
any one cell by the total number of incidents.

Since the three types of calculation are directly interrelated, the output surface will
not differ in its variability. The choice would depend on whether the calculations are used
to estimate absolute densities, relative densities, or probabilities. For comparisons
between different types of crime or between the same type of crime and different time
periods, usually absolute densities are the unit of choice (i.e., incidents per grid cell).
However, to express the output as a probability, that is, the likelihood that an incident
would occur at any one location, then outputing the results as probabilities would make
more sense. For display purposes, however, it makes no difference as both look the same.

Output Files

Finally, the results can be displayed in an output table or can be output into two
formats: 1) Raster grid formats for display in a surface mapping program- Surfer for
Windows “dat’ format (Golden Software, 1994) or ArcView Spatial Analyst ‘asc’ format
(ESRI, 1998); or 2) Polygon grids in ArcView *shp’, MapInfo ‘mif’ or Atlas*GIS “bna’
formats.? However; all but Surfer for Windows require that the reference grid be created
by CrimeStat.

Example 1: Kernel Density Estimate of Street Roebberies

An example can illustrate the use of the single kernel density routine. Figure 8.9
shows a Surfer for Windows output of the 1180 street robberies for 1996 in Baltimore
County. The reference grid was generated by CrimeStat and had 100 columns and 108
rows. Thus, the routine calculated the distance between each of the 10,800 reference cells
and the 1180 robbery incident locations, evaluated the kernel function for each measured
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Figure 8.9:

Baltimore County Robberies: 1996-97
Kernel Density Interpolation
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distance, and summed the results for each reference cell. The normal distribution kernel
function was selected for the kernel estimator and an adaptive bandwidth with a minimum
sample size of 100 was chosen as the parameters.

There are three views in the figure: 1) a map view showing the location of the
incidents; 2) a surface view showing a three-dimensional interpolation of robbery density;
and 3) a contour view showing contours of high robbery density. The surface and contour
views provide different perspectives. The surface shows the peaks very clearly and the
relative density of the peaks. As can be seen, the peak for robberies on the eastern part of
the County is much higher than the two peaks in the central and western parts of the
County. The contour view can show where these peaks are located; it is difficult to identify
location clearly from a three-dimensional surface map. Highways and streets could be
overlaid on top of the contour view to identify more precisely where these peaks are
located. :

Figure 8.10 shows an ArcViewSpatial Analyst map of the robbery density with the
robbery incident locations overlaid on top of the density contours. Here, we can see quite
clearly that there are three strong concentrations of incidents, one spreading over a
distance of several miles on the west side, one on northern border between Baltimore City
and Baltimore County, and one on the east side; there is also one smaller peak in the
southeast corner of the County.

From a statistical perspective, the kernel estimate is a better hot spot’ identifier
than the cluster analysis routines discussed in chapter 6. Cluster routines group incidents
into clusters and distinguish between incidents which belong to the cluster and those
which do not belong. Depending on which mathematical algorithms are used, different
clustering routines will return differing allocations ofincidents toclusters. The kernel
estimate, on the other hand, is a continuous surface; the densities are calculated at all
locations; thus, the user can visually inspect the variability in density and decide what to
call a hot spot’ without having to define arbitrarily where to cut-off the hot spot’ zone.

Going back to the Surfer for Windows output, figure 8.11 shows the effects of
varying the bandwidth parameters. There are three fixed bandwidth intervals (0.5, 1, and
2 miles respectively) and there are two adaptive bandwidth intervals (a minimum of 25
and 100 points respectively). As can be seen, the fineness of the interpolation is affected by
the bandwidth choice. For the three fixed intervals, an interval of 0.5 miles produces a
finer mesh interpolation than an interval of 2 miles, which tends to ‘oversmooth’the
distribution. Perhaps, the intermediate interval of 1 mile gives the best balance between
fineness and generality. For the two adaptive intervals, the minimum sample size of 25
gives some very specific peak locations whereas the adaptive interval with a minimum
sample size of 100 gives a smoother distribution.

Which of these should be used as the best choice would depend on how much
confidence the analyst has in the results. A key question is whether the ‘peaks’are real or
merely byproducts of small sample sizes. The best choice would be to produce an
interpolation that fits the experience of the department and officers who travel an area.
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Figure 8.10
Baltimore County Street Robberies: 1996
Kernel Density Estimate
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Figure 8.11:

Interpolation of Baltimore County Auto Thefts
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Kernel Density Interpolation to Estimate Sampling Bias in the Climatic
Response of Sphagnum Spores in North America

Mike Sawada
Laboratory for Paleoclimatology and Climatology
University of Ottawa, Department of Geography, Canada

Sphagnum moss, the dominant species of bogs, thrives under certain ranges of
temperature and precipitation. Sphagnum releases spores for reproduction and these are
transported, often long distances, by wind and water. Thus, the presence of a spore in the
fossil record may not indicate nearby Sphagnum plants. However, spores should be most
numerous near Sphagnum plants. Over time, these spores and pollen from other plants
accumulate in lake and bog sediments and leave a fossil record of vegetation history.

We wanted to use the amount of fossil Sphagnum spores in different parts of North
America to infer past climates. To do so, we had to first show that Sphagnum spores are
most abundant in climates where Sphagnum plants thrive and secondly, that this center of
abundance is not biased sampling because of under sampling in parts of climate space.
First, we developed a Sphagnum spore response surface showing the relative abundance of
spores along the axes of temperature and precipitation (Fig. A).

CrimeStat was used in the second stage to develop a kernel density surface using a
quartic kernel for 3007 sample sites within climate space (Fig. B). These were smoothed
and visualized in Surfer. The surface showed that the intensity of points is higher in
regions surrounding the response maximum. This gave us confidence that the Sphagnum
response was real since other parts of climate space are well sampled but unlikely to
produce high spore proportions. This fact allowed climate inferences to be made within the
fossil record for past time periods using the amount of Sphagnum spores present.

Figures modified from Gajewski, Viau, Sawada et al. 2001. Global Biogeochemical Cycles,
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Describing Crime Spatial Patterns By Time of Day

Renato Assuncio, Claudio Beato, Braulio Silva
CRISP, Universidade Federal de Minas Gerais, Brazil

We used the kernel density estimate to visualize time trends for crime
occurrences on a typical weekday. We found markedly different spatial distributions
depending on the time, with the amount of crime varying and the hot spots,
identified by the ellipses, appearing in different places.

The analysis used 1114 weekday robberies from 1995 to 2000 in downtown
Belo Horizonte. Breaking the data into hours, we used the normal kernel, a fixed
bandwidth of 450 meters and outputted densities option (points per square unit of
area). Note that the latter option could be useful if one is interested only in the hot
spot locations, and not in the distribution during the day. To make the ellipses, we
used the nearest neighbor hierarchical spatial clustering technique with a minimum
of 35 incidents. We output the results to MapiInfo, keeping the same scale for all
maps. Four of them are shown below.
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Using Kernel Density Smoothing and Linking to ArcView:
Examples from London, England

Spencer Chainey
InfoTech Enterprises Europe
London, England

CrimeStat offers an effective method for creating kernel density surfaces. The
example below uses residential burglary incidents in the London Borough of
Croydon, England for the period June 1999 — May 2000 (N=3104). The single kernel
routine was used to produce a kernel density surface representing the distribution of
residential burglary.

The kernel function used was the quartic, which is favoured by most crime
mappers as it applies added weight to crimes closer to the centre of the bandwidth.
Rather than choosing an arbitary interval it is useful to use the mean nearest
neighbour distance for different orders of K, which can be calculated by CrimeStat as
part of a nearest neighbour analysis. For the Croydon data, an interval of 269
metres was chosen, which relates to a mean nearest neighbour distance at a K-order

of 13. The output units were densities in square kilometres and was output to
ArcView.

Kernel density estimation is a particularly useful method as it helps to
precisely identify the location, spatial extent and intensity of crime hotspots. It is
also visually attractive, so helping to invoke further enquiry and the reasoning
behind why crime and disorder is concentrated. The density surface that is created
can reflect the distribution of incidents against the natural geography of the area of
interest, including representing the natural boundaries, such as reservoirs and
lakes, or an alignment that follows a particular street in which there is a high
concentration of offending. The method is also less subjective if clear guidelines are
followed for the setting of parameters.
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Again, experimentation and discussions with beat officers will be necessary to establish
which bandwidth choice should be used in future interpolations.

Note in all five of the interpolations, there is some bias at the edges with the City of
Baltimore (the three-sided area in the central southern part of the map). Since the
primary file only included incidents for the County, the interpolation nevertheless has
estimated some likelihood at the edges; these are edge biases and need to be ignored or
removed with an ASCII editor.®> Further, the wider the interval chosen, the more bias is
produced at the edge.

Dual Kernel Estimates

The dual kernel density routine in CrimeStat is applied to two distributions of point
locations. For example, the primary file could be the location of auto thefts while the
secondary file could be the centroids of census tracts, with the population of the census
tract being an intensity variable. The dual routine must be used with both a primary file
and a secondary file. Also, it is necessary to define a reference file, either an existing file
or one generated by CrimeStat (see chapter 3). Several parameters need to be defined.

File to be Interpolated

The user must indicate the order ofthe interpolation. The routine uses the
language first file and second file in making the comparison (e.g., dividing the first file by
the second; adding the first file to the second). The user must indicate which is the first
file, the primary or the secondary. The default is that the primary file is the first file.

Method of Interpolation

The user must indicate the type of kernel estimator. As with the single kernel
density routine, five types of kernel density estimators are used

Normal distribution (bell; default)
Uniform (flat) distribution

Quartic (spherical) distribution

Triangular (conical) distribution

Negative exponential (peaked) distribution

oo u s

In our experience, there are advantages to each. The normal disiribution produces
an estimate over the entire region whereas the other four produce estimates only for the
circumscribed bandwidth radius. Ifthe distribution of points is sparse towards the outer
parts of the region, then the four circumscribed functions will not produce estimates for
those areas, whereas the normal will. Conversely, the normal distribution can cause some
edge effects to occur (e.g., spikes at the edge of the reference grid), particularly if there are
many points near one of the boundaries of the study area. The four circumscribed
functions will produce less of a problem at the edges, although they still can produce some
spikes. Within the four circumscribed functions, the uniform and quartic tend to smooth
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the data more whereas the triangular and negative exponential tend to emphasize peaks’
and ‘valleys’. The differences between these different kernel functions are small, however.
The user should probably start with the default normal function and adjust accordingly to
how the surface or contour looks.

Choice of Bandwidth

The user must define the bandwidth parameter. There are three types of
bandwidths for the single kernel density routine - fixed interval, variable interval, or
adaptive interval.

Fixed interval

With a fixed bandwidth, the user must specify the interval to be used and the units
of measurement (squared miles, squared nautical miles, squared feet, squared kilometers,
or squared meters). Depending on the type of kernel estimate used, this interval has a
slightly different meaning. For the normal kernel function, the bandwidth is the standard
deviation of the normal distribution. For the uniform, quartic, triangular, or negative
exponential kernels, the bandwidth is the radius of the search area to be interpolated.
Since there are two files being compared, the fixed interval is applied both to the first file
and the second file.

Variable interval

With a variable interval, each file (the first and the second) have different intervals.
For both, the units of measurements must be specified (squared miles, squared nautical
miles, squared feet, squared kilometers, or squared meters). There is a good reason why a
user might want variable intervals. In comparing two kernel estimates, the most common
comparison is to divide one by the other. However, if the density estimate for a particular
cell in the denominator approaches zero, then the ratio will blow up and become a very
large number. Visually, this will be seen as spikes in the distribution, the result, usually,
of too few cases. In this case, the user might decide to smooth the denominator more than
numerator in order to reduce these spikes. For example, the interval for the first file (the
numerator) could be 1 mile whereas the interval for the second file (the denominator) could
be 3 miles. Experimentation will be necessary to see whether this is warranted. But, in
our experience, it frequently happens when ecither there are two few cases or there is an
irregular boundary to the region with a number of incidents grouped at one of the edges.

Adaptive interval

An adaptive bandwidth adjusts the bandwidth interval sothat a minimum number
of points (sample size) is found. This sample size is applied to both the first file and the
second file. It has the advantage of providing constant precision of the kernel estimate
over the entire region. Thus, in areas that have a high concentration of points, the
bandwidth is narrow whereas in areas where the concentration of points is more sparse,
the bandwidth will be larger. This is the default bandwidth choice in CrimeStat since

325

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



consistency in statistical precision is important. The degree of precision is generally
dependent on the sample size of the bandwidth interval. The default is a minimum of 100
points. The user can make the estimate finer by choosing a smaller number of points (e.g.,
25) or smoother by choosing a larger number of points (e.g., 200).

Use kernel bandwidths that preduce stable estim ates

Note: with a duel kernel calculation, particularly the ratio of one variable to
another, be careful about choosing a very small bandwidth. This could have the effect of
creating spikes at the edges of the study area or in low population density areas. For
example, in low population density areas, there will probably be fewer events than in more
built-up area. For the denominator of a ratio estimate, an extremely low value could cause
the ratio to be exaggerated (a spike’) relative to neighboring grid cells. Using a larger
bandwidth will produce a more stable average.

Qutput Units

The user must indicate the measurement units for the density estimate in points
per squared miles, squared nautical miles, squared feet, squared kilometers, or squared
meters.

Intensity or Weighting Variables

If an intensity or weighting variable is used for either the first file or the second file,
these boxes must be checked. Be careful about using both an intensity and a weighting
variable to avoid ‘double weighting’.

Density Calculations

The user must indicate the type of density output. There are six types of density
calculations that can be conducted with the dual kernel density routine. The calculations
are applied to each reference cell:

1. There is the ratio of densities, that is the first file divided by the second file.
This is the default choice. For example, if the first file is the location of auto
thefts incidents and the second file is the location of census tract centroids
with the population assigned as an intensity variable, then ratio of densities
would divide the kernel estimate for auto thefts by the kernel estimate for
population and would be an estimate of auto thefts risk.

2. There is also the log ratio of densities. This is the natural logarithm of the
density ratio, that is

Log ratio of densities = Ln [ g(x;)/g(y) ] (8.10)
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where g(x)) is the density estimate for the first file and g(y;) is the density
estimate for the second file. For a variablc that has a spatially skewed
distribution, such that most reference cells have very low density estimates,
but a few have very high density estimates, converting the ratio into a log
function will tend to mute the spikes that occur. This measure has been
used in studies of risk (Kelsall and Diggle, 1995b).

There is the absolute difference in densities, that is the first file minus the
second file. This can be a useful output for examining differential effects.
For example, by using the centroids of census block groups (see example 2
below) with the population of the census block group assigned as an intensity
or weighting variable, there is a slight bias produced by the spatial
arrangements of the block groups. The U. S. Census Bureau suggests that
census units {(e.g., census tracts, census block groups)be drawn so that there
are approximately equal populations in each unit. Thus, block groups
towards the center of the metropolitan area tend to be smaller because there
is a higher population density at those locations. Thus, the spatial
arrangement of the block groups will tend to produce a kernel estimate
which has a higher value towards the center independent of the actual
population ofthe block group; the bias is very small, less than 0.1%, but it
does exist. A more precise estimate could be produced by subtracting the
kernel estimate for the block group centroids without using population as the
intensity variable from the kernel estimate for the block group centroids with
population as the intensity variable. The resulting output could then be read
back into CrimeStat and used as a more precise measure of population
distribution. There are other uscs of the difference function, such as
subtracting the estimate for thc population-at-risk from the incident
distribution rather than taking the ratio or by calculating the net change in
population between two censuses.

There is the relative difference in densities. Like the relative density in the
single-kernel routine (discussed above), the relative difference in densities
first standardizes the densities of cach file by dividing by the grid cell area
and then subtracts the secondary file relative density from the primary file
relative density. This can be useful in calculating changes between two time
periods, for example in calculating a change in relative density between two
censuses or a change in the crime density between two time periods.

There is the sum of the densities, that is, the density estimate for the first file
pius the density estimate for the second file. Again, this is applied to each
reference cell at a time. A possible use ofthe sum operation is to combine
two different density surfaces, for example the density of robberies plus the
density of assaults;

Finally, there is the relative sum of densities between the primary file and
the secondary file. The relative sum of densities first standardizes the
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densities of each file by dividing by the grid cell area and then subtracts the
secondary file relative density from the primary file relative density. This
can be useful for identifying the total effects of two distributions. For
example, the total impact of robberies and burglaries on an area can be
estimated by taking the relative density of robberies and adding it to the
relative density of burglaries. The result is the combined relative density of
robberies and burglaries per unit area (e.g., robberies and burglaries per
square mile).

Qutput Files

Finally, the user must specify the file formats for the output. The results can be
output in three forms. First, the results are displayed in an output table. Second, the
results can be output into two raster grid formats for display in a surface mapping
program: Surfer for Windows format as a ‘dat’ file (Golden Software, 1994) and ArcView
Spatial Analyst format as a “asc’file (ESRI, 1998). Third, the results can be output as
polygon grids into ArcView “shp’, Mapinfo “mif’ and Atlas*GIS ‘bna’ format (see footnote
1). All but Surfer for Windows require that the reference grid be created by CrimeStat.

Example 2: Kernel Density Estimates of Vehicle Thefts
Relative to Population

As an example of the use of the dual kernel density routine, the duel routine is
applied in both the City of Baltimore and the County of Baltimore to 14,853 motor vehicle
theft locations for 1996 relative to the 1990 population of census block groups. Again, a
reference grid of 100 columns by 108 rows was generated by CrimeStat.

Figure 8.12 shows the resulting density estimate as a Surfer for Windows output;
again, there is a map view, a surface view, and a contour view. The normal kernel function
was used and an adaptive bandwidth of 100 points was selected. As seen, there is a very
high concentration of auto theft incidents within the central part of the metropolitan area.
The contour view suggest five or six peak areas that are close to each other.

Much of this concentration, however, is produced by high population density in the
metropolitan center. Figure 8.13, for example, shows the kernel estimate for 1349 census
block groups for both the City of Baltimore and the County of Baltimore with the 1990
population assigned as the intensity variable. Again, the normal kernel function was used
with an adaptive bandwidth of 100 points being selected. The map shows three views: 1) a
surface view; 2) a contour view; and 3) a ground level view looking directly north. The
distribution of population is, of course, also highly concentrated in the metropolitan center
with two peaks, quite close to each other with several smaller peaks.

When these two kernel estimates are compared using the dual kernel density
routine, a more complicated picture emerges (figure 8.14). This routine has conducted
three operations: 1) it calculated the distance between each of the 10,800 reference cells
and the 14,853 auto theft locations, evaluated the kernel function for each measured
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Figure 8.12:

Baltimore County Vehicle Thefts: 1996
Kernel Density Interpolation

Surface View Contour View
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Figure 8.13:

Baltimore Metropolitan Population: 1990
Kernel Density Estimate of Block Group Population
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Figure 8.14:

Baltimore County Vehicle Theft Risk
Kernel Density Ratio of 1996 Vehicle Thefts to 1990 Population
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The Risk of Violent Incidents Relative to Population Density in Cologne
Using the Dual Kernel Density Routine

Dietrich Oberwittler and Marc Wiesenhiitter
Max Planck Institute for Foreign and International Criminal Law
Freiburg, Germany

When estimating the density of street crimes within a metropolitan area by interpo-
lating crime incidents, the result is usually a very high concentration in the city center.
However, there is also a very high concentration of people either living or pursuing their
daily routine activities in these areas. The question emerges how likely is a criminal event
when taking into account the number of people spending their time in these areas. The
CrimeStat duel kernel density routine is able to estimate a ratio density surface of crime
relative to the 'population at risk’.

In this example, data on ‘calls to the police’ for assault and battery from April 1999 to
March 2000 (N=6363 calls) and population from Cologne were used. Exact information on
the number of people spending their time in the city does not exist. Therefore, 1997 counts of
passengers entering and leaving the public transport system at each of 550 stations and bus
stops in the city was used as a proxy variable. The number of persons at each station or bus
stop was assigned to adjacent census tracts and added to the resident population resulting in
a crude measure of the 'population at risk'.

In the dual kernel routine, the density estimate of crime incidents is compared to the
density estimate of the population at risk, defined by the centroids of census tracts with the
number of persons as an intensity variable. We chose the normal method of interpolation
and adaptive intervals with a minimum of five points. The adaptive bandwidth adjusts for
the fact that there are fewer incidents and census tracts at the edges of the city, resulting in
a relatively smoother density surface for the ratio. The results were output to ArcView.

The effect of adjusting the crime distribution for the underlying ‘population at risk’
becomes quite visible. Whereas the concentration of crime is highest in the city center (left
map), the crime risk (right map) is in fact much higher in several more distant areas that are
known for high concentrations of socially disadvantaged persons. Given the imperfect nature
of the population data these results should be interpreted as a broad view on the distribution
of crime risk that, nevertheless, has important policy implications.

Single kemnel density of crime incidences Dual kernel density of crime incidences
(assault & battery, Cologne 1999/2000) relative to population at risk
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Kernel Density Interpolation of
Police Confrontations in
Buenos Aires Province, Argentina: 1999

Gastdén Pezzuchi
Crime Analyst
Buenos Aires Province Police Force
Buenos Aires, Argentina

One of our first tryouts with the CrimeStat software involved the calculation
of both single and dual kernel density interpolations using data on 1999
confrontations with the police within Buenos Aires Province, an area that covers 29
counties around the Federal Capital. The confrontations include mostly gun fights
with the police but also other attacks (e.g., knives, rocks, sticks). In the last three
years, there has been an increase in confrontations with the police. The single
interpolation shows a density surface that gives a good picture of the ongoing level of
violence while the duel interpolations shows a risk surface using the personnel
deployment data; the latter are confrontations relative to the number of police
deployed. Typically, police are allocated to areas according to crime rates.\

Example: Kernel Density Estimation
(CrimeStat)

Single interpolation - Density of Evenis Dual Interpolation - Ratio of densities (Risk)

S

Events = Pdlice shootings (aprox. 800} B

Both images are quite different, suggesting varying policing strategies. For
example, though there are two well-defined hot spot areas in the Province (one in
the north, the other in the south), the high levels of risk detected in the southern
areas came as a complete surprise. The northern area has a higher crime rate than
the southern area, hence a high police deployment. However, the level of
confrontation are approximately equal between the two areas.
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distance, and summed the results for each reference cell; 2) it calculated the distance
between each of the 10,800 reference cells and the 1349 census block groups with
population as an intensity variable, evaluated the kernel function for each intensity-
weighted distance, and summed the results for each reference cell; and 3) divided the
kernel density estimate for auto thefts by the kernel density estimate for population for
each reference cell location.

While the concentration of motor vehicle thefts relative to population (‘motor vehicle
theft risk™) is still high in the metropolitan center, there are bands of high risk that spread
outward, particularly along major arterials. There are now many thot spot’areas which
have a high distribution of motor vehicle thefts relative to the residential population. We
could, of course, refine this analysis further by taking, for example, employment as a
baseline variable rather than population; employment is a better indicator for the daytime
population distribution whereas the residential population is a better indicator for
nighttime population distribution (Levine, Kim, and Nitz, 1995a; 1995b).

Example 3: Kernel Density Estimates and Risk-adjusted Clustering of
Robberies Relative to Population

The final example shows how the duel kernel interpolation compares with the risk-
adjusted nearest neighbor clustering, discussed in chapter 6. Figure 8.15 shows 7 first-
order risk-adjusted clusters overlaid on the a duel kernel estimate of 1996 robberies
relative to 1990 population.* As seen, there is a correspondence between the identified
risk-adjusted clusters and the duel kernel interpolation of the ratio of robberies to
population. For a broad regional perspective, the interpolation produces an adequate
model of where there is a high robbery risk. At the neighborhood level, however, the risk-
adjusted clusters are more specific and would be preferable for use by police in identifying
high-risk locations.

The advantage of a dual kernel density interpolation routine is that two variables
can be related together. By interpolating one variable to a reference grid and then
interpolating a second variable to the same reference grid, the two variables have been
interpolated to the same geographical units. The two interpolations can then be related, by
dividing, subtracting, or summing. As has been mentioned throughout this manual, one of
the problems with techniques that depend on the concentration of incidents is that they
ignore the underlying population-at-risk. With the dual routine, however, we can start to
examine the risk and not just the concentration.

Visually Presenting Kernel Estimates

Whether the single- or duel-kernel estimate is used, the result is a grid
interpretation of the data. By scaling these values by color in a GIS program, a
visualization of the data is obtained. Areas with higher densities can be shown in darker
tones and those with lower densities can be shown in lighter tones; some people do the
opposite with the high density areas being lighter.
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Figure 8.15:
Risk-adjusted Robbery Clusters and Interpolated Robbery Risk
1996 Robberies Relative to 1990 Population
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Evolution of the Urbanization Process in the Brazilian Amazonia

Silvana Amaral, Anténio Miguel V. Monteiro, Gilberto Camara, José A. Quintanilha
INPE, Instituto Nacional de Pesquisas Espaciais, Brazil

The Brazilian Amazon rain forest is the world’s largest contiguous area of
tropical rain forest in the world. During the last three decades, the region has
experienced the largest urban growth rates in Brazil, a process that has reorganized
the network of human settlements in the region. We used the CrimeStat single and
duel kernel density routines to visualize trends in urbanization from 1996 toc 2000 in
Amazonia. Two variables were used to measure urbanization: 1) the concentration
of urban nuclei (city density); and 2) the ratio of urban to total population.

The concentration of cities was spatially associated withfederal roads in the
eastern and southern portions, and along the Amazonas River in the middle of the
region. Additionally, the surfaces of urban population show that city density is not
always associated with large urban populations. From 1996 to 2000 city density
increased in the western Amazonia (Para state) at a greater rate than the growth of
the urban population. In the southeastern part of the region (Rondénia state), there
were many urban centers. But the ratio of urban to total population was small,
indicating that they are predominately agricultural regions.

" Urban Pop/Total Pop-1996

City density - 1996

City density - 2000
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To make the visualization even more realistic, one could use a GIS program to cut
out those grid cells that are outside the study area or are on water bodies. Before doing
this, however, be sure to re-scale the estimated “Z” values so that they will sum to the total
of the original grid. For example, if the original sample size was 1000, then the grid cells
will sum to 1000 if the absolute density option is chosen. If, say, 20% of these cells are
then removed to improve the visualization, then the grid cell Z values have to be re-scaled
so that their sum will continue to be 1000. A simple way to do this is to, first, add up the Z
values for the remaining cells and, second, multiply each grid cell Z by the ratio of the
original sum to the reduced sum.

The visualization is useful for a broad, regional view. It is not particularly useful
for micro analysis. The use of one of the cluster routines discussed in chapters 6 and 7
would be more appropriate for small area analysis.

Conclusion

Kernel density estimation is one of the ‘modern’spatial statistical techniques.
There is currently research on the use of this technique in both the statistical theory and in
developing applications. For crime analysis, the technique represents a powerful way of
conducting both ‘hot spot’analysis as well as being able to link the hot spots’toan
underlying population-at-risk. It can be used both for police deployment by targeting areas
of high concentration of incidents as well as for prevention by targeting areas with high
risk. It can also be used as a research tool for analyzing two or more distributions. More
development of this approach can be expected in the next few years.
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Endnotes to Chapter 8

There are differences in opinion about how wide a particular fixed bandwidth
should be determined. The smoothing is done for a distribution of values, Z. Ifthere
are only unique points (and, hence, there is no Z value at a point), the distances
between points can be substituted for Z. Thus, MeanD is the mean distance, sd(D)
is the standard deviation of distance, and iqr(D) is the inter-quartile range of
distances between points. These would be substituted for MeanZ, sd(Z), and iqr(Z)
respectively

Silverman (1986; 45-47; Hirdle, 1991; Farewell, 1999) proposed a bandwidth, h, of:

iqr(Z)
h = 1.06 * min {sd(Z), ~—-=--- y o NS

where min is the minimum of the next two terms, sd(Z) is the standard deviation of
the variable, Z, being interpolated, igr(Z) is the inter-quartile range of Z, and N is
the sample size.

