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Introduction 

Predictive Methods for Law Enforcement 

Law enforcement agencies have increasingly acquired database management systems (DMBS) and 
geographic information systems (GIS) to support their law enforcement efforts. These agencies use 
such systems to monitor current crime activity and develop collaborative strategies with the local 
communities for combating crime. However, in general these strategies tend to be reactive rather than 
proactive. A more proactive approach requires early waming of trouble with sufficient lead-time to 
formulate a plan. Early waming, in turn, necessitates the development of predictive models in space 
and time that can inform law enforcement of pending "hot spots" and areas with declining crime activity. 

The focus of the proposed research was on the prediction of crime events. Prediction of this sort is 
now feasible because of modern data collection and analysis systems. Records management systems 
implemented in DBMS and GIS exist in many jurisdictions and can provide the basis for more formal 
analysis of local crime events. The formal analysis that we developed consists of mathematical models 
that describe the functional relationships between demographic, economic, social, victim, and spatial 
variables and numerous measures of criminal activity. 

The results presented in this report show impressive effectiveness in predicting crime. Despite coarse 
feature variables, the method outperformed standard density estimation techniques for identifying 
regions of increased crime activity. We believe this the approach developed through this grant provides 
promise for both more accurate prediction of criminal events as well as testing theories regarding 
factors that contribute to rising crime rates. 

a 

objectives 

The goal of this research was to develop predictive models that would enable law enforcement 
agencies and their communities to proactively address criminal activity. We had the following specific 
research objectives. 

1. Devise and implement predictive models that specifically address the needs of law enforcement. 

2. Investigate and implement methods that can identify the most useful features for criminal incident 

prediction. 

3. Empirically evaluate the effectiveness of the prediction models and feature selection techniques 

using data from Richmond and/or Charlottesville-Albemarle. 

4. Disseminate the most promising of the models for use by law enforcement agencies. 
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Contents 

This report provides results from our research organized into three papers. The first of these provides 
the theoretical foundation for our new approach to crime event prediction. This approach is built out of 
results in space-time point processes. We review fundamentals from this area and then give the 
theoretical details of our approach. 

The second paper shows applications of our approach to a crime prediction problem in Richmond, 
Virginia. Specifically, we examined breaking and entering events and used data from one.week to 
predict both the next week and the next two weeks. We compared our predictions to those provided by 
several density estimation approaches (e.g., kernel estimates) and found that we significantly 
outperformed these estimates. This suggests that the use of feature data can improve the predications 
of criminal events. We believe that even better (more accurate. higher resolution) feature data will 
further improve performance. 

The third paper and final paper provides an extension of the model to handle temporal features. The 
paper discusses the problem of measuring similarity between temporal features and shows our 
approach for handling this problem. We then show how temporal features can be used with point 
process model to provide for both space-time attributes. We tested this approach using data from 
Richmond, Virginia and found that in some cases the temporal features improved Performance, but this 
was not always the case. Clearly to use these features effectively, we need a filter that identifies 
incidents that have low variance in certain temporal features. These incidents then become the best 
candidates to use temporal features in prediction. 

The last paper also provides information on our implementation of the prediction methodology. In to 
order to complete this research we had to build a more flexible interface into the algorithms underlying 
the methodology. The papers shows some of the results from this work since they could serve as the 
foundation for implementing the approach in crime analysis software. 
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Theoretical Foundations for a New Point Process Transition Density 
Model for Space-Time Event Prediction 

Hua Liu Donald E. Brown 
Lucent Technologies, Inc. 
One Main Street 
Cambridge, MA 02142 
hualiu@lucent.com brown@virginia.edu 

Department of Systems Engineering 
University of Virginia 
Charlottesville, VA 22903 

Abstrucr: A new point process transition density model is proposed based on the theory 
of point patterns for predicting the likelihood of occurrence of spatial-temporal random 
events. The model provides a framework for discovering and incorporating event 
initiation preferences in terms of clusters of feature values. Components of the proposed 
model are specified taking into account additional behavioral assumptions such as the 
“journey to event” and “lingering period to resume act.” Various feature selection 
techniques are presented in conjunction with the proposed model. Extending knowledge 
discovery into feature space allows for extrapolation beyond spatial or temporal 
continuity and is proved to be a major advantage of our model over traditional 
approaches. We examine the proposed model in the context of predicting criminal events 
in space and time. 

Key Words: Space-Time Marked Shock Processes, Forecasting, Criminal Event 
Prediction, Probability Density Estimation 

1. Introduction 

Consider the following scenario from the domain of law enforcement: Within a 

monitoring region marked by jurisdictional boundaries, a crime analyst is interested in 

mapping out the areas that are more likely to be struck by a certain type of crime within a 

given time range. Data available to the analyst are the past crime incidents of the same 

type, times of occurrence, locations of occurrence, and characteristics (or features) of the 

crime scene. The problem facing the crime analyst is how to extrapolate these data into 

the likelihoods of future incidents occurring at specified locations in space and time. 

Ideally the analyst wants an image map showing the intensities of future crime activities 

at each location within the their jurisdictional boundaries. This solution and its display 

0 
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are obviously useful in cnme prevention since they would allow the police to allocate the 

police resources to the areas of higher risk. 
a 

This problem is not confined to law enforcement. For example, in military 

actions, one may want to predict the future location of an enemy target (e.g., a tank) 

moving over terrain based on its past locations (observed over predefined sampling 

intervals) and terrain features. In an urban development, developers are interested in 

predicting consumer behavior toward a new shopping mall using data from past behavior 

toward existing malls. They would also use data regarding surrounding neighborhoods 

and the physical infrastructure in the area (e.g., major highways, schools, and bridges). 

The common characteristic in these problems is prediction based on spatio- 

temporal event data. A number of researchers have investigated forecasting over space 

and time. A significant advance in this area was the development of space-time 

autoregressive moving average (STARMA) models [lo]. These models offer a way of 

generalizing the ARMA (autoregressive moving average) models in time series analysis 

to combined spatial-temporal domains. They are characterized by linear dependence 

lagged in both space and time. Several authors [l], [3], [26], [32] discussed issues of 

a 

stationarity and invertibility arising from model parameter estimation based on the 

assumption that spatial dependence is instantaneous. The STARMA model was further 

generalized by Pfeifer and Deutsch [33 ] to include temporal differences (STARIMA 

models) and by Stoffer [41], [42] to include a nonstationary mean function of 

independent variables (STARMAX models). 

While the STARMA models may effectively and simultaneously capture the 

continuity in space and time, they fail to take into account event-related feature e 
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information which may very well reveal and represent the underlying pattern of event 

occurrences. This is especially important when event initiation is marked by human 

intelligence. We argue that for “intelligent” human initiated events, their future locations 

are correlated to a larger extent with site selection preferences (a represented by event- 

related features) than with spatial proximity. By extending analysis into feature space, we . 

are able to identify highly likely future event locations that are not necessarily in the 

vicinity of past event locations. This is the very aspect where the STARMA models fail. 

The central theme of this paper is to develop a new space-time prediction model 

that incorporates all three kinds of event data (ie., times, locations, and features). In 

particular, the available data are viewed as a realization of a marked space-time shock 

point process, and the space-time prediction problem is formulated as the estimation of 

the transition density of the stochastic process (Section 2). A model of the transition 

density is constructed and the underlying technical assumptions are justified by the 

behavioral theories of events’ initiation (Section 3). Next, we discuss the criteria for 

selecting key features (Section 4) and the procedures for estimating individual 

components of the proposed model (Section 5). Finally, we summarize the advantages of 

our model and point out some future research directions (Section 6) .  Throughout this 

paper, we use criminal event prediction as a motivating example. 

2. Problem Statement 

The space-time prediction problem we described in last section can be stated as 

follows: Having observed a series of events of the same type (e.g., incidents of a type of 

crime) in a monitoring region, namely, the locations and times of the events, and the 

values of an array of features that are known or believed to be relevant to the occurrence 0 
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of the events, we would like to predict the likelihood that another event occurs at certain 

location within the region and within a certain time range. Mathematically, we consider 

the locations ( s i )  and times (ti) of the events, ( s l y ~ l ) y  (s2,t2), ..., (snYtn),  

f, = 0 < t, e f, < ... < t,,, and their corresponding features (or marks), 

xsn , fn  , as a realization of a marked space-time shockpointprocess of the form 

{x* , f  E x : s E D,? E T )  (2.1) 

where t , s , and x , , ~  are all random (bold indicates vectors). The location of an event is 

confined within a study region or geographic space D c 'iR2 and is designated by a pair 

of coordinates, say longitude and latitude, i.e., s = (sIys2). T c %+ is the collection of 

the times when the events could occur, and is termed the study horizon. x c sp is the 

collection of the possible values of the p-dimensional feature vectors (i.e., the marks), 

and is termedfeature space. Let F ( p )  = bYf2,..., f,) wheref,, I = 1,2,.. . ,p, is the Ith 

e 
feature or the Ith dimension of the feature space. Then each xs, , is an instantiation of 

I .  I 

thesep features. We abbreviatc x ~ , , ~ ,  as x i  from now on. But the reader should bear in 

mind that xi ' s  are feature observations of different events and taken together these events 

comprise one realization of thc point process. Let T, = {t, ,t, ,..., t , } ,  D, = {sl ,s, ,..., s, ] 

and x, = { x 1 , x Z , . . . , ~ , )  whew si  =(sil,si2) and xi = [ x i ,  ... x i p ] ' .  Given that we 

observed q ,  On, and x,, up t o  instant t,,, we are interested in estimating, for s ,+~  E D 

and fn+l  > f,, , the transition density 
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, -*, 

where s,+, and tn+, are the realizations of the location and the time of the next event, 

respectively, v(ds,,+,) is the Lebesgue measure of ds,+] and N ( d ~ , , + ~ , d t , + ~ )  counts the 

incidents that happen within ds,+l and dt,,+l. 

By (2.2), the transition density is formally defined as the probability that a single 

event occurs within a specified infinitesimal region (e.g., d ~ , + ~ )  and within a specified 

infinitesimal time interval (e.g., ). “Single” or uniquely identifiable events are 

ensured in theory if we postulate a simple point process. In practice, however, one should 

pay attention to what constitutes single events. The notion has no bearing on either event 

scale or event duration. For example, the Oklahoma City Bombing involving massive 

explosions and multiple casualties and. bombing of an abortion clinic with a single 

explosion and no serious injuries are both considered single bombing incidents since they 

can both be uniquely identified by the unique location and time of occurrence. a 
Prior to model development, we require additional description of the set of 

“features”. First, we divide the set of features into the set of (inherently) temporal 

features and that of all others. By “(inherently) temporal features”, we mean features that 

“label” time intervals so that categorization of time instants can be obtained. Some 

examples are “seasons of the year”, “holiday / non-holiday”, “segments of a day (e.g., 

morning / afternoon / night)”. A temporal feature partitions the time axis ‘3’ into 

consecutive time intervals, and the time instants in a single interval are all identified with 

the same temporal category. The purpose of segmenting the time axis with a temporal 

feature is to provide us uith suitable and meaningful time intervals in which we may 

postulate stationary models for the temporal aspect of the process. Depending on which 

temporal category belongs to, we may only use (local) data in the same category in 
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these models. Modeling temporal heterogeneity (i.e., heterogeneity in the series 

f , , z 2 , . . . , f n )  is not the focus of this work. However, theoretically we can incorporate 

temporal heterogeneity by using M A - l i k e  models for temporal transition estimation. 

This will add a common factor for every location in the study region at any given time 

with the transition density model we are proposing (discussed further in the next section). 

Since the synthesized effect of different temporal categories on event occurrence is 

contained in the complete series t l , t 2 ,  ..., f n  , we may exclude all temporal features fiom 

the feature set F',) = by f,, ..., f,). Additionally we assume temporal features are 

independent of geographic locations. Formally, we make the following assumption: 

Assumption 2.1: F(,)  = {~,f2,...,fP} is the set of features that depend on (but not 

necessarily only on) geographic locations; i.e., the feature space x c '93, does not 

contain temporal features. 
a 

Secondly, although many features (e.g., proximity to major highways) can be 

considered static within the study horizon if we do not consider randomness involved in 

taking the measurements, we nevertheless model the fealure vector in its entirety as 

random to take into account features of probabilistic nature (e.g., occupancy of the 

victimized household, race of the offender). For static features, we regard them as 

random variables taking on certain values with probability one. Static features are 

usually directly derived from relations with static geographic surroundings or 

establishments. 
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3. Model Development 

We describe a model that captures the mechanism governing event occurrences 

over the study horizon and the study region. Model development consists of a two-step 

decomposition of the transition density y, (s,+~ , tn+] ID, , T, , x ,  ). In this Section, we 

combine both intuitive and formal descriptions of our model. 

The first step of the decomposition is to separate the spatial and temporal 

transitions. We postulate that the occurrences of events over time and space are separable 

in the sense that 

w n ( s n + ,  , t n + l ~ ~ n , ~ n , ~ , ) =  VAI)(Sn+lIDn,Xn,T.,t.+l ) . ~ ; ~ ) ( t n + I I q )  (3.1) 

where ~ ~ ~ ) ( ~ n + l j ~ , , ~ , , T n , t , + l )  will be called spatiaZ transition density and yA2) (?,,+] IT, ) 

temporal transition density. Equation (3.1) would be a standard Bayesian decomposition 

if the second term on the right-hand side was yA2)(tn+l ID, , x ,  , T, ). D, and x,, were left 

out under two assumptions: Assumption 2.1 specified in last section and Assumption 3.1 

as follows. 

Assumption 3.1 : Temporal evolution (transition) of the point process (2.1) does not 

depend on spatial (locational) evolution (transition). 

In other words, we assume that spatial dependence arises from the integration of causal 

factors over time, but not vice versa. In the crime analysis scenario, for example, we do 

not regard the past crime intensity at a site as a direct factor to influence how soon 

criminals are going to strike again. However, this past behavior does tell us about the 

preferences of site selectors and we directly model these preferences in the second step of 

the decomposition below. 
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We now proceed with this second step of the decomposition: modeling the spatial 

transition density ~ ~ I ) ( S , + ~  ID,, x ,  ,T, ,tn+,). To develop this model, we first introduce 
e 

some behavioral theory that accounts for the intelligent site selection by event initiators, 

and then give the relationship between features of geographic locations and site selection 

behavior. Intuitively speaking, our modeling philosophy is to use past site selection 

behavior to inform where events are likely to occur again. 

For human-ini tiated events over a geographic region, one primary behavioral 

assumption is that event initiators (e.g., oflenders in crime scenario) choose the site of an 

event based upon a set of preferences over the values of the attributes Cfeattrres) at 

alternative sites. This is well documented for the crime analysis scenario as it appears 

frequently in criminology literature [SI, [30], [31], [35], [38]. Preferences are measured in 

feature space ( x ), and a set of preferences (pertaining to a group of event initiators) is 

defined when a subset of features (corresponding to the set of spatial attributes actually 

considered by the group of event initiators) and a partial ordering of available values for 

these features are specified. For a specific group of event initiators, if we knew their set 

of preferences (i.e., the subset of features and the partial order for each feature), we 

would examine all locations in geographic space for their feature values and score them 

accordingly. However, without this knowledge of site selection preferences, we must 

“discover” it from the data, or specifically, from the point pattern in feature space. We 

make two assumptions here: ( 1 )  If niultiple groups of event initiators are present, Mie 

assume that the)) mcrke site selection decisions based on comnon set of features. This 

assumption is inevitable if we want to deal with multiple groups simultaneously. (2)  The 

set F‘” of features that 14.e choose initially coinodes with that of the event initiators (the 

a 

e 
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“true” feature set). By making this assumption, we postpone part of the knowledge 

discovery task (feature selection) until the next section. To establish the relationships 

between site selection preferences and the point pattern in feature space, we essentially 

rely on this “stationarity” assumption: Preferences remain stable (stationan. in a 

probabilistic sense) over the study region and study horizon for  each group of event 

initiators. Given the data of repeated site selection decisions by a group, the set of 

preferences of this specific group must manifest itself as a small-variation distribution of 

values in feature space. This small-variation distribution can be described as a clique in 

point process theory (or less formally as a cluster). If multiple groups with distinct 

preferences are present over the study region, we expect to see a clustering (point) pattern 

with multiple cliques in feature space (See Figure 3.1). 

The second behavioral assumption for intelligent site selection is concerned with 

the spatial interaction or dependence between selected sites over the study region. Given 

that two geographic locations have the same set of feature values, it is often reasonable to 

postulate that event initiators are in favor of the geographically closer location IO start 

the next event. For example, the “journey to crime” theory in criminology states that the 

distance to the place of the crime is important [2], [ 5 ] ,  [9], [22] and many types of crimes 

have their own defined “radii” [36], [37]. In view of this assumption, a model of spatial 

interaction should give decreasing weight to past events with increasing distance to the 

location of interest. Another behavioral assumption that may hold true for certain 

scenarios (e.g., serial crimes of certain type) is that event initiators tend not to ~ t i i l  long 

before they act agcrrn. A model incorporating this assumption should weigh the impacts 

0 
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of past events on future events according to their “ages”. The more recently an event 

occurred, the higher weight it gets. 
e 

Figure 3.1 illustrates event occurrences in different spaces. Although the 

distribution of events onitime axis as well as that in geographic space could very much 

SI 

Figure 3.1. Three views of event occurrences. 

lack any systematic pattern, stable and distinct clustering patterns should be observed in 

feature space. Each clique in feature space corresponds to a set of preferences. It is often 

the case that locations in close geographic proximit have similar feature values. Then 

neighbors in geographic space are neighbors in feature space (e.g., s, ands,). However, 

proximity in feature space does not necessarily translate into proximity in the geographic 

space (e.g., s z  and s 5 ) .  It is quite possible that two locations that are far apart have the 

same feature values and thus it is only reasonable to assign an equal score to both 

locations if we extrapolate event occurrence based solely upon site selection preferences. 0 
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The merit of integrating feature space information into space-time event prediction is that 

potential event areas (e.g., areas not previously struck as frequently by crimes but at high 

risk nevertheless) can be picked out. 

We are ready to formally describe our model for spatial transition density. 

Suppose that the set x ,  of feature vectors is partitioned into C disjoint subsets 

{xi’) : j = 1y2y...yC} corresponding to the cliques in feature space &e., sets of 

preferences). Correspondingly, the set D, ( T, ) of locations (times) of past events is also 

partitioned into C disjoint subsets , : j = 1,2 ,... C )  ( {T,,’) : j = 1,2,..., C}). Let xn+] be 

the estimated feature values at location s,+] and instant t,+]. Conditional on x,+,, the 

transition density (Y~~)(S,+~~D,,~~,T~,~,+~) in (3.1) is assumed to take the form 

(3.2) 

where (~~~~~(x,,,, Ix, ) is termed thefirst order spatial transition density* and reflects event 

intensity (i.e., first order effects) at x , + ~  in feature space. ( Y ~ ~ ~ ) ( S , + ~  lDA’),T~’)yin+l), 

j = 1,2, ..., Cy are termed second order sputial transition densities, which reflect 

interaction (i.e., second order effects) of new event location s,+] with past event locations 

in each DAj), respectively. Pr{x,+, E x: , ’ ) ) ,  j = 1,2,...,C, are spatial interaction 

probabilities or the probabilities that x n + ]  and each xi’) form a clique in the feature 

space. a is a normalizing constant. 

’ This is probability mass function in the case of discrete feature space. We shall use the term “density” in 
both continuous and discrete cases. 
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Model (3.2) incorporates all elements of site selection behavior and puts them into 

a formal framework - spatial point process theory. A spatial point pattern can be 

regarded as the result of first order effects coupled with second order effects. We model 

first order effects as the event initiators’ site selection preferences or alternative sites’ 

potential to attract hture events (feature space analysis) rather than the average number 

of events already accumulated at alternative sites (geographic space analysis). This notion 

I 

of site selection preferences is more fitting for prediction given that the same sets of 

preferences will cany on to tn+] over the study region (“stationarity” assumption). 
, 

Technically, the assumptions concerning site selection preferences can be considered 

equivalent to the following assumption: 

Assumption 3.2: The spatial point process in (true) feature space is Markovian over a 

small range. 

