The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report:

| Document Title: | Study of the Determinants of Case Growth in U.S. Federal District Courts, Final Report |
|-----------------|----------------------------------------------------------------------------------------|
| Author(s):      | William F. Shughart, II ; Gokhan R. Karahan                                            |
| Document No.:   | 204010                                                                                 |
| Date Received:  | February 2004                                                                          |
| Award Number:   | 2000-IJ-CX-0042                                                                        |

This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federallyfunded grant final report available electronically in addition to traditional paper copies.

> Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

## A Study of the Determinants of Case Growth in U.S. Federal District Courts\*

## Sponsored by the National Institute of Justice Grant # 2000-IJ-CK-0042

Principal Investigators:

William F. Shughart II and Gökhan R. Karahan

The University of Mississippi Department of Economics P. O. Box 1848 University, MS 38677-1848

> Final Report July 2003

| FINAL  | . REP  | POF | 1 <b>T</b><br>71 | 1 +11                                    |
|--------|--------|-----|------------------|------------------------------------------|
| Approv | ed By: | Ľ   | И                | Balla                                    |
| Date:  | 12     | 4   | 03               | an na an a |

<sup>\*</sup> John Barkoulas contributed significantly to the time series forecasting results reported herein. We also benefited from the research assistance of LiuQuing Mai and Yuncan Cen. Three peer reviewers supplied helpful comments and suggestions. As is customary, however, the principal investigators take full responsibility for the final product.

## **EXECUTIVE SUMMARY**

This study analyzes the determinants of the explosion in the caseload of the U.S. federal district courts that commenced in 1960. Prior to that time, the federal judiciary's caseload grew at a rate averaging about 1.1 percent per year. Thereafter, the growth rate rose to 2.9 percent annually, nearly tripling the demands on the federal courts. In order to cope with a caseload that has been growing faster than the U.S. population, the budget of the federal judiciary has expanded by 170% over the past decade – about four times the corresponding increase in total government spending. The mounting burden on sitting federal judges has been driven primarily by an upsurge in civil cases, which have increased sevenfold since 1940. While criminal case filings have increased as well over time, especially so during the past few years, their volume has only doubled over the same period.

The analyses reported herein offer important insights into the judiciary's caseloads problem. First, using best-practice econometric techniques, we supply forecasts of future demands on the federal courts that are more accurate than those available previously. Forecast errors are reduced by taking account of the time series properties of the case data. In particular, strong evidence that the time series of federal civil and criminal cases are nonstationary (have unit roots) implies that the projections produced by deterministic linear trend models are unreliable.

Based on estimates of autoregressive time series models of civil and criminal cases, using annual data for the years 1904 to 1998 as well as several subperiods thereof, we generate out-of-sample forecasts through 2020 that differ substantially from the forecasts of the Judicial Conference of the United States. To illustrate, while the Judicial Conference estimates that total federal case filings will almost triple between 2000 and 2020, rising from 364,800 cases to 1,060,400 cases annually, our forecasts suggest that the burden on the federal courts will not reach half that number: our most generous estimate for 2020 is a total of 444,074 cases. Indeed, our out-of-sample forecasts for 1999, 2000, 2001 and 2002 are much closer to the numbers of case filings actually observed in those years than are the forecasts of the Judicial Conference of the United States (our estimates deviate by only about 10,000 cases per year, on the average, from the realized numbers). The following tables compare our out-of-sample forecasts with those contained in the Judicial Conference's *Long Range Plan for the Federal Courts* for five-year intervals, 2000–2020.

|      |         | dia dia mandri<br>Referencesso di Stationale di<br>Stationale di Stationale di | This    | Study   |         |                         | Observed | JCUS      |  |
|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------------------------|----------|-----------|--|
| Year | 1904–98 | 1948–98                                                                                                                                                                                                                                                | 1960–98 | 194098  | 1940-95 | Average of<br>Forecasts | Civil    | 1940–95   |  |
| 2000 | 324,567 | 319,657                                                                                                                                                                                                                                                | 322,981 | 323,577 | 313,646 | 320,885                 | 321,669  | 364,800   |  |
| 2005 | 334,462 | 336,471                                                                                                                                                                                                                                                | 350,662 | 345,771 | 328,893 | 339,252                 | NA       | 463,600   |  |
| 2010 | 350,522 | 361,305                                                                                                                                                                                                                                                | 381,487 | 362,216 | 348,306 | 360,767                 | NA       | 610,800   |  |
| 2015 | 366,821 | 382,708                                                                                                                                                                                                                                                | 409,940 | 384,750 | 366,981 | 382,240                 | NA       | 802,800   |  |
| 2020 | 382,740 | 408,259                                                                                                                                                                                                                                                | 444,074 | 411,714 | 385,903 | 382,240                 | NA       | 1,060,400 |  |

Five-Year Interval of Forecasts for Total Case Filings

|      |         |         | This    | Study   |         |                         | Observed | JCUS    |
|------|---------|---------|---------|---------|---------|-------------------------|----------|---------|
| Year | 1904–98 | 1948–98 | 1960–98 | 1940–98 | 1940-95 | Average of<br>Forecasts | Civil    | 1940–95 |
| 2000 | 259,946 | 257,592 | 259,347 | 258,240 | 263,855 | 259,796                 | 259,517  | 317,000 |
| 2005 | 264,978 | 272,354 | 284,237 | 267,623 | 278,837 | 273,606                 | NA       | 409,400 |
| 2010 | 277,241 | 294,525 | 311,477 | 284,511 | 296,734 | 292,898                 | NĀ       | 548,000 |
| 2015 | 291,113 | 314,264 | 334,686 | 301,196 | 314,438 | 311,139                 | NA       | 731,100 |
| 2020 | 304,601 | 336,962 | 365,739 | 319,020 | 332,067 | 331,678                 | NA       | 976,500 |

Five-Year Interval of Forecasts for Civil Case Filings

Five-Year Interval of Forecasts for Criminal Case Filings

|      |         |        | This Stuc | ly        |                      | Observed | JCUS    |  |
|------|---------|--------|-----------|-----------|----------------------|----------|---------|--|
| Year | 1904–98 | 196098 | 1940–1998 | 1940–1995 | Average of Forecasts | Criminal | 1940-95 |  |
| 2000 | 60,553  | 59,157 | 58,509    | 46,010    | 56,057               | 62,152   | 47,800  |  |
| 2005 | 61,150  | 62,824 | 60,553    | 47,097    | 57,906               | NA       | 54,200  |  |
| 2010 | 63,128  | 66,490 | 62,597    |           | 60,100               | NA       | 62,000  |  |
| 2015 | 65,603  | 70,156 | 64,641    | 49,269    | 62,417               | NA       | 71,700  |  |
| 2020 | 67,594  | 73,822 | 66,686    | - 50,356  | 64,614               | NA       | 83,900  |  |

The last of these tables suggests that both the JCUS and this study tend to underestimate future criminal caseloads. This finding is independent of the different baseline time horizons employed and the nature of the autoregressive process modeled. The overall evidence points toward the presence of significant nonlinearities in the federal criminal case series and therefore the potential for improved forecasting performance using an appropriately specified non-linear model. On the other hand, the recent increase in criminal case filings – by 4,218 additional cases from 2001 to 2002 - is quite unusual by historical standards.

The most recent data indicate that a total of 274,841 civil cases and 341,293 total cases actually were filed in 2002. Our forecasts deviate from these numbers by 6,180 cases (2.24 percent) and 22,763 cases (6.67 percent), respectively. Both of these observed figures are much lower than JCUS predicts for calendar year 2000.

The study's second contribution is to specify and estimate multivariate econometric models of the determinants of civil case filings over time and across geographic space using panel data techniques. These empirical models are run on three alternative datasets consisting of observations on statewide, district-wide, and circuit-wide U.S. civil, private civil, and total civil cases per capita, over the period 1960 to 1998. We find that federal civil case filings are influenced significantly by the socioeconomic characteristics of the relevant state, district, or circuit. In particular, holding other things constant, civil cases are positively related to per capita income, population density, the percentage of the population that is nonwhite, the unemployment rate,

#### and the size of government.

We also find that the explanatory power of the panel data models is improved substantially by controlling for the geographical locations of the federal courts: other things being equal, except for the District of Columbia Circuit, significantly more civil cases are filed per capita in the Fifth Circuit than elsewhere. The fact that fixed effects models explain more of the variations in civil case filings than alternative models that do not take geographical location into account provides preliminary evidence pointing to the efficiency gains potentially flowing from reassessing the cross-circuit and cross-district allocation of judgeships and other scarce resources of the federal courts.

The importance of caseload management is reinforced by analyses of the impact of criminal cases on civil cases. We find that, holding constant the time between the filing and disposition of federal criminal cases, civil cases are disposed of more expeditiously in districts where there are more authorized judgeships per capita. On the other hand, holding authorized judgeships per capita constant, we also find that criminal cases impose a negative externality on civil cases: the more time federal judges take to dispose of criminal cases in a given district, the longer is the elapsed time between the date of filing and the date of disposition of civil cases. Moreover, the time to disposition of civil cases tends to be longer in districts where greater percentages of the criminal caseload involve alleged drug and immigration law violations.

Despite our finding that the time devoted to disposing of criminal cases slows the speed at which civil cases move through the courts, we also report evidence supporting the hypothesis that the time series of civil and criminal cases and the time series of authorized federal judgeships are not cointegrated. Two conclusions follow from this evidence. One is that the numbers of civil and criminal cases filed in the federal courts are generated by independent stochastic processes. In other words, information about the number of criminal cases filed in a given year does not allow one to predict the civil caseload, and vice-versa. The other conclusion is that the number of judges authorized to hear federal cases bears no statistically significant relation to the total caseload of the federal courts. Forces external to the courts, such as the political process, evidently play greater roles than caseload demands in determining the size of the federal judiciary.

In sum, this study provides new, and we believe, more accurate forecasts of the future caseloads of the U.S. federal district courts than have been available hitherto. Grounded in best-practice econometric techniques, we project that the federal courts can at most expect to face a caseload of 444,075 civil and criminal cases by 2020, not a total exceeding one million such cases. The study also supplies evidence that the distribution of federal civil cases across states, districts, and circuits can be explained by empirical models that include standard socioeconomic variables, such as income, population density, and race, along with variables that control for fixed effects associated with the courts' geographic location. We thus present models that policymakers can use to forecast the future caseloads on the federal court system as a whole as well as to estimate how the total caseload can be expected to be distributed geographically.

Perhaps the most important policy implication of this study, however, is to demonstrate the problematic nature of caseload forecasts using models incorporating simple linear trends. Indeed, once the time series properties of federal civil and criminal case filings are taken into account, there is no evidence of a linear trend in the data. The failure appropriately to model the time series of cases explains why previous forecasts, such as those contained in the *Long Range Plan for the Federal Courts*, have tended to overestimate the future demands on the federal courts. Armed with the more accurate forecasts presented here, policymakers can more confidently assess the need for additional judgeships and, moreover, can address what seems to be a more pressing problem, namely the possible misallocation of judgeships across circuits and districts.

## I. Introduction

The federal judiciary's caseload, especially its civil caseload, has grown dramatically since the 1960s. Between 1904 and 2002, civil cases grew at an average annual rate of about 3 percent. This growth rate is far greater than the growth of population and per capita income over the same period. By contrast, criminal case filings have increased much more slowly over the past 60 years – by about 0.5 percent annually, on the average. Consequently, as shown in Figure 1, the variation in the federal judiciary's total caseload is largely explained by variations in civil case filings. While it is possible that judicial resource allocation decisions are influenced by the composition of cases (civil versus criminal), it is clear that civil cases are where the action is in the U.S. federal courts.

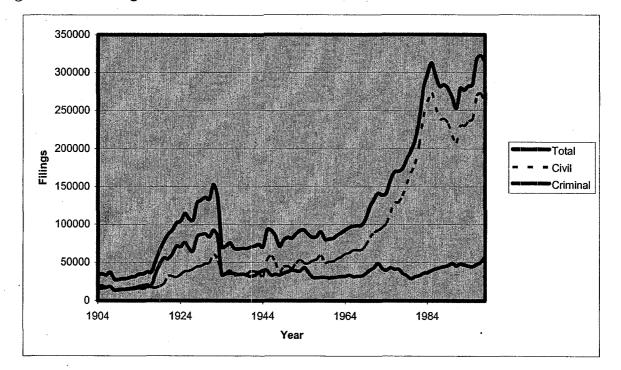



Figure 1. Case Filings in U.S. Federal District Courts, 1904–1998

The long-run perspective of Figure 1 masks changes in the caseloads of the federal courts that exhibit much more variability over shorter time intervals. As reported in Table 1, for example, civil case filings increased by more than 103 percent during the 1980s, a time when criminal

cases were rather markedly on the decline. On the other hand, criminal case filings have outpaced those of civil cases in recent years. It is nevertheless true that, for much of the twentieth century at least, the average annual rate of increase in civil caseloads has been significantly greater than that of criminal cases (see Table 2). Put in their starkest terms, criminal case filings have doubled over the past 60 years, while civil cases have increased sevenfold. The explosion in civil cases, a disproportionate contributor to the challenges now facing the federal courts, merits further study.

|      |         | Case Filings |         |                      |         | centage Change<br>n Previous Yea | ļ      |
|------|---------|--------------|---------|----------------------|---------|----------------------------------|--------|
| Year | Civil   | Criminal     | Total   |                      | Civil   | Criminal                         | Total  |
| 1940 | 34,734  | 33,401       | 68,135  | h taileit            |         |                                  |        |
| 1950 | 45,085  | 37,720       | 82,805  |                      | 29.80%  | 12.93%                           | 21.53% |
| 1960 | 51,063  | 29,828       | 80,891  | CIFLORA              | 13.26%  | -20.92%                          | -2.31% |
| 1970 | 82,665  | 39,959       | 122,624 |                      | 61.89%  | 33.96%                           | 51.59% |
| 1980 | 167,871 | 28,921       | 196,792 | infineen<br>Sidufaci | 103.07% | -27.62%                          | 60.48% |
| 1990 | 217,421 | 48,904       | 266,325 |                      | 29.52%  | 69.10%                           | 35.33% |
| 2000 | 259,517 | 62,152       | 321,669 |                      | 19.36%  | 27.09%                           | 20.78% |
| 2002 | 274,841 | 66,452       | 341,293 |                      | 5.90%   | 6.92%                            | 6.10%  |

Table 1. Case Filings in U.S. Federal District Courts, by Decade

Table 2. Exponential Short-Run Growth Rates in Case Filings, Selected Intervals

| Period    | Civil  | Criminal | Total  |  |
|-----------|--------|----------|--------|--|
| 1940–1949 | 3.14%  | 0.50%    | 1.94%  |  |
| 1950–1959 | 2.28%  | -3.52%   | -0.10% |  |
| 1960–1969 | 3.90%  | 1.38%    | 3.02%  |  |
| 1970–1979 | 6.83%  | -2.39%   | 4.44%  |  |
| 1980–1989 | 3.57%  | 5.19%    | 3.81%  |  |
| 1990–2002 | 1.93%  | 3.12%    | 2.15%  |  |
| 1904–2002 | -3.09% | 0.53%    | 2.15%  |  |
| 1960–2002 | 4.46%  | 1.44%    | 3.71%  |  |
| 1980-2002 | 1.15%  | 3.10%    | 1.46%  |  |

Rising case volumes have placed heavy demands on the resources of the judicial branch. Although the budget of the federal judiciary represents less than one-fifth of one percent of the U.S. budget, it has grown over the past decade by 170%, a rate about four times the increase in total government spending.

In order to assist the federal judiciary in meeting the expected demands of the twenty-first century, the Judicial Conference of the United States (JCUS) recently produced a *Long Range Plan for the Federal Courts* (Judicial Conference of the United States 1995). That plan contained projections of future caseloads based on simple linear trend models.<sup>1</sup> Although such forecasts are fairly accurate over short time horizons, the weaknesses of such models are abundant. One could estimate what next year's caseload will be based on caseloads in earlier years, but linear projections will generally cause policymakers to err when making long-run resource-allocation decisions. For example, had it been used at the time, linear trend analysis would in all likelihood have prompted Congress to create many more judgeships and supporting personnel in response to the unprecedented rise in the criminal case filings during the Prohibition Era.<sup>2</sup> Linear trend estimates are sensitive to changes in the underlying determinants of caseloads and they consistently miss turning points in the data, overestimating growth when caseloads start to fall and underestimating it when caseloads start to rise.

In the not too distant future, the federal judiciary will no longer be able to play the game of the "mules and wagons".<sup>3</sup> Public concern with government spending will force the judicial system's planners to become more circumspect in assessing the system's human resource and

<sup>&</sup>lt;sup>1</sup> The Judicial Conference of the United States may prepare other forecasts for internal use, including projections based on more sophisticated econometric techniques, but the forecasts published in the *Long Range Plan* are, to our knowledge, the only forecasts available to the public.

 $<sup>^2</sup>$  The total number of criminal case filings reached its peak of 92,174 cases in 1932. After Prohibition ended, the criminal case volume declined steadily and, since 1970, has averaged about 40,000 criminal cases per year (Posner 1996, p. 391).

 $<sup>^{3}</sup>$  The story is about a farmer trying to carry loads for himself and his neighbors. As the loads increase over time, the mules cannot carry the loads, and so the farmer adds a pair of mules, and later, one more wagon to his caravan. This goes on for a while and, at the end, he realizes that the lead pair of mules and the wagon is out of sight. Yet, he still adds more mules and wagons to solve the increased loads problem (Clark 1994).

physical capital needs. This may be possible by adopting more efficient management and budgeting processes. However, internal management and organization are only a part of the solution to the problem of increased caseloads. The demand for court services is not independent of the socioeconomic environment that surrounds the courts. That is the focus of this project. Specifically, this report specifies and estimates models of the determinants of the demand for federal district court cases. The contribution of this study is the following:

- It employs a more comprehensive dataset than any other previous study, a dataset comprising about 3,000 observations for each variable.
- It presents forecasts of annual case filings using best-practice econometric models and methods not employed by the Judicial Conference of the United States in its Long Range Plan for the Federal Courts (1995).<sup>4</sup>
- It constructs and exploits a dataset based on the annual case volumes of individual federal district courts. This minimizes the loss of information due to annualized aggregation of the case volumes across federal district courts at the state and circuit levels. However, empirical models are also presented using the statewide and circuit-wide data. Moreover, this study shows that the results are sensitive to the level of data aggregation.

In sum, this study provides new, and we believe, more accurate forecasts of the future caseloads of the U.S. federal district courts than have been available hitherto. Grounded in best-practice econometric techniques, we project that the federal courts can at most expect to face a caseload of 444,074 civil and criminal cases by 2020, not a total exceeding one million such

<sup>&</sup>lt;sup>4</sup> In a footnote, the authors of the *Long Range Plan* write that "early investigations of alternatives to [linear] regression, notably ARIMA [autoregressive integrated moving average] modeling, generally produced projection results consistent with those obtained here" (Judicial Conference of the United States 1995, p. 145). Our findings cast doubt on that conclusion.

cases. The study also supplies evidence that the distribution of federal civil cases across states, districts, and circuits can be explained by empirical models that include standard socioeconomic variables, such as income, population density, and race, along with variables that control for fixed effects associated with the courts' geographic location. We thus present models that policymakers can use to forecast the future caseloads on the federal court system as a whole as well as to estimate how the total caseload can be expected to be distributed geographically.