Bowman and Azzalini (1997; 31) defined a slightly different optimal bandwidth for a
normal kernel.

h = {emereee P * 5d(2)

To avoid being influenced by outlier, they suggested using the median absolute
deviation estimator for sd(Z)

Z(i) - MedianZ
MAD(Z) = median { }
0.6745

Scott (1992) suggested an upper bound on the normal kernel of
h =1.144 * sd(Z) * N'”

Bailey and Gatrell (1995, 85-87) offered a rough choice for the bandwidth of
h =0.68 *N*?

but suggested that the user could experiment with different bandwidths to explore
the surface.

On the other hand, the concept of an adaptive bandwidth is based more on sampling
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theory (Bailey and Gatrell, 1995). By increasing the bandwidth until a fixed
number of points are counted ensures that the level of precision is constant
throughout the region. As with all sampling, the standard error of the estimate is a
function of the sample size; a larger sample leads to smaller error. In general, if
there was independent sampling, the 95% confidence interval of a bandwidth for a
normal kernel could be approximated by

.5
95% CI. = Mean(Z) +/- 1.96 * <-rreeeev * sd(Z)

N(h)llz

where N(h) is the adaptive sample size (the number of points counted within the
bandwidth for the adaptive kernel). This assumes that a point has an equal
likelihood of falling within the bandwidth of one cell compared to an adjacent cell
(i.e., it sits on the boundary of the bandwidth circle). The adaptive bandwidth
criteria requires that the bandwidth be increzsed until it captures the specified
number of points. On average, ifthere are N points in a region of area, A, and if the
adaptive sample size is N(p), then the average area required to capture N(p) points
is

N(p)* A

)
N

and the average bandwidth, Mean(h), is

A(p) N(p) * A
Mean(h) = SQRT[-—--——--]= SQRT[ ~rrermemeammun 1
T N#*x

Each of these provide different criteria for the bandwidth size with the adaptive
being the most conservative. For example, for a standardized distribution with
1000 data points, a standardized mean of Z of 0 and a standardized standard
deviation of 1, the Silverman criteria would produce a bandwidth 0f 0.2663; the
Bowman and Azzalini criteria would produce a bandwidth of0.2661; the Scott
criteria would produce a bandwidth 0f0.2874 and the Bailey and Gatrell criteria
would produce a bandwidth of 0.1708. For the adaptive interval, ifthe required
adaptive sample size is 25, then the average bandwidth would be approximately
0.3162 (this assumes that the area is a circle with a radius of 2 standardized
standard deviations).

2. CrimeStat will output the geographical boundaries of the reference grid (a polygon
grid) and will assign a third-variable (called Z) as the density estimate. Ofthe
three polygon grid outputs, ArcView ‘shp’files can be read directly into the
program. For Mapinfo, on the other hand, the output is in MapInfo Interchange
Format (a “mif’ and a “mid’file); the density estimate (also called Z) is assigned to

339

(I X X A XX XXX XXX JXXIXJX2A2AA2A 222 A2 Al A Al Al Al ldl A A A A A

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



PODOTIPOOIOOIIUVIUOIOIIIPIVID OOV P PP OO ITI I T IO O P O

the ‘“mid’ file. The files must be imported to convert it to a Maplnfo ‘tab’file. For
Atlas*GIS “bna’format, however, there are two files that are output -a “bna’file
which includes the boundaries of the polygon grid and a ‘dbf” file which includes the
grid cell names (called gridcell) and the density estimate (also called Z). The “bna’
file must be read in first and then the “dbf file must be read in and matched to the
value of gridcell. For all three output formats, the values of Z can be shown as a
thematic map but the ranges must be adjusted to illustrate the likely locations for
the offender’s residence (i.e., the default values in the GIS programs will not display
the densities very well). On the other hand, the default interval values for Surfer
for Windows and ArcView Spatial Analyst provide a reasonably good visualization of
the densities.

3. All the CrimeStat outputs except for ArcView ‘shp’ files are in ASCIL. There are
usually ‘edge effects’and values interpreted outside the actual geographical area.
These can be removed with an ASCII editor by substituting 0' for the values at the
edges or outside the study region. For ‘shp’ files, the values at the edges can be
edited within the 4rc¥View program. Another alternative is to ‘cut out’the cells that
are beyond the study area. Care must be taken, however, to not edit an output file
too much otherwise it will bear little relationship to the calculated kernel estimate.

4. The risk-adjusted hierarchical clustering (Rnnh) method defined the largest search
radius but a minimum of 25 points being required to be clustered. The kernel
estimate for both the Ronh and the duel-kernel routines used the normal
distribution function with an adaptive bandwidth of 25 points.
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Chapter 9
Journey to Crime Estimation

The Journey to Crime (Jtc) routine is a distance-based method which makes
estimates about the likely residential location of a serial offender. It is an application of
location theory, a framework for identifying optimal locations from a distribution of
markets, supply characteristics, prices, and events. The following discussion gives some
background to the technique. Those wishing to skip this part can goto page 13 for the
specifics ofthe Jic routine.

Location Theory

Location theory is concerned with one of the central issues in geography. This
theory attempts to find an optimal location for any particular distribution of activities,
population, or events over a region (Haggett, Cliff and Frey, 1977; Krueckeberg and
Silvers, 1974; Stopher and Meyburg, 1975; Oppenheim, 1980, Ch. 4; Bossard, 1993). In
classic location theory, economic resources were allocated in relation to idealized
representations (Anselin and Madden, 1990). Thus, von Thiinen (1826) analyzed the
distribution of agricultural land as a function of the accessibility to a single population
center (which would be more expensive towards the center), the value of the product
produced (which would vary by crop), and transportation costs (which would be more
expensive farther from the center). In order to maximize profit and minimize costs, a
distribution of agricultural land uses (or crop areas) emerges flowing out from the
population center as a series of concentric rings. Weber (1909) analyzed the distribution of
industrial locations as a function of the volume of materials to be shipped, the distance
that the goods had to be shipped, and the unit distance cost of shipping; consequently,
industries become located in particular concentric zones around a central city. Burgess
(1925) analyzed the distribution of urban land uses in Chicago and described concentric
zones of both industrial and residential uses. Their theory formed the backdrop for early
studies on the ecology of criminal behavior and gangs (Thrasher, 1927; Shaw, 1929).

In more modern use, the location of persons with a certain need or behavior (the
‘demand’side) is identified on a spatial plane and places are selected as to maximize value
and minimize travel costs. For example, for a consumer faced with two retail shops selling
the same product, one being closer but more expensive while the other being farther but
less expensive, the consumer has to trade off the value to be gained against the increased
travel time required. In designing facilities or places of attraction (the ‘supply’side), the
distance between each possible facility location and the location of the relevant population
is compared to the cost of locating near the facility. For example, given a distribution of
consumers and their propensity to spend, such a theory attempts to locate the optimal
placement of retail stores, or, given the distribution of patients, the theory attempts to
locate the optimal placement of medical facilities.
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Predicting Locations from a Distribution

One can also reverse the logic. Given the distribution of demand, the theory could
be applied to estimate a central location from which travel distance or time is minimized.
One of the earliest uses of this logic was that of John Snow, who was interested in the
causes of cholera in the mid-19th century (Cliff and Haggett, 1988). He postulated the
theory that water was the major vector transmitting the cholera bacteria. After
investigating water sources in the London metropolitan area and concluding that there was
a relationship between contaminated water and cholera cases, he was able to confirm his
theory by an outbreak of cholera cases in the Soho district. By plotting the distribution of
the cases and looking for water sources in the center of the distribution (essentially, the
center of minimum distance; see chapter 4), he found a well on Broad Street that was, in
fact, contaminated by seepage from nearby sewers. The well was closed and the epidemic
in Soho receded. Incidently, in plotting the incidents on a map and looking for the center of
the distribution, Snow applied the same logic that had been followed by the London
Metropolitan Police Department who had developed the famous ‘pin’map in the 1820s.

Theoretically, there is an optimal solution that minimizes the distance between
demand and supply (Rushton, 1979). However, computationally, it is an almost impossible
task to define, requiring the enumeration of every possible combination. Consequently in
practice, approximate, though sub-optimal, solutions are obtained through a variety of
methods (Everett, 1974, Ch. 4).

Travel Demand Modeling

A sub-set of location theory models the travel behavior of individuals. It actually is
the converse, Iflocation theory attempts to aliocate places or sites in relation to both a
supply-side and demand-side, travel demand theory attempts to model how individuals
travel between places, given a particular constellation of them. One concept that has been
frequently used for this purpose is that of the gravity function, an application of Newton’s
fundamental law of attraction (Oppenheim, 1980). In the original Newtonian formulation,
the attraction, F, between two bodies of respective masses M, and M,, separated by a
distance D, will be equalto

F =g oo ©.1)

where g is a constant or scaling factor which ensures that the equation is balanced in
terms of the measurement units (Oppenheim, 1980). As we all know, of course, g is the
gravitational constant in the Newtonian formulation. The denominator of the equation, d°,
is known as the distance decay function and indicates that the attraction between the two
bodies falls off as a function oftheir squared distance.
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Social Applications of the Gravity Concept

The gravity model has been the basis of many applications to human societies and
has been applied to social interactions since the 19 century. Ravenstein (1895) and
Andersson (1897) applied the concept to the analysis of migration by arguing that the
tendency to migrate between regions is inversely proportional to the squared distance
between the regions. Reilly’s ‘law of retail gravitation’(1929) applied the Newtonian
gravity model directly and suggested that retail travel between two centers would be
proportional to the product of their populations and inversely proportional to the square of
the distance separating them:

1Y P —— (9.2)

where M, is the interaction between centers i and 7, P, and P, are the respective
populations, Dy is the distance between them raised to the second power and K is a
balancing constant. In the model, the initial population, P, is called a production while the
second population, P, is called an attraction.

Stewart (1950) and Zipf (1949) applied the concept to a wide variety of phenomena
(migration, freight traffic, exchange of information) using a simplified form ofthe gravity
equation

PP,
M, = K eemmsee e 9.3)
D,
where the terms are as in equation 9.2 but the exponent of distance is only 1. In doing so,
they basically linked location theory with travel behavior theory. Given a particular
pattern of interaction for any type of goods, service or human activity, an optimal location
of facilities should be solvable.

In the Stewart/Zipf framework, the two P’s were both population sizes and,
therefore, their sums had to be equal. However, in modern use, it’s not necessary for the
productions and attractions to be identical units (e.g., P; could be population while P, could
be employment).

The total volume of productions (trips) from a single location, i, is estimated by
summing over all destination locations, j:

M=K P Z(P/D,) (9.4)
H

Over time, the concept has been generalized and applied to many different types of
travel behavior. For example, Huff (1963) applied the concept o retail trade between
zones in an urban area using the general form of
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Ay =K oo 9.5)

where A; is the number of purchases in location j by residents of location i, S is the
attractiveness of zone j (¢.g., square footage of retail space), D;; is the distance between
zones i and j, p is the exponent of S;, and  is the exponent of distance (Bossard, 1993). D;*
is sometimes called an inverse distance function. This is a single constraint model in that
only the attractiveness of a commercial zone is constrained, that is the sum of all
attractions for j must equal the total attraction in the region.

Again, it can be generalized to all zones by, first, estimating the total trips
generated from one zone, i, to another zone, j,

M, = K —emmmmmmmeneaes (9.6)

where M, is the interaction between two locations (or zones), H, is productions of trips from
location/zone i, S;is the attractiveness of location/zone j, D; is the distance between zones i
and j, g is the exponent of S;, p is the exponent of H;, 1is the exponent of distance, and K is a
constant.

Second, the total number of trips generated by a location, i, to all destinations is
obtained by summing over all destination locations, j:

M, =K H/ Z(8/D;" ©.7)
j

This differs from the traditional gravity function by allowing the exponents of the
production from location i, the attraction from location j, and the distance between zones to
vary. Typically, these exponents are calibrated on a known sample before being applied to
a forecast sample and the locations are usually measured by zones. Thus, retailers in
deciding on the location of a new store can use this type of model to choose a site location to
optimize travel behavior of patrons; they will, typically, obtain data on actual shopping
trips by customers and then calibrate the model on the data, estimating the exponents of
attraction and distance. The model can then be used to predict future shopping trips ifa
facility is built at a particular location.

This type of function is called a double constraint model because the balancing
constant, K, has to be constrained by the number of units in both the origin and
destination locations; that is, the sum of P, over all locations must be equal to the total
number of productions while the sum of P, over all locations must be equal to the total
number of attractions. Adjustments are usually required to have the sum of individual
productions and attractions equal the totals (usually estimated independently).
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The equation can be generalized to other types of trips and different metrics can be
substituted for distance, such as time, effort, or cost (Isard, 1960). For example, for
commuting trips, usually employment is used for attractions, frequently sub-divided into
retail and non-retail employment. In addition, for productions, median household income
or car ownership percentage is used as an additional production variable. Equation 9.7 can
be generalized to include any type of production or attraction variable (9.8 and 9.9):

M, =K, Pf K, A¥D;* (9.8)
M, =K, P? I (K, AMD, % (9.9)

where M is the number of trips produced by location i that travel to location j, P, is cither
a single variable associated with trips produced from a zone or the cross-product of two or
more variables associated with trips produced from a zone, A, is either a single variable
associated with trips attracted to a zone or the cross-product of two or more variables
associated with trips attracted to a zone, D is either the distance between two locations or
another variable measuring travel effort (e.g., travel time, travel cost), p, B, and A are
exponents of the respective terms, K, is a constant associated with the productions to
ensure that the sum of trips produced by all zones equals the total number of trips for the
region (usually estimated independently), and K, is a constant associated with the
attractions to ensure that the sum of trips attracted to all zones equals the total number of
trips for the region. Without having two constants in the equation, usually conflicting
estimates of K will be obtained by balancing the equation against productions or
attractions. The summation over all destination locations, j (equation 9.9), produces the
total number of trips from zone i.

Intervening Opportunities

Stouffer (1940) modified the simple gravity function by arguing that the attraction
between two locations was a function not only of the characteristics of the relative
attractions of two locations, but of intervening opportunities between the locations. His
hypothesis “..assumes that there is no necessary relationship between mobility and
distance... that the number of persons going a given distance is directly proportional to the
number of opportunities at that distance and inversely proportional to the number of
intervening opportunities”(Stouffer, 1940, p. 846). This model was used in the 1940s to
explain interstate and intercounty migration (Bright and Thomas, 1941; Isbell, 1944; Isard,
1979). Using the gravity type formulation, we can write this as:

FUES QU — (9.10)

where A is the attraction of location j by residents of location i, S is the attractiveness of
zone j, S, is the attractiveness of all other locations that are intermediate in distance
between locations i and j, Dy is the distance between zones i and j, p is the exponent of S, €
is the exponent of S, and 1 is the exponent of distance. While the intervening
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opportunities are implicit in equation 9.5 in the exponents, g and A, and coefficient, K,
equation 9.10 makes the intervening opportunities explicit. The importance of the concept
is that the interaction between two locations becomes a complex function ofthe spatial
environment of nearby areas and not just of the two locations.

Urban Transpertation Modeling

This type of model is incorporated as a formal step in the urban transportation
planning process, implemented by most regional planning organizations in the United
States and elsewhere (Stopher and Meyburg, 1975; Krueckeberg and Silvers, 1974; Field
and MacGregor, 1987). The step, called trip distribution, is linked to a five step model.
First, data are obtained on travel behavior for a variety of trip purposes. This is usually
done by sampling households and asking each member to keep a travel diary documenting
all their trips over a two or three day period. Trips are aggregated by individuals and by
households. Frequently, trips by different purposes are separated. Second, the volume of
trips produced by and attracted to zones (called traffic analysis zones) is estimated, usually
on the basis of the number of households in the zone and some indicator of income or
private vehicle ownership. Third, trips produced by each zone are distributed to every
other zone usually using a gravity-type function (equation 9.9). That is, the number of
trips produced by each origin zone and ending in each destination zone is estimated by a
gravity model. The distribution is based on trip productions, trip attractions, and travel
‘resistance’ (measured by travel distance or travel time). Fourth, zone-to-zone trips are
allocated by mode of travel (car, bus, walking, etc); and, fifth, trips are assigned to
particular routes by travel mode (i.e., bus trips follow different routes than private vehicle
trips). The advantage ofthis process is that trips are allocated according to origins,
destinationg, distances (or travel times), modes of travel and routes. Since all zones are
modeled simultaneously, all intermediate destinations (i.c., intervening opportunities) are
incorporated into the model

Alternative Distance Decay Functions

One of the problems with the traditional gravity formulation is in the measurement
of travel resistance, either distance or time. For locations separated by sizeable distances
in space, the gravity formulation can work properly. However, as the distance between
locations decreases, the denominator approaches infinity. Consequently, an alternative
expression for the interaction has been proposed which uses the negative exponential
function (Hégerstrand, 1957; Wilson, 1970).

A= SPetriy (9.11)

where A;; is the attraction oflocation j for residents of location i, S, is the attractiveness of
location j, Dy is the distance between locations i and j, g is the exponent of S, e is the base
of the natural logarithm (i.e., 2.7183...), and 4 is an empirically derived exponent.
Sometimes known as entropy maximization, the latter part of the equation is a negative
exponential function which has a maximum value of 1 (i.e., € = 1). This has the
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advantage of making the equation more stable for interactions between locations that are
close together. For example, Cliff and Haggett (1988) used a negative exponential gravity-
type model to describe the diffusion of measles into the United States from Canada and
Mexico. It has also been argued that the negative exponential function generally gives a
better fit to urban travel patterns, particularly by automobile (Foot, 1981; Bossard, 1993).

Other functions have also be used to describe the distance decay - negative linear,
normal distribution, lognormal distribution, quadratic, Pareto function, square root
exponential, and so forth (Haggett and Arnold, 1965; Taylor, 1970; Eldridge and Jones,
1991). Later in the chapter, we will explore several different mathematical formulations
for describing the distance decay. One, in fact, does not need to use a mathematical
function at all, but could empirically describe the distance decay from a large data set and
utilize the described values for predictions. The use of mathematical functions has evolved
out of both the Newtonian tradition of gravity as well as various location theories which
used the gravity function. A mathematical function makes sense under two conditions: 1)
if travel is uniform in all directions; and 2) as an approximation if there is inadequate data
from which to calibrate an empirical function. The first assumption is usually wrong since
physical geography (i.e., oceans, rivers, mountains) as well as asymmetrical street
networks make travel easier in some directions than others. As we shall see below, the
distance decay is quite irregular for journey to crime trips and would be better described by
an empirical, rather than mathematical function.

In short, there is a long history of research on both the location of places as well as
the likelihood of interaction between these places, whether the interaction is freight
movement, land prices or individual travel behavior. The gravity model and variations on
it have been used to describe the interactions between these locations.

Travel Behavior of Criminals
Journey to Crime Trips

The application of travel behavior theory to crime has a sizeable history as well.
The analysis of distance for journey to crime trips was applied in the 1930s by White
(1932), who noted that property crime offenders generally traveled farther distances than
offenders committing crimes against people, and by Lottier (1938), who analyzed the ratio
of chain store burglaries to the number of chain stores by zone in Detroit. Turner (1969)
analyzed delinquency behavior by a distance decay travel function showing how more crime
trips tend to be close to the offender’s home with the frequency dropping off with distance.
Phillips (1980) is, apparently, the first to use the term journey to crime is describing the
travel distances that offenders make though Harries (1980) noted that the average
distance traveled has evolved by that time into an analogy with the journey to work
statistic.

Rhodes and Conly (1981) expanded on the concept of a criminal com mute and
showed how robbery, burglary and rape patterns in the District of Columbia followed a

distance decay pattern. LeBeau (1987a) analyzed travel distances of rape offenders in San

347

This document is a research report submitted to the U.S. Department of Justice. This report has not

been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Diego by victim-offender relationships and by method of approach. Boggs (1965) applied
the intervening opportunities model in analyzing the distribution of crimes by area in
relation to the distribution of offenders. Other empirical descriptions of journey to crime
distances and other travel behavior parameters have been studied by Blumin (1973),
Curtis (1974), Repetto (1974), Pyle (1974), Capone and Nichols 1975), Rengert (1975),
Smith (1976), LeBeau (1987b), and Canter and Larkin (1993). It has generally been
accepted that property crime trips are longer than personal crime trips (LeBeau, 1987a),
though exceptions have been noted (Turner, 1969). Also, it would be expected that
average trip distances will vary by a number of factors: crime type; method of operation;
time of day; and, even, the value of the property realized (Capone and Nichols, 1975).

Modeling the Offender Search Area

Conceptual work on the type of model have been made by Brantingham and
Brantingham (1981) who analyzed the geometry of crime and conceptualized a criminal
search area, a geographical area modified by the spatial distribution of potential offenders
and potential targets, the awareness spaces of potential offenders, and the exchange of
information between potential offenders. In this sense, their formulation is similar to that
of Stouffer (1940), who described intervening opportunities, though their’s is a behavioral
framework. An important concept developed by the Brantingham’s is that of decreased
criminal activity near to an offender’s home base, a sort of a safety area around their near
neighborhood. Presumably, offenders, particularly those committing property crimes, go a
little way from their home base so as to decrease the likelihood that they will get caught.
This was noted by Turner (1969) in his study of delinquency in Philadelphia. Thus, the
Brantingham’s postulated that there would be a small safety area (or buffer’ zone) of
relatively little offender activity near to the offender’s base location; beyond that zone,
however, they postulated that the number of crime trips would decrease according toa
distance decay model (the exact mathematical form was never specified, however).

Crime trips may not even begin at an offender’ residence. Routine activity theory
(Cohen and Felson, 1979; 1981) suggests that crime opportunities appear in the activities
of everyday life. The routine patterns of work, shopping, and leisure affect the convergence
in time and place of would be offenders, suitable targets, and absence of guardians. Many
crimes may occur while an offender is traveling from one activity to another. Thus,
modeling crime trips as if they are referenced relative to a residence is not necessarily
going to lead to better prediction.

The mathematics of journey to crime has been modeled by Rengert (1981) using a
modified general opportunities model:

P,= KU, V,{(D) (9.12)
where P is the probability of an offender in location (or zone) i committing an offense at
location j, U, is a measure of the number of crime trips produced at location i (what Rengert

called emissiveness), V; is a measure of the number of crime targets (attractiveness) at
location j, and f(D,) is an unspecified function ofthe cost or effort expended in traveling
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from location i to location j (distance, time, cost). He did not try to operationalize either
the production side or the attraction side. Nevertheless, conceptually, a crime trip would
be expected to involve both elements as well as the cost of the trip.

In short, there has been a great deal of research on the travel behavior of criminals
in committing acts as well as a number of statistical formulations.

Predicting the Location of Serial Offenders

The journey to crime formulation, as in equation 9.9, has been used to estimate the
origin location of a serial offender based on the distribution of crime incidents. The logic is
to plot the distribution of the incidents and then use a property of that distribution to
estimate a likely origin location for the offender. Inspecting a pattern of crimes for a
central location is an intuitive idea that police departments have used for a long time. The
distribution ofincidents describes an activity area by an offender, who lives somewhere in
the center of the distribution. It is a sample from the offender’s activity space. Using the
Brantingham’ terminology, there is a search area by an offender within which the crimes
are committed; most likely, the offender also lives within the search area.

For example, Canter (1994) shows how the area defined by the distribution of the
Jack the Ripper’ murders in the east end of London in the 1880s included the key suspects
in the case (though the case was never solved). Kind (1987) analyzed the incident locations
of the Yorkshire Ripper’ who committed thirteen murders and seven attempted murders in
northeast England in the late 1970s and early 1980s. Kind applied two different
geographical criteria to estimate the residential location of the offender. First, he estimated
the center of minimum distance. Second, on the assumption that the locations of the
murders and attempted murders that were committed late at night were closer to the
offender’s residence, he graphed the time of the offense on the Y axis against the month of
the year (taken as a proxy for length of day) on the X axis and plotted a trend line through
the data to account for seasonality. Both the center of minimum distance and the murders
committed at a later time than the trend line pointed towards the Leeds/Bradford area,
very close to where the offender actually lived (in Bradford).

Rossmo Model

Rossmo (1993; 1995) has adapted location theory, particularly travel behavior
modeling, to serial offenders. In a series of papers (Rossmo, 1993a; 1993b; 1995; 1997) he
outlined a mathematical approach to identifying the home base location of a serial
offender, given the distribution of the incidents. The mathematics represent a formulation
of the Brantingham and Brantingham (1981) search area model, discussed above in which
the search behavior of an offender is seen as following a distance decay function with
decreased activity near the offender’s home base. He has produced examples showing how
the model can be applied to serial offenders (Rossmo, 1993a; 1993b; 1997).
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The model has four steps (what he called criminal geographic targeting):

1.

First, a rectangular study area is defined that extends beyond the area of the
incidents committed by the serial offender. The average distance between
points is taken in both the Y and X direction. Halfthe Y inter-point distance
is added to the maximum Y value and subtracted from the minimum Y
value. Halfthe X inter-point distance is added tothe maximum X value and
subtracted from the minimum X value. These are based on projected
coordinates; presumably, the directions would have to be adjusted if
spherical coordinates were used. The rectangular study defines a grid from
which columns and rows can be defined.

For each grid cell, the Manhattan distance to each incident location is taken
(see chapter 3 for definition).

For each Manhattan distance from a grid cell to an incident location, MD,,
one of two functions is evaluated:

A. If the Manhattan distance, MD,;, is less than a specified buffer zone
radius, B, then

T
Py= T &[(1-p)B*)/ (2B -| x;-x] +]yi-vd )]} (9.13)

c=1

where P, is the resultant of offender interaction for grid cell, i; ¢ is the
incident number, summingto T; ¢ = 0; k is an empirically determined
constant; g is an empirically determined exponent; and fis an
empirically determined exponent.

The Greek letter, II, is the product sign, indicating that the results for
each grid cell-incident distance, MD,, are multiplied together across
all incidents, c. This equation reduces to

T

Py = M &1-0)B) /(2B -|x-x) +|yi-yl ¥} (9.14)
c=1
T KB#f

Pij = JI 9.135)

e=1 (ZB—|Xi—Xcl +!Yi-Y:;l )g

Within the buffer region, the function is the ratio of a constant, k,
times the radius of the buffer, B, raised to another constant (g-f),
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divided by the difference between the diameter of the circle 2B) and
the Manhattan distance, MDy;, raised to a constant, g. This is a non-
linear function.

If the Manhattan distance, MD,;, is greater than a specified buffer
zone radius, B, then

T
Pij:H{k[d)/(Ixi‘xcl +lyi”ycl)f} (9.16)

c=1

where P is the resultant of offender interaction for grid cell, i, and
incident location, j; ¢ is the incident number, summingto T; ¢ =1; k is
an empirically determined constant (the same as in equation 9.15
above); and fis an empirically determined exponent (the same as in
equation 9.15 above).

Again, the Greek letter, Il, indicates that the results for each grid cell-

incident distance, MD,;, are multiplied together across all incidents, c.

This equation reduces to

T

Py= IM{k[U(x-x] +|yi-y))} (9.17)
c=1
T k

P, = II{ } (9.18)

c=1 (‘ X - XCI + ] Y- Ycl )f

Outside of the buffer region, the function is a constant, k, divided by
the distance, MDy, raised to an exponent, f. It is an inverse distance
function and drops off rapidly with distance

Finally, for each grid cell, i, the functions evaluated in step 3 above are
summed over all incidents.

