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Preface

An important element of effective law enforcement and community policing efforts is the
quick identification of emergent “hot spots” of increasing criminal activity.  Similarly, it
is of interest to identify areas of declining activity in a timely manner, to aid in the
development of appropriate and effective responses.

One objective of our research was to develop statistical methods and monitoring models
for the quick detection of emerging and declining geographic clusters of criminal activity.
Both “global” methods that monitor changes across an entire study area and “local”
methods that focus upon smaller subareas were developed.

Clusters of criminal activity are often well-known, and current software may do little
more than confirm what is already known about the existence of geographical patterns of
crime.  Our focus was upon the detection of clusters that occur in relation to some
preexisting expectations (e.g., previous year’s data).  Thus only clusters that exist over
and above what is expected will be detected.  We also focused upon the monitoring of
data as it becomes available, with the objective of detecting changes in geographic
patterns as quickly as possible.  The focus on clustering and changes in clustering is the
subject of Chapters 1 and 2.

A second and related objective was to develop prediction models that forecast how the
pattern of crime will change (i.e., geographic displacement) in response to deployments
of resources.  A focus on situational prevention calls for an evaluation of the effects of
displacement and diffusion.  Mounting evidence suggests that earlier assumptions that the
displacement of crimes to other locations would be the natural result of enforcement may
be overstated (Gabor 1990; Hesseling 1994).  In addition, diffusion effects, whereby the
benefits of enforcement spread to other areas, may be substantial (Sherman 1990;
Weisburd and Green 1995a).  Weisburd, in his development of a research agenda,
suggests that “to better understand displacement and diffusion, studies should be initiated
that are directed at these effects and not at the primary outcomes of crime prevention
initiatives” (p. 15).  Chapter 3 focuses upon the details of our socioeconomic model of
geographical displacement and the spatial concentration of crime.

Using predictive models within a GIS context has implications for policing beyond
fighting crime and disorder problems.  Such models also have uses for strategic and
budgetary planning, something that has to date been difficult to do in most police
agencies that are often driven by crisis situations or political demands. Having predictive
models available allows for planning and allows police to direct scant resources to an
area before minor quality of life issues become chronic disorder problems, before they
reach the “tipping point”.  If police can predict the movement of crime, they have the
ability to plan with the community ways to prevent the destabilization of its
neighborhoods.  This gives police departments the ability to develop long range plans
based not on conjecture or parochial interests but on solid information.  It allows the
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police to apply a business model of forecasts and projections within policing and gives
them the ability to project budgetary needs several years in advance.  Currently,
departments have little idea if the resources they are requesting will be sufficient –
projections are usually based on past needs or information.  Using predictive models,
budget projections can be based on analytic data and not on mere conjecture.
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1. A Statistical Method for the Detection of Geographic Clustering

The purpose of this chapter is to describe methods that were developed to assess the

significance of geographic clustering (with crime analysis as an intended application).  These

methods assess the maximum of a smoothed map of crime rates.  A version of this chapter has

been published in Rogerson (2002).  The published version contains an illustration of the

method.  In addition, application of the method can be found in Rogerson (2003).

Kernel-based, smoothed estimates of spatial variables are useful in exploratory analyses

because they yield a clear visual image of geographic variability in the underlying variable. In

this chapter we suggest an approach for assessing the significance of peaks in the surface that

results from the application of the smoothing kernel.  The approach may also be thought of as a

method for assessing the maximum among a set of suitably defined local statistics.  Local

statistics for data on a regular grid of cells are first defined by using a Gaussian kernel.  Results

from integral geometry are then used to find the probability that the maximum local statistic

exceeds a given critical value.   Approximations are provided that make implementation of the

approach straightforward.  For application of these methods to problems in crime analysis, see

Rogerson (2003).

1.1. Introduction

A common problem in the study of geographic patterns is to determine whether there are local

subregions that exhibit significantly high (or low) values on some variable of interest.

Detecting areas of heightened criminal activity or disease incidence represent but two examples

of such problems.  Bailey and Gatrell (1995) and others have described the use of kernel-
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smoothing as one way to represent the spatial variability in the mean of a variable of interest.

The value at any particular location is taken to be a weighted function of the values in the

neighborhood of the location, with closer locations receiving higher weights.  The result is a

surface portraying the regional variation in the underlying value, smoothed enough to eliminate

the roughness of the image that would result if the original data were used, but not so much that

underlying geographic variability is eliminated.  Although these images represent a useful

visual way to explore data, one often wishes to assess the significance of peaks in the surface.

Attempts at such hypothesis testing have been limited to Monte Carlo simulation (e.g., Kelsall

and Diggle 1995) or to more formal statistical methods that do not control properly for the

likelihood of a Type I error (e.g., Bowman and Azzalini 1997).

A second set of approaches to finding geographic clusters includes methods for

scanning the study area to find subregions with atypical values.  Openshaw's (1987)

Geographical Analysis Machine (GAM), Kulldorff and Nagarwalla's (1994) spatial scan

statistic, and the related methods of Turnbull et al. (1990), Fotheringham and Zhan (1996), and

Besag and Newell (1991) all use (though are not necessarily confined to) circular scanning

windows to search for subregions that contain regional values that would not have been

expected to occur by chance.  Some of these methods correct for the fact that multiple tests are

being carried out (e.g, Kulldorff's scan statistic), while others do not (e.g, Openshaw's GAM).

When multiple testing is accounted for, the significance of the most extreme result is evaluated

using Monte Carlo simulation.

Finally, local statistics such as those developed by Getis and Ord (1992) and by Anselin

(1995) may also be used to pick out local regions with values that are significantly higher or

lower than expected.  They are defined for individual regions as a function of the value of the
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variable in that region, and values of the variable in nearby regions.  Local statistics are

designed primarily for testing hypotheses of spatial association for particular localities; the

issue of multiple testing arises when one wishes to test more than one local statistic for

significance.  The problems result from the correlation among tests of local statistics that are

near to one another in space.

We developed a statistical method for the detection of geographic clustering that is

based upon Worsley's (1996) work on the maxima of Gaussian  random fields.  The method

provides a way to assess the significance of the maximum of a set of local statistics.  It also

may be viewed as a method that allows for the assessment of the statistical significance of a

kernel-based, smoothed surface.  Finally, the method is similar in concept to scan statistics,

since like Kulldorff's scan statistic, it considers many possible subregions and evaluates the

statistical significance of the most extreme value.  In addition, the method yields a calculable

critical value that may be derived without resorting to Monte Carlo simulation methods.  A key

question concerns the adequacy of approximating actual crime distributions with a Gaussian

random field.  For areal data comprised of observed and expected crime frequencies, some

transformation will often be necessary to make the Gaussian assumption reasonable.

We focus on the specific case of regional values that are normally distributed, and then

smoothed with a Gaussian kernel to create local statistics that are similar to the Getis-Ord G*

statistic (Getis and Ord 1992, 1996).  Although crime incidence data rarely have a normal

distribution, it is often possible to transform the data so that it does, approximately, satisfy this

assumption.  A partial justification for focusing upon a Gaussian kernel comes from the work

of Siegmund and Worsley (1995), who suggest that box-shaped kernels are relatively less
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efficient at finding Gaussian-shaped clusters than are Gaussian-shaped kernels at finding box-

shaped clusters.

The primary goal is to assess the significance of the maximum on a smoothed map of

regional values (or, alternatively, the maximum on a map of suitably defined local statistics),

where the underlying data are normal, and where a Gaussian kernel has been used to smooth

individual observations.  The steps involved may be foreshadowed as follows:

1. Construct local statistics zi for each region using the standardized, original region-

specific observations (denoted yi ), and weights defined below in Equation 1.3 as

21 2( ) exp( / 2 ),ij ijw dπσ σ−= −  where dij  is the distance from cell i to cell j (for example, the

distance from centroid to centroid) and σ  is chosen as the standard deviation of a normal

distribution that matches the size of the hypothesized cluster.  Then define zi = ij j
j

w y ,

assuming the subregions consist of a regular lattice of square cells, complete with a guard area

defined at the edges of the study area.  More generally, for either irregular subregions or regular

grid cells near the edge of the study region when a guard area has not been defined, one should

use 2/i ij j ij
j j

z w y w= .

2. Find the critical value z* such that p(max zi  > z*) =α by using that value of z* that

leaves probability (1+.81 2σ )α /A in the tail of the standard normal distribution, where the

study region that has been subdivided into a grid of A square cells, each having side of unit

length.  Alternatively, z* may be approximated by

2
* 4 (1 .81 )ln ( ).z

A
α σπ += −

The details can be found in section 1.5 of this chapter, and in Rogerson (2001).
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1.2. The Geometry of Random Fields

Critical values for the maximum among a set of local statistics may be based upon the

geometry of random fields.  Let x  be a location in d-dimensional space, and let ( )Y x denote a

random multivariate value observed at x.  A random field is defined by the set of values ( )Y x

for some subset of interest within the d-dimensional space (Cressie 1993).   Here we will

confine our attention to univariate random fields in d=2 dimensions, though results are also

available for cases where the number of dimensions is other than two.  We will also pay

particular attention to the special case of a Gaussian random field, where the values at each

location are taken from a Gaussian distribution.  Results for other types of random fields,

including 2 , , and t Fχ fields are also available (see, for example Worsley 1994).

Recent developments have improved upon and generalized the pioneering work of

Adler (1981), who derived an approximation for the probability that the maximum of a

Gaussian random field would exceed a specified value.  In particular, Worsley (1994) has used

principles of integral geometry to derive the following, improved version of Adler's original

expression for exceedance probabilities.  In two dimensions, for the case where independent

observations are observed at many points on a lattice, and then smoothed using a Gaussian

kernel it is:

* * *
* *

2

( ) ( )(max ) [1 ( )]
4ii

Az z D zp z z zϕ ϕ
πσ πσ

> = + + − Φ (1.1)

where ( ) and ( )ϕ ⋅ Φ ⋅  are, respectively, the probability density and cumulative distribution

function of a standard normal variate.  D denotes the caliper diameter and A the area of the

study region.  The caliper diameter is the average of the diameter as measured through all
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rotations of the study area.  For a rectangle with sides a and b, the caliper diameter is (a+b)/2;

for a circular study region of radius r, the caliper diameter is equal to 2r.  Again, Equation 1.1

gives the probability that the maximum of a Gaussian random field, when smoothed by a

Gaussian kernel, exceeds z*.

The primary purpose of this chapter is to illustrate the use of these new results in

problems involving the maximum among a set of particular local statistics (or alternatively, the

maximum of a kernel-based surface).  The reader interested in either more general results or the

geometrical principles that form the foundation of the methods should consult the references.

1.3. Illustration

The method described above can be illustrated as follows.  A 30x30 grid was filled with

y-values generated from a normal distribution with mean 0 and variance 1.  For this simulation

of the null hypothesis of no local cluster, values of σ =1, 2 and 3 were used with the Gaussian

kernel to smooth the initial y values, creating in the process a 30x30 grid of local statistics, zi.

To avoid edge effects, the 22x22 grid occupying the center of the 30x30 grid was searched for

the maximum zi value.

Using the values of A=484, D=22 in Equation 1.2, and setting the left-hand side equal to

α =0.05 yields critical z-values of 3.779, 3.389, and 3.150 for the cases where 1σ = , 2, and 3,

respectively.  For comparison purposes, the 95th percentiles for the critical z-values were then

found from 1,000 Monte Carlo simulations.

Results are shown in the first three columns of Table 1.1, along with the Type I error

probabilities associated with using the critical value derived from Equation 1.1.  Although the

Type I error probabilities are close to their nominal value of 0.05 for the latter two cases, use of
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Equation 1.2 would be overly conservative in the case where 1σ = .  In fact, when 1σ = ,

Equation 1.2 is even more conservative than a Bonferroni adjustment (where the critical value

of z is chosen using / nα instead of α , because there are n separate tests being carried out).

With n=484 cells, the critical z-value following a Bonferroni adjustment is found to be 3.711

(using .05 / 484  as the area in the tail of the normal distribution).

Equation 1.2 is based upon the assumption of a continuous random field, and its poor

performance for the case 1σ =  is due to the discreteness of the grid used to generate the

observed values.

1.4. Approximation for discreteness of observations

Adjusted critical values may be found by first determining the amount of smoothing

implicit in the initial discrete grid, which represents a set of aggregated or smoothed

observations.  We can represent the initial data as a smoothed Gaussian field in the following

way.  With n=484, the z-value associated with a Bonferroni adjustment is 3.711.  By using

z=3.711 in Equation (1.1) we can solve for the amount of smoothing that is imparted by the

square grid ( 0σ σ= ).  In particular, (1) may be rearranged so that 0σ  is the solution to the

following quadratic equation:

2
0 0

( ) ( )( 1 ( )) 0.
4

D z Az zz ϕ ϕα σ σ
ππ

− + Φ − − = (1.5)

In our example, A=484, D=22, α =0.05, z=3.711, and solving for 0σ  yields 0σ =1.133.

In section 6, an argument is presented that suggests that for most problems, this step is not

necessary, and the value of 0σ  may always be taken as 10/9 = 1.111.
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The total amount of smoothing in each case ( tσ ) is then defined by combining the

implied initial smoothing brought about by the discreteness of the grid ( 0σ ) with the

smoothness chosen for the Gaussian kernel in defining the local statistics (say lσ ).  Thus

2 2
0t lσ σ σ= +

 These choices imply respective tσ  values of 1.495, 2.288, and 3.199 for the cases where

1lσ = , 2, and 3, respectively.  Using these values in Equation (1.1) and setting the left-hand

side equal to α =0.05 results in the critical values of *z =3.556, 3.311, and 3.112 in the σ =1, 2,

and 3 cases, respectively.  These values are shown in column 4 of Table 1.1; their associated p-

values are in close agreement with the nominal value of 0.05.

1.5. Approximations for the exceedance probability

Of the terms on the right-hand side of (1.1), the first term contributes most to the p-

value on the left-hand side.  Table 1.2 reveals the contributions of each term on the right-hand

side of (1.1) to the nominal Type I error probability of 0.05 for the illustration above, which

includes a correction for the discrete number of spatial units.

The table shows that the first term is by far the most important, and in each case the

two-term approximation

* * * * *
*

2 2

( ) ( ) ( )( 4 )(max )
4 4

Az z D z z Az Dp z z ϕ ϕ ϕ π σ
πσ πσπσ

+> ≈ + = (1.6)

should suffice (since the sum of the first two terms is close to 0.05).  When the amount of

smoothing imparted by the kernel is sufficiently small, the one-term approximation

* *
*

2

( )(max )
4

Az zp z z ϕ
πσ

> ≈                                                               (1.7)
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will be adequate.

The use of the approximations (1.6) and (1.7) will result in critical values of z* that are

slightly lower than those derived with the full, three-term expression in (1.1).  Table 1.3 reveals

that if / Aσ  is greater than about 0.05 or 0.10, the one-term approximation in (1.7) will be

too liberal, and should be abandoned in favor of the approximation in (1.6).

1.5.1 An approach based on the effective number of independent resels

These approximations still require numerical solution for the desired critical value, z*,

and it is of interest to ask whether a simpler solution for z* is possible.  One possibility is to

attempt an estimate of the effective number of spatial units or resels, upon which to base a

Bonferroni adjustment2.  The greater the amount of smoothing, the less accurate will be the

Bonferroni adjustment which is based upon all n cells, and hence we seek a value for the

number of resels, r, that will be less than n.  Let us take

2( )
Ar

mσ
= (1.8)

where m is an empirical constant of proportionality.  For a grid of square cells, the idea here is

to divide the study area into a number of resels that is directly proportional to the number of

cells (n = A), and inversely proportional to the amount of smoothing, as measured by the

variance of the Gaussian kernel.

A simple Bonferroni adjustment based on r turns out to be possible only because the

value of m is approximately constant throughout a wide range of / Aσ values.  To illustrate,

the value of m satisfying

1 1 2 *(1 / ) (1 ( ) / )r m A zα α σ− −Φ − = Φ − =
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was determined for each of the rows in Table 1.4, using 0.05α = , and using the values of

/ Aσ and z* given in each row (where the value of z* is that determined from Equation (1.1).

Table 1.4 shows that the value of m, as a function of / Aσ , is relatively flat over much of its

range.  This suggests that a very good approximation for z* may be found by taking m=0.9, and

therefore setting the number of resels equal to 2/(.9 )r A σ= .  A Bonferroni adjustment based

upon this number of resels then yields the desired critical value, z*:

2
* 1 (.9 )(1 )z

A
α σ−≈ Φ − (1.9)

Thus one can determine the approximate critical value by finding the z-value that leaves

2(.9 ) / Aα σ in the tail of the standard normal distribution.  Since this may require the use of a

detailed z-table that provides areas for relatively high z-values, it is also of interest to find an

approximation that does not require the use of such a detailed z-table. Using tight bounds for

the cumulative distribution function of a normal variable (Sasvari 1999), z* may also be

approximated by

2
* 4 4 (1 .81 )ln( ) ln( )z

r A
α α σπ π +≈ − = − (1.10)

Note from Table 1.4 that as / Aσ  declines below about 0.02, this approximation will not

work as well, since the value of m begins to decline away from 0.9.  However, as column 5 of

Table 1.3 shows, the use of m=0.9 when / Aσ  is as small as 0.01 results in critical values that

are only slightly liberal.

Columns 5 and 6 of Table 1.1 demonstrate the adequacy of the approximations given by

Equations 1.9 and 1.10 for the case of the maximum local statistic observed on the 22x22 grid.
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The value of m=0.9 suggests that we can use 0 1/ 0.9 1.111σ = =  as a measure of the

smoothing implicit in the discrete grid.  This is because when there is no additional smoothing,

(i.e., local statistics are based only on the value in the local cell, and weights associated with

surrounding cells are zero), the local statistics in each cell are independent, and r = A.  Using

this in Equation 1.8 with m=0.9 requires a standard deviation of  0tσ σ= =1/0.9 = 1.111.

If the amount of smoothing (σ ) is greater than or equal to one, the fact that the resel

approach can be used when / Aσ >.01 implies that the approach may be adopted when A <

10,000.  If the grid is finer than 100x100 = 10,000 or σ <1, then one should ensure that the

total amount of smoothing yields / 0.01t Aσ >  before proceeding with the critical z-value

based on resels.

1.6. Discussion

In this chapter, we have considered a local statistic based upon a Gaussian kernel.  The

statistic has the desirable feature that one may easily find the critical value (via Equation 1.9 or

1.10) necessary for testing the significance of the maximum of the local statistics defined over a

study area.  The statistic relies on the assumption that the underlying data come from a normal

distribution.  In choosing kernels for smoothing, it is commonly noted that the choice of a

kernel function is much less important than choosing the bandwidth.  Since estimates are

relatively robust with respect to the form of the kernel function, the Gaussian kernel is a good

choice when one is interested in assessing the significance of maxima, since it lends itself

readily to such testing.  In addition, one should be aware that the choice of bandwidth should be

made to match the hypothesized cluster size; in the different context of optimal estimation of

kernel surfaces, bandwidth choice could be quite different.
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The distribution of local statistics is also affected by global spatial autocorrelation.  In

particular, the presence of global spatial autocorrelation will make it more difficult to detect

significant local statistics.  Recent developments in the study of random fields (e.g., Worsley et

al. 1999) suggest that the approach described above might also be modified to find an

approximate critical value associated with the maximum local statistic in the presence of global

spatial autocorrelation.

There are situations where one may be interested in trying different amounts of

smoothing (i.e., choose various values for σ ) to see at which scale local statistics are most

significant.  Kulldorff's spatial scan statistic handles this case using a Monte Carlo approach.

Siegmund and Worsley (1995) provide details on how critical values may be derived

analytically when one wishes to test a range of σ values.

Finally, this chapter has focused upon the development of the method; applications of

the ideas summarized here to problems in crime analysis may be found in Rogerson (2003).

An S-Plus computer program for carrying out the approach outlined here (in the context of an

application to disease clusters) is available in Han and Rogerson (2003). 
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Footnotes

1Note that this kernel is a scaled version of the more commonly used Gaussian kernel

2
1( ' ) exp( ' / 2)

2
k

π
= −x x x x

With the first kernel, k1, we have

2 1

1 1 2( ' ) 2 ,
x x

k dx dx π
∞ ∞

=−∞ =−∞

=x x

which is not equal to the more usual

2 1

2 1 2( ' ) 1.
x x

k dx dx
∞ ∞

=−∞ =−∞

=x x

We use k1(.) rather than k2(.) to satisfy the Siegmund and Worsley condition -- that is,

2 1

2
1 1 2[ ( ' )] 1.

x x

k dx dx
∞ ∞

=−∞ =−∞

=x x

2This definition of resels is similar in concept, though different in detail, when compared with

that used by Worsley et al. (1992).



14

Appendix: The Gaussian kernel

For the Gaussian random field, the variable of interest, Y, is defined at each location in

space, x, and at each location, Y(x) has a normal distribution.  In practice we will have observed

values for a finite number of points in space (for example, observed as grid points on a regular

lattice).  Following Siegmund and Worsley (1995), we will define the kernel, k(.), such that it is

a square integrable function, that, without loss of generality, satisfies

2( ) 1.k t dt =

Furthermore, we will focus on the special case of the Gaussian kernel in two dimensions:

1/ 2
1( ' ) exp( ' / 2),k π−= −x x x x

where x' ={x1 x2} represents the two-vector containing the coordinates of location x.

In practice, the local statistic at location xi , ( )iz x , is a weighted sum of the variable

values at other locations, with the weights equal to the kernel value:

2
1 2

1 1

( ) '( )1 1( ) ( ) exp[( ( ) '( ) / 2 ]
n n

j i j i
i j j i j i j

j j
z k y yσ

σ σ πσ= =

− −
= = − − −

x x x x
x x x x x       (1.2)

where ( ) '( )j i j i− −x x x x is the squared distance from point i to point j, and σ  is the bandwidth

(and standard deviation) of the Gaussian kernel, k1.1

The definition used for k1 has the desirable consequence of making the smoothed

estimates/local statistics, z(xi), standard normal variables, when the original variables, Y, are

also expressed as standard normal variables.  Since z(xi) will have a standard normal

distribution, it may  be tested for statistical significance.  To see this, recognize first that the

local statistic is a weighted sum of the other observations:

2 2/ 21( ) .ijd
i j ij j

j j
z e y w yσ

πσ
−= =x                                       (1.3)
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If (0,1)Y N� , the distribution of z(xi ) is normal and its expectation is

E[ ( )] E[ ] 0.i ij j
j

z w y= =x

The variance of z(xi) is

2 2V[ ( )] V[ ] .i ij j ij
j j

z w y w= =x

With the definitions of z1 and k1(.) the sum of the squared weights is equal to one.and so the

variance of z(xi) is approximately equal to one.  This approximation does not hold for cells near

the edge of study regions consisting of regular cells, nor does it hold for irregular lattices.  A

more general definition that can be used for these cases is

2
( ) .

ij j
j

i i

ij
j

w y
z

w
=x (1.4)

The term in the denominator ensures that the variance of the resulting local statistic, zi, will be

equal to one.
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(1) (2) (3) (4) (5) (6)

σ Simulated 95th Critical value Critical value Eq. 1.9 Eq. 1.10

percentile (Eq. 1.2) adjusted for discreteness

1 3.575 3.779 (.029) 3.556 (.052) 3.556 3.572

2 3.342 3.389 (.043) 3.311 (.053) 3.328 3.354

3 3.110 3.150 (.041) 3.112 (.050) 3.136 3.172

Table 1.1. Simulated and approximate critical values ( 0.05α = ) for the maximum local statistic when
484n A= = .
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tσ first term second term third  term

1.495 .0439 .0059 .0002

2.288 .0405 .0090 .0005

3.199 .0369 .0122 .0009

Table 1.2. Contribution of terms in Equation 1.2 to the Type I error probability
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(1) (2) (3) (4) (5)

/ Aσ z* (Eq. 1.2) z* (Eq. 1.3) z* (Eq. 1.4) Resels

two-term one-term m=0.9

approximation approximation

0.01 4.535 4.535 (.050) 4.532 (.051) 4.463 (.068)

0.02 4.205 4.205 (.050) 4.196 (.052) 4.160 (.060)

0.05 3.727 3.727 (.050) 3.700 (.055) 3.716 (.052)

0.10 3.334 3.331 (.050) 3.267 (.061) 3.349 (.047)

0.15 3.094 3.087 (.050) 2.977 (.069) 3.118 (.047)

0.20 2.922 2.909 (.052) 2.748 (.079) 2.944 (.047)

0.25 2.790 2.768 (.053) 2.552 (.090) 2.803 (.048)

Table 1.3.  Approximations for the critical value z*
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/ Aσ z* m

.01 4.535 0.76

.02 4.205 0.81

.05 3.727 0.88

.10 3.334 0.92

.15 3.094 0.94

.20 2.922 0.93

.25 2.790 0.92

.30 2.683 0.90

.35 2.596 0.88

.40 2.523 0.85

Table 1.4. The relative flatness of m as a function of / Aσ .
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2. Spatial Monitoring of Geographic Patterns: An Application to Crime Analysis

This chapter describes a new procedure for detecting changes over time in the spatial pattern of point

events, combining the nearest neighbor index and cumulative sum methods. The method results in

the rapid detection of deviations from expected geographic patterns. It may also be used for various

subregions and may be implemented using time windows of differing length to search for any

changes in spatial pattern that may occur at particular time scales.  The method is illustrated using

1996 arson data from the Buffalo, NY police department.  A published version of this account is

available in Rogerson and Sun (2002).

2.1  Introduction

Statistical methods for detecting clusters in spatial point patterns are almost always applied

retrospectively, in the sense that the statistical test is applied at a single, given point in time using

observed (and possibly aggregate) data on point locations.  In many situations, it is desirable to carry

out such tests repeatedly as new point location data are collected, with the objective of detecting

change as quickly as possible.   For example, it is of interest to detect changes in the spatial pattern

of disease rapidly (Farrington and Beale 1998; Rogerson 1997).  This interest is part of a more

general, longstanding interest in the monitoring of public health (see, e.g., Chen 1978).  Monitoring

the residential locations of new customers is important for businesses to assess their markets and

competition. Quick detection of changes in the pattern of criminal activity may lead to improved

allocation of police resources.