## II. Analysis of Case Growth Using Annual Time-Series Data

#### A. Univariate Time-Series Analysis

In this section we analyze the stochastic behavior of aggregate annual civil and criminal case filings spanning the 1904–1998 period, for a total of 94 yearly observations.<sup>5</sup> The objective is to ascertain whether the series in question are realizations of stationary versus nonstationary stochastic processes. Such a distinction regarding the underlying data generating process is crucial to the development of a univariate time-series forecasting model. Conceptually, for a nonstationary series an exogenous shock persists forever (has a permanent effect), but dissipates over time for a stationary series. The presence (or not) of a unit root in the autoregressive polynomial of a time series is critically important for forecasting purposes.

<sup>&</sup>lt;sup>5</sup> We use raw numbers of cases throughout the analysis, ignoring the fact that cases differ considerably in terms of the amount of judges' time they absorb. That alternative is captured in so-called weighted filings, a workload metric in use since 1946 and updated most recently in 1993 that accounts for the different amounts of time judges require to resolve various types of civil and criminal actions. See, e.g., Southern District of Texas, "Explanation of Selected Terms", http://www.txs.uscourts.gov/statistics/cmsexp199.htm. It turns out, however, that in general we cannot reject the hypothesis of a one-to-one correspondence between "weighted" and "unweighted" cases either in time series or across federal judicial districts. This is true even in the Southwestern United States, where the correlation between weighted and unweighted cases over recent years (1988–2002) exceeds 0.9. What is more important, the various case weights are determined retrospectively. Forecasts of future caseloads therefore are essential for predicting future workloads and, in any event, "an increasing caseload translates into an increasing workload" (see "The Third Branch: Five-Year Retrospective Takes Stock", http://www.uscourts.gov/ttb/dec98ttb/stock.html, p. 4).

We subject our time series of civil and criminal cases to a variety of unit-root tests. These tests differ in terms of the parameterization of the alternative hypothesis or in how they define their null and alternative hypotheses. The reason for using a variety of unit-root tests is to obtain robust evidence regarding the degree of smoothness in the series under study. A brief description of unit-root tests is provided in Appendix 1.

Results of the univariate time-series analyses. A number of standard diagnostic tests are applied to each series in their levels, log-levels and first-logarithmic differences (growth rates). The detailed results are presented in Appendix 1. Table A.1.1 reports the ADF-GLS (augmented Dickey-Fuller, generalized least squares) test results. Civil cases, both in their levels and loglevels, are found to be nonstationary, but their growth rates (first-logarithmic differences) appear to be realizations of a stationary process. The findings for the criminal cases are similar. These results are reinforced by the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) findings reported in Table A.1.2. The stationarity null hypothesis is strongly rejected for the level series but it is not rejected for their growth rates.

Table A.1.3 reports the structural-break tests, which allow for a double shift in the mean of the series as an alternative to the unit-root null. The  $\delta$  estimates, indicating the importance of mean shifts, are uniformly distinguishable from zero. None of the unit-root test statistics approach the 5% critical value of -5.49 for the series in levels, indicating that unit roots in the civil and criminal cases cannot be rejected. Accounting for two level shifts therefore does not strengthen the evidence against the unit-root null.

Table A.1.4 reports the modified log-periodogram test results, which allow for a fractional exponent in the differencing process of the series. For civil cases in levels the results depend upon whether a trend is allowed or not. For the with-constant model, the degree of differencing appears to be in excess of a unit root (order of integration greater than one) but it appears to be around 0.5 (significantly less than one) for the with-trend model. However, the evidence obtained for the log-level series as well as for the growth rates series is consistent with unit-root behavior. Evidence in support of a single unit root is obtained for the criminal case series. Overall, the unit-root hypothesis appears to be robust to fractional alternatives.

Conclusions from the univariate time-series analyses. We conclude from the foregoing analysis that the time series of both civil and criminal cases appear to be realizations of nonstationary stochastic processes, which is consistent with the dynamic structure of many macroeconomic time series. Therefore, the presence of a unit root is an important element in modeling the temporal behavior of these series. The implication of this finding is that, in order to develop an adequate forecasting model for a time series, its underlying data generating process must be approximated and estimated as closely as possible. In the case of deterministic-trends models used in the Long Range Plan, it is assumed that the behavior of the series will be governed by these trends indefinitely into the future. However, such an assumption is precarious as these trends may be subject to shocks over time, which is a very realistic possibility for the caseload series. On the contrary, nonstationary models assume that shocks (e.g., economy-wide, macroeconomic shocks) continuously hit the series with permanent effects on its behavior; in such cases, trends are stochastic and nonstationary in nature. Therefore the dynamic behavior of the series is different depending upon whether trends are deterministic or stochastic in nature. If a series is nonstationary (has a unit root) but it is modeled as stationary around some deterministic trend, then such a model is misspecified and its estimates are inconsistent with direct implications for forecasting performance. There are important differences between trend-stationary and unit-root processes in terms of forecasts of the series, variance of the forecast error, dynamic multipliers, and transformations needed to achieve stationarity (see Hamilton 1994, pp. 438–44).

Next, we analyze the forecasting performance of a unit-root model relative to alternative baseline models used in the literature in general and the *Long Range Plan* in particular, which are primarily (deterministic) trend-based models, such as linear, log-linear, and exponential, to name the most common. In these models trends are of deterministic nature whereas in the non-stationary (unit-root) models trends are stochastic.<sup>6</sup>

Long-horizon forecasting is always a difficult task that requires continuous monitoring as, among other factors, the likelihood of parameter and other structural changes increases with the passage of time. Often a variety of forecasts is produced by alternative models. Because each model may capture part of the truth (i.e., the underlying data-generating process), combinations of forecasts frequently are superior to individual forecasts, a conclusion that is in general supported by the empirical evidence. Additionally, even though one model may dominate another model in terms of forecasting effectiveness on the basis of one forecasting criterion or metric, that dominance may not be invariant to the usage of alternative forecasting metrics ("one model does not always win"). For each forecasting experiment at hand, the relevant loss functions should be chosen and on the basis of those loss functions competing model forecasts should be evaluated. Higher moments should also be considered (conditional density forecasts).

#### B. Univariate Time-Series Forecasting

In this section, we generate out-of-sample forecasts for three time series (civil cases, criminal cases, and total cases) using nonstationary (unit-root) univariate models. The extensive

<sup>&</sup>lt;sup>6</sup> The term deterministic relationship implies that, from the knowledge of the value of one variable, we are able to predict the value of another variable. For instance, suppose that Y = 2 + 10X. If X = 3, then Y = 2 + 10(3) = 32. However, owing to the omission of other relevant explanatory variables thought to influence Y, measurement errors, and so on, we may not be able to predict Y exactly. A stochastic relationship includes an additional term to account for the possible errors of prediction. "Stochos", in Greek, means bull's eye.

unit-root tests employed earlier strongly suggest that the time series possess stochastic trends, in particular, a single unit root.<sup>7</sup> After first-differencing the series, we model its short-run dynamics by fitting an autoregressive (AR) model using Box-Jenkins methods.<sup>8</sup>

The AR orders are selected on the basis of statistical significance of the coefficient estimates and Q-statistics for serial dependence: the most parsimonious representation is chosen so as to ensure serial independence for at least 12 lags in the corresponding residual vectors. For each series, we estimate autoregressive integrated (ARI) models of order (p, 1) using our sample observations and generate dynamic forecasts over the period 1999–2020.<sup>9</sup> To address the potential temporal instability of the underlying data generating process, we estimate AR models for five different sample periods: the full sample period (1904–1998), the post-World War II period (1948–1998), the period spanning the years 1960 through 1998 (these three are presented in Appendix 1), the 1940–1998 period and the 1940–1995 period (the latter two are presented in Appendix 4). The AR model estimates obtained from each sample period are then used to generate forecasted values for 1999–2020. Table A.1.5 presents the autoregressive models chosen for the civil, criminal, and total cases. The regression models used to generate the time series forecasts are shown in Table A.1.6. The out-of-sample dynamic forecasts generated by each model and for the first three series, 1904–1998, 1948–1998 and 1960–1998, are presented in Table A.1.9, the

<sup>&</sup>lt;sup>7</sup> A process with a single unit root is referred to as integrated of order one, denoted by I(1). More generally, a series is said to be integrated of order d, denoted by I(d), if it is rendered stationary after differencing it d times.

<sup>&</sup>lt;sup>8</sup> An extension of our approach could also consider moving average (MA) terms in modeling the short-run dynamical behavior of the series. However, adding a MA component would add complexity to the forecasting experiment while the forecasting improvements are doubtful, especially over longer horizons. An AR model with sufficient lag structure can very well approximate the MA components of the series.

<sup>&</sup>lt;sup>9</sup> Dynamic forecasts are multi-step forecasts, where forecasts computed at earlier horizons are used for the lagged dependent variable terms at later horizons. For example, the forecasted value computed for time T will be used as the first-period lag value for computing the forecast at time T + 1, and so on.

forecasts for the 1940–1998 series are presented in Table A.4.6 and, finally, the forecasts for 1940–1995 are presented in Table A.4.9.<sup>10</sup>

To ensure that a linear structure is adequate to capture the essential features of our series, we perform the BDSL test suggested by Brock, Dechert, Scheinkman and LeBaron (1996) to the AR pre-filtered series.<sup>11</sup> Over the full sample period, 1904–1998, we observe the presence of an unspecified omitted nonlinear structure. For the sample period 1948–1998, evidence of nonlinearities is obtained for the criminal cases and weakly so for the civil cases. The overall evidence points toward the presence of significant nonlinearities in the series and therefore the potential for increased forecasting performance using an appropriately specified nonlinear model.

From the results presented in Tables A.1.9 and A.4.1 through A.4.9, we are unable to find evidence that civil and total cases will reach the levels projected by *Long Range Plan for the Federal Courts* even after accounting for the same time frame. The following tables summarize our forecasts for the three different series analyzed by this study (in five-year intervals). For purposes of comparison, the corresponding JCUS forecasts are shown within the same tables.

Our out-of-sample forecasts for total case filings are substantially lower than JCUS projects, even when we use the same 1940–1995 series as a baseline (see Table 3).<sup>12</sup> Table 4 pre-

<sup>&</sup>lt;sup>10</sup> A linear trend was added to the ARI (unit-root) models. However, in none of the estimated models was the linear trend variable statistically significant.

<sup>&</sup>lt;sup>11</sup> The BDSL-test checks the null hypothesis of independent and identical distribution (i.i.d.) in the data against an unspecified departure from i.i.d. A rejection of the i.i.d. null hypothesis in the BDSL-test is consistent with some type of dependence in the data, which would result from a linear stochastic system, a nonlinear stochastic system, or a nonlinear deterministic system. Under the null hypothesis, the BDSL-test statistic asymptotically converges to a standard normal variate. We applied the BDSL-test to the pre-whitened series with the AR filters in Table A.1.7 for the full sample period and for embedding dimensions of m = 2, 3, 4 and 5. For each m,  $\epsilon$  (the distance) is set to 0.5, 1.0, and 1.5 standard deviations ( $\sigma$ ) of the data. We perform the BDSL-test only for the full sample (1904–1998) and the sample spanning 1948–1998. We did not estimate the BDSL-statistic for the sample covering 1960–1998, as the number of observations decreases substantially, thus affecting the power and therefore the reliability of the test. The BDSL-test statistics are reported in Table A.1.7. The critical values corresponding to the sample sizes of the series were obtained from Kanzler (1999) in Table A.1.8.

<sup>&</sup>lt;sup>12</sup> The JCUS estimates for total filings are the sum of the two estimates (civil and criminal). We treat total cases as a different series as the underlying autoregressive processes for civil and criminal cases are different. However, if we

sents our forecasts for civil case filings. Once again, the JCUS forecasts are substantially higher than ours. The most recent data indicate that a total of 274,841 civil cases and 341,293 total cases actually were filed in 2002. Our forecasts deviate from these numbers by 6,180 cases (2.24 percent) and 22,763 cases (6.67 percent), respectively. Both of these observed figures are much lower than JCUS predicts for calendar year 2000.

| Vear          | 1904-98 | 3 1948–98 1960–98 1940–98 | 1940–95 | Average of | Observed  | JCUS    |         |           |
|---------------|---------|---------------------------|---------|------------|-----------|---------|---------|-----------|
| 1 cai 1904-98 | 1940-90 | 1900-98                   | 1940-98 | 1940-95    | Forecasts | Civil   | 1940-95 |           |
| 2000          | 324,567 | 319,657                   | 322,981 | 323,577    | 313,646   | 320,885 | 321,669 | 364,800   |
| 2005          | 334,462 | 336,471                   | 350,662 | 345,771    | 328,893   | 339,252 | NA      | 463,600   |
| 2010          | 350,522 | 361,305                   | 381,487 | 362,216    | 348,306   | 360,767 | NA      | 610,800   |
| 2015          | 366,821 | 382,708                   | 409,940 | 384,750    | 366,981   | 382,240 | NA      | 802,800   |
| 2020          | 382,740 | 408,259                   | 444,074 | 411,714    | 385,903   | 382,240 | NA      | 1,060,400 |

Table 3. Five-Year Interval of Forecasts for Total Case Filings

Table 4. Five-Year Interval of Forecasts for Civil Case Filings

| Year | 1904–98 | 1948–98 | 1960–98 | 1940–98 | 194095  | Average of<br>Forecasts | Observed<br>Civil | JCUS<br>1940–95 |
|------|---------|---------|---------|---------|---------|-------------------------|-------------------|-----------------|
| 2000 | 259,946 | 257,592 | 259,347 | 258,240 | 263,855 | 259,796                 | 259,517           | 317,000         |
| 2005 | 264,978 | 272,354 | 284,237 | 267,623 | 278,837 | 273,606                 | NA                | 409,400         |
| 2010 | 277,241 | 294,525 | 311,477 | 284,511 | 296,734 | 292,898                 | NA                | 548,000         |
| 2015 | 291,113 | 314,264 | 334,686 | 301,196 | 314,438 | 311,139                 | NA                | 731,100         |
| 2020 | 304,601 | 336,962 | 365,739 | 319,020 | 332,067 | 331,678                 | NA                | 976,500         |

In Table 5, we report our forecasts for criminal cases. Although our forecasts and JCUS forecasts are fairly close, it appears that both the JCUS and this study tend to underestimate criminal cases. This finding is independent of the different baseline time horizons employed and the nature of the autoregressive process modeled. As stated earlier, the overall evidence points toward the presence of significant nonlinearities in the series and therefore the potential for in-

were to add up the two numbers for calendar year 2000, the highest forecast we obtain would be about 320,499 cases (sum of the 259,946 civil and 60,553 criminal case forecasts for the 1904–98 series).

creased forecasting performance using an appropriately specified non-linear model. In fact, 66,452 criminal cases were observed in 2002, a number which our forecasts suggest will not occur until the 2010s. That forecast error may be a warning of things to come. If criminal case filings were to continue to increase at the same pace – by 4,218 additional cases – as they did from 2001 to 2002, simple arithmetic would tell us that by 2020, we will neither have 73,822 cases (the highest number forecast by this study) nor 83,900 cases (the number forecast by JCUS), but about 140,000 cases, a number twice as high as either projection. On the other hand, the recent increase in criminal case filings is quite unusual by historical standards.

| Year | 1904–98 | 1960–98 | 1940–1998 | 1940–1995 | Average of<br>Forecasts | Observed<br>Criminal | JCUS<br>1940–95 |
|------|---------|---------|-----------|-----------|-------------------------|----------------------|-----------------|
| 2000 | 60,553  | 59,157  | 58,509    | 46,010    | 56,057                  | 62,152               | 47,800          |
| 2005 | 61,150  | 62,824  | 60,553    | 47,097    | 57,906                  | NA                   | 54,200          |
| 2010 | 63,128  | 66,490  | 62,597    | 48,183    | 60,100                  | NA                   | 62,000          |
| 2015 | 65,603  | 70,156  | 64,641    | 49,269    | 62,417                  | NA                   | 71,700          |
| 2020 | 67,594  | 73,822  | 66,686    | 50,356    | 64,614                  | NA                   | 83,900          |

Table 5. Five-Year Interval of Forecasts for Criminal Case Filings

Tables 6 through 8 report validation estimates for the three case series analyzed. Alternately treating each of the five sample periods as a baseline, we generate "out-of-sample" forecasts for 1999, 2000, 2001 and 2002, and compare the forecasted values with the actual numbers of case filings observed in those years. As shown in Table 6, the forecasts for total case filings exhibit an average absolute deviation of about 10,000 cases annually, reinforcing the accuracy of the time series models. The corresponding forecasts for civil cases reported in Table 7 do not differ markedly from those reported in Table 6.

Table 8 shows the annual deviations between observed and forecasted criminal cases. Our models evidently do not do as well in forecasting criminal cases as they do in forecasting civil or total cases. This relatively poor performance is undoubtedly due to the unusually large number of criminal case filings in 2002. If this trend continues, then, as suggested earlier, we must consider alternative models other than those estimated here and by JCUS.

| Year                                         | Observed | 1904-98 | Forecasted Total Case Filings 1904-98 1948-98 1960-98 1940-95 |         |         |         |                   |  |  |  |
|----------------------------------------------|----------|---------|---------------------------------------------------------------|---------|---------|---------|-------------------|--|--|--|
| 1999                                         | 319,522  | 315,351 | 305,712                                                       | 306,675 | 311,677 | 306,265 | Forecasts 309,136 |  |  |  |
| 2000                                         | 321,669  | 324,567 | 319,657                                                       | 322,981 | 323,577 | 313,646 | 320,886           |  |  |  |
| 2001                                         | 313,041  | 324,282 | 320,537                                                       | 325,247 | 327,532 | 314,692 | 322,458           |  |  |  |
| 2002                                         | 341,293  | 323,230 | 318,363                                                       | 324,504 | 319,207 | 318,530 | 320,767           |  |  |  |
| Average<br>Annual<br>Deviation               |          | 9,093   | 11,562                                                        | 10,789  | 11,583  | 11,424  | 10,278            |  |  |  |
| Average<br>Percentage<br>Annual<br>Deviation |          | 2.77%   | 3.52%                                                         | 3.31%   | 3.54%.  | 3.46%   | 3.13%             |  |  |  |

Table 6. "Out-of-Sample" Forecasts for 1999, 2000, 2001 and 2002 (Total Cases)

Table 7. "Out-of-Sample" Forecasts for 1999, 2000, 2001 and 2002 (Civil Cases)

| Year                                         | Observed | 1904–98 | Forecasted Civil Case Filings<br>1904–98 1948–98 1960–98 1940–98 1940–95 |         |         |         |         |  |  |  |
|----------------------------------------------|----------|---------|--------------------------------------------------------------------------|---------|---------|---------|---------|--|--|--|
| 1999                                         | 260,271  | 249,785 | 246,381                                                                  | 245,534 | 247,635 | 269,132 | 251,693 |  |  |  |
| 2000                                         | 259,517  | 259,946 | 257,592                                                                  | 259,347 | 258,240 | 272,027 | 261,430 |  |  |  |
| 2001                                         | 250,907  | 258,870 | 257,745                                                                  | 261,180 | 257,659 | 256,787 | 258,448 |  |  |  |
| 2002                                         | 274,841  | 252,652 | 252,142                                                                  | 255,885 | 252,215 | 260,271 | 254,633 |  |  |  |
| Average<br>Annual<br>Deviation               |          | 10,267  | 11,338                                                                   | 11,034  | 10,823  | 10,455  | 9,560   |  |  |  |
| Average<br>Percentage<br>Annual<br>Deviation |          | 3.86%   | 4.27%                                                                    | 4.18%   | 4.07%   | 3.97%   | 3.60%   |  |  |  |

|                                              |          | Forecast Criminal Case Filings |         |         |         | Average<br>Value of |
|----------------------------------------------|----------|--------------------------------|---------|---------|---------|---------------------|
| Year                                         | Observed | 1904-98                        | 1960–98 | 1940-98 | 1940-95 | Forecasts           |
| 1999                                         | 59,251   | 60,098                         | 58,424  | 58,100  | 45,793  | 55,604              |
| 2000                                         | 62,152   | 60,553                         | 59,157  | 58,509  | 50,363  | 57,146              |
| 2001                                         | 62,134   | 61,973                         | 59,891  | 58,918  | 46,010  | 56,698              |
| 2002                                         | 66,452   | 62,234                         | 60,624  | 59,326  | 46,228  | 57,103              |
| Average<br>Annual<br>Deviation               |          | 1,706                          | 2,973   | 3,784   | 15,399  | 5,860               |
| Average<br>Percentage<br>Annual<br>Deviation |          | 2.65%                          | 4.65%   | 5.93%   | 24.52%  | 9.26%               |

Table 8. "Out-of-Sample" Forecasts for 1999, 2000, 2001 and 2002 (Criminal Cases)

## C. Long-Memory Forecasting

As there is some evidence of a fractional order of integration in the civil cases time series, we generate out-of-sample forecasts based on an estimated ARFIMA (autoregressive fractionally integrated moving average) model.<sup>13</sup> Such a model incorporates the specific nonlinearity and represents a flexible and parsimonious way of modeling both the short- and long-term dynamical properties of the series.<sup>14</sup>

<sup>&</sup>lt;sup>13</sup> The degree or order of integration for a time series indicates the degree of differencing required to render the time series stationary. The order of integration can be integer (can assume only integer values) or more generally fractional (can take any value on the real line). The most celebrated time series process is that of a pure random walk which is integrated of order one, that is, the series must be differenced once to make the series stationary. If a series is integrated of order, say, 0.75, then the series is fractionally integrated as the 0.75th difference of the series is stationary. The binomial expansion formula is used to define fractional differencing.