For both the within buffer zone’ (near to home base) and ‘outside buffer zone’ (far
from home base) functions, the coefficient, k, and exponents, f and g, are empirically
determined. Though he doesn’ discuss how these are calculated, they are presumably
estimated from a sample of known offender locations where the distance to each incident is
known (e.g., arrest records).

The result is a surface model indicating a likelihood of the offender residing at that
location. He describes it as a probability surface, but it is actually a density surface. Since
the probability of interaction between any one grid cell, i, and any one incident, j, cannot be
greater than 1, the surface actually indicates the product of individual likelihoods that the
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offender uses that location as the home base. To be an actual probability function, it would
have to be re-scaled so that the sum ofthe grid cells was equal to 1.

The second function - outside the buffer zone’ (equation 9.16) is a classic gravity
function, similar to equation 9.5 except there is no attraction definition. It is the distance
decay part of the gravity function. The first function, equation 9.13, is an increasing
curvilinear function designed to model the area of decreased activity near the offender’s
home base.

Strengths and weaknesses of the Rossmo model

The Rossmo model has both strengths and weaknesses. First, the model has some
theoretical basis utilizing the Brantingham and Brantingham (1981) framework for an
offender search area as well as the mathematics of the gravity model and distinguishes two
types of travel behavior - near to home and farther from home. Second, the model does
represent a systematic approach towards identifying a likely home base location for an
offender. By evaluating each grid cell in the study area, an independent estimate of the
likelihood is obtained, which can then be integrated into a continuous surface with an
interpolation graphics routine.

There are problems with the particular formulation, however. First, the exclusive
use of Manhattan distances is questionable. Unless the study area has a street network
that follows a uniform grid, measuring distances horizontally and vertically can lead to
overestimation of travel distances; further, the more the layout differs from a north-south
and east-west orientation, the greater the distortion. Since many urban areas do not have
a uniform grid street-layout, the method will necessarily lead to overestimation of travel
distances in places where there are diagonal or irregular streets.’

Second, the use of a product term, II, complicates the mathematics. That is, the
technique evaluates the distance from a particular grid cell, i, to a particular incident
location, j. It then multiplies this result by all other results. The process, if strictly
applied, would be a compounding of probabilities with overestimation of the likelihood for
grid cells close to incident locations and underestimation of the likelihood for grid cells
farther away. In the description of the method, however, Rossmo actually mentions
summing the terms. Thus, the substitution of a summation sign, %, for the product sign
would help the mathematics.

A third problem is in the distance decay function (equation 9.16). The use of an
inverse distance term has problems as the distance between the grid cell location, i, and
the incident location, j, decreases. For some types of crimes, there will be little or no buffer
zone around the offender’s home base (e.g., rapes by acquaintances). Consequently, the
buffer zone radius, B, would approach 0. However, this would cause the model to become
unstable since the inverse distance term will approach infinity.

Fourth, the use ofa mathematical function to describe the distance decay, while
easy to define, probably oversimplifies actual travel behavior. A mathematical function to
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describe distance decay is an approximation to actual travel behavior. It assumes that
travel is equally likely in each direction, that travel distance is uniformly easy (or difficult)
in each direction, and that, similarly, opportunities are uniformly distributed. For most
urban areas, these conditions would not be true. Few cities form a perfect grid (Salt Lake
City is, of course, an exception), though most cities have sections that are grided. Both
physical geography limit travel in certain directions as does the historical street structure,
which is often derived from earlier communitics. A mathematical function does not
consider this structure, but rather assumes that the impedance’in all directions is
uniform.

This latter criticism, of course, would be true for all mathematical formulations of
travel distance. There are corrections that can be made to adjust for this. For example, in
the urban transportation planning system model, trip distribution between locations is
estimated by a gravity model, but then the distributed trips are constrained by, first, the
total number oftrips in the region (estimated separately), second, by mode of travel (bus v.
single driver v. drivers plus passengers v. walk, etc.), and, third, by the route structure
upon which the trips are eventually assigned (Krueckeberg and Silvers, 1974; Stopher and
Meyburg, 1975; Field and MacGregor, 1987). Calibration at all stages against known data
sets ensures that the coefficients and exponents fit real world’ data as closely as possible.
1t would take these types of modifications to make the travel distribution type of model
postulated by Rossmo and others be more realistic.

Fifth, the model imposes mathematical rigidity on the data. While there are two
different functions that could vary from place to place, the particular type of distance decay
function might also vary. Specifying a strict form for the two equations limits the
flexibility of applying the model to different types of crime or to places where the distance
decay does not follow the form specified by Rossmo.

A final problem is that opportunities for committing crimes - the attractiveness of
locations, are never measured. That is, there is no enumeration of the opportunities that
would exist for an offender nor is there an attempt to measure the strength of this
attraction. Instead, the search area is inferred strictly from the distribution of incidents.
Because the distribution of offender opportunities would be expected to vary from place to
place, the model would need to be re-calibrated at each location. In this sense, both the
Canter model and my journey to crime model (both described below) also share this
weakness, It is understandable in that victim/target opportunities are difficult to definc @
priori since they can be interpreted differently by individuals. Nevertheless, a more
complete theory of journey to crime behavior would have to incorporate some measure of
opportunities, a point that both Brantingham and Brantingham (1981) and Rengert (1981)
have made.

Canter Model
Canter’s group in Liverpool (Canter and Tagg, 1975; Canter and Larkin, 1993;

Canter and Snook, 1999; Canter, Coffey and Huntley, 2000) have modified the distance
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decay function for journey to crime trips by using a negative exponential term, instead of
the inverse distance. Their Dragnet program uses the negative exponential function

V=g aBou P (9.19)

where Y is the likelihood of an offender traveling a certain distance to commit a crime,, D,
is the distance (from a home base location to an incident site), « is an arbitrary constant, p

is the coefficient of the distance (and, hence, an exponent of ¢), P is a normalization

constant, and e is the base of the natural logarithm. The model is similar to equation 9.11
except, like Rossmo, it does not include the attractiveness of the location.

Using the logic that most crimes are committed near the offender’s home base,
Canter, Coffey and Huntley (2000) use a five step process to estimate a search strategy:

1. The study area is defined by a rectangle that is 20% larger in area than that
defined by the minimum and maximum X/Y points. A grid cell structure of
13, 300 cells is imposed over the rectangle. Each grid cell is a reference
location, i.

2. A decay coefficient is selected. In equation 9.19, this would be the coefficient,
B, for the distance term, D, both of which are exponents of e. Unlike
Rossmo, Canter uses a series of decay coefficients from 0.1 to 10 to estimate
the sensitivity of the model. The equation indicates the likelihood with which
any location is likely to be the home base of the offender based on one
incident.

3. Because different offenders have different search areas, the measured
distances for each cell are divided by a normalization coefficient, P, that
adjusts all offenses to a comparable range. Canter uses two different types
of normalization function: 1) mean inter-point distance between all offenses
{across a group of offenders); and 2) the QRange, which is an index that
takes into account asymmetry in the orientation of the incidents.

4. For each reference cell, i, the distance between each grid cell and each
incident location is evaluated with the function and the standardized
likelihoods are summed to yield an estimate of location potential.

5. A search cost index is defined by the proportion of the study area that has to
be searched to find the offender. By calibrating the model against known
cases, an estimate of search efficiency is obtained.

Additional modifications can be added to the functions to make them more flexible

(Canter, Coffey and Huntley, 2000). For example, steps’are distances near to home where
offenders are not likely to act while plateaus’are constant distances near to home where
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there is the highest likelihood of acting. For example, Canter and Larkin (1993) found an
area around serial offenders’ homes of about 0.61 mile in radius within which they were
less likely to commit crimes.

Canter and Snook (1999) provide estimates of the search cost (or efficiency)
associated with various distance coefficients. For example, with the known home base
locations of 32 burglars, a § of 1.0 yielded a mean search cost of 18.06%; that is, on average,
only 18.06% of the study area had to be searched to find the location of 32 burglars in the
calibration sample. Clearly, for some of them, a larger area had to be searched while for
others a smaller area; the average was 18.06%. Conversely, the mean search cost index for
24 rapists was 21.10% and for 37 murderers 28.28%. They further explored the marginal
increase in locating offenders by increasing the percentage of the study area that had tobe
searched. They found for their three samples (burglary, rape, homicide) that more than
halfthe offenders could be located within 15% of the area searched.

The Canter model is different from the Rossmo model is that it suggests a search
strategy by the police for a serial offender rather than a particular location. The strength
of it is to indicate how narrow an area the police should concentrate on in order to optimize
finding an offender. Clearly, in most cases, only a small area needs be searched.

Strengths and weaknesses of the Canter model

The model has both strengths and weaknesses. First, the model provides a search
strategy for law enforcement. By examining what type of function best fits a certain type
of crime, police can target their search efforts more efficiently. The model is relatively easy
to implement and is practical. Second, the mathematical formulation is stable. Unlike the
inverse distance function in the Rossmo model, equation 9.19 will not have problems
associated with distances that are close to 0. Further, the model does provide a search
strategy for identifying an offender. It is a useful tool for law enforcement officers,
particularly as they frame a search for a serial offender.

There are also weaknesses to the model. First, it lacks a theoretical basis. Canter’s -
research has provided a great deal in terms of understanding the activity spaces of serial
offenders (Canter and Larkin, 1993; Canter and Gregory, 1994; Canter, 1994; Hodge and
Canter, 2000). However, the empirical model used is strictly pragmatic. Second,
mathematically, it imposes the negative exponential function without considering other
distance decay models. Inthe Dragnet program, the decay function is a string of 20
numbers so that, in theory, any function can be explored. However, the defaultis a
negative exponential. The negative exponential has been used in many travel behavior
studies (Foot, 1981; Bossard, 1993), but it does not always produce the best fit. Later on,
I'll show examples of travel behavior which show a distinctly non-monotonic function, even
beyond a home base buffer zone’. While the model can be adapted to be more flexible by
different exponents and including steps and plateaus, for example, it is still tied to the
negative exponential form. Thus, the model might work in some locations, but may fail in
others; a user cant easily adjust the model to make it fit new data.
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Third, the coefficient of the negative exponential, «, is defined arbitrarily. In the
Dragnet program, it is usually set as 0.5. While this ensures that the result never exceed
1.0 for any one incident, there is a limit on the location potential summation since the total
potential is a function ofthe number of incidents (i.e., it will be higher for more incidents).
Thus, the use of « ends up being arbitrary. It would have been better ifthe coefficient were
calibrated against a known sample.

Fourth, and finally, also similar to the Rossmo model (and to my Jtc model below),
criminal opportunities (or attractions) are never measured, but are inferred from the
pattern of crime incidents. As a pragmatic tool for informing a police search, one could
argue that this is not important. However, in a different location, the distance coefficient
is liable to differ as is the search cost index. It would need to be re-calibrated each time.

Nevertheless, the Canter model is a useful tool for police department and can help
shape a search strategy. It is different from the other location models in that it is not
focused so much on the best prediction for a location of an offender (though the summation
discussed above in step 4 can yield that) as it does in defining where the search should be
optimized.

Geographic Profiling

Journey to crime estimation should be distinguished from geographical profiling.
Geographical profiling involves understanding the geographical search pattern of criminals
in relation to the spatial distribution of potential offenders and potential targets, the
awareness spaces of potential offenders including the labeling of ‘good’ targets and crime
areas, and the interchange of information between potential offenders who may modify
their awareness space (Brantingham and Brantingham, 1981). According to Rossmo:

“...Geographic profiling focuses on the probable spatial behaviour of the offender
within the context of the locations of, and the spatial relationships between, the
various crime sites. A psychological profile provides insights into an offender’s
likely motivation, behaviour and lifestyle, and is therefore directly connected to
his/her spatial activity. Psychological and geographic profiles thus act in tandem to
help investigators develop a picture of the person responsible for the crimes in
question” (Rossmo, 1997). :

In other words, geographic profiling is a framework for understanding how an
offender traverses an area in searching for victims or targets; this, of necessity, involves
understanding the social environment of an area, the way that the offender understands
this environment (the ‘cognitive map’) as well as the offender’s motives.

On the other hand, journey to crime estimation follows a much simpler logic

involving the distance dimension of the spatial patterning of a criminal. It is a method
aimed at estimating the distance that serial offenders will travel to commit a crime and, by
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implication, the likely location from which they started their crime trip’ In short, itis a
strictly statistical approach to estimating the residential whereabouts of an offender
compared to understanding the dynamics of serial offenders.

It remains an empirical question whether a conceptual framework, such as
geographic profiling, can predict better than a strictly statistical framework.
Understanding of a phenomena, such as serial murders, serial rapists, and so forth, is an
important research area. We seek more than just statistical prediction in building a
knowledge base. However, it doesn’t necessarily follow that understanding produces better
predictions. In many areas of human activity, strictly statistical models are better in
predicting than explanatory models. I will return to this point later in the section.

The CrimeStat Journey to Crime Routine

The journey to crime (Jtc) routine is a diagnostic designed to aid police departments
in their investigations of serial offenders. The aim is to estimate the likelihood that a
serial offender lives at any particular location. Using the location of incidents committed
by the serial offender, the program makes statistical guesses at where the offender is liable
to live, based on the similarity in travel patterns to a known sample of serial offenders for
the same type of crime. The Jf¢c routine builds on the Rossmo (1993a; 1993b; 1995)
framework, but extends its modeling capability.

1. A grid is overlaid on top of the study area. This grid can be either imported
or can be generated by CrimeStat (see chapter 2). The grid represents the
entire study area. Unlike Rossmo or Canter and Snook, there is no optimal
study area. The technique will model that which is defined. Thus, the user
has to select an area intelligently.

2. The routine calculates the distance between each incident location
committed by a serial offender (or group of offenders working together) and
each cell, defined by the centroid of the cell. Rossmo (1993a; 1995) used
indirect (Manhattan) distances. However, this would be appropriate only
when a city falls on a uniform grid. The Jtc routine allows both direct and
indirect distances. In most cases, direct distances would be the most
appropriate choice as a police department would normally locate origin and
destination locations rather than particular routes that are taken (see
below).

3. A distance decay function is applied to each grid cell-incident pair and sums
the values over all incidents. The user has a choice whether to model the
travel distance by a mathematical function or an empirically-derived
function.

4. The resultant of the distance decay function for each grid cell-incident pair
are summed over all incidents to produce a likelihood (or density) estimate
for each grid cell.
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5. In both cases, the program outputs the two results: 1) the grid cell which has
the peak likelihood estimate; and 2) the likelihood estimate for every cell.
The latter output can be saved as a Surfer® for Windows ‘dat’, ArcView
Spatial Analyst® ‘asc’, ASCII ‘grd’, ArcView® “shp’, MapInfo® ‘mif,
Atlas*GIS™ “bna’file or as an Ascii grid ‘grd’ file which can be read by many
GIS packages (e.g., ARC/INFO®, Vertical Mapper®). These files can also be
read by other GIS packages (e.g., Maptitude).

Figure 9.1 shows the logic of the routine and figure 9.2 shows the Journey to Crime
(Jtc) screen. There are two parts to the routine. First, there is a calibration model which is
used in the empirically-derived distance function. Second, there is the Journey to Crime
(Jtc) model itself in which the user can select either the already-calibrated distance
function or the mathematical function. The empirically-derived function is, by far, the
easiest to use and is, consequently, the default choice in CrimeStai. The discussion ofit is
on p. 35. However, the mathematical function can be used if there is inadequate data to
construct an empirical distance decay function or if a particular form is desired.

Distance Modeling Using Mathematical Functions

Well start by illustrating the use of the mathematical functions because this has
been the traditional way that distance decay has been examined. The CrimeStar Jic
routine allows the user to define distance decay by a mathematical function.

Probability Distance Funections

The user selects one of five probability density distributions to define a likelihood
that the offender has traveled a particular distance to commit a crime. The advantage of
having five functions, as opposed to only one, is that it provides more flexibility in
describing travel behavior. The travel distance distribution followed will vary by crime
type, time of day, method of operation, and numerous other variables. The five functions
allow an approach that can simulate more accurately travel behavior under different
conditions. Each of these has parameters that can be modified, allowing a very large
number of possibilities for describing travel behavior of a criminal.

Figure 9.3 illustrates the five types.? Briefly, they are:
Linear
The simplest type of distance model is a linear function. This model postulates that
the likelihood of committing a crime at any particular location declines by a constant
amount with distance from the offender’s home. It is highest near the offender’s home but
drops off by a constant amount for each unit of distance until it falls to zero. The form of

the linear equation is

f(d;) = A +B*d; (9.20)
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where f{d,) is the likelihood that the offender will commit a crime at a particular location,
i, defined here as the center of a grid cell, 4 is the distance between the offender’s
residence and location i, 4 is a slope coefficient which defines the fall off in distance, and B
is a constant. It would be expected that the coefficient B would have a negative sign since
the likelihood should decline with distance. The user must provide values for 4 and B.
The default for Ais 10 and for B is -1. This function assumes no buffer zone around the
offender’s residence. When the function reaches 0 (the X axis), the routine automatically
substitutes a 0 for the function.

Negative Exponential

A slightly more complex function is the negative exponential. In this type of model,
the likelihood is also highest near the offenders home and drops off with distance.
However, the decline is at a constant rate of decline, thus dropping quickly near the
offender’s home until is approaches zero likelihood. The mathematical form ofthe negative
exponential is

.B*dij

f(d,) = A*e (9.21)

where f(d;) is the likelihood that the offender will commit a crime at a particular location, i,
defined here as the center ofa grid cell, d, is the distance between each reference location

and each crime location, ¢ is the base of the natural logarithm, A is the coefficient and B is

ap exponent of e. The user inputs values for A - the coefficient, and B - the exponent. The
default for Ais 10 and for Bis 1. This function is similar to the Canter model (equation
9.19) except that the coefficient is calibrated. Also, like the linear function, it assumes no
buffer zone around the offender’ residence.

Normal

A normal distribution assumes the peak likelihood is at some optimal distance from
the offender’s home base. Thus, the function rises to that distance and then declines. The
rate of increase prior to the optimal distance and the rate of decrease from that distance is
symmetrical in both directions. The mathematical form is:

(d; - MeanD)
Z. = e - (9.22)
’ S
d
1 0.5*Z;?
fdpy= A* * e (9.23)

S,* SQRT(Zw)

where f(d,) is the likelihood that the offender will commit a crime at a particular location, i
(defined here as the center ofa grid cell), d;; is the distance between each reference location
and each crime location, MeanD is the mean distance input by the user, S, is the standard
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deviation of distances, € is the base of the natural logarithm, and A is a coefficient. The
user inputs values for MeanD, S,, and A. The default values are 1 for each of these
paramecters.

By carefully scaling the parameters of the model, the normal distribution can be
adapted to a distance decay function with an increasing likelihood for near distances and a
decreasing likelihood for far distances. For example, by choosing a standard deviation
greater than the mean (e.g., MeanD = 1,8, = 2), the distribution will be skewed to the left
because the left tail of the normal distribution is not evaluated. The function becomes
similar to the model postulated by Brantingham and Brantingham (1981)in thatitis a
single function which describes travel behavior..

Lognormal

The lognormal function is similar to the normal except it is more skewed, either to
the left or tothe right. It has the potential of showing a very rapid increase near the
offender’s home base with a more gradual decline from a location of peak likelihood (see
Figure 9.3). Itis also similar to the Brantingham and Brantingham (1981) model. The
mathematical form of the function is:

: 1 {In(d*) - MeanD J*/ 2 *s;°
fld)= A*-— * g (9.24)
d*, * 8,* SQRT(2m)

where f(d;) is the likelihood that the offender will commit a crime at a particular location, i,
defined here as the center ofa grid cell, d;; is the distance between each reference location
and each crime location, MeanD is the mean distance input by the user, S, is the standard
deviation of distances, ¢ is the base of the natural logarithm, and A is a coefficient. The
user inputs MeanD, S, , and A. The default values are 1 for each of these parameters.

Truncated Negative Exponential

The truncated negative exponential is a joined function made up of two distinct
mathematical functions - the linear and the negative exponential. For the near distance, a
positive linear function is defined, starting at zero likelihood for distance 0 and increasing
tod,, a location of peak likelihood. Thereupon, the function follows a negative exponential,
declining quickly with distance. The two mathematical functions making up this spline
function are

Linear: f{d;) =0 +B*d,; =B*d; ford; > 0,dj< d, (9.25)
Negative -C*d,
Exponential: f(d;) = A*e for X, > d, (9.26)

where d; is the distance from the home base, B is the slope of the linear function
(default=+1) and for the negative exponential function A is a coefficient and C is an
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exponent. Since the negative exponential only starts at a particular distance, Maxd
assumed to be the intercept ifthe Y-axis were transposed to that distance.

A, s

ij®

This function is the closest approximation to the Rossmo model (equations 9.13 and
9.16). However, it differs in several mathematical properties. First, the ‘aear home base’
function is linear (equation 9.25), rather than a non-linear function (equation 9.13). It
assumes a simple increase in travel likelihoods by distance from the home base, up to the
edge of the safety zone.” Second, the distance decay part of the function (equation 9.26) is a
negative exponential, rather than an inverse distance function (equation 9.13);
consequently, it is more stable when distances are very close to zero (e.g., for a crime where
there is no near home base’ offset).

Calibrating an Appropriate Probability Distance Function

The mathematics are relatively straightforward. However, how does one know
which distance function to use? The answer is to get some data and calibrate it. It is
important to obtain data from a sample of known offenders where both their residence at
the time they committed crimes as well as the crime locations are known. This is called
the calibration data set. Each of the models are then tested against the calibration data
set using an approach similar to that explained below. An error analysis is conducted to
determine which of the models best fits the data. Finally, the best fit’ model is used to
estimate the likelihood that a particular serial offender lives at any one location. Though
the process is tedious, once the parameters are calculated they can be used repeatedly for
predictions.

Because every jurisdiction is unique in terms of travel patterns, it is important to
calibrate the parameters for the particular jurisdiction. While there may be some
similarities between cities (e.g., Eastern “centralized” cities v. Western “automobile” cities),
there are always unique travel patterns defined by the population size, historical road
pattern, and physical geography. Consequently, it is necessary to calibrate the parameters
anew for cach new city. Ideally, the samplie should be a large enough so that a reliable
estimate of the parameters can be obtained. Further, the analyst should check the errors
in each of the models to ensure that the best choice is used for the Jtc routine. However,
once it has been completed, the parameters can be re-used for many years and only
periodically re-checked.

Data Set from Baltimere County

Il illustrate with data from Baltimore County. The steps in calibrating the Jic
parameters were as follows:

1. 49,083 matched arrest and incident records from 1992 through 1997 were
obtained in order to provide data on where the offender lived in relation to
the crime location for which they were arrested.*
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The data set was checked to ensure that there were X and Y coordinates for
both the arrested individual’s residence location and the crime incident
location for which the individual was being charged. The data were cleaned
to eliminate duplicate records or entries for which either the offender’s
residence or the incident location were missing. The final data set had
41,424 records. There were many multiple records for the same offender
since an individual can commit more than one crime. In fact, more than half
the records involved individuals who were listed two or more times. The
distribution of offenders by the number of offenses for which they were
charged is seen in Table 9.1. As would be expected, a small proportion of
individuals account for a sizeable proportion of crimes; approximately 30% of
the offenders in the database accounted for 56% of the incidents.

The data were imported into a spreadsheet, but a database program could
equally have been used. For each record, the direct distance between the
arrested individual’s residence and the crime incident location was
calculated. Chapter 2 presented the formulas for calculating direct
distances between two locations and are repeated in endnote 5.°

The records were sorted into sub-groups based on different types of crimes.
For the Baltimore County example, eleven categories of crime incident were
used. Table 9.2 presents the categories with their respective sample sizes.
Of course, other sub-groups could have been identified. Each sub-group was
saved as a separate file. The same records can be part of multiple files (e.g.,
a record could be included in the ‘all robberies’file as well as in the
‘commercial robberies’ file). All records were included in the all crimes’ file.

For each type of crime, the file was grouped into distance intervals 0f .25
miles each. This involved two steps. First, the distance between the
offender’s residence and the crime location was sorted in ascending order.
Second, a frequency distribution was conducted on the distances and grouped
into 0.25 mile intervals (often called bins). The degree of precision in
distance would depend on the size of the data set. For 41,426 records,
quarter mile bins were appropriate.

For each type of crime, a new file was created which included only the
frequency distribution of the distances broken down into quarter mile
distance intervals, d,.

in order to compare different types of crimes, which will have different
frequency distributions, two new variables were created. First, the
frequency in the interval was converted into the percentage of all crimes of in
each interval by dividing the frequency by the total number of incidents, N,
and multiplying by 100. Second, the distance interval was adjusted. Since
the interval is a range with a starting distance and an ending distance but
has been identified by spreadsheet program as the beginning distance only, a
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Table 9.1

Number of Offenders and Offenses in Baltimore County: 1993-1997
Journey to Crime Database

Number of Number of Percent of Number of Percent of

Offenses Individuals Offenders Incidents Incidents
1 18,174 70.0% 18,174 43.9%
2 4,443 17.1% 8,886 21.5%
3 1,651 6.4% 4,953 12.0%
4 764 2.9% 3,056 7.4%
5 388 1.5% 1,940 4.7%
6-10 482 1.9% 3,383 8.2%
11-15 61 0.2% 757 1.8%
16-20 10 <0.0% 175 0.4%
21-25 3 <0.0% 67 0.2%
26-30 0 <0.0% 0 0.0%
30+ 1 <0.0% 33 <0.0%

25,977 41,424
Table 9.2

Baltimore County Files Used for Calibration

PODOIUOOIVIIVPVFIFIVP PP POV PPV TP YIRS

Crime Type Samuple Size
All crimes 41,426
Homicide 137
Rape 444
Assault 8,045
Robbery (all) 3,787
Commercial robbery 1,193
Bank robbery 176
Burglary 4,694
Motor vehicle theft 2,548
Larceny 19,806
Arson 338

366

This document is a research report submitted to the U.S. Department of Justice. This report has not

been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



small fraction, representing the midpoint of the interval, is added to the
distance interval. In our case, since each interval is 0.25 miles wide, the
adjustment is halfof this, 0.125. Each new file, therefore, had four variables:
the interval distance, the adjusted interval distance, the frequency of
incidents within the interval (the number of cases falling into the interval),
and the percentage of all crimes of that type within the interval.

Using a general statistical program, a series of regression equations was set
up to model the frequency {or the percentage) as a function of distance. In
this case, I used Systat (Systat, Inc, 1994), but other statistical packages
could equally have been used. Again, because comparisons between different
types of crimes were of interest, the percentage of crimes (by type) within an
interval was used as the dependent variable (and was defined as a
percentage,i.e., 11.51% was recorded as 11.51). Five equations testing each
of the five models were set up.

Linear
For the linear function, the test was

Pct; = A + Bd, 9.27)
where Pct; is the percentage of all crimes of that type falling into interval i, d,

is the distance for intervali, A is the intercept, and B is the slope. Aand B
are estimated directly from the regression equation.

Negative Exponential

For the negative exponential function, the variables have to be transformed
to estimate the parameters. The function is

B*d,
Pet,= A*e (9.28)

A new variable is defined which is the natural logarithm of the percentage of
all crimes of that type falling into the interval, In(Pct,). This term was then
regressed against the distance interval, d,.

In(Pet) =K - B*d, (9.29)

However, since the original equation has been transformed into a log
function, B is the coefficient and A can be calculated directly from

In(Pct,) = In(A) - B*d, (9.30)

A=¢ef (9.31)
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Ifthe percentage in any bin was 0 (i.e., Pct, = 0), then a value of -16 was
taken since the natural logarithm of 0 cannot be solved (it approximates -16
as the percentage approaches 0.0000001).