Standard methods of point pattern analysis are not applicable to these problems, and new

methods are required for the rapid detection of changes in spatial patterns.  In this chapter we
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develop and evaluate a method based on the synthesis of the nearest neighbor index with the

cumulative sum methods used in industrial process control.  Of course many alternatives to the

nearest neighbor index are available for the detection of clusters in spatial point patterns, some of

which have been used specifically in the area of crime analysis (see, e.g., Ripley 1976;

Openshaw et al. 1987; Block 1995, among a large list of others).  Some of these focus explicitly

upon space-time interactions, such as the Knox method (1964) and Kulldorff’s space-time scan

statistic (2001).  The choice of the nearest neighbor index is based upon its simplicity and its

common use in crime analysis, and the monitoring methods presented are general enough that

they may be adapted to other statistics and methods aimed at cluster detection.

Section 2.2 provides a brief summary of the nearest neighbor index and cumulative sum

methods.  Section 2.3 suggests how these methods may be combined, and provides illustrative

examples for point patterns that are simulated in the unit square.  Finally, section 2.4 applies the

method to 1996 crime data from the Buffalo, NY Police Department.

2.2 Background

This section provides a brief review of the nearest neighbor index and cumulative sum

methods.

2.2.1. Nearest-neighbor statistic

The nearest neighbor index (Clark and Evans 1954) compares the observed mean of the

distances between points and their nearest neighbors with the distance expected between nearest

neighbors in a random pattern.  The nearest neighbor index, R, is the ratio of the observed to the

expected distance.  The expected distance is given by
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1 ,
2er ρ

=                                                                     (2.1)

where ρ=N/A is the density of points and is equal to the number of points (N) divided by the size

of the study area (A).  Thus

obs

e

rR
r

=                                                                  (2.2)

R values less than 1 indicate clustering, since the observed mean distance between neighboring

points is less than that expected in a random pattern.  The minimum value of R is zero, which

occurs when all points are at a single location.  The theoretical maximum of R is 2.149, which

occurs when points are maximally dispersed in the plane.  The standard deviation of the mean

distance between nearest neighbors in a random pattern is

0.26 .
er N

σ
ρ

= (2.3)

This allows the use of a statistical test using the quantity

,
e

o e

r

r rz
σ
−= (2.4)

where ro is the observed mean distance between nearest neighbors.  Under the null hypothesis of

a random point pattern, z has, approximately, a standard normal distribution.  An observed z-

score that is less than the critical value of z would lead to rejection of the null hypothesis in favor

of the conclusion that significant clustering exists.  Users need to be aware that the statistic can

depend upon the shape of the study area -- highly rectangular areas produce relatively low values

of R since randomly located points are more likely to be close to their neighbors.  Also, since

only the nearest neighbor (and not, for example, second- and third-nearest neighbors) is

considered, detection of clustering is limited to clustering that occurs on relatively small spatial
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scales.  For additional discussion of the nearest neighbor index, see, for example, King (1969),

Griffith and Amrhein (1991), and Bailey and Gatrell (1995).  The nearest neighbor statistic is but

one of a large number of methods for looking at spatial clustering.  References to other methods,

as used in the context of crime analysis, are available in the references to the CrimeStat manual

(http://www.icpsr.umich.edu/NACJD/crimestat/CrimeStatReferences.pdf).

2.2.2. Cumulative sum methods

Cumulative sum (or cusum) methods are designed to detect changes in the mean value of

a quantity of interest (see, for example, Ryan 1989; Wetherill and Brown 1991; Montgomery

1996).  These methods are widely used in industrial process control to monitor the quality of

production characteristics.   They rely upon the assumption that the quantity being monitored is a

normally distributed variable that exhibits no serial autocorrelation.  Without loss of generality,

let the variable be converted to a z-score with mean 0 and variance 1.  Then the cumulative sum,

following observation t, is defined as

1max(0, ),t tS S z k−= + − (2.5)

where k is a parameter.  A change in mean is signaled if St>h, where h is another parameter to be

defined.

Thus values of z in excess of k are cumulated.  The parameter k in this instance, where a

standardized variable is being monitored, is often chosen to be equal to ½; in the more general

case, k is often chosen to be equal to ½ the standard deviation associated with the variable being

monitored.  The parameter h is chosen in conjunction with an acceptable rate of “false alarms”;

high values of h will lead to a low probability of a false alarm, but also a lower probability of

detecting a real change.  Table 2.1 depicts the values of h associated with given average times
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until a false alarm.  These times are called the "in-control" average run length, and are designated

by the notation ARL0. When k=1/2, an approximation for the in-control average run length

(ARL0) may be derived from:

0ARL 2( 1),ae a= − −                                                        (2.6)

where a=h+1.166.  One can make practical use of this approximation to choose the parameter h.

To do so, one first decides upon a value of ARL0, and then solves the approximation for the

corresponding value of h.  In the more general situation where a non-standardized variable is

being monitored, the critical value of the cusum is determined by multiplying the value of h by

the standard deviation of the variable being monitored.

The value of k is often set equal to 1/2 because this choice tends to minimize the average

out-of -control run length (that is, the time until a signal of change is sent when a real pattern

change has occurred) for a given value of ARL0.

2.3. Monitoring changes in point patterns

There are at least two reasons why it is not desirable to repeat statistical tests that use the

nearest neighbor index.  First, one must account for the fact that an adjustment should be made

for the number of tests being carried out.  Consider the following simulation.  Fifty points were

successively located in the unit square.  Following the location of each point (beginning with the

second point, since a single point can not be thought of as a cluster), a nearest neighbor index

was calculated and a z-statistic computed using the means and standard deviations given in Table

2.2.1  This z-score was then compared with the critical value of  z = -1.96 (corresponding to a

one-tailed test with α = 0.025, or a two-tailed test with α = 0.05). In 23% of the 10,000

replications, the null hypothesis of no clustering was rejected before 50 points had been located
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in the square.  This high percentage is due to the fact that more than one hypothesis has been

tested.

An adjustment may be used to account for the fact that 49 separate tests are being

conducted; such an adjustment uses the fact that we want the probability that no significant result

has been found after all 49 tests have been carried out to be equal to, say, 0.975 (i.e., (1-

x)49=.975), where x is the probability of rejection in a single test.  In this case, solving for x

yields x=0.00052, and the corresponding critical value of z is

z = -3.28.  This adjustment is conservative (since the separate tests are not actually independent);

in 10,000 simulations of the null scenario of fifty randomly located points in the unit square, only

0.6% of the time was the null hypothesis rejected (compared to the nominal value of 2.5%).  Less

conservative adjustments that account for the correlation between tests are not straightforward to

derive.

Perhaps more importantly, there is a great deal of “inertia” in the nearest neighbor index

when it is calculated repeatedly, after each new point has been located.  If points begin to cluster,

the nearest neighbor index may not decline quickly, since it will always be based upon an

average of the distances to all nearest neighbors, and not just the distance to nearest neighbors

for the most recent points.  Thus it may take a long time for changes to appear in the statistic.

2.3.1. A cusum approach for the nearest neighbor index

 Here we combine the nearest neighbor and cumulative sum methods as follows.  At each

stage in the evolution of an observed point pattern (e.g., when t-1 points have been observed to

date), we locate a point at random on the map, and the distance from this point to its nearest

neighbor is calculated.  This is repeated a large number of times, and the mean ( d ) and variance
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( 2
dσ ) of the distances from the randomly located points to their nearest neighbors are found.

Then a z-score is assigned to observation t as follows:

obs ,
d

d dz
σ

−= (2.7)

where dobs is the observed distance from point t to its nearest neighbor.  These quantities may

then be cumulated in a cusum scheme.  The cusum scheme described by Equation 2.5 would be

used to detect departures from randomness in the direction of uniformity; such a scheme would

signal a change when observed distances between neighbors began to exceed the distances

expected in a random pattern.  To detect departures from randomness in the direction of

clustering, one would use

1max(0, ),t tS S z k−= − − (2.8)

where St is the cumulative sum at time t, and k is a parameter usually set equal to ½, and more

generally set equal to ½ the size of the change (in terms of standard deviational units) that one is

trying to detect.  Again, a signal of change in pattern is sent when St exceeds the thredhold

parameter h.

Because distances to nearest neighbors do not follow a normal distribution, the

assumption of normality, required by the cusum approach, is violated.  That is, the z-values do

not have a normal distribution.  A solution is to aggregate successive, observations; we can

define a new z-score, z(b) that is simply the average of b successive observations.  The mean of

z(b) will still be equal to zero, and the variance of z(b) is equal to 1/b.  We then replace z in

Equation 2.8 with the quantity (z(b)-0)/(1/√b).  Usually the value of b can be quite small for the

assumption of normality to be acceptable; for the simulations in the unit square, a batch size of

b=3 was found to be acceptable.
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Locating points on a map at random is questionable, since actual points will occur on a

network.  For a recent suggestion on locating points randomly on a network, along with

subsequent point pattern analysis, see Okabe and Yamada (2001).

2.3.2 Simulations of clustering in the unit square

The simulation scenario described in the beginning of this section (where 50 points are

located successively, at random, in a square having both x and y-coordinates ranging from 0 to 1)

was modified to generate clustering as follows.  After observation t=20, points were located

randomly with x- and y-coordinates in the interval (0,0.25) with probability 0.2, and located

randomly within the entire (0,1) square with probability 0.8.  Sequential use of the nearest

neighbor index resulted in detection of clustering in 54.3% of the 10,000 simulations on or

before the 50th observation (in 40.3% of the simulations clusters were detected after observation

20).  With the conservative adjustment for multiple testing, clusters were found on or before the

50th observation in only 10.1% of the simulations (in 9.8% of the simulations clusters were found

after observation 20).

Using the combined cusum-nearest neighbor approach described in section 2.3.1, clusters

were detected in 97.7% of the 10,000 simulations on or before the 50th observation.  The mean

observation number at which a clustering signal was received was 38.5 – a bit more than 18

observations after clustering began.

Note the substantial improvement in cluster detection in comparison with the sequential

use of the nearest neighbor test.  Sequential use of the nearest neighbor test is hampered by the

inertia associated with the first twenty observations, which follow the null hypothesis of no

clustering.  Even after a change in process occurs after observation 20, the nearest neighbor
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index calculated after subsequent observations will contain information based upon the first

twenty observations, and hence it declines only slowly.

2.4. Application to crime analysis and data from the Buffalo Police Department

Our focus is upon modifying a statistic which has been widely used in crime analysis (the

nearest neighbor index) to detect changes in the spatial patterns of criminal activities. Crime

analysts, in addition to being interested in the identification of existing crime hot spots, are also

interested in methods that can quickly detect new, emerging "hot spots", so that policing efforts can

be allocated more efficiently.

Data on the locations and times of 379 arsons were available for 1996 from the Buffalo

Police Department (BPD).  The data represent actual incidents; the data are to be distinguished

from emergency calls for service (which would include false alarms) and arrest data.  Figure 2.1

shows how the nearest neighbor index changes throughout the year for arsons.  There appears to

be a fairly steady decline in R for arsons during 1996.  Because the statistic changes only slowly

over time, we next turn to a cumulative sum approach in the next subsection to determine if and

when significant changes take place in the underlying geographic pattern.

2.4.1 Cumulative sum approach for 1996 arson data

The cusum nearest neighbor approach described in section 2.3 was used with the 1996 BPD

arson data.  Presumably this approach will be more sensitive in identifying points in time where

the pattern has changed, in comparison with the trends shown in Figure 2.1 (which has a great

deal of embedded inertia).
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The first 200 arsons of 1996 (occurring during the period from January to July) were used

as a "base" pattern.  For this base period, it was determined that the location of each successive

point was an average of 0.216 times the distance from its nearest neighbor than was expected.

This yields a baseline measure of clustering that exists in the population; arsons cluster during

the base period because population is clustered and because crimes such as arsons may tend to

occur more in some areas than in others.  The reader should keep in mind that here we are

interested in deviations from this baseline amount of clustering, and not in the detection of

clustering itself.  Recall that an original estimate of expected distance is determined by locating a

point at random within the study area, computing the distance to its nearest neighbor, and then

repeating this many times; we now wish to scale this expected distance downward in accordance

with the observed clustering).   Thus we use

obs .216 ,
.216 d

d dz
σ

−= (2.9)

in place of Equation (2.7).  An alternative would be to use the baseline locations to estimate a

kernel density estimate of arson occurrences.  One could then sample from this as a way of

generating points to estimate d and dσ  (see, e.g., Brunsdon 1995).  The correlation between

successive values of z (i.e., the correlation between zt and zt+1) was found to be insignificant, and

thus the underlying assumption of no serial autocorrelation is satisfied.  A more complete

assessment would also include examination higher order correlations such as the correlation

between zt and zt+2).

Surveillance of the pattern then began in August.  Values of k=1/2 and h=4.12 were used.

The value of h=4.12 was arrived at by using equation 2.2, after choosing a ARL0 value of 380

(corresponding to one false clustering alarm per year).  Figures 2.2 and 2.3 show that the cusum
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statistic becomes critically negative, indicating clustering relative to the base pattern, after about

80 observations (in October).  Note from Figure 2.2 that the cusum statistic remains in the

critical region for most of the remainder of the year.  Changing the definition of the base period

from the first 200 observations to either the first 100 or first 150 observations also leads to a

cluster signal at this same time.  This stability of the signalling with respect to changes in the

base period provides reassuring evidence that results are not overly sensitive to minor changes in

definition of the base period.  The cusum statistic is commonly reset to zero following a signal

(especially in industrial process control, where the change, often a defect, can be noted and the

equipment or process appropriately modified).  Figure 2.3 demonstrates that when the cusum is

reset to zero, the signal of clustering is given two additional times before the end of the year,

indicating that the cause of the increased clustering has persisted.

Figures 2.4 and 2.5 depict the spatial pattern of arsons during 1996.  Figure 2.4 contains

twelve black triangles, representing those 1996 arsons that occurred just prior to the first cluster

signal.  Figure 2.5 contains triangles, representing those 1996 arsons that followed the first

cluster signal.  The maps show that the triangles are nearer to neighboring arsons than the dots

are to their neighbors -- arsons occurring later in the year were more likely to belong to clusters.

A natural question to ask is why the pattern has changed.  One possibility is that there is

seasonal variation in the pattern; in future work we intend to examine data from other years.

Another possibility is that it was the base period that was unusual; perhaps the spatial pattern

during the first half of 1996 was less clustered and more uniform and spread out than is usual.

Again, study of data in adjacent years should help to shed additional light on this question.

In this example, surveillance took place across the entire study region, and changes were

detected in the citywide pattern during October 1996.  It is straightforward to modify this
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procedure when only a subregion is of interest.  A GIS (in this case, Arcview 3.0 was used) may

be used to select the set of points of interest, and to create a new coverage and corresponding

table that contains information only on those arsons within the subregion.

It is important to note that other types of surveillance may also be desired.  For example,

we may wish to detect deviations from the base period that occur in the opposite direction of

what we have been considering here -- namely, distances from new arsons to their nearest

neighbors that are greater than expected.  This would perhaps indicate that arsons were

beginning to occur at new locations (which in turn might be the result of geographic

displacement following an enforcement effort).  Or we may wish to find periods of time where

recent arsons are located nearer to one another in comparison with some base period.  This latter

example is treated in the next section.

2.4.2 Surveillance using a moving window of observations

One of the characteristics of the surveillance method as described to this point is that the

nearest neighbor distance for a newly observed point is calculated as the minimum of the

distance to all previous observations.  For the case of surveillance of arsons in the City of

Buffalo (section 2.4.1), an arson cluster alarm was sounded in October of 1996.  This implied

that recent observations were locating nearer to previous arsons than expected.  But this could

mean simply that the October 1996 arsons were located close to other arsons that were quite

removed in a temporal sense (for example, perhaps the October 1996 arsons were located close

to the location of January or February arsons).  While this type of monitoring will sometimes be

of interest, it will also be of interest to monitor changes in the pattern of arsons that occur over

specified windows of time.
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 Suppose for example that we wish to implement spatial surveillance using a temporal

window containing the previous 10 observations.  Thus we would be looking for an increase (or

conceivably a decrease) in the degree of clustering, where the definition of clustering is based

upon the minimum distance from a newly observed point to any of the 10 previous observations.

To implement this, we first find the minimum distance from a point, observed during the base

period, to its nearest neighbor (where the set of nearest neighbors includes only the ten most

recent observations).  We next compare that distance with the distance expected in a random

pattern (again obtained by taking the mean of a large number of minimum distances from

randomly chosen points to sets of ten successive points that have been observed during the base

period).  When surveillance begins, this process is continued, with the observed distance to the

previous ten observations being compared to the distance that would be expected if the base

pattern did not change.

To illustrate, we define a subregion of the city of Buffalo where arson density appears the

highest, and start surveillance in that subregion at observation 101 (after establishing a base

pattern with the first 100 observations) with a moving window of ten observations.  Figure 2.6

indicates that there are two cluster signals over the remainder of the year.   Figure 2.7 displays

the locations of the observed arsons that occurred Oct 5-11, just prior to the second of these

cluster signals.  These arsons are located nearer to one another than would be expected, given the

usual distances observed between sequences of ten arsons observed during the base period.

Sensitivity to changes in the base period were investigated by defining the first 50 observations

and the first 150 observations as the base period.  In each of these alternatives, cluster signals

were noted at the same times as those displayed in Figure 2.6.
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Figure 2.8 displays the results of surveillance for increases in the distances between

neighbors.  Two primary signals are sent -- the first after the 63rd observation following

commencement of monitoring (on October 17th), and the second after the 107th observation on

December 10th).  Finally, Figure 2.9 portrays, using black triangles, the observations leading up

to the second of these two signals.  These arson locations tended to occur farther from their

nearest neighbors (where nearest neighbors are defined by the minimum distance to the ten

previous observations) than would be expected.  Indeed the black triangles appear in this figure

in relatively scattered locations within the subregion.  This change might have been either

temporary or more long-lasting.  The fact that the cusum returns to less than critical values

before observation 120 suggests that it was temporary.  It is interesting that the signals for

uniformity (large distances between arsons) occurred immediately following the cluster signals.

Perhaps the temporary change was the result of increased patrol in the area that has a high

density of arsons.

2.5 Summary and discussion

In this chapter, we have described a procedure for monitoring changes in spatial patterns

over time.  The method results in the rapid detection of deviations from expected patterns.  It

may be used for various subregions of the study area, and it may be implemented using time

windows of differing length to search for changes in spatial pattern that may occur at particular

time scales.  Although the method has been used here in conjunction with the nearest neighbor

index, it may be adapted for use with other spatial statistics.  In particular, if Xt denotes any

measure of spatial pattern at time t, we may use the following z-scores in a monitoring system

that employs cumulative sums:
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An important issue concerns the choice of a base pattern.  Ideally the analyst should be

able to specify with confidence some prior period of time that was in some sense stable with

respect to the evolution of spatial pattern and that could serve as a basis for comparison.  One

would not likely want to choose an odd or unusual period of time as a base period, any

subsequent changes that were detected might simply signal a return to normalcy.  In this

application we only had access to one year of data; in general it would be important to have

several years of data to be able to account for seasonal trends.

 It should be clear that this method does not give the analyst answers to the all-important

question of why the change in pattern has occurred.  It does provide, however, a way of signaling

when a significant spatial change occurred, and this should lead to both better short-term,

strategic plans, and further hypotheses and investigations regarding the cause of change.  In

addition to signaling unexpected changes in patterns, it should also be of interest to detect

changes in spatial patterns such as displacement that can be expected following targeted

enforcement efforts.  Although it would clearly have been interesting to investigate the possible

causes of the changes in arson patterns in Buffalo (described in section 2.4), this was

unfortunately not possible.

The monitoring approach described here focuses upon changes in geographical patterns

only.  Thus it does not signal either increases or decreases in the volume of criminal activity that

may have taken place.  This should not be viewed as a weakness of the method; the spatial

monitoring method is designed to do exactly what its name implies, and should of course be

combined with other appropriate analytic tools that achieve other objectives.
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Although used here on a set of past data, it should be reemphasized that this monitoring

system is designed primarily for handling new data as they become available.  Although

retrospective detection of pattern changes will certainly be of interest to the crime analyst in

many situations, it is the rapid detection of changes in current patterns that are of most interest.

Finally, we are not suggesting that investigators wait for changes in patterns to develop

before they begin their investigations.  For some crime types, it will be important to follow any

potential information, and a high "false-alarm" rate in the monitoring system may therefore be

tolerable.  The system described here provides just one of many important pieces of information

and is designed to complement, rather than replace, other methods of crime analysis.  Clearly,

changes in spatial patterns may occur for many reasons.  In some cases, investigators and crime

analysts will possess "expert knowledge" that will be far more useful than a statistical analysis.

But there are many other cases where statistical monitoring of pattern changes should prove

beneficial to crime analysts.  Individuals are notoriously poor at detecting whether significant

clusters exist on a map --  there is a tendency to see clusters where none exist.  It is therefore not

a good idea to rely simply on visual interpretation.  In addition, crimes that take place with high

frequency may lead to such a high stream of data that it would be easy to overlook changes in

pattern.
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Footnotes

1One difficulty in implementing the statistical test described in section 2.2.1 concerns boundary
effects -- the nearest neighbor of a point inside of the study area may lie outside of the study
area.  To obviate the difficulties caused by boundary effects, a simulation was performed to find
critical values of the nearest neighbor index.  N points were randomly located in the unit square
and the nearest neighbor index R was calculated.  For each value of N, this was repeated 10,000
times.  The resulting mean values of R and the standard deviations of R associated with tests for
clustering in the unit square are shown in Table 2.2.  Note that in a bounded region such as the
square used here, the observed distance between nearest neighbors will be somewhat greater than
that expected in a random pattern, yielding a mean value of R slightly greater than one (since
distances to near neighbors lying outside of the bounded region are discarded).
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Table 2.1. In-Control ARLs (False Alarm Rates) for Various Values of h

    h     ARL0

   2.5   68.9
   2.6   76.9
   2.7    85.8
   2.8    95.6
   2.9  106.5
   3.0 118.6
   3.1 131.9
   3.2 146.7
   3.3 163.1
   3.4 181.2
   3.5 201.2
   3.6 223.4
   3.7  247.9
   3.8  275.0

3.9   304.9
4.0  338.1
4.1  374.7
4.2 415.3
4.3  460.1
4.4  509.6
4.5 564.4
4.6 625.0
4.7  691.9
4.8  766.0
4.9  847.8
5.0 938.2
5.1  1038.2
5.2 1148.7
5.3 1270.9

   5.4 1405.9
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Table 2.2

Simulated Mean and Critical Values of R in a Random Point Pattern

Number Mean Std. Dev Number Mean Std. Dev.
of Points R R of Points R R

(N)

2 1.470 .7120 36 1.078 .1016
3 1.347 .4924 37 1.076 .1018
4 1.286 .4041 38 1.075 .0989
5 1.248 .3436 39 1.075 .0972
6 1.222 .2994 40 1.076 .0967
7 1.203 .2745 41 1.072 .0950
8 1.188 .2511 42 1.071 .0941
9 1.180 .2311 43 1.070 .0919
10 1.164 .2202 44 1.068 .0917
11 1.152 .2035 45 1.070 .0899
12 1.144 .1954 46 1.067 .0888
13 1.138 .1837 47 1.067 .0874
14 1.135 .1767 48 1.068 .0874
15 1.132 .1700 49 1.065 .0853
16 1.121 .1659 50 1.064 .0853
17 1.118 .1590
18 1.117 .1521
19 1.111 .1486
20 1.111 .1453
21 1.106 .1384
22 1.101 .1353
23 1.100 .1313
24 1.099 .1283
25 1.096 .1257
26 1.094 .1235
27 1.092 .1197
28 1.088 .1170
29 1.085 .1138
30 1.085 .1133
31 1.084 .1108
32 1.084 .1096
33 1.082 .1067
34 1.079 .1065
35 1.080 .1045
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Figure Captions and Notes

Figure 2.1. 1996 Arsons: Nearest neighbor index Over Time

Figure 2.2. Cumulative Sum for 1996 Arsons

Note: Cusum not reset to zero following alarm

Figure 2.3. Cumulative Sum for 1996 Arsons

Note: Cusum reset to zero following alarm

Figure 2.4. 1996 Arsons (Triangles Represent Arsons Leading to Cluster Signal in Early

October)

Figure 2.5. Arson Locations Before and After Signal (“triangle” indicates after)

Figure 2.6. Cumulative Sum with Window of Ten Observations

Figure 2.7. Arson Locations Leading to Clustering Signal with Window of Ten Observations

Figure 2.8. Cumulative Sum with Window of Ten Observations

Figure 2.9. Arson Locations Leading to Dispersion Signal With Window of Ten Observations



Chapter 3. Optimal Police Enforcement Allocation: A Socio-Economic Model of
Geographical Displacement and Spatial Concentration of Crime

3.1. Introduction

A considerable amount of money from federal as well as state and local government has been

allocated to reduce crime. Although varying in type and scope, crime prevention programs have

been widely advocated to supplement proactive policing. Evaluations of preventive programs

have been predicated on the unstated assumption that the offender population is rigid and fixed

in space. However, empirical evidence suggests that crime mobility is a very critical issue to

evaluate the effectiveness of crime reduction programs. Indeed, a burglary prevention program

implemented in a community would be hailed as successful if burglary rates in that community

dropped following implementation. However, consideration must be given to the possibility that

burglaries increased in adjacent communities or that the community was experiencing increases

in other crimes (Gabor 1990).  Thus, an efficient program considers not only where the law

enforcement resources are applied but also their impact on the surrounding environment in terms

of criminal mobility, interjurisdictional spillovers of police, and potential interactions among

adjacent neighborhoods.

In the 1970s, the first concrete evidence of a crime displacement effect began to emerge

from two studies conducted under the auspices of the Rand Institute in New York City. In one

(Press 1971), a 40 percent increase of police manpower in one precinct of New York occasioned

a reduction of street crimes therein, but also appeared to produce a compensating increase in

these crimes in adjacent precincts. The second study (Chaiken, Lawless and Stevenson 1974)

revealed that the introduction of an exact-fare system to curtail robberies on New York City's

buses achieved a dramatic decline in these stick-ups, but not without magnifying the problem of
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robbery on the city's subway system. Other notable examples of crime mobility in the early part

of the 1970s were identified in Columbus, Ohio, and Newark, New Jersey. In Columbus (Lateef

1974), a police helicopter patrol program appeared to displace robberies, burglaries, and auto

thefts to precincts not covered by the patrols. In Newark (Tyrpak 1975), the intensification of

street lighting in several high-crime precincts seemed to result in a shift of some of these crimes

to bordering precincts. A Canadian study (Gabor 1981) revealed that the Operation-Identification

property-making program might have moved some break-ins from the homes of participants to

those not participating in the program.