<sup>&</sup>lt;sup>14</sup> Given the *d* estimate of approximately 1.25 for the level of the civil cases series over the full sample period, we approximate the short-run time series dynamics by fitting an AR model to the fractionally differenced series using Box-Jenkins methods. An AR representation of generally low order appears to be an adequate prediction of short-term dependence in the data. The AR order is selected on the basis of statistical significance of the coefficient estimates and Q-statistics for serial dependence. A question arises as to the asymptotic properties of the AR parameter estimates in the second stage of estimation. Conditioning on the *d*-estimate obtained in the first stage, Wright (1995) shows that the AR (p) fitted by the Yule-Walker procedure to the *d*-differenced series inherits the  $T^{\delta}$ -consistency of the semiparametric estimate of *d*.

We forecast the civil cases series over the period 1999–2020 by casting the fitted fractional AR model in infinite autoregressive form, truncating the infinite autoregression at the beginning of the sample, and applying Wold's chain rule. These forecasts are truly ex ante, or dynamic, since they are generated recursively, conditioned only on the information available at the time the forecast is made.

The estimated ARFIMA model for the civil cases series is (*t*-statistics in parentheses):

$$(1-L)^{1.25} X_{t} = 894.85 + 0.245X_{t-1} - 0.183X_{t-2} - 0.074X_{t-3} + 0.302X_{t-4} - 0.284X_{t-5} + \varepsilon_{t}$$

$$(0.725) (1.931) (-1.456) (-0.549) (2.225) (-2.062)$$

The generated annual forecasts for 1999 to 2020 are reported in Table A.1.10. As can be seen there, the long-memory forecasts are generally in line with the linear ARI model forecasts.

## D. Long-Run Relationship between Civil and Criminal Cases

Given the presence of a single unit root in the autoregressive polynomials of the civil and criminal cases series, their long-run relationship is estimated using the Johansen cointegration method (Johansen 1998; Johansen and Juselius 1990), a reduced rank regression technique. The Johansen method employs a vector autoregression (VAR) framework which incorporates both the short- and long-run dynamics of the system. To test the hypothesis that the number of cointegrating vectors is at most r, the trace test statistic is calculated. The asymptotic distribution for the trace test statistic is nonstandard and depends only on (p - r), where p is the number of system variables. To account for the finite-sample bias toward over-rejection of the no-cointegration hypothesis (spurious cointegration), we correct the Johansen test statistic by multiplying it by the scale factor (T - pk)/T, where T is the number of observations and k the lag length of the VAR model. We estimate the trace test statistics for alternative lag lengths of the VAR model. We test for cointegration between civil and criminal cases over the full sample period (1904–1998), the post-World War II period (1948–1998), and the period spanning the years 1960 through 1998.

As Table A.1.11 reports, the Johansen procedure provides no evidence of cointegration between civil and criminal cases in any subsample. As expected, there is no (linear) long-run relationship between the series in question as they are driven by different stochastic trends.<sup>15</sup>

E. Long-Run Relationship between Authorized Judgeships and Civil and Criminal Cases

In this section we examine the relationship between the level of authorized judgeships and the levels of civil and criminal caseloads. Extensive unit-root testing suggests that authorized judgeships possess a single unit root. We therefore proceed to test for a cointegrating relationship in the system (authorized judgeships, civil cases, criminal cases) over the full sample period (1904–1998), the post-World War II period (1948–1998), and the period spanning the years 1960 through 1998.

We estimate the vector error correction model (VECM) for alternative lag lengths. The results are robust to the order of the VECM estimated. To conserve space we report the trace statistics corresponding to K = 4 in Table A.1.12. There is no evidence of a long-run equilibrium relationship among the system variables.<sup>16</sup>

In order to achieve parsimony in the estimation process, we also test for cointegration between the level of authorized judgeships and the level of total cases. Table A.1.13 reports the estimation results. Again, no evidence of a long-run equilibrium relationship between the two system variables is found.<sup>17</sup>

<sup>&</sup>lt;sup>15</sup> Similar evidence is obtained if cointegration is tested between civil and criminal cases in their log-levels.

<sup>&</sup>lt;sup>16</sup> This conclusion also holds if cointegration is tested among the log-levels of authorized judgeships, civil, and criminal cases.

<sup>&</sup>lt;sup>17</sup> Once again, testing cointegration between the log-levels of authorized judgeships and total caseloads produces similar results.

## III. Panel Data Analysis for Civil Cases using Statewide, District-Wide and Circuit-Wide Data

Other than the simple linear trend models estimated by staff at the Federal Judicial Center, there are few studies attempting to determine factors (other than the two most common variables used, time and population) associated with the heavier caseloads facing the federal courts. This is perhaps why social scientists dealing with caseload estimation conclude that estimation methodologies for planning purposes are at best tentative and arbitrary, and that there is no universally accepted empirical or theoretical model of caseload estimation (see, e.g., Boyum and Krislov 1990; Mangum 1995). That conclusion is reasonable in the light of the fact that when attempting to model complex relationships in society, the unit of analysis (the number of court cases, say) will capture only a portion of the socioeconomic factors (such as per capita income) responsible for placing demands on the courts. Moreover, as we use aggregated data (even at the district court level, which is a more proper unit of analysis), we are destined to lose valuable information hidden in each individual case. Posner (1996) argues that models explaining variations in caseloads as a function of social aggregates such as population or GNP are not adequate.

The economist's answer to the caseloads problem is simple: as long as the access to the courts is free, excess demand will result. That is, the absence of a price mechanism for allocating court services leads predictably to the overuse of the courts. Thus, as long as the full price (cost) of dispute resolution mechanisms is not borne by those who utilize them (judicial market participants such as private individuals, corporations, lawyers, and the government), there will be incentives to maintain the status quo, however inefficient it may be.<sup>18</sup> Of course, the solution suggested (and more often, implemented) seems to be to increase the court's resources (more judges,

<sup>&</sup>lt;sup>18</sup> See Benson (1990) and Posner (1996). Posner suggests user fees to curtail the excess demand. However, given that judicial services are a monopoly of the state (a public good) and reasonably alternative private markets do not exist currently, the pricing of these services may be problematic.

more support personnel, and more courts). Moreover, the decision to expand the court's resources is not market-determined either. Although caseloads have a positive influence on the decision to expand the court's resources, political alignment at the very top of the government appears to have a significant influence on the timing of the decision to create more judgeships.<sup>19</sup>

## A. Prior Literature

There have been a few previous studies employing both simple and multivariate models to explain increased federal caseloads. Some studies have focused on the caseload statistics of a single district court, an appellate court, or a combination of the two thereof. Only two studies employed a district-level dataset to estimate the demand for federal district court cases. This study takes that approach a little further and attempts to combine the time element into the district-wide analysis. Before proceeding to our empirical estimates, we summarize the most relevant of the existing literature.

The Posner study. Using simple statistics, Richard Posner (1996) analyzed a number of factors affecting judicial caseloads. Different types of case filings were compared between 1960 and 1983. His study did not control for any of the socioeconomic factors possibly relevant to caseload growth. Posner was, however, the first academic to recognize that civil cases were responsible for the rising demands on the federal judiciary. His data analysis points out that between 1958 and 1962 (1960 taken as the mid-point), federal civil cases took a sharp upward turn. Civil cases increased by more than 330% from 1960 to 1983. Between 1960 and 1995, criminal case filings dropped from 35.5% to about 16% of the total. During the same period, the percent-

<sup>&</sup>lt;sup>19</sup> Figueiredo and Tiller (1996) suggest that institutional factors (caseload pressure) and political factors have positive influences on the decision to expand. They suggest that the cost of monitoring and disciplining the judiciary's behavior may encourage the legislature to appoint more "like-minded" judges (in order to avoid costly legislation to override undesired judicial decisions). Consequently, judicial expansion occurs when there is political alignment at the very top of the government ("alignment among the enacting House, Senate, president, and the nominating president and confirming senate"). According to their results, political alignment is a stronger determinant of the decision to expand than caseload pressure.

age of civil cases increased from 64.5% to about 84%. Between 1960 and 1983, the court services demanded by the U.S. government (U.S. civil filings) rose from 26.3% of the total to 34.6%. This percentage dropped to about 16% by 1995. Of the private civil filings, the percentage of so-called diversity cases was 21.5% in 1960 and 17.5% in 1995. However, by 1995, prisoners' petition cases accounted for the largest percentage of all the civil case filings.

Although it does not control for factors possibly influencing the growth in caseloads or examine year-to-year variations in the data, Posner provides a very good descriptive study highlighting not only historical increases in caseloads (especially the civil caseload) but also shifts in the composition of the caseloads. One can think of this study as a hedonic statistical analysis where the sum is explained using the parts which constitute that sum.

*The Landes study.* William Landes' (1971) estimation of the demand for federal criminal and civil cases was not an attempt to develop a predictive model. His model for federal civil cases instead sought to explain variations in the fraction of cases that commenced in 1957 disposed of by trial using the following independent variables: the length of the trial queue, a variable to account for differences in the distribution of types of cases across districts, and a dummy variable to account for regional differences (1 if South, 0 otherwise). Two of the variables, the trial queue length and the regional dummy, were statistically significant. The coefficient on the length of the trial queue was negative, as expected. The results also indicated that the fraction of cases commenced in 1957 that went to trial was lower in the South, ceteris paribus. The largest number of district courts analyzed in Landes' study was 84.

The Heydebrand and Seron study. Although Heydebrand and Seron (1990) do not employ panel data estimating techniques, their study is more comprehensive than the two studies summarized above and the one most relevant to this project. Heydebrand and Seron analyzed three decennial datasets. The number of federal court districts analyzed is 84 for 1960 and 1970, and 83 for 1950. The two major regression analyses conducted attempted to explain variations in total case filings and civil case filings per capita (filings divided by the district's population). The independent variables are population density, the number of corporations divided by the district's population, and the number of government employees divided by the district's population.

Population density is a measure of the urbanization of the society. Densely populated districts may indicate that the society is both more crowded and more heterogeneous and, thus, may entangle people in more complex (and more disputatious) relationships not only in social life but also in economic life. Alternatively, rural areas or closely knit societies may have fewer social conflicts. This may be true to some extent because it is possible that, in case of social conflicts, those involved may choose methods of dispute resolution other than bringing the matter to court. The influence of economic factors on the courts is measured by the per capita number of corporations with at least 100 employees. The theoretical reason given is that skewness in the distribution of wealth may create conflicts among the participating agents of the economy. A proxy for the government's demand for court services is measured by the government size, defined as the number of local, state, and federal government employees divided by the relevant jurisdiction's (district, state, or circuit) population. The government has become increasingly involved not only in social processes but also in the economy through stabilization policies and through policies aimed at allocating and distributing national income and wealth. To quote Heydebrand and Seron (1990, pp. 63-64), "the presence of government agencies in a district court's jurisdiction, be at the federal, state, or local level, should, we suggest, affect the business of that court in a variety of ways, not the least of which are suits by and against the federal government" (emphasis added).

The effect of population density diminished over the years (it was significant in 1950 and 1960 for total case filings, and in 1960 for civil case filings). The proxy variable for the size of the government was positively significant in 1960 and 1970 for both total and civil case filings. The number of corporations was significant in one year, in 1950, but only for civil case filings. Because the total filings include the criminal filings, which showed very little variation between 1950 and 1970, the differences in terms of significance of the independent variables make it difficult to draw any policy conclusions. Despite this, the Heydebrand and Seron study still stands as the most relevant contribution to the estimation of the demand for the federal court services as it correctly uses the caseload of a federal district court as the unit of analysis. However, it must be mentioned here that none of the above studies has reported any diagnostic statistics for their models.

B. Models and Data Sources

Cooter and Rubinfeld (1990, p. 450) summarize the current state of the attempts to model judicial caseloads in the following terms:

Economists have done a great deal of modeling but little testing, whereas noneconomists have offered statistical description but have not provided theoretical explanation.

This statement does not look so harsh in comparison with claims that "longitudinal study of the courts is without theory, with inadequate theory, or with wrong theory" (Sanders 1990, p. 241), or that longitudinal studies "lack concise theoretical explanation of variation" or that "studies have retrospective designs" (Reiss 1990, p. 345). This sentiment is also expressed by Krislov, yet he maintains that theoretical efforts should continue.

The pursuit of practical objectives with weak or nonexistent theory is not unknown even in the physical sciences.... Only recently have scientists found previously unknown aspects of bumble bee anatomy to explain how they could fly in what had seemed defiance of aerodynamic theory. So case loaders need no apologies if they proceed on ad hoc efforts to project as closely as possible and to finetune their "adhockery" with new and innovative adjustments and refinements. If it works, we probably will be able to understand why and learn from it. If it does not work, the richest theory will not resolve it. It seems to me that there is also a refined answer to the question of why practical caseloaders can come close to the mark even when using the crudest measure of all, simple population growth. (Krislov 1995, p. 46)

Among economists, Posner (1996) suggests a simple economic model to estimate the demand for court services. According to him, an individual would decide to litigate if the net expected benefit (the probability of a favorable judgment times the value of the judgment minus expected cost) is positive. This is surely a better model than those models which try to explain caseloads as a mechanical function of social and economic aggregates (Posner 1996, p. 88). However, empirical testing of such models is impossible given the lack of data.

Another possible empirical approach is to estimate a simultaneous equations model accounting not only for demand side but also for supply-side factors.<sup>20</sup> The models tested empirically by Landes and Heydebrand and Seron implicitly assumed that supply was fixed. This may not be so constraining on account of the fact that, although the quantity of judicial services is observed, the market price (filing fee) has rarely changed in the past 50 years.<sup>21</sup> Even if a measure of the price for filing is available, the supply side of the equation is determined not by market conditions but, to an extent, by the political ideology of the currently sitting legislature.<sup>22</sup>

The explosion of federal district court caseloads, especially for civil cases since 1960, has led to many and diverse proposed solutions, ranging from better management of the existing resources, to better prediction of caseloads and, unsurprisingly, to requests for more resources.

<sup>&</sup>lt;sup>20</sup> Our attempts to do so were unsuccessful owing to the absence of a proxy for the price of court services, a critical variable in any demand-supply framework.

<sup>&</sup>lt;sup>21</sup> The fee was \$15 prior to 1978. It increased to \$60 in 1978 and to \$120 in 1986. This increase is greater than the rate of inflation prevailing during those years but, apparently, not enough to curtail demand (Posner 1996, p. 125).

<sup>&</sup>lt;sup>22</sup> The U.S. Congress (the Appropriations Committee) apparently acts on the caseload statistics. Yet, when the Judicial Conference requests more resources in response to increased caseloads, the basis of the request may be questioned (Geyh 1995, p. 90).

Many commentators have suggested shifting diversity jurisdiction and prisoner petition cases from the federal district courts to the state courts.<sup>23</sup> However, such proposals assume that the state courts have resources that the federal courts do not have and that the competency with which the business of the state courts is conducted is not any different from that of the federal courts.

*Preliminary data analysis.* The annualized average growth rate of the civil cases between 1904 and 1998 is about 3 percent. This growth rate is far greater than the population growth and per capita income growth over the same period. The growth rate of the U.S. population is about 1.3 percent and the per capita income growth is about 1.7 percent. Cases grew at an average annual rate of about 1.1 percent prior to 1960. However, this rate subsequently increased to 2.9 percent. Figure 1 shows that civil cases now comprise a substantial fraction of the total cases and that criminal cases exhibit much lower growth rates (other than during the Prohibition Era and around the twenty-first century's turn). Also apparent in the figure is the enormous upward trend in civil cases starting about 1960.<sup>24</sup>

*Multivariate statistical models*. This study attempts to model the socioeconomic factors possibly associated with the increased civil case filings since the 1960s. Civil case filings are analyzed using three different categories: U.S. cases, private cases, and their summed total.

<sup>&</sup>lt;sup>23</sup> See Posner (1996), Redish (1989) and Newman (1989). However, there does not appear to be a consensus. Campbell (1989) argues that, although increasing caseloads may result in lower quality of judicial services rendered and may destroy the coherence of the federal courts, eliminating diversity jurisdiction is not a solution. The question appears to go to the very heart of possible prejudice against out-of-state litigants. The U.S, Constitution, Article III, Section 2, Clause 1 provides that "The judicial Power [of the United States] shall extend to [i] all Cases, in Law and Equity, arising under this Constitution, the Laws of the United States, and Treaties made, or which shall be made, under their Authority; [ii] to all Cases affecting Ambassadors, other public Ministers or Consuls; [iii] to all Cases of admiralty and maritime Jurisdiction; [iv] to Controversies to which the United States shall be a Party; [v] to Controversies between two or more States; [vii] [Controversies] between a State and Citizens of Another State; [vii] Controversies] between Citizens of different States; [viii] [Controversies] between a State, or the Citizens thereof, and foreign States, Citizens or Subjects."

<sup>&</sup>lt;sup>24</sup> As noted above, Posner (1996) identifies the period between 1958 and 1962 as the beginning of the upward trend. According to Redish (1984, p.41), Justice Scalia agrees with Posner's conclusion.

While analysis of federal district court cases at more disaggregated levels would have been useful, the lack of data for the 1961–1998 period limited our modeling to these three categories of cases. For each of the categories above the following models are estimated.