Normal

For the normal function, a more complex transformation must be used. The
normal function in the model is

1 0.5%7if
Pct, = A* * e 9.32)
S,* SQRT(21)

First, a standardized Z variable' for the distance, d, is created

(d; - MeanD)
Z, = e (9.33)

where MeanD is the mean distance and S, is the standard deviation of
distance. These are calculated from the original data file (before creating the
file of frequency distributions). Second, a normal transformation of Z is
constructed with

Normal(Z) = —wememmmemmmemee * ¢ (9.34)
S,* SQRT(2m)

Finally, the normalized variable is regressed against the percentage of all
crimes of that type falling into the interval, Pct, with no constant

Pct, = A* Normal(Z)) (9.35)
A is estimated by the regression coefficient.
Lognormal
For the lognormal function, another complex transformation must be done.
The lognormal function for the percentage of all crimes of a type for a

particular distance interval is

1 In(d2) - MeanD P/ 2 *§ 2
Pct, = A% * e (9.36)
d?, * $,* SQRT(2T)

The transformation can be created in steps. First, create L

L = In@d? 9.37)
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Second, create M
M = (1 - MeanDY (9.38)
Third, create O
O= cmoeen (9.39)
(2*8,%)

Fourth, create P by raising e to the O power.

P =e° (9.40)

Fifth, create the lognormal conversion, Lnormal

1
Lonormal(d)= A * - *p 9.41)
d?, * $,* SQRT(27)

Finally, the lognormal variable is regressed against the percentage ofall
crimes of that type falling into the interval, Pct; with no constant

Pct; = A* Lnormal(d)) 9.42)
A is estimated with the regression coefficient.
Truncated Negative Exponential
Forthe truncated negative exponential function, two models were set up.
The first applied to the distance range from 0 to the distance at which the

percentage (or frequency)is highest, Maxd,. The second applied to all
distances greater than this distance

Linear: Pct,= A + Bd, for d; > 0, dj< Maxd, (9.43)
Negative ~C*di
Exponential: Pct,= A*e for dj> Maxd, (9.44)

To use this function, the user specifies the distance at which the peak
likelihood occurs, d, (the peak distance) and the value for that peak
likelibood, P (the peak likelihood). For the negative exponential function, the
user specifies the exponent, C.
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In order to splice the two equations together (the spline), the CrimeStat
truncated negative exponential routine starts the linear equation at the
origin and ends it at the highest value. Thus,

A=0 (9.45)
B="P/, (9.46)
where P is the peak likelihood and d, is the peak distance.

The exponent, C, can be estimated by transforming the dependent variable,
Pct,, as in the negative exponential above (equation 9.28) and regressing the
natural log of the percentage (In(Pct,) against the distance interval, d,, only
for those intervals that are greater than the peak distance. I have found that
estimating the transformed equation with a coefficient, A in

-C*d,
Pot,= A * ¢ (9.47)

In(Pet,) = Ln(A) - C*d, (9.48)

gives a better fit to the equation. However, the user need only input the
exponent, C, in the Jtc routine as the coefficient, A, of the negative
exponential is calculated internally to produce a distance value at which the
peak likelihood occurs. The formula is:

In(P) + C*(d, - d,)
A=e | (9.49)

where P is the peak likelihood, d, is the distance for the peak likelihood, C is
an exponent (assumed to be positive) and d; is the distance interval for the
histogram.

Once the parameters for the five models have been estimated, they can be
compared to see which one is best at predicting the travel behavior for a

particular type of crime. It is to be expected that different types of crimes
will have different optimal models and that the parameters will also vary.

Examples from Baltimore County

Let’s illustrate with the Baltimore County data. Figure 9.4 shows the frequency
distribution for all types of crime in Baltimore County. As can be seen, at the nearest
distance interval (0 to 0.25 miles with an assigned ‘adjusted’ midpoint of 0.125 miles),
about 6.9% of all crimes occur within a quarter mile of the offender’s residence (it can be
seen on the Y-axis). However, for the next interval (0.25 to 0.50 miles 'with an assigned
midpoint 0f 0.375 miles), almost 10% of all crimes occur at that distance (9.8%). In
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Figure 9.4:

Journey to Crime Distances: All Crimes
Negative Exponential Distribution
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subsequent intervals, however, the percentage decreases, a little less than 6% for 0.50 to
0.75 miles (with the midpoint being 0.625 miles), a little more than 4% for 0.75 to 1 mile
(the midpoint is 0.875 miles), and so forth.

The best fitting statistical function was the negative exponential. The particular
equation is

-0.229%d,
Pct,= 5.575 %¢ (9.50)

This is shown with the solid line. As can be seen, the fit is good for most of the distances,
though it underestimates at close to zero distance and overestimates from about a half mile
to about four miles. There is only slight evidence of decreased activity near to the location
of the offender.

However, the distribution varies by type of crime. With the Baltimore County data,
property crimes, in general, occur farther away than personal crimes. The truncated
negative exponential generally fit property crimes better, lending support for the
Brantingham and Brantingham (1981) framework for these types. For example, larceny
offenders have a definite safety zone around their residence (figure 9.5). Fewer than 2% of
larceny thefts occur within a quarter mile of the offender’s residence. However, the
percentage jumps to about 4.5% from a quarter mile to a half. The truncated negative
exponential function fits the data reasonably well though it overestimates from about 1 to
3 miles and underestimates from about 4 tol2 miles.

Similarly, motor vehicle thefis show decrecased activity near the offender’s resident,
though it is less pronounced than larceny theft. Figure 9.6 shows the distribution of motor
vehicle thefis and the truncated negative exponential function which was fit to the data.
As can be seen, the fit is reasonably good though it tends to underestimate middle range
distances (approximately 3-12 miles).

Some types of crime, on the other hand, are very difficult to fit. Figure 9.7 shows
the distribution of bank robberies. Partly becausc there were a limited number of cases
(N=176) and partly because it’s a complex pattern, the truncated negative exponential gave
the best fit, but not a particularly good one. As can be seen, the linear (‘near home’)
function underestimates some of the near distance likelihoods while the negative
exponential drops off too quickly; in fact, to make this function even plausible, the
regression was run -only up to 21 miles (otherwise, it underestimated even more).

For some crimes, it was very difficult to fit any single function. Figure 9.8 shows
the frequency distribution of 137 homicides with three functions being fitted to the data -
the truncated negative exponential, the lognormal, and the normal. As can be seen cach
function fits only some ofthe data, but not all of it.
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Figure 9.5:
Journey to Crime Distances: Larceny
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Figure 9.6:

Journey to Crime Distances: Vehicle Theft
Truncated Negative Exponential Function
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Figure 9.7:

Journey to Crime Distances: Bank Robbery
Truncated Negative Exponential Function
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Figure 9.8:

Journey to Crime Distances: Homicide
Normal, Loghormal, and Truncated Negative Exponential Functions
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Testing for Residual Errors in the Model

In short, the five mathematical functions allow a user to fit a variety of distance
decay distributions. Each of the models will predict some parts of the distribution better
than others. Consequently, it is important to conduct an error analysis to determine which
model is ‘best’. In an error analysis, the residual error is defined as

Residual error = Y, - E(Y,} (9.51)

where Y, is the observed (actual) likelihood for distance i and E(Y)) is the likelihood
predicted by the model. Ifraw numbers of incidents are used, then the likelihoods are the
number of incidents for a particular distance. Ifthe number ofincidents are converted into
proportions (i.e., probabilities), then the likelihoods are the proportions of incidents for a
particular distance.

The choice of best model’ will depend on what part of the distribution is considered
most important. Figure 9.9, for example, shows the residual errors on vehicle theft for the
five fitted models. That is, each of the five models was fit to the proportion of vehicle thefts
by distance intervals (as explained above). For each distance, the discrepancy between the
actual percentage of vehicle thefts in that interval and the predicted percentage was
calculated. If there was a perfect fit, then the discrepancy (or residual) was 0%. Ifthe
actual percentage was greater than the predicted (i.c., the model underestimated), then the
residual was positive; if the actual was smaller than the predicted (i.e., the model
overestimated), then the residual was negative.

As can be see in figure 9.9, the truncated negative exponential fit the data well from
0 to about 5 miles, but then became poorer than other models for longer distances. The
negative exponential model was not as good as the truncated for distances up to about 5
miles, but was better for distances beyond that point. The normal distribution was good
for distances from about 10 miles and farther. The lognormal was not particularly good for
any distances other than at 0 miles, nor was the linear.

The degree of predictability varied by type of crime. For some types, particularly
property crimes, the fit was reasonably good. 1 obtained R’ in the order of 0.86 to 0.96 for
burglary, robbery, assault, larceny, and auto theft. For other types of crime, particularly
violent crimes, the fit was not very good with R’ values in the order of 0.53 (rape), 0.41
(arson) and 0.30 (homicide). These R’ values were for the entire distance range; for any
particular distance, however, the predictability varied from very high to very low.

In modeling distance decay with a mathematical function, a user has to decide
which part of the distribution is the most important as no simple mathematical function
will normally fit all the data (even approximately). In these cases, ] assumed that the near
distances were more important (up to, say, 5 miles) and, therefore, selected the model
which best’fit those distances (see table 9.2). However, it was not always clear which
model was best, even with that limited criteria.
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Figure 9.9:

Residual Error for Jtc Mathematical Models
Vehicle Theft
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Using CrimeStat for Geographic Profiling

Brent Snook, Paul J. Taylor & Craig Bennell
Department of Psychology, University of Liverpool

A challenge for researchers providing investigative support is to use
information about crime locations to prioritize geographic areas according to how
likely they are to contain the offender’s residence. One prescient solution to this
problem uses probability distance functions to assign a likelihood value to the
activity space around each crime location. A research goal is to identify the function
that assigns the highest likelihood to the offender’s actual residence, since this
should prove more efficient in future investigations.

CrimeStat was used to test of the effectiveness of two functions for a sample
of 68 German serial murder cases, using a measure known as error distance. The top
figures below illustrate the two functions used and the bottom figures portray the
corresponding effectiveness of the functions by plotting the percentage of the sample
‘located’ by error distance. A steeper effectiveness curve indicates that home
locations were closer to the point of highest probability and that, consequently, the
probability distance function was more efficient. In this particular test, no difference
was found between the two functions in their ability to classify geographic areas.
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Problems with Mathematical Distance Decay Functions

There are several reasons that mathematical models of distance decay distributions,
such as illustrated in the Jtc routine, do not fit data very well. First, as mentioned earlier,
few cities have a completely symmetrical grid structure or even one that is approximately
grid-like (there are exceptions, of course). Limitations of physical topography (mountains,
oceans, rivers, lakes) as well as different historical development patterns makes travel
asymmetrical around most locations.

Second, there is population density. Since most metropolitan areas have much
higher intensity of land use in the center (i.c., more activities and facilities), travel tends to
be directed towards higher land use intensity than away from them. For origin locations
that are not directly in the center, travel is more likely to go towards the center than away
from it.

This would be true of an offender as well. Ifthe person were looking for either
persons or property as ‘targets’, then the offender would be more likely to travel towards
the metropolitan center than away from it. Since most metropolitan centers have street
networks that were laid out much earlier, the street network tends to be irregular.
Consequently, trips will vary by location within a metropolitan area. One would expect
shorter trips by an offender living close to the metropolitan center than one living farther
away; shorter trips for offenders living in more built-up areas than in lower density areas;
shorter trips for offenders in mixed use neighborhoods than in strictly residential
neighborhoods; and so forth. Thus, the distribution oftrips ofany sort {(in our case, crime
trips from a residential location to a crime location), will tend to follow an irregular,
distance decay type of distribution. Simple mathematical models will not fit the data very
well and will make many errors.

Third, the selection of a best mathematical function is partly dependent on the
interval size used for the bins. In the above examples, an interval size of 0.25 miles was
used to calculate the frequency distribution. With a different interval size (e.g., 0.5 miles),
however, a slightly different distribution is obtained. This effects the mathematical
function that is selected as well as the parameters that are estimated. For example, the
issue of whether there is a safety zone near the offender’s residence from which there is
decreased activity or not is partly dependent on the interval size. With a small interval,
the zone may be detected whereas with a slightly larger interval the subtle distinction in
measured distances may be lost. On the other hand, having a smaller interval may lead to
unreliable estimates since there may be few cases in the interval. Having a technique
depend on the interval size makes it vulnerable to mis-specification.

Uses of Mathematical Distance Decay Functions
Does this mean that one should not use mathematical distance functions? I would
argue that under most circumstances, a mathematical function will give less precision than

an empirically-derived one (see below). However, there are two cases when a
mathematical model would be appropriate. First, if there is either no data or insufficient
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data to model the empirical travel distribution, the use ofa mathematical model can serve
as an approximation. Ifthe user has a good sense of what the distribution looks like, then
a mathematical model may be used to approximate the distribution. However, if a poorly
defined function is selected, then the selected function may produce many errors.

A second case when mathematical models of distance decay would be appropriate is
in theory development or application. Many models of travel behavior, for example,
assume a simple distance decay type of function in order simplify the allocation of trips
over a region. This is a common procedure in travel demand modeling where trips from
each of many zones are assigned to every other zone using a gravity type of function
(Stopher and Meyburg, 1975; Field and MacGregor, 1987). Even though the model
produces errors because it assumes uniform travel behavior in all directions, the errors are
corrected later in the modeling process by adjusting the coefficients for allocating trips to
particular roads (traffic assignment). The model provides a simple device and the errors
are corrected down the line. Still, T would argue that an empirically-derived distribution
will produce fewer errors in allocation and, thus, require less adjustment later on. Errors
can never help a model and its better to get it more correct initially to have to adjust it
later on; the adjustment may be inadequate. Nevertheless, this is common practice in
transportation planning.

The Journey to Crime Routine Using 2 Mathematical Formula

The Jtc routine which allows mathematical modeling is simple to use. Figure 9.10
itlustrates how the user specifies a mathematical function. The routine requires the use of
a grid which is defined on the reference file tab of the program (see chapter 3). Then, the
user must specify the mathematical function and the parameters. In the figure, the
truncated negative exponential is being defined. The user must input values for the peak
likelihood, the peak distance, and the exponent (see equations 9.43 and 9.44 above). In the
figure, since the serial offenses were a series of 18 robberies, the parameters for robbery
have been entered into the program screen. The peak likelihood was 9.96% (entered as a
whole number -i.e., 9.96); the distance at which this peak likelihood occurred was the
second distance interval 0.25-0.50 miles (with a mid-point of 0.38 miles); and the estimated
exponent was 0.177651. As mentioned above, the coefficient for the negative exponential
part of the equation is estimated internally.

Table 9.3 gives the parameters for the best’ models which fit the data for the 11
types of crime in Baltimore County. For several of these (e.g., bank robberies), two or more
functions gave approximately equally good fits. Note that these parameters were
estimated with the Baltimore County data. They will not fit any other jurisdiction. Ifa
user wishes to apply this logic, then the parameters should be estimated anew from
existing data. Nevertheless, once they have been calibrated, they can be used for
predictions.

The routine can be output to drcView, Maplinfo, Atlas*GIS, Surfer for Windows,
Spatial Analyst, and as an Ascii grid file which can be read by many other GIS packages.
All but Surfer for Windows require that the reference grid be created by CrimeStat.
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Figure9.10: Jt¢ Mathematical Distance Decay Function
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Table 9.3

Journey to Crime Mathematical Models for Baltimore County
Parameter Estimates for Percentage Distribution

X X XA X X XA X XA XX X XA A A A AAAA AR A A A A A AAddAddldd A A A A A A

(Sample Sizes in Parentheses)

ALL CRIMES
Negative Exponential: Coefficient: 5.575107
Exponent: 0.229466
HOMICIDE
Truncated
Negative Exponential: Peak likelihood 14.02%
Peak distance 0.38 miles
Exponent 0.064481
RAPE
Lognormal: Mean 3.144959
Standard Deviation 4.546872
Coefficient 0.062791
ASSAULT
Truncated
Negative Exponential: Peak likelihood 27.40%
Peak distance 0.38 miles
Exponent 0.181738
ROBBERY
Truncated
Negative Exponential: Peak likelihood 9.96%
Peak distance 0.38 miles
Exponent 0.177651
COMMERCIAL ROBBERY
Truncated
Negative Exponential: Peak likelihood 4.9455%
Peak distance 0.625 miles
Exponent 0.151319
383

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



A X A A A A A A A A A A A A A A A A A A A A A A AdA A Al A A A A A A A A A A A dbdh dhd

BANK ROBBERY

Truncated

Negative Exponential:

BURGLARY

Truncated

Negative Exponential:

AUTO THEFT

Truncated

Negative Exponential:

LARCENY

Truncated

Negative Exponential:

ARSON

Truncated

Negative Exponential:

Table 9.3 (continued)

Peak likelihood
Peak distance
Exponent

Peak likelihood
Peak distance
Exponent

Peak likelihood
Peak distance
Exponent

Peak likelihood
Peak distance
Exponent

Peak likelihood
Peak distance
Exponent
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9.96%
5.75 miles
0.139536

20.55%
0.38 miles
0.162907

4.81%
0.63 miles
0.212508

4.76%
0.38 miles
0.193015

38.99%
0.38 miles
0.093469
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Distance Modeling Using an Empirically Determined Function

An alternative to mathematical modeling of distance decay is to empirically describe
the journey to crime distribution and then use this empirical function to estimate the
residence location. CrimeStat has a two-dimensional kernel density routine that can
calibrate the distance function if provided data on trip origins and destinations. The logic
of kernel density estimation was described in chapter 8, and wont be repeated here.
Essentially, a symmetrical function (the kernel’) is placed over each point in a distribution.
The distribution is then referenced relative to a scale (an equally-spaced line for two-
dimensional kernels and a grid for three-dimensional kernels) and the values for each
kernel are summed at each reference location. Sec chapter 8 for details.

Calibrate Kernel Density Function

The CrimeStat calibration routine allows a user to describe the distance distribution
for a sample of journey to crime trips. The requirements are that:

1. The data set must have the coordinates of both an origin location and a
destination location; and

2. The records of all origin and destination locations have been populated with
legitimate coordinate values (i.e., no unmatched records are allowed).

Data Set Definition

The steps are relatively easy. First, the user defines a calibration data set with
both origin and destination locations. Figure 9.11 illustrates this process. As with the
primary and secondary files, the routine reads ArcView ‘shp’, dBase ‘dbf’, Ascii txt’, and
Maplnfo ‘dat’ files. For both the origin location (e.g., the home residence of the offender)
and the destination location (i.e., the crime location), the names of the variables for the X
and Y coordinates must be identified as well as the type of coordinate system and data unit
(see chapter 3). In the example, the origin locations has variable names of HomeX and
HomeY and the destination locations has variable names of IncidentX and IncidentY for
the X and Y coordinates ofthe two locations respectively. However, any name is acceptable
as long as the two locations are distinguished.

The program will calculate the distance between the origin location and the
destination location for each record. Ifthe units are spherical (i.e., lat/lon), then the
calculations use spherical geometry; ifthe units are projected (either meters or feet), then
the calculations are Euclidean (see chapter 3 for details).

Kernel Parameters
Next, the user must define the kernel parameters for calibration. There are five

choices that have to be made (Figure 9.12):
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Figure 9.11: JtC Calibration Data Input
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Figure9.12: Jtc Calibration Kernel Parameters
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The method ofinterpolation. As with the two-dimensional kernel technique
described in chapter 8, there are five possible kernel functions:

Normal (the default);

Quartic;

Triangular (conical);

A negative exponential (peaked); and
A uniform (flat) distribution,

moOwy

Choice of bandwidth. The bandwidth is the width of the kernel function. For
a normal kernel, it is the standard deviation of the normal distribution
whereas for the other four kernels (quartic, triangular, negative exponential,
and uniform), it is the radius of the circle defined by the kernel. As with the
two-dimension kernel technique, the bandwidth can be fixed in length or
adaptive (variable in length). However, for the one-dimensional kernel, the
fixed bandwidth is the default since an even estimate over an equal number
of intervals (bins) is desirable. If the fixed bandwidth is selected, the interval
size must be specified and the units (in miles, kilometers, feet, meters, and
nautical miles). The default is 0.25 mile intervals. Ifthe adaptive
bandwidth is selected, the user must identify the minimum sample size that
the bandwidth should incorporate; in this case, the bandwidth is widened
until the specified sample size is counted.

The number ofinterpolation bins. The bins are the intervals along the
distance scale (from 0 up to the maximum distance for 2 journey to crime
trip) and are used to estimate the density function. There are two choices.
First, the user can specify the number ofintervals (the default choice with
100 intervals). In this case, the routine calculates the maximum distance (or
longest trip) between the origin location and the destination location and
divides it by the specified number of intervals (e.g., 100 equal-sized
intervals). The interval size is dependent on the longest trip distance
measured. Second, the user can specify the distance between bins (or the
interval size). The default choice is 0.25 miles, but another value can be
entered. In this case, the routine counts out intervals of the specified size
until it reaches the maximum trip distance.

The output units. The user specifies the units for the density estimate (in
units per mile, kilometer, feet, meters, and nautical miles).

The output calculations. The user specifies whether the output results are in
probabilities (the defaulit) or in densities. For probabilities, the sum ofall
kernel estimates will equal 1.0. For densities, the sum of all kernel
estimates will equal the sample size.
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Saved Calibration File

Third, the user must define an output file to save the empirically determined
function. The function is then used in estimating the likely home residence of a particular
function. The choices are to save the file as a ‘dbf or Ascii text file. The saved file then can
be used in the Jtcroutine. Figure 9.13 illustrates the output file format.

Calibrate

Fourth, the calibrate button runs the routine. A calibration window appears and
indicates the progress of the calculations. When it is finished, the user can view a graph
illustrating the estimated distance decay function (Figure 9.14). The purpose is to provide
quick diagnostics to the user on the function and selection of the kernel parameters. While
the graph can be printed, it is not a high quality print. Ifa high quality graph is needed,
the output calibration file should be imported into a graphics program.

Examples from Baltimore County

Let’s illustrate this method by showing the results for the same data sets that were
calculated above in the mathematical section (figures 9.4-9.8). In all cases, the normal
kernel function was used. The bandwidth was 0.25 miles except for the bank robbery data
set, which had only 176 cases, and the homicide data set, which only had 137 cases;
because of the small sample sizes, a bandwidth of 0.50 miles was used for these two data
sets. The interval width selected was a distance of 0.25 miles between bins (0.5 miles for
bank robberies and homicides) and probabilities were output.

Figure 9.15 shows the kernel estimate for all crimes (41,426 trips). A frequency
distribution was calculated for the same number of intervals and is overlaid on the graph.
It was selected to be comparable to the mathematical function (see figure 9.4). Note how
closely the kernel estimate fits the data compared to the negative exponential
mathematical function. The fit is good for every value but the peak value; that is because
the kernel averages several intervals together to produce an estimate.

Figure 9.16 shows the kernel estimate for larceny thefts. Again, the kernel method
produces a much closer fit as a comparison with figure 9.5 will show. Figure 9.17 shows
the kernel estimate for vehicle thefis. Figure 9.18 shows the kernel estimate for bank
robberies and figure 9.19 shows the kernel estimate for homicides. An inspection of these
graphs shows how well the kernel function fits the data, compared to the mathematical
function, even when the data are irregularly spaced (in vehicle thefts, bank robberies, and
homicides). Figure 9.20 compares the distance decay functions for homicides committed
against strangers compared to homicides committed against known victims.

In short, the Jtc calibration routine allows a much closer fit to the data than any of
the simpler mathematical functions. While it’s possible to produce a2 complex
mathematical function that will fit the data more closely (e.g., higher order polynomials),
the kernel method is much simpler to use and gives a good approximation to the data.
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Figure 9.13: JtC Calibration Output File
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Figure 9.14: JtC Calibration Graphic Output
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Figure 9.15:

Journey to Crime Distances: All Crimes
Frequencies and Kernel Density Estimate
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Figure 9.16:

Journey to Crime Distances: Larceny
Frequencies and Kernel Density Estimate
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Figure 9.17:

Journey to Crime Distances: Vehicle Theft
Frequencies and Kernel Density Estimate
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Figure 9.18:

Journey to Crime Distances: Bank Robbery
Frequencies and Kernel Density Estimate
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Figure 9.19:

Journey to Crime Distances: Homicide
Frequencies and Kernel Density Estimate
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Figure 9.20:

Journey to Crime Distances: Homicide by Victim Relationship
Frequencies and Kernel Density Estimate
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Using Journey-To-Crime Routine for Journey-After-Crime Analysis

Yongmei Lu
Department of Geography
Southwest Texas State University
San Marcos, TX

The study of vehicle theft recovery locations can fill a gap in the knowledge
about criminal travel patterns. Although the journey-to-crime routine of CrimeStat
was designed to analyze the distance between offense location and offender’s
residential location, it can be used to describe the distance between vehicle theft
location and the corresponding recovery location.

There were more than 3000 vehicle thefts in the City of Buffalo in 1998.
Matching the offenses with vehicle recoveries in the same year, 1600 location pairs
were identified for a journey-after-vehicle-theft analysis. To evaluate the
randomness of the distances, 1000 groups of simulations were conducted. Every
group contains 1600 simulated trips of journey-after-vehicle-theft. The results
indicate that 1) short distances dominate journey-after-vehicle-theft, and 2) the
observed trips are significantly shorter than the random trips given the distribution
of possible vehicle theft and recovery locations.
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Using Journey to Crime for Different Age Groups of Offenders

Renato Assuncio, Claudio Beato, Braulio Silva
CRISP, Universidade Federal de Minas Gerais , Brazil

CrimeStat offers a method for analysing the distance between the crime scene
and the residence of the offender using the journey to crime routine within the
spatial modeling module, We analysed homicide incidents in Belo Horizonte, a
Brazilian city of 2 million inhabitants, for the period January 1996 — December
2000. We used 496 homicide cases for which the police identified an offender who
was living in Belo Horizonte, and for which both the crime location and offender
residence could be identified. The cases were divided into three groups according to
the offender's age: 1) 14 to 24 (N=201); 2) 25 to 34 N=1786); and 3) 35 or older
(N=119). The journey to crime calibration routine was used to produce a probability
curve P(d) that gives the approximate chance of an offender travelling
approximately distance d to commit the crime.

We used the normal kernel, a fixed bandwidth of 1000 meters, 100 output
bins, and the probability (or proportion of all points) option, rather than densities.
This is to allow comparisons between the three age groups since they have different
number of homicides. We tested for each age group separately and directed the
output to a text file to analyse the three groups simultaneously.

The green, blue, and purple curves are associated with the 14-24, 25-34, 35+
year olds respectively. There are more similarities than differences between the
groups. Most homicides are committed near to the residence of the offenders with
between 60% t 0 70% closer than one mile from their home. However, the curve does
not vanish totally even for large distances because there are around 15% of
offenders, of any age group, travelling longer than 3 miles to commit the crime. The
oldest offenders travel longer distances, on average, followed by the youngest group,
with the 25-34 year olds travelling the shortest distances.

Journey to homicide probabilities in Belo Horizonte, Brazil
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The Journey to Crime Routine Using the Calibrated File

After the distance decay function has been calibrated and saved as a file, the file can
be used to calculate the likelihood surface for a serial offender. The user specifies the name
of the already-calibrated distance function (as a dbf’ or an Ascii text file) and the output
format. As with the mathematical routine, the output can be to ArcView, Maplinfo,
Atlas*GIS, Surfer for Windows, Spatial Analyst, and as an Ascii grid file which can be read
by many other GIS packages. Allbut Surfer for Windows require that the reference grid be
created by CrimeStat.

The result is produced in three steps:

1. The routine calculates the distance between each reference cell of the grid
and each incident location;

2. For each distance measured, the routine looks up the calculated value from
the saved calibration file; and

3. For each reference grid cell, it sums the values of all the incidents to produce
a single likelihood estimate.

Application of the Routine

To illustrate the techniques, the results of the two methods on a single case are
compared. The case has been selected because the routines accurately estimate the
offender’s residence. This was done to demonstrate how the techniques work. In the next
section, I'll ask the question about how accurate these methods are in general.