A practical problem that police officers frequently encounter is a question of where

criminal activities are most likely to displace when some of the neighborhoods in their patrol

area receive extra enforcement. This problem is especially important when the police are

planning crackdown programs to apply to some of their neighborhoods, or when new officers are

to be assigned to some neighborhoods.

Recently, researchers have begun to mathematically model this observed criminal

behavior. One advantage of studying crime by creating a mathematical model is that it provides

police officers with some useful quantitative information. Caulkins (1993) creates a crime model

specifically designed to study a crackdown program on a drug market. This influential paper has

led to much additional work to better understand drug markets, e.g., Baveja et al. (1993, 1997),

Naik et al. (1996) and Kort et al. (1998). Deutsch, Hakim and Weinblatt (1984) apply a time

series technique to forecast crime numbers in the area of interest. They then create a criminal

transportation problem with impedance costs to predict the crime displacement effects. Wortley

(1998) described a two-stage situational prevention model that attempts to give fuller recognition

to the complexity of the person-environment relationship, and, in doing so, also seeks to address
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the theoretical problems of crime displacement on locations.  We refer the reader to surveys of

the criminology literature of operations research and management science that are available in

Maltz (1994), Barnett, Caulkins and Maltz (2001) and Blumstein (2002).

Our work develops a mathematical model of criminal behavior among several adjacent

neighborhoods. In this model, criminals are assumed to make rational choices. In the rational

choice approach (e.g., Cornish and Clarke 1987), offenders are assumed to seek benefit from

their criminal behavior. They decide whether or not to displace their attentions elsewhere based

on the characteristics of particular offenses, in particular, their opportunities and profits.  We

apply maximum utility theory to describe how criminals might respond to enforcement pressure.

Using our socio-economic model of criminal behavior, our purpose is to develop an

optimal enforcement allocation policy.  The "best" allocation, of course, depends on the

objective involved.  We examine two plausible objectives: (i) minimizing the total number of

crimes among the neighborhoods, and (ii) minimizing the difference in the number of crimes

between neighborhoods. Since the allocation policies for these two objectives may not coincide,

we also explore policies that yield a comprising solution.  For this purpose, we establish the

existence of so-called non-dominated solutions, which, although not necessarily the best solution

for either objective, are not worse under both objectives when compared to any other solution.

It is important to note that our model does not assume a constant total criminal activity.

That is, the effect of crime displacement does not necessarily result in the total amount of crime

remaining constant.  If this were the case, there would be little net benefit to police enforcement

strategies.  In fact the specific goal we have is to seek an enforcement strategy that will minimize

the total net crime of all neighborhoods.  The difference is that we recognize the fact that crime

displacement will occur as part of how criminals respond to changing enforcement pressures.
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The rest of this report is organized as follows. In Section 3.2, we establish a mathematical

expected return function for crime that demonstrates the relationship between the number of

crimes and some socio-economic conditions. Section 3.3 discusses some natural properties of

criminal behavior that are suggested by the model. Section 3.4 attempts to explain why both poor

and affluent neighborhoods experience high crime rates. In Section 3.5, we analyze crime

displacement effects and provide a measurement to evaluate the efficiency of a crackdown

program. Section 3.6 predicts where criminals will tend to displace their activity when facing the

pressure of intense enforcement.  Section 3.7 then applies the model to study enforcement

allocation policies between two neighborhoods. Section 3.8 generalizes the results for two

neighborhoods to multiple neighborhoods. In Section 3.9 a case study involving a burglary

dataset from the Buffalo Police Department is analyzed.

3.2. Crime Expected Return Function

Suppose the wealth level in a neighborhood is w and the amount of law enforcement it receives

is E. The wealth level can be the median or mean of household incomes, and the law

enforcement level can be measured by the patrol hours or police monetary budget applied in the

neighborhood. If a criminal commits a successful crime in the neighborhood, he acquires reward;

if arrested, he forfeits this take. Therefore, the expected monetary return from committing a

crime in a neighborhood is the product of the probability of not being arrested and the reward

(Freeman et al. 1996). Wang et al. (2000) create exponential functions to describe the arrest

probability function and the reward function. The arrest probability, a function of the

enforcement per crime, is defined as

PA(E/n) = 1 - exp(-α(E/n)), (3.1)
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where n is the number of crime incidents and α is a positive constant. Note that under a fixed

level of enforcement, a crime has a lesser probability of arrest in an area which has a larger

amount of crime incidents due to the low average enforcement devoted to it. Greenwood et al.

(1977) appears to be the first to document this inverse relationship between the number of crimes

and the probability of arrest.

The reward function is defined as

R(n) = c w exp(-βn), (3.2)

where c is a proportionality constant and β is a positive constant. This expression implies the

return to a successful crime incident decreases exponentially with the number of crime incidents

via an appropriate positive constant and is proportional to the wealth of the neighborhood. It

assumes the total monetary return to a crime in a neighborhood is limited by the wealth of the

neighborhood: the more incidents in the neighborhood, the less wealth that remains for others.

Equations (3.1) and (3.2) give us an expression for the expected monetary return from

committing a crime in a neighborhood as:

f(n) = R(n)*(1-PA(E/n)) = cω exp(- αE/n - βn). (3.3)

As we have seen, equation (3.3) depends on several parameters. The α value reflects the

effectiveness of the per-incident enforcement E/n in making an arrest. This parameter may vary

for different crimes and neighborhoods. Since we will be concentrating on a single crime type, α

will reflect the variability of arrest effectiveness among the neighborhoods. Different types of

crimes might have different c and β values. A crime that requires a higher level of skill to

commit, and hence commands a higher return, should have a higher c value. Crimes that are

more peer-competitive (easily affected by the number of criminals) have a higher β value. Since
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our focus is on a single type of crime, the values of c and β are assumed to be identical for all

neighborhoods.

Suppose criminals have an opportunity cost, m, for committing a specific type of crime.

This cost may reflect foregone opportunities such as gainful employment or crime of a different

type. If the expected return in the neighborhood is greater than the opportunity cost, crime in that

neighborhood is attractive. On the other hand, if the expected return is less than the opportunity

cost, criminals might quit committing crimes or displace their criminal activity. In equilibrium,

the expected return from committing a crime is equal to the opportunity cost, and criminals are

indifferent between committing crimes or not in the neighborhood. Mathematically, we represent

equilibrium as f(n) = m.

Solving f(n) = m, two solutions for n are found:

n = n- := βαβ 2/)4( Ekk −− , (3.4)

n = n+ := βαβ 2/)4( Ekk −+ , (3.5)

provided that E < k/4αβ where k = [ln(cw/m)]2. As illustrated in Figure 2.1, in the case that the

number of crimes is less than n-, the expected return is below the opportunity cost. The

neighborhood is unattractive to criminals and they will exit the neighborhood or quit committing

crimes. However, this decrease in crime increases the amount of enforcement per crime and

might further encourage more criminals to leave. This phenomenon is called positive feedback

(Kleiman, 1988), and will tend to collapse criminal activities in the neighborhood. If the number

of incidents lies between n- and n+, the neighborhood is attractive to criminals and the number of

crime incidents is then expected to increase. However, as the number of crimes reaches

saturation at n+, the expected return of committing a crime no longer provides an economic
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incentive to attract additional crime. Thus the number of crime incidents will stay at n+ in

equilibrium. If the number of crime incidents is greater than n+, the neighborhood is over-

saturated and crime incidents will drop until the number reaches equilibrium at n+. From these

observations, we call n- and n+ the unstable equilibrium and the stable equilibrium, respectively.

In the case that E > k/4αβ, i.e., a relatively large police pressure, f(n) = m does not have a

solution since the expected return never reaches the opportunity cost. Hence the criminal activity

eventually collapses. We can summarize the discussion of this section into the following

proposition.

Proposition 2.1. The number of crime incidents in equilibrium depends on the initial number of

crime incidents when the law enforcement is first applied. If the initial number of crime incidents

is less than the unstable equilibrium n-, the criminal activity will collapse and no crimes survive

in the neighborhood. Otherwise, the number of crime incidents will reach the stable equilibrium

n+.

3.3. Some Properties of Criminal Activity

To further investigate criminal activity, we first define another function S(n) := n f(n), the total

expected monetary amount supplied by the crime victims when the number of crime incidents is

n. We now consider some properties of f(n) and S(n). It is worth noting that
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Also, the first order derivatives of S(n) and f(n) are

S′(n) = f(n)(1+ αE/n -βn), and
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 f′(n) = f(n)(αE/n2 - β).

Solving S′(n) = 0 and f′(n) = 0 for n > 0, we have n** = [1+ (1 + 4αβE)1/2]/2β and n* = (αE/β)1/2,

respectively. Furthermore, S′ (n) > 0 for 0 < n < n** and S′ (n) < 0 for n > n**; f′ (n) > 0 for 0 < n

< n* and f′ (n) < 0 for n > n*. Therefore, we can conclude the following proposition.

Proposition 3.1. S(n) and f(n) share the following similar properties:

1. These two functions are positive and approach zero as n approaches either zero or infinity.

2. S(n) has a unique maximum at n** = [1+ (1 + 4αβE)1/2]/2β and f(n) has a unique maximum at

n* = (αE/β)1/2. We denote the maximum total expected supply level as S** = S(n**) and the

maximum expected return per crime as  f* = f( n*) = cw exp(-2(αβE)1/2).

3. S(n) and f(n) are increasing with n as 0 < n < n** and 0 < n < n*, respectively. Also, they are

decreasing with n as n > n** and n > n*, respectively.

Property 1 provides the natural statement that whatever the number of crimes in a

neighborhood, the expected monetary return of a crime and the total amount are positive.

Further, when n is very large, these values are small because of the limited wealth in the

neighborhood and the potential victims' awareness of crimes that will encourage them to add

more security to protect their wealth.

In property 2, n* can be interpreted as the ideal crime level for individual criminals.

When the number of incidents reaches n*, criminals can expect the largest return f* = c w exp[-

2(αβE)1/2] from committing a crime. At this level, the expected return per crime is at its highest.

Thus, n* is the ideal crime level for individually optimizing criminals such as a corner drug

dealer, a burglar or petty thief.
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It is worth noting that although f* decreases, n* increases with an increase in enforcement.

This is because high enforcement increases the probability of arrest and reduces the maximum

return criminals might get. However, from the perspective of criminals, in a high law

enforcement environment they prefer more crimes to occur in the neighborhood to share the

arrest pressure and reduce the average enforcement upon them. This decreases the possibility of

their being arrested. Hence, the n* value is larger in an environment of higher enforcement.

When the number of crime incidents reaches n**, criminals enjoy their maximum total

expected return. Thus, if there is a group of criminals that can organize the criminal activity in

this neighborhood, n** is the crime level they want to maintain. We can thus think of n** as the

organized crime equilibrium level. At this level, the organization will try to maintain crime level

n** by protecting their territory from outside criminals and asking their members to keep up their

current activities. However, if the neighborhood is open to outside criminals, the success of

current criminals tends to attract more crimes into the neighborhood. This continues until there

are too many crimes in the neighborhood and eventually the number of crimes will reach the

stable equilibrium n+. Hereafter, if not mentioned specifically, we assume that no criminal

organizations control a neighborhood.

Property 3 says that f(n) is an increasing function for n < n*. This is due to the fact that

for a small number of n the average enforcement for each potential crime incident is large and

hence the arrest rate is relatively high. In this situation, more crime incidents can reduce the

arrest possibility and then increase the expected return. On the other hand, f(n) is a decreasing

function for n > n*. That is, due to the wealth limitation of the neighborhood, the expected return

eventually falls down as the number of crimes increases. After the number of incidents in the

neighborhood reaches a certain level, the wealth to be shared per incident decreases. A similar
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explanation holds for S(n). As n < n**, the number of crimes is not high enough to warrant the

attention of potential victims. At this time, they are more willing to give (to criminals) than to

add more security to protect their property. However, once we have n > n**, the curve decreases

with the number of crimes since the loss to criminals exceeds the endurance of potential victims.

Proposition 3.1 also concludes that the shape of the expected return function (total

monetary return curve) (i) has a unique maximum, (ii) approaches to zero asymptotically at the

two end points, and (iii) is unimodal, increasing with n as n < n* (n**) and decreasing with n as n

> n* (n**).

The next proposition provides decision makers information about how much enforcement

should be allocated in a neighborhood to collapse the criminal activity. Note that to collapse

criminal activity in the neighborhood, it suffices to assign E = [k/4αβ]+, which we define as

exceeding k/4αβ by an infinitesimal amount of enforcement.

Proposition 3.2. Suppose the initial number of crimes in a neighborhood is n0. The minimum

enforcement resources required to collapse criminal activity in the neighborhood is

(i) [k/4αβ]+, if n0 > k1/2/2β;

(ii) [n0(k1/2-β n0 )/α]+, if  n0 < k1/2/2β.

Proof:

From Proposition 2.1, in case that the initial number of crimes is less than the unstable

equilibrium, the criminal activity finally collapses. Therefore, we are looking for E such that

n0 < [k1/2 - (k - 4αβE)1/2]/2β.

Now, if k1/2 - 2βn0 > 0, i.e., n0 < k1/2/2β,

 n0 < [k1/2 - (k - 4αβE)1/2]/2β ⇔ (k - 4αβE)1/2 < k1/2 - 2βn0  ⇔ E > n0(k1/2-β n0 )/α.
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Hence, it is required to allocate E = [n0(k1/2-β n0 )/α]+ to collapse criminal activity.

If k1/2 - 2βn0 < 0, i.e., n0 > k1/2/2β, there is no solution for E. But, from the discussion of the

previous section, no matter what the initial number of crime incidents is, if the law enforcement

applied to the neighborhood is greater than k/4αβ, the criminal activity will collapse. Therefore,

to collapse criminal activity, it is required to assign E = [k/4αβ]+.

The proposition is proved.

Corollary 3.1. The amount of law enforcement required to collapse criminal activity is

increasing in the initial number of crimes.

Proof:

From Proposition 3.2, if n0 < k1/2/2β, it requires E = [n0(k1/2-β n0 )/α]+ to collapse criminal

activity. Now, assume that n0 < k1/2/2β. We get

∂/∂n0( n0(k1/2-β n0 )/α ) = k1/2/α - 2β n0/α > k1/2/α - 2β(k1/2/2β)/α = 0.

Hence, n0(k1/2-β n0)/α is an increasing function of n0 and the upper bound happens when n0 =

k1/2/2β with function value k/4αβ. This proves the corollary.

Corollary 3.1 gives guidance on the cost of implementing a crackdown program. The

smaller the number of crimes the less the required enforcement level is for achieving a

crackdown. If we wait till the criminal activity in a neighborhood matures, it will cost us more to

collapse the activity.

3.4. Crime Rates and Wealth Level
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This section studies the relationship between crime rates and wealth level. We use our model and

the theory of deprivation and strain (for an overview see Belknap 1989) to solve the paradox that

both affluent and poor societies may have high crime rates. A reasonable explanation for the

inconsistent relationship is provided.

According to deprivation and strain theories, in a poor society with gross income

disparities, more persons will feel the need to compensate for their perceived or actual

deprivation through criminal activity (Jongman et al. 1991; van Dijk 1994). The potential

criminals in such societies tend to be risky and accept low return from committing a crime. In

terms of our model, the opportunity costs in poor societies will be shifted downwards in

comparison to elsewhere. Also, in poor societies there are less viable targets available than in

more affluent societies where people can better afford losses. For this reason, the monetary

return curves shift downward as well. Whether the number of crime incidents will eventually

increase or decrease in societies with different wealth levels depends on the strength of factors

affecting the opportunity cost and expected return from a crime. If the opportunity costs are more

strongly shifted downwards than expected returns are, then the intersection point will be moved

to the right (as shown in Figure 4.1). Therefore, the number of crimes will eventually increase.

The findings of the International Crime Survey indicate that the levels of most types of

property criminals are in fact relatively high in many countries with low GNPs and/or massive

unemployment. By far the highest rates of property crime rates were measured in cities in

developing countries in Africa and South America, such as Kampala, Dar es Salam, Tunis, Rio

de Janeiro, and Buenos Aires (van Dijk and Zvekic 1993). These results suggest that opportunity

costs are indeed placed lower in underdeveloped socio-economic societies and, in equilibrium,

the downward shift of the opportunity costs seem to be larger than the downward shift of the
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expected return curves. This explains why some cities in the third World suffer extremely high

crime rates, although criminals do not have higher expected returns from committing crimes.

In more affluent societies the presence of luxury goods yields opportunity for large

profits from committing crimes. As a consequence, expected return curves are shifted upwards

considerably. At the same time, the effect of deprivation and strain is not very strong in affluent

societies. Along with welfare provisions and lower unemployment rates, the opportunity costs

are shifted upwards too. If the expected return curves are more strongly shifted upwards than the

opportunity costs are, then the intersection point will be moved to the right and it causes the

number of crimes to increase (see Figure 4.2).

Recall that the number of crimes in equilibrium is [k1/2 + (k - 4αβE)1/2]/2β where k =

[ln(cw/m)]2. The number of crime incidents in equilibrium has a positive relationship with the

expected return (which is positively proportional to the wealth level of the neighborhood w), but

has an inverse relationship with the opportunity cost (m) for committing crimes. Furthermore,

affluent neighborhoods which have higher w values also have higher m values by the theory of

deprivation and strain. Generally, neighborhoods with higher values of w/m attract more crimes,

and the net effects on the opportunity costs and expected return curves can help us explain why

both some developing and some of the most affluent communities experience relatively high

levels of property crimes. For the communities in developing (less affluent) countries, the high

crime rates are caused by the low opportunity costs for criminal wages. For communities in

affluent countries, high expected returns for criminal behavior are responsible for high crime

rates.

3.5. Geographical Displacement Phenomenon
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In this section we demonstrate how a crackdown program being applied to a neighborhood

impacts an adjacent neighborhood. We start with the case of two adjacent neighborhoods,

neighborhood 1 and neighborhood 2, and study how a crackdown program applied in

neighborhood 2 affects the criminal activities in both neighborhoods.

We presume that criminals tend to commit crime in the neighborhood with larger amount

of expected return and they have an opportunity cost, m, for specific type of crime. If the

expected return in a neighborhood is greater than the opportunity cost, crimes in that

neighborhood are attractive and criminals in other neighborhoods will tend to move in. On the

other hand, if the expected return is less than the opportunity cost, criminals might quit

committing crimes or commit crimes in other neighborhoods. In equilibrium, a person of

criminal mindset is indifferent between committing crime in any neighborhood. Thus, both

neighborhoods have the same expected return from committing a crime, equal to the opportunity

cost. That is, in equilibrium, f1(n1) = f2(n2)  = m so that the equilibrium numbers of crime

incidents in the neighborhoods are

n1 = ββα 2/)4( 1111 Ekk −+ , and

n2 =  ββα 2/)4( 2222 Ekk −+ ,

where ki = [ln(cwi/m)]2.

When the crackdown is first applied to Neighborhood 2, the expected return of a crime in

Neighborhood 2 suddenly drops to m2 = f2(E2+∆E, n2), which is less than m since the expected

return function decreases with the amount of enforcement. At this stage, under the enforcement

level of E2+∆E, criminal activity in neighborhood 2 (with the number of crimes n2) is too self-

competitive.  Criminals who used to commit crimes in Neighborhood 2 have now three

alternatives (i) quit committing crimes because of higher enforcement pressure, (ii) move to
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neighborhood 1 to pursue a higher expected return, or (iii) stay in neighborhood 2 and accept a

lower expected return.

The first two alternatives cause the number of crimes in neighborhood 2 to decrease.

Losing crimes in neighborhood 2 makes the criminal activity less self-competitive and gradually

increases the expected return in the neighborhood. At the same time, since some criminals move

from neighborhood 2 to neighborhood 1, the number of crimes in neighborhood 1 is then over-

saturated and the expected return in the neighborhood drops. As we have seen, the expected

return of committing a crime gradually increases from m2 in neighborhood 2 and decreases from

m in neighborhood 1.  When the expected returns of the two neighborhoods equalize, a new

equilibrium between m2 and m is reached.  We denote the new equilibrium by m', which is now

the new opportunity cost of a crime in the two neighborhoods. This scenario, called a

geographical displacement phenomenon, is illustrated in Figure 5.1.

Under the new equilibrium, we should have f1(n1′) = f2(n2′)  = m′ and the equilibrium

numbers of crime incidents in the two neighborhoods are

n1′  = ββα 2/)4( 11
'

1
'

1 Ekk −+ , and

n2′  =  ββα 2/))(4( 22
'

2
'

2 EEkk ∆+−+ ,

where ki
' = [ln(cwi/m')]2.

Note that the opportunity cost decreases from m (before a crackdown is applied to

neighborhood 2) to m' (after a crackdown is applied to neighborhood 2). This is because

criminals in neighborhood 1 perceive the pressure indirectly from the enforcement directly

applied to neighborhood 2 and the opportunity costs have an inverse relationship with the total

enforcement. Here, we assume the criminals have no geographical preference in which
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neighborhood to commit crimes. Their only concern is the amount of the (illegal) expected

return.

If the crackdown program applied in neighborhood 2 only forces criminals to move to

neighborhood 1 but does not reduce the criminals' opportunity cost in the neighborhood, the

criminal activity in neighborhood 1 will be too self-competitive and eventually the number of

crimes in the neighborhood will drop back to n1. In this situation, criminals in neighborhood 1

suddenly face many competitors moving in from neighborhood 2 and find that the expected

return is not as high as before. Instead of reducing their opportunity cost, they choose to quit

committing crimes in neighborhood 1. The displacement effect only happens when the

crackdown program is first applied. However, in a long-term point of view, the crackdown

program in neighborhood 2 has an absolute success.

3.6. Prediction on Crime Movement

In this section, we predict the direction of crime movement when the enforcement allocation

policy is changed; specifically, when the crackdown program is applied in one of several

neighborhoods.

We first consider the situation where decision makers would like to decrease the crime

number in one of their patrol neighborhoods, the target neighborhood; however, they are not

supplied with extra enforcement from outside resources. That is, they have to collect some

resources from neighborhoods and apply the resources to their target neighborhood. Suppose the

interested area consists of n neighborhoods and neighborhood i receives the amount of law

enforcement Ei for i = 1...n. We would like to add the amount of enforcement ∆E to the target

neighborhood l. Let S denote the set of neighborhoods from which some enforcement will be
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removed to obtain these resources. The enforcement levels of the neighborhoods other than l and

those in S are kept the same. Assume the new allocation policy is

El' = El + ∆E;

Ej' = Ej - ∆Ej, for j ∈  S, where j∈ S∆Ej = ∆E;

Ek' = Ek for k ∉  S∪ {l}.

Recall our assumption that the criminals' opportunity cost depends on the total amount of

enforcement in the neighborhood. In this case, since the total amount of enforcement does not

change, the value of the opportunity cost should be the same after the new enforcement

allocation. Hence, we should have nl' < nl and nj' > nj for j ∈  S, and the number of crimes is kept

at the same level for the other neighborhoods.

This result is very intuitive. Without receiving extra enforcement resources, any

crackdown program applied in one neighborhood by reducing enforcement in other

neighborhoods does not really help the crime control in a global sense. We cannot reduce the

number of crimes in the target neighborhood without increasing the numbers of crimes in the

neighborhoods which supply enforcement to the target neighborhood.

Now we consider the case that extra enforcement resources can be obtained. Suppose that

we assign the entire extra enforcement to the target neighborhood, i.e., let

El' = El + ∆E;

Ej' = Ej for j ≠ l.

Since the total amount of enforcement is increased by ∆E, the criminals' opportunity cost

decreases. Therefore, we should have nl' < nl and nj' > nj for j ≠ l. To check which neighborhoods

criminals are most likely to displace their criminal activities, taking the first derivative of the

stable equilibrium n = [k1/2 + (k - 4αβE)1/2]/2β  on m, we have
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∂n/∂m = - [ 1 + ( 1 - 4αβE/k)-1/2  ]/(2βm).

The absolute value of ∂n/∂m is increasing with αE/k. Hence, for neighborhoods with larger αE/k

values, the number of crimes tends to increase more rapidly as m decreases. Therefore, when

extra enforcement resources are introduced to one of the neighborhoods and the other

neighborhoods remain at the original levels of enforcement, criminals tend to displace their

criminal activity to the neighborhoods with larger αE/k values.

Note that for multiple neighborhoods in which criminals have the same level of

opportunity cost, the neighborhoods with larger αE/k values will tend to have smaller numbers of

crime incidents in equilibrium. Therefore, if a crackdown program is applied to a neighborhood

and the displacement effect does occur, criminals will eventually displace most of their activities

to the neighborhoods that had less numbers of crimes before the crackdown program was

applied. This implies that when criminal activity among the neighborhoods reaches steady state

again, the disparity of the number of crimes among the neighborhoods decreases.

3.7. Optimal Allocation Policies in Two Neighborhoods

In this section, we study the optimal allocation policies with the case of two neighborhoods.

Total enforcement resources are assumed fixed and the objectives are to determine the

proportion of enforcement that should be applied to each neighborhood.

The optimal allocation policies are developed based on two alternative objectives: (i)

minimizing the weighted sum of crime numbers, λ1n1 + λ2n2, and (ii) minimizing the difference

of the number of crime incidents between two neighborhoods, |γ1n1 - γ2n2|, where λ1, λ2, γ1 and γ2

are positive constants. Again, ni = ni
+ if allocated xi < (ki/li)+ or ni = 0 if xi = (ki/li)+.
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Minimizing the weighted sum is a general global concern. If all the crime numbers in

different neighborhoods are equally weighted, the objective is to minimize the total number of

crimes among all neighborhoods. If interested in per capita crime, one might use the population

of the neighborhoods as an index to weight the neighborhoods. However, there is no guarantee

that minimizing the total weighted number of crimes will lead to an equitable distribution of

resources. There may be, instead, a desire to balance the crime numbers among all

neighborhoods. Hence, the alternative objective of minimizing the difference in the numbers of

crimes between the neighborhoods is a possible remedy.