Roughly speaking, this assumption ensures that in feature space, there are no second 

order effects (i.e., dependence or interaction) between cliques, and since range (or clique 

radius) is small, only first order effects are important within each clique. In 

correspondence with the behavioral assumptions concerning spatial dependence, the 

second order effects are modeled in geographic space. Notice that it is only appropriate 

to examine spatial dependence for events in the same feature-space clique (i.e., events 

initiated by the same group of people). However, due to the uncertainty associated with 

assigning a new event to a specific clique (or claiming that a specific group is responsible 

for a new event), we weigh second order effects pertaining to individual cliques by the 

probabilities that they quantify the uncertainty (i.e., spatial interaction probabilities). 

Technically, we estimate the weighted average of the second order effects of C‘ thinned a 
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point processes in geographic space, aiming to maintain continuity in parallel with the 

ordering of inter-event geographic distances and/or that of inter-event temporal distances. 

A realization of each thinned point process is the set DAj) of events corresponding to 

those that form the clique x A ~ )  in feature space. 

Finally, we need to point out that the spatial transition density model (3.2) needs 

“prior” adjustment when the predicted feature values ( x ~ + ~  ’s) for all locations within the 

study region (D)  do not form a uniform distribution. Let K, (x,+]) denote the probability 6 

density function of x ~ + ~  over all predicted feature values for locations s , + ~  E D .  Non- 

uniformity of K, (x ,+~)  indicates certain feature values are more typical than others in the 

study region. Individual locations with typical feature values, if preferred by event 

initiators, should be at lower risk compared with those with,rare feature values simply 

because event initiators have more choices over the region but they may engage 
a 

themselves at only one location at any instant*. To put all locations on an equal footing, 

we adjust (3.2) as follows. 

where p is a normalizing constant. When K , ( X , , + ~ )  is uniform, (3.3) reduces to (3.2). 

K, , (X, ,+~)  can be easily estimated in the case that all features are static over the study 

horizon. We use (3.2) when we do not have knowledge of K, ( x ~ + ~ ) .  We term K, (x ,+~)  

the geogruphic-space feature density. 

e 
* Technically. we have assumed that no two events happen at the same location or at the same time. 
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.._, 

In order to implement the spatial-temporal transition density model given by (3.1), 

(3.2) and (3.3), two areas of work need to be done. They are selection of the keyfeatures 

to be used in the model and estimation of individual model components. We address 

these two areas in the next two sections, respectively. 

a 

4. Feature Selection 

For real applications, we frequently come across a fairly large initial feature set F ( p ) .  

Large amounts of data are good for us in the sense that we have a better chance of 

covering the set of spatial features that actually prompt the selection of past event 

locations, or the true feature set. However, it is also natural to conclude that not all 

features in the initial set carry equal weights towards event initiation. In fact, we want to 

find the sniallest feature subset (of the initial feature set F"') that is necessary and 

sufficient to account for  the underlying spatial pattern of event occurrences. A small or 

parsimonious feature subset is important for building an empirical model. It has been 

long understood that an empirical model constructed with a larger number of features 

0 

may fit the training data set quite well but it seldom generalizes nearly as well on new 

data sets. We term the selected feature subset the key feature set and denote it as F") ,  

where q is number of key features contained in F ( 4 )  and 1 I q I p . The feature subspace 

defined by F ( 9 )  is termed the key feature space. 

A feature selection problem can generally be specified by a triplet ( E  c, s), where 

F is the initial feature set, c a criterion function defined for subsets of F, and s is a subset 

search or selection procedure. Our emphasis in this paper is on feature selection criteria. 

In particular, we discuss briefly the unique characteristic of the feature sclection problem 

expressed are those of the author(s) and do not necessarily reflect the official
position or policies of the U.S. Department of Justice.

This document is a research report submitted to the U.S. Department of Justice.
This report has not been published by the Department. Opinions or points of view



in the intelligent event initiation scenario and then summarize two categories of feature 

selection criteria applicable to the problem. In theory, a number of exact or inexact 

feature selection procedures may be used with these criteria to identify the key feature 

a 

set. I 

Feature selection problems have been discussed mainly within the contexts of two 

research areas: pattern recognition and regression model’building. In either area, there is 

a target concept (as defined by a class variable in pattern recognition and a response 

variable in regression) “outside” of the features. A natural “external” feature selection 

criterion would be how well the outside target is described by the chosen feature subset. 

Unlike these areas, there is not an “outside” target concept in the intelligent event 

initiation scenario. All information regarding event initiation preferences is contained in 

the feature data. In other words, the feature data are “unsuper~ised”. In this case, we need 

to resort to “internal” criteria, which describe the desired (or intrinsic) data structure (or 

point pattern) in the lower-dimensional feature space believed to be the true feature 

space. The intrinsic data structure is usually problem-specific and only partially 

0 

observable in the initial feature space. 

Based upon our analysis in the last section, a distinct clustering pattern consisting 

of small and well-separated cliques should be observed in the true feature space. 

Consequently, it is required that, as the first and primary criterion, the events form a 

distinct clustering pattern or a cohesive point pattern in the key feature space. All the 

initial features were chosen with the belief that they are all somewhat relevant to event 

occurrence. Therefore, as a second criterion, if any systematic pattern is manifest in the 

initial feature space, it should be roughly preserved in the key feature space. We say e 
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“roughly” due to two facts. First, the initial pattern or data structure cannot be completely 

preserved in any feature subspace for real problems. Second, we may in fact only wish to 

roughly preserve the initial pattern since some initial features are unimportant to the 

event initiators. We give the technical details in the subsections below. 

4.1. Measures of CohCsiveness of a Point Pattern 

A point pattern or data (distributional) structure is intuitively said to exhibit cohesiveness 

if it consists of distinct clusters (or cliques), i.e., clusters that are tight individually and 

well separated between one another. Cohesiveness can be gauged in many ways. One 

class of measures assumes that the data are already “optimally” partitioned into ,the’, “best 

number” of clusters using some clustering algorithm. The measures in this class are 

essentially functions of the cluster means and the cluster covariances. We may construct a 

measure of this class based on the Mahalanobis D 2 .  Let C be the number of clusters in 

6 

a 
the partition. The Mahalanobis D 2  for a pair of clusters is the squared distance between 

the means of the two clusters normalized by the pooled covariance matrices. 

D: =(P;-P;)‘(’; + x / ) - ’ ( ~ i - ~ j )  ( 4 4  

where p and E denote the mean vector and covariance matrix of the events in an 

individual cluster. The one-dimensional painvise Mahalanobis D 2  is known to 

statisticians as the Fisher ratio. The averaged Mahalanobis D2 score is given by 

where i ~ ,  and nj  are a priori probabilities of clusters i and j .  We may normally let 

n-, = 1 1 ,  / ? I ,  where ni is the number of events in cluster i, when no further a priori 
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information is available. Apparently, we can expect large inter-cluster separation and 

small intra-cluster spread when mad2 is maximal. We may transform mud2 into a 

measure ranging between 0 and 1 as follows. 

a 

1 
1 + mud2 

I ,  = (4.3) 

The transformed measure I ,  is to be minimized. Friedman and Rubin [17] constructed 

several simpler criteria in the same class. Instead of looking at the clusters in pairs, they 

used a “pooled within-groups scatter matrix” and a “between-groups scatter matrix” 

constructed from all clusters. One practical problem for this class of the measures is that 

we have need the “optimal” partition with the “best number” of clusters to actually 

evaluate these measures. What is meant by “optimal” is obviously dependent upon the 

clustering algorithm used. Besides, it is no trivial problem just to determine the “best 

number” of clusters, or equivalently whether an event is an “outlier”, unless this can be a 
specified by u priori knowledge. 

Another class of measures of cohesiveness does not require any partitioning in 

advance. These measures are functions of inter-event distances (or similarities). No 

matter what functional forms are adopted, these measures always account for a basic 

characteristic of cohesive structures: It is nearly always the case that the distance between 

a pair of events is either very small or very large (Le., the two events are either very 

similar or very dissimilar); rarely are two events separated by average inter-event 

distance. Dash et al. [ l l ]  used an entropy-based measure. For two events i andj ,  and 

similarity s,/, the entropy measure is defined as 

e.. 0 = -s,, logz sk - (1 - sii) log, (I - s j i )  . (4.4) 
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This is a bell-shaped curve that assumes its maximum value of 1 .O for s, = 0.5, and the e 
minimum value of 0.0 for s,, = 0.0 and s, = 1 .O. The entropy-based measure of 

cohesiveness for a data set of n events was given as 

I 

which attains its minimum value when the data structure (or point pattern) is most 

cohesive. We prefer the normalized form 

The rationale of the entropy-based measure is as follows. For a pair of events, consider 

the binary random variable that has two opposite outcomes: The two events belong to the 

same cluster or they do not. When two events are more similar, they are more likely to be 

in the same cluster. Informally, let us assume that the similarity of the two events is equal 

to the probability that the two events are in one cluster. From information theory, when 

the outcome of the binary variable is most uncertain (i.e., both outcomes have equal 

probabilities of occurrence), the entropy (as defined by (4.4)) is the largest. If for most 

pairs of events, we cannot conclude with much certainty whether they belong to the same 

cluster or not, (4.6) is maximized. Therefore, a minimal value of the entropy-based 

measure corresponds to a point pattern that exhibits cohesiveness. 

a 

We submit that any other bell-shaped functions may be used in place of (4.4) to 

effectively account for the aforementioned characteristic of cohesive patterns. Renyi’s 

entropies [6], [34] and the Gini index of diversity are among a number of useful choices. 

We used a measure based on the Gini index in the following due to its simple form. For a 

pair of events i and j, the Gini index is defined as 
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Like e,] , g,! attains its maximum of 1.0 at sv = 0.5 and its minimum of 0.0 at sy = 0.0 

and s,) = 1.0. For a data set of n events, the averaged Gini index (4.8) is a suitable 

measure of cohesiveness. Again, smaller I ,  corresponds to higher level of cohesiveness. 

4 2cn-’cn ,=1 ] = I + ]  . ‘g,  
I ,  = 

n(n - 1) 

To illustrate these ideas, we consider a simple example. Figure 4.1 shows two of a 

series of 1-dimensional 4-event point patterns within a fixed range, where b is the 

distance between the two events at either end and c is the distance between the two events 

1 

in the middle. For 4.2(a), we observe two clusters with b measuring within-cluster scatter 

and c between-cluster scatter. As the ratio b/c increases, b and c switch roles and we 

observe a three-cluster pattern like 4.2(b), with the two events in the middle falling into a 
one cluster. 

b c b m  

b c b 

Figure 4.1. I -D 4-event point patterns within a fixed range. 

Transforming inter-event distance dg into similarity sv using 

1 
(4.9) 

where 7 is the mean of all inter-event distances, we have 
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(4.10) 4+6z 8+20z+12z2 4+14z+12z2 2+3z2  + + 
(5 + 62)’ (5 +9z)’ (1 +3z)’ ’ Ig = 7 +  

(5 + 3z ) -  

where z denotes b/c. This is plotted in Figure 4.2. 

. /,/-.------. 

0.9: / 

0.7 

t 

0.6 0 2 6 8 10 blc 

Figure 4.2. Gini index as a measure of cohesiveness. 

Not surprisingly, the minimal Ig occurs when b l c  = 0 ,  which corresponds to the 

most cohesive two-cluster pattern (with each cluster having two events) within the fixed 

range. Ig increases dramatically when b/c increases and the four events become more 

evenly spaced within the range. It reaches its maximum at around 1.1 17 or b = c . Then it 

decreases gradually as the events group into three clusters. But even when the most 

cohesive three-cluster pattern is observed (i.e., when b/c --+ a), le never drops lower 

than its value when b l c  = 0 .  This appeals to our intuition: Spanning the same range, 

two-cluster patterns appear more cohesive than three-cluster ones. 

Notice that none of the three aforementioned measures are intended for 

addressing a single-cluster structure. They are calculated only i f  there is enough variation 

on every dimension of the data set for feature evaluation (relative to the full range of that 0 
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dimension over the entire region of interest). Operationally, we check each dimension of 

the data set and exclude the features that do not exhibit enough variation. Domain 

knowledge needs to be exercised to determine whether these features are the most 

predictive ones or the most irrelevant ones to the problem at hand. Technically, zero- 

variation features need to be singled out anyway to avoid singularity when fitting density 

estimation models. 

4,2. Measures of Disagreement between Point Patterns 

Another criterion for dimensionality reduction of unsupervised data stems from the 

observation that the intrinsic data structure or point pattern should be partially observable 

in the initial feature space due to the fact that all initial features are believed to be 

somewhat predictive. The idea is illustrated in Figure 4.3. Suppose that we initially have 

. .  . 
f i  

Figure 4.3. A 2-D 9-event point pattern and its 1-D projections. 

expressed are those of the author(s) and do not necessarily reflect the official
position or policies of the U.S. Department of Justice.

This document is a research report submitted to the U.S. Department of Justice.
This report has not been published by the Department. Opinions or points of view



a 9-event point pattern in two-dimensional space. Most people observe two clusters in the 

two-dimensional space. The events, when projected onto the f, -axis, all lump together, 
a 

whereas the two-cluster pattern can still be clearly identified if projected onto f2-axis. 

We say that feature f2 is more important than feature f, since the onginaI pattern is 

preserved on the f, -axis. Clearly, to compare different projections, we need a measure of 

disagreement to quantify how much difference exists between the initial point pattern and 

a lower-dimensional projection. 

The measures of disagreement between point patterns fall under two classes. The 

first class, again, assumes that the data set have been partitioned in the best way. The task 

then is to quantify the disagreement between the partition obtained with all initial features 

included and that obtained with selected features. Birkenhead [7] gave several measures 

in this class. We adapt the simplest one of these for our use here. Suppose that the 

partition in a feature subspace consists of C clusters, m, ,m2,.. . ,mc , discovered by 

a 

applying some clustering algorithm. The same clustering algorithm reports C' clusters, 

R, ,!222,...,C22c' in the initial feature space. For a pair of instances i andj, define a score 

b, = 0 

b.. !I = 0 

b, = 1  otherwise. 

if i, j E mu and i, j E 

if i , j  E mu and i, j E 0,. for any u and v, 

for some u and v, 

(4.1 1)  

The disagreement between the point patterns in initial feature space and the feature 

subspace is then set as 

(4.12) 
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Notice that 0 I I ,  I1 with I ,  = 0 indicates the least disagreement or identical point 

patterns. I ,  = 1 when the two point patterns are {{1,2,...,n]] (all instances in one cluster) 

and ~{1},(2],...,(n}] (every instance in its own cluster). It can be shown that this 

disagreement measure actually satisfies the properties of a metric or distance measure [7]. 

Besides I ,  , we have found the following normalized divergence measure also 

works reasonably well. Define the conditional probabilities 

4 

(4.13) 

for u =1,2, ..., C and v=1,2 ,... ,C'. Let P, and P, denote the partitions (m, ,m2, . : . ,mC] 

and ($2, ,Q, ,..., hc},  respectively. Define the divergence score 

This score attains its minimum, 0, when the two partitions P, and P, are identical. It is 

easily shown that 

The normalized divergence measure is given as 

(4.16) 

Again, this class of disagreement measures depends upon the clustering algorithm used 

for partitioning. 

The second class of measures for comparing point patterns comes from the area of 

multidimensional scaling (see [20], [21], [40] for a review of early work). This approach 

does not require that the data are already partitioned. Multidimensional scaling deals with a 
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the following problem: For a set of observed distances (or similarities) between every 

pair of n events, find a representation of the data in fewer dimensions such that the inter- 
a 

event distances (or similarities) as they are measured in the subspace “nearly match” the 

initial similarities (or distances). Multidimensional scaling is on!y done with ordinal or 

nonmetric data, i.e., the rank orders of the n(n-1)/2 of inter-event distances’. This is 

because a particular rank ordering corresponds to a set of point patterns whose 

geometrical difference or disagreement is quite small. For example, for a two 

dimensional pattern containing as few as 20 instances, a movement of only one instance 

on the order of 0.1% of the largest inter-instance distance in the pattern will result in a 

modification of the rank ordering about 90% of the time [19]. Suppose that the distance 

between instances i and j is ranked kth (1 5 k 5 n(,i - 1)/2 ) in the initial feature space 

compared with all other distances, and it receives a rank rk (1 5 rk 5 n(n - 1)/2) when 

being projected onto a feature subspace. Denote the rank ordered list of the initial point 

pattern as the vector v, = (42, ..., n(n -1)/2) and that of its lower-dimensional projection 

as the vector v = (r, , r2 ,..., T-,,(, ,-~),~). Using only these ranks, we construct a measure of the 

extent to which the projected point pattern falls short of a perfect match of the initial one. 

This normalized inter-angular measure is defined as 

(4.17) 

where angle(v,,,v) is the angle between v, and v. When v, = v ,  In = 0 and the 

projection is identical to the initial pattern as far as I ,  can tell. When 

e 
* We assume that the orientation from one event to another is not  important. 
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v =’ (n(n - 1)/2, n(n - 1)/2 - l,...,l), then I ,  = 1 and the projection disagrees with the initial 

pattern the most. 

5. Density Estimation 
! 

In Section 3, we described a new framework for spatial-temporal prediction that extends 

knowledge discovery into feature space. We describe the estimation of individual model 

components in this section. Only key features picked out as the result of the feature 

selection step are used for model building. However, in this section we keep the same 

notation where no confusion arises in order to keep the amount of notation to minimum. 

5.1. The “best” partition of the data 

The estimators we consider can effectively accommodate local variations in the data. 

However, these estimators require that we estimate the appropriate number of distinct 

local (covariance) structures from the data first, unless we know them a priori (e.g., 

crime analysts may tell us how many groups of offenders are likely to be represented by 

the data). We use hierarchical clustering with a selection rule to achieve this. 

0: Group ti instances into n clusters R, ,R, ,...,On, each of which contains one instance. 
1:  Find the nearest pair of distinct clusters, say R, and R, , merge R, and R,, and call 
the result RU , delete R, and decrement the number of clusters by one. 
2: If the number of clusters equals one, then stop; otherwise, return to 1. 

Figure 5.1. Basic operations of hierarchical clustering algorithms. 

The basic operations of hierarchical clustering algorithms are similar, and are 

outlined in Figure 5.1 [14]. The difference between algorithms lies in the definition of a 
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cluster-to-cluster distance (i.e., what we mean by “nearest”). For a data set of n instances, 

a hierarchical clustering algorithm generates a succession of n partitions Po, 4 ,...,P,-, , 

where Po,< ,..., Pn-, contain n, n-I, ..., 1 clusters, respectively. What we hope to find is 

the one partition that best represents the “natural structure” of the data set. In other 

words, we need a rule to select a partition from the complete hierarchy of n partitions, or 

better yet, stop merging clusters further as soon as we find the best partition. The 

“stopping rule” suggested by Mojena [29] is among the most satisfactory proposals. Let 

a j  ( j  = O,I,..,n -1 ) denote the minimum distance between two clusters in partition Pi. 

a 

a j  is called thefusion ZeveZ at the stage with n - j clusters. is obtained by merging 

the two clusters in q. distanced by a j .  In detail the stopping rule is to select the first 

partition Pi in the hierarchy satisfying 
0 

where aj+, is the fusion level if further fusion were to take place, Z and s, are, 

respectively, the mean and unbiased standard deviation of ao,a,, ..., a,,-, and k is a 

constant. The partition selected according to (5.1) consists of n - j clusters. The constant 

k is usually set to 1.25, as recommended by Milligan and Cooper [28]. The rationale of 

Mojena’s proposal is to look for significant “jump” in the a series. 

Strictly speaking, Mojena’s rule is not a stopping rule; but rather, it is seZection 

rule. This is because Z and s, in (5.1) are calculated based on the complete series 

a,,,aI, ...,cy,_, which correspond to the complete hierarchy of n partitions. When n is 
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large, we find that using the partial a series to calculate the mean and standard deviation 

yields similar result. The revised Mojena’s rule is then given as 
a 

where Zj and sa j  are the mean and unbiased standard deviation of a,,a, ,...,aI. This is 

a bona fide stopping rule. 

5.2. First order spatial transition density ~y~ll)(x~+~ Ixn)  

We consider two classes of models for estimating the first order spatial transition density. 