The case involved a man who had committed 24 offenses. These included 13 thefts,
5 burglaries, 5 assaults, and one rape. The spatial distribution was varied; many of the
offenses were clustered but some were scattered. Since there were multiple types of crimes
committed by this individual, a decision had to be made over which model to use to
estimate the individual’s residence. In this case, the theft (larceny) model was selected
since that was the dominant type of crime for this individual.

For the mathematical function, the truncated negative exponential was chosen from
table 9.3 with the parameters being:

Peak likelihood 4.76%
Peak distance 0.38 miles
Exponent 0.193015

For the kernel density model, the calibrated function for larceny was selected (figure 9.16).

Figure 9.21 shows the results of the estimation for the two methods. The output is
from Surfer for Windows (Golden Software, 1994). The left pane shows the results of the
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Figure 9.21:

Predicted and Actual Location of Serial Thief
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mathematical function while the right pane shows the results for the kernel density
function. The incident locations are shown as circles while the actual residence location of
the offender is shown as a square. Since this is a surface model, the highest location has
the highest predicted likelihood.

In both cases, the models predicted quite accurately. The discrepancy (error)
between the predicted peak location and the actual residence location was 0.66 miles for
the mathematical function and 0.36 miles for the kernel density function. For the
mathematical model, the actual residence location {(square) is seen as slightly off from the
peak of the surface whereas for the kernel density model the discrepancy from the peak
cannot be seen.

Nevertheless, the differences in the two surfaces show distinctions. The
mathematical model has a smooth decline from the peak likelihood location, almost like a
cone. The kernel density model, on the other hand, shows a more irregular distribution
with a peak location followed by a surrounding trough’ followed a peak rim’. This is due to
the irregular distance decay function calibrated for larceny (see figure 9.16). But, in both
cases, they more or less identify the actual residence location of the offender.

Choice of Calibration Sample

The calibration sample is critical for either method. Each method assumes that the
distribution of the serial offender will be similar to a sample of like’ offenders. Obviously,
distinctions can be made to make the calibration sample more or less similar to the
particular case. For example, if a distance decay function of all crimes is selected, then a
model (of cither the mathematical or kernel density form) will have less differentiation
than for a distance decay function from a specific type of crime. Similarly, breaking down
the type of crime by, say, mode of operation or time of day will produce better
differentiation than by grouping all offenders of the same type together. This process can
be taken on indefinitely until there is too little data to make a reliable estimate. An
analyst should try to find as close a calibration sample to the actual as is possible, given
the limitations of the data.

For example, in our calibration data set, there were 4,694 burglary incidents where
both the offender’s home residence and the incident location were known. The approximate
time of the offense for 2,620 of the burglaries was known and, of these, 1,531 occurred at
night between 6 pm and 6 am. Thus, if a particular serial burglar for whom the police are
interested in catching tends to commit most of his burglaries at night, then choosing a
calibration sample of nighttime burglars will generally produce a better estimate than by
grouping all burglars together. Similarly, of the 1,531 nighttime burglaries, 409 were
committed by individuals who had a prior relationship with the victim. Again, ifthe
analysts suspect that the burglar is robbing homes of people he knows or is acquainted
with, then selecting the subset of nighttime burglaries committed against a known victim
would produce even better differentiation in the model than taking all nighttime burglars.
However, eventually, with further sub-groupings there will be insufficient data.
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This point has been raised in a recent debate. Van Koppen and De Keijser (1997)
argued that a distance decay function that combined multiple incidents committed by the
same individuals could distort the estimated relationship compared to selecting incidents
committed by different individuals.®* Rengert, Piquero and Jones (1999) argued that such a
distribution is nevertheless meaningful. In our language, these are two different sub-
groups - persons committing multiple offenses compared to persons committing only one
offense. Combining these two sub-groups into a single calibration data set will only mean
that the result will have less differentiation in prediction than ifthe sub-groups were
separated out,

Actually, there is not much difference, at least in Baltimore County. From the
41,426 cases, 18,174 were committed by persons who were only listed once in the database
while 23,251 offenses were committed by persons who were listed two or more times (7,802
individuals). Categorizing the 18,174 crimes as committed by ‘single incident offenders
and the 23,251 crimes as committed by ‘multiple incident offenders’, the density distance
decays functions were calculated using the kernel density method (Figure 9.22).

The distributions are remarkably similar. There are some subtle differences. The
average journey to crime trip distance made by a single incident offender is longer than for
multiple incident offenders (4.6 miles compared to 4.0 miles, on average); the difference is
highly significant (p<.0001), partly because of the very large sample sizes. However, a
visual inspection of the distance decay functions shows they are similar. The single
incident offenders tend to have slightly more trips near their home, slightly fewer for
distances between about a mile up to three miles, and slightly more longer trips. But, the
differences are not very large.

There are several reasons for the similarity. First, some of the single incident
offenders’are actually multiple incident offenders who have not been charged with other
incidents. Second, some ofthe single incident offenders are in the process of becoming
multiple incident offenders so their behavior is probably similar. Third, there may notbe a
major difference in travel patterns by the number of offenses an individual commits,
certainly compared to the major differences by type of crime (see graphs above). In other
words, the distinction between a single offender crime trip and a multiple offender crime
trip is just another sub-group comparison and, apparently, not that important.
Nevertheless, it is important to choose an appropriate sample from which to estimate a
likely home base location for a serial offender. The method depends on a similar sample of
offenders for comparison.

Sample Data Sets for Journey te Crime Routines

Three sample data sets from Baltimore County have been provided for the journey
to crime routine. The data sets are simulated and do not represent real data. The first file
- JtcTest1.dbf, are 2000 simulated robberies while the second file - JtcTest2.dbf, are 2500
simulated burglaries. Both files have coordinates for an origin location (HomeX, HomeY)
and a destination location (IncidentX, IncidentY). Users can use the calibration routine to
calculate the travel distances between the origins and the destinations. A third data set -
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Figure 9.22:

Journey to Crime Distances
Kernel Density Estimate of Single and Multiple Incident Offenders
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Catching the Bad Guy

Bryan Hill
(Glendale Police Department
Glendale, AZ

The City of Glendale, Arizona recently had a string of auto thefts committed
by the same individual. The map shows known auto theft suspects and their home
address. The red area in the map shows the most probable home address. Prior to
the analysis, the Phoenix Police Department’s Crime Analysis Unit was able to
calibrate the CrimeStat Jtc routine with known offender robbery suspect data.

Monthly citation data was used to search for anyone that lived within the
area identified by the routine who also drove a red Saturn. A suspect with a felony
warrant was identified and proved to be also the suspect in a series of armed
robberies and a homicide that occurred in the Phoenix and Glendale jurisdictions.
When he was arrested for the felony warrant at his home, evidence of the robberies
and homicide were found.
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Seriall.dbf, are simulated incident locations for a serial offender. Users can use the Jtc
estimation routine to identify the likely residence location for this individual. In running
this routine, a reference grid needs to be overlaid (see chapter 3). For Baltimore County,
appropriate coordinates for the lower-left corner are -76.91° longitude and 39.19° latitude
and for the upper-right corner are -76.32° longitude and 39.72° latitude.

How Accurate are the Methods?

A critical question is how accurate are these methods? The journey fo crime model
is just that, a model. Whether it involves using a mathematical function or an empirically-
derived one, the assumption in the Jtc routine is that the distribution of incidents will
provide information about the home base location of the offender. In this sense, it’s not
unlike the way most crime analysts will work when they are trying to find a serial
offender. A typical approach will be to plot the distribution of incidents and routinely
search a geographic area in and around a serial crime pattern, noting offenders who have
an arrest history matching case attributes (MO, type weapon, suspect description, etc.).
Because a high proportion of offenses are commitied within a short distance of offender
residence’s, the method can frequently lead to their apprehension. But, in doing this
method, the analysts are not using a sophisticated statistical model.

Test Sample of Serial Offenders

To explore the accuracy of the approach, a small sample of 50 serial offenders was
isolated from the database and used as a target sample to test the accuracy of the methods.
The 50 offenders accounted for 520 individual crime incidents in the database. Totest the
Jtc method systematically, the following distribution was selected (table 9.4). The sample
was not random, but was selected to produce a balance in the number of incidents
committed by each individual and to, roughly, approximate the distribution of incidents by
serial offenders. Each of the 50 offenders was isolated as a separate file so that each could
be analyzed in CrimeStat.

Identifying the Crime Type

Each of the 50 offenders was categorized by a crime type. Only two of the offenders
committed the same crime for all their offerises; most committed two or more different
types of crimes. Arbitrarily, each offender was typed according to the crime type that
he/she most frequently committed; in the two cases where there was a tie between two
crime types, the most severe was selected (i.e., personal crime over property crime). While
Irecognize that there is arbitrariness in the approach, it seemed a practical solution. Any
error in categorizing an offender would be applicable to all the methods. The erime types
for the 50 offenders approximately mirrored the distribution of incidents: larceny (29);
vehicle theft (7); burglary (5); robbery (8); assault (2); bank robbery (1); and arson (1).
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Table 9.4
Serial Offenders Used in Accuracy Evaluation
Number of Crimes

Number of Committed by
Offenders Each Person
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Identifying the Home Base and Incident Locations

In the database, each of the offenders was listed as having a residence location. For
the analysis, this was taken as the origin location of the journey to crime trip. Similarly,
the incident location was taken as the destination for the trip. Operationally, the crime trip
is taken as the distance from the origin location to the destination location. However, it is
very possible that some crime trips actually started from other locations. Further, many of
these individuals have moved their residences over time; we only have the last known
residence in the database. Unfortunately, there was no other information in the digital
database to allow more accurate identification of the home location. In other words, there
may be, and probably are, numerous errors in the estimation of the journey to crime trip.
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However, these errors would be similar across all methods and should not affect their
relative accuracy. '

Evaluated Methods

Ten methods were compared in estimating the likely residence location of the
offenders. Four of the methods used the Jtc routines and six were simple spatial
distribution methods (table 9.5).

Table 9.5

Comparison Methods for Estimating the Home Base of a Serial Offender

Journey to Crime Methods
Mathematical model for all crimes
Mathematical model for specific crime type
Kernel density model for all crimes
Kernel density model for specific crime type
Spatial Distribution Methods
Mean center
Center of minimum distance

Directional mean (weighted) calculated with ‘lower left corner’
as origin

Triangulated mean
Geometric mean
Harmonic mean
The mean center and center of minimum distance are discussed in chapter 4. The
center of minimum distance, in particular, is more or less the geographic center of
distribution in that it ignores the values of particular locations; thus, locations that are far

away from the cluster (extreme values) have no effect on the result. The directional mean
and triangulated mean is part of the directional mean routine, discussed in chapter 4 and

408

A X A A A XA XA A A A A A A A A AA A A A A A Al A dldldAdldldld A A A A A A dd ddh

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



X A X XA X XA XX A A XA X2 A A A AAZXAAdAAAAAAlAAAdAAAlA Al DA A A

in the update release notes; the routine has now been modified so that it can be used with
ordinary X/Y coordinates. The geometric and harmonic means are discussed in the update
release notes; they are both means which discount extreme values.

The Test

Each of these ten methods were run against each of the files created for the serial
offenders. For the six ‘means’(mean center, geometric mean, harmonic mean, directional
mean, triangulated mean, center of minimum distance), the mean was itself the best guess
for the likely residence location of the offender. For the four journey to crime functions, the
grid cell with the highest likelihood estimate was the best guess for the likely residence
location of the offender.

Measurement of Error

For each of the 50 offenders, error was defined as the distance in miles between the
‘best guess’and the actual location. For each offender, the distance between the estimated
home base (the best guess’) and the actual residence location was calculated using direct
distances. Table 9.6 presents the results. The data show the error by method for each of
the 50 offenders. The three right columns show the average error of all methods and the
minimum error and maximum errors obtained by a method. The method with the
minimum error is boldfaced; for some cases, two or three methods are tied for the
minimum. The bottom two rows show the average error and the standard deviation of the
errors for each method across all 50 offenders.

There are a number of conclusions from the results. First, the degree of precision
for any of these methods varies considerably. The precision of the estimates vary from a
low of 0.0466 miles (about 246 feet) to a high of 75.7 miles. The overall precision of the
methods is not very high and is highly variable. There are a number of possible reasons for
this, some of which have been discussed above. Each of the methods produces a single
parameter from what is, essentially, a probability distribution whereas the distribution of
many of these incidents are widely dispersed. Few of the offenders had such a
concentrated pattern that only a single location was possible. Since these are probability
distributions, not everyone follows the ‘central tendency’. Also, some of these offenders
may have moved during the period indicated by the incidents, thereby shifting the spatial
pattern of incidents and making it difficult to identify the last residence.

A second conclusion is that, for any one offender, the methods produce similar
results. For many of the offenders the difference between the best estimate (the minimum
error) and the worst estimate (the maximum error) is not great. Thus, the simple methods
are generally as good (or bad) as the more sophisticated methods.

Third, across all methods, the center of minimum distance had the lowest average
error. Thus, the approximate geographic center of the distribution produced as good an
estimate as the more sophisticated methods. However, it wasn’t particularly close (3.8441
miles, on average). The worst method was the triangulated mean; it had an average error
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Table 6.8

Accuracy of Methods for Estimating Serial Offender Residences
{N= 50 Serial Offenders)

Numbsr Primary  * Mean Center of Minl- Trlangulated - Goometric  Harmonlc  Jtc Kernel: o Kernel:  Jte Math:  Jic Math: « All Mathods
of Crims + Center mum Distarige  Mean Mean Mean All Crimes Crime Type  AllCrimas Crime Type * A ge  Mini Maxi
Dataset Grimes = Type * Error (mites) Error (miles) Error {initss) Error{miles)  Error{miles) Eror (miles) Error {mifes)  Ervor {miles} Error{miles) * Ertror Error Error

. .
A 3 Larceny . 31.5001 324477 324109 31,5885 31.8800 327826 32.7880 32.7624 32.7880 * 323109 31,8501 32.7880
38 3 tarceny . 13.2303 12,1683 24.1581 13.2311 13.2319 10.7526 14498 10.7528 11.2501 * 13.6058 10.7526 241531
3C 3 Bank robbery * 28348 0.9137 27787 28338 2.8322 0.6775 58418 0.6775 80826 * 28313 0.6775 8.0048
D 3 Burglary * 2.8733 3.2608 81013 2.8728 29724 4.8038 3,3883 3.3882 3.7931 * 37470 25724 84013
4A 4 Vehicle theft  ~ 4.2438 4.2670 3.8217 42435 4.2436 42827 42084 42527 42580 42022 38217 42670
48 4 Larceny . 1.9618 2,3100 2.0563 1.9621 1.0623 0.3125 0.2018 0.3125 82784 * 1.03%7 0.2018 2.0663
ac 4 Larceny * 44733 44739 4.6789 4.4733 44734 4.9684 4.3563 4.2637 43563 45018 4,2637 49604
4D 4 Asemult * 0.2025 0.1805 0.0468 0.2025 0.2028 0.0703 6.0703 0.0703 0.4560 * 0.4879 0.0466 0.4860
54 8 Larceny ’ 17.2308 16.6459 17.8085 17.3302 17.3278 15.9738 17.8655 15.9738 16.4526 ¢ 169775 158738 47.8985
a8 5 Larceny “ 1.3608 0.2484 17733 1.3586 1.3564 02068 0.6974 0.5140 0.6574 * 00126 0.2088 17733
5C 5 Larceny v 2.24568 26832 16,4518 2.2450 2.2442 2.7888 24205 27888 3.0822 * 44067 2.2042 164518
50 § Larceny * 0.9168 9.2250 82371 0.9171 0.9174 0.1577 0.4267 0.1577 04267 * 0.4869 04577 0.9174
8A & Larveny . 5.4837 5.2081 7.9621 5.1837 5.1437 51271 4.8554 439383 52056 * 5.4298 48554 7.882¢
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] 8 Larceny . 3.2488 23324 6.5209 32431 3.2405 1.2506 2.6253 19718 149718 ¢ 29336 1.2508 8.5200
1A 7 Larceny . 3.8023 3.4185 23176 3.8022 3.0021 21418 3.0532 3.1364 30632 * 3.2687 2.3178 39023
7B 7 Larceny . 12.4100 8.2978 14.8203 12.4107 124115 8.5357 8.5148 8,5367 8.8275 * 10,6528 8,5357 14.8293
bie] 7 Burglary * £.0501 7.1471 10.8587 5.0481 5.0460 7.9975 7.8975 7.9975 78274 * 71865 8.0460 10,8567
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8A 8 Larceny . 6.0208 60165 8.2653 8.0264 6,0220 84210 6.2962 82022 61166 * 63174 8.0165 84210
L] 8 Larceny . 1.0041 1.1437 24778 1.0042 10042 1.7475 13510 15288 13540 * 1.3684 1.0041 24778
8C 8 Larceny « 1.3058 156644 1.2684 1.3043 1.3027 2.4513 1.2020 21518 18707~ 1.5948 1.2020 2.1513
8D ] Vehicla thsft  * 3.5704 2.3780 55015 3.5800 3.6825 0.5900 13340 19133 13340 ¢ 26537 0.5500 §.5045
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104 10 Larceny * 0.9358 0.5159 1.1003 0.9355 0.9353 0.0606 0.3720 0.2601 [:Rab A 0.5481 0.0606 11003
108 10 Larceny * 2.8561 3.4840 142218 2.8536 2.8491 6.4081 6.5709 103095 54758 * 8.2264 2.8401 142219
106 10 Larceny * 0.8052 0.7251 5,5938 0.8050 0.8049 0.5059 0.8404 0.9080 12788 * 1.4072 9.7251 55938
1A 11 Venicle thelt  * 2.9127 3.2715 31182 29130 2.5134 3.8938 34335 3.4282 32087 * 22104 2.9127 3.6938
118 11 Robbery « 0.3250 0.3250 0.2513 0.9250 0.3250 0.4235 0.2263 04235 07011 * 03895 0.2263 07011
e 1 Veblols thett ¢ 1.2689 17167 4.4750 1.2709 1.2729 28945 0.6984 28045 23040 * 17440 0.6984 28945
12A 12 Larceny “ 3.3861 4.2334 10.9241 3.3687 3.3852 64050 3.2639 55843 2132+ 50871 3.2639 10.9241
128 12 Larceny * 0.5562 0.5361 2.8003 0.5582 0.5562 0.7897 0.6709 0.7897 0.9631 * 08132 0.5381 2.8003
13A 13 Larceny * 6.3282 7.2857 6.0244 5.3248 63213 76438 7.4607 7.6438 78915 * 18027 80244 7.0015
138 13 Assautt * 1.4943 1.4943 15219 14944 14844 1,8501 1,5654 1.8501 20824 * 16092 14842 2.0824
A 14 Lascany * 18363 0.8708 1.4488 1.9385 1.9368 0.3434 0.6058 0.2536 07831 * 11224 0.2596 19388
148 14 Arson « 0.8808 0.3727 ©.8086 0.6899 0.6900 0.3359 0.3359 0.3359 06213 ¥ 0.5422 0.3389 0,8088
15A 16 Vehicletheti * 07202 v.7189 0.3362 07277 0.7271 0.8155 0.4855 081585 15128 « 0.7630 03382 1.5428
5B 15 Robbery “ 04814 04814 0.8254 04D14 04914 0.6468 0.5683 D.8468 068548 ¢ 0.5608 0.4814 08254
184 16 Vehlckethett * 2.1107 2.0885 8.2311 21107 2.4107 1.5957 1,6404 25911 24033 * 27689 1.5057 82311
17A 17 Burglary * 1.6484 0.3093 1.0227 16461 1.6438 0.2878 0.2878 0.2879 05268 * 0.8512 0.2879 1,6484
18A 18 Larceny b 0.6308 04196 1.0878 0.6320 0.8349 0.2132 0.3383 0.2132 0.6985 ¢ 0.5410 f.2132 1.0876
19A 19 Larceny » 8.8462 94195 88772 8.8488 86511 10,2869 92708 87022 8.5548 < 9.2064 8.6462 10.2669
20A 26 Burglary * 8.3520 5.7088 28,3004 8.3488 8.3482 0.5934 0.8873 0.5924 07845+ 82223 0.5934 28.3084
21A 2 Burgldry * 1.2308 0.8881 1.2776 1.2303 1,2390 0.5243 0.5243 10253 04985 -+ 0.8391 0.4068 12776
22A 22 Larceny N 9.6628 26282 2.0949 3.6803 6177 2.4857 28044 24037 28044 ¢ 29484 20049 3.6828
24A 24 Larcany ¢ 17059 0.5892 23033 17675 17981 0.2658 0.3574 0.4222 06587 ¢ 41008 0.2888 2.3033
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of 7.6472 miles. The triangulated mean is produced by vector geometry and will not
necessarily capture the center of the distribution. Other than this, there were not great
differences. This reinforces the point above that the methods are all, more or less,
describing the central tendency of the distribution. For offenders that dont live in the
center of their distribution, the error of a method will necessary be high.

Looking at each of the 50 offenders, the methods vary in their efficacy. For
example, the Jtc kernel function for all crimes was the best or tied for best for 17 of the
offenders, but was also the worst or tied for worst for 9. Similarly, the Jtc kernel function
for the specific crimes was best or tied for best for 8 of the offenders, but worse for 4. Even
the most consistent was best for 4 offenders, but also worst for one. On the other hand,
the triangulated mean, which had the worst overall error, produced the best estimate for 9
of the individuals while it produced the worst estimate for 25 of the individuals. Thus, the
triangulated mean tends to be very accurate or very inaccurate; it had the highest
variance, by far.

Fourth, the amount of error varies by the number of incidents. Table 9.7 below
shows the average error for each method as a function of three size classes: 1-5 incidents;
6-9 incidents; and 10 or more incidents. As can be seen, for each of the ten methods, the
error decreases with increasing number of incidents. In this sense, the measured error is
responsive to the sample size from which it is based. It is, perhaps, not surprising that
with only a handful of incidents no method can be very precise.

Fifth, the relative accuracy of each of these methods varies by sample size. The
method or methods with the minimum error are boldfaced. For a limited number of
incidents (1-5), the Jic mathematical function for all crimes (i.e., the negative exponential
with the parameters from table 9.5) produced the estimate with the least error, followed by
the Jtc kernel function for all crimes; the was the third best. The differences in error
between these were not very great. For the middle category (6-9 incidents), the center of
minimum distance produced the least error followed by the Jtc mathematical function for
the specific crime type. For those offenders who had committed ten or more crimes, the Jtc
kernel function for the specific crime type produced the best estimate, followed by the
center of minimum distance. The two mathematical functions produced the least accuracy
for this sub-group, though again the differences in error are not very big (2.2 miles for the
best compared to 2.7 miles for the worst). In other words, only with a sizeable number of
incidents does the Jtc kernel density approach for specific crimes produce a good estimate.
It is better than the other approaches, but only slightly better than the simple measure of
the center of minimum distance.

Cautionary Notes
Of course, this is a limited test. It was a small sample (only 50 cases) from a single
jurisdiction (Baltimore County). The sample wasn® even randomly selected, but chosen to

examine the accuracy by a range of sample sizes. Thus, the conclusions are only tentative
and must be seen as hypotheses for further work. Clearly, more research is needed.
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Table 9.7

Method Estimation Error and Sample Size:
Average Error of Method by Number of Incidents (miles)

* Jic Jic Jtc Jtc * All Methods
Number of * Mean  Center of Mini- Triangulated Geometric Harmonic Kernel: Kernel: Math: Math: * Average Minimum
Incidents * Center mum Distance Mean - Mean Mean All Crime types All Crime types * Error Error
* *
35 * 6.9553 6.4861 9.3672 6.9160 6.9545 6.4622 7.2321 6.3278 6.9954 * 7.0774 6.3278
* ®
6-9 * 4.2596 4.0753 10.6160 4.3331 4.2576 4.4805 4.2489 4.2274 4.2020 * 4.9667 4.0753
* *
10+ * 2.3832 2.3149 48136 2.4575 2.3827 2.4880 2.2176 26725 26243 * 2.7060 2.2176

*
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Nevertheless, there are certain cautions that must be considered in using either of
these journey to crime methods (the mathematical or the empirical). First, a simple
technique, such as the center of minimum distance, may be as good as a more sophisticated
technique. It doesn’t always follow that a sophisticated method will produce any more
accuracy than a simple one. For the time being, I would advise crime analysts who are
trying to detect a pattern in the distribution of the incidents of a serial offender to do
exactly what they have been doing, basically looking at the data and making a subjective
guess about where the offender may be residing. The kernel density Jtc routine needs an
adequate amount of information (i.e, at least 10 incidents) to produce somewhat precise
estimates. These techniques should be seen for now as research tools rather than as
diagnostics for identifying the whereabouts of an offender. They are just too imprecise and
unreliable to depend on, at least until more definitive results are obtained.

Second, there are other limitations to the technique. The model must be calibrated
for each individual jurisdiction. Further, it must be periodically re-calibrated to account
for changes in crime patterns. For example, in using the mathematical model, one cannot
take the parameters estimated for Baltimore County (Table 9.3) and apply them to another
city or if using the kernel density method take the results found at one time period and
assume that they will remain indefinitely. The model is a probability model, not a
guarantee of certainty. It provides guesses based on the similarity to other offenders of the
same type of crime. In this sense, a particular serial offender may not be typical and the
model could actually orient police wrongly if the offender is different from the calibration
sample. It will take insight by the investigating officers to know whether the pattern is
typical or not.

Third, as a theoretical model, the journey to crime approach is quite simple. It is
based on a distribution of incidents and an assumed travel distance decay function. From
the perspective of modeling the travel behavior of offenders, it is limited. As mentioned
above, the method does not utilize information on the distribution of target opportunities
nor does it utilize information on the travel mode and route that an offender takes. It is
purely a statistical model. The research area of geographic profiling attempts to go beyond
statistical description and understand the cognitive maps that offenders use as well as how
these interact with their motives. This is good and should clearly guide future research.
But it has to be understood that the theory of offender travel behavior is not very well
developed, certainly compared to other types of travel behavior. Further, some types of
crime trips may not even start from an offender’s residence, but may be referenced from
another location, such as vehicle thefts occurring near disposal locations. Routine activity
theory would suggest multiple origins for crimes (Cohen and Felson, 1979).

The existing models of travel demand used by transportation planners (which have
themselves been criticized for being too simple) measure a variety of factors that have only
been marginally included in the crime travel literature - the availability of opportunities,
the concentration of offender types in certain areas, the mode oftravel (i.e., auto, bus,
walk), the specific routes that are taken, the interaction between travel time and travel
route, and other factors. It will be important to incorporate these elements into the
understanding of journey to crime trips to build a much more comprehensive theory of how
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offenders operate. Travel behavior is very complicated and we need more than a statistical
distance model to adequately understand it.

Also, it’s not clear whether knowing an offender’s ‘cognitive map’ will help in
prediction. There have been no evaluations that have compared a strictly statistical
approach with an approach that utilizes information about the offender as he or she
understands the environment. It cannot be assumed that integrating information about
the perception of the environment will aid prediction. In most travel demand forecasts
that transportation engineers and planners make, cognitive information about the
environment is not utilized except in the definition of trip purpose (i.e., what the purpose of
the trip was). The models use the actual trips by origin and destination as the basis for
formulating predictions, not the understanding of the trip by the individual.
Understanding is important from the viewpoint of developing theory or for ways to
communicate with people. But, it is not necessarily useful for prediction. In short,
understanding and prediction are not the same thing.