Consider the trivial case that the enforcement E is sufficient to collapse criminal activities

in both neighborhoods simultaneously, i.e., E > k1/4α1β + k2/4α2β, or equivalently k1/l1 + k2/l2 <

1. Then by setting xi = (ki/li)+, it is possible to achieve the optimal solutions λ1n1 + λ2n2 = 0 and

|γ1n1 - γ2n2| = 0. Therefore, we shall only consider the situation that E is not sufficient to collapse

criminal activities in the neighborhoods simultaneously. Let x1 = x and x2 = 1-x, so that all

enforcement is allocated. Also, let 1// 2211 −+= lklkh .

3.7.1 Minimizing Total Number of Crime Incidents

In this section we wish to minimize the weighted sum of crime numbers λ1n1 + λ2n2 of the two

neighborhoods, where λ1 and λ2 are positive constants.

The allocation problem can be formulated mathematically as

<Problem 7.1> Minimize F1(x) = λ1n1 + λ2n2

subject to max {0, 1 – (k2/l2)+} < x < min{1, (k1/l1)+}.
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The optimal enforcement allocation policy happens to be a one-neighborhood crackdown

policy, which allocates as much enforcement as possible to collapse the criminal activities in one

neighborhood and then any remaining enforcement to the other neighborhood. This is due to the

fact that the objective function, F1(x), is concave in the proportion of enforcement allocated in

neighborhood 1, x, and is discontinuous at the endpoints (k1/l1)+ and 1 – (k2/l2)+.  The details are

summarized in Theorem 7.1.

Theorem 7.1:  Suppose enforcement E is not sufficient to collapse criminal activities in the two

neighborhoods simultaneously. The optimal allocation policy that minimizes the weighted sum

of crime numbers λ1n1 + λ2n2 is a one-neighborhood crackdown policy as follows.

1. If E is sufficient to collapse criminal activities in both of the two neighborhoods but not

simultaneously, the crackdown should be made in the neighborhood with highest

)( lhk +λ  value.

2. If E is sufficient to collapse criminal activities in only one of the two neighborhoods, say

neighborhood 1, then the crackdown should be made in neighborhood 1 if

)(2 222211 lklhk −−≤ λλ ; otherwise, neighborhood 2 will receive all enforcement. The

first case holds if λ1 = λ2 and neighborhood 1 has a better arrest ability (α1 > α2).

3. If E is not sufficient to collapse criminal activities in either neighborhood, the crackdown

should be made in the neighborhood with highest )( lkk −−λ value.

Proof: See Wang et al. (2000b).
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The following two corollaries to Theorem 7.1 provide police management some intuitive

tips for making allocation policies under some specific circumstances. As in Theorem 7.1, we

assume in both corollaries that the total enforcement of a crackdown program is not sufficient to

collapse the criminal activities of the two neighborhoods simultaneously. The proof of the

corollaries can be derived directly from Theorem 7.1.

Corollary 7.1: If the objective equally weights the number of crimes, and the wealth of the two

neighborhoods is equal, i.e., λ1 = λ2, and w1 = w2 or k1 = k2 , then the crackdown should be made

in the neighborhood with larger α value.

Corollary 7.2: If the objective equally weights the number of crimes, and the efficiency of

making arrest in the two neighborhoods is equal, i.e., λ1 = λ2 and α1 = α2 or l1 = l2 , then

1. If E is sufficient to collapse criminal activities in both of the two neighborhoods but not

simultaneously, the crackdown should be made in the wealthier neighborhood.

2. Otherwise, the crackdown should be made in the less wealthy neighborhood.
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3.7.2 Minimizing Crime Disparity

In this section we wish to minimize the weighted difference of crime numbers |γ1n1 - γ2n2|

between the two neighborhoods, where γ1 and γ2 are positive constants.The allocation problem

can be formulated mathematically as

<Problem 7.2> Minimize |F2(x)| = |γ1n1 - γ2n2|

subject to max {0, 1 – (k2/l2)+} < x < min {1, (k1/l1)+}.

If the crime numbers are equally weighted for the two neighborhoods, the objective is to

minimize the difference in crime numbers. If γi is the inverse number of the population in

neighborhood i, the objective is to minimize the disparity of per capita crime between the

neighborhoods. The optimal enforcement allocation policy is summarized in Theorem 7.2.

Theorem 7.2: If 2211 kk γγ ≥  and E is not sufficient to collapse criminal activities in the

two neighborhoods at the same time, the weighted difference of the numbers of crime incidents

between the two neighborhoods can be minimized to zero except for the following two

situations.

1. k1 < l1 and )( 22211 lhkk +>γγ .

2. k1 > l1 and )(2 111122 lkkk −+<γγ .

Proof: See Wang et al. (2000b).
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These two cases occur when one or two of the following situations: (1) the difference

between the wealth of the two neighborhoods is relatively large (k1 >> k2); (2) more attention is

paid to the crime level in neighborhood 1 (γ1 >> γ2). Specifically, in the case that the total

enforcement E is sufficient to collapse criminal activities in the neighborhood with highest kγ

value (k1 < l1), the difference of the numbers of crime incidents between the two neighborhoods

might not be able to be minimized to zero when it is inefficient to making arrests in

neighborhood 2 (l2 is very small). On the other hand, in the case that the total enforcement E is

not sufficient to collapse criminal activities in the neighborhood with highest kγ  value (k1 >

l1), the difference of the numbers of crime incidents between the two neighborhoods might not be

able to be minimized to zero when it is inefficient to make arrests in neighborhood 1 (l1 is very

small).

We note that, the optimal solution in problem 7.2, which minimizes the difference, also

minimizes the maximum of weighted crime numbers between the two neighborhoods. This can

be seen clearly as the following three cases: (1) If both neighborhoods in the optimal solution of

Problem 7.2 are partially filled, the objective value of Problem 7.2 is zero. This solution also

minimizes the maximum since relocating enforcement from one neighborhood to the other will

increase the weighted crime number in the neighborhood that loses enforcement and then thereby

increases the maximum. (2) If neighborhood 1 is partially filled (receives all enforcement) and

neighborhood 2 receives no enforcement in the optimal solution of Problem 7.2, then the

maximum weighted number of crimes between the two neighborhoods must happen in

neighborhood 1. Otherwise, relocating some enforcement from neighborhood 1 to neighborhood

2 will reduce the objective value of Problem 7.2. Hence since all enforcement is in neighborhood

1, then this solution minimizes the maximum weighted number of crimes between the
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neighborhoods. (3) If one neighborhood is fully filled in the optimal solution of Problem 7.2 then

the difference of the weighted number of crimes between the two neighborhoods is equivalent to

the weighted number of crimes of the other neighborhood. Hence minimizing the difference is

equivalent to minimizing the maximum of weighted crime numbers between the two

neighborhoods.

Corollary 7.3: If γ1 = γ2, and the wealth of the two neighborhoods is equal, i.e., w1 = w2 or k1 =

k2 = k, then difference in weighted number of crimes between the two neighborhoods can always

be minimized to zero, and the optimal amount of enforcement a neighborhood receives is in

reverse proportion to its efficiency of making arrest, i.e., x1/x2 = α2/α1.

Proof: From the results of Theorem 7.2, the two exceptions cannot happen. Hence, the objective

value can always to be minimized to zero. Also, solving G2(x) = 0 (see proof of Theorem 7.2)

with the assumption that k1 = k2 = k yields x1 = x = l2/(l1+ l2) = α2/(α1+ α2)  and x2 = 1 - x = l1/(l1+

l2) = α1/(α1+ α2).

3.7.3 Non-Dominated Solutions

In previous sections we have found the optimal solutions for both of the objectives, minimizing

the weighted sum of crime numbers and minimizing the weighted difference of crime numbers

between two neighborhoods. In this section, we are interested in non-dominated solutions,

solutions for which no other solution is better under both objectives. We may formally define

non-dominated solutions as follows. A feasible solution x is non-dominated by another feasible

solution y if F1(x) < F1(y) or |F2(x)| < |F2(y) or F1(x) = F1(y) and |F2(x)| = |F2(y) |. Feasible solution
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x is called non-dominated if it is non-dominated by all feasible solutions. Also, a feasible

solution is called dominated if it is not a non-dominated solution. Non-dominated solutions

become important when multiple objectives are considered and it is difficult to decide which

objectives are particularly most critical. In this situation, decision makers should eliminate

dominated solutions, for which there exist solutions better under both objectives, and consider

only non-dominated solutions.

In some circumstances, there may not be any non-dominated solutions. For example,

without loss of generality, we assume neighborhood 1 is the neighborhood with highest kγ

value. No non-dominated solutions exist when it is impossible to equalize the weighted crime

numbers of the neighborhoods in Problem 7.2 and the optimal solution in Problem 7.1 gives

neighborhood 1 highest priority to receive enforcement. In this case, the optimal solutions for

both of the problems are exactly the same: a crackdown on neighborhood 1. Therefore, other

solutions are dominated by this optimal solution (see Figure 7.1, the case that no non-dominated

solutions exist).

On the other hand, in some cases, every feasible solution can be a non-dominated

solution. These situations may happen especially when the optimal solution of Problem 7.1 is the

worst solution of Problem 7.2 and vise versa. One such situation occurs when λ1 = λ2, γ1 = γ2 and

two neighborhoods have exactly the same conditions, i.e., k1 = k2 and l1 = l2. In this special case,

the optimal policy to minimize the difference of crimes between the two neighborhoods is to

evenly split the enforcement (x = 0.5). However, this natural policy maximizes the total number

of crimes of the two neighborhoods. Also, either one of the two one-neighborhood crackdown

policies (cracking down neighborhood 1 or neighborhood 2) is optimal for Problem 7.1 but the

worst for Problem 7.2. Along with the symmetry of both objective functions and their monotone
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property on the two wings (see Figure 7.1, the case that every feasible solution is non-

dominated), it can be easily seen that none of the feasible solutions dominates each other.

Therefore, we conclude that every solution is non-dominated

As illustrated in Figure 7.1, we have seen that under certain circumstances there may be

no non-dominated solutions at all. On the other hand, for some circumstances, every feasible

solution can be a non-dominated solution. Generally, there is no analytic method that can easily

find all non-dominated solutions. However, since we only consider two objective functions in

two neighborhoods at this stage, the non-dominated solutions can be visually detected with the

help of the plots of all objective values. It shows that if there are any non-dominated solutions, at

least some of them are in an interval adjacent to the optimal solution of Problem 7.1.

3.8. Optimal Allocation Policies in Multiple Neighborhoods

We have completed the discussion of the enforcement allocation problem in the case of

two neighborhoods. Usually, of course, there are more than two neighborhoods of interest. This

section generalizes from the case of two neighborhoods to that of multiple neighborhoods. We

develop computationally efficient algorithms to generate optimal allocation policies.  Some

results formed for the case of two neighborhoods are helpful in the situation of multiple

neighborhoods. However, since the objective functions are highly non-linear, they cannot be

applied directly.

3.8.1 Minimizing Total Number of Crime Incidents

If E is not sufficient to collapse criminal activities in all neighborhoods at the same time,

i.e., E <  
 i=1..n(ki/4αiβ)+, then the mathematical formulation can be written as:
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<Problem 8.1> Minimize
=

n

i
iin

1
λ

subject to
=

n

i
ix

1

 = 1;

0  < xi < (ki/li)+, for i = 1, 2,...,n.

where ki = [ln(cwi/m)]2, li = 4αiβE, for i = 1, 2,...,n.

We assume that at most one of the neighborhoods is not able to be collapsed, i.e., satisfies

k/l > 1. This assumption can be made without loss of generality by recognizing that if there is

more than one neighborhood with k/l > 1, then it suffices to select only the neighborhood with

largest )( lkk −−λ  for the analysis. The other such neighborhoods will be allocated zero

enforcement under the optimal policy (see case 3 of Theorem 7.1).

For any pair of neighborhoods, Theorem 7.1 suggests a one-neighborhood crackdown

policy, where sufficient resources are allocated to one of the two neighborhoods to attempt to

collapse criminal activities there. The other neighborhood then receives consideration for any

additional resources. Therefore, considering all n neighborhoods we know that an optimal

allocation policy has all but one of the ix 's either equal to 0 ("empty") or (ki/li)+ ("filled"). The

"partially filled" neighborhood, call it q* with 0 < xq* < kq*/lq*, results from the remaining

resources after collapsing the filled neighborhoods. We can now assume that we need only ki/li

resources to fill any other neighborhood i, as the infinitesimal resources to complete the fill can

be viewed as part of the "excess" resources assigned to q*. Since the optimal solution consists of

a set of fully filled neighborhoods, I*, one partially filled neighborhood, q*, and a set of empty
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neighborhoods, O*, we focus our attention on the subproblem of selecting the fully filled and

empty neighborhoods, given the partially filled neighborhood q*.

Given a designated partially filled neighborhood q*, we seek a binary allocation policy

for the remaining neighborhoods. Here yi = 0 represents leaving neighborhood i empty with

number of crimes ni = β/ik , and yi = 1 represents fully filling neighborhood i so that ni = 0.

Thus, the objective of our subproblem is to maximize the collapsed criminal activities subject to

a constraint on enforcement resources via

<Problem 8.1’> Maximize 
∈ 'Ci

iii ykλ

subject to 1
'

' ≤
∈ Ci

i
i

i y
l
k ;

yi ∈  {0, 1}for i ∈ C'.

where C’ =  {1, 2,…,n}\ {q*}, E’= E - Eq
* (where Eq

* represents the currently unknown amount

of enforcement allocated in neighborhood q* under an optimal policy) and li
’ = 4 αiβE’.

Here we have transformed the original Problem 8.1 via the binary variable yi = xili'/ki. The

resulting Problem 8.1' is the well-known knapsack problem (cf. Taha1975). However, since all

excess resources will be assigned to q*, at optimality li' will choose to ensure that the knapsack

constraint 1y
l
k

'Ci
i'

i

i ≤
∈

 is tight.  Without loss of generality, we renumber the neighborhoods such

that
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'
11

11

l/k

kλ
 > … > '

pp

pp

l/k

kλ
 > … > 

'
1n1n

1n1n

l/k

k

−−

−−λ
, i.e.,

111 k/αλ  > … > ppp k/αλ  > … > 1n1n1n k/ −−− αλ ,

where p is the integer (0 < p < n) such that 
=

p

1i '
i

i

l
k  = 1. Dantzig (1957) has shown that this ratio

ordering provides the optimal fractional solution to the knapsack problem, where at most one

variable is assigned the fractional slack of the knapsack constraint. Since there is no slack in our

constraint at optimality, this ratio ordering provides the optimal integer solution

*
jy  = 

�

�

�

−+=

=

.1n,...,1pjif0

;p,...,1jif1

Recall our assumption that the optimal solution is xi = ki/li
’ if xi ∈  I* and xi = 0 if xi ∈  O*, this

implies I* = {1, 2, ..., p}and O* = {p+1, p+2, ..., n-1}.

From the discussion so far, we can easily determine I* and O* given the neighborhood

that should be partially filled and how much enforcement should be allocated in it are known.

This leads to the following polynomial algorithm for finding the optimal allocation policy for

Problem 8.1.

Algorithm 8.1

1. Number neighborhoods such that nnn222111 k/...k/k/ αλαλαλ ≥≥≥ ; let C =

{1,2,…,n}.

2. Let q  = 1 and  f* = ∞  for i = 1,…,n.
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3. Find s and p, where s is the smallest integer such that 1
l
k

l
k

q

q

qi,s..1i i

i ≥+
≠=

 and p is the

smallest integer such that 1
l
k

qi,p..1i i

i ≥
≠=

.

4. Let Ei = ki/4αiβ for i  = 1, …, s and Ei = 0 for i  = s+1,…, n.

5. Let Eq = −
≠= qi,s..1i

iEE .

6. Calculate f = 
β

λ
β

λ
2

xlkkk qqqq
q

qi,n...1si

ii −+
+

≠+=
. If f < f*, let f* = f; I* = {1, 2, ...,

s}\{q}; and O* = {s+1, s+2, ..., n}\{q}.

7. Let s = s + 1; if s < p, go to Step 4.

8. Let q  = q  +1; if q < n, go to Step 3.

9. f* is the optimal objective value and the optimal policy is to collapse criminal activities in the

neighborhoods of I* and allocate the remaining enforcement to neighborhood q.

Step 1 in Algorithm 8.1 sorts the neighborhoods in a decreasing order on k/λα . The

neighborhoods with larger k/λα  value have higher priority to receive enforcement if the

partially filled neighborhood is known. The complexity of this sorting process is O(n ln(n)). The

loop starting from Step 2 and ending at Step 8 enumerates all the possibilities of the partially

filled neighborhood from 1 to n. The complexity of this loop is O(n). Step 3 determines s and p

for the choice of q. Here, if q is partially filled, all neighborhoods i < s must be fully filled

because of their higher priority to receive enforcement; and all neighborhoods i > p must be

empty because of their lower priority to receive enforcement and the limited amount of
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enforcement. The loop starting from Step 4 and ending at Step 7 enumerates all the possibilities

of fully filled neighborhoods under the assumption that q is the partially filled neighborhood.

The complexity of this loop is O(n). Since we have a loop of enumerating all possibilities of fully

filled neighborhoods under the loop which enumerates all possibilities of the partially filled

neighborhood. The complexity of running these two loop is O(n2). Step 5 computes the amount

of enforcement which neighborhood q should receive in the case that the fully filled

neighborhoods have been determined. Step 6 calculates the objective function of the current

allocation policy and updates the optimal solution if necessary. When we run out of all

possibilities, Step 9 concludes the algorithm. Those steps only need one calculation time. Hence

the complexity of Algorithm 8.1 is O(n2).

In some special circumstances, the problem can be easy. The following corollaries

identify two such cases.

Corollary 8.1: If the objective equally weights crime numbers among neighborhoods, and the

neighborhoods have equal wealth level, then the neighborhood where enforcement is more

efficiently applied to arrest has higher priority to receive enforcement. That is, the optimal

allocation policy is to allocate enforcement to the neighborhood with largest α as much as

possible until the criminal activities in the neighborhood can be collapsed. If there is still

enforcement available, allocate the remaining enforcement to the neighborhood with second

largest and so on until all enforcement is allocated.

Proof: Directly followed from Corollary 7.1.
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Corollary 8.2: If the objective equally weights crime numbers among neighborhoods and the

efficiency of making arrest in the neighborhoods is equal, then the poorer neighborhood has

higher priority to receive enforcement. That is, the optimal allocation policy is to allocate

enforcement to the poorest neighborhood until the criminal activities in the neighborhood can be

collapsed. If there is still enforcement available, allocate the remaining enforcement to the next

poorest neighborhood and so on until all enforcement is allocated.

Proof: Directly followed from Algorithm 8.1 and property 2 of Corollary 7.2.

3.8.2 Minimizing Crime Disparity

This section discusses the optimal policy of minimizing the disparity of weighted crime numbers

among multiple neighborhoods. The purpose here is to fairly distribute enforcement to the

neighborhoods. The problem can be formulated mathematically as:

<Problem 8.2> Minimize { }jjiiji
nn γγ −

,
max

subject to
=

=
n

i
ix

1
1;

0  < xi < (k i /l i)+, for i = 1, 2,...,n.

The optimal solution in Problem 8.2 can be zero if and only if there exists 0  < xi < (k i /l

i)+ and 0  < xj < (kj/lj)+ such that )xlkk()xlkk( jjjjjiiiii −+=−+ γγ  for each pair of i

and j. After some basic algebraic calculations,
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 for i = 2,...,n.

Hence, to check if there is a possibility to equalize the crime numbers among the neighborhoods,

we should first solve the following quadratic equation in x1

=
−−+−

+
=

n

2i i

2
ii1111i11i

1 l
)k/xlk/k(k

x
γγπγ

1.

If the solution satisfies 0  < xi < ki/li for i = 1, 2,...,n, then we may equalize the crime numbers of

the neighborhoods by letting xi be the proportion of enforcement that neighborhood i receives.

If the solution does not satisfy the constraints 0 < xi < ki/li for each i, then there is no

possibility to minimize the objective value to zero. We shall now focus on solving the problem in

this case.

Recall that, according to our model, when no enforcement is allocated in a neighborhood,

the crime activities of the neighborhood are limited by the wealth level, and the crime number

reaches β/k  in equilibrium. Also, if we can increase enforcement pressure to the level that

reduces the crime number below β2/k  in equilibrium, then the criminal activities will

collapse. Therefore, a non-zero equilibrium must be between β2/k  and β/k  depending on

the amount of enforcement applied. We call β/k  and β2/k  the saturated crime number

and marginal crime number of the neighborhood, respectively.

Consider two neighborhoods i and j with jjii kk γγ 2> . The two neighborhoods

never have the same weighted crime number unless both of them are free of crimes since the
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weighted marginal crime number in neighborhood i ( βγ 2/ii k ) is greater than the weighted

saturated crime number in neighborhood j ( βγ /jj k ).

Without loss of generality, it is assumed that nn kkk γγγ ≥≥≥ ...2211 . Suppose p is

the neighborhood with the maximum weighted crime number, np
*, among the neighborhoods

under the optimal policy. Then the neighborhoods with pp kk γγ 2> , say neighborhoods 1,

..., s, must be free of crime in the optimal policy. This is because the weighted marginal crime

number in these neighborhoods is greater than the weighted saturated crime number of

neighborhood p. Hence, we should have xi
* = (ki/li)+ for i = 1, ..., s. Furthermore, any partially

filled neighborhood must have the same weighted crime number as neighborhood p, since if a

neighborhood is partially filled and has weighted crime number less than γpnp
*, then moving a

small amount of enforcement resources from it to the neighborhoods with the largest crime

numbers will decrease our objective value. Also, the neighborhoods with zero enforcement

allocated must have βγ /k  < γpnp
*. We now can conclude that there exist s and p such that the

optimal solution is

xi
* = (ki/li)+ for i = 1, ..., s,

xi
* for i = s+1, ..., p, where xi

* is the fraction such that γin*
i = γpnp *,

 xi
* = 0 for i = p+1, ..., n.

The following greedy algorithm gives the optimal solution.
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Algorithm 8.2

1. Sort the neighborhoods by their weighted wealth level: nn2211 k...kk γγγ ≥≥≥ .

2. Let i = 1; Eo = E.

3. Find the greatest integer m such that 
=

≤
−m

ij

o

jj

jmmmjm E
kkk
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γγγ )/(

.

4. If mmii k2k γγ > , let 
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i00
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and go to Step 3. Otherwise,

solve 
−−+−

+
+=

m

1ij j

2
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γγγγ
 = 1;

j

2
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j l

)k/xlk/k(k
x

−−+−
=

γγγγ
 for i = i,..., m.

for xi, ..., xm; let xm+1 =  ... =  xn = 0, and stop.

5. The final solution is the proportion of optimal enforcement allocation policy.

Step 1 in the algorithm sorts the neighborhoods in the order their weighted wealth level;

neighborhoods that are more affluent and are highly weighted have higher priority to receive

enforcement. Solving ββαγ 2/)E4kk( iiiii −+  = βγ /k jj  for Ei, we have Ei =

( ) )/(/ βαγγγγ iiijjjij kkk − . This represents the amount of enforcement that should be allocated

in the higher priority neighborhood (neighborhood i) such that the weighted crime number in the

neighborhood is equal to the saturated weighted crime number of the lower priority
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neighborhood (neighborhood j), if desirable. Hence, Step 3 evaluates how low the weighted

crime numbers can go. Note that we might allocate too much enforcement in the neighborhoods

since we only have to push the crime number of the neighborhood less than the marginal

weighted crime number to collapse the criminal activities within it.

In Step 4, if mmii k2k γγ > , we should allocate (ki/4αiβ)+ ≈ ki/4αiβ in neighborhood i

to collapse the criminal activities in the neighborhood. With this information, we let xi = (ki/li)+

and run the algorithm again with the remaining enforcement E0 - ki/4αiβ. On the other hand, if

mmii k2k γγ ≤  by the continuity of crime numbers in neighborhood j as a function of

enforcement on [0, kj/4αjβ) for j = i, ..., m, the equation system must have a unique solution and

this provides the proportion of optimal enforcement allocation policy.

One important proposition, which can be generated from two-neighborhood case with

similar as arguments in Section 7.2, is that the optimal solution - which minimizes the maximum

difference of weighted crime numbers among the neighborhoods - is also the optimal solution

which minimizes the maximum weighted number of crime incidents.

3.9. A Sample Case Study

In this section we apply our model to a burglary dataset in the City of Buffalo in the State

of New York. We estimate the expected return of committing a burglary among the Buffalo

Police Department's (BPD's) current five patrol districts and determine between which districts

crime displacement is most likely to occur. We then suggest an allocation policy that equalizes

the number of burglaries among the five districts.
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Buffalo is the second-largest city in the State of New York with a population of about

330,000.  The City of Buffalo is located on the shores of Lake Erie and comprises approximately

40 square miles. The Buffalo Police Department consists of 533 police officers and deploys

between 33 and 54 police cars at any point of time.

According to the BPD administrators, the BPD has determined command district

boundaries from experience. Typically, boundaries lie along major streets and are drawn so that

the crime numbers are approximately the same in each district. Through a planning process that

involved police chiefs and legislatures in the city government, the design of the BPD's

geographical commands consists of the city's five police command districts named A-E (see

Figure 9.1). The patrolling operations of each district are conducted essentially independent of

other districts. That is, only very few instances of particular incidents require the patrol cars to

cross the district boundaries.

There are several approaches that can be taken to equalize the number of crimes or, with

the similar concern, to minimize the disparity of workload in the districts. One approach, which

we use in this paper, is reallocating enforcement resources such that the criminals in the crime-

ridden districts face more pressure and then we can hopefully reduce crime numbers in those

districts. A second approach is redefining the districts. A third approach is a combination of both.

D'Amico et al. (2000) apply simulated annealing method to redefine the boundaries and develop

a new allocation policy in the City of Buffalo in order to minimize the workload disparity among

the districts. Unavoidably, the new allocation policy tends to assign more enforcement resources

to the crime-ridden districts. Without incorporating displacement effects, the potential problem

we may face is the criminals in relatively crime-ridden districts might displace to the districts

(originally relatively crime-free) that receive less enforcement in the new allocation policy.
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Hence, it may have some unexpected results. From BPD's experience, this difficulty did arise

when the current district design and allocation policy, which was designed to approximately

equalize the crime number in each district, were implemented. As we can see from Table 2, it

appears that the crime numbers, at least in the case of burglary, in the districts are not equal at

all.