Both classes play an important role in modeling data that are believed to come from 

multiple underlying categories and sources. The first class is called finite mixture 

distributions (see [ 151, [ 2 7 ] ,  [43]). These distributions are superpositions of (usually 

simpler) component distributions. A finite mixture probability density function (or mass 

function in the case of discrete sample space) has the form 
e 

(5.3) 

where x j  > O ,  j= l ,Z~ . . . ,C ,  rl +r2 +...+rc = 1 ,  n=[x l  ... xC]’, @=[€I I ... e,]. 

f j ( x ; O j )  is the jth component density with the set O j  of parameters and rl ,xZ,...,zC are 

mixing weights. 0 is the collection of all componentparameters. To fit a finite mixture 

distribution one needs to find the number C of component densities first. In our case this 

is done by applying hierarchical clustering to the data {xi : i = 1,2,.., n) . 

More often than not, it is required that all component densities belong to the same 

parametric family. Suppose the vector x represents p numeric variables. The most widely 

used continuous finite mixture models are Gaussian mixture models (GMM), where the C e 
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component densities are postulated as multivariate Gaussian distributions. In particular, 

thejth component density is 
m 

-(1/2)(x-ll,~Z;'(x-p, e 1, j = 1,2y...,c (5.4) 
1 

fj (x;e j ) =  f j ( T  P;, E;>= 
( 2 K ) P '  Iz: I"? 

where p j  is the mean vector and I:, the covariance matrix. The parameter set 

8 = {p ,E j ) .  Latent class models (LCM) (see [ 131) are an important class of discrete 

finite mixture models. Suppose the vector x represents p categorical variables, and Zth 

variable [XI/ (Zth dimension of x) takes on g, distinct values O, l , . .  .,g, - 1. Assume that 

the variables are independent and the outcomes of each variable are also independent. 

, 

Then x has a finite mixture distribution (5.3) with thejth component density being 

the probabilities of [XI, = k . cy=:Si,k = 1 . The indicator variable l~Ixl ,=kl  equals 1 when 

[XI/ = k and 0 otherwise. The parameter set 8,. = {6jl  , . . . ,6 ,p) .  

To estimate the parameters 0 = [e, ... e,] , we first calculate these quantities 

in accordance with the clusters, and then update them iteratively until the log likelihood 

L = En I=] logf(xi;n,O) converges to a stationary point. This numeric maximum 

likelihood method is known as EM algorithm [12]. We give the detail of the procedure in 

Figure 5.1. For the situation where mixed variable types are present, it is trivial to 

combine GMM and LCM provided that the numeric dimensions are independent of the 

categorical ones. 
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The second class of techniques that we use to estimate the first order spatial 

transition density belongs to the family of nonparametric models and is known asfiltered 
a 

kernal estimators (FKE) [25] .  They take the general form 

where 
t 

j = 1,27...,C are C p x p nonsingular local' bandwidth matrices and pi (x), 

j = 1,2,...7C which satisfy 
I 

O I p , ( x ) < l  and z f _ l p j ( x ) = l  (5  -7) 

for all x, are filtering functions. Local bandwidth matrices contain posterior parmeter 

settings that enfdrce localized smoothness for locally varied regions of the support of the 
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,... 

2: If  L'"'"' -d") < E for some small E > 0 ,  stop; otherwise, m = 172 + 1 and return to 1. 

Figure 5.1. EM algorithm for fitting GMM and LCM. 
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, I  

true density. The filtering functions can be interpreted as prior weights over variations of 

local smoothness. As a special case (when H j  = diag[hj, ... h,], j = 1y27...yC)y the 
a 

jlteredproduct kernel estimators or FPK estimators are given as 

where h,i, ( j = 1,2y...7C ,I = lY2,..,p) is a local bandwidth for the lth dimension [x], of 

thejth locally vaned region. The underlying assumption for FPK estimators is that all 

dimensions are mutually independent. In principle FKE have advantages over both 

standard kernel estimators (SKE) as well as variable kernel estimators (VKE). SKE use 

a global bandwidth matrix and are not suitable for handling multi-modal' and locally 

vaned data. VKE require a distinct bandwidth matrix for each data point and it is not 

always clear how to best incorporate a priori information about local smoothness into 

, 

e 
these estimators 

We only consider FPK estimators in this paper. Suppose the data (xi : i = lY2,.., n} 

have been partitioned into C clusters R, ,Rz,...,Rc. Let n j  be the number of instances in 

cluster Rj . We construct a FPK estimator using the procedure illustrated in Figure 5.2. 

Note that the procedure does not necessarily give an optimal estimator (under any 

assumption on the true density) in terms of asymptotic mean integated squared error or 

AMISE. However, it should lead to a good representation of the true density because: 

0 Using either a finite mixture model or the indicator function to construct the filtering 

functions should capture a reasonable amount of local variations among the 

smoothing we need to impose on the locally varied regions. 
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0 Consider the data in the cluster S Z j  alone. If we were to fit a Gaussian product kernel 

estimator to those data, (5.11) would give the optimal bandwidths in the M I S E  

sense assuming the true density is multivariate Gaussian (see [39]). These estimators 

should capture sufficient local smoothness for the FPK estimators. 

0 

, 
~~ 

1: Derive the filtering functions in either of the following two ways: 

0 Fit a finite mixture model to the data g(x) = cc n,g j  (x). Set 
J=I 

Let the indicator 1 {xEn, 1 be 1 if {x E Rj) and 0 otherwise. Set 

We term this special FPK estimator weightedproduct kernel estimator or 

WPK estimator 

2. Estimate local bandwidths using local data in each cluster. To wit, 

where Sjl  is the standard deviation of the Ith variable [XI, using data 

Bxi], : x i  €nj,i=1,2 ,..., nj.  I 

Figure 5.2. Procedure for constructing a FPK estimator. 

5.3. Spatial interaction probabilities Pr{x,+, E xy) ), j = 1 , 2  ,..., c 

I 

For either finite mixture or filtered kernel estimators, models of distinct local structures 

are readily available. Notice that each local structure corresponds to a clique in a a 
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clustering point pattern. Spatial interaction probabilities are estimated from these “local” 

models. 

When a finite mixture distribution is used to model first order transition density 

vA”)(x,,+, Ix, ) , spatial interaction probabilities are given as 

Pr{x,+, E xAi’)= ~ j ~ j ( x n + l ; e j ) / ~ ( x ” + l ; ~ , ~ ) ,  j = 1,2, . . . ,~ .  (5.12) 

When a filtered kernel estimator is used to model first order transition density 

w~I1)(xnll Ixn) , spatial interaction probabilities are given as 

where j j (xn+]) ,  j = l,Z, ..., C,  are specified as follows, in correspondence to the generic 

form (5.6). 

(5.14) 

For filtered product kernel estimators (5 .8) ,  

5.4. Second order spatial transition densities lD:j),T,,(j),rn+l ), j = 1,2,..., C 

Two models developed by Fiksel [16] can be used to estimate second order spatial 

transition densities I + Y ~ ” ) ( S ~ + ,  ~ D ~ , i ) , T ~ j ) , t n + I ) ,  j = 1,2, ..., C . Although other models are 

likely, Fiksel’s models are among the simplest that incorporate the “journey to event” 

assumption we gave in Section 3. The instant-model also takes into account the 

assumption concerning ‘‘lingerin3 period to resume act.” e 
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, I  

Remember from Section 3 that D, and T,, the sets of locations and times of n 

past events respectively, are partitioned into C disjoint subsets (Dy) : j = 1,2, ..., C} and 

(T'j) : j = 1,2, ..., C ]  in correspondence to the clustering pattern {xri) : j = 1,2, ..., C ]  in 

feature space. We need to establish C second order spatial transition density models, one 

based on each pair of data subsets I):') and T,,(j'. To simplify the notation we will drop 

the subset labelj  from individual data units. This should not be confising as long as the 

reader bears in mind that the presentation below is applicable to any pair of data subsets 

Dy) and T',',j). 

I /  

' 

Let the number of data units in D:j) and Ti') be m and the locationq,and times of 

past events contained in these subsets be s , , s ,  ,..., s, and t l , t 2  ,... , t , ,  where 

t ,  < t ,  < ... < t ,  and s, ,s, ,..., s, are ordered by r ,  , t ,  ,..., t ,  . According to Fiksel's order- 

model, we postulate the following function for the second-order spatial transition density 

e 

(5.16) 

where t > t ,  is a future event's time of occurrence and 11s -sill the distance from that 

future event's location s to an older event location si ( i  = 1,2, ..., m). Notice that if 

longitudes and latitudes are used to designate locations, they need to be transformed into 

UTM (Universal Transverse Mercator) coordinates before a distance measure can be 

calculated. This is called order-model since only the temporal order of the events is 

considered. The likelihood of observing the previous m events is then given as 
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8 1  

where di+lk = IIsi+, - s, 11. The maximum likelihood estimate ;i of the parameter R is 

obtained by maximizing (5.17). Differentiating (5.1 7)  with respect to 2 and equating the 

result to zero yields 

(5.20) 

(5.18) 

which can be solved numerically by fix-point iteration (see [4]). 

A second model in [16] is known as instant-model and it utilizes the actual values 

of the series t ,  ,t, ,..., t ,  . Based on this model, we postulate that the second order spatial 

transition density takes on the form 

8 

Similarly, the likelihood hnction is given as 

where = t i+,  -1, . This is to be maximized to yield the maximum likelihood 

estimates and r ^ .  

5.5. Temporal transition density ty:" (t,,, IT, ) 

Under appropriate assumptions, both stochastic process models (e.g., Poisson) and time 

series techniques (e.g., first-order autoregressive, ARIMA) may be applied. Notice that 

the temporal transition density only depends on past event times and thus is constant for 

all locations within the study region (Assumption 3.2). When only the relative 0 
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I..". 

magnitudes of spatiotemporal transition densities are important, temporal transition 

element may be omitted. 
e 

5.6. Geographic-space feature density K, (x,+, ) 

In general, estimation of this density needs sampling over the study region. For example, 

we may obtain feature values for the locations on a regular grid over the study region. We 

may then fit a density function to these sample values using either finite mixture or 

filtered kernel method. 

6. Conclusion 

In this paper, the problem of predicting the likelihood of space-time random events has 

been considered. Unlike the traditional approach that overlooks event-related features, the 

current work has aimed at bringing feature-space analysis into space-time prediction. 

This added dimension ensures that event initiation patterns frequently hidden in feature 

data can be discovered and used to inform future event occurrences. The new approach is 

able to identify potential event locations far away from the past event locations. To 

demonstrate this claim, we have implemented a version of the model and tested it on a 

simulated data set of criminal incidents in the CharlottesviIle-Albemarle region of central 

Virginia. The result was reported in [24]. A real-world application and evaluation of our 

model in the regional crime analysis domain will be reported in another paper. 

e 

This work represents a first step in the introduction of feature space analysis into 

space-time event prediction. There is ample room for future research. The following 

several directions warrant further investigation. 
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0 Hybrid measures for dimensionality reduction of unsupervised data hold promise for 

generating the suitable number of features to use. By hybrid measures, we mean those 
a 

measures generated by combining a measure of cohesiveness (of a point pattern) and 

a measure of disagreement (between two point patterns). Preliminary exploration of 

this area can be examined in [23]. Further work is desirable to find a sound weighting 

scheme or alternative hybrid forms for this category of measures. 

In the current application of filtered kernel density estimators, local bandwidths are 0 

obtained by applying Gaussian bandwidth selection rule on local data (see (5.11)). 

Although this is a good heuristic, it would be nice if an optimal bandwidth rule could 

be found for this class of density estimators based on resampling criteria (e.g., 

bootstrap, cross validation). 

The second-order spatial transition densities in our model are estimated by Fiksel’s 

spatial transition models. Alternative models (e.g., from Regional Economics 

literature) may be used provided that the parameter estimation problem can be easily 

solved. 

A previously developed case matching methodology [18] may be integrated into the 

prediction model. In particular, the current model puts equal weight on every feature. 

The case matching methodology may be used to find an appropriate weight for each 

feature in order to bring partitions in feature space closer to reality (i.e., the actual 

preferences of event initiators). 

The current model copes with temporal heterogeneity in an indirect fashion. First, the 

gross effect of all temporal features may be incorporated collectively into a temporal 

transition density model. Second, assuming that the spatial feature values are 

0 

0 
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dynamically changing with time and the choice of an event location is dependent on 

the current feature values of that location, temporal heterogeneity does play a role in 

event site selection decisions through a non-static study region. We would like to test 

our model in real-world settings where static or non-static study regions are involved 

and see how well it  performs. 
t 

0 Again, unless we relax the assumption that temporal evolution is independent of 

geographic locations (Assumption 3. l),  the temporal transition density component 

remains constant for every location in the study region. It changes over time and 

subsequently changes the magnitude of the spatial-temporal transition density for 

every location by a common factor. To explicitly consider temporal heterogeneity, 

temporal features need to be identified, selected, and analyzed. Although it may not 

look so obvious, it seems that the feature space analysis that we presented for spatial 

features will follow through for temporal features. Further efforts in this direction 

should be rewarding. 
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Abstract: Criminal incidents are human-initiated events that may be assumed to be 
dictated by certain preferences over space and time. In this paper we first establish the 
correspondence between a set of preferences and a cluster of values of certain key event 
features and then present a point process transition density model for space-time event 
prediction that hinges upon preference discovery or the point pattern in the key feature 
space. The added dimension of feature space analysis enables our model to outperform 
the traditional “hot spots” approach, as demonstrated statistically by the real-world 
application involving breaking and entering incidents in Richmond, Virginia. Being able 
to accommodate all measurable features, identify the key features and quanti@ their 
relationship with criminal incident occurrence over space and time, our model provides 
the basis for developing and testing theories of criminal activity. 

1. Introduction 

Law enforcement agencies have increasingly acquired database management systems 

(DBMS) and geographic information systems (GIS) to support their crime analytic 

capabilities. These agencies use such systems to monitor current crime activity and 

develop collaborative strdegies with local communities for combating crime. However, 

in general these strategies tend to be reactive rather than proactive. A more proactive 
I 

approach requires early warning of trouble with sufficient lead-time to formulate a plan. 

Early warning, in turn, necessitates the development of predictive models in space and 

time that can inform law enforcement of pending “hot spots” and areas with declining 

crime activity. 

Criminal incidents, like many other human-initiated events, are frequently linked 

with the preferences that event initiators (ie., offenders) have for specific sites and a 
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i 
specific time slots in tenhs of certain spatial and temporal attributes (or features’) of 

- 

those sites and time slots,, respectively. The spatial aspect of this phenomenon has been 

well documented in criminology literature and supported by various spatial theories of 

criminal activity. One of the most complete discussions of spatial patterning in crime is 

contained in Brantingham and Brantingham (1984). From the standpoint of this work we 

are particularly interested in what they call the microspatial component of crime or the 

choice of crime locations by individual criminals. A number of researchers have 

documented and formulated descriptions for spatial decision making by criminals (see, 

for example, Brantingham and Brantingham, 1975; Molumby, 1976; Newman, 1972; 

Repetto, 1974; Scarr, 1973). Some have looked specifically at the question of distance 

from home to crime location (for example, Amir, 1971; Baldwin and Bottoms, 1976; 

Capone and Nichols, 1976; LeBeau, 1987; Rossmo, 1993; Rossmo, 1994). Taken 

together th is impressive body of research shows that “target selection is a spatial 
0 

information processing phenomenon.” (Brantingham and Brantingham 1984, p.344). 

Essentially offenders have certain preferences in their site selection. These preferences 

can be defined in relation to a selected set of spatial attributes or features. 
i 
I 
I 

It is rather safe to Say that offenders’ preferences constitute an important piece of 

information to inform fU6,u-e site selection decisions by criminals. It is desirable that 

predictive models for crime incidents take advantage of this preference information, more 

specifically, the pattern revealed by the feature data of the observed incidents. Predictive 

models that fail to look into the feature data to address incident initiation preferences are 

inevitably not as intuitive and, quite possibly, do not predict as well as what we expect. 

’ We use the term features as a synonym for terms such as predictor or independent variables, which are 
commonly used in regression and linear modeling. 
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Such models are essentially variants of traditional pin-mapping techniques. They ignore 

feature data and basically map out the locations of past incidents and their vicinities as 
e 

predicted criminal “hot spots,” based on certain assumptions on spatial dependence. In 

this paper, we describe a space-time prediction model that we recently developed based 

on the theory of point patterns and multivariate density estimation. The model itself and 

the formal analysis that we propose for building the model establish an approach for 

discovering and representing criminal preferences as the functional relationships between 

demographic, economic, social, victim, and spatial variables and numerous measures of 

criminal activity. Our intent is not only to give a new statistical model that integrates 

feature space analysis into space-time prediction, but also to provide the critical 

infrastructure for building and testing the theories of criminal activity that compete with 

one another for use in the major law enforcement strategies. Therefore our model must be 

understandable to users, accurate, and testable with a variety of theoretical constructs 

from current research on crime. By understandable to users, we mean that the model 

cannot be a “black box.” The user needs to understand how the inputs to the model are 

a 

used to formulate a prediction. This is particularly important for testing theories of 

criminal activity. Our model must allow a variety of different features and our approach 
I 

must include a way to test the effectiveness of these features. For example, our model 

should conveniently allow us to test a theory that says that proximity to bars or nightclubs 

contributes to crime of certain type in an area. 

The remainder of this paper is organized as follows: In the next section, we take a 

closer look at the distributions of criminal incidents in temporal, geographic, and feature 

spaces, respectively, and explain intuitively how we may capture the incident initiation a 
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preferences in feature space. In Section 3 we give a formal account of the criminal 

incident prediction problem and describe the assumptions and technical details of our 

model for solving the problem. In Section 4 we present a real-world application of our 

I a 

proposed model and the evaluation and comparison of our model against the traditional 

“hot spot” approach. Section 5 summarizes our modeling approach and the contributions 

of this approach to law enforcement and to solving space-time prediction problems in 

other domains. 

2. Preference Discovery in Feature Space 

Criminal incident prediction is usually carried out within a specified geographic region 

(e.g., a jurisdiction) and within a specified time range (e.g., a month) for a specified 

crime type. In practice, these boundary conditions are defined by law enforcement 

agencies. We term the geographic region of interest a study region or geographic space 

D c iR2,  and the time range a study horizon T c 93’. To formally capture the criminal 

incident prediction problem, we regard the locations and times of the incidents of a 

a 

specific type as vectors (sj,f,), ( s 2 , t 2 ) ,  ... , to = 0 < t ,  < I ,  < ... , where s, E D is the two 

dimensional location of iqcident i and ti is the time of this incident. The incidents also 

have corresponding feadres (or marks) x,, x2 ,  ... that describe the attributes of the 

incidents (e.g. distance to a road, type of residential community, etc.). Suppose that 

initially we have p measurable features f,, f2, ..., fp that are known or believed to be 

relevant to the occurrence of the incidents. Then the hyperspace formed by these p 

features is a @-dimensional) feature space x c ! ) I p .  A subset of the initial feature set 

defines a feature subspace. Mathematically, taken together the locations, times, and a 

expressed are those of the author(s) and do not necessarily reflect the official
position or policies of the U.S. Department of Justice.

This document is a research report submitted to the U.S. Department of Justice.
This report has not been published by the Department. Opinions or points of view



features of all incidents Lonstitute a realization of a marked space-time shock point 

process. 
I 

We have mentioned in the introductory section that for many human-initiated 

events, one primary behavioral assumption is that event initiators (e.g., oflenders in crime 

scenario) choose the site and time of an event based upon a set of preferences over the 

values of the attributes features) at alternative sites and times. While the events of a 

marked space-time point process may be presented in three hyperspaces ( t h e  axis, 

geographic space and feature space), event initiation preferences are measured in feature 

space. Suppose that the initial set of features contains those attributes that the event 

initiators actually factor into their decision making. A set of preferences pertaining to a 

group of event initiators is defined when the subset of features actually considered by the 

group of event initiators and a partial ordering of available values for these features are 

specified. For a specific group of event initiators, if we knew their set of preferences (Le., 
a 

the subset of features and the partial order for the feature subset), we would examine all 

location-time combinations for their feature values and score them accordingly. However, 

without its knowledge, we must “discover” it fiom the data, more specifically, from the 

point pattern in feature space. 
I 

I 

Preference discovery in feature space prompts two questions. First, which features 

are actually considered by a group of event initiators? We are never going to know with 

certainty the answer to this question. Our objective instead is to find the smallest feature 

subset (of the initial feature set) that is necessary and sufficient to account for the 

underlying pattern of event occurrences. This is known as feature selection. We term the 

selected feature subset the key feature set and the feature subspace defined by the key a 
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feature set the key >a&e space. By definition, the underlying pattern of event 

occurrences should manifhst itself most clearly in the key feature space. This leads to the 
a 

second question: What kind of point pattern do we expect to see in the key feature space? 
I 

The answer to this second question provides the basis for specifying a partial order for 

the key feature set. We give the formal models for the partial order in the next section. 
t 

To answer the second question, we make the foilowing two assumptions: (1) If 

multiple groups of event initiators are present, they make site selection decisions based 

on common set of features, and ( 2 )  preferences remain stable (stationary in probabilistic 

sense) over the study region and study horizon for each group of event initiators. The 

first assumption is inevitable if we want to deal with multiple groups simultaneously. 