- 1. Statewide models using district-level observations aggregated to the state level.
- 2. District-wide models to analyze the influence of the factors at the district level (smallest unit of measurement).
- 3. Circuit-wide models using district-level observations aggregated to circuit level.

The general model to be estimated is:

# Civil case filings = f(population characteristics, economic factors, government size, geographic location).

Population characteristics consist of population density and race; economic factors consist of per capita income and a proxy for labor market conditions; government size is a proxy variable to account for the government's demand for court services; and, finally, the geographic location of the district court accounts for possible regional differences in case-bringing activity. Theoretical reasons for the inclusion and *a priori* expectations of the independent variables are as follows.

*Population density.* As discussed earlier in summarizing the Heydebrand and Seron study, this variable is a measure of the urbanization of the society. As a very crude measure of social interactions and the complexity of social relationships, population density is hypothesized to have a positive impact on the civil case filings.

*Race*. Although we do not have *a priori* expectations on this variable, it is used as a measure of the heterogeneity of the society. This variable is constructed by dividing the population of non-white persons by the total population.

*Per capita income*. This is a measure of economic activity surrounding the federal court system. As the dollar volume of transactions grows larger, there will be more financial interests at stake, more interests to protect. Alternatively, if we assume that the good in question (civil cases) is a normal good, from a microeconomic perspective, there will be more demand for it as income increases. Moreover, a variable such as the number of corporations (the Hydebrand and Seron study) may not fully capture the influence of economic activity because a large percentage of the national income is generated by small businesses.

Unemployment rate. This variable is the percentage of the labor force that is not employed. It is a proxy for the influence a significant part of the civilian labor force exerts on the courts. It is a reasonable variable in light of the fact that one of the largest categories of cases arising under "federal question" jurisdiction consist of matters arising under existing labor laws. Moreover, it may indicate possible conflicts between employers and employees. Its effect is hypothesized to be positive.

Government size. As discussed above, the government involves itself in every aspect of social and economic life. It regulates the economy through its fiscal, monetary, and income policies. It regulates social processes by making laws and enforcing these laws through its bureaucratic agencies. Following the same methodology used by Heydebrand and Seron (1990), we measure the role of the government by entering a variable defined as the total number of federal, state and local government employees per jurisdiction (district, state, or circuit) divided by the jurisdiction's population. The expected relationship is positive.

*Geographic location*. Several indicator variables are employed to account for the effect of the geographic location of the district courts on the civil caseloads. In terms of identifying the future needs of each court and, thus, each circuit, the circuit-based geographic location may be more appropriate than the location variable, South versus non-South, used in the Landes study (Holloway 1989, p. 93). However, we will present our findings using both specifications. We do not have *a priori* expectations on these indicator variables.

Data sources. The unit of observation is the annual number of civil cases filed in each federal district court. The dependent variable is normalized by dividing cases (U.S. civil, private civil, or their total) by the relevant jurisdiction's population (state, district, or circuit). Socioeconomic factors have been aggregated from the county level. Given that there are over 3,000 counties in the United States and that federal district court boundaries do not follow state boundaries for a majority of the district courts, the complexity of constructing the dataset has been enormous. When the data are transformed into a panel dataset accounting for the years between censuses, we have had to construct annual estimates of population density, race, income, government size, and working age population. Although such estimates may not be reliable, the information gained by examining annual cases may justify the use of such estimates (about 3,400 observations for each variable). Moreover, it is one of the objectives of this study to determine whether there exist substantial differences among models which use district-wide, state-wide, and circuit-wide data in terms of the models' explanatory power.

In estimating the demand for civil court cases, the following data sources have been used: The County and City Data Book for years 1962, 1967, 1972, 1977, 1983 and 1994; the U.S. Counties CD-ROM (since 1970); Statistical Abstract of the United States (various years); the Reports of the Administrative Office of the United States Courts (1961–1998); and Federal Court Management Statistics of the Administrative Office of the United States Courts (1968– 1998). Some may argue that the demand placed on the services of district courts may not be altogether externally determined. That is, the internal environment of the courts could also explain variations in caseloads. This argument is valid, but it is only relevant for cases already filed. In other words, the internal environment of the courts could determine what will happen to a case that is already filed. The question of interest here is, what prompts people to resolve their conflicts in courts in the first place?

## C. Estimated Models and Results

Because there appears to be a systematic upward trend in total civil cases, normalizing the series by the size of the underlying population avoids a potential bias (more people = more cases). Thus, models using district-wide, statewide, and circuit-wide data are estimated for each of the following categories: per capita total civil case filings, per capita U.S. civil case filings, and per capita private civil case filings. Moreover, each of these categories has been also modeled using alternative geographical location dummy variables (South versus non-South and circuit dummies).

We have used a total of 10 indicator variables for the 12 geographical circuits, including the District of Columbia Circuit. In 1980, Congress decided to divide the Fifth Circuit (then comprised of districts in Alabama, Florida, Georgia, Louisiana, Mississippi and Texas) into two circuits, the Fifth Circuit and the Eleventh Circuit. Alabama, Florida and Georgia were assigned to the newly created Eleventh Circuit whereas Louisiana, Mississippi and Texas remained in the Fifth Circuit (see 94 Stat. 1994). For the sake of continuity, throughout this section, the Fifth Circuit and the Eleventh Circuit are treated as a single circuit, the Fifth circuit. However, we have estimated all the above models treating the Fifth and Eleventh Circuit as separate, starting in 1982. Those results, while not presented here, are highly consistent with the results reported below. The following states denote the regional indicator variable, Southern: Virginia, North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, Texas and Arkansas.

Of the 18 models estimated (see Tables A.2.1 through A.2.6), several suffered from violations of the classical regression assumptions. The results are presented with proper corrections applied to these models. Moreover, asterisks next to the variables' p-values indicate if there is loss of significance after the corrections.

One can think of these models as "pseudo-fixed effects" models. A fixed effects model is one where the differences between cross-sectional units can be represented by intercept (parametric) shifts; this model is also known as *the least squares dummy variable model* (Greene 2000, p. 560). A fixed effects model is used when the variables are thought to be correlated with the observational units.<sup>25</sup> If, for example, we have reason to believe that one or more of our variables (population density, for instance), correlates with the districts then it is more appropriate to use a fixed effects model. In our case, there are two possibilities: district (or state, or circuit) effects and time effects. We have included circuit dummies to capture the cross-sectional effects. However, we have intentionally omitted time dummies from 1962 to1998. The reason is that per capita income very strongly correlates with time. When income is included in any model either as a single independent variable or with other variables, the marginal impact is positive. However, regardless of the type of model estimated (panel, time series, or cross-sectional), when in-

<sup>&</sup>lt;sup>25</sup> A formal specification test was conducted in order to compare the fixed effects model with a random effects model. The test strongly rejected the random effects model at the state level. After running a fixed-effects model on the statewide data, we find the following results: For the sample period 1961–1998, the only two variables that lost significance or changed sign compared to the pseudo-fixed effects models, were per capita income, changing sign and significance to negative in U.S. cases, and race, changing sign to negative in private cases. The problem with running any kind of a fixed effects model with circuit dummies was the perfect collinearity associated with DC. In a sense, running a pseudo-fixed effects model rather than a true-fixed effects model was predicated by our objective of understanding better the variation accounted for by the geographic location of courts. The district-wide analysis cannot be performed due to the changing number of districts over the time period analyzed. However, some circuit-wide analyses may be modeled as a random effects model. The differences appear to be negligible.

cluded with time the income variable becomes negative and significant. To confirm this, we have run simple regressions of income against time (untransformed and log-transformed regression models) and observed adjusted coefficients of multiple determination ( $\mathbb{R}^2$ ) exceeding 0.88. The remaining regressors do not seem to be affected by time as much as income is. Thus, although cases seem to respond to time (capturing parametric level shifts through 37 time indicator variables) and space (that is, the 10 circuit dummies capturing spatial units' differences) positively, to present our findings more concisely (thereby avoiding reporting more than 90 right-hand side variables), we have chosen to exclude time. Nelson and Kang (1984) state that time as an explanatory variable may lead to spurious correlations, supplying another reason not to include it.<sup>26</sup>

*Discussion*. Of the 18 models estimated, the only model that did not perform according to our *a priori* expectations is the circuit-wide model without the circuit dummies. All of the remaining models have overall explanatory powers exceeding conventional significance levels. Based on the results in Tables A.2.1 through A.2.6, we arrive at the following general conclusions:

• Any geographical location dummy variable set seems to improve the models' performance, although some models suffer from multicollinearity.<sup>27</sup> The implication is that explanatory models not taking account of court location omit important information.

<sup>&</sup>lt;sup>26</sup> We nevertheless estimated all of our models including time as an explanatory variable; the results are available upon request.

<sup>&</sup>lt;sup>27</sup> Models with the circuit dummies exhibit symptoms of multicollinearity. The District of Columbia Circuit had especially strong correlations with population density. The choice was to use or not use the circuit dummies altogether. Because the models with the circuit dummies show a high degree of additional explanatory power, we have chosen to present our results both ways. Moreover, we have also run models including all the circuits except the District of Columbia Circuit (thrown out altogether from the data set). The results are identical with the population density variable having the correct (positive) sign.

- Per capita income, as hypothesized above, is able to explain a great deal of the variation in civil case filings per capita. That is, as the dollar volume of transactions rises, people tend to file more cases perhaps in an attempt to protect their economic interests. Interestingly, the impact of per capita income on private civil cases is stronger than it is on U.S. civil cases.
- Population density enters positively and significantly in a majority of the models estimated. It appears that, other things being the same, more cases tend to be filed in densely populated districts, states, and circuits.
- The size of the government also has a positive impact on case filings. This impact is more pronounced when the U.S. government is a party to a civil dispute either as a defendant or plaintiff. However, especially in private disputes, some models exhibited strong negative relationships, *ceteris paribus*, between government size and case filings.
- Filings in general seem to be higher in locations with higher unemployment rates and higher percentages of non-white populations.<sup>28</sup>
- It appears that southern states have more civil case filings per capita than other regions of the country. This is also apparent from the circuit level dummies. One

<sup>&</sup>lt;sup>28</sup> Reliable unemployment rate data starting from 1970 were provided to us by the Bureau of Labor Statistics in personal correspondence with Thomas J. Krolik. For years prior to the 1970s, we have used the *Statistical Abstract of the United States* (U.S. Department of Commerce, various years) and linear regression to estimate the civilian labor force and unemployment rates. However, our models have also been run for 1976–1998, a period where very little estimation of these series was necessary. For the more reliable dataset, the statewide data, we report the results in Table A.2.7. For the years before 1970, we used any other available series to correlate with the series estimated. To avoid loss of generality and information, we used models with adjusted R<sup>2</sup>s greater than 0.9. Certainly, some of these estimates may not be reliable, but the tradeoff was to avoid breaks in the continuity of the dataset and, through this, to be able to use more case data values. Moreover, we will not emphasize much the contribution of the race variable, as it is estimated based on available decennial data. We have used an exponential short-run growth rate model,  $Y = Y_0 e^{t^*g}$ , where Y = end-value of the series,  $Y_0 =$  beginning value of the series, t = time period involved (10 years) and g = growth rate. Models were also tried without the unemployment rate and non-white ratio; once again, the results are identical to those in tables 3.1 to 3.6 even though there were declines in the overall significance.

explanation for this may be Say's Law. It appears that there are more courts in the South than in the North, perhaps as means of enforcing the civil rights and voting rights acts of the 1960s. The only circuit that seems to have significantly higher case filings per capita than the Fifth Circuit is the District of Columbia Circuit. In general, all other circuits have significantly lower per capita filings than the Fifth Circuit (Texas, Louisiana, Mississippi) and the districts now comprising the Eleventh Circuit (Alabama, Florida, Georgia). This result, once again, implies that the circuit dummies add significant explanatory power to our models.

Table 9 summarizes the results of the 18 models estimated in a concise manner. Tables showing more detailed results can be found in Appendix 2.

Table 10 presents the elasticities of the three dependent case variables with respect to the continuous independent variables, calculated at the means of the data. After taking account of the influence of the other four independent variables, government size exhibits the largest elasticity. Per capita income ranks a close second. To repeat some earlier findings, government size appears to have the largest marginal effect in cases where the U.S. government is a party to a dispute either as a plaintiff or as a defendant. The impact of per capita income is larger in private civil cases.

These results are consistent with the hypotheses developed earlier. Naturally, there is more to be done in this uncharted territory. But we do now have confidence that, contrary to Posner, case filings can in fact be modeled as a function of standard socioeconomic aggregates. Of course, these findings are not conclusive. For example, finding case data on several subcategories of U.S. and private civil cases at the district or state level may reveal information that more aggregated series cannot reveal. There is admittedly the possibility that all these results, however free of the violations of the models assumptions, may be spurious. On the other hand, finding results consistent across data series leads us to believe that we have contributed to a field where very little has been done before.

|                  | MODELS without CIRCUIT DUMMIES |             |                |              |             |                |              |             |                |
|------------------|--------------------------------|-------------|----------------|--------------|-------------|----------------|--------------|-------------|----------------|
|                  | Dis                            | trict-Wi    | de             | S            | tatewide    |                | Ci           | rcuit-Wi    | de             |
| <u>Variables</u> | <u>Total</u>                   | <u>U.S.</u> | <u>Private</u> | <u>Total</u> | <u>U.S.</u> | <u>Private</u> | Total        | <u>U.S.</u> | <u>Private</u> |
|                  |                                |             |                |              |             |                |              |             |                |
| Constant         | NS                             | NS          | NS             | [0.062]      | [0.000]     | 0.003          | NS           | [0.000]     | 0.000          |
| Density          | 0.000                          | 0.000       | 0.000          | 0.000        | 0.000       | 0.000          | 0.000        | [0.000]     | 0.000          |
| Income           | 0.000                          | 0.000       | 0.000          | 0.000        | 0.000       | 0.000          | 0.000        | 0.000       | [0.000]        |
| Government       | 0.000                          | 0.000       | 0.032          | 0.032        | 0.000       | [0.000]        | NS           | 0.000       | [0.000]        |
| U. Rate          | 0.000                          | 0.000       | 0.000          | 0.000        | 0.000       | 0.000          | NS           | NS          | [0.021]        |
| Race             | 0.000                          | 0.086       | 0.000          | 0.004        | 0.018       | 0.002          | NS           | 0.000       | NS             |
| South            | 0.000                          | 0.000       | 0.000          | 0.000        | 0.006       | 0.000          |              |             |                |
|                  |                                |             |                |              | ••••        |                |              |             |                |
|                  | MODELS with CIRCUIT DUMMIES    |             |                |              |             |                |              |             |                |
|                  |                                | trict-Wi    |                |              | tatewide    |                |              | rcuit-Wi    |                |
| Variables        | <u>Total</u>                   | <u>U.S.</u> | <u>Private</u> | <u>Total</u> | <u>U.S.</u> | <u>Private</u> | <u>Total</u> | <u>U.S.</u> | <u>Private</u> |
|                  |                                |             |                |              |             |                |              |             |                |
| Constant         | 0.000                          | 0.000       | 0.001          | 0.000        | NS          | 0.000          | 0.000        | NS          | 0.000          |
| Density          | [0.042]                        | [0.000]     | 0.095          | NS           | [0.000]     | 0.000          | 0.000        | [0.000]     | 0.000          |
| Income           | 0.000                          | 0.000       | 0.000          | 0.000        | 0.000       | 0.000          | 0.000        | 0.006       | 0.000          |
| Government       | NS                             | 0.000       | NS             | NS           | 0.000       | NS             | NS           | 0.000       | [0.000]        |
| U. Rate          | 0.000                          | 0.000       | 0.001          | 0.000        | 0.000       | 0.000          | NS           | NS          | NS             |
| Race             | 0.000                          | NS          | 0.000          | NS           | 0.010       | NS             | [0.000]      | NS          | [0.000]        |
| DC               | 0.000                          | 0.000       | 0.000          | 0.002        | 0.000       | NS             | 0.003        | 0.000       | 0.051          |
| First            | [0.000]                        | [0.001]     | [0.000]        | [0.016]      | NS          | [0.000]        | [0.000]      | NS          | [0.000]        |
| Second           | [0.000]                        | [0.003]     | NS             | [0.000]      | [0.016]     | [0.000]        | [0.000]      | NS          | [0.000]        |
| Third            | [0.000]                        | [0.002]     | [0.000]        | [0.000]      | NS          | [0.000]        | [0.000]      | NS          | [0.000]        |
| Fourth           | [0.000]                        | [0.022]     | [0.005]        | [0.000]      | NS          | [0.000]        | [0.002]      | NS          | 0.004          |
| Sixth *          | [0.000]                        | NS          | [0.000]        | [0.000]      | NS          | [0.000]        | [0.000]      | NS          | [0.000]        |
| Seventh          | [0.000]                        | [0.000]     | [0.000]        | [0.002]      | [0.000]     | [0.000]        | [0.000]      | NS          | [0.000]        |
| Eighth           | [0.000]                        | NS          | [0.000]        | [0.000]      | NS          | [0.000]        | [0.000]      | NS          | [0.000]        |
| Ninth            | [0.000]                        | NS          | [0.000]        | [0.000]      | [0.020]     | [0.000]        | [0.000]      | NS          | [0.000]        |
| Tenth            | [0.000]                        | NS          | [0.003]        | [0.000]      | NS          | [0.000]        | [0.000]      | NS          | [0.000]        |

| Table 9. | Summary | of Findings: | p-values |
|----------|---------|--------------|----------|
|----------|---------|--------------|----------|

Note: Bracketed p-values indicate coefficients entering with negative algebraic signs; "NS" denotes not significant.

| ······································ | Di    | District-Wide |         | Statewide |       | Circuit-Wide |       | Vide  |         |
|----------------------------------------|-------|---------------|---------|-----------|-------|--------------|-------|-------|---------|
| Variables                              | Total | U.S.          | Private | Total     | U.S.  | Private      | Total | U.S.  | Private |
| Density                                | NS    | -0.02         | 0.02    | NS        | -0.35 | 0.03         | 0.05  | -0.08 | 0.10    |
| Income                                 | 0.44  | 0.31          | 0.53    | 0.42      | 0.26  | 0.49         | 0.37  | 0.29  | 0.41    |
| Government                             | 0.13  | 0.14          | 0.10    | 0.73      | 0.86  | 0.60         | 0.78  | 1.21  | 0.55    |
| U. Rate                                | 0.14  | 0.26          | 0.08    | 0.22      | 0.39  | 0.13         | NS    | 0.42  | NS      |
| Race                                   | 0.20  | 0.16          | 0.23    | 0.13      | 0.14  | 0.14         | 0.23  | 0.23  | 0.24    |

Table 10. Elasticities of Continuous Independent Variables<sup>29</sup>

Note: "NS" denotes not significant.

*Summary*. In this section, we have estimated models of civil case filings in the United States Federal District Courts over the years 1961 to 1998 at three levels of aggregation (district-wide, statewide, and circuit-wide). For each data series, six different regression models have been run. Our results confirm strongly our a priori expectations: higher numbers of case filings are associated with more densely populated districts, districts with higher per capita incomes, and districts with larger governments. Higher case volumes are also associated with higher unemployment rates and higher percentages of non-white persons. Interestingly, cases to which the United States government is a party are strongly associated with the size of the government of the particular district. These findings are tentative yet offer fruitful opportunities for future research.