During the 17 weeks period between the first of February and the 31st of May in 1998,

there were about 1,695 burglaries that took place in the city (around 100 burglaries per week).

Table 2 lists all the burglary data from BPD dataset over a 17-week period. We use patrol hours

as the measurement of enforcement level and the patrol hours are in a week-based unit since

BPD's patrol schedule is different from day to day and it cycles weekly. The burglary crime

numbers, however, are taken from a seventeen-week period. It should be noticed that no matter

how we scale the variables, the values of parameters might differ for different scales, but the

relative allocation results should not be affected.

According to our assumption that PA(E/n) = 1 - exp(-α(E/n)), the parameter α, which

measures the arrest ability of a district, can be easily estimated from the available data for the

five districts. They are .0300, .0612, .0462, .0288 and .0472 respectively. The result provides us

with an intuition of geographical impact on arrest ability. It seems that districts with larger area

have worse arrest ability (for relative district area, refer the map of the City of Buffalo in Figure

9.1). This outcome is expected since patrolling becomes inefficient if the patrol area is large.

Also, District B, where the BPD Headquarters allocated, is most efficient to make arrests.

In equilibrium, the expected return in all the districts should reach the opportunity cost of

a crime, i.e., PA cω exp(-βn) = m. Here, PA, w and n vary in different districts and are available

from the dataset; however, c and β are neither available nor able to be estimated from the
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information we have.  Since our study is limited on one type of crime, the values of the

parameters c and β are the same for the five districts. If we assume c = .01 and β = .00085, the

expected return in Districts A-E are $157, $79, $79, $140 and $137 respectively.

If a displacement effect does occur between two districts, according to our model, the

expected return should be equal in equilibrium. Our results suggest that displacement effects

occurred between Districts B-C and D-E. This conclusion seems reasonable since Districts D and

E, located adjacent to each other in north Buffalo, are considered relatively crime-free and have

similar economic conditions. Similarly, Districts B-C, located adjacent to each other in the

central city, are considered relatively crime-ridden and have the same median income. District A

has the largest expected return since criminals do not impede each other's efforts significantly.

(The fewest burglaries happened in this district.)

Finally, we provide an optimal allocation policy in Table 3 which distributes total

available enforcement resources, 6414.8 patrol hours, to the five districts such that the numbers

of burglaries among them are as equal as possible. We assume displacement effect occurs

between B-C and D-E and the opportunity cost of a crime for Districts A-E are $157, $79, $79, $

138.5 and $138.5, respectively. Note that criminals in District A have the highest opportunity

cost of a crime so that the saturated crime number in A is the lowest. This implies that A should

have the lowest priority to receive enforcement.
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Figure 2.1. Plot of Expected Monetary Return as a Function of the Crime Number
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Figure 4.1. The Effect of Poverty on the Crime Numbers
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Figure 4.2. The Effect of Affluence on the Crime Numbers
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Figure 5.1. Geographical Displacement Phenomenon
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Figure 9.1. The Five Districts in the City of Buffalo
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Chapter 4. Data-Driven Framework for Understanding Criminal Activity

4.1 Introduction

There has been a recent resurgence in use of OR/MS models to manage and control criminal
activity. However, much of this research is either (1) purely analytical – i.e. difficult to validate
through real data, or (2) it is entirely statistical in nature that is constrained severely by our
knowledge of the data pieces, their accuracy and availability. This component of the project fills
in a pressing need for developing a comprehensive, data-driven modeling framework that
furthers our understanding of the factors that measure and affect criminal activity.

This work was undertaken with help from police departments in Camden, NJ and Philadelphia,
PA. The work studied and modeled criminal activity at both macro and micro levels. The micro-
level component of this project looked at enforcement issues at the street level based on a
probabilistic framework. On the other hand, the macro-level module looked at strategic policing
issues confronting city police departments using a case-based reasoning, artificial intelligence
framework.  Output of this project can therefore be categorized as follows:

1. Sequential Illicit-Drug Enforcement Module – In this part of the project, a sequential
decision-making model is developed for assisting enforcement officials in allocating
resources during a crackdown operation on illicit drug markets. The Sequential Crackdown
Model considers a probabilistic framework, where the probability of incarceration of a dealer
and the probability of dealing are modeled as a function of the size of a drug market,
crackdown enforcement level, drug dealer’s financial hardship, and other market
characteristics. The displacement of drug dealers to “other” drug markets is modeled through
the fact that the dealer is “not” dealing in that particular market. Therefore the displacement
effect is modeled via the probability of “not dealing” in this model.

The model was developed and tested in consultation with enforcement officials from
Philadelphia, PA and Camden, NJ. An implementation scheme is developed for updating
parameters on each day of the crackdown operation. Guidelines are provided for
enforcement officials to improve the chances of success during a crackdown operation.

Results show that using maximum enforcement for a significant number of days during a
crackdown may be optimal in neighborhoods with a severe drug problem. A cyclic
crackdown-backoff strategy may be optimal where residual deterrence dominates
financial hardship. Nonetheless, for all markets, a much quicker and less costly collapse
could be implemented if the daily enforcement availability is increased. The model also
provides rules of thumb for identifying markets where crackdowns would be
unsuccessful in eliminating a drug market.

2. Data-Driven Strategic Policing Decision-Support System – This component was aimed at
providing a practical, data-driven decision support tool for police departments. This work
was undertaken in partnership with Philadelphia and Camden, NJ police departments. Input
factors were identified through a series of interviews and subsequently aggregated into three
dimensions of enforcement (data mainly from Law Enforcement Management and
Administrative Statistics - LEMAS), crime (Uniform Crime Reports –UCR, and FBI sources)
and environment (U.S. Census). The data was extracted, coalesced and then normalized
resulting in a master file to be used as input to the model. The software and model was
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upgraded to incorporate the police department goals of benchmarking more
efficient/effective similar police departments. The model was then tested both with help from
members of the partner police departments and via a controlled experiment. The results
showed the effectiveness of this software in: (1) developing a comprehensive database that
incorporates environmental, enforcement factors along with crime statistics, (2)
understanding and measuring criminal activity based on a comparative, data-driven modeling
framework, (3) encouraging meaningful communication among similar police departments.
Besides the practical usefulness of this project in enhancing the capability of police
department in making more informed decisions, the project makes two theoretical
contributions. First, it provides a unique modeling framework classifying and aggregating
input data into three dimensions – environment, enforcement and crime. Relevant factors are
identified and new measures (e.g. racial match index) developed that help define these
dimensions. Second, this project identifies four important strategic model goals that assist
police departments in moving toward a direction of proactive management.

4.2 Sequential Illicit-Drug Enforcement Module

Illicit drugs, and their control, continue to impose a significant cost on our society both in
the short and long term. This trend can be inferred through DEA statistics that show their
budget increasing from $74.9 million in 1973 to $1,550 million in 2000. While there is no
consensus on the choice of strategies to control the problem, i.e., Local vs. Border
Control, and Enforcement vs. Treatment, and Education, a significant amount of money
continues to be spent. The complexity of issues makes finding the “right” strategy mix
difficult, and sometimes even counter-intuitive. Quantitative and data analysis can often
help grapple with some of these issues systematically. Some policy makers argue that a
focus on a national strategy is misplaced because it ignores the local nature of the drug
problem and suggest putting a greater emphasis on local enforcement. On the other hand,
predatory crime theory warns that local enforcement may lead to unnecessary levels of
property crime unless local enforcement is limited. Recent models however argue that, in
most cases, drug enforcement is almost always a worthwhile strategy in an overall sense
after incorporating cost of drug-related crimes. In-depth street-level ethnographic studies
can be a useful tool in identifying patterns and strategies effective in localized
environment with possible generalizations beyond the region of study. More efforts are
under way to bring newer methods of accurately evaluating policing enforcement. These
trends in better methods of measurement/evaluation coupled with support from
theoretical models make a strong case for local enforcement as a viable option to control
illicit drug sales on the street.

Even strong opponents of local enforcement tend to agree on the necessity of street
enforcement for controlling the illicit drug problem. In this module a restrictive definition
of local enforcement is used, where we focus on retail-level dealing on street corners
alone rather than focusing on surveillance and tracking systems. One local-enforcement
strategy that continues to be used by police departments across the country is that of
crackdowns, i.e., concentration of resources in a geographic area for a limited time or for
targeting specific types of crime. There have been studies done on evaluating the impact
of crackdowns and some on modeling the effect of a crackdown on street illicit-drug
markets.
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For the most part, past modeling literature on drug crackdowns has looked at drug
dealing and arrests as a deterministic activity, while in reality both events are
probabilistic in nature. During a crackdown operation, drug dealers make decisions of
whether to deal or not based on their past experience and the financial hardship they face.
Similarly, the chance of getting arrested depends on the level of enforcement and the
number of dealers actually dealing in the market.

While dynamic control models are not new to illicit drugs or to law enforcement, this
work looks at discrete time interval which better represents the realistic time window of a
“day”, instead of the continuous-time framework considered in past literature thus far.

Another factor that needs to be addressed, to make a model that better represents reality,
is the sequential and adaptive response of a drug dealer to police enforcement. A drug
dealer makes decisions on a daily basis that adapts in response to their expectation of risk
of being caught. It is therefore appropriate that a more realistic model should explicitly
consider sequential decision-making during a crackdown capturing the “learning effect”
of a drug dealer.

Therefore, a probabilistic framework where sequential decision making is considered.

Motivation for the Model

The model developed here was motivated by a dialog with enforcement officials in
Camden, NJ and Philadelphia, PA, culminating a list of unanswered questions. Both
cities are in close geographical proximity and despite their difference in size, share
similar severity of the illicit drug problem. Based on a series of discussions with
experienced enforcement officials, it was clear that the financial hardship of a
neighborhood has a very significant impact on a drug dealer’s response to enforcement
and needed to be explicitly incorporated within the modeling framework. While there are
several forms of drug crackdowns, this project restricted attention to the one targeting
“open-air” street drug dealers. Based on these considerations, the following questions
were raised:

Q.1. Under what circumstance is it worthwhile to undertake a crackdown operation on an
illicit drug market?

Q.2. Will maximum enforcement on each day of a crackdown result in maximum reduction in
violence per unit enforcement used?

Q.3. Is it optimal to use more enforcement for larger markets and less for smaller markets?
Q.4. If there are two markets of similar size, A and B, where market A is more conductive to

arrests, is it optimal to spend more resources in market A than market B?
Q.5. What impact does financial hardship of a neighborhood have on enforcement strategies

during a crackdown?

A model has been developed that is explicitly designed to answer some of these
questions, providing some guidance to practitioners on how best to allocate resources
during a drug-crackdown operation.

The Sequential Crackdown Model
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The Sequential Crackdown Model (SCM) restricts attention to crackdown on street drug
markets targeting “street-corner” drug dealers. To develop the model, in-depth interviews
with enforcement officials in Camden and Philadelphia were conducted. The interviews
were organized in a semi-structured format to cover all the issues but allowed flexibility
for the enforcement officials to provide additional inputs and factors relevant to the
model, not considered beforehand.

Multiple officials were involved in the interviews to reduce misperceptions, biases, and
loss of information. This enhances the creative potential of the study; their convergent
insights boost confidence in findings while their divergent insights increase the chance of
surprising findings and delay premature closure

To capture the insights of the enforcement officials, questions were often posed as
comparisons. As the model was being mapped out, the officials were consulted at every
stage checking for validity. This validation process often involved seeking feedback from
officials on questions posed as “what-if” scenarios.

Based on these interviews, the following model assumptions were made:

 1. The process of decision making for each individual dealer is the same, i.e., we do not
distinguish drug dealers from each other.

 2. On any given day, the drug dealer deals in the market with a probability.
 3. The probability of dealing on any day depends on the dealer’s expected enforcement on

that day, and a financial hardship factor that quantifies the financial desperation or need
for the drug dealer to deal that day.

 4. We assume that enough resources are allocated imposing a significant incarceration
sentence to an arrested dealer. In other words, incarceration of drug dealers during a
crackdown does impose a threat to their lifestyle.

 5. The police officials make sequential decisions and decide on a daily basis the
enforcement allocated for that day.

 6. Based on the enforcement allocated on any given day, and the number of dealers actually
dealing on that day, there is an associated probability of incarceration for a drug dealer.

 7. Displacement of drug dealers is accounted for through the probability of not dealing.
Therefore the probability of not dealing includes the possibility of dealers moving to
other markets on a temporary basis.

 8. 
Notation used:

      Ei : Crackdown enforcement imposed on a drug market on day i of the crackdown. E0 is the
regular base-level enforcement in the market before and during the crackdown. Emax is
the maximum permissible enforcement on a given day,

Ec(Ei): Expected Enforcement on day i by a dealer,
     Di :  Financial hardship of a drug dealer on day i,
E(Mi): Expected number of drug-dealing days missed by a dealer until day i. The phrase ‘until

day i’ will be used throughout to imply days 1 through i-1 but not including day i,
      τi : Probability of a drug dealer dealing on day i,
     Pi : Probability of incarceration of a drug dealer on day i, and
     Ni : Number of dealers available to deal on day i.

The Sequential Crackdown Model (SCM) considers the probability of a
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drug dealer dealing on day i, τi, as a function of the financial hardship Di and the
expected enforcement Ec(Ei). The financial hardship factor itself depends on the
economic conditions of the neighborhood and the expected number of days missed until
day i. Further, the dealer’s expected enforcement depends on the history of crackdown
enforcement until day i.

Based on the probability of dealing and the pool of dealers available to deal, the SCM
estimates the expected number of dealers dealing on day i. This in turn is then used to
calculate the optimal enforcement which maximizes the number of dealers incarcerated
per unit resource spent. This is visually depicted in Figure 4.1. Each of the individual
components of the model are discussed next.

Probability of Incarceration
In this model we consider that an arrest results in an incarceration of a drug dealer for

a significant length of time. The SCM models the probability of incarceration of a drug
dealer on day i, Pi, as a function of the total enforcement per dealer. The expected number
of dealers dealing on day i is estimated based on the pool of available dealers, Ni, and the
probability of dealing τi. Mathematically we are looking for the behavior of Pi as a
function of ei (= E E

N
i

i i

0 +
τ ), where ei is the enforcement per dealer actually dealing in the

market. For small values of ei, we expect Pi to increase rapidly initially. Thereafter,
beyond a certain value of ei, Pi will increase only with diminishing returns. Therefore Pi
will approach asymptotically a theoretical maximum value of Pmax. This maximum value
of probability of incarceration, Pmax, would be low for markets where arrests are difficult,
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Incorporating end conditions we get,
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B = (φ-1) e
E
i N i

0
τ , where φ = P

P
max

0
. (3)

Using (2) & (3) in (1), we get

 P P

e
i Ei

iNi

=
+ − −

0

1 1

φ
φ τ( )  

(4)

The incarceration probability improvement index, φ = P
P
max

0
, represents the ratio of

probability of incarceration with “infinite” enforcement resources to the probability of
incarceration under the pre-crackdown enforcement E0. Therefore φ is a market attribute
that quantifies the impact of enforcement on the probability of incarceration.
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Financial Hardship Factor

One of the arguments put forward by experts is that the drug dealing is a source of
employment for the dealers, albeit an illegal one. A period of no drug dealing imposes a
financial hardship that may ultimately increase their chance of dealing on the street due to
monetary desperation1.

Here we postulate that the financial hardship factor on a given day i, Di, depends on the
expected number of days of drug dealing missed by an individual until day i, E(Mi), and
the alternate economic opportunity available for a drug dealer in the market. In interviews
with the local police departments, it was evident that poor neighborhoods consistently
had a high level of financial hardship among dealers, forcing them to deal. On the other
hand, in the “not so poor neighborhoods”, the financial hardship factor could be low but
would change significantly with an increase in the expected number of drug-dealing days
missed. Figure 4.2 visually depicts this mental model presented by the narcotics officials.

One way to model this behavior is,

Di = α
β1++++ −−−−e E Mi( ) where α, β are positive constants. (5)

If  E(Mi) = 0, financial hardship level is at its minimum, Dmin. On the other hand,
when E(Mi) is very large, the hardship level reaches its theoretical maximum value, Dmax.

Using this we get α = Dmax and β = D
D

max

min
 - 1

Rewriting Di in terms of Dmax and Dmin, we get

    Di = D
e E Mi

max
( )( )1 1+ − −ψ

, where ψ = D
D

max

min
. (6)

The hardship increment index, ψ, quantifies the increase in financial desperation of a
drug dealer with an increase in the expected number of missed drug-dealing days.

The inflection point of the hardship curve is given by ln( )ψ −1 . For a poor neighborhood
where the curve is strictly concave, ln( )ψ −1  is strictly less than zero. This implies that 1
< ψ < 2, i.e., in a relatively poor neighborhood we do not expect an increase of financial
hardship by more than a factor of 2. On the other hand, not so poor neighborhoods will
have a ψ > 2. This criterion can be used in deciding the value of Dmin and Dmax as well as
in categorizing the neighborhoods.

Expected number of days missed

Recall that the number of days missed by a drug dealer until day i is E[Mi]
Let

                                                          

1 In discussions with the Philadelphia, PA and Camden, NJ Police Departments, this factor was

emphasized by the police officers as the single most important factor that makes drug dealers come back

to deal during a crackdown operation.
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In words, the expected number of days missed until day i is the sum of the probability
of not dealing on each of the previous days. This is a convenient expression, readily
calculated for day i, since the probability of dealing for previous days, τj, is available.

Expected Enforcement

The other factor that affects the probability of dealing is the expected enforcement on day
i by a dealer, Ec(Ei). We postulate that drug dealers estimate the level of enforcement on
day i based on their past experience of previous (i-1) days of the crackdown.
Mathematically, the expected enforcement on day i, Ec(Ei), is a function of E1, E2, ..., Ei-1.
This expected enforcement is then formulated to be a linear weighted function of the past
enforcement, i.e.,

 Ec(Ei) = w Ej j
j

i

=

−

1

1

, where wj are non-negative weights such that w j
j

i

=
=

−

1
1

1

 (8)

It is not unreasonable to assume that a dealer assigns more weight to the more recent
enforcement which implies that 0 ≤ w1 ≤ w2 ...... ≤ wi-1 ≤ 1. One simple way to assign
weights that satisfy the above conditions is as follows:

wj = aρi-j-1,  j = 1, 2, ..., i-1, where a > 0, 0 ≤ ρ < 1. (9)

Using the fact that w j
j

i

=
=

−

1
1

1

, we get,

wj = ( )1
1

1

1

− ⋅
−

− −

−

ρ ρ
ρ

i j

i ,  j = 1, 2, ..., i-1.            (10)

Using (8) and (10), we get,

Ec(Ei) = ( )
( )

1
1

1

1
1

1 −
−

⋅
− −

−
=

− ρ ρ
ρ

i j

i j
j

i

E .           (11)

ρ can be considered as dealers’ memory parameter. If  ρ is close to 1, the dealers
evenly weigh recent and past enforcement in their mind. On the other hand, ρ = 0 implies
dealers having short-term memory, basing their judgement primarily on the most recent
enforcement level. This method can be very useful for the modeler in quantifying the
value of ρ.

Probability of dealing

We are now ready to derive an expression for the probability of dealing for a dealer on
day i, τi, which is a function of Ec(Ei), the conditional expected enforcement, and Di, the
financial hardship factor on day i. Recall that Di is between Dmin  and Dmax  and Ec(Ei) is
between E0 and Emax.
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To understand the behavior of τi as a function of Ec(Ei) and Di, we first look at the end
conditions.

Case I:
Consider Ec(Ei) = E0, the case when a dealer expects no additional enforcement due to

the crackdown. If Di = Dmax, i.e., a dealer is very desperate to deal on that day due to
financial hardship, we would expect the probability of dealing on day i to be maximum,
i.e., τi = τmax. These conditions would be the most conducive for a dealer to deal since the
enforcement is expected to be at a minimum and the financial hardship level is at the
highest.

Mathematically,
Ec(Ei) = E0, Di = Dmax    τi = τmax (12)

Case II:
On the other hand, if Ec(Ei) = Emax, the maximum possible enforcement, and Di = Dmin,

the least possible hardship, we would expect the probability of dealing to be at the lowest,
i.e., τi = τmin.

Mathematically,
Ec(Ei) = Emax, Di = Dmin    τi = τmin (13)

All the other cases will fall between these two extreme cases. We define the pre-
crackdown probability of dealing to be τ0 that is between τmin and τmax. Since little else is
known about the relative effect of Di and Ec(Ei) on the parameter τi, for this work we
assume a linear weighted relationship between the two extreme cases presented above.

Mathematically,

τi = τ0 + (τmax-τ0)
D D

D D
i −

−
� �min

max min

 - (τ0 - τmin) 
E E E
E E
c i( )

max

−
−

�

�
�

�
�0

0

(14)

One can easily verify that conditions (12) and (13) are satisfied in (14).

The functional relationship used above is restrictive in that no interaction terms between
Di and Ec(Ei) have been incorporated. Given the primitive understanding of drug dealing
and illicit drug markets, this linear approximation may still capture the dynamics without
making it too complicated mathematically. Later we develop a more generalized function
for τi that does consider interaction terms between Di and Ec(Ei).

The Objective Function

Typically crackdowns have multiple objectives like minimizing the violence associated
with drug dealing, improving the quality of life in the neighborhood, increasing the
perception of safety for residents, etc. Since these objectives are difficult to quantify, we
use the expected number of arrests as a surrogate measure of reduction in “negativities”
associated with drug dealing. Therefore, we consider an objective function that
maximizes the expected number of dealers incarcerated on a given day per unit
enforcement spent on that day. This is the typical output/input objective used in many
applications. Using such an objective function however is essentially ignoring the cost of
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incarceration. Some public policy experts even argue that minimizing number of arrests
subject to a constraint/goal of crime reduction would be a more effective formulation of
the problem. Despite this limitation, it is important to note that the objective function
used by SCM (that emphasizes operational efficiency over effectiveness) continues to be
used across the country by enforcement officials to measure the success of a crackdown.
While this does not justify the choice of our objective function, it does however offer
some validity for its choice.

In words, the objective is therefore to find that enforcement level (above the baseline
level, E0) on day i of a crackdown operation, that maximizes the expected number of
dealers incarcerated per unit enforcement resources spent.

Mathematically,

Maximize
Ei

 Zi = Expected number of dealer incarcerated on day 
Enforcement spent on day 

i
i

The expected number of dealers incarcerated on day i is the product of expected number
of dealers actually dealing on day i and the probability of incarceration on day i. Further,
the expected number of dealers dealing on day i is the product of the number of dealers in
the market, Ni and the probability of dealing, τi. The enforcement used will be the sum of
the baseline enforcement level E0 and the crackdown enforcement Ei. Since the expected
number of dealers dealing is constant on a given day in a sequential model, effectively we
are maximizing the probability of incarceration per unit enforcement used.

Mathematically,

Max
Ei

  Zi = N P
E E

i i i

i

τ
0 +

 = N P

e E E
i i

i

Ei
i Ni

τ φ

φ τ

0

01 1[ ( ) ]( )+ − +
− 

Since the decision is being made on a daily basis; for simplicity, we drop the subscript i
from all the variables.

Max
[ ( ) ]( )

    
 

Z N P

e E EE
E
N

=
+ − +−

τ φ
φ τ

0

01 1
(15)

It is important to note that a day-to-day model captures the prevalent myopic outlook (vs.
a more longtime one) of both the dealers and the police. Obviously this short-term
outlook is limited and may even be at odds with the effectiveness objective. A summary
of the model developed so far:

•  Probability of incarceration on day i, P P

e
i Ei

i Ni

=
+ −

−

0

1 1

φ

φ τ( )
 

 where φ = P
P
max

0
,

•  Expected enforcement on day i, Ec(Ei) = ( )
( )

1
1

1

1
1

1 −
−

⋅
− −

−
=

− ρ ρ
ρ

i j

i j
j

i

E ,

•  Expected number of days missed until day i, E(Mi) = ( )1
1

−
−

τ j
j

i

,

•  Financial hardship factor on day i, Di =  D
e E Mi

max
( )( )1 1+ − −φ

 , where ψ = D
D

max

min
,

•  Probability of dealing of a dealer on day i,
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τi = τ0 + (τmax - τ0)
D D

D D
i −

−
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max min
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E E
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, and

•  Objective function, Max
Ei

  Zi = N P

e E E
i i

i

Ei
i Ni

τ φ

φ τ
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01 1[ ( ) ]( )+ − +
− 

 .

Properties of the Sequential Crackdown Model

The objective function is clearly non-linear in the decision variable, E, and cannot be
solved explicitly. Even though numerical solutions can be readily obtained, we first
analytically explore the behavior of the objective function vis-à-vis different parameters.

Taking the derivative of Z with respect to E, we get

d
d
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 . (16)

This expression is nonlinear in E and explicit solutions of d
d

Z
E = 0  (which we refer as

stationary points) are not possible. However,

Sign Sign eZ
E

E
N

E
N

E
N( ) [ {( ) ( )( )}]d

d = − − − + − −τ φ φτ τ
 

  1 1 10 . (17)

Next we establish the necessary and sufficient conditions for a stationary point to exist
via the following Lemmas.

Lemma 1:
The objective function has a unique global maximum if ( E

N
0

τ  - 1)(φ -1) > 1.

Proof:
In (17) we represent the right hand side as a difference of two functions:

f1(E) = e
E
Nτ , and  f2(E) = (φ-1) E

Nτ + ( E
N

0
τ -1)(φ-1).

The function f1(E), is non-linear in E with slope, m1 = 1
τ

τ
N e

E
N , and intercept c1 = 1. The

function f2(E) is linear in E having a  slope of m2 = ( )φ
τ
−1
N  and intercept c2 = ( E

N
0

τ -1)(φ-1).
The graphs of f1 and f2 are shown in Figure 4.3(a).

From Figure 4.3(a), it is easily verified that since f1 is convex and f2 is linear, f1 and f2

will meet uniquely at one point if intercept c2 > c1. This implies that if  ( E
N

0
τ  - 1)(φ - 1) >

1, there exists a unique point E* where d
d

Z
E  = 0. From (17) we can also see that sign of

d
d

Z
E  is the sign of (f2 - f1). Therefore from Figure 4.3(a) it is clear that d

d
Z
E  > 0 for E < E*

and d
d

Z
E  < 0 for E > E* implying E* is a global maximum.