On the other hand, the journey to crime routine, particularly the kernel density
approach, can be useful for police departments if used carefully. Ifthere are sufficient
cases to build an estimate (i.e., 10 or more incidents), it can provide additional information
to officers investigating a serial offender by reducing the number of possible suspects that
might be linked to a series of crimes. It can also provide some direction in orienting the
deployment of officers and detectives investigating what appear to be serial offenses. It
provides guesses about where the offender might be living, but based on similarities with
previous offenders for the same type of crime. It’s not going to give an exact estimate of
where an offender is living, but will provide some insights into which areas the individual
might be located. The Jtc model should be seen as a supplement to other techniques, not a
complete solution. Like all the statistical tools in CrimeStat, it must be used carefully and
intelligently. The philosophy of crime analysis must always be to use a technique with
thought and with a systematic procedure.
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Endnotes for Chapter 9

It should also be pointed out that the use of direct distances will underestimate
travel distances particularly if the street network follows a grid.

There are, of course, many other types of mathematical functions that can be used
to describe a declining likelihood with distance. In fact, there are an infinite
number of such functions. However, the five types of functions presented here are
commonly used. We avoided the inverse distance function because of its potential to
distort the likelihood relationship.

where & is a power (e.g., 1, 2, 2.5). For large distances, this function can be a useful
approximation of the lessening travel interaction with distance. However, for short
distances, it doesn work. As the distance between the reference cell location and
an incident location becomes very small, approaching zero, then the likelihood
estimate becomes very large, approaching infinity. In fact, for d; = 0, the function is
unsolvable. Since many distances between reference cells and incidents will be zero
or close 1o zero, the function becomes unusable.

It is actually the inverse of the inverse distance function. Ifa distance decay
function drops off proportionalio the inverse of the distance,
Y, = A* 1/d;

where Y is the travel likelihood, A is coefficient, and d;; is the distance from the
home base, then the opposite - a distance increase is just the inverse of this function

1 4,
Z,= = = B*{,
A* 1/, A

There are several sources of error associated with the data set. First, these records
were arrest records prior to a trial. Undoubtedly, some ofthe individuals were
incorrectly arrested. Second, there are multiple offenses. In fact, more than half
the records were for individuals who were listed two or more times in the database.
The travel pattern of repeat offenders may be slightly different than for apparent
first-time offenders (see figure 9.19). Third, many of these individuals have lived in
multiple locations. Considering that many are young and that most are socially not
well adjusted, it would be expected that these individuals would have multiple
homes. Thus, the distribution of incidents could reflect multiple home bases, rather
than one. Unfortunately, the data we have only gives a single residential location,
the place at which they were living when arrested.
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Ifthe coordinate system is projected with the distance units in feet, meters or miles,
then the distance between two points is the hypotenuse of a right triangle using
Euclidean geometry.

dpg = v (X, - XB)2 (Y, - YB)2 (3.1)
repeat
where each location is defined by an X and Y coordinate in feet, meters, or miles.

If the coordinate system is spherical with units in latitudes and longitudes, then the
distance between two points is the Great Circle distance. All latitudes and
longitudes are converted into radians using

2w
Radians (‘b) B e i (3.2)
360 repeat
27 A
Radians (A) = -rmmmemmmcmomenn (3.3)
360 repeat

Then, the distance between the two points is determined from

d,, = 2* Arcsin {Sin’[(¢; - $,)/2] + Cos $,*Cosdy*Sin’[(A, - A, )2]'7 } 3.4)
repeat
with all angles being defined in radians (Snyder, 1987, p. 30, 5-3a).

They also argued that the combination of incidents - which they called ‘aggregation’,
would distort the relationship between distance and incidence likelihood because of
the ecological fallacy. Tomy mind, they are incorrect on this point. Data on a
distribution ofincidents by distance traveled is an individual characteristic and is
not ‘ecological’in any way. An ecological inference occurs when data are aggregated
with a grouping variable (e.g., state, county, city, census tract; see Langbein and
Lichtman, 1978). A frequency distribution of individual crime trip distances is an
individual probability distribution, similar, for example, to a distribution of
individuals by height, weight, income or any other characteristic. Of course, there
are sub-sets of the data that have been aggregated (similar to heights of men v.
heights of women, for example). Clearly, identifying sub-groups can make better
distinctions in a distribution. But, it is still an individual probability distribution.
This doesn produce bias in estimating a parameter, only variability. For example
if a particular distance decay function implies that 70% of the offenders live within,
say, 5 miles of their committed incidents, then 30% don’t live within 5 miles. In
other words, because the data are individual level, then a distance decay function,
whether estimated by a mathematical or a kernel density model, is an individual
probability model (i.e., an attempt to describe the underlying distribution of
individual travel distances for journey to crime trips).

416

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



A A XA X XA X XA X A AR N X XA A X X A XA A X A A A A A A A AAAAAAAdAAAdA S A J

Chapter 10
Space-Time Analysis

In this chapter, we discuss three techniques that are used to analyze the
relationship between space and time. Up to this point, we have analyzed the distribution
of incidents irrespective of the order in which they appeared or in which the time frame in
which they appeared. The only temporal analysis that was conducted was in Chapter 4
where several spatial description indices, including the standard deviational ellipse, were
compared for different time periods.

As police departments usually know, however, the spatial patterning of incidents
doesn’t occur uniformly throughout the year, but instead are often clustered together
during short time periods. At certain times, a rash of incidents will occur in certain
neighborhoods and the police often have to respond quickly to these events. In other
words, there is both clustering in time as well clustering in space. This area of research
has been developed mostly in the field of epidemiology (Knox, 1963, 1988; Mantel, 1967;
Mantel and Bailar, 1970; Besag and Newell, 1991; Kulldorf and Nargawalla, 1995; Bailey
and Gattrell, 1995). However, most of these techniques are applicable to crime analysis
and criminal justice research as well.

CrimeStat includes three space-time techniques: the Knox Index, the Mantel index,
and Correlated Walk Analysis. Figure 10.1 shows the Space-Time Analysis screen.

Measurement of Time in CrimeStat

Time can be defined as hours, days. weeks, months, or years. The default is days.
However, please note that for any of these techniques, in CrimeStat, time must be
measured as an integer or real variable, as mentioned in Chapter 3. Time cannot be
defined by a formatted date code (e.g., 11/06/01, July 30, 2002). Each of the three space-
time routines expect time to be an integer or real variable (e.g., 1, 2, 34527, 2.8). If given
formatted dates, they will calculate an answer, but the result will not be correct.

Ifthe time unit is days, a simple transformation is to use the number of days since
January 1, 1900. Most spreadsheet and data base programs usually assign an integer
number from this reference point. For example, November 12, 2001 has the integer value
of 37207 while January 30, 2002 has the integer value of 37286. These are the number of
days since January 1, 1900. Any spreadsheet program (e.g., Excel or Lotus 1-2-3) can
convert a date format into a real number with the Value function. Also, any arbitrary
numbering system will work (e.g., 1, 2, 3).

Space-Time Interaction

There are different types of interaction that could occur between space and time.
Four distinctions can be made. First, there could be spatial clustering all the time.
Certain communities are prone to certain events. For example, robberies often are
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Figure 10.1: Space-time Analysis
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concentrated in particular locations as are vehicle thefts. The hot spot methods that were
discussed in chapters 6, 7 and 8 are useful for identifying these concentrations. In this
case, there is no space-time interaction since the clustering occurs all the time.

Second, there could be spatial clustering within a specific time period. Hot spots
could occur during certain time periods. For example, motor vehicle crashes tend to occur
with much higher frequencies in the late afternoon and early evening, often as a by-product
of congestion on the roads. Crash hot spots will tend to appear at certain times because of
the congestion. At most other times, the concentration does not occur because the
congestion levels are lower.

Third, there could be space-time clustering. A number of events could occur within a
short time period within a concentrated area. This type of effect is very common with
motor vehicle thefts. A car thief gang may decide to attack a particular neighborhood.
After a binge of car thefts, they move on to another neighborhood. In this instance, there
are a number of theft incidents that are occurring within a limited period in a limited
location. The cluster moves from one location to another. In this case, there is an
interaction between space and time in that spatial hot spots appear at particular times,
but are temporary. The ability to detect this type of shift is very important to police
departments since it affects their ability to respond.

Fourth, there could be space-time interaction in which the relationship between
space and time in more complex. The interaction could be concentrated, as in the spatial
clustering mentioned above, or it could follow a more complex pattern. For example, there
could be a diffusion of drug sales from a central location to a more dispersed area.
Whereas initially, the drug dealing is concentrated in a few locations, it starts to diffuse to
other areas. However, the diffusion may occur at different times ofthe year (e.g.,
Christmas and New Years). Alternatively, vehicle thefts may shift towards seaside
communities during the summer months when the number of vacationers increases. We
saw an example of this in chapter 4 where the ellipse of motor vehicle thefts shifted
between June and July to the communities along the Chesapeake River near Baltimore.
This type of diffusion is not clustering per se, in that it may be spread over a very large
coastline. But it is a distinct space-time interaction.

The importance of these distinctions is that many of the space-time tests that exist
only measure gross space-time interaction, rather than space-time clustering. For
example, the Knox and Mantel tests that follow test for spatial interaction. The
interaction could be the result of spatial clustering, but doesn’t necessarily have to be. The
interaction could occur in a very complex way that would not easily lend itself to more
focused intervention by the police. Still, the ability to identify the interaction is an
important step in planning an intervention strategy.

Knox Index

The Knox Index is a simple comparison of the relationship between incidents in
terms of distance (space) and time (Knox, 1963; 1964). That is, each individual pair is
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compared in terms of distance and in terms of time interval. Since each pair of points is
being compared, there are N*(N-1)/2 pairs. The distance between points is divided into two
groups - Close in distance and Not close in distance, and the time interval between points
is also divided into two groups - Close in time and Not close in time, The definitions of
‘close’ and Not close’ are left to the user.

A simple 2 x 2 table is produced that compares closeness in distance with closeness
in time. The number of pairs that fall in each of the four cells are compared (Table 10.1).

Table 10.1

Logical Structure of Knox Index

Close in time Not clese in time
Cleose B
in Distance l 0O, O, S,
Not close ‘
in distance \‘ O, 0, S,
S, S, N

where N=0,+0,+0,+ 0,

$,= 0,+0,

S,= O, +0,

S;= 0,+0,

S,= 0,+0,

The actual number of pairs that falls into each of the four cells are then compared to
the expected number if there was no relationship between closeness in distance and
closeness in time. The expected number of pairs in each cell under strict independence
between distance and the time interval is obtained by the cross-products of the columns
and row totals (table 10.2).

Table 16.2
Expected Frequencies for Knox Index

Close in time Not close in time
Clese
in Distance i E, E,
Not close
in distance E, E,
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where E,= §,*§,/N
E,= §,*S8,/N
E,= §,%S8,/N
E,= §,*S,/N

The difference between the actual (observed) number of pairs in each cell and the
expected number is measured with a Chi-square statistic (equation 10.1).

(Oi - E’i)2
AT Y — with 1 degree of freedom (10.1)

Monte Carlo Simulation of Critical Chi-square

Unfortunately, the usual probability test associated with the Chi-square statistic
cannot be applied since the observations are not independent. Interaction between space
and time tend to be compounded when calculating the Chi-square statistic. For example,
we've noticed that the Chi-square statistic tends to get larger with increasing sample size,
a condition that would normally not be true with the independent observations. To handle
the issue of interdependency, there is a Monte Carlo simulation of the chi-square value for
the Knox Index under spatial randomness (Dwass, 1957; Barnard, 1963). Ifthe user
selects a simulation, the routine randomly selects M pairs of a distance and a time interval
where M is the number of pairs in the data set (M =N* [N-1]/2) and calculates the Knox
Index and the chi-square test. Each pair of a distance and a time interval are selected from
the range between the minimum and maximum values for distance and time interval in
the data set using a uniform random generator.

The random simulation is repeated K times, where K is specified by the user and
Usually, it is wise to run the simulation 1000 or more times. The output includes:

The sample size

The number of pairs

The calculated chi-square value of the Knox Index from the data

The minimum chi-square value of the Knox Index from the simulation
The maximum chi-square value of the Knox Index from the simulation
Ten percentiles from the simulation:

0.5%
1%
2.5%
5%
10%
90%
95%

o ap ow
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h.  97.5%
i. 99%
j. 99.5%

Example of the Knox Index

For an example, vehicle thefts in Baltimore County for 1996 were taken. There
were 1855 vehicle thefts for which a date was recorded in the data base. The data base
was further broken down into twelve separate monthly subsets. Using the median for both
distance and time interval, the Knox Index was calculated for the entire set of 1855
incidents. Then, using the median distance for the entire year but a month-specific median
time interval, the Knox Index was calculated for each of the twelve months. Table 10.3
presents the Chi-square values and their pseudo-significance levels.

To produce a better test of the significance of the results, 1000 random simulations
were calculated for the vehicle theft for the entire year. Table 10.3 below shows the
results. Because an extreme value could be obtained by chance with a random distribution,
reasonable cut-off points are usually selected from the simulation. In this case, we want a
cut-off point that approximates a 5% significance level. Since the Knox Index is a one-
tailed test (i.e., only a high chi-square value is indicative of spatial interaction), we adopt
an upper threshold of the 95 percentile. In other words, only if the observed chi-square
test for the Knox Index is larger than the 95 percentile threshold will the null hypothesis of
a random distribution between space and time be rejected.

Methods for Dividing Distance and Time

In the CrimeStat implementation of the Knox Index, the user can divide distance
and time interval based on the three criteria:

1. The mean (mean distance and mean time interval). This is the default.
2. The median (median distance and median time interval)
3. User defined criteria for distance and time separately.

There are advantage to each of these methods. The mean is the center of the
distribution; it denotes a balance point. The median will divide both distance and time
interval into approximately equal numbers of pairs. The division is approximate since the
data may not easily divide into two equal numbered groups. A user-defined criteria can fit
a particular need ofan analyst. For example, a police department may only be interested
in incidents that occur within two miles of each other within a one week period. Those
criteria would be the basis for dividing the sample into Close*and ‘Not close’ distances and
time intervals.
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Table 10.3
Knox Index for Baltimore County Vehicle Thefts
Median Split
N =1,855 with 1,719,585 comparisons

95 Percentile

Actual Simulation Apprex.

Month Chi-square Chi-square B
January 0.26 6.95 n.s.
February 0.00 6.61 n.s.
March 0.00 6.86 n.s.
April 0.50 6.56 n.s.
May 1.04 7.25 n.s.
June 0.01 6.02 n.s.
July 8.43 8.20 .01
August 591 8.29 025
September 0.27 541 n.s.
October 3.33 6.43 n.s.
November 10.79 6.15 .01
December 0.00 6.87 n.s.
All of 1996 8.69 41.89 n.s.

Forthe entire year, there was not a significant clustering between space and time.
Approximately, 26.7% of the incidents were both close in distance (i.e., closer than the
median distance between pairs of incidents) and close in time (i.e., closer than the median
time interval between pairs of incidents). However, when individual months are examined,
three show significant relationships: July, August and November. During these months,
there is an interaction between space and time. Typically, incidents that cluster together
spatially tend also to cluster together temporally. However, it could be the opposite (i.e.,
events that cluster together temporally tend to be far apart spatially).

The next step would to identify whether there are particular clusters that occur
within a short time period. Using one of the hot spot’ analysis methods discussed in
chapters 6 and 7, an analyst could take the events for the three months and try to identify
whether there is spatial clustering during those three months that does not normally occur.
We won’t do that here, but the point is that the Knox Index is useful to identify when there
is spatial clustering.

Problems with the Knex Index

The Knox Index is a simple measure of space-time clustering. However, because it
is only a 2 x 2 table, different results can be obtained by varying the cut-off points for
distance or time. For example, using the mean as the cut-off, the overall Chi-square

statistic for all vehicle thefts was 8.67, reasonably close. However, when a cut-off point for
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distance of 1000 meters and a cut-off point for time of 80 days was used, the Chi-square
statistic dropped to 3.16. In other words, the Knox Index will produce different results for
different cut-off points.

A second problem has to do with the interpretation. As with any Chi-square test,
differences between the observed and expected frequencies could occur in any cell or any
combination of cells. Finding a significant relationship does not automatically mean that
events that were close in distance were also close in time; it could have been the opposite
relationship. However, a simple inspection of the table can indicate whether the
relationship is as expected or not. In the above example, all the significant relationships
showed a higher proportion of events that were both close in distance and close in time.

Mantel Index

The Mantel Index resolves some of the problems of the Knox Index. Essentially, it
is a correlation between distance and time interval for pairs of incidents (Mantel, 1967).
More formally, it is a general test for the correlation between two dissimilarity matrices
that summarizes comparisons between pairs of points (Mantel and Bailar, 1970), 1t is
based on a simple cross-product of two interval variables (e.g., distance and time interval):

N N

T= 2 X (X, - MeanX)(Y, - MeanY) (10.2)
i=1 j=1

where X, is an index of similarity between two observations, i and j, for one variable (e.g.,
distance) while Y;; is an index of similarity between the same two observations, i and j, for
another variable {e.g., time interval).

The cross-product is then normalized by dividing each deviation by its standard
deviation:

1 N N
[ e 22 (X, - MeanX)/§, * (Y, - MeanY)/S, (10.3)
(N-1}  i=1j=1
N N

=X XZ*Z /(N-1)

=1j=1

where X;; and Y are the original variables for comparing two observations, i and j, and Z,
and Z, are the normalized variables.

In CrimeStat, the Mantel Index routine calculates the correlation between distance
and time interval. Toillustrate, table 10.4 examines the Mantel correlation for the 1996
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Table 10.4
Mantel Index for Baltimore County Vehicle Thefts

Median Split
N =1,855 and 1,719,585 Comparisons

Simulation Simulation Approx.

Month r 2.5% 97.5% p-ievel
January -.0047 -0.033 0.033 n.s.
February -.0023 -0.037 0.042 n.s.
March -.0245 -0.032 0.039 n.s.
April 0.0077 -0.040 0.041 n.s.
May 0.0018 -0.038 0.043 n.s.
June 0.0043 -0.035 0.041 n.s.
July 0.0348 -0.034 0.033 025
August 0.0544 -0.034 0.035 .01
September  0.0013 -0.044 0.046 n.s.
October 0.0409 -0.037 0.043 n.s.
November 0.0630 -0.042 0.040 .001
December 0.0086 -0.035 0.038 n.s.
Allof 1996  0.0015 -0.009 0.010 n.s.

vehicle thefts in Baltimore County that was illustrated above. As seen, the correlations are
all low. However, as with the Knox Index, July, August and November produce relatively
higher correlations. If used as an index, rather than an estimate of variance explained, the
Mantel Index can identify time periods when spatial interaction is occurring.

Monte Carlo Simulation of Confidence Intervals

Even though the Mantel Index is a Pearson product-moment correlation between
distance and time interval, the measures are not independent and, in fact, are highly
interdependent. Consequently, the usual significance test for a correlation coefficient is
not appropriate. Instead, the Mantel routine offers a simulation ofthe confidence intervals
around the index. Ifthe user selects a simulation, the routine randomly selects M pairs of
a distance and a time interval where M is the number of pairs in the data set (M = N* [N-
11/2) and calculates the Mantel Index. Each pair of a distance and a time interval are
selected from the range between the minimum and maximum values for distance and time
interval in the data set using a uniform random generator.

The random simulation is repeated K times, where K is specified by the user.
Usually, it is wise torun the simulation 1000 or more times. The output includes:

1. The sample size
2. The number of pairs
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3. The calculated Mantel Index from the data
4, The minimum Mantel value from the simulation
5. The maximum Mantel value from the simulation
6. Ten percentiles from the simulation:

a. 0.5%

b. 1%

c. 2.5%

d. 5%

e. 10%

f. 90%

g. 95%

h. 97.5%

i. 99%

j- 99.5%

To illustrate, 1000 random simulations were calculated for each month using the
same sample size as the monthly vehicle theft totals. Table 10.4 above shows the results.
Because an extreme value could be obtained by chance with a random distribution,
reasonable cut-off points are usually selected from the simulation. In this case, we want
cut-off points that approximate a 5% significance level. Since the Mantel Index is a two-
tailed test (i.e., one could just as easily get dispersion between space and time as
clustering), we adopt a lower threshold of the 2.5 percentile and an upper threshold of 97.5
percentile. Combined, the two cut-off points ensure that approximately 5% of the cases
would be either lower than the lower threshold or higher than the upper threshold under
random conditions.' In other words, only if the observed Mantel Index is smaliler than the
lower threshold or larger than the upper threshold will the null hypothesis of a random
distribution between space and time be rejected.

In Table 10.4, for the entire year, the observed Mantel Index (correlation between
space and time) was 0.0015. The 2.5 percentile was -.009 and the 97.5 percentile was 0.01.
Since the observed value is between these two cut-off points, we cannot reject the null
hypothesis of norelationship between space and time. However, for the individual months,
again, July, August and November have correlations above the upper cut-off threshold.
Thus, for those three months only, the amount of space-time clustering in the vehicle theft
data is most likely greater than what would be expected on the basis of a chance
distribution. One would, then, have to explore the data further to find out where those
vehicle thefts were occurring, using one the hot spot routines in Chapter 6.

Limitations of the Mantel Index
The Mantel Index is a useful measure of the relationship between space and time.
But it does have limitations. First, because it is a Pearson-type correlation coefficient, it is

prone to the same types of problems that befall correlations. Extreme values of either
space or time could distort the relationship, either positively, ifthere are one or two
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observations that are extreme in both distance in time interval, or negatively, if there are
only one or two observations that are extreme in either distance or in time interval.

Second, because the test is a comparison of all pairs of observations, the correlations
tend to be small, as noted above. This makes it less intuitive as a measure than, say, a
traditional correlation coefficient which varies between -1 and +1 and in which high values
are expected. For most analysts, it is not very intuitive to have an index where 0.05is a
high value. This doesn fault the statistic as much make it a little non-intuitive for users.

Third, as with any correlation coefficient, the same size needs to be fairly large to
produce a stable estimate. In the above, example, one could further break down monthly
vehicle thefts by week or, even, day. However, the number of cases will decrease
considerably. In the above example, with 1,855 vehicle thefts over a year, the weekly
average would be around 36, which is a small sample. Intuitively, a crime analyst wants to
know when space-time clustering is occurring and a short time frame is critical for
detection; a week would be the largest time interval that would be useful. However, as the
sample size gets small, the index becomes unstable. For one thing, the sample size makes
the index volatile. While the Monte Carlo simulation will adjust for the sample size, the
range of the cut-offthresholds will vary considerably from one week to another with small
sample sizes. The analyst will have to run the simulation repeatedly to adjust for the
varying sample sizes. For another thing, the shortened time frame allows fewer
distinctions in time; if one takes a very narrow time frame (e.g., a day), there can be
virtually no time differences observed. One would have to switch to an hourly analysis to
produce meaningful differences.

One way to get around this is 1o have a moving average where the time frame is
adjusted to fit a constant number of days (e.g., a 14 day moving average). The advantage is
that the sample size tends to remain fairly constant; one could therefore reduce the
number of recalculations of the cut-off thresholds since they would not vary much from one
day to another. Tomake this work, however, the data base must be set up to produce the
appropriate number of incidents for a moving average analysis.

Nevertheless, the Mantel Index remains a useful tool for analysts. It is still widely
used for space-time analysis and it has been generalized to many other types of
dissimilarity analysis than just space and time. If used carefully, the index can bea
powerful tool for detection of clusters that are also concentrated in time.

Correlated Walk Analysis

Correlated Walk Analysis (CWA) is a tool that is aimed at analyzing the spatial and
temporal sequencing of incidents committed by a single serial offender. In this sense, it is
the “flip side’ of Journey to crime analysis. Whereas journey to crime analysis makes guess
about the likely origin location for a serial offender, based on the spatial distribution of the
incidents committed by the offender, the CWA routine makes guesses about the time and
location of a next event, based on both the spatial distribution of the incidents and the
temporal sequencing of them.
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The statistical origin of CWA is Random Walk Theory. Random Walk Theory has
been developed by physicists to explain the distribution of molecules in a rapidly changing
environment {e.g., the movements of a particle in a gas which is diffusing - Brownian
movement). Sometimes called a ‘drunkard’s walk’, the theory starts with the premise that
movement is random in all directions. From an arbitrary starting point, a particle (or
person) moves in any direction in a series of steps. The direction of each step is
independent of the previous steps. After each step, a random decision is made and the

person moves in a random direction. This process is repeated ad infinitum until an

arbitrary stopping point is selected (i.e., the observer quits looking). It has been shown
mathematically that all one and two dimensional random walks must eventually return to
their original starting point (Spitzer, 1963; Henderson, Renshaw, and Ford, 1983).” This is
called a recurrent random walk. On the other hand, independent random walks in more
than two dimensions are not necessarily recurrent, a state called transient random walk.

Figure 10.2 illustrates a random walk of 2000 steps. For a large number of steps in
a two-dimensional walk, the likely distance of a person (or particle) from the starting point
18

E(d)=d,,, *¥N (10.4)

whered ., = J-( 2 d?/N). The term, d,,, is the root mean square of distance.

There are a number of different types of random walks. The simplestis a
movement of uniform distance only along a grid cell (i.e., a Manhattan geometry). The
person can only move North, South, East or West for a unit distance of 1. Amore complex
random walk allows angular distances and an even more complex random walk allows
varying distances (e.g., normally distributed random distances, uniformly random
distances). The walk in figure 10.2 was of this latter type. Xand Y values were selected
randomly from a range of -1 to +1 using a uniform random number generator. For a
conceptual understanding of Random Walk Theory, see Chaitin (1990) and, for a
mathematical treatment, see Spitzer (1976). Malkiel (1999) applied the concepts of
Random Walk Theory to stock price fluctuations in a book that has now become a classic.

Henderson, Renshaw and Ford (1983; 1984) have introduced the concept of a
correlated random walk. In a correlated random walk, momentum is maintained. Ifa
person is moving in a certain direction, they are more likely to continue in that direction
than to reverse direction or travel orthogonally. In other words, at any one decision point,
the probabilities of traveling in any direction are not equal; the same direction has a higher
probability than an orthogonal change (i.e., turning 90 degrees) and those, in turn, have a
higher probability than completely reversing direction. By implication, the same is true for
distance and distance. A longer step than average is likely to be followed by another longer
step than average while a shorter step than average is likely to be followed by another
short step. Similarly, there is consistency in the time interval between events; a short
interval is also likely to be followed by a short interval. In other words, a correlated
random walk is a random walk with momentum (Chen and Renshaw, 1992; 1994). These
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Figure 10.2:

A Random Walk
2000 Random Steps of -1.0 to +1.0 in X and Y Direction

Fintsh — &

Start

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



X X X XX X X X AR XA X X R X X X 2 A & 2 A A 2 A A A A 4R A4 A A A A A4 A A A & &

authors have applied the theory to the analysis of the branching of tree roots (Henderson,
Ford, Renshaw, and Deans, 1983; Renshaw, 1985).

Correlated Walk Analysis

Correlated Walk Analysis is a set of tools that can help an analyst understand the
sequencing of sequential events in terms of time interval, distance and direction. In
CrimeStat, there are three CWA routines. The first two help the analyst understand
whether there are patterns in time, distance or direction while the last routine allows the
analyst to make a guess about the next likely event, when it will occur and where it will
occur. The three routines are:

1. CWA - Correlogram
2. CWA - Diagnostics
3. CWA - Prediction

CWA -Correlogram

The Correlogram routine calculates the correlation in time interval, distance, and
bearing (direction) between events. It does this through lags. Alagis a separation in the
intervals beiween events. The difference between the first and second event is the first
interval. The difference between the second and third events is the second interval. The
difference between the third and fourth events is the third interval, and so forth. For each
successive interval, there is a time difference; there is a distance; and there is a direction.
One could extend this to all the intervals, comparing each interval with the next one; that
is, we compare the first interval with the second, the second interval with the third, the
third interval with the fourth, and so on until the sample is complete. When comparing
successive intervals, this is called a lag of 1. 1t is important to keep in mind the distinction
between an event (e.g., an incident) and an interval. It takes two events to create an
interval. Thus, for a lag of 1, there are M= N-1 intervals where N is the number of events
(e.g., for 3 incidents, there are 2 intervals).