#### IV. Interplay between Criminal and Civil Caseloads

The U.S. Constitution provides individuals charged with criminal offenses the right to speedy trials; defendants in civil cases have no such constitutional guarantee. Efficient caseload management therefore requires sitting federal judges to balance two competing demands on their

<sup>&</sup>lt;sup>29</sup> "Elasticity" is a measure of the responsiveness of one variable to changes in the values of other variables. The income elasticity of total state-wide cases, 0.73, implies that when per capita income increases (decreases) by 1 percent, state-wide per capita total filings will increase (decrease) by 0.73 percent holding everything else constant.

limited time, trading off the need to dispose of criminal cases expeditiously while simultaneously handling a growing volume of civil cases. The empirical estimates reported in this section represent a preliminary attempt to shed light on the possibility of a link between criminal and civil caseloads in the U.S. federal district courts. More specifically, we ask whether the constitutional priority assigned to criminal cases plays a role in explaining the backlog observed in civil cases. In other words, if judges must allocate a certain amount of their fixed time to criminal cases, the time available to them to dispose of civil cases may be reduced. This in turn implies that the time lag between filing and disposition of civil cases may be lengthened, ceteris paribus.

Do criminal cases crowd out civil cases? To explore this question, we have collected panel data from 1968 to 1998. The unit of analysis is the federal district court and the data consist of the following variables: number of authorized judgeships per district, median time from filing to disposition of civil and criminal cases, and drug and immigration cases as a percent of total criminal filings.<sup>30</sup> Our empirical tests are based on two alternative regression specifications. Fixed effects models and least squares models were run on the panel data and a least squares regression was run using annual time series data from 1968 to 1998. The dependent variable in all regressions is the median time between filing to disposition of civil cases. The estimates are reported in Appendix 3.

The empirical results are consistent with the conjecture of crowding out. We find, in general, that the median time from filing to disposition of civil cases tends to be significantly longer in those districts where it also takes more time to dispose of criminal cases. Moreover, it appears that more time elapses between the filing and disposition of civil cases in districts where larger percentages of the criminal cases involve drug and immigration law violations. We find in addi-

<sup>&</sup>lt;sup>30</sup> Although we reported evidence earlier that the time series of civil cases, criminal cases, and authorized judgeships are not cointegrated, it is still possible that the median time to disposition of civil cases is influenced either by the time spent disposing of criminal cases, the number of federal authorized judgeships, or both.

tion that federal judges have positive marginal products: other things being the same, civil cases are disposed of more expeditiously in districts with greater numbers of authorized judgeships.

Hence, while the number of federal criminal case filings has grown much more slowly than civil cases have grown over the past 60 years, the empirical evidence reported here suggests that the time required to dispose of such cases imposes a negative externality on the courts' civil caseload. As judges devote more time to disposing of criminal cases, the pace at which civil cases move through the federal courts is also slowed. The positive relation between time to disposition of civil and criminal caseloads has important implications for the management of the federal court system. It appears that efficient caseload management is not simply a matter of trading off less time for criminal cases in return for freeing more time for civil cases. Rather, efficient management requires adjusting on both margins simultaneously.

#### V. Summary and Conclusions

This study has explored the determinants of the explosion in the caseload of the U.S. federal district courts that commenced in 1960. Prior to that time, the federal judiciary's caseload grew at a rate averaging about 1.1 percent per year. The growth rate thereafter rose to 2.9 percent annually, nearly tripling the demands on the federal courts. Given that criminal case filings have increased much more slowly since the era of Prohibition, the mounting burden on sitting federal judges has been driven almost entirely by a sevenfold upsurge in civil cases.

The analyses reported herein offer important insights into the caseloads problem. First, using advanced econometric techniques, we have supplied forecasts of future demands on the federal courts that are more accurate than those available previously. Forecast errors are reduced by taking account of the time series properties of the case data. In particular, strong evidence that the time series of federal civil and criminal cases are nonstationary (have unit roots) implies that the projections produced by deterministic models with linear trends are unreliable. Based on estimates of autoregressive time series models of civil and criminal cases, using annual data for the years 1904 to 1998 as well as subperiods thereof, we generate out-of-sample forecasts through 2020 that differ substantially from the forecasts of the Judicial Conference of the United States. To illustrate, while the Judicial Conference estimates that total federal case filings will almost triple between 2000 and 2020, rising from 364,800 cases to 1,060,400 cases annually, our models project that the burden on the federal courts will not reach half that number: a total of 444,074 cases is our most generous estimate for 2020.

The study's second contribution is to specify and estimate multivariate econometric models of the determinants of civil case filings over time and across geographic space using panel data techniques. These empirical models are run on three alternative datasets consisting of observations on statewide, district-wide, and circuit-wide U.S. civil, private civil, and total civil cases per capita, over the period 1960 to 1998. We find that federal civil case filings are influenced significantly by the socioeconomic characteristics of the relevant state, district, or circuit. In particular, holding other things constant, civil cases are positively related to per capita income, population density, the percentage of the population that is nonwhite, the unemployment rate, and the size of government. We also find that the explanatory power of the panel data models is improved substantially by controlling for the geographical locations of the federal courts: other things equal, significantly more civil cases are filed per capita in the Fifth Circuit than elsewhere, except for the District of Columbia Circuit. The fact that fixed effects models explain variations in civil case filings better than alternative models that do not take geographical location into account provides preliminary evidence pointing to the efficiency gains potentially flowing from reassessing the cross-circuit and cross-district allocation of judgeships and other resources of the federal courts.

The importance of caseload management is reinforced by analyses of the impact of criminal cases on civil cases. We find that, holding constant the time between the filing and disposition of federal criminal cases, civil cases are disposed of more expeditiously in districts where there are more authorized judgeships per capita. On the other hand, holding authorized judgeships per capita constant, we also find that criminal cases impose a negative externality on civil cases: the more time federal judges take to dispose of criminal cases in a given district, the longer is the elapsed time between the date of filing and the date of disposition of civil cases. Moreover, the time to disposition of civil cases tends to be longer in districts where greater percentages of the criminal caseload involve alleged drug and immigration law violations.

Despite our finding that the time devoted to disposing of criminal cases slows the speed at which civil cases move through the courts, we also report evidence supporting the hypothesis that the numbers of civil and criminal cases and numbers of authorized federal judgeships are not cointegrated. Two conclusions follow from this evidence. One is that the numbers of civil and criminal cases filed in the federal courts are generated by independent stochastic processes. In other words, information about the number of criminal cases filed in a given year does not allow one to predict the civil caseload, and vice-versa. The other conclusion is that the number of judges authorized to hear federal cases bears no relation to the total caseload of the federal courts. Forces external to the courts, such as the political process, evidently play greater roles than caseload demands in determining the size of the federal judiciary.

In sum, this study provides new, and we believe, more accurate forecasts of the future workload of the U.S. federal district courts than have been available hitherto. Grounded in bestpractice econometric techniques, we project that the federal courts can at most expect to face a caseload of 444,074 civil and criminal cases by 2020, not a total exceeding one million such cases. The study also supplies evidence that the distribution of federal civil cases across states, districts, and circuits can be explained by empirical models that include standard socioeconomic variables, such as income, population density, and race, along with variables that control for fixed effects associated with the geographical locations of the federal courts. We thus have models that policymakers can use to forecast the future caseloads on the federal court system as a whole as well as to estimate how the total caseload will be distributed geographically.

Perhaps the most important policy implication of this study, however, is that caseload forecasts using models incorporating simple linear trends are problematic. Indeed, once the time series properties of federal civil and criminal case filings are taken into account, there is no evidence of a linear trend in the data. The failure adequately to model the time series of cases explains why previous forecasts, such as those contained in the *Long Range Plan*, consistently have overestimated future demands on the federal courts. Armed with the more accurate forecasts presented here, policymakers can more confidently assess the need for additional judgeships and, moreover, can address what seems to be a more pressing problem, namely the possible misallocation of judgeships across circuits and districts.

This final observation points to a useful area for future research. Although beyond the scope of the present study, it would be informative to conduct time series analyses of the case filings in individual federal district courts. Such a study would allow one to explore the causes and consequences of the growth of criminal caseloads, especially those involving drug and immigration law violations, which have recently increased at historically unprecedented rates in the Southwestern United States.

#### Appendix 1

#### **Unit Root Tests**

The augmented Dickey-Fuller-generalized-least-squares (ADF-GLS) test is the Elliott-Rothenberg-Stock (1996) efficient test for an autoregressive unit root. This test is similar to an (augmented) Dickey-Fuller *t*-test, as it applies GLS detrending before the series is tested via the Dickey-Fuller regression. Compared with the ADF tests, the ADF-GLS has the best overall performance in terms of small sample size and power. It "has substantially improved power when an unknown mean or trend is present" (Elliott et al. 1996, p. 813). The null hypothesis is that the series is level (or trend) stationary with the alternative of a single unit root.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is introduced in Kwiatkowski et al. (1992) and differs from those in common use by having a null hypothesis of stationarity. The test may be conducted under the null hypothesis of either trend stationarity or level stationarity. It can be used in conjunction with the ADF-GLS tests to obtain insights into the low-frequency behavior of time series given small sample sizes.

The structural break tests are the ones proposed by Clemente et al. (1998), which represent extensions of the Perron-Vogelsang methodology to allow for double mean shifts. Perron and Vogelsang (1992) propose a class of test statistics that captures two alternative forms of change: the "additive outlier" (AO) model, allowing for the possibility of a sudden change, and the "innovational outlier" (IO) model, appropriate for modeling a gradual shift in the mean of the series. The test statistics do not require a priori knowledge of the breakpoint, as their computation involves a two-dimensional grid search for breakpoints over the sample.

The modified log-periodogram test is a test for fractional integration proposed by Phillips (1999). Phillips' estimator is an extension of the well-known contribution of Geweke and Porter-

Hudak (1983) that addresses some of the weaknesses of the GPH test. We use Phillips' test as we want to consider the possibility that the order of integration in our series may be fractional, I(d), rather than integer, I(1) versus I(0). The previous tests allow only for integer orders of integration, creating a knife-edged unit-root versus stationarity distinction. The series is said to be fractionally integrated if the differencing parameter is found to be of noninteger value.

|                      |            | Series        |                                       |  |  |  |
|----------------------|------------|---------------|---------------------------------------|--|--|--|
|                      |            | Panel A       |                                       |  |  |  |
| Lag Order            | Civil      | Log(civil)    | △ Log(civil)                          |  |  |  |
| With constant        |            | • <u>, </u>   | · · · · · · · · · · · · · · · · · · · |  |  |  |
| <i>k</i> = 2         | 0.945      | 1.488         | -5.515***                             |  |  |  |
| <i>k</i> = 4         | 0.197      | 0.740         | -3.444***                             |  |  |  |
| <i>k</i> = 6         | 0.961      | 0.593         | -2.585**                              |  |  |  |
| <i>k</i> = 8         | 0.835      | 0.627         | -2.428**                              |  |  |  |
| Min. MAIC            | 0.740 (5)  | 0.740 (4)     | -2.585** (6)                          |  |  |  |
| Sequential-t         | 0.213 (9)  | 0.740 (4)     | -3.704*** (3)                         |  |  |  |
| With constant and tr | end        | 1             | l                                     |  |  |  |
| <i>k</i> = 2         | -1.045     | -1.775        | 5.686***                              |  |  |  |
| <i>k</i> = 4         | -1.556     | -2.213        | -3.601**                              |  |  |  |
| <i>k</i> = 6         | -0.939     | -2.261        | -2.734*                               |  |  |  |
| <i>k</i> = 8         | -0.962     | -2.191        | -2.602*                               |  |  |  |
| Min. MAIC            | -1.105 (5) | -1.775 (2)    | -2.734* (6)                           |  |  |  |
| Sequential-t         | -1.311 (9) | -2.213 (4)    | -3.849*** (3)                         |  |  |  |
|                      | Panel B    |               |                                       |  |  |  |
|                      | Criminal   | Log(criminal) | Δ Log(criminal)                       |  |  |  |
| With constant        |            |               |                                       |  |  |  |
| <i>k</i> = 2         | -1.267     | -0.888        | -4.583***                             |  |  |  |
| <i>k</i> = 4         | -1.548     | -1.128        | -3.306***                             |  |  |  |
| <i>k</i> = 6         | -1.260     | -1.046        | -2.751***                             |  |  |  |
| <i>k</i> = 8         | -1.483     | -1.149        | 2.689***                              |  |  |  |
| Min. MAIC            | -1.446 (1) | -0.939 (1)    | -2.751** (6)                          |  |  |  |
| Sequential-t         | -1.617 (7) | -0.939 (1)    | -8.152*** (0)                         |  |  |  |
| With constant and tr | end        |               | · · ·                                 |  |  |  |
| <i>k</i> = 2         | -1.815     | -1.759        | -4.571***                             |  |  |  |
| <i>k</i> = 4         | -2.152     | -2.073        | -3.296**                              |  |  |  |
| <i>k</i> = 6         | -1.864     | -2.006        | -2.741*                               |  |  |  |
| <i>k</i> = 8         | -2.150     | -2.191        | -2.667*                               |  |  |  |
| Min. MAIC            | -2.003 (1) | -1.816 (1)    | -2.741* (6)                           |  |  |  |
| Sequential-t         | -2.281 (7) | -1.816 (1)    | -8.150*** (0)                         |  |  |  |

Table A.1.1. ADF-GLS Unit-Root Test Results

Notes: The ADF-GLS test is the one suggested by Elliott, Rothenberg and Stock (1996) for an autoregressive unit root. MAIC is the modified Akaike information criterion proposed by Ng and Perron (2001) (the optimal lag order is shown in parentheses). They have established that the MAIC criterion may provide huge size improvements in the ADF-GLS test. The sequential-t criterion was proposed by Ng and Perron (1995) and is based on a sequential t-test on the highest lag order coefficient, stopping when that coefficient's t-value is less than 0.10 (the optimal lag order is given in parentheses). Asterisks indicate statistical significance at the 1% (\*\*\*), 5% (\*\*), and 10% (\*) levels, respectively.

|                 | Null Hypothesis          |                          |  |  |  |
|-----------------|--------------------------|--------------------------|--|--|--|
| Series          | Level Stationarity (Lag) | Trend Stationarity (Lag) |  |  |  |
| Civil           | 1.908*** (3)             | 0.496*** (3)             |  |  |  |
| Log(civil)      | 2.241*** (3)             | 0.262*** (3)             |  |  |  |
| Δ Log(civil)    | 0.072 (3)                | 0.063 (3)                |  |  |  |
| Criminal        | 0.164 (3)                | 0.174** (3)              |  |  |  |
| Log(criminal)   | 0.312 (3)                | 0.198** (3)              |  |  |  |
| Δ Log(criminal) | 0.095 (3)                | 0.085 (3)                |  |  |  |

Table A.1.2. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Unit-Root Test Results

*Notes*: The test statistics are the KPSS test statistics for the null hypothesis of level (or trend) stationarity. The order of serial correlation (lag) is chosen according to an automatic bandwidth selection which specifies the selection of the serial correlation allowed in the estimation of the "long-run" covariance by the automatic bandwidth selection proposed by Newey and West (1994) in conjunction with the usage of the quadratic spectral kernel to weight the empirical autocovariance function as suggested by Hobijn et al. (1998). It is in conjunction that Hobijn et al. found the greatest improvement in the test: "Our Monte Carlo simulations show that the best small sample results of the test in case the process exhibits a high degree of persistence are obtained using both the automatic bandwidth selection procedure and the quadratic spectral kernel" (1998, p. 14). Asterisks denote significance at the at the 1% (\*\*\*), 5% (\*\*), and 10% (\*) levels, respectively.

| Series              | Model | $\delta_1$ | $T_{bl}$ | δ2       | <i>T</i> <sub><i>b</i>2</sub> | М     | k  | $\alpha - 1$ |
|---------------------|-------|------------|----------|----------|-------------------------------|-------|----|--------------|
| Civil               | IO    | 16.203     | 1970     | 15.528   | 1980                          | 7.069 | 5  | -0.155       |
|                     |       | (3.60)     |          | (2.25)   |                               |       |    | (-3.08)      |
|                     | AO    | 72.258     | 1967     | 127.69   | 1980                          | 37.93 | 12 | -0.351       |
|                     |       | (11.69)    |          | (17.26)  |                               |       |    | (-1.87)      |
| Log(civil)          | IO    | 0.061      | 1921     | 0.129    | 1973                          | 0.80  | 0  | -0.078       |
|                     |       | (0.99)     |          | (1.72)   |                               |       |    | (-1.63)      |
|                     | AO    | 1.049      | 1921     | 1.41     | 1972                          | 9.72  | 0  | -0.335       |
|                     |       | (13.77)    |          | (21.06)  |                               |       |    | (-4.22)      |
| $\Delta$ Log(civil) | IO    | -0.160     | 1931     | 0.147    | 1939                          | 0.06  | 1  | -1.324       |
|                     |       | (-3.26)    |          | (3.20)   |                               |       | L  | (-9.31)      |
|                     | AO    | -0.10      | 1930     | 0.089    | 1937                          | 0.05  | 10 | -0.883       |
|                     |       | (-2.03)    |          | (1.92)   |                               |       |    | (-2.54)      |
| Criminal            | IO    | 9.105      | 1920     | -7.589   | 1935                          | 9.87  | 7  | -0.289       |
| ·                   |       | (1.42)     |          | (-1.75)  |                               |       |    | (-2.63)      |
|                     | AO    | 50.194     | 1920     | -34.583  | 1934                          | 22.35 | 7  | -0.525       |
|                     |       | (14.91)    |          | (-12.56) |                               |       |    | (-2.38)      |
| Log(criminal)       | IO    | -0.027     | 1919     | 0.007    | 1935                          | 0.54  | 0  | -0.049       |
| 0<br>               |       | (-0.22)    |          | (0.11)   |                               |       |    | (-0.61)      |
|                     | AO    | 1.292      | 1919     | -0.617   | 1934                          | 9.86  | 0  | -0.432       |
|                     |       | (16.95)    |          | (-10.15) |                               |       |    | (-4.85)      |
| ∆ Log(criminal)     | IO    | -0.444     | 1932     | 0.372    | 1936                          | 0.08  | 1  | -1.281       |
|                     |       | (-4.54)    |          | (4.09)   |                               |       |    | (-8.18)      |
|                     | AO    | -0.225     | 1931     | 0.177    | 1936                          | 0.06  | 2  | -1.057       |
|                     |       | (-3.46)    |          | (2.84)   |                               |       |    | (-6.06)      |

Table A.1.3. Structural Break Unit-Root Test Results

Notes: The unit-root tests are those proposed by Clemente at al. (1998) for the innovational outlier (IO) and additive outlier (AO) models of a unit root in the presence of double mean shifts. The 5% critical value for the test of  $(\alpha - 1)$  is -5.49 for both innovational and additive outlier models. The *t*-statistics for  $\mu$ ,  $\delta_1$ , and  $\delta_2$  follow a standard *t*-distribution under the null; *k* is the autoregressive lag order chosen.