Lemma 2:
There exists at least one non-negative stationary point for the objective function if the

following necessary condition holds:
�

≥≥−+−
<<>−−

2for 1)1ln()1(
21for 1)1)(1(

0

0

φφ
φφ

τ

τ

N
E
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Proof:
Consider a point E′ where the slopes m1 and m2 are equal (Figure 4.3(b)). If E′ ≥ 0 then at
least one positive solution to d

d
Z
E  = 0 will exist if the value of f2 at E′ is greater than or

equal to the value of f1 at E′. However, if E′ < 0, at least one non-negative solution to d
d

Z
E

= 0 will exist iff f2(0) ≥ f1(0).
Mathematically m mE E1 2′ ′

=  yields,
1 1

τ
φ
τ

τ

N
e

N
E
N
′

= −( ) ,

         E′= τNln(φ-1). (18)

CASE I: Consider E′ ≥ 0 which implies from (18) that φ ≥ 2. As argued above the
necessary condition for at least one positive solution to d

d
Z
E  = 0 is f2(E′) ≥ f1(E′). This

yields,
ln(φ-1)+ ( E

N
0

τ -1) ≥1 for  φ≥2. (19)

CASE II: In the case E′ < 0 or alternatively 1 < φ < 2, the necessary condition for at
least one positive solution to d

d
Z
E  = 0 is f2(0) ≥ f1(0). This yields,

1 < ( E
N

0
τ -1)(φ-1)  for 1 < φ < 2. (20)

Combining the two cases given in [19] and [20] we get the Lemma.

Lemma 3:
The objective function, Max

E
 Z, can have at most two stationary points.

Proof:
Recall from Lemma 2 that E′ is the point where the slopes m1 and m2 are equal. It is

easy to show that the difference (f1 - f2) is strictly decreasing for E < E′ and strictly
increasing for E > E′. If the difference (f1 - f2) at E′ is positive then there exists no
stationary point. On the other hand, if this difference is negative at E′ and the difference
at E = 0 is positive then we have two positive stationary point solutions. The two
solutions are on either side of E′, i.e., Es1  < E′ < Es2  as shown in Figure 4.3(b). It is easy
to verify that Es2  will be the point of local maximum and of interest to us.

Finally, if (f1 - f2) is negative at E = E′ and E = 0 then only one point exists with
d
d

Z
E  = 0. These are the only possibilities and the Lemma is established.

Theorem 1:
The equation d

d
Z
E  = 0 has either zero, one or two positive solutions. The conditions for

each possibility are given graphically in Figure 4.4.

Proof:
The condition for a unique solution from Lemma 1generates the region I in Figure 4.4.
The condition from Lemma 2 yields the lower region in Figure 4.4. Notice that the two
curves meet when
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( E
N

0
τ -1)(φ-1) = ( E

N
0

τ -1) + ln(φ-1)
        ( E

N
0

τ -1) = 1 and (φ-1) = 1

The second part of the condition in Lemma 2 for 1 < φ < 2 is the same as the condition
for unique solution in Lemma 1.  i.e., the upper and lower curves merge for 1 < φ < 2 and
( E

N
0

τ -1) > 1.

Region II in Figure 4.4 bounded between lower and upper curves has at least one solution
but since it is below the upper curve it does not have a unique solution. From Lemma 3 it
is clear that the bounded region II will have exactly two solutions. Region III does not
satisfy the necessary condition for at least one solution. That is, d

d
Z
E  is never equal to zero

in that region.

Theorem 1 will be useful later in applying the SCM to examples from the city of
Philadelphia.

Having established the conditions for solutions to d
d

Z
E  = 0, next we explore the properties

of the optimal solution.

Effect of Size of the Market on the Optimal Enforcement

The following Lemma and Theorems look at the effect of the size of the market, Nτ, on
the optimal enforcement value, E*.

Lemma 4:
If an optimal solution E* > 0 exists then it must satisfy the condition ( ) */φ τ− <−1 1e E N .

Proof:
In Lemma 3, E* = Es2  > E′ is a point of local maximum. This yields:
E′ < E*.

Using (20) we get,
τNln(φ -1) < E*,

    ln(φ -1) < E
N
*

τ  ,
    (φ -1)e

E
N− *

τ  < 1. (21)

Theorem 2:
If an optimal enforcement E* > 0 exists, then the optimal enforcement per dealer is a

decreasing function of the number of dealers.
Proof:

From (16) it is clear that E* satisfies the condition (where w is defined as 1
τN  for

simplicity):
e E w E wE w* ( )[ * ]= − + −φ 1 10 .

Taking the first derivative with respect to w we get,
e EE w E w

w
E w

w
* * ) * )[ ] ( )[ ]d(

d
d(

d= − +φ 1 0 ,
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From Lemma 4, the denominator is positive, which shows that d
d

( * )E w
w  > 0. This implies

that as w increases (or size of the market shrinks), the optimal enforcement per dealer
dealing increases.

This result suggests that as the market shrinks in size (during a crackdown), the optimal
enforcement per dealer continues to increase further increasing the probability of
incarceration. The optimal strategy exhibits a positive feedback characteristic.

Theorem 3:
The optimal objective function, Z*, is an increasing function of the number of dealers.

Proof:
From (15) and (16) we get,

Z* = P
e E w eE w

0

11 1 1
φ

φ φ( ( ) )( )* *+ − +−
−

, where w = 1
τN .

Let λ φ( ) *w eE w= −1 . From Lemma 4, λ(w) > 1. Denominator can be written as,
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ww
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It is easy to see that the denominator attains a minimum value at λ(w) = 1, and is
increasing in λ(w). Furthermore from Theorem 2, λ(w) is an increasing function in w
implying that denominator is an increasing function of w. Therefore Z* is a decreasing
function of w or an increasing function of the number of dealers dealing in the market.

Conditions for a Global Maximum

In Theorem 1 (Figure 4.4) it was established that for region III E* = 0 is optimal,
suggesting not undertaking a crackdown operation for markets lying in that region. On
the other hand, region I has a unique global maximum, while region II has two stationary
points, Es1  and Es2 , which are local minimum and maximum respectively. The point Es2 ,
need not be a global maximum in which case E* = 0 may still be optimal. Therefore
necessary and sufficient conditions for a global maximum still need to be established.
The following Lemmas present these conditions.

Lemma 5:
A sufficient condition for E* to a global maximum is,
E
E

*

0 2
1< −φ .

Proof:
Since Es1  < Es2  (where Es1  is a local minimum and Es2  is a local maximum) it is not

difficult to see that E* = Es2  will be a global maximum if Z(E*) > Z(0).

From (15) we get
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From Lemma 4, ( ) */φ τ− <−1 1e E N . Using this bound, we get,
φ
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0 2
1< −φ .

We will see later, this condition is almost always satisfied since φ is fairly high for most
realistic situations.

Lemma 6:
Necessary condition for E* to be a global maximum is,
E
N

0 4φ
τ

> .

Proof:
From Lemma 5,
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Conditions for E* in (16) imply that,
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Using (22) we get,
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Therefore E
N

0 4φ
τ

> .

In words, if E
N

0φ
τ

 is less than 4, E* = 0 will be optimal, a condition where the model

suggests not undertaking a crackdown operation.

Effect of the Incarceration Probability Improvement Index on the Optimal Enforcement

Here we discuss the behavior of E* as a function of the parameter φ. Since there is no
explicit expression for E*, we establish the result via the following Theorem.

Theorem 4:
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If there exists an optimal solution E* > 0, then E* must be an increasing function of the
incarceration probability improvement index, φ.

Proof:
From (16) we know that E* satisfies the condition:
e

E
N E

N
E
N

*

( )[ ]*τ φ τ τ= − + −1 10

Taking derivative with respect to φ and rearranging terms we get,
d
d
E e
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e
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11
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(23)

Using Lemma 4, it is clear that d
d
E*
φ > 0  which proves the Theorem.

Intuitively this means that it is optimal to spend more enforcement resources in markets
where there is greater possibility of improvement in the probability of incarceration.

Application of the Sequential Crackdown Model

The model developed here was motivated by law enforcement operations on illicit drug
markets in Philadelphia, PA and Camden, NJ. Clearly, the advantage of the sequential
model developed is in its ability to capture the day-to-day changes in dealer’s perception
of enforcement and financial hardship. In practice, the optimal enforcement level on day i
can be calculated based on the number of prior arrests actually made. However, to
forecast the behavior of a drug market according to the strategies suggested by the SCM,
the model needs to update the factors sequentially based on an estimate of arrests.
Presentation of such projected scenarios to decision makers is important because (i) it
helps in understanding and validating the interactive dynamics of different factors in the
decision making process, and (ii) it can be used to find the implication of availability of
additional resources. In fact the second reason is considered very critical by enforcement
officials in their ability to plan and seek additional resources from local, state and federal
funding agencies.

The first step in using the model is the estimation of parameters. The minimum,
maximum and pre-crackdown probabilities of dealing need to be estimated. The pre-
crackdown level of enforcement, number of dealers, maximum available enforcement on
a day, the extremes of the financial hardship factor, and the incarceration improvement
index are all inputs to the model.

Based on these inputs, the optimal enforcement for day i can be calculated. Using this
optimal enforcement level, the probability of incarceration on day i is then estimated. The
dealer’s expected enforcement and the hardship level are subsequently updated for the
(i+1)st day which then is used to find the probability of dealing for the (i+1)st day. The
expected number of dealers dealing on day (i+1) is finally estimated and used to calculate
the optimal enforcement level for day (i+1). These above outlined steps have been
summarized via a flowchart in Figure 4.5.

For the purpose of the analysis here, it is assumed that the start of a crackdown operation
is unknown to the dealers and comes as a surprise. This would imply that the probability
of dealing on day 1 is the same as the pre-crackdown probability of dealing, i.e., τ1 = τ0.



115

This assumption may not be valid if the dealers are aware of the crackdown beforehand.
In the latter case τ1 can be calculated based on the dealer’s expected enforcement level at
the start of crackdown.

Note that the procedure can be easily used for different Emax levels providing insight into
the impact of additional resources. Next, we consider two examples of this model applied
to illicit drug markets in the city of Philadelphia.

Examples:

The two illicit street drug markets, A and B, considered in the example here, are similar
in size. To estimate the number of dealers, number of “drug dealing slots” were
estimated. This idea of drug-dealing slots was easily understood by the police officers
and served as a useful mechanism of estimating the number of drug dealers.  The use of
these drug-dealing slots is in agreement with street-level studies where dealers were
found to work specific "spots" on either an hourly or permanent basis.  It should also be
noted that in terms of drug dealing organizational hierarchies, these slot-level dealers
would be on one of the two bottom levels, while the entrepreneurs, whom they work for,
retaining a greater share of the profit.

After a series of independent interviews with narcotic police officers, it was estimated
that at a given time both the markets had an average of ten slots (the number was higher
at certain times of the day). Since drug dealing is typically carried out round the clock, a
number of N=30 slots seemed reasonable.

So far we have not been specific in defining the enforcement level E, allowing multiple
definitions within the context of the model. However, from discussions with the police
officers it was clear that the risk imposed to the dealers was a function of the hours of
police patrolling on the street. Using this as a criterion for estimating enforcement level
we estimated the hours of police patrolling for a 24-hour period in a drug market. It was
estimated that prior to the crackdown, 10 police officers working 8-hour shifts covered
about 2 districts (or 10 drug markets) in a 24-hour period. This translated to E0 = 8 hours.

The baseline pre-crackdown probability of incarceration, P0, was calculated based on
average weekly arrests. The narcotics police officers indicated that an average of one
arrest was made per week in the two markets before the crackdown. This means
P0 = 1/(30*7) ≅  0.005.

The maximum probability of incarceration was clearly high; the officers felt that if the
enforcement level were increased sufficiently, the probability of arresting a dealer dealing
would be between 80 to 90%. Based on this information we used an incarceration
improvement index φ = 0.85/0.005 = 170.

Despite these similarities, the two markets were distinct and different from each other in
several ways. Market B was in an extremely poor neighborhood with severe financial
hardship and lack of opportunities for legal employment. The probability of dealing was
consistently high, and τ0 of 0.85 was estimated. Furthermore, the values of τmin and τmax
were conjectured to be 0.50 and 0.95, respectively. The hardship level was consistently
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high and ranged between 0.7 and 0.95 which was consistent with a value of 1 < ψ < 2
stated earlier.

For market A where the dealers were more integrated with the society, the estimates were
τ0 = 0.80, τmin = 0.1, τmax = 0.9, Dmin = 0.1, Dmax = 0.9, clearly with ψ > 2.

At this point, it is important to emphasize that the estimates of the probability of dealing
and the financial hardship factors were based on comparative questions. Therefore, the
relative levels are far more reliable than the actual figures.

Using these estimates scenarios were generated based on the procedure outlined by the
flowchart in Figure 4.5. Scenarios 1 and 2 are based on a Emax level of 100 and 200,
respectively. The results are summarized in Figure 4.6 (a), (b) and Figure 4.7 (a), (b),
respectively.

The solutions to the SCM displayed in Figures 4.6 and 4.7 were obtained using IMSL
subroutines run on a UNIX mainframe computer. Bounds for the non-linear solver were
estimated based on the properties discussed earlier. The results are revealing and several
observations can be made.

(a) Towards the beginning of the crackdown, the optimal E* values are much higher than the
baseline level of enforcement. For Market A the optimal value on day one was 167.31
(≅ 21E0) and for market B it was 177.67 (≅ 22E0).

(b) From Figure 4.6 (a) and Figure 4.6 (b) it is clear that Emax = 100 is a binding constraint on
the first day of the crackdown imposing serious limitation on the possibility of reducing
drug dealing. Only 20% market was collapsed on the first day as against a 60% reduction
(Figure 4.7 (a) and Figure 4.7(b)) with Emax = 200. Clearly additional resources could
result in a significant reduction in the size of the market on the first day of the
crackdown.

(c) In the case of the more severe constraint with Emax = 100 the cumulative resources used
during the crackdown were actually more than with Emax = 200. For market A, the total
hours of enforcement resources were 327.23 with Emax = 100 as against 281.77 with Emax
= 200. Similarly for market B the numbers were 331.56 and 282.62, respectively.

(d) Market A (where financial hardship was less severe) exhibited a cyclic optimal
enforcement initially. Based on a low probability of dealing, the optimal enforcement was
lower on the second day of the crackdown as compared to the first and the third day. This
strategy is similar to those suggested by some researchers based on a qualitative analysis
where they argued for a crackdown-backoff strategy based on residual deterrence.

(e) Market B, where the financial hardship level was quite high, did not display this cyclic
behavior. The optimal enforcement decreased steadily since the probability of dealing
continued to be high. The enforcement officials confirmed that in such poor
neighborhood the dealers continue to deal despite the high risk of arrest during a
crackdown operation.



117

While the market profile was easily obtained as a function of days of crackdown using
the SCM, a serious concern raised by the enforcement officials was the possibility of
“substitute” dealers replacing the regular drug dealers..

Generalizations of the SCM

The pool of dealers in a drug market can have a large turnover. In the model developed
thus far we considered the situation where the number of “slots” for dealing were the
same as the number of dealers wanting to deal. However, in neighborhoods with a severe
drug problem there are “substitute” or “replacement” drug dealers filling in any available
dealing slots. To incorporate this phenomenon into the model we distinguish two types of
dealers   Regular and Substitute. As before, the probability of dealing for regular
dealers can be calculated based on the financial hardship level and the dealer’s
expectation of enforcement. The probability of dealing for the substitute dealers was
postulated to depend on the availability of slots instead of the financial hardship, since
these dealers don’t expect to deal by definition unless an opportunity arises.

The flowchart for the implementation of this new model is presented in Figure 4.8. The
Philadelphia police officials felt that Market B experienced this situation of substitute
dealers. Therefore this new model was tested for Market B with Emax = 100 and Emax =
200. The results are summarized in Figures 4.9(a) and 4.9(b). It is not surprising that the
resources needed to collapse the market were significantly higher due to the existence of
a “parallel” or “replacement” market. The constraint of Emax has a severe impact on the
total resources used during the crackdown. Over the duration of the entire crackdown, the
cumulative enforcement resources used with Emax = 200 is about half of those needed
with Emax = 100. Even though the model developed for this situation requires more
calculations, indeed, the core of the model remains unchanged because the computations
are essentially sequentially performed as before.

The SCM considers sequential decision-making where every stage i is a day. In reality
this time-window may be too large and the enforcement level during the morning may
affect the dealer’s strategy in the afternoon. To incorporate a smaller time duration in the
model, SCM could be modified to consider each stage i as an eight-hour shift with three
times as many iterations as the number of days. This means that the parameters need to
be adjusted so that i represents an eight-hour period. Using this altered model, the daily
variability can be modeled and observed.

Using other objective functions in SCM is possible and computationally poses little
difficulty. Similarly incorporating more realistic functions to model the hardship factor
and the probability of dealing is possible if better information becomes available. For
example, in the model formulation thus far, the functional relationship of τi (equation 14)
did not involve any interaction terms between Di and Ec(Ei). This restrictive assumption
can be relaxed by using a function for τi such as:

 τi = a (Di – Dmin) (Emax – Ec(Ei)) + bDi - cEc(Ei) + d

Where a, b, c, d are positive constants. We can easily verify that this function satisfies the
necessary conditions that τi increases with an increase in Di and decreases with an
increase in Ec(Ei). However, the function now needs four end-conditions (recall that the
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earlier relationship in (14) required only two) to find the value of the four constants a, b,
c and d.

Answers to the Questions Raised

One of the goals of this research was to answer questions raised by enforcement officials
in the cities of Philadelphia and Camden. Below we discuss the insights gained from the
model vis-à-vis the questions raised.

1. Which markets are conducive to crackdowns?
This question was answered in the context of the model’s objective function via Figure

4.4. Region III in the Figure represents markets where E* = 0 is optimal. Additionally
Lemma 6 showed that for the two-solution case E* = 0 is optimal again, if E

N
0 4φ
τ < .

Markets with low incarceration improvement index, φ, and/or low pre-crackdown
enforcement per dealer are likely to be least conducive to a crackdown operation.
Intuitively, markets where enforcement has little impact on improving the incarceration
probability are not likely to offer the desired benefits. Incarceration probability can often
be improved by the use of tactics that barricade possibilities of escape for drug dealers.
Therefore, the city officials may have to assist enforcement officials by “boarding-up”
empty houses, improving lighting, etc prior to the crackdown operation. Similarly the
pre-crackdown enforcement per dealer can be improved by reducing the probability of
dealing by offering alternate avenues of legal employment in the neighborhood. In effect
the model states that markets with low φ and/or low E

N
0

τ  should first focus on improving
these two parameters before a crackdown could yield desired results.

2. Does maximum enforcement imply maximum reduction in violence per unit money
spent?
The SCM objective function did not model violence directly. The expected number of
dealers arrested was used as a surrogate measure for reduction in violence. Based on this
assumption, we established that maximization of number of arrests per unit resource need
not be achieved by using maximum enforcement. In fact, some markets may have a
cyclic optimal enforcement strategy.

Nevertheless, using maximum enforcement could still be optimal or for an extended
period as determined by the size of the markets and the availability of resources on any
day.

3. Effect of size of the market
This question was discussed where we established that the optimal enforcement per

dealer is an increasing function of the number of dealers. This implies that the probability
of arresting improves as the market size shrinks. Therefore, it is easier to collapse smaller
markets than larger ones. Additionally, from Theorem 3, it was shown that the objective
function increases as the size of market increases. Even though the probability of
arresting a dealer is low on the first day due to the size of the market, the number of
dealers captured will be still high. This results in a high value of the objective function in
a large-sized market. Indeed, the impact of a crackdown will be evident greatest in the
initial days of the crackdown.
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4. Effect of Arrest probability

This was partly addressed in question 1 above. Effect of φ on E was discussed earlier
suggesting undertaking a crackdown operation with more resources in markets where the
probability of incarceration has a high potential for increasing.

5. Effect of Financial Hardship

Financial hardship was explicitly incorporated as a parameter in the model impacting
dealer’s probability of dealing directly. A higher hardship level led to an increased
probability of dealing thereby increasing the number of dealers actually dealing. Thus,
this question is indirectly addressed in question 3 above.

Conclusions

The model developed here incorporated the sequential (and myopic) decision making
of drug dealers and the enforcement officials. A probabilistic framework was developed
which reflected the underlying dynamics at work (e.g., the probability of incarceration
and the probability of dealing). Parameters were estimated and the model was tested for
two drug markets in the city of Philadelphia. Results showed that using maximum
enforcement for a significant number of days in the crackdown may be optimal if there is
a severe drug problem in the neighborhood. A cyclic enforcement strategy was shown to
be optimal for markets where residual deterrence dominates the financial hardship. The
model also provides guidelines for identifying markets where crackdowns may not be
appropriate as well as addresses some other questions that relate the market
characteristics with the success of a crackdown operation. Before closing, let us discuss
some of the limitations of the model and its results.

The underlying model is a simplification of reality and therefore the usefulness of its
results is closely tied with the validity of the embedded assumptions. Even though a
careful process of interviews ensured development of an accurate model, data limitations
in an illicit activity such as drug dealing constrain a thorough validation. While the work
does make a contribution toward quantifying and modeling the dynamics of illicit drug
activity on street corners, model assumptions need to be looked at carefully by
practitioners in the context of the application before adopting the results.

The Sequential Crackdown Model also raises several unanswered questions. The model
suggests possibilities of coupling crackdowns in markets where residual deterrence can
lead to cyclic use (and freeing) of resources. However, a formal analysis is needed for
sequencing crackdowns on drug markets across the city. The number of drug markets can
be large (e.g., city of Camden is estimated to have 130 drug markets) and significant
savings can be accrued by using optimal scheduling strategies, underscoring the need for
researchers and practitioners to study this problem.

There exists an opportunity for researchers and practitioners to better quantify some of
the model parameters such as the financial hardship level, the incarceration probability
improvement index, the probability of incarceration, etc. The estimates provided here
were based on interviews and can be further authenticated by collecting information from
arrested dealers directly.
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Some of the interview techniques used by researchers for the development of the model
can also be used to build theories from case studies. This technique, often used to
empirically develop hypothesis in the area of strategic management, can also be applied
for this application where expertise and experience of individuals exists more readily than
raw data.

The model developed here indirectly addressed the issue of dealer displacement to other
neighborhoods as a result of the crackdown operation. One way to extend the model
would be by incorporating a displacement probability factor based on (i) mobility of the
dealers and, (ii) the availability of alternate locations for drug dealing. The model’s
objective function would then have to be altered appropriately incorporating the cost of
the displacement effect.

For the purpose of the model we assumed that arrests implied a significant time of
incarceration for the dealers. Given the severity of the constraints on the judicial system
and prisons across the country, this assumption may not be valid in several situations and
the model needs to be altered accordingly.

Finally, the intent of this work was not to argue for or against the use of crackdowns vis-
à-vis other strategies, but only to provide some guidance to practitioners for the most
efficient way of cracking down on street markets for illict drugs. The model and the
results are presented with a view to encourage others to look into better ways of
managing and controlling this problem that continues to affect millions of citizens across
the United States.
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Figure 4.1:  The Sequential Crackdown Model (SCM)
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 Figure 4.2:  Financial Hardship Factor as a Function of Expected Number of Days Missed
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    Figure 4.5: Estimating Crackdown Scenarios Using the SCM
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Figure 4.6(a): Market A with Emax = 100    Figure 4.6(b): Market B with Emax = 100

    Figure 4.7(a): Market A with Emax = 200                        Figure 4.7(b):  Market B with Emax =
200

0

5

1 0

1 5

2 0

2 5

3 0

3 5

1 2 3 4 5 6 7 8

D a y s (i )

N
i

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Ei

N i-(M a rk e t  A ) E i-(M a rk e t  A )

0

5

1 0

1 5

2 0

2 5

3 0

3 5

1 2 3 4 5 6

D a y s (i )

N
i

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

Ei

N i (M a rk e t  B ) E i (M a rk e t  B )

0

5

10

15

20

25

30

35

1 2 3 4 5 6

Da ys (i)

N
i

0

20

40

60

80

100

120

140

160

180

Ei

Ni-(M ark et A ) E i-(M ark et A )

0

5

10

15

20

25

30

35

1 2 3 4 5

Da ys (i)

N
i

0

20

40

60

80

100

120

140

160

180

200

Ei
Ni (M arket B ) E i (M arket B )



125

                    BEGIN

                           Input  τ(1,1),τ(1,2), τmax(1), τmax(2), τmin(1), τmin(2), Dmax
 Dmin, E0, Emax, φ, P0, ρ, ND(1,1), ND(1,2), Nmax

                Calculate  N1= ND(1,1) τ(1,1) + min(Nmax - ND(1,1) τ(1,1), ND(1,2) τ(1,2))

                                                             Calculate  E1

        i = 1

 Compute  Pi = P

e
Ei
Ni

0

1 1

φ
φ+ − −( )  

    Compute   EC(Ei+1) = ( )
( )

1
1

1

1
1

− ⋅
−

⋅
− −

−
=

ρ ρ
ρ

i j

i j
j

i

E

                                  E(Mi+1) = ( ( , ))1 1
1

−
=

τ j
j

i

          Di+1 = D
e E Mi

max
( )( )1 1 1+ − − +ψ

          

)2,1()())2,1()2((                  

)])1,()1,()1,()(1,1([)]2,1()2([)2,1(

)1,1()())1()1,1(()]1,1()1([()1,1(

0max

0
min

max

max
max

0max

0
min

minmax

min1
max

τττ

τττττ

ττττττ

+
�

��
�

�

−
−−+

−+−−=+

+��
�

��
�

�

−
−−−��

�
��
�

�

−
−−=+ +

EE
EEE

N
PiiNDiNDiNi

EE
EEE

DD
DDi

ic

i

ici

         Update  Ni+1 = ND(i+1,1) τ(i+1,1) + min(Nmax - ND(i+1,1) τ(i+1,1), ND(i+1,2) τ(i+1,2))

       Ni+1<1
     N       Y

                 Calculate Ei+1 which satisfies equation

               e E
N

E
N

Ei
Ni i

i i

+
+ − − + − − =+

+ +

1
1 1 1 1 01

1

0

1

[( ) ( )( )]φ φ

              If there are two Ei+1, choose the larger one.