Alag of two compares every other event. Thus, the first interval is compared to the
third interval; the second interval is compared to the fourt; the third interval is compared
to the fifth; and so on until there are no more intervals left in the sample. Again, the
comparison is for time difference, distance, and direction separately. We can extend this
logicto a lag of 3 (every third event), a lag of 4 (every fourth event), and so forth.

The CWA - Correlogram routine calculates the Pearson Product-Moment correlation
coefficient between successive events. For a lag of 1, it compares successive events and
correlates the time interval, distance, and bearing separately for these successive events.
Fora lag of 2, it compares every other event and correlates the time interval, distance, and
bearing separately for these successive events. The routine does this until it reaches a
maximum of 7 lags (i.e., every seventh event). However, if the sample size is very small, it
may not be able to calculate all lags. It will require 12 incidents (events) to calculate all
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seven lags since it requires at least four observations per lag (i.e., N- L -4 where N is the
number of events and L is the maximum number of lags calculated).

Adjusted Correlogram

The Correlogram calculates the raw correlation between intervals by lag for time,
distance, and bearing. One of the problems that may appear, especially with small
samples, is for higher-order lags to be very high, either positive or negative. There are
probably two reasons for this. For one thing, with each lag, the sample size decreases by
one; with a very small sample size, correlations can become very volatile, jumping from
positive to negative, and from low to high. Another reason is that periodicity in the data
set is compounded with higher-order lags in the form of ‘echos’. For example, ifa lag of 2 is
high, then a lag of4 will also be somewhat high since there is a compounding ofthe lag 2
effect. When combined with a small sample size, it is not uncommon to have higher-order
lags with very high correlations, sometimes approaching +/- 1.0. The user must be careful
in selecting a higher-order lag because there is an apparent effect which may be due to the
above reasons, rather than any real predictability. One of the key signs for spurious
higher-order effect is a sudden jump in the strength of the correlation from one lagto the
next (though sometimes a high higher-order lag can be real; see examples below).

To minimize these effects, the output alsoincludes an adjusted correlogram that
adjusts for the loss of degrees of freedom. The formula is:

A = e (10.5)

where M is the number of intervals (N-1) and L is the number of lags. For example, for a
sample size of 13, there will be 12 intervals (M). For a lag of 1, the adjustment will be

12-1-1 10
A= = = 0.909
12 -1 il

The effect of the adjustment is to reduce the correlation for higher-order lags. It
won’t completely eliminate the effect, but it should help minimize spurious effects. As will
be shown below, however, sometimes high higher-order lags are real.

CWA - Correlogram Output
The routine outputs 10 parameters:
The sample size (number of events);
Number of intervals;

Information on the units of time, distance, and bearing;
Final distance to origin in meters (distance between last and first event);

BOW R =
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5. Expected random walk distance from origin (if sequence was strictly
random};

6. Drift (the ratio of actual distance from origin to expected random walk
distance);

7. Final bearing from origin (direction between last event and first event);

8. Expected random walk bearing. Defined as 0 because there is no expected
direction.

. Correlations by lag for time, distance, and bearing (up to 7 lags); and
10. Adjusted correlations by lag for time, distance, and bearing (up to 7 lags).

The aim of the CWA - Correlogram is to examine repetitive sequences, whether for
time interval, distance or direction. It is possible to have separate repetitions for time,
distance and direction. For example, an offender may commit crimes every 7 days or so,
say, on the weekend. In this case, the individual is repeating himself/herself about once
every week. Similarly, an individual may alternate directions, first going East then going
West, then going back tothe East, and so forth. In other words, what were asking with
the routine is whether there are any repetitions in the sequence of incidents committed by
a serial offender. Does he/she repeat the crimes in time? Ifso, what is the periodicity (the
repititious sequence? Does he/she repeat the crimes in distance? Is so, what is the
periodicity? Finally, does he/she repeat the crimes in direction? If so, what is the
periodicity? The CWA-Correlogram, thercfore, analyzes the sequence of incidents
committed by an individual and does this scparately for time interval, distance, and
direction.

Offender repetition

Why is this important? Most crime analysis is predicted on the assumption that
offenders (people in general) repeat themselves, consciously or unconsciously. That is,
individuals have specific behavior patterns that tend to be repeated. Ifan individual acts
in a certain way (e.g., committing a burglary), then, most likely , the person will repeat
himself/herself again. There is no guarantee, of course. But, because human beings do not
behave spatially or temporally random but tend to operate in somewhat consistent ways,
there is a likelihood that the individual will act in a similar manner again.

This assumption is the basis of profiling which aims at understanding the MO of an
offender. If offenders were totally random in their behavior, detection and apprehension
would be made much more difficult than it already is. So, between the two extremes of a
totally random individual (the Yandom walk person’) and a totally predictable individual
(the ‘algorithmic person’), we have the bulk of human behavior, at least in terms of time,
distance and direction.

CWA - Diagnostics
The Diagnostics routine is similar to the CWA - Correlogram except that it

calculates an Ordinary Least Squares autoregression for a particular lag. That is, it
regresses each interval against a previous interval. The user enters the lag number (the
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default is 1) and the routine produces three regression models for the successive event as
the dependent variable against the prior event as the independent variable. There are
three equations, for time interval, distance, and bearing separately. The output includes:

The sample size (number of events);

The number of intervals;

Information on the units of time, distance, and bearing;

The multiple correlation coefficient;

The squared muliiple correlation coefficient (i.e., R?);

The overall standard error of estimate;

The regression coefficient for the constant and for the prior event;

The standard error of the regression coefficients;

The t-values for the regression coefficients;

The p-value (two-tail) for the reégression cocfficients;

An analysis of variance test for the full model. This includes sum of squares
for the regression term and for the residual;

The ratio of the regression sum of squares to the residual sum of squares (the
F-ratio); and

13. The p-value associated with the F-value.
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What the regression diagnostics provides is an indicator of the amount of
predictability in the lag. It has the same information as the Correlogram (since the square
of the correlation, r’, is the same as R* for a single independent variable regression
equation), but it is easier to interpret. Essentially, it is argued below that, unless the R’in
the regression equation is sufficiently high, that one is better off using the mean or median
lag for prediction. Conversely, if the R? is very high, then the user should be suspicious
about the data.

CWA - Prediction
Finally, after having analyzed the sequential pattern of events, the user can make a

prediction about the time and place of the next event. There are three methods for making
a prediction, each with a separate lag:

1. Mean difference
2. Median difference
3. Regression equation

The method is applied to the last event in the data set. The mean difference applies
the mean interval of the data for the specified lag to the last event. For example, for time
interval and a lag of 1, the routine calculates the interval between each event and takes
the average. It then applies the mean time interval to the last time in the data set as the
prediction. The median difference applies the median interval of the data for the specified
lag to the last event. For example, for bearing and a lag of 1, the routine calculates the
direction (bearing) between each event, calculates the median bearing, and applies that
median average to the location of the last event in the data set as the predicted value.
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The regression eguation calculates a regression coefficient and constant for the
specified lag and uses the data value for the last intervael as input into the regression
equation; the result is the predicted value. For example, for distance and a lag of 1, the
routine calculates the regression coefficient and constant for a regression equation in which
each event is compared to the previous event. The last distance in the data set (i.e.,
between the last event and the previous event) is used as an input for the regression
equation and the predicted distance is marked off from the coordinates of the last event.

In other words, the routine takes the time and location of the last event and adds a
time interval, a direction, and a distance as a predicted next event (next time, next
location). The method by which this prediction is made can be the mean interval, the
median interval, or the regression equation. If the user species a lag other than 1, that lag
is applied to the last event. For example, for time with a mean difference and a lag of 2,
the routine calculates the time interval between each event and every other event,
calculates the average and applies that average to the last event in the data set.

CWA - Predictior Graphical Output

The CWA - Prediction routine outputs five graphical objects in shp’, ‘mif, or bna’
formats. The user provides a file name and the routine adds five prefixes to the name in
‘shp’, ‘mif or bna’output:

1. Events - a line indicating the sequence of events. Ifthe user also brings in

the points in the data set, it will be possible to number each of these steps;

PredDest - the predicted location for the next event;

Path - a line from the last location in the data set to the predicted location;

4. POrigl - a point representing the center of minimum distance of the data
set. The center of minimum distance is taken as a proxy for the origin
location of the offender; and

5. PW - a line from the expected origin to the predicted destination

w

For example, if the user provides the file name NightRobberies’ and specifies a shp’
output, there will be five objects output:

EventsNightRobberies.shp
PredDestNightRobberies.shp
PathNightRobberies.shp
POrigLNightRobberies.shp
PWNightRobberies.shp

Example 1: A Completely Predictable Individual
The simplest way to illustrate the logic of the CWA is to start with a completely

predictable individual. This individual commits crimes on a completely systematic basis.
Table 10.5 illustrates the behavior of this individual.
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Starting at an arbitrary origin with an X coordinate of 1 and a Y coordinate of 1 and
on day 1, the individual commits 13 incidents in total. In the table, these are numbered
events 1 through 13. Let’s start with direction and distance. From the origin, the individual
always travels in a Northeast direction of 45 degrees (clockwise from due North - 0
degrees). The individual’s second incident is at coordinate X=2, Y=2. Thus, the individual
traveled at 45 degrees from the previous incident and for a distance of 1.4142 (the
hypotenuse ofthe right angle created by traveling one unit in the X direction and one unit
in the Y direction). For the third incident, the individual commits this at X=4, Y=4. Thus,
the direction is also at 45 degrees from the previous location but the distance is now 2.8284
(or the square root of 8 which comes from a step of 2 along the X axis and a step of 2 along
the Y axis). For the fourth incident, the individual commits the crime at X=7, Y=7. Again,
the direction is 45 degrees, but the distance is 4.2426 (or the square root of 18 which comes
from a step of 3 along the X axis and a step of 3 along the Y axis).

Table 10.5

Example of a Predictable Serial Offender: 1
(N =13 incidents)

Time
Event X Y Distance Days Interval
1 1 1 - 1 -
2 2 2 1.4142 3 2
3 4 4 2.8284 7 4
4 7 7 4.2426 9 2
5 8 8 1.4142 13 4
6 10 10 2.8284 15 2
7 13 13 4.2426 19 4
8 14 14 1.4142 21 2
9 16 16 2.8284 25 4
10 19 19 4.2426 27 2
11 20 20 1.4142 31 4
12 22 22 2.8284 33 2
13 25 25 4.2426 37 4
Logical
prediction
for
next event 14 26 26 1.4142 39 2

For the fifth incident, again the individual travels at 45 degrees to the previous
incident, but repeats himself/herself with a step of only 1 unit in both the Xand Y
directions. The individual then continues the sequence, always traveling in a 45 degree
orientation to due North. For distance, a step of 1 in both the X and Y directions is
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followed by a step of 2 in both directions, and is followed by a step of 3 in both directions.
In other words, the individual repeats direction every time and repeats distance every
third time. There is a periodicity of 1 for direction and 3 for distance.

For time interval, this individual repeat him/herself every other time. The second
event occurs 2 days after the first event. The third event occurs 4 days after the second
event; the fourth event occurs 2 days after the third event; the fifth events occurs 4 days
after the fourth event; and so forth. In other words, for time interval, the individual
repeats him/herself every other interval (i.e., the periodicity is 2). Figure 10.3 illustrates
the sequence; the number at cach event location is the number of the day that the
individual committed the offense (starting at an arbitrary day 1).

Since this fictitious individual is completely predictable, we can easily guess when
and where the next event will occur (see table 10.5 above). The direction will, of course, be
at 45 degrees from the previous location. Looking at the last known event (event 13), the
distance traveled was 4.2426. Thus, we predict that the individual will revert to a move of
1in the X direction and 1 in the Y direction, or coordinates X=26, Y=26. Finally, for time
interval, since the last known time interval was 4 days, then this individual will commit
the next event 2 days later, or day number 39.

Example 1: Analysis

The first step is to analyze the sequencing of the events. There are 13 gvents and 12
intervals. The correlogram produces the following output (table 10.6).

Looking at the unadjusted correlations, it can be seen that time shows an
alternating pattern of perfect correclations. The first repeating positive 1.0 correlation is for
lag 2, which is the exact periodicity that was specified in the example. This offender
repeats the time sequence every other time. Thus, ifthe individual alternates between
committing offenses 2 and 4 days after the last, then knowing the time interval for the last
offense, it can be assumed that the next event will repeat the next-to-the-last time interval.

For distance, the highest correlation is for a lag of 3. This offender repeat
himself/herself every third time, which is exactly what was programmed into the example.
Thus, knowing the location ofthe last event, it can be assumed that the individual will
choose the same distance for the next interval as three earlier. Finally, all lags show a
perfect 1.0 correlation for bearing. The lowest one is taken, which is a lag of 1. That is,
this individual repeats the direction every single time (i.e., he/she always travels in the
same direction). Thus, in summary, the correlogram shows that the individual repeats the
time interval every other time, the distance every third time, and the direction every time.

The CWA - Diagnostics routine merely confirms these correlations. The regression

equations yield an R? of 1.0 (unadjusted) for each of three variables, for the appropriate lag.
For example, table 10.7 above shows the regression results for distance for a lagof 3
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Figure 10.3:
Example of a Predictable Serial Offender: 1
(N=13 Incidents)

Date of Incident Shown
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Correlogram of Predictable Serial Offender:

Table 16.6

Correlated Walk Analysis -- Correlogram:

5 arnp‘e SR o

Measurerrernt type ..

lnpuunits o

L Time u
. Distance units R
. Bearing units . .
T N R e Adusted:
lan . Corelation bagq ... Cormelton
Tame Distarce Bearing Time Distance  Bearing
. a 1.00000
..11.00000 Y -o.Bosog -0 _...080308
..1.80000 2. 1§ -048245 = 081818
3 1.00000 .8 -bFaro7 072727 072727
4 1) ’ 1.00000 4 DB3B36  -024478  0B36I6
5 100000 -DAeBE24 0 100000, 0 & -[1.54545 -0.,32086 0545{5
B 100000 1.00000 1.00000 B 045455 045455 045455
7 -1.00004 -0.28571  1.00000 7 -0.36364  -010380  D383684°

The adjusted correlogram show a similar pattern, though the absolute correlations

Table 10.7

have been reduced. The best decision would still be for a lag of 2 for time, a lag of 3 for
distance, and a lag of 1 for bearing. Figure 10.4 shows a graph ofthe correlogram.
CrimeStat has a built-in graph function for the correlogram and adjusted correlogram.

Regression Results for Serial Offender 1: Distance

Variable: distance Standard error of estimate: 0.00000
Multiple R: 1.00000 Squared muliiple R: 1.00000

Coefficient Std Error t P(2 Tail)
Constant 0.000000 0.00000 0.00000 0.00000
Coefficient 1.000000 0.00000 0.00000 0.00000
Analysis of Variance
Source Sum-of-Squares  df Mean-Square F-ratio P
Regression 12.00000 1 12.00000 0.00000 0.00000
Residual 0.00000 8 0.00000
Total 12.00000 9
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Figure 10.4: Correlogram of Serial Offender: 1
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Example 1: Prediction

Finally, for prediction, it is apparent that the best method would be to use a
regression equation with lags of 2 for time, 3 for distance, and 1 for bearing. Table 10.8
shows the output. As can be seen, the routine predicts exactly the next time and location.
The next event for this completely predictable serial offender will be on day 39 at the
location with coordinates X=26, Y=26.

Table 10.8
Predicted Results for Serial Offender 1
Regression Equatien with
Lags of 2 for Time, 3 for Distance, 1 for Bearing

Variable Predicted value From event Method Lag

Time interval 2.00000 13 Regression 2
Distance interval 1.41421 13 Regression 3
Bearing interval 44.99997 13 Regression 1
Predicted time .............. 39.00000

Predicted X coordinate : 26.00000
Predicted Y coordinate : 26.00000

The regression equation is the best model in this case. The other methods produce
reasonably close approximations, however. Table 10.9 shows the results of using other
methods for prediction. As seen, a model where all three components (time, distance,
bearing) were lagged by 1 as well as a model where all three components were lagged by 3
also produces the expected correct answer. The mean interval and median interval
methods also produce reasonably close, though not exact, answers. In this particular case,
the regression method with the best lags produced the optimal solution.

Example 2: Anether Completely Predictable Individual

A second example is also a perfectly predictable individual. This time, the
directional component changes. The directional trend is northward, but with changes in
angle every third event. The time pattern is completely consistent with subsequent events
occurring every two days. Table 10.10 presents the pattern and the logical next event
while figure 10.5 displays the pattern

The correlogram reveals that both distance and bearing repeat themselves every
third event while the time interval is repeated every time. The regression diagnostics
show that there is perfect predictability for time and for distance, and high predictability
for bearing (not shown). Finally, a regression mode!l is used for prediction with lags of 1 for

440

X X X XA X X 2 X A X XA AL AR A A A A A AAAAAAADAAAAA LAl dS LS A A A A

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Table 10.
Comparison of Methods for Predictable Serial Offender 1

9

Example of a Predictable Serial Offender: 2
(N =14 incidents)
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Time
Event X Y Distance Days Interval
1 3 1 - 1 -
2 1 3 2.8284 3 2
3 1 5 2.0000 5 2
4 3 7 2.8284 7 2
5 1 9 2.8284 9 2
6 1 11 2.0000 11 2
7 3 13 2.8284 13 2
8 1 15 2.8284 15 2
9 1 17 2.0000 17 2
10 3 19 2.8284 19 2
11 1 21 2.8284 21 2
12 1 23 2.0000 23 2
Logical
prediction
for
next event 13 3 25 2.8284 25
441

__EVENT X | Y IDISTANCE DAYS TIME INTERVAL DIRECTION |

26 26 14142 39 2 4

‘Mean {lag=1) 14 270 210 28 400 30 450
Medan (lag=1) 14 270 270 28 410 40 450
Regression:
Lag=1 14, 266 2066 23 390 200 450
lag=2 14270 .29 380 20 450
Lag=3 14 260 14 390 20 450
Optimal (t=2d=3b=1), 14 260 14390 20 450

Table 10.10
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time, 3 for distance, and 3 for bearing. The model correctly predicts the expected time
(days=25) and location (X=3, Y=25). Table 10.11 shows the results.

Methodology for CWA

These two examples illustrate what the CWA routine is doing. There are three
steps. First, the sequential pattern is analyzed with the correlogram. This shows which
lags have the strongest correlations between lags for time, distance, and bearing separately.
Second, the pattern is tested with a regression model. The purpose is to determine how
strong a relationship is any particular model. As will be suggested below, if a model is too
weak or, conversely, too strong, it most likely will not predict very well. Third, a prediction
model is selected. The user can utilize the regression model or use the mean interval or
median interval.

Table 10.11
Comparison of Methods for Predictable Serial Offender 2

CEVENT X Y DISTANCE DAYS TMEINTERVAL DRECTION
e m .
Predicton I R
for next event B s 2% 284 2 00002 &6
PREDICTION: )
Mean(lag=1) = 13 22 252 25 250 286
Median (lag=1) 13 300 250 28 %0 450
Regression: o e
Lag=1 .13 30 250 28 250 450
Lag=2 L1818 282 24 252 225
Lag=3 13 30 250 28 250 450
Optimal {t=1,0=3p=3) 13 30 250 28 280 o 450

Example 3: A Real Serial Offender

How well does the CWA routine work with realserial offenders? People are not as
predictable as these examples; the examples are algorithmic and people dont work like
algorithms. But, to the extent to which there is some predictability in hbuman behavior, the
CWA routine can be a useful tool for crime analysis, detection, and apprehension.
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Figure 10.5: |
Example of a Predictable Serial Offender: 2
(N=12 Incidents)

Date of Incident Shown
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To illustrate this, a serial offender was identified from a large data set obtained from
Baltimore County (see Chapter 9). The individual committed 16 offenses between 1992 and
1997 when he was eventually apprehended. The profile of crimes commitied by this
individual were quite diverse. There were 11 larceny incidents (shoplifting and bicycle
theft), 1 residential burglary, 1 commercial burglary, 2 assaults, and 1 robbery.

To test the model, the first 15 incidents were used to predict the 16™. This allowed
the error between the observed and predicted values for time and location to be used for
evaluation. Figure 10.6 shows the sequencing of actions ofthe first 15 incidents committed
by this individual, most of which occurred in the castern part of Baltimore County.

The correlogram revealed a complicated pattern (figure 10.7). The adjusted matrix
was used because of the high correlations at higher-order lags. Nevertheless, the optimal
lags appeared to be 1 for time, 3 for distance, and 6 for bearing. A regression model was
used to test these parameters. Figure 10.6 also shows the predicted location for the next
likely location (the red plus sign) and the location where the individual actually committed
the 16" event (green triangle). The error in prediction was good. The distance between the
actual and predicted locations was 1.8 miles and the error in predicting the time of the next
location was 3.9 days. Overall, the model did quite well for this individual.

Event Sequence as an Analogy to a Cerrelated Walk

Nevertheless, there are problems in the model for this case. First, this is not a true
sequence of actions, but a pseudo-sequence. The individual doesn’t go from the first event to
the second event to the third event, and so forth. A considerable time may clapse between
events. Similarly, distance and direction are conceptual only, not real. For example, in
figure 10.6, the individual did not actually travel across the inlets of the Chesapeake Bay as
the lines indicate. Distance between the events was actually much greater than estimated
by the model and direction was more complex. Nevertheless, to the extent to which an
individual makes a spatial decision about where to go, implicitly he or she is makinga
directional and distance decision. In other words, the decision making process may take
into account prior locations. In this case, the CWA routines would be nseful.

Example 4: A Second Real Serial Offender

A second real example confirms that the method can produce reasonably close
predictions. An offender committed 13 crimes, including three incidents of shoplifting, eight
incidents of theft from a vehicle, one residential burglary, and one highway robbery. The
correlogram showed that a lag of 1 was strongest for time, distance, and bearing (figure
10.8). The R-squares were moderate (0.45 for time; 0.18 for distance; 0.18 for bearing).
Using the regression method with a lag of 1 for each component, the likely location of the
next event was predicted (Figure 10.9). The error between the predicted event and the
actual event was, again, reasonable with a difference in time of 3.3 days and a difference in
distance of 2.4 miles.
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Figure 10.6:
Likely Location for Next Crime:
Serial Offender in Baltimore County
N=16 Incidents
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Figure 10.7: Correlogram of Actual Offender

o
wn
1

O

Lagged Correlation

O
N
]

Lag

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



A A A A A A A A2 X X X A XA X A B R R N B N B K EQ g g e R R R TR en—

Figure 10.8: Correlogram of Another Offender
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Figure 10.9:
Likely Location for Next Crime:
Another Serial Offender in Baltimore County
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Tracking a Burglary Gang with the Correlated Walk Analysis

Bryan Hill
Glendale Police Department
Glendale, AZ

The space-time analysis tools provided with CrimeStat IT add an important
element to an analyst’s review of a tactical prediction effort. Although the method
for calculating the Correlated Walk Analysis (CWA) is still more experimental than
proven, it allows the analyst to see potential patterns in relation to a suspect’s crime
travel in terms of time, distance, and direction. In a recent burglary series involving
several jurisdictions in our county, the CWA technique was used as part of an
aggregate process referred to as the Probability Grid Method. That method
combines results from several models to predict the next likely area for a new hit in
a crime series. One of the most confusing aspects of these burglaries was the fact
that several jurisdictions were involved and the offenders seemed to bounce back
and forth from one jurisdiction to the next.

There were also 219 offenses in the series, providing considerable complexity.
Because there were so many events, the distances could be anywhere from 0.5 miles
to 20 miles, I could never really put my finger on what direction or distance the
offender would hit next, but was confident a pattern existed and was likely changing
over time. The following map shows the probability grid areas predicted and the
CWA points predicted. The triangles shown represent the last four hits. The first hit
was near the probability grid prediction in the northern portion of the map; however
the subsequent hits were all very close to where the CWA routine predicted they
would be. This was also a brand new area for these offenders and was a surprise to
the department investigating these incidents. This area was not what was expected
based on the SD ellipses and other methods used to predict the next event. The
CWA tool requires more testing to determine the accuracy of its predictions, however
it may turn out to be a valuable tool in a crime analyst’s arsenal.
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Accuracy of Predictions

However, it’s important not to be overly optimistic about the technique. It is always
possible to find cases that fit a method very well. The above mentioned cases appear to do
that. Unfortunately, the method is not a magic elixir for predicting serial offenders. Like
any method, it has error. It is also a fairly new tool in crime analysis so that we don’t have
a lot of experience with it. The one example of its use was by Helms (1999), who also is
cautious about its utility.

Therefore, at this point, I cannot give conclusive results about whether the method is
accurate or not and under what conditions it is best used. It will take some experience to
know how effective it is for crime analysis.

To explore the accuracy of the method, 50 serial offenders were identified from a
large data base of more than 41,000 incidents in Baltimore County between 1993 and 1997
(see Chapter 9). The 50 offenders were identified based on knowing the dates on which they
committed crimes, or at least on which they committed crimes for which they were charged
and eventually tried. The number of incidents varied from a low of 7 incidents to a high of
38 incidents. An attempt was made to produce balance in the number of incidents, though
the actual distribution of cases did reflect the availability of candidates in the data base.
For the fifty individuals, the distribution of incidents was 7 (five individuals), § (four
individuals), 9 (six individuals), 10 (two individuals), 11 (five individuals), 12 (five
individuals), 13 (six individuals), 14 (three individuals), 15 (six individuals), 17 (two
individuals), and one individual each for 20, 21, 24, 29 and 38 incidents.

To test the CWA model, the last event committed by these individuals was removed
so that N-1 events could be used to predict event N. In this way, it is possible to evaluate
the accuracy of the method.

Ten methods were compared:

1. The optimal regression method for time with the lag having the strongest
relationship being selected;

2. The optimal regression method for location (distance and bearing) where the

with the lags for distance and bearing having the strongest relationship being

selected;

A regression model for time with a lag of 1;

A regression model for location with a lag of 1 (for both distance and bearing);

The mean interval for time;

The mean interval for location (distance and bearing);

The median interval for time;

The median interval for location {(distance and bearing);

The mean center of the incidents (for location only); and

0. The center of minimum distance of the incidents (for location only).

H&OOO\)O\.UI-BUJ

The latter two methods were used for reference. In Chapter 9, we saw that center of
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minimum distance, particularly, was among the best, if not the best, at predicting the origin
location of serial offenders. The reason is because this statistic minimizes the distance to all
incident locations. The mean center was close behind, though not quite as good. As an
estimate, the center of minimum distance is a very good index when there is a single origin
that is being predicted. On the other hand, where the purpose is to predict the location of a
next event, the center of minimum distance and mean center may be less than useful since
they will not generally predict the actual next location. They minimize error, but are rarely
accurate. For example, in the above mentioned cases (two theoretical and two real), these
statistics did not predict accurately the location of the next event. Instead, they identified a
point in the middle of the distribution where the sum of the distances to all incident
locations was small.

Error Analysis

Each of the models was compared to the actual time and location of the last, removed
incident. For time, the error measure was in days (the absolute difference between the
actual day and the predicted day). For location, the error measure was in miles (i.e.,
absolute distance between the actual and predicted location). The results were mixed.
Overall, error was moderate. Table 10.12 summarizes the overall error.

Overall, the center of minimum distance and the mean center do produce, as
expected, smaller errors for distance than any of the CWA methods; as noted above,
locations in the middle of the distribution of incidents will minimize error, but they won't
predict accurately the location of a next event nor indicate in which direction it will occur
from the last event. On the other hand, the CWA methods are particularly accurate, either.
They work very well for a completely predictable offender, as was seen in the examples
above, but not necessarily for real offenders.