| Series          | <i>t</i> -sta                          | tistics for Bandwidth Wir | ndow                                   |
|-----------------|----------------------------------------|---------------------------|----------------------------------------|
|                 | 0.70                                   | 0.80                      | 0.90                                   |
| Civil           |                                        |                           |                                        |
| With Trend      | 1.161                                  | 1.248**                   | 1.332***                               |
| with Trend      | (1.23)                                 | (2.38)                    | (4.01)                                 |
| No Trend        | 0.502***                               | 0.434***                  | 0.385***                               |
| NO ITCHU        | (-3.80)                                | (-5.44)                   | (-7.43)                                |
| Log(civil)      |                                        |                           |                                        |
| With Trend      | 0.996                                  | 1.042                     | 1.081                                  |
| with field      | (0.03)                                 | (0.42)                    | (0.98)                                 |
| No Trend        | 0.873                                  | 0.831                     | 0.793                                  |
|                 | (-0.97)                                | (1.63)                    | (-2.50)                                |
| ∆ Log(civil)    |                                        |                           |                                        |
| With Trend      | 0.040                                  | 0.065                     | 0.029                                  |
|                 | (0.17)                                 | (0.34)                    | (0.21)                                 |
| No Trend        | -0.047                                 | -0.002                    | -0.018                                 |
| ito iiona       | (-0.20)                                | (0.01)                    | (-0.13)                                |
| Criminal        |                                        |                           |                                        |
| With Trend      | 1.037                                  | 0.994                     | 1.008                                  |
|                 | (1.29)                                 | (-0.06)                   | (0.09)                                 |
| No Trend        | 1.089                                  | 0.940                     | 0.865                                  |
|                 | (0.68)                                 | (-0.58)                   | (-1.63)                                |
| Log(criminal)   | ······································ |                           | ······································ |
| With Trend      | 1.036                                  | 1.017                     | 0.970                                  |
|                 | (0.28)                                 | (0.16)                    | (-0.36)                                |
| No Trend        | 0.960                                  | 0.935                     | 0.906                                  |
|                 | (-0.30)                                | (-0.62)                   | (-1.13)                                |
| △ Log(criminal) |                                        |                           | <b>Y</b> *****                         |
| With Trend      | 0.133                                  | 0.151                     | 0.139                                  |
|                 | (0.92)                                 | (1.36)                    | (1.62)                                 |
| No Trend        | 0.166                                  | 0.176                     | 0.160*                                 |
| 110 11010       | (1.19)                                 | (1.62)                    | (1.89)                                 |

Table A.1.4. Modified Log-Periodogram Test Results

Notes: The modified log-periodogram test computes a modified form of the Geweke-Porter-Hudak (GPH) estimate of the long memory parameter d of a time series, proposed by Phillips (1999). The estimator gives rise to a test statistic for d = 1, which is a standard normal variate under the null (for the log-differenced series the test statistic for d = 0 is reported). Phillips suggests that deterministic trends should be removed from the series before application of the estimator. Asterisks denote statistical significance at the 1% (\*\*\*), 5% (\*\*), and 10% (\*) levels, respectively.

|                |           | Sample Period |           |  |  |  |
|----------------|-----------|---------------|-----------|--|--|--|
| Series         | 1904–1998 | 1948–1998     | 1960-1998 |  |  |  |
| Civil Cases    | ARI(5, 1) | ARI(5, 1)     | ARI(5, 1) |  |  |  |
| Criminal Cases | ARI(7, 1) | ARI(0, 1)     | ARI(0, 1) |  |  |  |
| Total Cases    | ARI(5, 1) | ARI(5, 1)     | ARI(5, 1) |  |  |  |

Table A.1.5. Autoregressive Models Chosen for the Civil, Criminal and Total Cases

Notes: ARI(p, 1) stands for a unit-root (integrated of order one) process of autoregressive order p. The chosen model for the criminal cases over the 1948–1990 period is a driftless random walk; for the 1960–1990 period it is a random walk with drift.

# Table A.1.6. Regression Results

### CIVIL CASES 1

| Estimation by Least Squares |                                            |
|-----------------------------|--------------------------------------------|
| Dependent Variable          | First Differenced Civil<br>Cases 1904–1998 |
| Usable Observations         | 89                                         |
| Degrees of Freedom          | 83                                         |
| Centered R <sup>2</sup>     | 0.24                                       |
| Adjusted R <sup>2</sup>     | 0.2                                        |
| Uncentered R <sup>2</sup>   | 0.31                                       |
| T*R <sup>2</sup>            | 27.19                                      |
| Mean of Dep. Variable       | 2737.75                                    |
| St. Error of Dep. Variable  | 9319.37                                    |
| St. Error of Estimate       | 8388.95                                    |
| Sum of Squared Errors       | 5771777548                                 |
| F-Statistic                 | 5.38                                       |
| Significance of F           | 0.00024618                                 |
| D-W                         | 2.02                                       |

| Variable | Coefficient | St. Error | <i>t</i> -stat | p-value |
|----------|-------------|-----------|----------------|---------|
| Constant | 1734.51338  | 980.84980 | 1.76838        | 0.08067 |
| DCVL{1}  | 0.45624     | 0.10751   | 4.24384        | 0.00006 |
| DCVL{2}  | -0.13834    | 0.11302   | -1.22401       | 0.22441 |
| DCVL{3}  | -0.00584    | 0.12220   | -0.04777       | 0.96201 |
| DCVL{4}  | 0.34071     | 0.12339   | 2.76124        | 0.00709 |
| DCVL{5}  | -0.31250    | 0.11596   | -2.69480       | 0.00852 |

# CIVIL CASES 2

.

| Estimation by Least        |                                            |
|----------------------------|--------------------------------------------|
| Squares                    |                                            |
| Dependent Variable         | First Differenced Civil<br>Cases 1948–1998 |
| Usable Observations        | 45                                         |
| Degrees of Freedom         | 39                                         |
| Centered R <sup>2</sup>    | 0.32                                       |
| Adjusted R <sup>2</sup>    | 0.23                                       |
| Uncentered R <sup>2</sup>  | 0.41                                       |
| T*R <sup>2</sup>           | 18.42                                      |
| Mean of Dep. Variable      | 4518.18                                    |
| St. Error of Dep. Variable | 11447.35                                   |
| St. Error of Estimate      | 10060.94                                   |
| Sum of Squared Errors      | 3947690221                                 |
| F-Statistic                | 3.59                                       |
| Significance of F          | 0.00909316                                 |
| D-W                        | 2.07                                       |

| Variable | Coefficient | St. Error  | <i>t</i> -stat | p-value |
|----------|-------------|------------|----------------|---------|
| Constant | 2886.14946  | 1808.43525 | 1.59594        | 0.11858 |
| DCVL{1}  | 0.55028     | 0.15450    | 3.55951        | 0.00090 |
| DCVL{2}  | -0.14599    | 0.16657    | -0.87649       | 0.38613 |
| DCVL{3}  | -0.09013    | 0.18453    | -0.48845       | 0.62797 |
| DCVL{4}  | 0.43503     | 0.19031    | 2.28587        | 0.02778 |
| DCVL{5}  | -0.42987    | 0.17137    | -2.50843       | 0.01640 |

### CIVIL CASES 3

| Estimation by Least        | ]                                          |
|----------------------------|--------------------------------------------|
| Squares                    |                                            |
| Dependent Variable         | First Differenced Civil<br>Cases 1960–1998 |
| Usable Observations        | 33                                         |
| Degrees of Freedom         | 27                                         |
| Centered R <sup>2</sup>    | 0.36                                       |
| Adjusted R <sup>2</sup>    | 0.24                                       |
| Uncentered R <sup>2</sup>  | 0.47                                       |
| T*R <sup>2</sup>           | 15.59                                      |
| Mean of Dep. Variable      | 5882.33                                    |
| St. Error of Dep. Variable | 12929.89                                   |
| Sum of Squared Errors      | 345384897                                  |
| F-Statistic                | 3.03                                       |
| Significance of F          | 0.02669406                                 |
| D-W                        | 2.08                                       |

| Variable | Coefficient | St. Error  | <i>t</i> -stat | p-value |
|----------|-------------|------------|----------------|---------|
| Constant | 4034.15511  | 2494.00650 | 1.61754        | 0.11739 |
| DCVL{1}  | 0.58619     | 0.18063    | 3.24534        | 0.00312 |
| DCVL{2}  | -0.19142    | 0.19703    | -0.97153       | 0.33991 |
| DCVL{3}  | -0.11961    | 0.22217    | -0.53839       | 0.59472 |
| DCVL{4}  | 0.49915     | 0.23147    | 2.15644        | 0.04012 |
| DCVL{5}  | -0.51764    | 0.20437    | -2.53283       | 0.01743 |

### CRIMINAL CASES 1

| Estimation by Least       |                                                   |
|---------------------------|---------------------------------------------------|
| Squares                   |                                                   |
| Dependent Variable        | First Differenced<br>Criminal Cases 1904–<br>1998 |
| Usable Observations       | 87                                                |
| Degrees of Freedom        | 79                                                |
| Centered R <sup>2</sup>   | 0.12                                              |
| Adjusted R <sup>2</sup>   | 0.04                                              |
| Uncentered R <sup>2</sup> | 0.12                                              |
| T*R <sup>2</sup>          | 10.56                                             |
| Mean of Dep. Variable     | 490.05                                            |
| St. Error of Estimate     | 6787.84                                           |
| Sum of Squared Errors     | 3639903176                                        |
| F-Statistic               | 1.49                                              |
| Significance of F         | 0.18174608                                        |
| D-W                       | 1.95                                              |

| Variable    | Coefficient | St. Error | t-stat   | p-value  |
|-------------|-------------|-----------|----------|----------|
|             |             |           |          | <u>,</u> |
| Constant    | 409.54144   | 733.35476 | 0.55845  | 0.57812  |
| DDEPVAR {1} | 0.22572     | 0.11151   | 2.02430  | 0.04632  |
| DDEPVAR {2} | -0.13723    | 0.11112   | -1.23495 | 0.22051  |
| DDEPVAR {3} | 0.13289     | 0.11195   | 1.18707  | 0.23876  |
| DDEPVAR {4} | -0.02935    | 0.11245   | -0.26103 | 0.79475  |
| DDEPVAR{5}  | 0.07089     | 0.11140   | 0.63640  | 0.52636  |
| DDEPVAR{6}  | -0.23180    | 0.11065   | -2.09480 | 0.03939  |
| DDEPVAR{7}  | 0.18063     | 0.11124   | 1.62382  | 0.10840  |

# CRIMINAL CASES 2

| Estimation by Least        |                                      |
|----------------------------|--------------------------------------|
| Squares                    |                                      |
| Dependent Variable         | Criminal Cases (Levels)<br>1948–1998 |
| Usable Observations        | 50                                   |
| Degrees of Freedom         | 48                                   |
| Centered R <sup>2</sup>    | 0.81                                 |
| Adjusted R <sup>2</sup>    | 0.8                                  |
| Uncentered R <sup>2</sup>  | 0.99                                 |
| $T^*R^2$                   | 49.71                                |
| Mean of Dep. Variable      | 38765.24                             |
| St. Error of Dep. Variable | 6839.77                              |
| St. Error of Estimate      | 3044.06                              |
| Sum of Squared Errors      | 444781588                            |
| F-Statistic                | 199.38                               |
| Significance of F          | 0                                    |
| D-W                        | 1.54                                 |

| Variable | Coefficient | St. Error | t-stat | p-value |
|----------|-------------|-----------|--------|---------|
|          |             |           |        |         |
|          |             |           |        |         |

| Constant | 1527.11523 | 2672.09824 | 0.57150  | 0.57032 |
|----------|------------|------------|----------|---------|
| CML{1}   | 0.97285    | 0.06890    | 14.12037 | 0.00000 |

.

### CRIMINAL CASES 3

| Estimation by Least<br>Squares |                                            |
|--------------------------------|--------------------------------------------|
| Dependent Variable             | First Differenced Criminal Cases 1948–1998 |

The chosen model is a random walk without drift.

# CRIMINAL CASES 4

| Estimation by Least        |                                                   |
|----------------------------|---------------------------------------------------|
| Squares                    |                                                   |
| Dependent Variable         | First Differenced<br>Criminal Cases 1960–<br>1998 |
| Usable Observations        | 38                                                |
| Degrees of Freedom         | 37                                                |
| Centered R <sup>2</sup>    | 0                                                 |
| Adjusted R <sup>2</sup>    | 0                                                 |
| Uncentered R <sup>2</sup>  | 0.06                                              |
| $T^*R^2$                   | 2.279                                             |
| Mean of Dep. Variable      | 733.24                                            |
| St. Error of Dep. Variable | 2941.73                                           |
| St. Error of Estimate      | 2941.73                                           |
| Sum of Squared Errors      | 320189977                                         |
| D-W                        | 1.59                                              |

| Variable | Coefficient | St. Error | <i>t</i> -stat | p-value |
|----------|-------------|-----------|----------------|---------|
|          |             |           |                | r       |
| Constant | 733.23684   | 477.21184 | 1.53650        | 0.13292 |

### TOTAL CASES 1

| Estimation by Least        |                                            |
|----------------------------|--------------------------------------------|
| Squares                    |                                            |
| Dependent Variable         | First Differenced Total<br>Cases 1904–1998 |
| Usable Observations        | 89                                         |
| Degrees of Freedom         | 83                                         |
| Centered R <sup>2</sup>    | 0.13                                       |
| Adjusted R <sup>2</sup>    | 0.08                                       |
| Uncentered R <sup>2</sup>  | 0.19                                       |
| $T^*R^2$                   | 16.88                                      |
| Mean of Dep. Variable      | 3222.99                                    |
| St. Error of Dep. Variable | 12469.9                                    |
| St. Error of Estimate      | 11942.49                                   |
| Sum of Squared Errors      | 11837706396                                |
| F-Statistic                | 2.59                                       |
| Significance of F          | 0.03161627                                 |
| D-W                        | 2.04                                       |

| Variable  | Coefficient | St. Error  | <i>t</i> -stat | p-value |
|-----------|-------------|------------|----------------|---------|
| Constant  | 2357.67209  | 1379.91854 | 1.70856        | 0.09127 |
| DTOTAL{1} | 0.32059     | 0.10850    | 2.95483        | 0.00407 |
| DTOTAL{2} | -0.11950    | 0.11210    | -0.06596       | 0.28953 |
| DTOTAL{3} | 0.06878     | 0.11700    | 0.58791        | 0.55819 |
| DTOTAL{4} | 0.16877     | 0.11704    | 1.44200        | 0.15306 |
| DTOTAL{5} | -0.17562    | 0.11241    | -1.56231       | 0.12202 |

### TOTAL CASES 2

| Estimation by Least        | ]                                          |
|----------------------------|--------------------------------------------|
| Squares                    |                                            |
| Dependent Variable         | First Differenced Total<br>Cases 1948–1998 |
| Usable Observations        | 45                                         |
| Degrees of Freedom         | 39                                         |
| Centered R <sup>2</sup>    | 0.32                                       |
| Adjusted R <sup>2</sup>    | 0.23                                       |
| Uncentered R <sup>2</sup>  | 0.42                                       |
| $T*R^2$                    | 18.97                                      |
| Mean of Dep. Variable      | 4944.56                                    |
| St. Error of Dep. Variable | 11838.15                                   |
| St. Error of Estimate      | 10382.03                                   |
| Sum of Squared Errors      | 4203679124                                 |
| F-Statistic                | 3.64                                       |
| Significance of F          | 0.00846113                                 |
| D-W                        | 2.09                                       |

| Variable  | Coefficient | St. Error  | t-stat   | p-value |
|-----------|-------------|------------|----------|---------|
| Constant  | 3511.41132  | 1893.03287 | 1.85491  | 0.07118 |
| DTOTAL{1} | 0.52118     | 0.14993    | 3.47626  | 0.00126 |
| DTOTAL{2} | -0.11115    | 0.15845    | -0.70152 | 0.48715 |
| DTOTAL{3} | -0.18412    | 0.17389    | -1.05880 | 0.29621 |
| DTOTAL{4} | 0.48110     | 0.18080    | 2.66094  | 0.01125 |
| DTOTAL{5} | -0.44741    | 0.16606    | -2.69428 | 0.01035 |

### TOTAL CASES 3

| Estimation by Least        |                                            |
|----------------------------|--------------------------------------------|
| Squares                    |                                            |
| Dependent Variable         | First Differenced Total<br>Cases 1960–1998 |
| Usable Observations        | 33                                         |
| Degrees of Freedom         | 27                                         |
| Centered R <sup>2</sup>    | 0.33                                       |
| Adjusted R <sup>2</sup>    | 0.2                                        |
| Uncentered R <sup>2</sup>  | 0.46                                       |
| T*R <sup>2</sup>           | 15.34                                      |
| Mean of Dep. Variable      | 6620.42                                    |
| St. Error of Dep. Variable | 13212.93                                   |
| St. Error of Estimate      | 11806.96                                   |
| Sum of Squared Errors      | 3763913105                                 |
| F-Statistic                | 2.62                                       |
| Significance of F          | 0.04712531                                 |
| D-W                        | 2.11                                       |

| Variable  | Coefficient | St. Error  | <i>t</i> -stat | p-value  |
|-----------|-------------|------------|----------------|----------|
| Constant  | 5340.195063 | 2733.84292 | 1.95337        | 0.061211 |
| DTOTAL{1} | 0.507557    | 0.177404   | 2.86102        | 0.008055 |
| DTOTAL{2} | -0.143759   | 0.188102   | -0.76426       | 0.451341 |
| DTOTAL{3} | -0.199538   | 0.20776    | -0.96043       | 0.345363 |
| DTOTAL{4} | 0.476682    | 0.21761    | 2.19053        | 0.037298 |
| DTOTAL{5} | -0.498298   | 0.198461   | -2.51081       | 0.018336 |