     Ei+1>Emax                     
Y

  N           Ei+1 = Emax                

        i = i+1

                    END

Figure 4.8: Incorporating “Substitute” or “Replacement” Dealers in the SCM
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NOTATION:
    τ(i,1):  Probability of dealing on day i of a crackdown for a regular dealer.
    τ(i,2):  Probability of dealing on day i of a crackdown for a substitute dealer.
 τmax(1): The maximum probability of dealing for a regular dealer.
 τmax(2): The maximum probability of dealing for a substitute dealer.
  τmin(1):  The minimum probability of dealing for a regular dealer.
  τmin(2):  The minimum probability of dealing for a substitute dealer.
ND(i,1): Pool of regular dealers on day i.
ND(i,2): Pool of substitute dealers on day i.
      N(i):  Expected number of dealers dealing (including regular and substitute) on day i during

the crackdown.
Nmax: The total number of “dealing slots” available on any day.

Figure 4.9(a) Figure 9(b)

Figure 4.9(a): Market B with “Substitute Dealers with Emax = 100
Figure 4.9(b): Market B with “Substitute Dealers” and Emax = 200
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4.3 Data-Driven Strategic Policing Decision-Support System

One of the greatest technical limitations on the criminal justice system is the lack of useful
information to help in the decision making. There has been some progress in recent times with a
growing presence of information technology in law enforcement applications. Now police
managers regularly retrieve and use information on crime patterns, responses to calls for service,
vehicle locations, personnel, finances, and various aspects of departmental performance.
Emerging technologies in data collection and usage have opened possibilities for police
departments to develop and test new problem-solving techniques. However many of these
policing trends, such as rapid-response to 911-calls, are reactive instead of being proactive in
problem solving.

Recent emphasis on community policing and problem-oriented policing shows a definite shift in
policing philosophy toward better resource management. Scarcity of resources and increased
public attention to crime reduction has put additional pressure on police departments to improve
their performance. Police departments need to be able to sort through the clutter of approaches
and controversies to find tactics and initiatives that really work. Therefore, there is a growing
effort among law enforcement departments, local government agencies and academics toward
institutionalizing the process of ‘learning’ in police departments so that they can better serve and
strengthen their communities. Recent research has argued that “the informal network among
police planners appears to be a critical element in the research/planning process”. This
component of the project is an effort in this direction – providing support for the expansion of
the informal network of police professionals enabling better police management practices.

This project furnishes a technical platform for police departments to make more informed
decisions via dialog with cities having similar conditions and problems. The application software
developed here utilizes case-based reasoning – CBR, an artificial intelligence technique, and
computing power to compare several cities across multiple dimensions - demographic, crime and
enforcement. The software retrieves ‘matches’ that would have been otherwise difficult to
generate due to limits in human cognitive abilities particularly in short term memory.  The
system also addresses the issue of information availability, helping departments share
knowledge. This sharing of knowledge will allow police departments to benefit from the
cumulative experiences of others.

For years, analytical techniques and computers have been used for law enforcement applications.
For example, analytical and mathematical models have been recently used to manage and control
illicit drug activity. On the other hand, use of computer systems included those that keep track of
arrests, crimes and their types, criminal history, and missing persons. Recently, more advanced
systems have helped police respond to crime - Automated Fingerprint Identification and
Computer-aided Dispatch (CAD) systems, particularly tied to 9-1-1 systems. While these
systems can also help an officer by providing much information in preparing to respond to a call,
they tend to be geared to fast response.

Other systems include those that allow sharing of information among agencies (e.g. FBI’s
National Crime Information Center, NCIC). They provide cross-checking capability for firearms
and child care checks, speed dispatch through use of global positioning systems (GPS) for
automated vehicle location (AVL), aid identification of suspect vehicles and enhance
communication by putting terminals in police cars. Still these are geared toward day-to-day, and
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minute-to-minute tactical needs of police. These innovations are ways of  primarily “managing
the environment, rather than changing it”.

A recent emphasis on Geographic Information Systems (GIS) allows mapping of information to
help crime analysis and problem detection. These systems can be used to map crime patterns
within a city where various kinds of data can be overlaid over the maps to facilitate visualization
of “hot spots” of crime or trends. This kind of application can aid in planning and problem-
solving.

The software developed in this project, however, provides an additional dimension for policing.
It promotes a wider view, a longer-range perspective, encouraging greater communication
among various agencies and community groups, creating opportunities for cooperation. It
facilitates the identification, dissemination and use of the more useful and successful systems and
strategies.

Technologically, the project has some commonality with some previously developed software.
The FBI developed an automated crime profiling expert system which found previous incidents
for solving current crime incidents. The similarities were judged using “rules” that were
developed by experts in criminal justice profiling. The differences from the current project are
both in technology and in use. Rules were used instead of general similarity measurement
techniques, and crime investigation was the focus instead of communication and strategic
planning. Constructing rules is a painstaking process, and is only possible if genuine experts
exist. Even with experts, it may be hard to formulate rules for problem-solving. In the current
project, using rule-based AI technology would not be desirable due to a scarcity of experts for an
intrinsically difficult task.

The technique used here, CBR, has been an active research area in computer science for over 15
years and has been successfully employed for numerous applications. The range of applications
of CBR includes automobile diagnosis, medical diagnosis, banquet planning, identification of
cloud types, range-land management, explanation generation, route planning, device design and
architectural design. More recently, this technique has received much attention due to its use for
commercial purposes. For instance, Dell Computers reports great success using CBR for its
customer support services. Other commercial uses include matching the colors of plastics by
General Electric and detecting rail defects by Dutch Railways. While research prototypes have
addressed legal issues, such as trade secrets law and criminal sentencing by judges, the
knowledge CBR has not been used for many law enforcement tasks. Thus, the project is both a
new use of the technology and a new capability for those involved in law enforcement.

Modeling Framework

Conceptually, this model seeks to generate a list of matching cities which will enable the ‘cue’
city to satisfy one of the following broad goals - (a) crime reduction, (b) reducing policing
expenditure while maintaining same level of service, (c) making a case for getting additional
funding, and (d) increasing cooperation among departments (for instance, departments facing
similar problems may request joint funding from government agencies). The guiding principle in
this project is to let the computer do what it does best – handle a large volume of data and
calculations - and let humans do what the computer does not do best, communicating with
people, and synthesizing lessons from people’s experience.
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To achieve the above goals, the software requires a process of appropriately ‘matching’
communities based on input data. The approach used here considers each community or city a
“case” with the socioeconomic, law enforcement, and crime factors as part of the case problem
description; these are inputs to the model. Based on the problem description ‘Crime Similarity
System’ (CSS), retrieves communities that have relevant similarity, allowing the law
enforcement user to contact representatives of the retrieved communities for discussions
enabling dialog, discussion and possible learning.

The steps in the execution of this project involved identification of the data, development of a
method for determining similarity and using similarity matching to meet different user goals.
Therefore, three major aspects defining the modeling framework for CSS are (i) the input factors,
(ii) the matching process that forms the intelligence core of the software, and (iii) the user goals.
Below we discuss each of these components.

Input Factors

A factor is a piece of data describing a collection of related instances. The terms “attribute” in
database systems, “feature” in CBR, “field” in data processing, or “variable” in many areas of
social science capture the same idea as a factor. To arrive at the input factors to the model,
extensive discussions were held with law enforcement officials from the partner police
departments in the cities of Camden, NJ and Philadelphia, PA. The primary Camden police
department contact was the deputy chief of police assisted by two planning officers and two
special task force officers. The primary Philadelphia police department contact was a
headquarters planner/investigator with specialized training in use of technology and analysis. In
addition, discussions were held with academics from relevant disciplines of criminal justice,
geography and public policy. Multiple interviews, including brainstorming sessions were held to
identify and prioritize the inputs. Questions were posed in a semi-formal format, ensuring focus,
yet allowing flexibility for the end-users to raise relevant issues not considered beforehand2.
Sample printouts of data were provided to the officials to assist them in the discussions.
Subsequently a tentative list of relevant factors was developed, which was then fine-tuned via
follow-up interviews.

While the software could easily deal with hundreds of factors, it was our goal to limit the number
of factors to a manageable number. In particular, when a similarity match is returned, a user may
want/like to see how the community matches up. Presenting the user with numerous pieces of
data for their community and the retrieved communities was thought to be more overwhelming
than useful. Therefore, it was a major goal of the interviews to come up with the best small set of
factors.

                                                          

2 An example question posed was: “How important do you think population is in judging similarity
between communities?” This question was then followed up with an open-forum discussion allowing the
experts to identify other related factors and/or a combination of factors that, in their view, had an
important bearing in judging similarity among communities.
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Table 1 - Factors Used in Environment, Enforcement and Crime Dimensions
Population density

Median household income

percent of households receiving public assistance

percent of population between age 16 and 24

percent of adults who haven't completed high school

E
N
V
I
R
O
N
M
E
N
T percent of households that are owner occupied

Number of police officers
Police officers per 100,000 population
Number of requests for police service per officer
Police operating budget per 100,000 population
Percent of officers on patrol
Whether the police had a special gang unit

The percent of police officers assigned to special drug units

E
N
F
O
R
C
E
M
E
N
T

The racial match of the police force to the community

Total violent crime rate
Murder rate
Drug arrest rate

C
R
I
M
E Total non-violent crime rate

After the identification phase, these factors were aggregated into three dimensions: environment,
enforcement and crime, where a dimension is an aggregation of factors describing one aspect of
a community. The factors incorporated in each dimension are shown in Table 1. The
environment dimension deals mainly with the socioeconomic conditions of the community.
These factors were taken directly from the U.S. Census data where available, while others were
generated from multiple raw factors. For example, population density was calculated from
population and land area, and percent of adults over 25 without a high school diploma was
calculated from numbers of adults in each educational sub-category.

The enforcement dimension measures resources available for law enforcement, demand for
service on those resources, and deployment of these resources toward fighting crime. The
enforcement factors were either obtained directly from the Law Enforcement Management and
Administrative Statistics (LEMAS) survey or were calculated via a combination with the Census
data. The racial match factor – developed to measure the sensitivity of deployment to ethnic and
minority groups (a key factor for garnering community help in community policing) – involved a
slightly more complex calculation. It quantitatively measures whether the ethnic composition of
the police force matches that of the population it serves (see Appendix).

The crime dimension quantifies the prevalence of crime in a community, and each factor
incorporated in this dimension has been normalized per 100,000 population to ease comparison.
The factors chosen (Table 1) were obtained from the Federal Bureau of Investigation’s (FBI)
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Uniform Crime Reports.

The Case-Based Reasoning Model

As mentioned above, a technique from the field of Artificial intelligence, Case-Based Reasoning
(CBR) was used. CBR’s intelligence lies in its ‘memory’ of a successful case of problem
solving, used to solve new instances of similar problem, without complete model or knowledge
of the task. A central step in any Case-Based Reasoning system is the retrieval of appropriately
similar previous cases. CBR’s inherent strength in targeted retrievals makes it desirable for use
in the application.  One popular form of case-based retrieval is nearest neighbor in which all
factors are combined to derive similarity between cases. The core of CSS uses three concurrent
nearest neighbor retrievals, one for each of the three dimensions.

In a nearest-neighbor retrieval, cases in ‘memory’ are compared to the given (or “cue”) case on
all relevant problem-description factors. For each factor, the difference between the cue and the
stored cases is calculated. The resulting differences are combined using one of several potential
metrics. The ‘Manhattan’ metric used by CSS (see Equation 1) adds the absolute value of the
weighted differences together. Regardless of the metric, the case in memory with the smallest
result is retrieved as the ‘closest’ case i.e., it is the “least distance away”. As typical of most uses
of nearest neighbor approach, each factor is weighted to capture their relative impact.

Distancej = w1|c1 – m1j| + w2|c2 – m2j| + ... wn |cn – mnj|                                (24)

Where, cn is the value for the nth attribute for the cue community, mij is the value for the ith
attribute for the jth community in memory and wn is the weight for the nth attribute.

This nearest-neighbor approach takes advantage of the computer’s capability to consider all
factors simultaneously, whereas a person asked to judge similarity, would have to focus on only
a few relevant factors due to short-term memory limitations. The software program has the
additional advantage of being able to keep in its memory hundreds or thousands of cases
efficiently.

Users from partner police departments indicated that cities of drastically different populations
would not be useful matches even if many attributes were similar, since law enforcement issues
are significantly different qualitatively. Therefore, in CSS, the nearest-neighbor retrievals are
limited by city population. Accordingly we chose to perform distance measurement only on
comparable cities - those with a similar population to the cue-city. Utilizing FBI's standard
categorization of cities into groups by population, CSS's nearest-neighbor retrieval only
considers cities in the same or adjoining population categories as the cue-city.

Besides its obvious advantage over manual searches, the nearest-neighbor approach also
provides several advantages over human-assisted database retrieval. A person performing
database retrievals still must choose a criterion to use, which requires picking a small set of
factors and determining cut-off(s) for each factor. In such a database retrieval, using a very small
set of factors could lead to inaccuracies if some important factors are left out. On the other hand,
using a large number of factors would be tedious and impractical for the user. Additionally, the
user may have to do experimentation for selecting most appropriate cut-offs, and wrong choices
may lead to too few or too many retrievals. In contrast the nearest-neighbor approach weighs all
the factors appropriately in finding the best ‘partial’ match where no perfect match for a
particular factor is required.
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Assigning Weights

The process of finding the appropriate factor weights required multiple interviews with the
experts from partner police departments. As discussed above, the experts were first asked to
suggest possible factors. Next they were asked to place the factors for a dimension into 2 lists –
list A consisting of the factors perceived more important and list B consisting of the relatively
less important ones. They were then asked to assign a cumulative percent weight on the factors
in list A. After assigning a cumulative weight on each list, they ranked the factors in each list.
The experts were then asked to further split each list into two smaller sub-lists and repeat the
above procedure if necessary until they felt "comfortable" to assign a numerical weight on each
factor.

In the second stage the experts were shown the impacts of the weights via results and were given
the opportunity to revise their ratings. Even though this stage was tedious (for it required looking
at a myriad of data), its impact on the quality of the model solution was invaluable. Fine-tuning
of the weights was an on-going process through all the stages of this project. It is important to
note that this technique avoids the problem of prohibitive number of comparisons (the task at
hand involved over 300 cities and 20 factors) that methods such as a conventional Analytic
Hierarchy Process approach would encounter.

User Goals

Initial discussions with the partners, Philadelphia and Camden police departments, focused on
the question, “How can the software aid strategic planning and decision making?” While many
possible uses were considered, we finally converged to the following four: (a) “find very similar”
cities, (b) “find more efficient” cities, (c) “find more effective” cities, and (d) “find funding
argument” city matches. For each of these user goals, CSS performs three nearest neighbor
retrievals, one for each of the dimensions. Depending on the user’s goal, these individual
retrievals are then combined to produce a final retrieval result.

The “find very similar” goal is targeted to yield communities that are similar to the cue-city on
all three dimensions - enforcement, environment and crime. If the software outputs a “very
similar” match, it implies that the match was among the top 15% in similarity on all three
dimensions. A top 15% cut-off in similarity was implemented since it yielded reasonable results.
Unlike typical nearest-neighbor retrievals where all factors would contribute to one similarity
measurement, our approach combined three nearest-neighbor retrievals, forcing retrieved
communities to be similar on all three dimensions. This ensures that a close similarity on one
dimension (e.g. crime) cannot compensate for a lower similarity on another dimension (e.g.
enforcement). For instance, Compton is the most similar city to Camden on socioeconomic
environment, and 10th most similar on crime, but is only 187th most similar on enforcement out
of 325 communities. Using our approach, Compton will not be considered a very similar
community to Camden while in a single-weighted nearest-neighbor retrieval it would be 2nd most
similar (using same weights as CSS).  While Compton may be relevantly similar to Camden in
terms of one of the other goals available in CSS, the difference in enforcement however suggests
that it shouldn’t be considered “very similar”. In contrast, consider Hartford, one of the cities
retrieved by CSS’s “very similar” search for Camden. Hartford rates 2nd most similar to Camden
on socioeconomic environment, 17th most similar on crime, and 13th most similar on
enforcement, a good all around match.
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In identifying these “very similar” communities, the hope is that it will help develop channels of
communication for sharing experiences and learning from each other. Such a dialog could lead to
the identification of strategies that have worked in similar situations elsewhere or warn against
pitfalls of failed strategies.  Based on the feedback from the partners, it was felt that this
information-sharing holds exciting possibilities in making the policing efforts to be proactive and
strategic.

For the “find more efficient” goal, the application displays communities that are similar to the
cue community (top 15%) on environment and crime, but significantly lower (at least 20%
lower, see Figure 4.10) in enforcement resources. A possible implication is that the matching
communities could be using their resources more efficiently, offering a possible opportunity for
learning on how to reduce spending or re-deploy officers. Note that we are not arguing that such
a match for any of the user goals is necessarily going to be fruitful, but that the potential is
worthy of further exploration. The efficiency measure described here is, of course, limited by the
data factors incorporated into CSS. Nevertheless, this measure does provide a starting point for
investigating the efficient use of resources by police departments.

The third goal of “find more effective” outputs communities that are similar to the cue
community in the environment and enforcement dimension (top 15%), but are significantly
lower in crime (at least 20% lower). A link with such communities could result in initiation of
similar programs, which utilize resources more effectively. It may be argued that since
enforcement and crime are correlated, a community with similar enforcement and lower crime
than the cue-city is an exception or an “outlier” and therefore should be ignored. For this
application however, these exceptions are potentially very interesting and could be a function of
unusual efforts of the community in reducing crime, worthy of serving as benchmark.

The “find funding argument” search yields communities that are similar to the cue community on
environment  (top 15%), but significantly higher in enforcement and significantly lower on
crime. Benchmarking such communities, the user police department could make an argument
that additional resources (from state and federal agencies) could possibly help bring down crime
(similar to the levels of the matching community), given that both have a similar environment.

While these were the four goals implemented in the current version of the CSS application, the
modeling framework allows flexibility for additional goals.

Prototype Development

Developing the CSS software was an elaborate and time-intensive process. Multiple data sources
with differing formats had to be combined, resulting in additional difficulty. Next we discuss the
various sources of data, extraction of items from the parent sources, coalescing of data from
different sources into one dataset, normalization of the data, development of a graphical user
interface, and system evaluation. Figure 4.11 provides an overview of the process of turning raw
data into useful retrieval.

Data Sources

Data for the various socioeconomic factors was obtained from the U.S. Census data, available
through CD-ROMs (U.S. Department of Commerce, 1992). Crime data was obtained from two
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sources: (a) the non drug-offenses data for the “index crime” obtained from the Uniform Crime
Report on the FTP server at the University of Alaska’s Criminal Justice Center, and (b) The drug
arrest data on tapes purchased directly from the FBI. The enforcement profile data was obtained
from the Law Enforcement Management and Administrative Statistics (LEMAS) survey of
police departments nationwide (U.S. Department of Justice, 1992), available through the Inter-
University Consortium for Political and Social Research's (ICPSR) WWW site at the University
of Michigan-Ann Arbor.

Data Extraction

Since the data sets were not in ready-to-use format for this application, extensive computer
programming had to be performed for extracting relevant information. For example, drug arrest
data from the FBI dataset provided, for every city, monthly arrest data for each offense further
branched by each age/race/sex combination. Since the model did not require breakdown by time,
age, race, or gender, aggregation was performed to obtain total annual drug arrests for each city.
Using each data source required pulling out relevant fields from among many fields, sometimes
requiring use of statistical programs like SAS.

Data Coalescence

Following extraction, datasets from all the sources were matched up. The complications included
(i) the city names were not unique, and (ii) different sources used different formats for the names
(e.g. all capital letters versus mixed case etc.). The data coalescence was achieved using a Pascal
program that converted the most “readable” community names, from the census, to each of the
other forms (e.g. removing all blank spaces, converting all lower case letters to uppercase,
stripping words like “borough”, etc.) and then matched across datasets. Additionally, since city
names were not unique, the matching involved checking the state and the county as well. At this
stage, in addition to data coalescence, pre-processing of data was performed. For example, the
Census data provided raw data on several educational levels of residents, which were converted
to percentages.

Data Normalization

The successful use of a nearest neighbor approach depends on the "normalization" of data -
putting all data into the same relative scale. This becomes necessary to ensure that a small
difference on one factor (e.g. $10,000 difference in police budget) does not override a very
important difference on another factor (e.g. difference of 500 in number of police officers).

Normalization of data was done by first calculating the standard deviation for each factor. All
values beyond three standard deviations above or below the mean were set aside temporarily,
and among the rest the largest and smallest values were found. The largest value (and anything
above it – i.e. those that were temporarily set aside) was set to a normalized value 10, while the
smallest number (and anything below it– i.e. those that were temporarily set aside) was set to a
normalized value of 0. The range between the smallest and the largest values was then divided
into 9 equal size sub-ranges numbered 1-9. Raw data falling in each sub-range was assigned the
corresponding normalized value. For any factor in which a high number was considered
‘undesirable’ for a community, the normalized values were then reversed (0→10, 1→9, 2→8,
etc.), ensuring consistency and ease in interpretation.
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The three standard deviation cutoff makes sure that ‘unusual’ data does not force all other values
to fall on one side of the scale. The extreme values for a factor become 0 and 10, and values in
between are spread into the range 1-9. Intuitively, the ‘equally spaced’ interval normalization
process captures the mental model that magnitudes of difference between data is the key
indicator of similarity, and should be preserved. Thus, for instance, it was not desirable to use z-
scores, which tends to provide fine distinctions among data points that are close together in raw
score but are separated by many other data points. The normalization scheme used here, on the
other hand, preserves the original clustering of data.

Software Application and the Graphical User Interface

The software code for this component was written in the “C” programming language (see
Appendix) and is portable to multiple computer platforms. For the CSS application to be used
easily and effectively by police officials, development of a good graphical user interface (GUI)
was imperative. This front-end of the software was developed using an application development
toolkit. The GUI (see Figure 4.12) allows the user to specify their desired goal, using user-
friendly point-and-click technology. To specify the goal, or choose the cue community, the user
clicks on the appropriate choice in the list box. The appropriate core algorithm is invoked once
the user makes a goal selection. Based on a follow-up suggestion from the partner police
departments, the current version of CSS now allows users to view the data comparison between
the cue-city and any city (of interest to the user) in the retrieval list. The layout and functionality
of the software have been continually updated based on ongoing interactions with the police
officials.

System Evaluation

After routine unit and system testing, police users checked the reasonableness of the retrievals
using their knowledge and experience.  Detailed factor-by-factor calculations of similarity were
then presented to officials to show them the underlying process. Weights for different factors in
the nearest-neighbor algorithm were fine-tuned based on their feedback and comments. Next, the
users were asked for feedback on the usability of the program. It was at this stage of the
evaluation that the need for displaying the underlying data was identified by the users.
Displaying data comparisons enables on-line exploration and analysis of the similarity
measurement. Besides helping the users in evaluating the “goodness” of the match, this
capability generates user confidence in the reliability of the software.

Ideally, we would like to evaluate the quality of strategic decisions made by police departments
supported by CSS vs. the quality of those without it. However, such a first order test is infeasible
due to several reasons. First, gathering a sufficiently large sample of strategic decision-makers
from police departments is impractical in itself. Second, the strategic decisions being made by
different police departments in a given time frame would tend to be intrinsically different and
therefore hard to compare. Finally, the success of strategic decisions is best judged after
observing the effects over a period of years – and even then, the effects are confounded with
many influences making it a complex task. Hence, a second-order test evaluating the system’s
support for retrieving relevantly similar communities was performed.  The natural standard for
comparison for the retrieval task seemed to be a database. This fact was further substantiated
when, during the course of this project, we would often be confronted with the question both
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from end users and other participants “why not just use a database?” A web search engine was
clearly not a good standard for comparison, because the task is not well suited to keyword
search. Hence, we evaluated the support provided for retrieval by CSS in comparison to that
provided by a database. The experiment used 20 MBA students as human subjects.

The experiment required the subject to retrieve cities similar to two cue cities, Camden, NJ and
Cincinnati, OH, using the CSS software and Microsoft Access database software. While the
subjects had no prior experience in using either software, they were computer proficient with
strong analytical skills, and therefore easily trained. A ten-minute training was given on Access
followed by a practice exercise on a similar, scaled-down task that lasted approximately 5
minutes.  Since the training focussed exclusively on the query capability of Access – the only
part needed for the experimental task – ten minutes of training time was adequate, which was
verified by pilot testing. The practice exercise directly paralleled the experimental task; it was
just a smaller scale – fewer factors and fewer records in the database. In addition to the ten-
minute training on Access, each subject was trained on CSS for about 1 min (with no practice
exercise). For all subjects, the time spent and their retrievals for both tasks were recorded. In
addition, a follow up questionnaire was given to help ascertain their level of satisfaction in using
each software.

While time was used as a performance measure directly, the actual retrievals had to be translated
into a measure that represented quality. It may seem logical to have an expert compare the
quality of retrievals by CSS and the subjects, in reality, the myriad of factors and dimensions
makes such a task practically impossible (such an evaluation was indeed attempted but the expert
was overwhelmed by the magnitude of the task). Therefore, the comparison was done using an
independent quantitative measure. Closeness to the cue-city represents desirable retrieval for this
task and is an indicator of quality. This closeness of retrievals for each subject was calculated by
first ranking all the communities in the database on each of the input factors. The difference of
ranks between the cue and retrieved city on all input factors was then summed up to get a
closeness measure for that particular retrieval for each subject. Finally all of these closeness
measures were summed over all the retrievals obtained by the subject. Equation (2) summarizes
this calculation. In summary, a lower difference rank sum represents a closer match to the cue-
city and in effect represents good quality.  To maintain fairness to both methods, this quality
measurement is different and independent from the similarity measurement used by CSS.

18
| |    for i 1...20, j 1,2                            (25)
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k input factors
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Q  Quality of retrievals obtained by subject i for cue city j.ij =

In the initial pilot run we observed some learning effect i.e., time taken by subjects for second
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city was less than the first one, for both CSS and Access, thus the experiment was designed to
counter-balance the ordering of software and city searches. Table 2 summarizes the average time
taken for completing the task for each software and city.