Among the CWA methods, the mean interval, median interval and the lag 1
regression appears to give better results for time than the optimal regression. Overall, the
median interval produces the lowest median error, which is about a month and half. In
terms of location, the mean interval and median intervals produce slightly better results
than the optimal regression, though the lag 1 regression was just as good.

Comparison of CWA Methods

At this point, it is unclear as when it is best touse this technique. Three variables
seem to explain part of the error variation. First, a larger sample size leads to better
prediction, as would be expected (Table 10.13).

For time, there is definitely an improvement in predictability with larger sample
sizes. Among these methods, the mean interval and lag 1 regression show the smallest
error for the largest samples (14 cases). For distance, on the other hand, generally, the
error increases with increasing sample size. The one exception is for the optimal regression
method where medium-sized samples (10-13 cases) produce the lowest error.
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Table 10.12

Average and Median Error for CWA Methods
50 Serial Offenders

Average Median
Method Errer Error
Time (days)
Optimal regression: time 112.2 79.8
Lag 1 regression: time 88.1 70.0
Mean interval: time 89.7 64.9
Median interval: time 91.2 45.5
Distance (miles) '
Optimal regression: location 6.4 54
Lag 1 regression: location 5.7 42
Mean interval: location 5.8 4.7
Median interval: location 5.3 39

Reference Location (miles)
Mean center 3.3 1.7
Center of minimum distance 3.1 1.2

Variables Affecting Predictability
Long time span

There are a variety of reasons for these strange resulits, but one reason may be the
time span of the events. Some of these offenders committed crimes over a long period, up to
five years. Sample size is intrinsically related to the time span (r=0.55). The longer the
time span that an offender commits crimes, the more incident he/she will perpetrate. With
increasing time, the individual’s behavior patterns may change.

For those offenders with many incidents, a separate analysis was conducted of the
events occurring within the last year. Many of these individuals appeared to have moved
their base of operation over time, so the isolation of the most recent events was done in
order to produce a clearer behavior pattern. The results, while promising, were not
dramatic. Accuracy was improved a little compared to using the full sequence, particularly
spatial accuracy. However, even with the last few events, these frequently occurred over a
long time period (up to two years). Consequently, the idea of isolating a ‘clean’set of events
did not materialize, at least with these data. On the other hand, with a data set ofonly
recent events, it may be possible to improve predictability.
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Strength of predictability

A second variable that appears to have an effect is the strength of predictability,
based on the first N-1 cases. For the diagnostics routine, as the overall R-square for the
regression equation increases, the regression equation does better. However, with very high
R-square coefficients, the error is worse. Table 10.14 shows the relationship.

The lowest error is obtained with moderate R-square coefficients, for both time and
distance. This is why one has to be careful with very high lagged correlations in the
correlogram and high R-squares in the diagnostics. Unless one is dealing with a perfectly
predictable individual (as the two theoretical examples illustrated), high correlations may
be a result of a very small sample size, rather than any inherent predictability.

Limitations of the Technique

In short, users should be careful about using the CWA technique. It can be useful for
identifying repeating patterns by an offender, but it won necessarily predict accurately the
offender’s next actions. There are a variety of reasons for the lack of predictability. First,
there may be intermediate events that are unknown. With each of these offenders in the
Baltimore County data base, there is always the possibility that the individuals committed
more crimes for which they were not charged. The sequential analysis assumes that all the
events are known. But this may not be the case.

A simulation on several cases was conducted by removing events and then re-running the
correlogram and prediction models. Removing one event did not appreciably alter the
relationship, but removing more than one event did. In other words, if there are unknown
events, the true sequential behavior pattern of the offender may not be properly identified.
Considering that most offenders commit fewer than 10 incidents before they get caught, the
statistical effect of missing information may be critical.

A second reason has been alluded to already. In applying the model to crime events,
it is not a true sequential model, but a pseudo-sequential model since much time may
intervene between events. Distance and direction are conceptual in the sense that the
individual doesnt directly orient from one event to the other, but returns to his/her living
patterns. Thus, what may appear to be a repeating pattern may not be. Here, the issue of
sample size is critical. Ifthere are only a few incidents on which to base an analysis, one
could see a pattern which actually doesn?t exist. One has to be careful abont drawing
inferences from very small samples.

A third reason is that people are inherently unpredictable. The two algorithmic

examples produced excellent results, but few persons are that systematic about their
behavior. Therefore, we must be cautious in expecting too much out of the model.

453

This document is a research report submitted to the U.S. Department of Justice. This report has not

been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



X L X X A XX A XX AR XA A AL A A AAA A Al Al Al dl Al Al d A S A A A A A

Table 16.13

Sample Size and Prediction Error

Savge | * Ofimdl lapl  Men M ¢ Ofimd  lagl

Sze | " Fegressin Regesion Irferel tevd  * Regression Fegression |

8.8 & 434 |5 184 108~ T4 } ) :
8 182 %8 &4 15+ 55 60 57 55% 29 af

“ - 798 &1 &1 N2 6l 59 68 61% 43 41

Table 10.14

Regression Diagnostics and Prediction Error
Comparison of CWA Regression Methods

Time (days) Distance (miles)
Optimal Lag1l Optimal Lag1

R-Square Regression Regression Regression Regression
6-0.29 93.7 90.9 6.7 6.3
6.36 - 0.59 89.3 33.8 6.0 5.0
0.60 + 164.3 122.7 6.3 52

Conclusion

Nevertheless, the model has utility. First, it can help police identify whether there is
a pattern in an offender’s behavior. Knowing that there is a pattern can help in planning
an arrest strategy. Even if the strategy does not pay off every time, it may improve police
effectiveness. In short, the CWA can help a police department analyze the sequential
behavior of an offender they are trying to catch. They may be able to anticipate a new event
and may be able to warn people who are more likely to be attacked by this individual. If
used carefully, the model can be useful for crime analysis and detection.

Second, it can encourage the development of additional predictor tools for
individuals. As mentioned above, the center of minimum distance produces a best guess’
estimate in the sense that it minimizes the distance to the next event. It usually doesn’t
predict the next event, but it does produce a minimal error. If used in conjunction with the
CWA, it may be possible to narrow the search area for the next event.
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Third, the CWA model can stimulate research into crime prediction. Police are
always trying to predict the next event by an offender and will use multiple techniques and
a lot of intuition in trying to ‘out-guess’ an offender. It is hoped that the CWA model will
stimulate more research into predicting the sequence of offender behavior as well into how
those sequences aggregate into a large spatial pattern. Most of this text has been devoted
to analyzing the spatial patterns of a large number of events. The statistics have, perhaps
naively, assumed that each of those events were independent. In reality, they aren’ since
many crimes are committed by the same individuals. In theory, a distribution of crime
incidents could be disaggregated into a distribution of sequences of events committed by the
same offenders, if we had enough information. Understanding how aggregate distributions
is a by-product of the behavior of a limited number of individuals is an important research
goal that needs to be addressed.
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Endnotes for Chapter 10

It would be possible to make a one-tailed test with the simulation. For example, if
one is only interested in the degree of clustering, one could adopt the 95 percentile
as the threshold. An observed Mantel value that was lower than this threshold
would be consistent with the null hypothesis.

Henderson, Renshaw and Ford (1981) defined the correlated walk as a two-
dimensional walk where the sum of the probabilities in four directions along a
lattice are:

P=p+q+2r=1

where P is the total probability (1), p is the probability of continuing in the same
direction, g is the probability of moving in an opposite direction, and 7 is the
probability of moving one unit to the right or to the left. The advantage of this
formulation is that the probabilities do not have to be equal (i.e., p could exceed q or
r). Nevertheless, the individual steps can be considered a special case of a
correlated random walk in the plane (Henderson, 1981).

The non-lattice two dimensional case can also be considered a recurrent random
walk since a step in any direction (not just along a lattice) can be considered the
result of two steps, one in the X direction and one in the Y (or, alternatively, a
pairing of all steps in the X direction with all steps in the Y direction).
Unfortunately, this logic does not apply to more than two dimensions. Such multi-
dimensional walks do not have to return to their origin. However, Spitzer (1963) has
shown that an independent walk is recurrent if the second moment around the
origin is finite.
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Appendix A

Dynamic Data Exchange (DDE) Support
CrimeStat supports Dynamic Data Exchange (DDE). This allows the program to be
linked to another program, which can call up CrimeStat as a routine. The following are the

programming codes used to support DDE commands.

CrimeStat’s DDE Topics That Support the DDE “poke” Command

AddShprlci-”' a1
<file name>f

<file name>| <cc ymn name>

<coordinate>]: <“mt>- :
Valid coordmates.- i
Longtitude, 1at1tude
Projected
Direction
Valid units:
Decimal degr €5
Feet :
Meters

See Primary File:

See Primary Fi
‘See Primarv Fi
}-See.Primary |
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Example: Contrelling CrimeStat from within Visual basic

Public Function OpenCrimeStat(topic As String) As Variant

On Error Resume Next
Dim channel, I
Dim file As String
file = "CrimeStat.exe"
channel = DDEInitiate("CrimeStat", topic)
IfErr Then

Err=40

I = Shell(file, 1)

IfErr Then

Return

End If

channel = DDEInitiate("CrimeStat”, topic)
End If
OpenCrimeStat = channel

End Function

Public Sub TestCrimeStatDde(foo As String)

On Error Resume Next
Dim file As String
Dim channel

file = "SampleData.dbf"

channel = OpenCrimeStat("Primary File")

DDEPoke channel, "Coordinate”, "Projected| Feet"

DDEPoke channel, "File", "RemoveAll"

DDEPoke channel, "File", "AddDbfFile| " & file

DDEPoke channel, "X", file & "] LON"

DDEP oke chananel, "Y", file & "} LAT"

DDEPoke channel, "Coordinate”, "Longtitude, latitude| Decimal degrees"
DDETerminate channel

file = "Grid.dbf"
channel = OpenCrimeStat("Reference File™)

A-3

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



DDEPoke channel, "Source”, "From File"

DDEPoke channel, "True Grid", "0"

DDEPoke channel, "File", "RemoveAll"

DDEPoke channel, "File", "AddDbfFile| " & file

DDEPoke channel, "X", file & "} LON"

DDEPoke channel, "Y", file & "| LAT"

DDEPoke channel, "True Grid", "108"

DDEPoke channel, "Source”, "Generated"

DDEP oke channel, "Bound"”, "-78.5] 22.4] -75.3] 24.2"

DDEP oke channel, "Cell Specification”, "By cell-spacing| 0.5"
DDEP oke channel, "Cell Specification", "By number of columns| 20"
DDETerminate channel

channel = OpenCrimeStat("Measurement Parameters”)
DDEPoke channel, "Measurement Type", "Direct”
DDEPoke channel, "Measurement Type", "Indirect”
DDEPoke channel, "Area", "734,12| Square meters"
DDEPoke channel, "Length”, "1734.12| meters"
DDETerminate channel

channel = OpenCrimeStat("Interpolation")
DDEExecute channel, "select"
DDETerminate channel

End Sub

Private Sub CrimeStatQuit_Click ()
On Error Resume Next
Dim channel
channel = OpenCrimeStat("System™)
DDEExecute channel, "quit"
DDETerminate channel

End Sub

Private Sub TestCrimeStat_Click()
TestCrimeStatDde “bar”

End Sub
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Appendix B
Some Notes on the Statistical Comparison of Two Samples

The following presents methods for testing the spatial differences between two
distributions. At this point, CrimeStat does not include routines for testing the differences
between two or more samples. The following is provided for the reader’s information.
Chapter 4 discussed the calculation of these statistics as a single distribution.

Differences in the Mean Center of Two Samples

For differences between two samples in the mean center, it is necessary to test both
differences in the X coordinate and differences in the Y coordinates. Since CrimeStat
outputs both the mean X, mean Y, standard deviation of X, and standard deviation of Y, a
simple t-test can be set up. The null hypothesis is that the mean centers are equal

H,: Mxa = Hxs
Bya = Hyp

and the alternative hypothesis is that the mean centers are not equal

H;: Mxa ¥ Hyp
Bya ¥ Hys

Because the true standard deviations of sample A, oy, and oy,, and sample B, 0y,
and oy, are not known, the sample standard deviations are taken, Sy,, Sy, Sxp and Sy,.
However, since there are two different variables being tested (mean of X and mean of Y for
groups 1 and 2), the alternative hypothesis has two fundamentally different

interpretations:
Comparison I: That EITHER py, # pyg OR Py, # Pyg 1S true
Comparison 1I: That BOTH py, # pyg AND iy, ¥ pyp are true

In the first case, the mean centers will be considered not being equal if either the
mean of X or the mean of Y are significantly different. In the second case, both the mean of
and the mean of Y must be significantly different for the mean centers to be considered not
equal. The first case is clearly easier to fulfill than the second.

Significance levels
By tradition, significance tests for comparisons between two means are made at the
o<.05 or 05.01 levels, though there is nothing absolute about those levels. The significance

levels are selected to minimize Type I Errors, inadvertently declaring a difference in the
means when, in reality, there is not a difference. Thus, a test establishes that the
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likelihood of falsely rejecting the null hypothesis be less than one-in-twenty (less strict) or
one-in-one hundred (more strict).

However, with multiple comparisons, the chances increase for finding ‘significance’
due to the multiple tests. For example, with two tests - a difference in the means ofthe X
coordinate and a difference in the means of the Y coordinate, the likelihood of rejecting the
first null hypothesis (juy, ¥ pys) i8 one-in-twenty and the likelihood of rejecting the second
null hypothesis (jy, # pygp) is also one-in-twenty, then the likelihood of rejecting either one
null hypothesis or the other is actually one-in-ten.

To handle this situation, comparison I - the ‘either/or’ condition, a Bonferoni test is
appropriate (Anselin, 1995; Systat, 1996). Because the likelihood of achieving a given
significance level increases with multiple tests, a penalty’ must be assigned in finding
either the differences in means for the X coordinate or differences in means for the Y
coordinates significant. The Bonferoni criteria divides the critical probability level by the
number of tests. Thus, ifthe @<.05 level is taken for rejecting the null hypothesis, the
critical probability for each mean must be .025 (.05/2); that is, differences in either the
mean of X or mean of Y between two groups must yield a significance level less than .025.

For comparison II - the both/and’ condition, on the other hand, the test is more
stringent since the differences between the means of X and the means of Y must both be
significant. Following the logic of the Bonferoni criteria, the critical probability level is
multiplied by the number of tests. Thus, if the a=.05 level is taken for rejecting the null
hypothesis, then both tests must be significant at the ¢<.10 level (i.e., .05%2).!

Tests
The statistics used are for the t-test of the difference between means (Kanji, 1993).

a. First, test for equality of variances by taking the ratio of the variances
(squared sample standard deviations) of both the X and Y coordinates:

SXA2

Fy= omeee- - - (B.1)
SXB
SYA2

- (B.2)
Sve

with (N, - 1) and (N - 1) degrees of freedom for groups 4 and B respectively.
This test is usually done with the larger of the variances in the numerator.
Since there are two variances being compared (for X and Y, respectively), the
logic should follow either 7 or IT above (i.e., ifeither are to be true, then the
critical o will be actually «/2 for each; if both must be true, then the critical «
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will be actually 2*« for each).

b. Second, if the variances are considered equal, then a t-test for two group
means with unknown, but equal, variances can be used (Kanji, 1993; 28).
Let

N(A) . N(B) _
(XAi - XA)2 +2 (XBi - XB)Z
=1 =

i=1

1

Sxas = SQRT [ ] (B.3)
(NA + NB - 2)
N(A) — N(B) _
2 (YAi - YA)2 +E (YBi - YB)z
i=1 i=1
Syas = SQRT[ 1 (B.4)
(NA + N - 2)

where the summations are for i=1 to N within each group separately. Then
the test becomes

(XA - XB) - (U‘XA - uXB)
tx = B.5)
1 1
Sxas * SQRT[— + —— ]
NA NB

(YA - YB) - (P'YA - p'v;z)
ty = (B.6)
1 1
Syap * SQRT[ - + —- ]
N, N,

with (N, + N; - 2) degrees of freedom for each test.

c. Third, if the variances are not equal, then a t-test for two group means with
unknown and unequal variances should be used (Kanji, 1993; 29).
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6(,\ - S{B) - (P‘XA - p’xs)
ty = (B.7)
SXA2 SXB2
SQRT {[ -~ + - 1}
N, N,

(\?A - Y—:B) = (Hya = Bys)
ty = (B.8)
Sya® Sy’

SQRT {[— + — 1}

N, Ng
with degrees of freedom
S\ Ss’
[~ + ]
Ny Ng
v={ 3-2 (B.9)
S, Set
l + ]

NJA(N,+1) NP (Ng+1)

for both the X and Y test. Even though this latter formula is cumbersome,
in practice, if the sample size of each group is greater than 100, then the t-
values for infinity can be taken as a reasonable approximation and the above
degrees of freedom need not be tested (t=1.645 for a=.05; t=1.960 for ¢=.01).

The significance levels are those selected above. For comparison I - that
either differences in the means of X or differences in the means of Y are
significant, the critical probability level is «/2 {e.g., .05/2 = .025; .01/2 = .005).
For comparison II -that both differences in the means of X and differences
in the means of Y are significant, the critical probability level is a*2 (e.g.,
05%2 = 10; .01*2 - .02).

Reject the null hypothesis if:

Comparison 1: Either tested t-value (1, or t) is greater than the
Critical t for o/2

Comparison II: Both tested t-values (t, and t ) are greater than the
critical t for a*2

B-4

This document is a research report submitted to the U.S. Department of Justice. This report has not
been published by the Department. Opinions or points of view expressed are those of the author(s)
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Examuple 1:Burglaries and Robberies in Baltimore County

To illustrate, compare the distribution of burglaries in Baltimore County with those
of robberies, both for 1996. Figure B.1 shows the mean center of all robberies (blue square)
and all residential burglaries (red triangle). As can be seen, the mean centers are located
within Baltimore City, a property of the unusual shape of the county (which surrounds the
city on three sides). Thus, these mean centers cannot be considered an unbiased estimate
of the metropolitan area, but unbiased estimates for the County only. When the relative
positions of the two mean centers are compared (figure 4.12 in chapter 4), the center of
robberies is south and west of the center for burglaries. Is this difference significant or
not?

To test this, the standard deviations of the two distributions are first compared and
the F-test of the larger to the smaller variance is used (equations B.1 and B.2). CrimeStat
provides the standard deviation of both the X and Y coordinates; the variance is the square
of the standard deviation. In this case, the variance for burglaries is slightly larger than
for robberies for both the X and Y coordinates.

Sys” 0.0154

I — I = 1.058
Sy’ 0.0145
Syal 0.0058

S — S — = 2.007
Sy’ 0.0029

Because both samples are fairly large (1180 robberies and 6051 burglaries), the
degrees of freedom are also very large. The F-tables are a little indeterminate with large
samples, but the variance ratio approaches 1.00 as the sample reaches infinity. An
approximate critical F-ratio can be obtained by the next largest pair of values in the table
(1.22 for p<.05 and 1.32 for p<.01). Using this criteria, differences in the variances for the
X coordinate are probably not significant while that for the Y coordinates definitely are
significant. Consequently, the test for a difference in means with unequal variances is
used (equations B.7, B.8 and B.9).

X, -Xp) - (Byn - Byn)  -76.608482 - (-76.620838)

tx =
Sy Syl 0.0154 0.0145
SQRT {[-—— +-——-]}  SQRT{[-—mmv S I
N, N 6051 1180
0.0124
= e = 3.21 (p<.005)
0.0039
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Figure B.1:

1996 Burglaries and Robberies in Baltimore County
Comparison of Mean Centers

A, Mean center of burglaries
39
Mean center of robbaties
7
Y,
‘
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(Y, - Yo - (hen - hyp)  39.348368 -39.334816

ty =
Sy Syl 0.0058  0.0029
SQRT{ - + ]} SQRT { + B
N, N, 6051 1180
0.0136
S —— = 736 (ps<.005)
0.0018

Therefore, whether we use the ‘either/or’ test (critical a<.025) or the both/and’ test
(critical @<.1), we find that the difference in the mean centers is highly significant.
Burglaries have a different center of gravity than robberies in Baltimore County.

Differences in the Standard Distance Deviation of Two Samples

Since the standard distance deviation, S,, (equation 4.6 in chapter 4) is a standard
deviation, differences in the standard distances of two groups can be compared with an
equality of variance test (Kanji, 1993, 37).

S - (B.10)

with (N, - 1) and (N, - 1) degrees of freedom for groups A and B, respectively. This test is
usually done with the larger of the variances in the numerator. Since there is only one
variance being compared, the critical « are as listed in the tables.

From CrimeStat, we find that the standard distance deviation of burglaries is 8.44
miles while that for robberies is 7.42 miles. In chapter 4, figure 4.12 displayed these two
standard distance deviations. As can be seen, the dispersion ofincidents, as defined by the
standard distance deviation, is greater for burglaries than for robberies. The F-test of the
difference is calculated by ’

Sy 8.44°
F B Dt S — = T 08 0 00 i = 1 .29
Syyn’ 7.42?

with 6050 and 1180 degrees of freedom respectively. Again, the F-tables are slightly
indeterminate with respect to large samples, but the next largest F beyond infinity is 1.25
for p<.05 and 1.38 for p<.01. Thus, it appears that burglaries have a significantly greater
dispersion than robberies, at least at the p<.05 level.
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Differences in the Standard Deviational Ellipse of Two Samples

In a standard deviational ellipse, there are actually six variables being compared:
Mean of X
Mean of Y
Angle of rotation
Standard deviation along the transformed X axis
Standard deviation along the transformed Y axis
Area ofthe ellipse
Differences in the mean centers
Comparisons between the two mean centers can be tested with the above statistics.

Differences in the angle of rotation

Unfortunately, to our knowledge, there is not a formal test for the difference in the
angle of rotation. Until this test is developed, we have to rely on subjective judgements.

Differences in the standard deviations along the transformed axes
The differences in the standard deviations along the transformed axes (X and Y) can

be tested with an equality of variance test (Kanji, 1993, 37).

S —— ~ (B.11)

Foy = -ommmem (B.12)
Sy’

with (N, - 1) and (N - 1) degrees of freedom for groups A and B respectively. This test is
usually done with the larger of the variances in the numerator. The example above for
comparing the mean centers of Baltimore County burglaries and robberies illustrated the
use of this test.

Differences in the areas of the two ellipses

Since an area is a variance, the differences in the areas ofthe two ellipses can be
compared with an equality of variance test (Kanji, 1993, 37).
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with (N, - 1) and (N, - 1) degrees of freedom for groups 1 and 2 respectively. This test is
done with the larger ofthe variances in the numerator.

Significance levels

The testing of each of these parameters for the difference between two ellipses is
even more complicated than the difference between two mean centers since there are up to
six parameters which must be tested (differences in mean X, mean Y, angle of rotation,
standard deviation along transformed X axis, standard deviation along transformed Y axis,
and area of ellipse). However, as with differences in mean center of two groups, there are
two different interpretations of differences.

Comparison I: That the two ellipses differ on ANY of the parameters
Comparison II: That the two ellipses differ on ALL parameters.

In the first case, the critical probability level, «, must be divided by the number of
parameters being tested, a/p. In theory, this could involve up to six tests, though in
practice some of these may not be tested (e.g., the angle of rotation). For example, if five of
the parameters are being estimated, then the critical probability level at «<.05 is actually
o< .01 (L05/5).

In the second case, the critical probability level, «, is multiplicd by the number of
parameters being tested, a*p, since all tests must be significant for the two ellipses to be
considered as different. For example, if five of the parameters are being estimated, then
the critical probability level, say, at 0<.05 is actually 0<.25 (.05%5).

Differences in Mean Direction Between Two Groups

Statistical tests of different angular distributions can be made with the directional
mean and variance statistics. Totest the difference in the angle of rotation between two
groups, a Watson-Williams test can be used (Kanji, 1993; 153-54). The steps in the test are
as follows:

1. All angles, 0,, are converted into radians
Radian, = Angle, * n/180 (B.14)
2. For each sample separately, 4 and B, the following measures are calculated
B-9
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N, N,
C,= Zcos S;= Zsin 6, (B.15)
A=l A=1
N, N,
C,= Zcos b, S,= Xsin6, (B.16)
B=1 B=1

where 6, and 6, arc the individual angles for the respective groups, 4 and B.

3. Calculate the resultant lengths of each group
R,=SQRT[C,>+8S,*] (B.17)
Ry = SQRT[ C.> + 8% ] (B.18)
4. Resultant lengths for the combined sample are calculated as well as the

length of the resultant vector.

C=C,+C, (B.19)
S=8§,+8S, (B.20)
R = SQRT[ C* + §*] B.21)
N=N,+N, B.22)
R, +Ry)
R = covmmeeen {B.23)
N
5. An F-test of the two angular means is calculated with
R,+R;-R
F=g(N-2) (B.24)
N - (R, +Rg)
where
3
g= | R — (B.25)
8k

with k being identified from a maximum likelihood Von Mises distribution by
referencing R with 1 and N-2 degrees of freedom (Mardia, 1972; Gaile and
Burt, 1980). Some ofthe reference ks are given in table B.1 (from Mardia,
1972; Kanji, 1993, table 38).
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Table B.1

Maximum Likelihood Estimates for Given R"in the Von Mises Case
(frem Mardia, 1972; Kanji, 1993, table 38)

k

0.00000
0.10013
0.20101
0.30344
0.40828
0.51649
0.62922
0.74783
0.87408
1.01022
1.15932
1.32570
1.51574
1.73945
2.01363
2.36930
2.87129
3.68041
5.3047

10.2716
infinity

Table B.2

Comparison of Two Groups for Angular Measurements
Angle of Deviation From Due North

Group A
Measured

Incident ’ Angle

160
184
240
100

95
120

N W W N e
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Measured
Angle

196
212
297
280
235
353
190
340
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6. Reject the null hypothesis of no angular difference ifthe calculated F is
greater than the critical value F, ,.

Example 2: Angular comparisons between two groups

A fourth example is that of sets of angular measurements from two different groups,
A and B. Table B.2 provides the data for the two sets. The angular mean for Group A is
144.83° with a directional variance of 0.35 while the angular mean for Group B is 258.95°
with a directional variance of 0.47. The higher directional variance for Group B suggests
that there is more angular variability than for Group A.

Using the Watson-Wheeler test, we compare these two distributions.

1. All angles are converted into radians (equation B.14).

2. The cosines and sines of each angle are taken and are summed within groups
(equations B.15 and B.16).

C,= -3.1981 S, =2.2533
C,= -.8078 Sz = -4.1381
3. The resultants are calculated (equations B.17 and B.18).
R,=3.9121
Ry =4.2162
4. Combined sample characteristics are defined (equations B.19 through B.23).
C = -4.0059
S =-1.8848
R=44271
N =14
R" = 0.5806
5. Once the parameter, k, is obtained (approximated from table 4.1 or obtained

from Mardia, 1972 or Kanji, 1993), g is calculated, and an F-test is
constructed (equations B.24 and B.25).

k=1.44
g = 0.7396
F =5.59

6. The critical F for 1 and 12 degrees of freedom is 4.75 (p<.05)and 9.33
(p<.01). The test is significant at the p<.05 level and we reject the null
hypothesis of no angular differences between the two groups. Group A has a
different angular distribution than Group B.
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Endnotes

1. There are limits to the Bonferoni logic. For example, ifthere were 10 tests, having
a threshold significance level of .005 (.05 / 10) for the either/or’ conditions and a
threshold significance level of .50 (.05 * 10) for the ‘both/and’would lead to an
excessively difficult test in the first case and a much too easy test in the second.
Thus, the Bonferoni logic should be applied to only a few tests (e.g., 5 or fewer).
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