With the second “stationarity” assumption, we may conclude that given the data of 

repeated event initiation decisions by a group, the set of preferences of this specific group a 
(or the underlying pattern of event occurrences) must manifest itself as a small-variation 

distribution of values in the key feature space. This small-variation distribution can be 

described as a clique in point process theory (or less formally as a cluster). If multiple 

groups with distinct preferences are present over the study region and study horizon, we 

expect to see a clustering (point) pattern with multiple cliques in the key feature space. 
i 

We illustrate the above observation in Figure 1, where we have assumed that 

initial feature set is the key feature set. Although the distribution of events on time axis as 

well as that in geographic space could very much lack any systematic pattern, stable and 

distinct clustering patterns should be observed in feature space. Each clique in feature 

space corresponds to a set of preferences. It is often the case that locations in close 

geographic proximity have similar feature values. Then neighbors in geographic space a 
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are neighbors in feature space (e.g., s, ands,). However, proximity in feature space does 

not necessarily translate $to proximity in the geographic space (e.g., s2 and sj). It is 

quite possible that two lochtions that are far apart have the same feature values and thus it 

i a 
I 

is only reasonable to assign an equal score to both locations if we extrapolate event 

occurrence based solely upon site selection preferences. The merit of integrating feature 

space information into space-time event prediction is that potential event areas (e.g., 

areas not previously struck as frequently by crimes but at high risk nevertheless) can be 

picked out. The same rationale applies to the analysis of event occurrences in time. 

Figure 1. Event occurrences in three hyperspaces. 

We have intentionally kept the subject of the discussion in this section as 

"(human-initiated) events" since preference discovery is not confined to the crime 

incident prediction scenario. We will give some other examples in the final section. a 
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3. TheModel 

Criminal incidents (and other human-initiated events in a more general context) are 

random events in space and time. The quantity of general interest is naturally the 

likelihood that a future incident occurs within a study region and a study horizon, given 

the times, locations, and feature values of past incidents of the same type bounded by the 

same region and time range. Formally, this likelihood is the transition density of the 

I 
i 

I 

marked space-time shock point process we mentioned earlier. Let T,, = ( r l , r 2 ,  ..., r , , } ,  , 

D, = (s1,s2 ,..., s,} and xn = (xI,x2 ,..., x,] where s, = ( s , ~ , s ~ ~ )  and xi = [ x j l  ... x i p ] ‘ .  

The transition density is defined as follows. 

a where s,,] and rn+] are the location and the time of the next incident, respectively, 

~ ( d s , , ~ )  is the Lebesgue measure of d ~ , + ~  and N(d~, ,+~,dr , , ,~)  counts the incidents that 

happen within the infinitesimal region d ~ , , , ~  and the infinitesimal time interval dr,,, . It is 

the probability that a single future incident occurs within specified infinitesimal region 

and specified infinitesimal time interval. In theory, “single” or uniquely identifiable 

events are ensured if we postulate a simple point process. 

I 

i 
The discussion in this section focuses on two topics surrounding the transition 

density defined in (1). First, we give a model of the transition density. Such a model can 

be used to dynamically generate density estimates over space and time for the occurrence 

of future incidents. Second, we present criteria for evaluating and identifying which of 

the features have the most predictive or explanatory power. These two topics are closely 

related. From the empirical model building point of view, the second topic, known as 
a 

I 
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feature selection, is a preliminary step to the first topic and it determines which features 

or predictor variables should go into the transition’ density model. The model from the 
0 

first topic, once built wi certain features and tested on new data sets, could in turn be 4 
used to assess these features’ contribution to prediction quality and justify their choice. In 

other words, the model fdrmally specifies a partial order over the values of the selected 
1 

I 

features. It is important to’ note that for both topics we develop our models or techniques 

all in accordance with the notion of preference discovery that we illustrated in the last 

section. 

3.1. The transition density model 

The development of our model involves a multi-step componentization of the transition 

density (1) and the estimation of individual model components. This subsection describes 

the componentization and the next section deals with density estimation models for the a 
components. We give both intuitive and formal descriptions of the process in the sequel. 

The first step in the process is to separate spatial and temporal transitions. We 

postulate that the occurrences of criminal incidents over time and space are separable .in 

the sense that 

where y f )  (s,+, ID,, , x, , T, 4 t,+, ) will be called spatial transition density and vi’’ (t,,+] IT, ) 

temporal transition densib. Equation ( 2 )  would be a standard Bayesian decomposition if 

the second term on the riLht-hand side were vL2) (?n+l ID,, x, , T, ). D, and x, were left 

out under two assumptions: (1) The initial set of features does not contain any 

(inherently) temporal features, and ( 2 )  temporal evolution (transition) of the marked e 

expressed are those of the author(s) and do not necessarily reflect the official
position or policies of the U.S. Department of Justice.

This document is a research report submitted to the U.S. Department of Justice.
This report has not been published by the Department. Opinions or points of view



space-time shock point process does not depend on spatial (locational) evolution 

(transition). By “(inherently) temporal features,” we mean features that “label” time 

intervals so that categorization of time instants can be obtained. Some examples are 

“seasons of the year,” “weekdays / weekends,” “segments of a day (e.g., morning / 

afternoon / night).” Tec cally, we may exclude all temporal features since the 

synthesized effect of different temporal categories on incident occurrence is contained in 

* 
I 
I 

I 

i- 
the time series t l , t 2 ,  ..., t,, and the heterogeneity in the series may be incorporated by 

using AFUMA-like models to estimate temporal transition. The practical reason for not 

explicitly considering temporal features is that spatial component is more evident in the 

crime scenario and the need for validating spatial theories of criminal activity is more 

imminent. With temporal features excluded, x,, becomes the collection of feature data 

that contains “site selection” preferences. Ignoring the temporal heterogeneity pertaining 

to a temporal feature also requires that this heterogeneity does not make site selection 

preferences unstable within the study horizon (i.e., does not render the “stationarity” 

a 

assumption in Section 2 invalid). Otherwise, we must reduce study horizon to what is 

defined by a single category of the temporal feature (which may be considered a 

stationary time interval) and trim down the available data accordingly in order for our 

subsequent analysis to be tenable. The second assumption mentioned essentially says that 

spatial dependence arises /from the integration of causal factors over time, but not vice 

versa. In the crime analyeis scenario, this means that we do not regard the past crime 
I 

intensity at a site as a direct factor to influence how soon criminals are going to strike 
1 

again. However, this past behavior does tell us about the preferences of site selectors and 
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we directly model these preferences in the subsequent steps of the componentization 

below. 
a 

The second step of the componentization is concerned with how to model the 

spatial transition d e n s i ~  ’ y:) (s,,+~ ID,, , x, , T, , tn+l ) . Intuitively speaking, our modeling 

philosophy is to use pas$ site selection behavior to inform where events are likely to 

occur again. For the moment, assume that the features we select initially are the key 

I 

I 

I 

features. By doing so, we postpone the feature selection task until next subsection. In the , 

last section we have concluded that we expect to see a distinctive clustering pattern in the 

key feature space with each clique or cluster defines a set of event initiation preferences. 

Suppose that the set x ,  of feature vectors is partitioned into C disjoint subsets 

{xr) : j = 1,2, ..., C , each of which is mapped onto a clique in key feature space. 

Corresponding to {x,“ : j = 1,2,...,C , the set D, (7‘’) of locations (times) of past events e 
is also partitioned into C disjoint subsets {Df) : j = 1,2,...,C ((Ti’) : j = 1,2, ..., C ] ) .  Let 

x,+, be the estimated feature vector at location s,+~ and instant Conditional on x , + ~ ,  

the spatial transition density is assumed to take the form 

I where y f ’ ) ( ~ ” + ~  Ix, ) is termed thefirst order spatial transition density2 and reflects event 

intensity (i.e., first order; effects) at x,+] in feature space. ~ ~ 2 ) ( s , + 1 ~ ~ ~ ) , T ~ ~ ) , t , + l  , 

j = 1,2,...,C, are termed second order spatial transition densities, which reflect 

i 
I 

) 

* This is a probability mass function in the case of a discrete feature space. We shall use the term “density” 
in both continuous and discrete cases. 
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interaction (i.e., second order effects) of new event location s ” + ~  with past event locations 

in each OF), respectively. Pr{xntl E x?) , j = 1y2y...yCy are spatial interaction 

probabilities or the probabilities that xn+] and each x:) form a clique in the feature 

space. a is a normalizing constant. 

0 

‘ I  
I 

‘ I  
Model (3) incorp0I;ate.s all elements of site selection behavior and puts them into a 

formal framework - spatial point process theory. A spatial point pattern can be regarded 

as the result of first order effects coupled with second order effects. We model first order 

I 

I 

effects as the event initiators’ site selection preferences or alternative sites’ potential to 

attract future events (feature space analysis) rather than the average number of events 

already accumulated at alternative sites (geographic space analysis). This notion of site 

selection preferences is more fitting for prediction given that the same sets of preferences 

will carry on to tn+l over the study region (see the “stationarity” assumption in the last a 
section). We do not consider second order effects in feature space because we assume 

that the spatial point process in the key feature space is Markovian over a small range. 

Roughly speaking, this assumption ensures that in the key feature space, there are no 

second order effects dependence or interaction) between cliques, and since the range 

(or clique radius) is small, only first order effects are important within each clique. This 

assumption formally chargcterizes the point pattern in the key feature space (or the site 

selection behavior revealeb by feature space analysis). 

The second order bffects are modeled in geographic space. Notice that it is only 

appropriate to examine spatial dependence for events in the same feature-space clique 

(ie., events initiated by the same group of people). However, due to the uncertainty 

associated with assigning a new event to a specific clique (or claiming that a specific 

! 

a 
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group is responsible for a new event), we weigh second order effects pertaining to 

individual cliques by the probabilities that quantify this uncertainty (Le., spatial 

interaction probabilities). Technically, we estimate the weighted average of the second 

order effects of C thinnkd point processes in geographic space. A realization of each 

thinned point process is q e  set Df) of events corresponding to those that form the clique 

I 

I 

xf) in feature space. I 

The spatial transition density model (3) needs “prior” adjustment when the 

predicted feature values ( x,+~ ’s) for all locations within the study region (0) do not form 

a uniform distribution. Let K ,  (x,+~) denote the probability density function of xn+, over 

all predicted feature values for locations s,+~ E D . Non-uniformity of K, (x,+~) indicates 

certain feature values are more typical than others in the study region. Individual 

locations with typical feature values, if preferred by event initiators, should be at lower 

risk compared with those with rare feature values simply because event initiators have 

a 

more choices over the region but they may engage themselves at only one location at any 

instant3. To put all locations on an equal footing, we adjust (3) as follows. 

~ ~ ) ( ~ n + l ( ~ , , ~ n ’ ~ , ’ t , + l ) =  ~ . ( 1 1 ~ , ( ~ n + l ) ) . ~ t ~ ) ( x n + l ( ~ n )  

where P is a normalizing constant. When K , ( x , + ~ )  is uniform, (4) reduces to (3). 

K , ( x , + ~ )  can be easily estimated if all features are static over the study horizon. We use 

(3) when we do not have knowledge of K , ( X , + ~ ) .  We term K , ( x , + , )  the geographic- 

i 

I 

space feature density. 
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3.2. Density estimation 

The equations (2), (3) and (4) collectively define our transition density model - a new 

framework for spatial-temporal event prediction that takes advantage of preference 

discovery in feature space. For our purpose, the estimation of the individual components 

involves the following four tasks: 

, 

I 

I 

(1) In the key feature space, partition the data into the “best” number (0 of clusters. 

(2) Estimate the first order spatial transition density and the spatial interaction 

I 

1 

probabilities in the key feature space. 

(3) Estimate the second order spatial transition densities in the geographic space. 

(4) Estimate the geographic-space feature density where appropriate and feasible. 

The astute reader may ask why we do not need to estimate temporal transition 

density. The answer is that generally we do need to for space-time prediction but in our 

case we do not due to the two assumptions we made when we separated spatial and 

temporal transitions (see Equation (2)). With those assumptions, the temporal transition 

density ~/:~)(t~+~lT~) is invariant for all locations within the study region at any given 

0 

instant c,,+~. To present the predictions made by our model as a series of density maps 

over the study region indexed on time instants, only the relative magnitudes of the 

density estimates are relevant at any given instant. In fact the reader will see later that 

using relative magnitudes is essential to our approach to model evaluation and 

comparison. Therefore, we can safely ignore any components in the transition density 

model that do not depend on locations. These also include the normalizing constants in 
1 

1 
Equations (3) and (4), respectively. 

0 
Technically, we have assumed that no two events happen at the same location or at the same time. 
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Intuitively, the number C of the clusters in the key feature space corresponds to 

the number of distinct sets of preferences. Unless we have this information a priori (e.g., 

crime analysts may tell us how many groups of offenders are likely to be represented by 

the data), we have to “discover” it fiom the data. Technically, the purpose of partitioning 

feature data is to effecfivdly accommodate local covariance structures in the component 

0 

density models that we Gill see momentarily. To accomplish this first task, we use a 

hierarchical clustering algorithm to generate partitions and employ a “stopping” rule to 

determine which partition is the “best.” For a data set of n instances, a hierarchical 

clustering algorithm generates a succession of n partitions Po, 4 ,..., Pn-l , where 

I , 

Po 4 ,..., Pn-, contain n, n-1, . . . , 1 clusters, respectively. It merges two’ “closest” clusters 

in p/ to generate P,+l at each step. What we mean by “closest” obviously depends on the 

definition of cluster-to-cluster distance. This definition distinguishes different flavors of 

the algorithm. We will not delve into the details and the interested reader is referred to 

Everitt (1991) for a quick introduction. The “stopping” rule that we use is either the one 

proposed by Mojena (1977), which is essentially a “selection” rule (in the sense that it 

selects a partition fiom the complete sequence Po 4 )..., Pn-l after they are all generated 

a 

rather than signaling a stop to the algorithm at an appropriate stage, say, Pj ) or a revised 

version of it as stated below. Let a, be the shortest distance between any two clusters in 

the partition P, ( j = O,l,..,’n - 1 ). Then revised rule is to stop merging clusters further and 
I 
I 

select the first partition PJi satisfying 
I 

1 aJ+l + k ’ s , j  ( 5 )  
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where Ej and sa, are the mean and unbiased standard deviation of a, ,a, ,..., a,, and the 

constant k is usually set to 1.25, as recommended by Milligan and Cooper (1 985). When 

n is large, we find that this revised rule yields similar result to Mojena’s original 

proposal. The rationale of ,these rules is to look for significant “jump” in the a series. . 

We consider two dlasses of models for estimating the first order spatial transition 

density. Both classes plai an’important role in modeling data that are believed to come 

from multiple underlying categories and sources. The first class is called finite mixture 

distributions (e.g., Everitt and Hand, 1981; Titterington et al., 1985; McLachlan and 

Basford, 1988). These distributions are superpositions of (usually simpler) component 

distributions. A finite mixture probability density function (or mass function in the case 

I 

of discrete sample space) has the form 

where nj > O ,  j = 1 , 2  ,..., C, z1 +zt2+...+zc =1, n=[z ,  ... z,]’, @=[e,  ... e,]. 

fj(x;e,) is thejth component density with the set O j  of parameters and z, ,z2,...,zc are 

mixing weights. 0 is the collection of all componentparameters. To fit a finite mixture 

distribution one needs to find the number C of component densities first. In our case this 

is done by task (1) - partitioning the feature data (x, : i = 1,2,.., n] . 

Two aspects need to be addressed further in order for us to generate a density 

estimate by (6) .  First, further assumptions need to be made on the hc t iona l  form of the 

component densities f, (?;e,) ( j = 1,2, ..., C). For a continuous feature space (where all 
I 

I 

I 
features are continuous ariables) we use Gaussian mixture models (GMM), where 

fJ (x;e,), j = 1,2, ..., C , &e postulated as multivariate Gaussian. In the discrete case, we 
Y a 
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fit the data with a class of Latent Class Models (LCM) (see Everitt, 1984), where we have 

assumed that the categorical feature variables are independent and the outcomes of each 

variable are also independent. For the situation where mixed variable types are present, it 

is trivial to combine GMM and LCM provided that the numeric dimensions are 

a 

independent of the categorical ones. Second, we need an algorithm to estimate the set of 
I 

parameters 0 = [e, ... Oc] .  We use a numeric maximum likelihood algorithm known 
I 
1 

as Expectation-Maximization (EM) algorithm (see, for example, Dempster, Laird and 

Rubin, 1977). Basically, the algorithm first calculates these parameters with respect to the 

I 

clusters in the feature space partition, and then updates them iteratively until the log 

likelihood L = r= l  logf(xi; n,@) converges to a stationary point. 

The second class of techniques that we use to estimate the first order spatial 

transition density are nonparametric models and was introduced by Marchette et al. 

(1 996). They are collectively calledfifilfered kernel esfimalors (FKE) and take the form 

0 

where K(.) is termed a kernel function, H, , j = 1,2, ..., C , are C p x  p nonsingular local 

bandwidth matrices and pJ (x), j = 1,2,..., C , which satisfy 

for all x, are filtering funcfions. Local bandwidth matrices contain posterior parameter 

settings that enforce localized smoothness for locally varied regions of the support of the 

true density. The filtering lbct ions can be interpreted as prior weights over variations of 

local smoothness. We only consider a special case of (6) for our purpose where we set 

I 

a l 
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Hi = diag[hj, ... h,,], j = 1,2 ,..., C ,  where hi/ ( j  = 1,2 ,..., C , l  = 1,2 ,.., p)  is a local 

bandwidth for the lth dimension [XI, of the j th locally varied region. We call these 

special class of estimators filtered product kernel (FPK) estimators. The underlying 

assumption for FPK estimators is that all dimensions are mutually independent. 

In this paper we asfume that the kernel function is standard multivariate Gaussian. 

To generate a density estimate by (7), we need to specify the filtering functions as well as 

the local bandwidths. Suppose the data ( x ,  :i=l,2,..,n) have been partitioned into C 

I 

I 
I 

, 
I 

clusters R, , R, ,..., R, . Let n, be the number of instances in cluster R , . We derive the 

filtering functions in one of the following two ways: 

Fit a finite mixture model g ( x )  = xc nJgJ (x) to the data. Set 
J=1 

0 Let the indicator 1 be 1 if (x E S2,) and 0 otherwise. Set 

pJ (x) = 1, j = 1,2,---, c (10) 

We term the FPK estimators with the filtering functions defined by (1 0) weightedproduct 

kernel (WPK) estimators. The local bandwidths are estimated by using local data in each 

cluster. To wit, 

where eJ/ is the standard deviation of the lth variable [XI, estimated from 
I 

I 
$x,]/ :x, E RJ,i  =1,2, ..., n . Notice that these bandwidth estimates are optimal in the 

AMISE sense assuming we were to fit Gaussian product kernel estimators to the local 
I 

a I 
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data sets which are in fact samples of multivariate Gaussian distributions (see Scott, 

1992). 
a 

When we use either finite mixture or filtered kernel estimators to model first order 

spatial transition density, models of distinct local structures are readily available. Spatial 

interaction probabilities q e  estimated from these “local” models. When a finite mixture 
I 

distribution is involved, siatial interaction probabilities are given as 

When a filtered kernel est{mator is used, spatial interaction probabilities are given as 

where 

The third task on our list is to model second order spatial transition densities. The 

models we choose for these densities maintain certain continuity in parallel With the 

ordering of inter-event geographic distances and/or that of inter-event temporal distances. 

Such orderings reflect some additional assumptions on site selection behavior. First, 

given that two geographic locations have the same set of feature values, it is often 

reasonable to postulate that event initiators are in favor of the geographically closer 

location to start the next event. This assumption is supported by the “journey to crime” 

theory in criminology. In view of this assumption, a model of spatial interaction should 

give decreasing weight to,past events with increasing distance to the location of interest. 