Table 2 : Average Retrieval Time (in seconds)
Software CSS ACCESS

City Camden Cincinnati Camden Cincinnati

1st City 27.7 27.3 1003.7 1200.2

2nd City 16.6 12.6 681.1 494.8

For example, using Access, it took an average of 1003.7 seconds for subjects to find matching
cities for Camden when done first and 681.1 seconds when they did the retrieval for Cincinnati
before doing Camden. Since second row values are less than the corresponding values in the first
row, the learning effect is clear. To accommodate this learning effect, a crossover analysis of
variance design was employed using a nested, three factor model. The statistical analysis showed
that CSS did significantly better than Access (p<0.001) on the time performance measure.

Table 3 summarizes the calculated, average quality measurement for each software and cue-city.
Since crossover learning effect was not found to be significant for the quality performance
measure, aggregate measurements are provided. An analysis of variance showed CSS better than
Access on the quality measurement as well (p< 0.01).

Table 3: Average Quality Measurement (Low is good)
Software CSS ACCESS

City Camden Cincinnati Camden Cincinnati

Quality of Retrievals 1283.17 1393.13 1530.3 1511.7

Table 4: Post – Experiment Questionnaire Results
(on scale 1-5 where 5 is good and 1 is bad)

Software CSS ACCESS

Searching for Matches 4.95 2.63
Ease of use 5.00 3.42

Finally, the post-experiment questionnaire showed that the users clearly favored CSS over
Access on both (1) efficiency and quickness of search, and (2) ease of use (See Table 4).

In looking at the results, it is not surprising that search performed using CSS was much faster
than search by using Access. CSS was developed to specifically support the task, while a
database is a general-purpose program supporting many different searches. It may be argued that
given CSS is specialized software, a comparison with a general-purpose database is not fair.
However, as discussed earlier Access is the only available alternative to CSS, and therefore a
valid choice for comparison. Further, the fact that the task is difficult and time consuming using
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a database only goes on to emphasize the need for a specialized software such as CSS.

The experiment also demonstrates the better performance of CSS than the human-assisted
database retrievals on the quality dimension. Perhaps, this can be attributed to CSS’ ability to
capture all the factors to generate a best partial match.

As discussed above, ideally we would have liked police administrators and decision-makers as
subjects in this evaluation experiment. However, that was not possible due to the time
commitment required from a large group of senior officials. Despite this limitation, the
experiment does demonstrate the effectiveness of the CSS software in generating quality
retrievals expeditiously within a subject population group.

Examples

Here we illustrate how the CSS software can be used to achieve two of the supported user goals
– “Find More Effective” and “Find Funding Argument”. The “Find More Effective” feature of
the software helps the user in finding cities that are similar to the cue community in the
environment and enforcement dimensions, but significantly lower in crime. For example, a run
of the software for finding a more effective city using Harrisburg, PA as the cue-city yields the
city of New Bedford, MA as a match. The weighted differences of 51 and 60 shown in tables 5
and 6 show that the two cities are quite similar in the environment and enforcement dimensions
respectively (differences can range from 0 on the low end to 1000 on the high end). The CSS
software then investigates the crime dimension (Table 7) indicating a significant difference of
314 between the two cities (recall, a higher normalized score implies a lower crime level). In
fact, New Bedford's crime level of 801 is 61% better than Harrisburg's 487 crime level. Given
the same resources and environment but a lower crime level suggests that New Bedford seems be
more effective than Harrisburg in its law enforcement efforts. Harrisburg may be able to gain
valuable information and learn new strategies from New Bedford police department that could
help them in reducing the crime level. The software can even help identify specific opportunities
for learning. In this example, the difference in drug related arrests in both communities seems to
be significant and perhaps a point worthy of further exploration. If New Bedford has some
specialized drug-related tactics that are contributing to a lower crime level, Harrisburg can
identify and implement similar programs.

Table 5 - Calculations for the Environment Dimension (Find More Effective)
ENVIRONMENT % People

Receiving
Public
Assistance

% age
16-24

Population
Density

% People
Less High
School
Education

Median
Household
Income

% House
Owner
Occupied

Harrisburg 4 6 8 5 3 4
New Bedford 4 6 8 2 3 4
Difference 0 0 0 3 0 0
Weight 28 22 17 17 11 6
Weighted
Difference

0 0 0 51 0 0

Total Weighted Difference: 51



139

Table 6 - Calculations for the Enforcement Dimension (Find More Effective)
ENFORCE
MENT

Police
officers

Police
officers
/100K
population

Police
operating
budget
$/1000

Police
requests
per
officer

%
officers
sworn
on
patrol

Racial
match
factor

Gang
units

%
police
officers
assigned
to drug
units

Harrisburg 3 1 2 7 7 5 10 3
New Bedford 3 1 2 6 8 8 0 4
Difference 0 0 0 1 1 3 10 1
Weight 29 29 21 9 9 3 3 3
Weighted
Difference

0 0 0 9 9 9 30 3

Total Weighted Difference: 60

Table 7 - Calculations for Crime Dimension (Find More Effective)
CRIME Murders/100K

population
Violent
Crimes/100K
population

Drug
Arrests/100K
population

Non Violent
Crime/100K
population

Harrisburg 6 5 2 6
New Bedford 10 7 6 8
Difference 4 2 4 2
Weight 36 29 21 14
Weighted
Difference

144 58 84 28

Total Weighted Difference: 314
Weighted Level for Harrisburg: 487
Weighted Level for New Bedford: 801

Next let us consider the “Find Funding Argument” user goal. Often, State/Federal criteria for
funding puts police departments in the position of meticulously justifying requests for additional
funding. The “funding match” feature identifies communities with similar environments, but
which enjoy access to greater enforcement resources and lower crime levels. The user police
department can cite the examples of such communities to argue for additional resources, “Since
Community X is similar to ours, we can reduce our crime level to match theirs, if we had access
to comparable enforcement resources.” For instance, if the Hawthorne, CA, police department
used the funding match features of CSS, it will identify Yonkers, NY, as a potential community
to use as justification for additional enforcement resources. Yonkers has almost twice the number
of police officers and per capital operating budget than Hawthorne, even though their
environments are similar. Perhaps, this is the reason why Yonkers enjoys a 50% lower murder
rate and 60% lower violent crime rate than that of Hawthorne. Hawthorne can make a
compelling case for additional resources citing the example of Yonkers.

Concluding Remarks

“An African proverb goes, ‘No one tests the depth of a river with both feet’. Yet, thoughtful
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police sometimes wonder if their department is an exception to this rule. They watch bewildered
and despairing as their organization leaps from one tactic and program to another, rarely
bothering to conduct a meaningful feasibility study or figure out what did not work and under
what conditions the last time a similar problem was tackled”. The CSS software developed here
is geared toward helping departments go beyond learning from their own experiences alone,
benefiting from the cumulative experiences of other departments. The richness of shared relevant
experiences holds immense possibilities for cooperation and innovation.

A recent National Institute of Justice report emphasizes the significance of an informal network
among police planners and suggests its enhancement by: (1) acknowledging and encouraging the
network of communication among police organizations, (2) providing resources to key
organizations in this network to support their dissemination activities, (3) continuing efforts to
enhance research capacity of police organizations, (4) choosing sites for research and
demonstration projects on the basis of an agency’s prominence in the communication network,
and (5) continuing efforts to make research available via electronic media. This project is in
consonance with the above recommendations because it  (1) specifically encourages
communications among police organizations,  (2) will help successful organizations disseminate
their success stories by leading other departments to them, via the find more efficient and find
more effective capabilities, and (3) helps police departments do their research by providing a
quick link to relevant departments. Further, with the possibility of collaborative funding,
demonstration and evaluation of policing strategies could be an indirect outcome of this project.

Besides the practical usefulness of this project in enhancing the capability of police department
to make more informed decisions, the project makes three significant contributions. First, it
provides a unique modeling framework classifying and aggregating input data into three
dimensions – environment, enforcement and crime. Relevant factors are identified and new
measures (e.g. racial match index) developed that help define these dimensions. Second, this
work identifies four important strategic goals that assist police departments in moving toward a
direction of proactive management. Third, this work develops a unique combination of three
similarity measurements that help in matching user goals.

The CSS software developed here is a  prototype and can be improved in several ways. A
possible enhancement, suggested by the Philadelphia Police representatives, would be a feature
in which a city can target to reach a certain reduced crime level. The software would analyze the
goal’s feasibility displaying cities that have similar environment to the cue-city and are closest in
crime rate to the target. Using this potential functionality of the software, police managers could
make future plans to reach the specified crime level reduction target utilizing the experiences of
the retrieved cities. This feature could be especially useful in helping communities to revitalize
by emulating other successful communities.

While an extensive effort went into development of the modeling framework and software
application, CSS is certainly not a "foolproof" tool. Since its inception, CSS was meant to be an
Artificial Intelligence tool that learns from experience enhancing its capability to provide better
matches. A future improvement would add a feature allowing the software to incorporate
feedback for better matching. On coming across a non-useful match, a user can provide useful
input allowing the software to 'learn' and adjust the weights used in the nearest neighbor
retrieval.

Another improvement would be to make the program run on the World-Wide-Web by converting
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it to Java, so that it would be more accessible and amenable to knowledge sharing. Knowledge
management systems are gaining popularity, especially since distilling and imparting lessons
learned has become more critical in today’s rapidly changing environment. A knowledge-capture
feature could be added in CSS to document actual contacts made between police departments
using this tool. The departments could annotate the data with comments about the cities
contacted and useful information obtained. This would then advance the current application into
a “lessons learned” system.

In addition to this current application, the modeling framework developed here can support other
purposes beyond law enforcement. It could be a useful tool for community revitalization and
business relocation efforts. For instance, using a time-series feature in the software, communities
can lure new businesses by showing lowering trends in crime in their neighborhood vis-à-vis
other competing communities. Further, a community can attempt to attract businesses from other
targeted communities - communities that are similar, but whose environment or crime situations
have declined over the preceding years.

In contrast to the AI approach used here of finding similar cases and generating matches,
alternate paradigms such as Linear Programming based Data Envelopment Analysis (DEA)
could be utilized. A DEA analysis could generate relative efficiency lists and find weight
assignments enabling comparison. However the CBR approach has two significant advantages
over the DEA approach. First, the application provides only those efficient communities that are
similar to the cue community. In other words, CSS will not give a retrieval of an efficient
community that is significantly different from the cue community in crime, thereby increasing
the probability of usefulness of CSS’s matches. Second, unlike the DEA methodology, the
approach used here is able to distinguish two separate kind of inefficiencies – (a) higher inputs
(via the find more efficient goal), and (b) not as good outputs (via the find more effective goal).

While the software was intended for use by police departments and law enforcement agencies,
the concept is potentially useful to a wide range of managers in diverse industries. The
framework of finding similarities and differences across multiple dimensions is really a novel
framework for data mining. This type of framework can be applied to applications involving use
and analysis of multi-dimensional data. For instance, in credit risk analysis, instead of combining
dissimilar factors into one measure of credit-worthiness, the separate dimensions of “economic
resources” factors, “personal stability” factors (such as how long in their current job), and
collateral factors (e.g. appraisal of a house) could be preserved separately and then compared in a
meaningful and effective manner. Indeed, as data mining gains more importance, the current
model can offer a framework useful in many applications. The modeling approach taken here
could provide a new framework for data mining, applicable to a variety of tasks.

CSS is an effort toward bringing a strategic, co-operative, learning and proactive viewpoint
among police departments. The current version is a completed prototype that illustrates the value
of this approach. The software's usefulness lies in its easy usage, displaying only relevant
information while saving the user from the tedious task of calculations and uncovering relevant
factors. However, it is a decision-making tool that is targeted to assist and not replace the
decision-maker. With an Internet application interface effort under exploration, its usage could
become nationwide, offering possibilities and innovations beyond the ones presented here.
Indeed, these exciting possibilities of learning and sharing among communities are valuable in
and of themselves.
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Figure 10: Efficiency Goal Flowchart
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Figure 11: Process Flow Diagram for CSS
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Figure 12: A Sample Screen Capture from the Interface of CSS Software
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APPENDIX

1. Racial Match Factor Calculation

Here we show calculation of the racial-match factor that is one of the factors in the enforcement
dimension of the CSS. Consider the data shown in Table 8. First the percent of the police force in
each racial group is calculated along with the percent of community population in each group.
Next, for each racial group, the smaller of the two percentages (community and police) for each
racial group is determined. Then, these minimum values are added together to get the racial
match index. If there is a perfect match between the percentages in the community and the police
force, the index will be 100. Any under-represented racial group leads to a lower index value. In
the above example, a mismatch in percent of African-Americans in the community (41.3%) and
percent of African-Americans in the police force (10.5%) lowered the racial match index. An
index value significantly lower than 100 would indicate a poor racial match

Table 8 – Illustrating the Racial Match Index Calculation
Racial Group       Column 1

% Community
   Column 2
% Police Force

    Minimum
(of Column 1 and 2)

White 55.0 87.7 55.0
African-American 41.3 10.5 10.5
Asian 1.7 0 0

Racial Match Index =     65.5
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Appendix. Data-Driven Framework for Understanding Criminal Activity

Consultant: Alok Baveja

 Progress Report – January 31, 2001

To achieve the goal of this project – viz. understanding criminal activity, a set of appropriate
inputs to the model needed to be identified. These inputs or factors are pieces of data that
holistically describe criminal activity within a city of concern.

Input Factors Identification (Phase I of the project):

To arrive at the input factors to the model, extensive discussions were held with law enforcement
officials from the partner police departments in the cities of Camden, NJ and Philadelphia, PA.
Our primary Camden police department contact was the deputy chief of police assisted by two
planning officers and two special task force officers. Our primary Philadelphia police department
contact was a headquarters planner/investigator with specialized training in use of technology
and analysis. In addition, discussions were held with academics from relevant disciplines of
criminal justice, geography and public policy. Multiple interviews, including brainstorming
sessions were held to identify and prioritize the inputs. Questions were posed in a semi-formal
format, ensuring focus, yet allowing flexibility for the interviewees to raise relevant issues.
Subsequently a tentative list of relevant factors was developed, which was then fine-tuned via
follow-up interviews.

After the identification phase, these factors were aggregated into three dimensions: environment,
enforcement and crime, where a dimension is an aggregation of factors describing one aspect to
criminal activity within a city. The factors incorporated in each dimension are shown in Table
below.

The environment dimension deals mainly with the socioeconomic conditions of the community.
The enforcement dimension measures resources available for law enforcement, demand for
service on those resources, and deployment of these resources toward fighting crime. The crime
dimension quantifies the prevalence of crime in a community.

While the model could easily deal with hundreds of factors, it is our goal to limit the number of
factors to a manageable number. Presenting numerous pieces of data will be more overwhelming
than useful. Therefore, it is a major goal of this phase of the project to come up with the best
small set of factors.
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Table  - Input factors aggregated by dimensions

Population density
Median household income
percent of households receiving public assistance
percent of population between age 16 and 24
percent of adults who haven't completed high school

E
N
V
I
R
O
N
M
E
N
T

percent of households that are owner occupied

Number of police officers
Police officers per 100,000 population
Number of requests for police service per officer
Police operating budget per 100,000 population
Percent of officers on patrol
Whether the police had a special gang unit
The percent of police officers assigned to special drug
units

E
N
F
O
R
C
E
M
E
N
T

The racial match of the police force to the community

Total violent crime rate
Murder rate
Drug arrest rate

C
R
I
M
E

Total non-violent crime rate
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Progress Report – February 28, 2001

After identifying the appropriate data-pieces, the next step was to find reliable and accurate data
sources for input. Multiple data sources with differing formats were identified. They had to be
combined, resulting in additional difficulty. At this stage of the project, we identified the various
sources of data, extracted items from the parent sources, coalesced different sources into one
data-set and normalized the data.

Data Sources
Data for the various socioeconomic factors was obtained from the U.S. Census, available

through CD-ROMs (U.S. Department of Commerce). Crime data was obtained from two
sources: (a) the non drug-offenses data for the “index crime” obtained from the Uniform Crime
Report on the FTP server at the University of Alaska’s Criminal Justice Center, and (b) The drug
arrest data on tapes obtained directly from the FBI. The enforcement profile data was obtained
from the Law Enforcement Management and Administrative Statistics (LEMAS) survey of
police departments nationwide (U.S. Department of Justice), available through the Inter-
University Consortium for Political and Social Research's (ICPSR) WWW site at the University
of Michigan-Ann Arbor.

Data Extraction
Since the data sets were not in ready-to-use format for our project, extensive computer

programming had to be performed for extracting relevant information. For example, drug arrest
information from the FBI data-set provided, for every city, monthly arrests for each offense
further branched by each age/race/sex combination. Since our project does not require
breakdown by time, age, race, or gender, an aggregation was performed to obtain total annual
drug arrests for each city.  Using each data source required pulling out relevant fields from
among many fields, requiring extensive use of statistical programs like the SAS, and general-
purpose programs written in C.

Data Coalescence
After data extraction, data-sets from all the sources were matched up. The complications

included (i) the city names were not unique, and (ii) different sources used different formats for
the names (e.g. all capital letters versus mixed case or hyphenated versus underscore etc.). The
data coalescence was achieved using a Pascal program that converted the most “readable”
community names, from the census, to each of the other forms (e.g. removing all blank spaces,
converting all lower case letters to uppercase, stripping words like “borough”, etc.) and then
matched across data-sets. Additionally, since city names were not unique, the matching involved
checking the state and the county as well. At this stage, in addition to data coalescence, pre-
processing of data was performed. For example, the Census data provided raw data on several
educational levels of residents, which were converted to percentages.

The result from the above three steps - data collection, extraction and coalescence - was a
“master” file to be used as input for the project.
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Data Normalization

To use all the different pieces of information on a common platform, "normalization" of
data becomes necessary – i.e. putting all data into the same relative scale. This becomes
necessary to ensure that a small difference on one factor (e.g. $10,000 difference in police
budget) does not override a very important difference on another factor (e.g. difference of 500 in
number of police officers).

Normalization of data was done by first calculating the standard deviation for each input
factor. All values beyond three standard deviations above or below the mean were set aside
temporarily, and among the rest the largest and smallest values were found. The largest value
(and anything above it – i.e. those that were temporarily set aside) was set to a normalized value
10, while the smallest number (and anything below it– i.e. those that were temporarily set aside)
was set to a normalized value of 0. The range between the smallest and the largest values was
then divided into 9 equal size sub-ranges numbered 1-9. Raw data falling in each sub-range was
assigned the corresponding normalized value. For any factor in which a high number was
considered ‘undesirable’ for a community, the normalized values were then reversed (0�10,
���, ���, etc.) ensuring consistency and ease in interpretation.

The three standard deviation cut-off makes sure that ‘unusual’ data does not force all other
values to fall on one side of the scale. The extreme values for a factor become 0 and 10, and
values in between are spread into the range 1-9. Intuitively, the ‘equally spaced’ interval
normalization process captures the mental model that magnitudes of difference between data is
the key indicator of similarity, and should be preserved ensuring accurate comparisons later.
Thus, for instance, it was not desirable to use z-scores, which tends to provide fine distinctions
among data points that are close together in raw score but are separated by many other data
points.
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Progress Report – March 31, 2001

Following the extraction, coalescence and normalization of data, the next step in the project was
to combine the input factors into single measures for each of the three dimensions.

This stage required multiple interviews with the experts from partner police departments. The
experts were first asked to suggest possible factors and dimensions. The three dimensions and
factors were identified as:

1. Environment dimension with input factors of population density, median household income,
percent of households receiving public assistance, percent of population between age 16 and
24, percent of adults who have not completed high-school education, percentage of
households that are owner occupied.

2. Enforcement dimension consisting of number of police officers, police officers per 100,000
population, number of requests for police service per officer, police operating budget per
100,000 population, percentage of officers on patrol, existence/absence of a special gang
unit, the percent of police officers assigned to special drug units, the racial match of the
police with the community they serve.

3. Crime dimension consisting of total violent crime, murder rate, drug arrest rate and total
non-violent crime rate.

Next, extensive independent one-on-one interviews were held with the experts for finding
the appropriate way of aggregating the input factors into a single measure for each of the three
dimensions. The methodology involved a sequential process. Specifically the experts were asked
to place the factors for a particular dimension into 2 lists – list A consisting of the factors
perceived more important and list B consisting of the relatively less important ones. The experts
were then asked to assign a cumulative percent weight on the factors in list A. After assigning a
cumulative weight on each list, they ranked the factors in each list in the following way. They
were required to further divide each list into two smaller sub-lists and repeat the above procedure
if necessary until they felt "comfortable" to assign a numerical weight on each factor. This
process of hierarchical and sequential weight assignment was developed after trying a few pilot
interviews in which we found that the experts found it difficult to quantify the importance of a
factor directly. This step-by-step procedure worked extremely well in trials and was therefore
adopted.

In the second stage the experts were shown the impacts of the weights via preliminary results and
were given the opportunity to revise their weighting. For example, they would be shown the
cumulative crime dimension score for two cities they were familiar with to see if the score was
representing reality accurately. Even though this stage was tedious (for it required looking at a
myriad of data and comparisons), its impact on the quality of the model was invaluable. Fine-
tuning of the weights is envisaged as an on-going process through all the subsequent stages of
this project as well.
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Progress Report – April 30, 2001

After routine unit and system testing, police users checked the reasonableness of the model
using their knowledge and experience.  Detailed factor-by-factor calculations were then
presented to officials to show them the underlying process. Weights for different factors in the
algorithms were fine-tuned based on their feedback and comments. Next, the users were asked
for feedback on the usability of the program. It was at this stage of the evaluation that the need
for displaying the underlying data was identified by the users. Adding a display of data
comparisons enabled on-line exploration and analysis of the measurement. Besides helping the
users in evaluating the quality of the model, this capability generated user confidence in the
reliability of the system.

For this project, ideally we would have liked to evaluate the quality of decisions made by
police departments supported by our model vs. the quality of those without it. However, such a
first order test is infeasible due to several reasons. First, gathering a sufficiently large sample of
high-level decision-makers from police departments is impractical in itself. Second, the strategic
decisions being made by different police departments in a given time frame would tend to be
intrinsically different and therefore hard to compare. Finally, the success of strategic decisions is
best judged after observing the effects over a period of years – and even then, the effects are
confounded with many influences making it a complex task. Hence, we performed a second-
order test evaluating the system’s support for retrieving relevantly similar communities.  The
natural standard for comparison for the task seemed to be a database. This fact was further
substantiated when, during the course of this project, we would often be confronted with the
question both from end users and other participants “why not just use a database?” Therefore the
system evaluation was done using a lab experiment using student subjects.

The experiment required the subjects to retrieve cities similar to two cue cities, using our
model and Microsoft Access database software. While the subjects had no prior experience in
using either software, they were computer proficient with strong analytical skills, and therefore
easily trained.

While time was used as a performance measure directly, the actual outcome had to be
translated into a measure that represented quality. It may seem logical to have an expert compare
the quality of results from the model with those from the database software. In reality, the myriad
of factors and dimensions makes such a task practically impossible (we did attempt such an
evaluation but the expert was overwhelmed by the magnitude of the task).

To accommodate a learning effect among subjects, a crossover analysis of variance
design was employed using a nested, three factor model. The statistical analysis showed that our
model did significantly better than Access (p<0.01) on the time and quality performance
measures. Also the post-experiment questionnaire showed that the users clearly favored our
model over MS Access on both 1) efficiency and quickness of search, and 2) ease of use

Despite the limitation of not using the actual end-users, the experiment did demonstrate the
effectiveness of the model in providing quality and timely help to decision makers within a
subject population group.
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Progress Report – May 31, 2001

The final development and testing of the model/software has been accomplished. The
partner police departments have validated the software’s usefulness in:
(1) developing a comprehensive database that incorporates environmental, enforcement factors
along with crime statistics, (2) understanding and measuring criminal activity based on a
comparative, data-driven modeling framework, (3) encouraging meaningful communication
among similar police departments. Further, with the possibility of collaborative funding among
police departments, demonstration and evaluation of policing strategies could be an indirect
outcome of this project. Besides the practical usefulness of this project in enhancing the
capability of police department to make more informed decisions, the project makes two
theoretical contributions. First, it provides a unique modeling framework classifying and
aggregating input data into three dimensions – environment, enforcement and crime. Relevant
factors are identified and new measures (e.g. racial match index) developed that help define these
dimensions. Second, this project identifies four important strategic model goals that assist police
departments in moving toward a direction of proactive management.

Dissemination of the project results is being done through: (1) A scholarly research article which
is under final stages of preparation. This article is targeted for the European Journal of
Operational Research; (2) A short public-policy piece is ready for submission to a practitioner
outlet –targeting, Police Chief, the official publication of the International Association of Chiefs
of Police (IACP). The International Association of Chiefs of Police is the world's oldest and
largest nonprofit membership organization of police executives, with over 19,000 members in
over 100 different countries. IACP's leadership consists of the operating chief executives of
international, federal, state and local agencies of all sizes; (3) During the course of discussions
with the partner police departments, an opportunity to model enforcement strategies was
recognized. Based on these insights, a scholarly publication targeted for a special issue of
Mathematical and  Computer Modeling is also in final stages of preparation; (4) In addition, a
screen display of the model and software will be put up on the world-wide web for public
viewing.
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Proj1.apr: An ArcView Project folder  allowing one to view 1998 crime data from
Buffalo Police Department (BPD).

Each one of the files below is actually a set of three or four files with the following
extensions: .dbf, .shp., .shx, and sometimes, .spn

.dbf files contain the date, location of the crime (street address), x- and y- coordinates

In the case of robberies, the nature of the stolen property is described.

98_robbery
98_robbery_purse Cases where purses were stolen
98_robbery_s_arm Strong-arm robberies
98_robbery_w_cutting Robberies with knives
98_robbery_wea_stolen Robberies with stolen weapons
98_robbery_bike Robberies of bicycles
98_robbery_gun Robberies using guns

96_crime_burglary Burglaries
96_crime_drug Drug crimes
96_crime_arson Arsons
96_crime_arsonsub Arsons for a small, high-crime area within Buffalo

The following files work with ArcView’s Tracking Analyst, to animate the dot map of
crimes as it evolves over time:

trackpurse
tracki _98_bike
track_98_s_arm
track_98_gun
track_98_cutting

Each of these files is actually a set of three files containing extensions .trx, .shx, and .shp
There is also a .dbf with the same name, though there is no file extension.
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Program Description

cuwinpu.prg is a program run using the GAUSS programming language.  It signals when
changes in geographic patterns occur.  The program is commented, with indications
where parameters are set.
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