Table A.1.7. BDSL Results

| CIVIL CASES        | CIVIL CASES 1904–1998                                       |      |      |          |          |               |  |  |
|--------------------|-------------------------------------------------------------|------|------|----------|----------|---------------|--|--|
| Initial Obs.: 1, 1 | Initial Obs.: 1, Num Obs.: N = 89, SD/Spread = 1.6078E-0001 |      |      |          |          |               |  |  |
| Epsilon            | m                                                           | C1   | Cm   | BDSL     | SD       | BDSL/SD       |  |  |
| 0.1608             | 2                                                           | 2240 | 1440 | 4.59E-01 | 9.66E-02 | 4.7571E+0000* |  |  |
| 0.1608             | 3                                                           | 2240 | 1013 | 7.80E-01 | 1.26E-01 | 6.1722E+0000* |  |  |
| 0.1608             | 4                                                           | 2240 | 728  | 8.54E-01 | 1.24E-01 | 6.8889E+0000* |  |  |
| 0.1608             | 5                                                           | 2240 | 529  | 8.02E-01 | 1.07E01  | 7.5214E+0000* |  |  |
| 0.0804             | 2                                                           | 1289 | 577  | 3.98E-01 | 5.22E02  | 7.6113E+0000* |  |  |
| 0.0804             | 3                                                           | 1289 | 318  | 4.60E-01 | 4.02E02  | 1.1441E+0001* |  |  |
| 0.0804             | 4                                                           | 1289 | 178  | 3.43E-01 | 2.33E-02 | 1.4732E+0001* |  |  |
| 0.0804             | 5                                                           | 1289 | 95   | 2.10E-01 | 1.18E-02 | 1.7780E+0001* |  |  |
| 0.2412             | 2                                                           | 2927 | 2260 | 2.97E-01 | 8.86E-02 | 3.3584E+0000* |  |  |
| 0.2412             | 3                                                           | 2927 | 1793 | 5.76E-01 | 1.50E-01 | 3.8428E+0000* |  |  |
| 0.2412             | 4                                                           | 2927 | 1457 | 8.02E-01 | 1.90E-01 | 4.2287E+0000* |  |  |
| 0.2412             | 5                                                           | 2927 | 1190 | 9.22E01  | 2.10E-01 | 4.3846E+0000* |  |  |

| CRIMINAL CASES 1904–1998 |                                                             |      |      |          |          |               |  |  |
|--------------------------|-------------------------------------------------------------|------|------|----------|----------|---------------|--|--|
| Initial Obs.: 1, 1       | Initial Obs.: 1, Num Obs.: N = 87, SD/Spread = 1.1107E-0001 |      |      |          |          |               |  |  |
| Epsilon                  | m                                                           | C1   | Cm   | BDSL     | SD       | BDSL/SD       |  |  |
| 0.1111                   | 2                                                           | 2605 | 1908 | 3.44E01  | 1.03E-01 | 3.3327E+0000* |  |  |
| 0.1111                   | 3                                                           | 2605 | 1413 | 5.36E-01 | 1.63E-01 | 3.2810E+0000* |  |  |
| 0.1111                   | 4                                                           | 2605 | 1041 | 5.82E-01 | 1.94E01  | 3.0053E+0000* |  |  |
| 0.1111                   | 5                                                           | 2605 | 764  | 5.54E-01 | 2.01E-01 | 2.7559E+0000* |  |  |
| 0.0555                   | 2                                                           | 1580 | 817  | 4.19E-01 | 8.08E02  | 5.1800E+0000* |  |  |
| 0.0555                   | 3                                                           | 1580 | 436  | 4.31E-01 | 7.92E-02 | 5.4453E+0000* |  |  |
| 0.0555                   | 4                                                           | 1580 | 238  | 3.34E-01 | 5.83E-02 | 5.73E+00      |  |  |
| 0.0555                   | 5                                                           | 1580 | 126  | 2.15E-01 | 3.76E-02 | 5.7132E+0000* |  |  |
| 0.1666                   | 2                                                           | 3138 | 2641 | 1.76E-01 | 8.05E-02 | 2.1839E+0000* |  |  |
| 0.1666                   | 3                                                           | 3138 | 2247 | 3.62E01  | 1.52E-01 | 2.3750E+0000* |  |  |
| 0.1666                   | 4                                                           | 3138 | 1903 | 4.66E-01 | 2.16E-01 | 2.1615E+0000* |  |  |
| 0.1666                   | 5                                                           | 3138 | 1601 | 5.03E01  | 2.67E-01 | 1.88E+00      |  |  |

| TOTAL CASE         | TOTAL CASES 1904–1998 |               |             |                |          |               |  |
|--------------------|-----------------------|---------------|-------------|----------------|----------|---------------|--|
| Initial Obs.: 1, 1 | Num                   | Obs.: $N = 8$ | 89, SD/Spre | ad = 1.3416E-0 | 001      |               |  |
| Epsilon            | m                     | C1            | Cm          | BDSL           | SD       | BDSL/SD       |  |
| 0.1342             | 2                     | 2429          | 1593        | 2.95E-01       | 9.97E-02 | 2.9539E+0000* |  |
| 0.1342             | 3                     | 2429          | 1043        | 3.75E-01       | 1.41E01  | 2.6557E+0000* |  |
| 0.1342             | 4                     | 2429          | 707         | 4.21E-01       | 1.50E-01 | 2.8155E+0000* |  |
| 0.1342             | 5                     | 2429          | 494         | 4.29E01        | 1.39E-01 | 3.0911E+0000* |  |
| 0.0671             | 2                     | 1358          | 553         | 2.27E-01       | 5.52E-02 | 4.1143E+0000* |  |
| 0.0671             | 3                     | 1358          | 256         | 2.49E-01       | 4.47E-02 | 5.5834E+0000* |  |
| 0.0671             | 4                     | 1358          | 122         | 1.75E-01       | 2.71E-02 | 6.4662E+0000* |  |
| 0.0671             | 5                     | 1358          | 61          | 1.11E01        | 1.44E-02 | 7.7039E+0000* |  |
| 0.2013             | 2                     | 3047          | 2416        | 2.41E-01       | 8.44E02  | 2.8595E+0000* |  |
| 0.2013             | 3                     | 3047          | 1898        | 3.38E-01       | 1.48E-01 | 2.2822E+0000* |  |
| 0.2013             | 4                     | 3047          | 1542        | 5.13E-01       | 1.95E-01 | 2.6296E+0000* |  |
| 0.2013             | 5                     | 3047          | 1275        | 6.63E-01       | 2.25E-01 | 2.9492E+0000* |  |

| CIVIL CASES 1948–1998 |      |            |             |                |          |               |
|-----------------------|------|------------|-------------|----------------|----------|---------------|
| Initial Obs.: 1, N    | um C | bs.: N = c | 45, SD/Spre | ad = 2.0175E–0 | 001      |               |
| Epsilon               | m.   | C1         | Cm          | BDSL           | SD       | BDSL/SD       |
| 0.2018                | 2    | 533        | 304         | 2.09E-01       | 7.87E-02 | 2.66E+00      |
| 0.2018                | 3    | 533        | 175         | 2.48E-01       | 9.77E-02 | 2.53E+00      |
| 0.2018                | 4    | 533        | . 114       | 3.14E-01       | 9.11E-02 | 3.4428E+0000* |
| 0.2018                | 5    | 533        | 79          | 3.27E01        | 7.43E-02 | 4.4034E+0000* |
| 0.1009                | 2    | 277        | 86          | 8.37E-02       | 3.34E-02 | 2.51E+00      |
| 0.1009                | 3    | 277        | 30          | 7.42E-02       | 2.25E-02 | 3.30E+00      |
| 0.1009                | 4    | 277        | 11          | 4.31E-02       | 1.14E-02 | 3.78E+00      |
| 0.1009                | 5    | 277        | 2           | 4.64E03        | 5.05E-03 | 9.19E-01      |
| 0.3027                | 2    | 722        | 528         | 1.74E-01       | 7.39E-02 | 2.36E+00      |
| 0.3027                | 3    | 722        | 386         | 2.60E-01       | 1.22E-01 | 2.12E+00      |
| 0.3027                | 4    | 722        | 290         | 3.50E-01       | 1.52E-01 | 2.31E+00      |
| 0.3027                | 5    | 722        | 221         | 4.05E01        | 1.65E-01 | 2.46E+00      |

| CRIMINAL CASES 1948–1998 |                                                             |     |     |          |          |               |  |  |
|--------------------------|-------------------------------------------------------------|-----|-----|----------|----------|---------------|--|--|
| Initial Obs.: 1, Nu      | Initial Obs.: 1, Num Obs.: N = 50, SD/Spread = 2.1635E-0001 |     |     |          |          |               |  |  |
| Epsilon                  | m                                                           | C1  | Cm  | BDSL     | SD       | BDSL/SD       |  |  |
| 0.2164                   | 2                                                           | 674 | 415 | 3.51E01  | 8.51E-02 | 4.1256E+0000* |  |  |
| 0.2164                   | 3                                                           | 674 | 265 | 4.74E-01 | 1.08E-01 | 4.3911E+0000* |  |  |
| 0.2164                   | 4                                                           | 674 | 168 | 4.37E-01 | 1.03E-01 | 4.2644E+0000* |  |  |
| 0.2164                   | 5                                                           | 674 | 106 | 3.53E-01 | 8.53E-02 | 4.1334E+0000* |  |  |
| 0.1082                   | 2                                                           | 365 | 138 | 2.00E-01 | 3.89E02  | 5.14E+00      |  |  |
| 0.1082                   | 3                                                           | 365 | 54  | 1.48E01  | 2.77E-02 | 5.36E+00      |  |  |
| 0.1082                   | 4                                                           | 365 | 22  | 8.55E-02 | 1.48E-02 | 5.79E+00      |  |  |
| 0.1082                   | 5                                                           | 365 | 14  | 7.58E-02 | 6.91E-03 | 1.10E+01      |  |  |
| 0.3246                   | 2                                                           | 883 | 679 | 4.05E-01 | 8.07E-02 | 5.0169E+0000* |  |  |
| 0.3246                   | 3                                                           | 883 | 527 | 6.42E-01 | 1.32E-01 | 4.8643E+0000* |  |  |
| 0.3246                   | 4                                                           | 883 | 403 | 7.05E-01 | 1.62E-01 | 4.3561E+0000* |  |  |
| 0.3246                   | 5                                                           | 883 | 304 | 6.72E01  | 1.74E-01 | 3.8707E+0000* |  |  |

| TOTAL CASES 1948–1998 |      |            |             |                  |          |           |
|-----------------------|------|------------|-------------|------------------|----------|-----------|
| Initial Obs.: 1, Nu   | ım O | bs.: N = 4 | 45, SD/Spre | ad = 2.1491E - 0 | 001      |           |
| Epsilon               | m    | C1         | Cm          | BDSL             | SD       | BDSL/SD   |
| 0.2149                | 2    | 531        | 293         | 1.46E01          | 8.56E-02 | 1.71E+00  |
| 0.2149                | 3    | 531        | 166         | 1.94E-01         | 1.06E-01 | 1.83E+00  |
| 0.2149                | 4    | 531        | 100         | 2.16E-01         | 9.86E-02 | 2.19E+00  |
| 0.2149                | 5    | 531        | 55          | 1.45E-01         | 8.03E-02 | 1.81E+00  |
| 0.10745               | 2    | 300        | 86          | 6.09E03          | 5.39E02  | -1.13E01  |
| 0.10745               | 3    | 300        | 28          | 2.09E-02         | 3.94E-02 | 5.29E-01  |
| 0.10745               | 4    | 300        | 8           | 5.57E-03         | 2.16E-02 | 2.57E01   |
| 0.10745               | 5    | 300        | 2           | -7.44E-04        | 1.04E02  | -7.14E-02 |
| 0.32235               | 2    | 705        | 500         | 1.42E-01         | 7.95E-02 | 1.79E+00  |
| 0.32235               | 3    | 705        | 355         | 2.10E-01         | 1.29E-01 | 1.63E+00  |
| 0.32235               | 4    | 705        | 263         | 3.13E01          | 1.56E-01 | 2.01E+00  |
| 0.32235               | 5    | 705        | 195         | 3.50E-01         | 1.66E-01 | 2.11E+00  |

Notes:  $C_m(\epsilon)$  is the correlation integral which measures the number of vectors within  $\epsilon$  distance from one another and is given by

$$C_m(\varepsilon) = \lim_{T \to \infty} \frac{1}{T^2} \times \# \left\{ j, k \right\} \| y_t^m - y_k^m \| < \varepsilon \right\}; \ m = 2, \ 3, \ \dots,$$

where  $\#\{\cdot\}, \|\cdot\|$ , *T*, and  $\epsilon$  denote the cardinality of the set  $\{\cdot\}$ , some norm, the number of *m* histories, and the embedding dimension, respectively. We let  $\|\cdot\|$  measure Euclidean distance. The sequence of *m* histories of the series is defined as

$$y_j^m = (y_j, ..., y_{j+m-1}),$$

that is, the m-dimensional vectors obtained by putting m consecutive observations together.

BDSL show that under the null hypothesis the time series  $y_t$  is independently and identically distributed (i.i.d.) with a nondegenerate density  $G, C_m(\varepsilon) \to C_1(\varepsilon)^m$  with probability one as  $T \to \infty$  for any fixed *m* and  $\varepsilon$ . They show that the test statistic  $\sqrt{T} \left( C_m(\varepsilon) - C_1(\varepsilon)^m \right)$  has a normal limiting distribution with zero mean and variance *V* (see Brock, Dechert, Scheinkman and LeBaron 1996 for definition of the variance *V*). In the table providing the results, C1 is the correlation integral for embedding dimension 1, Cm is the correlation integral for embedding dimension *m*, BDSL is  $\sqrt{T} \left( C_m(\varepsilon) - C_1(\varepsilon)^m \right)$ , SD is  $\sqrt{V}$ , and BDSL/SD is the BDSL test statistic. Simulations show that the BDSL test has good power against simple nonlinear deterministic systems as well as nonlinear stochastic processes. An asterisk (\*) denotes significance at the 5% level of statistical confidence.

|                 |                                    | $\varepsilon/\sigma$ | = 0.5        | <u> </u>     |  |  |
|-----------------|------------------------------------|----------------------|--------------|--------------|--|--|
| Sample Size (n) | <i>m</i> = 2                       | <i>m</i> = 3         | <i>m</i> = 4 | <i>m</i> = 5 |  |  |
| <i>n</i> =50    | 5.66                               | 6.88                 | 9.14         | 13.14        |  |  |
| <i>n</i> =100   | 3.24                               | 3.83                 | 4.77         | 6.61         |  |  |
|                 | $\frac{\varepsilon}{\sigma} = 1.0$ |                      |              |              |  |  |
|                 | <i>m</i> = 2                       | <i>m</i> = 3         | <i>m</i> = 4 | m = 5        |  |  |
| <i>n</i> =50    | 2.76                               | 2.89                 | 3.03         | 3.27         |  |  |
| <i>n</i> =100   | 2.16                               | 2.20                 | 2.28         | 2.41         |  |  |
|                 |                                    | ε/σ                  | =1.5         | · · · ·      |  |  |
| <u></u>         | <i>m</i> = 2                       | <i>m</i> = 3         | <i>m</i> = 4 | m = 5        |  |  |
| <i>n</i> =50    | 2.46                               | 2.46                 | 2.47         | 2.46         |  |  |
| n = 100         | 2.02                               | 2.02                 | 2.00         | 2.03         |  |  |

Table A.1.8. Finite-Sample Critical Values for the BDSL Test Statistic

Notes:  $\epsilon$  is distance,  $\sigma$  is the standard deviation of the data, and *m* is the embedding dimension. The critical values of the BDSL test statistic for the specific sample sizes were obtained from Kanzler (1999) and they correspond to a right-tailed test at the 5% level.

|      |             | Total Cases |           |
|------|-------------|-------------|-----------|
|      | Full Sample | 1948–1998   | 1960–1998 |
| Year | AR(5)       | AR(5)       | AR(5)     |
| 1999 | 315,351     | 305,712     | 306,675   |
| 2000 | 324,567     | 319,657     | 322,981   |
| 2001 | 324,282     | 320,537     | 325,247   |
| 2002 | 323,230     | 318,363     | 324,504   |
| 2003 | 327,455     | 317,398     | 326,110   |
| 2004 | 332,675     | 331,117     | 343,581   |
| 2005 | 334,462     | 336,471     | 350,662   |
| 2006 | 336,932     | 339,985     | 355,280   |
| 2007 | 341,125     | 342,716     | 359,596   |
| 2008 | 344,794     | 353,306     | 372,578   |
| 2009 | 347,381     | 357,824     | 377,635   |
| 2010 | 350,522     | 361,305     | 381,487   |
| 2011 | 354,103     | 363,921     | 385,222   |
| 2012 | 357,294     | 371,450     | 394,932   |
| 2013 | 360,226     | 375,389     | 399,837   |
| 2014 | 363,503     | 379,288     | 404,842   |
| 2015 | 366,821     | 382,708     | 409,940   |
| 2016 | 369,967     | 389,296     | 418,938   |
| 2017 | 373,100     | 393,669     | 424,612   |
| 2018 | 376,342     | 398,211     | 430,464   |
| 2019 | 379,571     | 402,292     | 436,099   |
| 2020 | 382,740     | 408,259     | 444,074   |

**Total Cases** 

|      |                   | erri euses      |                 |
|------|-------------------|-----------------|-----------------|
| Year | Full Sample AR(5) | 1948-1998 AR(5) | 1960-1998 AR(5) |
| 1999 | 249,785           | 246,381         | 245,534         |
| 2000 | 259,946           | 257,592         | 259,347         |
| 2001 | 258,870           | 257,745         | 261,180         |
| 2002 | 252,652           | 252,142         | 255,885         |
| 2003 | 254,016           | 252,937         | 257,084         |
| 2004 | 262,889           | 266,414         | 275,336         |
| 2005 | 264,978           | 272,354         | 284,237         |
| 2006 | 264,647           | 273,966         | 286,260         |
| 2007 | 268,298           | 278,411         | 290,933         |
| 2008 | 274,329           | 288,494         | 304,743         |
| 2009 | 276,251           | 292,925         | 310,732         |
| 2010 | 277,241           | 294,525         | 311,477         |
| 2011 | 280,474           | 297,976         | 314,434         |
| 2012 | 284,448           | 304,605         | 323,818         |
| 2013 | 286,314           | 308,083         | 328,538         |
| 2014 | 288,067           | 310,396         | 330,460         |
| 2015 | 291,113           | 314,264         | 334,686         |
| 2016 | 294,327           | 320,027         | 343,418         |
| 2017 | 296,490           | 323,975         | 349,031         |
| 2018 | 298,764           | 327,355         | 352,694         |
| 2019 | 301,707           | 331,693         | 357,871         |
| 2020 | 304,601           | 336,962         | 365,739         |
|      |                   |                 |                 |

Civil Cases

.

| Year | Full Sample AR(7) | 1960–1998 Random Walk With Drift |  |  |  |  |
|------|-------------------|----------------------------------|--|--|--|--|
| 1999 | 60,098            | 58,424                           |  |  |  |  |
| 2000 | 60,553            | 59,157                           |  |  |  |  |
| 2001 | 61,973            | 59,891                           |  |  |  |  |
| 2002 | 62,234            | 60,624                           |  |  |  |  |
| 2003 | 62,443            | 61,357                           |  |  |  |  |
| 2004 | 61,512            | 62,090                           |  |  |  |  |
| 2005 | 61,150            | 62,824                           |  |  |  |  |
| 2006 | 61,621            | 63,557                           |  |  |  |  |
| 2007 | 61,746            | 64,290                           |  |  |  |  |
| 2008 | 62,052            | 65,023                           |  |  |  |  |
| 2009 | 62,473            | 65,757                           |  |  |  |  |
| 2010 | 63,128            | 66,490                           |  |  |  |  |
| 2011 | 63,782            | 67,223                           |  |  |  |  |
| 2012 | 64,196            | 67,956                           |  |  |  |  |
| 2013 | 64,677            | 68,690                           |  |  |  |  |
| 2014 | 65,164            | 69,423                           |  |  |  |  |
| 2015 | 65,603            | 70,156                           |  |  |  |  |
| 2016 | 65,991            | 70,889                           |  |  |  |  |
| 2017 | 66,356            | 71,623                           |  |  |  |  |
| 2018 | 66,777            | 72,356                           |  |  |  |  |
| 2019 | 67,193            | 73,089                           |  |  |  |  |
| 2020 | 67,594            | 73,822                           |  |  |  |  |

Criminal Cases

| Year | Civil Cases |
|------|-------------|
| 1999 | 249,560     |
| 2000 | 260,693     |
| 2001 | 260,554     |
| 2002 | 256,275     |
| 2003 | 259,423     |
| 2004 | 269,392     |
| 2005 | 271,430     |
| 2006 | 271,723     |
| 2007 | 276,004     |
| 2008 | 282,169     |
| 2009 | 283,885     |
| 2010 | 285,614     |
| 2011 | 289,748     |
| 2012 | 294,257     |
| 2013 | 296,550     |
| 2014 | 299,332     |
| 2015 | 303,350     |
| 2016 | 307,189     |
| 2017 | 309,954     |
| 2018 | 313,183     |
| 2019 | 316,980     |
| 2020 | 320,515     |