Another behavioral assumption that may hold true for certain scenarios (e.g., serial 

crimes of certain type) is that event initiators tend not to wait long before they act again. 

I 

I 
I a 
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A model incorporating this assumption should weigh the impacts of past events on fbture 

events according to their “ages”. The more recently an event occurred, the higher weight 
a 

it gets. Two models developed by Fiksel (1984), known as the order model and the 

instant model, both incorporate the “journey to event” assumption, while the instant 

model also take into account the assumption regarding “lingering period to resume act”. 

We give these models belgw. 
I 

Let the number qf data units in cluster j be m. Let D ~ ) = { s l Y s 2 ,  ..., s,} and 

Tn(/)={t l , t2  ,..., t , ]  where: t ,  < t 2  c...<t,,, and sI , s2  ,..., s,,, are ordered by t, ,t2 ,..., t , .  

I 

Adapting Fiksel’s order model to our case, we postulate the following h c t i o n  for the 

second-order spatial transition density for clusterj 

where t > t ,  is a future event’s time of occurrence and 11s -sill the distance fiom that 

future event’s location s to an older event location s ,  (i=1,2, ..., m). This is called an 

order model since only the temporal order of the events is considered. The instant model 

actually utilizes the values of the series t ,  ,t, ,..., t,,, . Based on this model, we postulate that 

the second order spatial transition density for cluster j takes on the form 

For both (1 5) and (1 6) ,  we can numerically solve for the maximum likelihood estimates 

of the parameters (i.e., A in (15), R and r in (16)). The interested reader is referred to 

Fiksel(l984). 
I 

expressed are those of the author(s) and do not necessarily reflect the official
position or policies of the U.S. Department of Justice.

This document is a research report submitted to the U.S. Department of Justice.
This report has not been published by the Department. Opinions or points of view



The fourth and last task on our list is to estimate the geographic-space feature 

density when appropriate and possible. In general, this needs sampling over the study 

region. For example, we may obtain feature values for the locations on a regular grid over 

the study region. We may then fit a density function to these sample values using either 

finite mixture or filtered kernel method. This is the approach we take in the example that 

we give in Section 4. 
, 
I 

I 
3.3. Feature selection 1 

I 

So far we have assumed that our initial feature set coincides with the key feature set. By 

doing so, we have skipped the feature selection step to be described in this subsection. A 

feature selection problem can generally be specified by a triplet (F, c, s), where F is the 

initial feature set, c a criterion function defined for subsets of F, and s is a subset search 

or selection procedure. For the selection procedure, oftentimes we can just compare the 

scores of individual features and rank them accordingly. This is known as feature ranking 

and will be the approach we apply to the example in next section. If we select a subset of 

0 

features based on scores of individual features, the underlying assumption is that these 

features are independent. Our emphasis in this paper is on feature selection criteria. In 

particular, we will see how we can exploit the point pattern in feature space to discover 

which feature or features are most predictive. 

In Section 2, we have said that we should observe a distinct clustering (or 

cohesive) pattern consisting of small and well-separated cliques in the key feature space. 

The question then becomes how to gauge the cohesiveness of a point pattern in the 

feature subspace specifie& by a given set of features. The cohesiveness of this point 

pattern corresponds to the “goodness” of the feature set. The most straightforward 
I a 
! 
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approach is to use some clustering algorithm to partition data units into the “best number” 

of clusters in the feature subspace and then examine inter-cluster separation and intra- 
a 

cluster spread based on the cluster means and the cluster covariances. Friedman and 

Rubin (1967) gave several criteria in this class. An obvious problem With these criteria is 

that they require that we partition the data into the “best number” of clusters in the feature 

subspace defined by the ;feature subset to be evaluated. This partitioning problem is 

frequently not a trivial on$ to solve. 
I 

In this paper we lobk at another class of cohesiveness measures that do not require 

any partitioning in advance. These measures are functions of inter-event distances (or 

similarities). They all account for a basic characteristic of cohesive structures: It is nearly 

always the case that the distance between a pair of events is either very small or very 

large (i.e., the two events are either very similar or very dissimilar); rarely are two events 

separated by average inter-event distance. We define one of such measures in the 

following. Let d,, be the distance between two data points i a n d j  in the feature subspace 

defined by the feature subset to be evaluated. We transform the distance into the 

similarity s,, by letting 

a 

1 s.. = -, 
Y 1+&, 

where a = l/z and 2 is the averaged inter-event distance. Define the Gini index 

between these two events as follows. 

gY = 4 g 1  - S J .  
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Notice that g,  attains its maximum of 1.0 when s, = 0.5 (or d,  = 2 )  and its minimum of 

0.0 when s, 0.0 (or d, >> 1) or sy = 1.0 (or d,  = 0). For a data set of n events, the 

0 

averaged Gini index defined by (1 9) is a suitable cohesiveness measure. 

I ,  = 2c:r:c;=,+, g ,  
n(n - 1) 

Smaller I ,  corresponds to higher level of cohesiveness of the point pattern or a better set 

i 
of features. 

I 

We note several caveats when using Ig for feature selection in practice. First, I, is 
I 

not intended for addressing a single-cluster pattern. It is only evaluated if every 

dimension of the data set for feature selection exhibits enough variation in values relative 

to the full range of that dimension over the entire region of interest. Operationally, we 

check each dimension of the data set and exclude the features that do not exhibit enough a 
variation. Domain knowledge is critical to determine whether these features are among 

the most predictive ones or the most irrelevant ones to the problem at hand. Ideally, in the 

criminal event scenario, we could have very predictive features with correlations with 

event occurrence that are almost deterministic. If we found such a feature (judging from 

an analyst’s experience, for instance), we could directly mark out the locations that have 

feature values within the feature’s observed range as “hot spots.” It is not necessary to 

include such a feature in a multivariate density estimation model because its contribution 

to the density score will dominate the contributions of other selected features anyway4. 

Second, any cohesive pattern (other than a single-cluster structure) as signaled by small I, 
I 

could imply strong correlation between the events showing the pattern and the features I, a l 
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serves to evaluate, but it could also merely reflect the joint distribution of the features 

over the entire study region, or the prior distribution. In other words, the I, score obtained 

for a set of features based on an event feature data set could be severely skewed by the 

prior distribution of these features. To single out the effect that the set of features has on 

the event of interest, the I, score should be adjusted to eliminate the influence of the prior 

feature distribution as long as that distribution is not uniform. 

Suppose that we can sample feature variables at locations on a regular grid, which 

is fine enough to represent all the locations within the study region. As opposed to the 
I 

eventfeature data set we bse to calculate an unadjusted I,, we call the set of the feature 

values at the grid points theprior feature data set. We calculate an I, score for the prior 

feature data set and let the score be I:. Then we may adjust the I, score for an event 

feature data set (or a feature subset to be evaluated) as follows. 

Adjusted Ig = (unadjusted) Ig / I /  
a 

4. Model Evaluation 

In this section, we give a real-world application of our proposed transition density model. 

Based on this application, we compare statistically the results of our model with those 

obtained from the traditional space-time prediction methodology of using “hot-spots”. 

We begin with a description of this traditional approach. 

Recall that the transition density model we described in the last section 

simultaneously considers times, locations, and features of spatial-temporal events. 

Traditional space-time prediction models do not include feature data and criminal 

I 

j 
Technically, as long as the obherved variance of a feature is not zero, the inclusion of the feature in a 4 

density estimation model will not cause singularhy or infrnite density score. 
I 
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preferences over this feature data. The most sophisticated law enforcement agencies 

model criminal incidents as “hot-spots” or clusters in space and time. They then predict 

that future incidents will continue to occur in the observed or discovered clusters. 

a 

A variety of methods are used to perform this clustering. To be fair in this 

comparison, we will use exactly the same techniques for clustering in space and time as 

we use in our model. Hence, the only difference will be that our model also includes 

clustering and preference discovery in feature space. As a result, ow evaluation with the 

comparison models (mo d els without feature data) will tell us if we can gain any 

predictive power from modeling criminal preferences in feature space as well as in 
I 

geographic space. I 

A formal description of the comparison models is as follows. Ignoring the feature 

data, a comparison model predicts the likelihood of the occurrence of a future event 

( ~ , , + ~ , t , , + ~ )  based on the locations and times of past events ( s ~ , ? ~ ) ,  ( s 2 , t 2 ) ,  ... (s,,?“), 
a 

to = 0 < t ,  < tz < ... < t ,  < t n + ] .  The quantity of interest is the density b c t i o n  

assumption that the occurrence of events over time and space are independent, the 

In parallel with our model, we term y~f’(s~,,ID,) the spatial transition density and 

wp) (tn+, IT, ) temporal transition density. However, unlike yf) (s,+] IDn, X ,  , T, , tn+] ) in OW 

model, y~f)(s,+~lD,) only captures the event continuity in geographic space. In other 

words, ~ / ~ ) ( s , + , l D , )  assikns high densities only to the locations in the vicinity of old 

I e 
i 

! 
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event locations. Due to the reasons we stated for our model in the last section, the 

temporal transition density yL2)(tn+,lTn) can be safely ignored from the comparison 

model in our case. 

The space-time events of interest in our application are both commercial and 

residential “breaking & entering” (B&E) incidents that occurred in Richmond, Virginia. 

A total of 579 such incidents happened between July 1, 1997 and August 31, 1997 and 

that is the time range for; our study. These incidents are singled out primarily because 

they constitute a data setlof reasonable size for rolling weekly and biweekly analyses. 

Table 1 summarizes the weekly counts of the B&E incidents in the study horizon. Notice 

that the crime rate rose to a steady level starting the second week of July and did not drop 

I 
I 

I 

until the second to last week of August. Since the reason for the changes in crime rate is 

not clear, we choose not to use the data from the first week of July and the last two weeks 

of August for model building in the sequel. 

a 
The data associated with these incidents come from multiple sources. The 

locations and the times of the criminal incidents were originally stored in a central dBase 

database called Prism, and are made available to us through our project work with the 

Richmond Police. Figure 2 shows the locations of the B&E incidents on the map of 

Richmond. The subregions on the map are block groups, which are the smallest areas for 

which census counts are tallied. We consider three types of features related to B&E 

incidents. The demographic and consumer expenditure features data are converted from 

the 1997 estimates of certain census categories recorded in “CensusCD+maps” (1 998). 

The distances from crime locations to geographic landmarks are generated by the GIS 
I 

component of the ReCAP system, a crime-fighting decision support software being built 
I 
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by h e  researchers at the University of Virginia. The three types of feature variables are 

listed in figures 3, 4, and 5 ,  respectively. We assume that the feature values at any given 

location in the study region remain unchanged within the study horizon. Simply put, this 

means we have a static study region. Given the nature of our initial features and the fact 

that our study horizon spans only two months (i.e., July and August of 1997), this seems 

0 

to be a rather safe assumption. 

July 1 - 6 
July 7 - 13 

July 14 - 20 
July 21 - 27 

July 28 - August 3 
August 4 - 10 

August 11 - 17 
August 18 - 24 
August 25 - 3 1 

50 
74 
71 
72 
68 
69 
72 
54 
49 

Table 1. Weekly counts of Breaking and Entering criminal incidents between July 
1,1997 and August 31,1997 in Richmond, Virginia. 
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Figure 2. Breaking and Entering criminal incidents between July 1,1997 and 
August 31,1997 in Richmond, Virginia. 

i 
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... , 

Population, General 
POP-DST 
HH-DST 
FAM-DST 
MALE-DST 
FEM-DST 
Work Force 
CLS12-DST 
CLS345-DST 
CL S67-DST 
Income 
PCINC-97 
MHINC-97 
AHINC-97 
Householder Age 
AGEH 12-DST 
AGEH34-DST 
AGEH56-DST 
Household Size 
PPH 1-DST 
PPH2-DST 
PPH3-DST 
PPH6-DST 
Housing Structure 
HSTRl-DST 
HSTR2-DST 
HSTR3-DST 
HSTR4-DST 
HSTR6-DST 
HSTR9-DST 
HSTRl 0-DST 

Per square mile @sm) population 
Households psm 
Families psm 
Male population psm 
Female population psm 

Private wage and salary workers psm 
Government workers psm 
Self-employed and unpaid family workers psm 

Per capita annual income 
Median annual household income 
Average annual household income 

Households with householder under 34 years of age psm 
Households with householder between 35 to 54 years of age psm 
'Households with householder above 55 years of age psm 

11 person households psm 
2 person households psm 
13-5 person households psm 
'6 or more person households psm 

,Occupied structures with 1 unit detached psm 
,Occupied structures with 1 unit attached psm 
Occupied structures with 2 units psm 
Occupied structures with 3-9 units psm 
Occupied structures with 1 O+ units psm 
Occupied trailers psm 
Other occupied structures psm 

I 

Housing, Miscellaneous 
HUNT-DST Housing units psm 
HUNT-PC Per capita housing units 
OCCHU-DST Occupied housing units psm 
OCCHU-PC 
VACHU-DST Vacant housing units psm 
MORT 1 -DST 
MORT2-DST 
CONDl-DST Owner occupied condominiums psm 
OWN-DST Owner occupied units psm 
RENT-DST Renter occupied units psm 

Per capita occupied housing units 

Owner occupied housing units with mortgage psm 
Owner occupied housing units without mortgage psm 

Table 2. Demographic features. 
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APPAREL-PC Per capita annual expenditure @cae) on apparel and footwear 
ALC-TOB-PH Phae on alcohol beverages, tobacco and smoking 
ALC-TOB-PC Pcae on alcohol beverages, tobacco and smoking 
EDU-PH Phae on education 
EDU-PC Pcae on education 
ET-PH Phae on entertainment 
ET-PC Pcae on entertainment 
FOOD-PH Phae on food 
FOOD-PC Pcae on food 
MED-PH Phae on drugs, health insurance, medical services and supplies 
MED-PC Pcae on drugs, health insurance, medical services and supplies 
HOUSING-PH Phae on household furnishings, operations, and shelter 
HOUSING-PC Pcae on household furnishings, operations, and shelter 
P-CARE-PH Phae on personal care, personal insurance and pension 
P-CARE-PC Pcae on personal care, personal insurance and pension 
REA-PH Phae on reading 
REA-PC Pcae on reading 
TRANS-PH 
TRANS-PC 

Phae on public transportation, vehicle purchase and maintenance 
Pcae on public transportation, vehicle purchase and maintenance 

Table 3. Consumer expenditure features. 
1 

I 
I 

D-SCHOOL 
D-HIGHWAY 
D-HOSPITAL 
D-CHURCH 
D PARK 

Distance to the nearest school 
Shortest distance to the nearest highway 
Distance to the nearest hospital 
Distance to the nearest church 
Distance to the nearest park 

Table 4. Distance features. 

To select the key feature set, we calculate the I, score for each initial feature (shown in 

tables 2, 3 and 4) with the feature data pertaining to the B&E incidents between July 7, 

1997 and July 20, 1997 (i.e., the event feature data set for feature selection). We then 

adjust the score with the I, score obtained based on the feature data pertaining to 2517 

locations placed evenly over the Richmond map (i.e., the prior feature data set for feature 

selection). This regular grid of 25 17 sample points is also involved in constructing model 

comparison statistics that we will describe momentarily. The results are reported in tables a 
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5 ,  6 and 7. It is noted here that before we computed the Ig scores, we have first examined 

the ratio of the observed range (calculated from the event feature data set) to the full 

range (calculated from the prior feature data set) for each initial feature to see whether 

there are any features that do not exhibit enough variations in the event feature data set. It 

turns out that this ratio is greater than 0.2 for every initial feature in our example. We 

deem this an indicator that there is enough variation in every feature dimension. 

a 

Population, General 
0.7951 09 
0.780887 

HH-DST 0.766205 
POP-DST 0.77807 
MALE-DST 0.77391 

CLS 12-DST 0.7628 12 
CLS67-DST 0.711836 
CLS345-DST 0.75;5043 
Income 
PCMC-97 0.746605 
MHINC-97 0.74147 
AHINC-97 0.700613 
Householder Age 
AGEH12-DST 0.689906 
AGEH56-DST 0.758949 
AGEH34-DST 0.776586 
Household Size 
PPHl-DST 0.698101 
PPH2-DST 0.774 179 
PPH3-DST 0.770058 
PPH6 DST 0.6484 17 

Work Force I 

I 

0.9 71294 
1.017172 
1 .O 19083 
1.022 192 
1.037627 

0.99573 
1.013683 
1.0200 15 

1.093547 
1.100745 
1.16912 

0.979065 
1 .O 17699 
1.047537 

0.999252 
1.019169 
1.019687 
1.0962 16 

IHousinn Structure 

~HSTRl-DST 0.779776 1.037161 
HSTR4-DST 0.603965 1.095686 
'HSTRIO-DST 0.51 1243 1.171066 
HSTR2-DST 0.513737 1.33525 
HSTR3-DST 0.442481 1.543366 
Housing. Miscellaneous 

MORTl-DST 
HUNT-DST 
OWN-DST 
RENT-DST 

HUNT-PC 
MORT2-DST 
VACHU-DST 

OCCHU-PC 

IOCCHU-DST 0.766194 1.01 90 19 
0.7786 19 
0.764804 
0.77991 
0.69 1 134 
0.755908 
0.762469 
0.74747 
0.689763 

1.034395 
1.035979 
1.05 1672 
1.054123 
1.070385 
1.072405 
1.075255 
1.088101 

Table 5. Demographic features evaluation result. 
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-*< 

P-C'-PH 0.778652 0.886927 
TRANS-PH 0.748267 0.961544 

0.791697 0.969762 
0.789273 0.97886 

~H6USING-PH 0.697043 1.005566 
REA-PH 0.784346 1.015941 
APPAREL-PH 0.784296 1.018549 
EDU-PH 0.759107 1.02109 
'ALC-TOB-PH 0.784793 1.025226 
'FOOD PH 0.748634 1.044432 

1 Percapita 
P-C ARE-PC 
EDU-PC 
HOUSING-PC 
APPAREL-PC 
ET-PC 
TRANS-PC 
ALC-TOBPC 
MED-PC 
FOOD-PC 
REA PC 

0.804807 
0.802809 
0.806986 
0.8 1 3 909 
0.8 I6095 
0.82 1257 
0.8 16618 
0.8 13 172 
0.804328 
0.79863 1 

0.958234 
0.978819 
0.980284 
0.99788 
0.998878 
1 .OO 1076 
1.007928 
1.012766 
1.013596 
1 .O 15429 

Table 6. Consumer expenditure features evaluation result. 

P-PARK 0.798587 1.003996 
b-SCHOOL 0.756689 1.0291 
P-CHURCH 0.795715 1.032549 
b HOSPITAL 0.79801 1.036391 

~~ ~~ 

Tabl!e 7. Distance features evaluation result. 
I 

We select one feature from each table to form the key feature set. We do not 

select features from the same table so as to avoid strong correlation between any two 

features in the key feature set. Independence between features is an assumption for the 

versions of the transition density model to be calibrated and evaluated. The features that 

we pick based on adjusted Ig are FAM-DST (Families per square mile), P-CARE-PH 

(Per household annual expenditure on personal care, personal insurance and pension) and 

D-HIGHWAY (Shortest distance to the nearest highway). We bypass two features 

CONDl-DST and HSTR9-DST which have lower adjusted 1, than FAM-DST for both 

technical and practical reasons. Technically, these two features have unusually low I8 

scores on the prior feature data set (as compared with other features), which indicate that 0 
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the prior feature data set for either feature is highly clustered or the prior distribution of 

either feature is far from uniform. This intuitively makes sense since out of the 207 block 

groups in Richmond there are only several that have occupied trailer homes or owner 

occupied condominiums.' Even with adjustment we still cannot completely eliminate the 

influence of the prior patterns on the event feature data for both features. This is reflected 

in their very low adjusted 1, scores. Practically, we eliminate these features because when 

working with crime analysts we find them unwilling to claim that the lack of trailer 

Q 

3 

homes or condominiums is linked to higher rate of B&E incidents. However, further 

analysis is clearly recommended on this issue and our model easily supports this 

additional analysis. 

Geo-mapping shows that the distribution of each selected feature roughly 

correlates to criminal event intensity as described in the following. Firstly, the intensity 

of B&E incidents is roughly proportional to family density. Second, how much on 

average a household within a region spends on personal care products and services is a 

reasonable indicator of disposable income with the block group. Most of the criminal 

incidents concentrate in the low to middle values of this attribute but not as much in the 

highest or lowest values. Lastly, areas close to highways are prone to B&E incidents. The 

fact that we have combined both residential and commercial B&E incidents may account 

for this. Other explanations relate to the opportunity to commit crimes provided by 

highways. 

I 
I 

i 
I a 
1 

We evaluate three versions of our model against their counterparts comparison 

models. The three versions are named GMM, WPK and FPK. The GMM version of the 

proposed model uses Gaussian mixture models for estimating both the first order spatial a 
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transition density and the geographic-space feature density. The GMM version of the 

comparison model also uses a Gaussian mixture model for estimating the spatial 
a 

transition density. The WPK version replaces Gaussian mixture estimation with weighted 

product kernel estimation and the FPK version uses filtered product kernel estimation. 

We build the three versjons of the proposed model on four training data sets and for each 

version we test it and compare it with the corresponding comparison model under three 

test scenarios - substituting training data back into the model (resubstitution), predicting 

out one week into the future (weekly prediction), and predicting out two weeks into the 
l 

future (biweekly prediction). The training sets are the data sets associated with the B&E 

incidents that occurred during these four fortnights, July 7 to 20, July 14 to 27, July 21 to 

August 3, and July 28 t4: August 10, respectively. For every version of the proposed 
i 

model, we always use thk same set of key features that we just selected (based on the 

feature data of the incidents between July 7 and July 20). By doing so we assume that the 
i 

0 
I 

preferences for initiating G&E incidents remain static during the entire period of July and 

August. Alternatively, one can repeat the feature selection process described in the last 

section on each training data set if one believes that the preferences are dynamic over t h i s  

period. 

To compare the performances of different models, we convert the density 

estimates into percentize scores which are on a common scale of 0 to 100. Suppose that 

we have placed over the study region a regular grid consisting of N points. In our case, 

N = 2157. Let sf be the location of the ith grid point. Denote the density estimate 

(generated by either the proposed model or the comparison model) at an arbitrary 

location s as d, . The percentile score p ,  at location s is defined by a 
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where lbs 2 d,: is 1 if d, 2 d and 0 otherwise. Assuming that the grid is fine enough 
S, 

to represent the study region well, percentile scores are nothing but re-scaled density 

estimates. The higher a percentile score at a specified location then the more likely it is 

that a new event will happen at that location. 

Basic model evaluation statistics are given in terms of mean predicted percentile 

score and its standard deviation for three versions of the proposed model and three 

versions of the comparison model calibrated on the four aforementioned training data sets 

in tables 8, 10, 12, 14, respectively. The “best model” is referred to as the version of a 

model with the highest mean percentile score out of the three versions of that model. It is 

clearly seen from these tables that the proposed model outperforms the comparison model 

in every test scenario in terms of mean percentile score. But is this result statistically 
i 

I 
significant? i I 

Two hypothesis tests are performed to answer this question. Assume that the test 

data set contains m incidents that occurred at the locations s, , s 2 , . . . , s m ,  respectively. For 

the incident at s,,  let the percentile score given by the proposed model be p& and that 

given by the comparison model be p t  . Let 6 be the probability that the proposed model 

outperfoms the comparison model on a single prediction. We perform the hypothesis test 

Ho: S = 0.5, 

Ha: 6 > 0.5, 

if the test statistic > 0.5 ; otherwise, we test the same null hypothesis against 

Ha: S < 0.5. 
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The test statistic 8 for the first hypothesis test is given as follows. 

The second hypothesis test is built around ,u which denotes the mean of the difference 

between the percentile score given by the proposed model and that given by the 

comparison model on a single prediction. We perform the hypothesis test 

if the test statistic F > 0 ; otherwise, we test the same null hypothesis against 

Ha: j~ <O. 

The test statistic ,L based on a test set of m incidents is straightforward. To wit, 

The standard deviation of the difference qs, = p [  - pf is estimated by 

The results of these tests are reported in tables 9, 1 1 ,  13, and 15, in which “Prob.”, 

“Mean” and “Std. Dev.” correspond to C? , j2 and 6 ,  respectively. These tables show that 

0 for all but one comparison, our model statistically performs better than the 

comparison model at the 90% confidence level according to the result of at least one 

hypothesis test; 

for the one comparison that both hypothesis tests fail at the 90% confidence level 

(“Best vs. Best” under weekly prediction in Table 9), the performances of the two 

models are statistically indistinguishable since the two hypothesis tests are set up 

0 
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against opposite alternative hypotheses but neither test can reject the null in favor of 

the alternative; and 

for well over half of the hypothesis tests, the null hypothesis is rejected with a smaller 

p-value under biweekly prediction than it is under weekly prediction, which indicates 

that the proposed model is able to capture the patterns of event occurrences over a 

0 

longer term due to the addition of the feature space &alysis. 
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Training set: July 7-20 (145 incidents) 
Resubstitution - Test set: July 7-20 (145 incidents). 

Model Type 
GMM 
WPK 

Proposed Model Comparison Model 

L 

Training set: July 7-20 (145 incidents) 
Resubstitution - Test set1 July 7-20 (145 incidents). 

Test 1 Test 2 

89.5346 12.2509 I 183.0167 16.9308 I 
WPK or FPK 

Eeek lv  mediction - Test set: July 21-27 (72 incidents). 
I Prouosed Model Comparison Model 
IModel Type 
GMM 
W K  75.9381 25.2531 
FPK 
Best Model GMh4 WPK or FPK 
Biweekly prediction - Test set: July 21-August 3 (140 incidents). 

ProDosed Model ComDarison Model 
Model Type 

IGMM 
WPK p.3845  25.1521 I 1:;::::: 
FPK 74.1628 25.1669 
Best Model GMM WPK or FPK 

Table 8. Basic statistics for models calibrated on July 7-20 data. 

Comparison 
GMMvs.GMM 
WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 
lWeeklv Drediction - Test set: Julv 21-27 (72 incidents). I 

WPK vs. WPK 

GMM vs. GMM 
WPK vs. WPK 

0.4786 0.5071 0.305 3.3225 15.8084 2.4868 0.0064 

Table 9. Hypothesis tests results for models calibrated on July 7-20 data. 
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Training set: July 14-27 (143 incidents) 
Resubstitution - Test set: July 14-27 (143 incidents). 

J 

Proposed Model Comparison Model 
Model Type 
GMM 
WPK 
FPK 
Best Model FPK WPK or FPK 
Weekly prediction - Test set: July 28-August 3 (68 incidents). 

ProDosed Model ComDarison Model 

WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 

Model Type 
IGMM 

0.9021 9.6168 <0.0002 5.8808 7.541 1 9.3255 <0.0002 
0.9021 9.6168 <0.0002 5.9414 7.6988 9.2286 <0.0002 
0.9021 9.6168 <0.0002 5.9414 7.6988 9.2286 <0.0002 

72.6162 25.2771 70.1436 27.1039 
72.2990 25.291 1 70.1436 27.1039 

Best Model GMM WPK or FPK 
Biweekly prediction - Test set: July 28-August 10 (137 incidents). 

Model Type 
GMM 
WPK 
FPK 
Best Model GMM WPK or FPK 

, 
, 
I Proposed Model Comparison Model 

WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 

Table 10. Basic statistics for models calibrated on July 14-27 data. 

0.6029 1.6977 0.0446 2.4726 8.3534 2.4409 0.0073 
0.5882 1.4552 0.0721 2.1553 8.5092 2.0887 0.0183 
0.5441 0.7276 0.2327 6.1681 14.7758 3.4423 0.0003 

Training set: July 14-27 (,l43 incidents) 
Resubstitution - Test set! July 14-27 (143 incidents). 

Test 1 Test 2 
Comparison I GMM vs. GMM 

Comparison I GMM vs. GMM 

Test 1 
Comparison 
GMM vs. GMM 
WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 

Table 11. Hypothesis tests results for models calibrated on July 14-27 data. 
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Best Model WPK WPK or FPK 
Weeklv Drediction - Test set: August 4-10 (69 incidents). 

WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 

' Proposed Model Comparison Model 
Model Type 
GMM 
WPK 
FPK 
Best Model GMM WPK or FPK 
Biweekly prediction - Test set: August 4-17 (141 incidents). 

ProDosed Model ComDarison Model 

0.8p71 8.4515 <0.0002 3.6222 5.5286 7.7522 <0.0002 
0.8571 8.4515 <0.0002 3.5689 5.8308 7.2421 <0.0002 
0.8571 8.4515 <0.0002 3.6222 5.5286 7.7522 <0.0002 

Model Type 
IGMM 

WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 

72.7329 27.0081 71.6619 27.6472 
FPK 
Best Model GMM WPK or FPK 

I 0.5652 1.0835 0.1401 2.0901 10.8363 1.6022 0.0548 
0.5797 1.3242 0.0934 2.0216 10.9703 1.5308 0.063 
0.5797 1.3242 0.0934 6.0695 19.2327 2.6214 0.0044 

Table 12. Basic statistics for models calibrated on July 21-August 3 data. 

Training set: July 2 1 -August 3 (140 incidents) 
Resubstitution - Test set4 July 21-August 3 (140 incidents). 

Test 1 Test 2 
Comparison I GMM vs. GMM 

I Test 1 Test 2 I 
Comparison I GMM vs. GMM 

GMM vs. GMM 
WPK vs. WPK 

Table 13. Hypothesis tests results for models calibrated on July 21-August 3 data. 
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! 
Training set: July 28-August 10 (137 incidents) 
Resubstitution - Test set: July 28-August 10 (137 incidents). 

I 

'Biweekly prediction - Test set: August 11-24 (126 incidents). 

Proposed Model Comparison Model 
Model Type 
GMM 

WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 

lWPK 180.4291 19.2876 I 175.5647 22.8157 I 

0.8905 9.1416 <0.0002 4.8644 8.3799 6.7944 <0.0002 
0.$321 7.7747 <0.0002 4.8810 8.6396 6.6126 <0.0002 
0.8321 7.7747 <0.0002 4.8810 8.6396 6.6126 <0.0002 

80.4457 19.0202 I 175.5647 22.8157 I 1:; Model 'FPK WPK or FPK 

WPK vs. WPK 
FPK vs. FPK 
Best vs. Best 

(Weeklv mediction - Test set: August 11-17 (72 incidents). 

0.5972 1.6499 0.0495 0.7620 5.9915 1.0792 0.1401 
0.6111 1.8856 0.0294 0.5121 5.9684 0.7280 0.2327 
0.5278 0.4714 0.3192 6.1962 17.9847 2.9234 0.0018 

Proposed Model Comparison Model 
Model Type 
GMM 
WPK 
FPK 
Best Model GMM WPK or FPK 

WPK vs. WPK 0.6111 2.4944 0.0064 1.3650 9.8093 1.5620 0.0594 
FPK vs. FPK 0.61 11 2.4944 0.0064 1.1326 9.8257 1.2939 0.0985 
Best vs. Best 0.5238 0.5345 0.2981 5.5306 18.7787 3.3059 0.0005 

ProDosed Model ComDarison Model 

76.7429 23.8933 75.3779 24.0492 
76.5105 23.9671 75.3779 24.0492 

Best Model GMM WPK or FPK 

Table 14. Basic statistics for models calibrated on July 28-August 10 data. 

Training set: July 28-August 10 (137 incidents) 
Resubstitution - Test set: July 28-August 10 (137 incidents). 

Tekt 1 Test 2 
Comparison I GMMvs.GMM 

Comparison I GMMvs.GMM 

Comparison I GMMvs.GMM 
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i 
Density maps generated by the three versions of the proposed model built on the 

training data of the 145 incidents between July 7 and July 20 are given in Figures 3. The 
8 

criminal incidents occurring within the immediate following week or two weeks (Le., the 

test sets) are plotted on the density maps to enable visual examination of how well the 

proposed model perfoms under weekly or biweekly prediction scenario. Similar density 

maps can be generated for the models built on other training data sets. It is easily seen on 

these maps that most of the test incidents indeed happened around the predicted “hot 

spots” (i.e., predicted high-density areas). Also by visual inspection, the GMM version of 

the proposed model seems to have captured more details than the WPK version and the 

FPK version in all four figures. This is confirmed in Tables 8, 10, 12 and 14 where the 

GMM version is indeed picked as the “best model” for every weekly or biweekly 

prediction scenario. The WPK and FPK versions seem to have equivalent performances. 

The density maps obtained for these versions look smoother than those obtained for the 
I 

I 
GMM version. I 
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Figure 3. GMM (upper), WPK (middle) and FPK (lower) versions of the 
proposed model calibrated on July 7-20 data and tested on July 21-27 data (left) and 

July 21-August 3 data (right). 
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5. Conclusion 

The development of pred :tive models of criminal activity is of tremendous value to law 

enforcement. The use of these models in support of tactical decision making in law 

enforcement is obvious: the better we forecast criminal activity then the better we can 

allocate law enforcement resources to combat it. However, the usefulness and 

significance of these models goes beyond tactical decision making. They effectively 

support community policing, problem-oriented policing, and cooperation among 

agencies. 

In this paper, we have described a newly developed space-time prediction model 

and evaluated it on real-world data sets from the domain of regional crime analysis. The 

presented model is shown to be more effective than the traditional “hot-spot” methods, 

especially for predicting the occurrence of space-time events characteristic of human 

intelligence and preferences, as exemplified by the Richmond breaking and entering 

incidents. Distinctive froq other methods in the literature, our modeling approach 

0 accommodates all measurable features usehl for prediction, 

identifies which of the/ features have the most predictive or explanatory power, and 

0 

a 

I 

1 
generates probability Pensity estimates over space and time for the occurrence of 

hture events. 

Specific to the law enforcement domain, this approach provides the basis for theory 

development, since it shows how community and law enforcement data relate over space 

and time. It also provides a vehicle for theory evaluation or testing, since it can show 

which theoretical relationships lead to accurate predictions and which do not. For a 
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instance, for the Richmond Breaking and Entering crime application, we have found that 

such features as family idensity, disposable income (as indicated by per household I 
l 

a 
! 

I 
personal care expenditure), and proximity to highways could jointly play a role in crime 

initiation decisions. The proposed model quantifies the form of correlation between these 

features and occurrence of B&E incidents. 

Obviously, the applicability of our approach to preference discovery is not 

confined to law enforcement. For example, in military actions, one may want to predict 

the future location of an enemy target (e.g., a tank) moving over terrain based on its past 

locations (observed over predefined sampling intervals) and terrain features. In an urban 

development, developers are interested in predicting consumer behavior toward a new 

shopping mall using data from past behavior toward existing malls. They would also use 

data regarding surrounding neighborhoods and the physical infrastructure in the area 

(e.g., major highways, schools, and bridges). In this sense, our model provides a generic 

framework for space-time event forecasting. 

a 
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Abstract 

An important need in crime prevention is to predict the likelihood that criminal 

incidents occur at specified locations within a geographic region and a specified time 

range, based on historical incident records. A model for predicting the probability of 

occurrence of spatial-temporal random events was developed based on the theory of point 

patterns. This model views the available data as a realization of a marked space-time 

shock point process, and the prediction problem as the estimation of the space-time 

transition density of the process. In contrast to traditional space-time prediction models. 

this model incorporates richly informative observed event characteristics or features into 

space-time prediction. Our previous model assumes temporally homogeneous data and 

thus excludes all temporal features. We describe our extension to the model that 

incorporates temporal feature heterogeneity by changing the temporal transition density 

calculation. Test results comparing this model with traditional methods for predicting hot 

spots show that the model with temporal features outperforms other approaches in some 

cases, but that use of temporal features is only effective in data sets that display temporal 

patterns. 
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Chapter 1 : Introduction 

1.1 Motivation 

Criminal events can be characterized in terms of their location as well as the time at 

which they occurred. Likewise, other features of criminal events provide a rich source of 

information from which to draw inferences and conclusions about patterns of crime. It has been 

shown that certain geographic features such as population density and distance from landmarks 

can be predictive of the likelihood of future criminal events. There is also evidence that attributes 

that are a function of the time at which crimes occur, such as the daily temperature or the 

proximity to a sporting event, are strong predictive attributes. Use of these types of additional 

information about criminal events can produce significant enhancements to crime analysis tools, 

and eventually could lead to decreased crime rates. 

The primary motivation for this project is to enhance the analytic forecasting capabilities 

of an existing system, the Regional Crime Analysis Program (ReCAP) developed at the 

University of Virginia. The ReCAP system is an interactive shared information and decision 

support system that includes a database, a geographical information system (GIs), and statistical 

tools. These components are integrated together into a single system to provide the maximum 

utility and power to users. 

While ReCAP currently has tools that perform certain kinds of forecasting based solely 

on crime event histories, there is a need for an analytic tool that incorporates additional event 

feature information. We have developed a new tool for ReCAP that not only generates maps that 

highlight the areas where crimes are most likely to occur, but also identifies key features 

associated with the data that offer intuitive understanding of crime initiation decisions. In 

addition, this tool allows crime analysts to propose event features and test whether they are 

associated with the observed crime patterns. Such a tool provides tremendous advantages over 
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Introduction 2 

many of the analysis techniques and visualization methods currently employed by crime analysts, 

such as identifying crime patterns by examining static “pin maps”. 

1.2 Objectives 

A methodology for generating crime predictions was recently developed by Hua Liu 

(1999) at the University of Virginia. The fundamental idea supporting this methodology is that 

criminals make rational decisions as to where and when to commit crimes, and these decisions are 

guided by preferences for situations exhibiting particular characteristics, such as low risk of arrest 

or potential for high reward. Given a set of possible characteristics or features, Liu’s model 

attempts to identify a subset of the features that are most strongly correlated with crime incidents 

in a historical data set and discover the pattern of preferences for each of these features. These 

inferences are then used to estimate the likelihood of another incident occurring within a 

geographic region and within a specified time range. In Liu’s model, the observed data - the 

times, locations, and features of space-time events - are viewed as a realization of a marked 

space-time shock process, and the space-time prediction problem as the estimation of the 

transition density of the process. This model allows for the inclusion of event-related features 

into the transition density estimation. 

There are three principal objectives of the research described in this paper. The first goal 

is to incorporate additional types of event features into Liu’s existing model for density 

estimation, especially features in the temporal realm. We also aim to provide an effective 

forecasting tool and decision-support system for the ReCA P system based on this methodology. 

A further objective is to carry out testing of the methodology through application to additional 

sets of data, to include various crime types and study region>. 

Examples of temporal features for an event include the time of day or the weather at the 

time of occurrence and the time elapsed since the occurrence of an external event, such as a 

sporting event. While the values of spatial feature3 remain constant over time at a particular 
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geographic location, the values of temporal features are dependent on the time when they are 

measured. Certain types of temporal features must be modeled differently from other event 

features, and a model for density estimation that incorporates these features is presented. 

The remainder of this paper presents the methodological developments and 

implementation work that comprise this project, as well as results and evaluations of the work. 

The second chapter surveys the literature describing research that the present work draws upon. 

The third chapter formally states the problem being undertaken. The fourth chapter presents the 

existing approach for accomplishing a space-time event prediction, discusses the changes we 

have made to extend the methodology, and illustrates the special characteristics of temporal 

features and the methods developed for handling these features in more detail. The fifth chapter 

describes the implementation of the model as a tool for use within ReCAP, details the methods 

employed in testing and evaluating the model, and presents results of testing the model on real- 

world data. The final chapter includes a summary of this paper, states the contributions made, 

and proposes additional opportunities for research based on this work. 
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Chapter 2 : Literature Review 

The work presented in this paper draws from the domains encompassing the components 

of the model, including stochastic point processes, spatial-temporal event prediction, and density 

estimation. This work also relies on criminological theories that provide insight into crime 

analysis and motivate the problem. A significant portion of this chapter is dedicated to the 

dissertation of Hua Liu (1 999), as much of the theoretical work presented in this thesis is based 

on this dissertation. Care is taken throughout this paper to explicitly indicate which work is 

original research and which work is attributed to Mr. Liu. 

, 

2.1 Stochastic Point Processes 

Space-time data sets consist of a group of observations taken at specified locations over a 

range of time. These data sets require special models and methods of analysis to determine the 

underlying processes that produce the structure of the data. 

A stochastic process {X(t), t E T} is a collection of random variables, where for each t E 

T, X(t) is a random variable. In the case of a space-time stochastic process, t is a vector index of 

the time and space of the process. In other words, a space-time stochastic process is a family of 

random variables that describes the evolution through time and space of some process. The idea 

of a stochastic point process is described in many stochastic modeling texts, such as Ross ( 1  993). 

Fiksel ( 1984) developed two space-time cluster models for predicting the positions of 

future earthquakes in a region, based on the locations and times of previous earthquakes in that 

region. One model, the order-model, only considers the temporal order of events, while the 

instant-model also considers the relative times of the events. Both models assume a stochastic 

event proces, with spatial and temporal interactions, and the model parameters are estimated 

using the maximum likelihood procedure. 
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2.2 Spatial-Temporal Event Prediction 

The general class of space-time models handles the case in which the system being 

modeled exhibits systematic dependence between the observations at each region and the 

observations at neighboring regions. Just as the correlation measure assesses the level of 

dependence within a univariate time series, this dependence in a space-time series is called 

spatial correlation. 

Most work in the area of spatial-temporal event prediction is related to the STARMA 

family of models, which are an extension of ARMA univariate time series models into the spatial 

domain. These models have been shown to be effective in describing the historical patterns of 

spatial data, when the spatial locations of the data contribute to the observed correlation structure. 

In the STARMA class of models, observations of the random variable at a particular location are 

expressed as weighted linear combinations of past observations and errors that may be lagged 

both in time and space. An extension to the STARMA models was developed by Pfeifer and 

Deutsch (1 980) to incorporate temporal differences, and the resulting models were called 

STARIMA models. The problem with all of the above models, as we are concerned, is that none 

of them exploit extra feature information associated with the locations and times of events to aid 

in the future predictions. 

Perhaps the definitive works in this field are the recent publications by Liu (1999) and 

Brown ( 1999). The dissertation by Liu forms the basis for this thesis. The primary unique aspect 

of this work is that the proposed model integrates event characteristics or features into the space- 

time event prediction. 

In these papers, the observed data - the times, locations, and features of space-time 

events - are viewed as a realization of a marked space-time shock process, and the space-time 

prediction problem as the estimation of the transitilm density of the process. This model allows 

for the inclusion of event-related features into the tr.insition density estimation. 
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2.3 Density Estimation 

In the proposed model by Liu and in this thesis, the heart of the modeling effort in space- 

time prediction is the estimation of the transition density of the spatio-temporal point process. 

There are two main components of the estimation procedure in the model - analysis of  the data to 

discover patterns in the feature data and combining information about these clusters to create a 

single model of the multivariate transition density. In Liu's model, the technique used to analyze 

' patterns in the feature data is hierarchical clustering, discussed in Anderberg (1 973) and Hartigan 

( 1  975). 

One of the models employed for components of the transition density is the class offinite 

mixture distributions, using Gaussian distributions for the components, and the Expectation- 

Maximization (EM) algorithm developed by Dempster, Laird, and Rubin (1 977) to obtain 

maximum likelihood estimates of the Gaussian parameters. Another model used is the class of 

kernel density estimators, first introduced by Rosenblatt (1965) and Parzen (1962), and more 

specifically the class of filtered kernel esrirnators (Marchette et al., 1996), which use a small 

number of bandwidth matrices, where each matrix is associated with individual region. 

2.4 Criminology 

The premise of the Rational Criminal Theory is that there are underlying reasons why 

criminals choose to commit a crime at a particular time in a particular location. I t  is likely that 

each criminal has a set of preferences that are taken into account when deciding where and when 

to execute a crime. These preferences reflect an intention to minimize the risk of being caught 

while maximizing the expected payoff of committing an offense. This theory is one of the most 

fundamental for our work, because our model is based on the assumption that there are regular 

patterns in crime history data. If criminals behave randomly instead of rationally, there i s  no way 

that accurate predictions of future criminal activity can be made. 
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Crime patterns can be studied over time to elucidate regularities in crime occurrences and 

to investigate the effect of societal changes, including legal, political, demographic, and economic 

structures. The idea that temporal patterns of social behavior are determinants of the level of 

crime was first promoted by Cohen and Felson (1  979). Their argument is that most crime takes 

place with the combination of motivated offenders, suitable targets, and the absence of capable 

guardians. These situations arise based on patterns of “routine activities” in a community, such 

as daily work schedules or regular weekly outings that produce conditions that are conducive to 

crime occurrences. 

Field (1 992) provides an example of the effect of a temporal feature on crime occurrence, 

in his study of the effect of temperature on crime. This study demonstrated that higher 

temperatures are positively correlated with crime occurrence rates for many types of crime, while 

sunshine and rainfall levels do not seem to have an influence. 

Brantingham and Brantingham ( I  984) provide an excellent discussion of spatial patterns 

of crime, criminal decision-making related to choosing spatial targets, and a survey of a wide 

range of related literature. In any city, there will be certain paths that are more commonly 

traveled and certain areas that are characterized by a higher rate of activity. Patterns of crime 

often match highway paths and aggregate activity spaces. 

Duffala (1976) found that convenience stores that were closest to major roads, but not on 

them, and that had no nearby businesses open at night, had the highest victimization rates. The 

closeness to major roads made those locations more accessible, while their location slightly away 

from high traffic areas and activity centers reduced the risk of witnesses or interference. 

Several studies have been performed in the last half-century to investigate relationships 

between spatial patterns of crime and demographic or socioeconomic factors. Lander ( 1954) and 

Morris (1958) analyzed delinquency patterns in cities using data on a set of socioeconomic 

variables as well as land-use data. They both found that the socioeconomic variables could 

explain most of the variance in delinquency rates across regions. 
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Chapter 3 : Problem Statement 

The primary motivation for this project is to enhance the forecasting capabilities of the 

Regional Crime Analysis Program (ReCAP), and this inspires the following problem: Given 

observed data for the locations, times, and feature values for a set of events of the s h e  type, we 

would like to create a density map representing the likelihood that a crime will occur at each 

point in the region during a certain time interval in the future. This basic problem is the same as 

the one encountered by Liu (1999), and as such we will use his notation and setup below, with 

our own modifications as necessary. 

The locations and times of the events (si, r , ) ,  (s2, r2) ,  ,.. , (s,,, r,,), to = 0 < f l  < t 2  < ... < r,, 

and their associated features or marks x s, ,I, , x sz, t ,  , . . ., x s, , f n  are viewed as a realization of a 

marked space-time shock process of the form 

{ x ~ , ~  E X : S E  D , t E  T }  

where t ,  s, and x ~ , ~  are all random, D is the geographic study region, and T i s  the study horizon. 

Viewing the process as shocked is a minor simplification in our model, as many crime events 

either take place over time or are virtually instantaneous but the exact time is not known. 

Events are located within a study region or geographic space D c %' and are indicated 

by a pair of coordinates, such as longitudes and latitudes, s = (si, SZ). T c %+is the range of 

times when events could occur, and is named the study horizon. x c 3' is the collection of 

possible values of the feature vectors (marks) with p dimensions, and is termed thefeuture space. 

In this work, the space-time prediction problem is formulated as the estimation of the 

trunsi//on density of the stochastic point process described above. The transition density of the 

process is fonnally defined as the probability that a single event occurs within a specified minute 

region and within a specified minute time interval. Mathematically, given the observed data sets 
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T, = { 1 1 ,  t: , ..., t , ) ,  D, = {SI, st, ..., s,}, and x,, = {XI, XI, ..., x,} up to instant I,,, we would like 

to estimate. for a specific region s,+/ E D and time t,+) > r,, the transition density as: 

where s,+~ and z,+t are realizations of the location and time of the next event, respectively, N 

counts the number of events in an infinitesimal region around s,+~ during an infinitesimal 

time interval dt,+l around r,,,, and v is  the volume of region cis,,,,. 

3.1 Event Features 

The features that define the dimensions of feature space can reflect a wide variety of 

characteristics of crime scenarios. Geographic features include distances from event locations to 

types of geographic landmarks and demographic characteristics of neighborhoods or districts, 

such as median household income, population density, and ethnic population distributions. 

Temporal features include the time of day of an event, the day of week, and the amount of time 

from another event, such as a school closing or a baseball game. 

At another level, features can be categorized by the nature of their possible values. Some 

features have numerical values that are defined over all of 9l while some may only have positive 

values. Certain features are categorical, and are limited to a prescribed number of possible 

values. Other features are considered to be temporal and have values corresponding to a time on 

a 24-hour scale. 

Liu classifies the set of features into two groups - those that are inherently temporal ( I r )  

and all others. Liu defines “IT features” as those features that “label” time intervals so that 

categorization of time instants can be obtained. An IT feature such as “season of the year” 

partitions [he time axis into time intervals, where the value of the IT feature is constant for all 

points in a time interval. If the data is restricted to a single such time interval, the assumption of 

temporal srationarity is maintained. However, restricting the data in this way excludes the use of 
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temporal information about the crimes that may have trends or patterns that would improve the 

accuracy of the predictions. 

We chose to relax Assumption 3.1 in Liu’s model, that the set of features F only contains 

features that depend on geographic location and excludes temporal features. It is clear that the 

occurrence of crimes is not only correlated to spatial features, but also to temporal features, and to 

interactions between temporal and spatial features. For most types of crimes, there is a general 

temporal pattern of occurrence. 

The interaction of spatial and temporal features is evident in the pattern of auto thefts. 

During working hours, most cars are parked near offices, while in the evenings and at night, cars 

are more scattered in residential areas, or gathered near shopping centers or entertainment areas. 

The association of these patterns with crime incidents has been demonstrated by Bbggs (1964) 

and Mayhew et al. (1 976). 

It is important to remember that the temporal range of training data sets is limited to no 

more than a few weeks, so there should not be long-term trends in the data due to the changing of 

seasons or other long-term effects. We are not concerned with the actual values of the transition 

density, only the pattern of densities over the prediction region and over a daily or weekly time 

horizon. 

It should be clear that the inclusion of certain types of temporal features in the model 

does not significantly alter the structure of the model. The reason is that the temporal features we 

consider are actuallyfearures of the time - not the absolute times themselves. These features do 

not affect the stationarity of the model because they are not subject to trends. For example, the 

temporal feature that is the time-of-day of an event is merely a characteristic of the event, but is 

not considered in the context of the date of the event. We do not expect the average value of such 

a feature to exhibit a moving trend over the limited range of the training or prediction horizon. 

When we calculate the transition density for a future scenario, we consider the spatial 

characteristics and features of that \cenano as well as the temporal features. 
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Chapter 4 : Methodology 

The model originally proposed by Liu attempts to capture the underlying processes 

driving event occurrences! over the study region and the study horizon. Development of the 

model involves a two-step decomposition of the transition density into components that 

incorporate various aspects of the modeling approach. 

4.1 Model Development 

The first step of the decomposition separates the spatial transition and temporal 

transition. The model becomes 

w, (%+I  , ,fn+l I D” 3 T n  3 x n  1 = Wl” (%+I I 0, YX” Y T, 7 f n + l )  . v:*) ( fn+l  I T, ” 

where the first term, (s,+] I D, ,x, , T, , tn+l) , is called the spatial transition density, and the 

second term, $d2), (fn+l I T,) , is called the temporal transition density. The spatial transition 

density reflects the probability that an event will occur at location s, at any time in the future, 

given the complete history of prior events in time and space. Similarly, the temporal transition 

density represents the likelihood that an event will occur at time fn+l in the future, without regard 

to location or feature values. Liu assumes that the temporal transition density is not dependent on 

D, and x,, as it would be in a standard Bayesian decomposition. 

There is a further decomposition of the spatial transition density that produces 

components that account more directly for the behavioral theories that we hypothesize are 

guiding criminal activity. The assumption underlying the model is that criminals select the sites 

where they commit crimes and the times when they commit the crimes rationally, based on 

characteristics associated with the locations and times. We will henceforth describe the site 

location and time of a crime event as a scenario. 
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In describing the decisions as rational, we mean that the offenders consistently 

demonstrate a preference for scenarios that have similar values of particular attributes or features, 

and in doing so, reject sites with different feature values. The set of preferences is manifested as 

a small-variation distribution of values in feature space, or a cluster of values. By studying past 

event information, we can infer sets of selection preferences and use those to forecast where and 

when future crimes will occur. 

Two assumptions are critical to application of these ideas to the model, when the model is 

put to use on real data. There will invariably be more than one group of offenders operating in a 

particular region over a particular time interval, each with a different set of selection preferences. 

These groups must be considered simultaneously in order to generate a complete prediction of 

future activity over the region. We must first assume that all offender groups base their selection 

decisions on a common set of features. Furthermore, we must assume that the set of features we 

consider in the model matches the set of features considered by the offender groups - the actual 

features considered. These features are discovered by Liu’s model in an initial feature selection 

process. 

Another property of rational scenario selection considers the spatial interaction or 

dependence between selected sites in the study region. A common belief in the criminology 

literature, exemplified by the “journey to crime” theory, is that event initiators will choose a 

geographically closer location to execute the next event, all other factors being equal. As a result, 

the influence of past events on the prediction at a particular site should be inversely related to the 

distance from the site. In addition. since for certain types of crimes, event initiators often do not 

wait long before acting again, the model should diminish the impact of older events on the 

prediction of future events. 

The model for spatial transition density is based on the assumptions about offenders and 

features discussed above, as well as the properties of rational scenario selection. There is a 
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component that incorporates patterns in feature space, a component that incorporates patterns in 

geographic space, and a component that adjusts for prior information about feature distributions. 

The formal description of the model for spatial transition density supposes that the set & 

of feature vectors is partitioned into C disjoint subsets {mu' : j  = 1,2,  ..., C) corresponding to the 

clusters of preferences in feature space. The sets of locations 0, and times T, are also partitioned 

into C disjoint subsets. If xrrcl is the set of estimated feature values at location S,,+~ and instant teI ,  
3 

the model for spatial transition density is 

C 
( i )  )p  { ( I ) }  .c w(12)(sn+I I Dn 7 n 7 n+l r X,+I E X" 

j= l  

Thefirst-order spatial transition densify, W ( ' l ) ( ~ n + l  I x,  ), is the probability that an event 

will occur at a location with a particular feature vector, based solely on the history of feature 

vectors. This probability does not depend at all on the location of the future point or the historical 

points, but rather on the feature values of all previous crimes that occurred at any location. This 

component captures inferences about the reasons why a criminal chose a particular site, rather 

than the geographic positioning of that location. 

Each second-order spatial transition densify, w"') (s ,~+,  1 DA'), T,(J), tn+l) , indicates the 

closeness in geographic space of the future point s,+~ to all of the past events in a particular 

cluster. Since there is no way to assign a future point to a cluster with total certainty, this density 

must be included for all possible clusters. The overall density is calculated as a weighted sum of 

the second-order transition densities for all clusters. The density for each clusterj is weighted by 

a spatial interaction probabilit),, Pr{x,+l E x:)}, which reflscts the likelihood that the feature 

vector for the future point, is similar to the feature vector x.'" that defines the clusterj. 

A final adjustment to the model is made to incorporate a priori knowledge of the 

distribution of feature values over the study region D. There I \  an  additional term included in the 
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model that is necessary when the predicted feature values over the study region are not uniformly 

distributed. 

4.1.1 First Order Spatial Transition Density 

Liu chooses two types of estimators to compute the first order spatial transition density. 

Finife mixture distributions are parametric models, while jilrered kernel densiv estimators are 

non-parametric models. The use of both of these estimators in our model requires that the 

number of distinct local (covariance) structures is known, ‘and if this information is not known a 

priori, it must be estimated from the data using hierarchical clustering methods. The number of 

distinct local structures corresponds to the number of offender groups believed to be represented 

by the data set., Hierarchical clustering provides a means of discovering natural groupings of 

observations within the data when the number of groups is not known beforehand. 

4.1.1.1 Finite Mixture Distributions 

One of the methods used in Liu’s model to estimate the first order spatial transition 

density is the class of finite mixture distributions. Finite mixture distributions are estimations of 

a density function created from the superposition of multiple component distributions. A finite 

mixture probability density is the weighted sum of all component densities, where each 

component density is a function of a vector of variables and a set of parameters, and has the form 

where xj > 0, j=1,2 ,..., C, xi  + n2 + ... $. nC = 1, x = [IT, SC? ... S C ~ ] ’ ,  0 = [ei Or ... ec]. Each 

f, (.;ej) is a component density with parameters e, and each SC, is a mi.ring weight. AS in the 

rest of the model, x is a vector of features. Liu chooses to use Gaussian distributions for the 

components, and the Expectation-Maximization (EM) algorithm. a numeric method, to obtain 

maximum likelihood estimates of the Gaussian parameters. However, when there are categorical 

variables, latent class models are used for component densities 
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4.1.1.2 Kernel Density Estimators 

Kernel density estimators are another method available in Liu’s model to estimate the 

first order spatial transition density. The class offiltered product kernel (FPK) estimators in the 

model place an individual probability density function or kernel over each cluster in the data set, 

each with its own bandwidth matrix, and sum the individual density functions over the entire 

region to form a surface. FPK estimators are a special case of filtered kernel estimators in which 

the bandwidth matrix H is a diagonal matrix. These estimators are given as 

where n is the number of instances, p is the number of dimensions of the feature vector, hi/ is a 

local bandwidth for the Ith dimension of [XI, of clusterj, K is a kernel function, and &(x) is a 

filtering function. 

These estimators include filtering functions that are used to incorporate prior information 

about the clustered regions. The standard FPK estimator, described by Marchette (1996), 

suggests the use of a finite mixture model to formulate the filtering functions for each cluster. 

Another variation constructs these functions without the use of finite mixture models, and these 

estimators are termed weighredproduct kernel (WPK) estimators. 

4.1.2 Second Order Spatial Transition Density 

The spatial transition models developed by Fiksel (1 984) that were introduced earlier are 

used to estimate the second order spatial transition densities for each cluster. These models are 

particularly applicable to our model because they incorporate the ‘tjourney to event” theory 

described in Chapter 2 by yiving more influence to events that occurred geographically closer to 

the future event point of estimation. 

For each cluster of past events, the second-order spatial transition density is a function of 

the distance from each pasi event in the cluster to the future event location and the times of the 
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past events in that cluster. Fiksel's order model, which only considers the temporal ordering of 

the event times, not the actual times, postulates the following function for the density of clusterj 

when there are m events in that cluster 

where s I ,  s2, ... , s, are ordered by the event times ?I, f2, ... , 1, corresponding to the earliest 

through the latest event. The likelihood of observing these past m events is given as 

,. 
The maximum likelihood estimate A is obtained by maximizing this equation. Fiksel's instant- 

model has a similar form, though it also utilizes the actual values of the event times in the model. 

4.1.3 Spatial Interaction Probability 

There is a spatial interaction probability computed for each cluster, and these elements 

are defined on the basis of the first-order model utilized, whether a finite mixture distribution or a 

filtered kernel estimator. In  both cases, the spatial interaction probability for a future event and a 

particular cluster is the proportional contribution of the component transition density for that 

cluster to the overall transition density of the future event. 

4.1.4 Temporal Transition Density 

Since this tenn is defined to depend only on the past event times, it will be a constant 

value for all locations in the study region. We are primarily concerned with the pattern of the 

spatio-temporal transition densities over the region, and not the actual magnitudes of the 

densities, so this constant iactor does not need to be considered. This is only the case when the 

times range over a short range of time in which feature values do not exhibit a trend. Over a 

longer horizon, techniques such as ARIMA could be used to estimate this density. 
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4.2 Temporal Feature Analysis 

Temporal patterns are unmistakably evident in the occurrences of many types of crime. 

These patterns can be inferred intuitively as well as through investigation of historical crime data. 

Bank holdups are much more likely to occur during daytime banking hours, since there would be 

no one to hold up when the bank is closed. Similarly, one would expect public intoxication 

offenses to occur most commonly at night, with peaks of activity soon after bar closings or club 

events. Excluding temporal information from a crime prediction methodology severely limits the 

ability of the model to accurately forecast crimes and protect against them. We attempt to 

capture this information by incorporating time-o$day features, event-related features, and other 

temporal features. 

When investigating patterns in time, the primary consideration is the scale of time that is 

used, which has been termed the temporal cone of resolution. Long-term trends in crime rates 

can be analyzed over periods of years or decades, while seasonal patterns can be examined over a 

series of days, weeks, months, or years. The choice of temporal resolution is critical to drawing 

out the type of information most necessary for the purposes of a particular model. 

Though our model generates predictions based on data from multiple weeks, the level of 

temporal feature resolution that we deem most relevant to our model is on a relatively small scale, 

over a period of hours or days. The features that we investigate are things like time-of-day. day- 

of-week, temperature, and the times from particular events. Since all of these features are 

considered over a relatively short span of time - no more than one or two weeks - it is assumed 

that the feature patterns do not exhibit any trends, and thus remain stationary. For this reason, 

these temporal features can be included in the set of features used to compute the first order 

spatial transition dcnsity and the spatial interaction probabilities. 

This approach was deemed more effective in capturing temporal patterns than a time 

series approach. ( h e  of the difficulties in using a time series approach in our instance is tha t  the 
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event data is not measured at regular intervals, which adds complexity to the analysis. 

Furthermore, since we are most interested in discovering the temporal peaks in the data, cluster 

analysis can identify the same patterns as can a time series analysis of seasonality. The variety of 

features that profile the temporal data, such as the time-of-day and day-of-week features, offer the 

same information as identifying seasonalities at multiple periods. 

4.2.1 Time-of-Day Feature 

One of the most interesting problems encountered in the development of the new model 

presented here was the treatment of temporal features with values that exhibit cyclical properties, 

specifically the “time-of-day” feature. In our model, the “time-of-day” feature looks at the time, 

from 0:OO to 24:00, without regard to the date or day of week. Unlike most numerical features, 

such as the distance between two points, or the median income of a census block, there is no 

concept of a “greater” or “lesser” time, but rather the concept of “before” and “after”. More 

importantly, there is no concept of a minimum or maximum time of day, as the numerical 

representation of a time of day is merely a reference, not an actual value. For example, 8 AM can 

be dually considered before or after 6 PM, depending on the point of initial reference. 

The unique properties of cyclical features first come into play in the process of grouping 

the crime data points into clusters. To determine the distance between feature vectors of two data 

points, the distance between each pair of values for a particular feature must be calculated. The 

“distance” between a time of 1 I :00 PM (23:OO) and 3:OO AM (03:OO) can either be four hours or 

20 hours (23:OO - 3:OO) depending on the point of reference. The minimum distance would be 

four hours, even though this distance crosses over the 0:OO line. This minimum distance between 

two times will be referred to as the temporal distonce. The issue is further complicated m.hen the 

mean time-of-day needs to be computed, such as when the cluster centroid must be determined. 

Given two times, there are two possible mean values separated by 12 hours. The mean of 

11 PM and 3 AM could either be 1 AM or 1 PM, depending the direction traveled around the 24- 
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hour clock. The mean that is most intuitive is the point halfway during the span representing the 

temporal distance between the points. In other words, the mean should lie within the most acute 

angle created between the two “time vectors” created on a 24-hour clock. In the above case, that 

mean would be 1 AM, since the temporal distance between the two points is four hours, and 1 

AM is within that four-hour span. However, when there are more than two times to be averaged, 

the true value of the mean is not immediately clear. 

We chose to identify the true mean as the time that minimizes the sum of squared error 

‘(SSE) of the mean and all other times. This criterion makes the most intuitive sense, even though 

in some cases there will be multiple equally valid mean values by the SSE criterion. The strength 

of this mean value can be suggested by looking at the standard deviation of times around the 

mean, and only placing significance on those mean values that are accompanied by a relatively 

small standard deviation. 

We considered a variety of approaches to solving this problem, including a vector-based 

method, an optimization method, and a method of straight addition. The final method used is a 

hybrid of a selection of these methods. Any approach must take into account the cyclical 

properties of the time-of-day feature values. 

The optimization merhod calculates the mean of the set of times by minimizing the sum 

of squared errors (SSE) from the mean time. The errors are calculated as the temporal distances 

from the mean time from each other time point. This method will find the global minimum SSE, 

but often only finds local minima when performed by Excel. 

The iwror-based method is rooted in the cyclical nature of the times. The initial step is 

to map the times onto points on the circumference of a 24-hour clock, and create vectors of unit 

length from the origin to each of those points. The vector sum of all of the vectors is computed, 

resulting in a vngle vector. The angle of this resulting vector is calculated, and this is converted 

back to a time. This vector-based method results in the exact mean of a set of points in simple 
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cases, but more often is merely a close approximation of the actual mean. The advantage of this 

method is that it generates a consistent result no matter the order of inputs. 

The third approach considered, the straight addition method, corresponds most closely to 

the method of calculating the mean of a standard set of numerical data. Once a mean has been 

determined for a set of points, if the mean needs to be adjusted to include an additional point, a 

weighted average is calculated. The original mean is weighted by the number of points included, 

and a weighted average is computed with the new point given a weight of one. The problem with 

the straight addition method is that it is highly dependent on the order of points considered in the 

mean calculation; different means can be calculated when the order of times is changed. 

The method we developed that fulfills all of the problem constraints and can be executed 

with a small amount of calculation is a hybrid of the vector-based method and the straight 

addition method. The first step is to calculate the vector-based mean, which is a close 

approximation of the true mean. Once this approximate mean has been obtained, the straight 

addition method can be performed using the vector mean as an initial basis. The method assumes 

that the mean of any two points will lie within the angle formed by the two points and including 

the vector mean. This method is guaranteed to generate a mean that is equal to the true mean, 

independent of the ordering of the points. This method also works when the times have weights 

attached to them, as will often be the case in the procedure for density estimation. 

4.2.2 Event-Related Features 

Event-related features are those features that measure the difference in t h e  between a 

crime occurrence and a particular event or type of event. These features are especially adept at 

addressing the rourine activity theory discussed in Chapter 2. An example of an event-related 

feature with a particular event would be the difference in time from the end of a basebnll game. 

There is often a surge in crime surrounding sporting events with a large number of’ fans in 

attendance, as emorions and intoxication levels can run high by the time fans lea\e the stadium. 
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The value of this feature for each crime event would be the difference between the time of the 

particular event and the time of the crime occurrence. This feature value could be positive or 

negative, depending on which event happened earlier, and could span multiple days. 

Another event-related feature could be included to measure the difference in time from 

any baseball game to a crime occurrence. The value of this feature for each crime event would be 

the time to the nearest event in time, whether that event is earlier or later. For example, if a crime 

occurred two hours after the end of the first game of a homestand, but 18 hours before the end of 

,the second game, the value of that feature would be two hours. Features relating crime to an 

event type could also consider regular events such as daily school closings or bank openings. 

Event-related features do not exhibit cyclical properties, since their values are not limited 

to the 24-hour day, the 7-day week, or any other cycle. In fact, these features are treated in 

exactly the same manner as regular numerical features. 

4.2.3 Other Temporal Features 

Another temporal feature is the “day of week” feature, which is a categorical feature. 

While the day of week displays some characteristjcs of a cyclical value, values of categorical 

features are considered to have no hierarchical order in our model. However, i t  is not clear that 

any information is lost due to this simplification, because we generally consider days to be 

separate entities. We would only expect a higher incidence of crime on a Sunday if there had 

been many crimes on all other Sundays, not because of crime patterns on Saturdays. 

Another type of temporal feature is an event-independent feature. Values of these 

features change over time, but are not associated with any particular event. An e\ample of such a 

feature I\ the temperature at the time of a crime occurrence, which has been shown by Field 

( I  992) I C >  be correlated with some types of crime. A feature could also be includcd that represents 

the level of police deployment at the crime site at the time of occurrence. 
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Chapter 5 : AppIication with Results 

We have discussed the motivation for development of the theoretical basis for the 

prediction model. An equally significant aspect of this thesis was the actual implementation of 

this theory in a working application. The implementation work was motivated by two main 

goals. The first was to incorporate the theoretical extensions related to temporality into the 

existing prediction application; the second goal was to prepare the application for integration into 

a future version of the ReCAP system. 

The existing program was transformed from a stand-alone prediction application into a 

complete decision-support system to aid crime analysts. This new system is named STADIUM, 

as it is a spatio-temporal Transition Density Model. STADIUM takes the user from an initial set 

of basic crime data points through the predictive model-building process. and produces a form of 

output that provides the user with a useful and intuitive visualization of the results. 

5.1 Decision-Support System 

The original intention for the research was to provide a crime prediction tool to serve as a 

decision-support system for crime analysts using the ReCAP system. Decision-support systems 

assist managers and analysts in making decisions and evaluating the possible consequences of 

decisions before they are made. STADIUM was designed to aid crime analysts in projecting 

areas of high-frequency crime activity and discovering the factors underlying crime activity 

patterns. With this tool, analysts can recommend an efficient allocation of police resources. 

Additionally, the model can discover predictive features of crime, while analysts can use the tool 

to test their own hypotheses about the reasons for crime. 

Thematic maps are the means of visualizing model output. The inodel calculates a value 

of the triinsition density at each point of a grid overlaying the prediction region, representing the 

probability that a crime will happen at that location during a particular iimc interval. Since the 
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transition density values at different points in the region often differ by many orders of 

magnitude, it is more informative to display the ordering of points - which has the highest value, 

which has the next highest value, etc. - rather than the actual values. Each point on the grid is 

shaded based on the ordering, with darkest shades representing the points with the highest 

transition density values. In this manner, the pattern of high- and low-density areas can be easily 

observed. Figure 5.3 below is an example of a thematic map. 

0 

Figure 5.3 : Example Thematic Map 

5.2 Evaluation Methods 

The new model was evaluated using a modified version of percentile scores to compare 

performance with a basic comparison model. The model used as a basis of comparison is 

structured in the same way as Liu’s model, except that no feature infonnation is included in the 

model building process or the transition density generation. The only data used to build the 

model are the geographic locations of the crime points in the training data set. Hypothesis tests 

were carried out to determine if there is a significant difference between the results of the two 

models. Also, the performance of the new model with temporal featurcs was compared against 
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the model without temporal features, to investigate the effect of temporal features on model 

results. 

5.2.1 Percentile Scores 

In the original model, no temporal features were allowed to be included in the model, and 

therefore, the time dimension was effectively removed from the problem. In our model, however, 

we permit the inclusion of temporal features, and this difference forces changes in the methods 

for evaluating the model. 

The primary evaluation statistics used by Liu are percentile scores, which are 

approximations of the relative magnitudes of the density estimates. To calculate percentile 

scores, the density estimate of a test point is first compared against the density estimates of all 

grid points. The resulting percentile score reflects the percentage of grid point density estimates 

that are less than the density estimate of the test point. 

When temporal features are included in the model, the output is extended in multiple 

dimensions, as the density estimates change over space and time, instead of just over space. As a 

result, there is a new grid of density estimates corresponding to each set of future temporal 

feature values. The percentile scores must compare test points to the “grid slice” of estimates 

corresponding to the temporal feature vector of the test point. The percentile score, p,,, ,  at 

location s and feature vector x at time t is defined by : 

where d,,,, is the density of the test point at location s with temporal feature vector x, at time t ,  

d is the density estimate of the grid point at that same location with the same feature vector 
s,s.x, 

and time, and l@,,+, 1 d }is 1 if d,,,, 1 d 
sf .I, s: .x, 

and 0 otherwise. 
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5.2.2 Hypothesis Testing 

We use two statistical hypothesis tests to determine whether one model outperforms 

another in a statistically significant way. The first test does a straight comparison of all percentile 

scores for the two models, and determines whether the new model outperforms the comparison 

model for significantly more than half of the test incidences. The second test looks at the actual 

differences between percentile scores in the two models, to determine if the mean difference is 

significant. This test is valuable because while the first test might indicate that a significant 

fraction of percentile scores are larger in one model than the other, it could happen that the actual 

differences between the percentile scores of the two models are relatively small. 

5.3 Model Calibration 

5.3.1 Data Sets 

The data used in the testing of the model was collected from a variety of sources. The 

historical crime data was drawn from the ReCAP system for Richmond, and this data originally 

came from the Richmond police departments. Each data set used in testing contains crime events 

from one- or two-week periods in November and December of 1997. The data range was 

intentionally limited to no more than two months, so that there would not be significant trends in 

the data due to seasonal or other changes. This restriction allows us  to assume that the temporal 

transition density remains constant. The demographic feature data used to assign feature values 

to crime event points and grid points was taken from 1997 census data. The data grid is a regular 

grid of 2517 points placed over the Richmond area. 

5.3.2 Feature Selection 

The first step of Liu’s merhodology is to select a subset of features from a large set of 

possible features. The subset of features includes those features that best account for the 

underlying pattern of event occurrences. Unlike some methods of data mining that will only 
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improve performance given additional information, including more feature information in our 

model has the potential to diminish prediction accuracy. This behavior occurs because feature 

vectors are always considered as a whole, and there is no mechanism for weighting a particular 

dimension of the feature vector more strongly than other dimensions. Of course, a feature that is 

very highly correlated within a cluster, indicated by a low standard deviation, will have a more 

pronounced effect on predictions. But if the values of a particular feature do not fit a Gaussian 
t 

model, then the mixture models will not capture the true nature of the data. 

However, for the purposes of demonstration, we have bypassed the feature selection ’ 

process, with varying results. As a result, in some instances, there is no distinct temporal 

correlation among the data, so the standard deviations of temporal features are very large. In 

these cases, the predictions generated using temporal features do not perform significantly better 

than the predictions with only non-temporal features, and in some cases they even perform 

significantly worse. In practice, it is likely that the feature selection process would not select 

temporal features that would produce inferior results. 

The non-temporal features used in these tests are “families per unit area”, “personal care 

expenditures per household”, and “distance to nearest highway”. Preliminary analysis and visual 

inspection of distributions of these features indicates that the intensity of “Breaking and Entering”, 

incidents is proportional to family density, while most criminal incidents are concentrated in 

middle-class and poor regions of Richmond. The distance to highway feature has the most 

pronounced relationship, as criminal incidents are usually very c lose to highways in Richmond, 

which is a pattern in accordance with some of the studies mentioncd in Chapter 2. 

5.3.3 Modeling Parameters 

Our goal in testing is not to evaluate and compare the pel l’ormance of different transition 

density estimation methods, as this was the focus of the analysl\ in Liu’s work. We are more 

concerned with evaluating the effects of temporal features on pii.diction accuracy. As a result, 
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we chose to only usefinite mixture models for the first order spatial transition density, as those 

performed the best in Liu’s testing on future data. 

5.4 Evaluation Results 

A series of tests were performed on data sets for two primary crime types - “breaking and 

entering” crimes (Codes 501 - 506) and “auto theft” crimes (Codes 701-706). Results of three 

different models were compared for each data set. The three models were our model including 

,temporal features, Liu’s basic model with only non-temporal features, and a comparison model 

with no features. In each case, three sets of tests were performed for each model. One test 

studied results when the original two-week training period was resubstituted as the test data, 

another test studied results with a test set of one week, and the third test studied results with a bi- 

weekly test set. 

Our intention in these tests is not to comprehensively prove that models with temporal 

features included are inherently more predictive than models without temporal features. We will 

demonstrate instances where the model was used with certain temporal features as example cases, 

some of which illustrate how these features can improve model performance. However, it is 

important to keep in mind that using temporal features I S  not a solution in all cases - these 

features should be considered tools to be applied when appropriate. The feature selection process 

is the best method of determining when temporal features should be included in the analysis. 

5.4.1 Breaking and Entering Data 

The three training data sets were November 3-1 6. No\ ember 10-23, and November 17- 

30, with test sets extending through December 14. The tests performed with this data included 

use of the “time-of-day” feature. We can see in Figures A.  1 - A.6 of Appendix A that the model 

with temporal features outperformed the basic feature model ai  a 0.05 level of significance for at 

least one of the hypothesis tests about one-third of the time. mo\t notably on the November 10-23 
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training data. The model with temporal features also outperformed the comparison model at a 

0.10 level of significance for at least one of the hypothesis tests for five of six test sets on the 

November 3-1 6 and November 17-30 training data. However, the comparison model 

outperformed the model with temporal features for two of the three test sets on the November 10- 

23 training data. For all but one test, the model with temporal features compares with the other 

models at a smaller p-value for the bi-weekly predictions than the weekly predictions, indicating 

that time of day is a relatively better predictor over a longer time horizon. 

The figures showing the prediction levels over the Richmond study region indicate that 

the “distance to highway” feature is a major component of the feature-based models (Figures A.7 

and A.8) by inspection of the high intensity patterns. These patterns clearly match the paths of 

major highways in Richmond. The comparison model (Figure A.9) generates a much smoother 

prediction surface. 

5.4.2 Auto Theft Data 

The two training data sets of auto theft crimes were November 3-16 and November 17- 

30, with test sets extending through December 14. The criminal incident counts were relatively 

stable over this time period (except for December 1-7). For the most part, these tests 

demonstrated mixed results for the model with temporal features, as shown in Figures B.l - B.4 

of Appendix B. However, on the November 17-30 training data, the temporal model 

outperformed the comparison model at a 0.05 significance level on the second hypothesis test for 

all three test sets. The temporal model was significantly outperformed by the basic feature model 

in the first hypothesis test on the November 3-16 training data, though this is a surprising result 

given that the raw data (Figure B. 1) indicates that the two models had similar means. 
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Chapter 6 : Conclusion 

6.1 Summary 

In the course of this work, we have made the following primary contributions : 

0 Incorporation of additional types of event features into Liu’s existing model for density 

estimation, especially features in the temporal realm 

0 Development of temporal distance measures and methods for cyclical analysis 

0 Creation of an effective forecasting tool and decision-support system based on this 

methodology for future integration into the ReCAP system 

0 Implementation of an improved user interface, automated tools, and an enhanced 

visualization of result data sets 

Testing of the methodology through application to additional sets of data, including various 

crime types 

0 

With more types of features available for use in the model, crime analysts will have a 

greater variety of tools at their disposal with which to predict likely crime scenarios. Analysts 

can use existing temporal features or propose others that they believe might explain patterns in 

the data. 

The STADIUM program is a dramatically improved means of testing the transition 

density model and using it in a real-world context. The decision-support system guides users 

with a range of skills through the entire model-building process, and provides a rich visualization 

of the prediction results that will be much more useful for crime analysts. 

While the use of temporal features was not shown to produce significant improvements in 

predictions over the previous model in all cases, there are some instances in which temporal 

features can enhance the prediction with usehl  information. The feature selection process should 

be used to identify M hen temporal features can provide additional insight into criminal e\ent 

initiation decisions. 
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6.2 Future Research 

There is definitely more research that can be performed to investigate the appropriate use 

of temporal features in this spatio-temporal transition density model. The first step that should be 

taken is to modify the feature selection program to include temporal features. The program must 

also be improved so tha; it can be integrated into STADIUM. I 

The model estimation procedures could be changed to incorporate similarity rankings for 

categorical variables. These changes would be necessary in the calculation of the first-order 

spatial transition density, and might eliminate the need for latent class finite mixture models. 

Another area of potential future work is to firther test the model with additional types of 

temporal features, and to improve the automatic feature data set creation program to include these 

features. Currently, only certain types of temporal features can be automatically generated, and 

all others must be manually created. 
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Appendix A : Breaking and Entering Data Results 

Figure A.l : Basic statistics : November 3-16 B&E data 

Figure A.2 : Hypothesis test results : November 3-16 B&E data 

Figure A.3 : Basic statistics : November 10-23 B&E data 
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7387 045878 03738 
~~~ ~~ 

Figure A.4 : Hypothesis test results : November 10-23 B&E data 

Figure A S  : Basic statistics : November 17-30 B&E data 

I %Weekly I 131 I 0.61069 2.53374 0.00571 4.0758 20.5026 2.27531 O.Oll6l 

Figure A.6 : Hypothesis test results : November 17-30 B&E data 
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Figure A.7 : Thematic map of temporal feature model prediction 
with November 3-16 B&E training data 

Figure A.8 : Thematic map of basic feature model prediction 
with November 3-16 B&E training data 
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Figure A.9 : Thematic map of comparison model prediction 
with November 3-16 B&E training data 
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Appendix B: Auto Theft Data Results 

ITrainina Set : 1113 - 11/16 Auto Thefts (165 Incidents) I 

74.8153 75.021 72.2726 20.86551 

Figure B. l  : Basic statistics : November 3-16 Auto theft data 

Figure B.2 : Hypothesis test results : November 3-16 Auto theft data 

Figure B.3 : Basic statistics : November 17-30 Auto theft data 
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Figure B.4 : Hypothesis test results : November 17-30 Auto theft data 
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