Table A.1.10. Long-Memory Forecasting Results for Civil Cases

|                | Trace Test Statistics    |                 |                          |                 |                          |                     |
|----------------|--------------------------|-----------------|--------------------------|-----------------|--------------------------|---------------------|
| VAR Lag Length | 1904–1998                |                 | 1948-1998                |                 | 19601998                 |                     |
|                | H <sub>0</sub> : $r = 0$ | $H_0$ : $r ≤ 1$ | H <sub>0</sub> : $r = 0$ | $H_0$ : $r ≤ 1$ | H <sub>0</sub> : $r = 0$ | $H_0$ : <i>r</i> ≤1 |
| <i>k</i> = 3   | 4.7965                   | 0.1414          | 4.7503                   | 0.2498          | 3.8713                   | 1.0196              |
| <i>k</i> = 4   | 5.6981                   | 0.0447          | 6.8527                   | 0.0665          | 4.1987                   | 0.7785              |
| <i>k</i> = 5   | 6.6612                   | 0.0374          | 5.1926                   | 0.0286          | 2.9353                   | 0.5259              |

Table A.1.11. Johansen Cointegration Results for the System of Civil and Criminal Cases

Notes: The system variables are civil cases and criminal cases. The asymptotic critical values (without a drift in the data generating process), obtained from Osterwald-Lenum (1992), are presented in the following table, in which p is the number of system variables and r is the cointegration rank:

| Trace |       |       |  |  |
|-------|-------|-------|--|--|
| p-r   | 1%    | 10%   |  |  |
| 1     | 11.65 | 6.50  |  |  |
| 2     | 23.52 | 15.66 |  |  |

| Trace Test Statistics |                 |                 |                          |  |  |  |
|-----------------------|-----------------|-----------------|--------------------------|--|--|--|
| Sample Period         | $H_0: r \leq 2$ | $H_0: r \leq 1$ | H <sub>0</sub> : $r = 0$ |  |  |  |
| 1904–1998             | 19.4720         | 7.3299          | 1.2491                   |  |  |  |
| 1948–1998             | 17.5770         | 6.4597          | 0.4495                   |  |  |  |
| 1960–1998             | 12.4740         | 4.7186          | 0.8310                   |  |  |  |

Table A.1.12. Johansen Cointegration Results for the System of Authorized Judgeships, Civil, and Criminal Cases

Notes: The system variables are authorized judgeships, civil cases and criminal cases. The asymptotic critical values (without a drift in the data generating process), obtained from Osterwald-Lenum (1992), are presented in the following table, in which p is the number of system variables and r is the cointegration rank:

| Trace         |       |       |       |  |  |  |
|---------------|-------|-------|-------|--|--|--|
| p-r 1% 5% 10% |       |       |       |  |  |  |
| 1             | 11.65 | 8.18  | 6.50  |  |  |  |
| 2             | 23.52 | 17.95 | 15.66 |  |  |  |
| 3             | 37.22 | 31.25 | 28.71 |  |  |  |

| Trace Test Statistics |                                             |                     |                          |                 |                          |                 |
|-----------------------|---------------------------------------------|---------------------|--------------------------|-----------------|--------------------------|-----------------|
| VAR Lag Length        | AR Lag Length 1904–1998 1948–1998 1960–1998 |                     |                          | -1998           |                          |                 |
|                       | H <sub>0</sub> : $r = 0$                    | $H_0$ : <i>r</i> ≤1 | H <sub>0</sub> : $r = 0$ | $H_0$ : $r ≤ 1$ | H <sub>0</sub> : $r = 0$ | $H_0$ : $r ≤ 1$ |
| <i>k</i> = 3          | 8.1905                                      | 1.0683              | 8.1074                   | 0.0251          | 7.7622                   | 0.5609          |
| <i>k</i> = 4          | 10.9772                                     | 1.3486              | 8.9318                   | 0.0312          | 8.3884                   | 0.7002          |
| <i>k</i> = 5          | 12.2222                                     | 2.8774              | 12.3908                  | 0.0028          | 15.6629                  | 0.6871          |

Table A.1.13: Johansen Cointegration Results for the System of Authorized Judgeships and Total Case Loads

Notes: The system variables are civil cases and criminal cases. The asymptotic critical values (without a drift in the data generating process), obtained from Osterwald-Lenum (1992), are presented in the following table, in which p is the number of system variables and r is the cointegration rank:

| Trace         |       |       |       |  |  |  |
|---------------|-------|-------|-------|--|--|--|
| p-r 1% 5% 10% |       |       |       |  |  |  |
| 1 11.65       |       | 8.18  | 6.50  |  |  |  |
| 2             | 23.52 | 17.95 | 15.66 |  |  |  |

#### **APPENDIX 2**

| Total D                      | Total District-wide w/o Circuit Dummies |          |                              |                            | U.S. District-wide w/o Circuit Dummies |                              |                            | Private District-wide w/o Circuit Dum-<br>mies |          |  |  |
|------------------------------|-----------------------------------------|----------|------------------------------|----------------------------|----------------------------------------|------------------------------|----------------------------|------------------------------------------------|----------|--|--|
| Variables                    | Coefficient Esti-<br>mates              | t-values | p-value                      | Coefficient Esti-<br>mates | <i>t</i> -values                       | p-value                      | Coefficient Esti-<br>mates | t-values                                       | p-value  |  |  |
| Constant                     | -0.00001                                | -0.25    | NS                           | -0.00001                   | -0.38                                  | NS                           | -0.00006                   | -1.27                                          | NS       |  |  |
| Density                      | 0.00068                                 | 20.83    | 0.000                        | 0.00024                    | 24.15                                  | 0.000                        | 0.00049                    | 6.47                                           | 0.000    |  |  |
| Income                       | 0.00000                                 | 14.67    | 0.000                        | 0.00000                    | 6.58                                   | 0.000                        | 0.00000                    | 6.44                                           | 0.000    |  |  |
| Government                   | 0.00090                                 | 9.04     | 0.000                        | 0.00056                    | 17.84                                  | 0.000                        | 0.00026                    | 2.15                                           | ***0.032 |  |  |
| U. Rate                      | 0.00406                                 | 6.80     | 0.000                        | 0.00178                    | 9.34                                   | 0.000                        | 0.00270                    | 4.71                                           | 0.000    |  |  |
| Race                         | 0.00066                                 | 4.93     | 0.000                        | 0.00007                    | 1.72                                   | ***0.086                     | 0.00061                    | 6.82                                           | 0.000    |  |  |
| South                        | 0.00032                                 | 8.97     | 0.000                        | 0.00009                    | 7.30                                   | 0.000                        | 0.00018                    | 5.82                                           | 0.000    |  |  |
|                              |                                         |          |                              |                            |                                        |                              |                            |                                                |          |  |  |
| Overall Significance = 0.000 |                                         |          | Overall Significance = 0.000 |                            |                                        | Overall Significance = 0.000 |                            |                                                |          |  |  |
| N = 3,398                    |                                         |          |                              | N = 3,398                  |                                        |                              | N = 3,398                  |                                                |          |  |  |

| Total Dis      | trict-wide with Circ         | uit Dumn         | nies        | U.S. District-wide           | e with Cir       | cuit Dum- | Private District-wide with Circuit Dum-<br>mies |                  |          |
|----------------|------------------------------|------------------|-------------|------------------------------|------------------|-----------|-------------------------------------------------|------------------|----------|
| Variables      | Coefficient Es-<br>timates   | <i>t</i> -values | p-<br>value | Coefficient Esti-<br>mates   | <i>t</i> -values | p-value   | Coefficient Esti-<br>mates                      | <i>t</i> -values | p-value  |
| Constant       | 0.00049                      | 6.95             | 0.000       | 0.00015                      | 8.35             | 0.000     | 0.00022                                         | 3.22             | 0.001    |
| Density        | -0.00013                     | -2.03            | 0.042       | -0.00008                     | -4.74            | 0.000     | 0.00012                                         | 1.67             | ***0.095 |
| Income         | 0.00000                      | 11.69            | 0.000       | 0.00000                      | 6.10             | 0.000     | 0.00000                                         | 6.65             | 0.000    |
| Government     | 0.00015                      | 1.17             | NS          | 0.00016                      | 5.05             | 0.000     | -0.00010                                        | -0.77            | NS       |
| U. Rate        | 0.00318                      | 3.83             | 0.000       | 0.00083                      | 4.69             | 0.000     | 0.00209                                         | 3.46             | 0.001    |
| Race           | 0.00048                      | 5.02             | 0.000       | 0.00003                      | 0.89             | NS        | 0.00058                                         | 6.35             | 0.000    |
| DC             | 0.00459                      | 15.81            | 0.000       | 0.00203                      | 24.80            | 0.000     | 0.00207                                         | 6.47             | 0.000    |
| First          | -0.00043                     | -9.01            | 0.000       | 0.00008                      | -3.31            | 0.001     | 0.00024                                         | -7.75            | 0.000    |
| Second         | -0.00019                     | -2.76            | 0.006       | -0.00007                     | -3.00            | 0.003     | -0.00011                                        | -1.16            | NS       |
| Third          | -0.00025                     | -4.53            | 0.000       | -0.00005                     | -2.40            | 0.002     | -0.00012                                        | -3.80            | 0.000    |
| Fourth         | -0.00016                     | -2.17            | 0.003       | 0.00004                      | -2.30            | 0.022     | -0.00013                                        | -2.81            | 0.005    |
| Sixth          | -0.00031                     | -7.69            | 0.000       | -0.00000                     | -0.07            | NS        | -0.00022                                        | -9.30            | 0.000    |
| Seventh        | -0.00038                     | -7.90            | 0.000       | -0.00008                     | -3.71            | 0.000     | -0.00020                                        | 6.88             | 0.000    |
| Eighth         | -0.00029                     | 6.40             | 0.000       | -0.00000                     | -0.12            | NS        | -0.00017                                        | -6.71            | 0.000    |
| Ninth          | 0.00036                      | -8.27            | 0.000       | -0.00001                     | 0.66             | ***NS     | -0.00025                                        | -9.88            | 0.000    |
| Tenth          | -0.00019                     | -4.40            | 0.000       | -0.00000                     | -0.23            | NS        | -0.00008                                        | -2.94            | 0.003    |
|                |                              |                  | a.<br>Ac    |                              |                  |           |                                                 |                  |          |
| Overall Signif | Overall Significance = 0.000 |                  |             | Overall Significance = 0.000 |                  |           | Overall Significance = 0.000                    |                  |          |
| N = 3,398      |                              |                  |             | N = 3,398 N = 3,398          |                  |           |                                                 |                  |          |

Table A.2.2. District-wide Models with South v. Non-South Indicator Variable

|  |  | 69 |
|--|--|----|
|  |  |    |

.

~

| Total S                      | Statewide w/o Circuit      | Dummie               | s                            | U.S. Statewide w/c         | U.S. Statewide w/o Circuit Dummies |                              |                            | Private Statewide w/o Circuit Dummies |          |  |
|------------------------------|----------------------------|----------------------|------------------------------|----------------------------|------------------------------------|------------------------------|----------------------------|---------------------------------------|----------|--|
| Variables                    | Coefficient Esti-<br>mates | <i>t</i> -<br>values | p-<br>value                  | Coefficient Esti-<br>mates | t-<br>values                       | p-value                      | Coefficient Esti-<br>mates | <i>t</i> -<br>values                  | p-value  |  |
| Constant                     | -0.07390                   | -1.87                | 0.062                        | -0.15300                   | -9.74                              | 0.000                        | 0.0901                     | 3.02                                  | 0.003    |  |
| Density                      | 0.00106                    | 37.82                | 0.000                        | 0.00032                    | 30.68                              | 0.000                        | 0.00075                    | 34.84                                 | 0.000    |  |
| Income                       | 0.00003                    | 17.43                | 0.000                        | 0.00001                    | 9.18                               | 0.000                        | 0.00002                    | 18.25                                 | 0.000    |  |
| Government                   | 0.67350                    | 2.14                 | 0.032                        | 1.28960                    | 10.88                              | 0.000                        | -0.89720                   | -3.69                                 | ***0.000 |  |
| U. Rate                      | 0.04930                    | 10.12                | 0.000                        | 0.03080                    | 16.03                              | ***0.000                     | 0.0194                     | 5.25                                  | 0.000    |  |
| Race                         | 0.00283                    | 2.92                 | 0.004                        | 0.00086                    | 2.37                               | 0.018                        | 0.00229                    | 3.05                                  | 0.002    |  |
| South                        | 0.27220                    | 9.10                 | 0.000                        | 0.03240                    | 2.77                               | 0.006                        | 0.2155                     | 9.48                                  | 0.000    |  |
|                              |                            |                      |                              |                            |                                    |                              |                            |                                       |          |  |
| Overall Significance = 0.000 |                            |                      | Overall Significance = 0.000 |                            |                                    | Overall Significance = 0.000 |                            |                                       |          |  |
| N = 1,938                    | N = 1,938                  |                      |                              | N = 1,938                  |                                    |                              | N = 1,938                  |                                       |          |  |

Table A.2.3. Statewide Models with Southern v. Non-South Indicator Variable

| Total Sta       | Total Statewide with Circuit Dummies |                  |             | U.S. Statewide with Circuit Dummies |                      |             | Private Statewide with Circuit Dummies |                      |             |
|-----------------|--------------------------------------|------------------|-------------|-------------------------------------|----------------------|-------------|----------------------------------------|----------------------|-------------|
| Variables       | Coefficient<br>Estimates             | <i>t</i> -values | p-<br>value | Coefficient Esti-<br>mates          | <i>t</i> -<br>values | p-<br>value | Coefficient<br>Estimates               | <i>t</i> -<br>values | p-<br>value |
| Constant        | 0.43587                              | 5.10             | 0.000       | 0.02640                             | 1.58                 | NS          | 0.42055                                | 5.62                 | 0.000       |
| Density         | 0.00036                              | 1.24             | ***NS       | -0.00062                            | -28.00               | 0.000       | 0.00107                                | 3.67                 | 0.000       |
| Income          | 0.00003                              | 18.41            | 0.000       | 0.00000                             | 7.45                 | 0.000       | 0.00002                                | 21.11                | 0.000       |
| Government      | 0.29087                              | -0.31            | NS          | 0.49130                             | 6.23                 | 0.000       | -1.09977                               | -1.18                | ***NS       |
| U. Rate         | 0.04949                              | 11.21            | 0.000       | 0.02470                             | 17.14                | 0.000       | 0.02114                                | 6.26                 | 0.000       |
| Race            | 0.00101                              | 1.06             | NS          | 0.00059                             | 2.59                 | 0.010       | 0.00090                                | 1.18                 | NS          |
| DC              | 3.00630                              | 3.07             | 0.002       | 4.26790                             | 45.88                | 0.000       | -1.54659                               | -1.61                | NS          |
| First           | -0.57132                             | -2.40            | 0.016       | -0.02120                            | -1.28                | NS          | -0.52454                               | -8.39                | 0.000       |
| Second          | -0.35206                             | -4.84            | 0.000       | -0.04160                            | -2.42                | ***0.016    | -0.38557                               | -7.12                | 0.000       |
| Third           | -0.47717                             | -5.97            | 0.000       | 0.01320                             | 0.78                 | NS          | -0.41306                               | -6.09                | 0.000       |
| Fourth          | -0.35102                             | -6.90            | 0.000       | 0.00523                             | 0.39                 | NS          | -0.33046                               | -9.84                | 0.000       |
| Sixth           | 0.40787                              | -7.69            | 0.000       | 0.01110                             | 0.79                 | NS          | -0.36465                               | -10.05               | 0.000       |
| Seventh         | -0.53621                             | -3.10            | 0.002       | -0.06860                            | -4.14                | 0.000       | 0.40195                                | -11.12               | 0.000       |
| Eighth          | -0.35979                             | -6.64            | 0.000       | -0.01230                            | -0.79                | NS          | -0.30705                               | -9.30                | 0.000       |
| Ninth           | -0.35056                             | -6.73            | 0.000       | -0.03360                            | -2.32                | 0.020       | 0.28640                                | -8.40                | 0.000       |
| Tenth           | -0.26847                             | -4.94            | 0.000       | -0.02240                            | -1.54                | NS          | -0.20629                               | -6.46                | 0.000       |
|                 |                                      |                  |             |                                     |                      |             |                                        |                      |             |
| Overall Signifi | Overall Significance = 0.000         |                  |             | Overall Significance =0.000         |                      |             | Overall Significance = 0.000           |                      |             |
| N = 1,938       |                                      |                  | -           | N = 1,938                           |                      |             | N = 1,938                              |                      |             |

.

1

Table A.2.4. Statewide Models with Circuit Dummies

| Total Circuit- | wide w/o Circuit l           | Dummies |       | U.S. Circuit-wide w/         | o Circuit I | Dummies | Private Circuit-wide w/o Circuit Dummies |        |         |
|----------------|------------------------------|---------|-------|------------------------------|-------------|---------|------------------------------------------|--------|---------|
|                | Coefficient                  | t-      | p-    | Coefficient Esti-            |             |         |                                          | t-     |         |
| Variables      | Estimates                    | values  | value | mates                        | t-values    | p-value | <b>Coefficient Estimates</b>             | values | p-value |
| Constant       | 0.33967                      | 1.49    | NS    | -0.356                       | -11.03      | 0.000   | 0.71588                                  | 8.28   | 0.000   |
| Density        | 1.13932                      | 5.65    | 0.000 | 0.1143                       | -4.89       | 0.000   | 1.26827                                  | 19.23  | 0.000   |
| Income         | 0.00003                      | 7.91    | 0.000 | 0.00001                      | 5.12        | 0.000   | 0.00002                                  | 6.63   | 0.000   |
| Government     | 0.15557                      | 0.08    | ***NS | 5.8448                       | 23.74       | 0.000   | -5.60876                                 | -8.08  | 0.000   |
| U. Rate        | -1.56197                     | -0.64   | ***NS | 0.5774                       | 1.55        | ***NS   | -2.37113                                 | -2.31  | 0.021   |
| Race           | 0.23233                      | 0.54    | ***NS | 0.4635                       | 3.57        | 0.000   | -0.39061                                 | -1.05  | NS      |
|                |                              |         |       |                              |             |         |                                          |        |         |
| Overall Signif | Overall Significance = 0.000 |         |       | Overall Significance = 0.000 |             |         | Overall Significance = 0.000             |        |         |
| N = 418        | N = 418                      |         |       | N = 418 $N = 418$            |             |         |                                          |        |         |

.

Table A.2.5. Circuit-wide Models without Circuit Dummies and South v. Non-South Indicator Variable

| Total Circu     | it-wide with Circ            | uit Dum          | mies        | U.S. Circuit-wide with       | Circuit D            | ummies      | Private-wide with Ci         | rcuit Dum            | nmies       |
|-----------------|------------------------------|------------------|-------------|------------------------------|----------------------|-------------|------------------------------|----------------------|-------------|
| Variables       | Coefficient<br>Estimates     | <i>t</i> -values | p-<br>value | Coefficient Estimates        | <i>t</i> -<br>values | p-<br>value | Coefficient Estimates        | <i>t</i> -<br>values | p-<br>value |
| Constant        | 1.48620                      | 8.73             | 0.000       | 0.01680                      | 0.41                 | NS          | 1.51033                      | 9.40                 | 0.000       |
| Density         | 1.04860                      | 7.05             | 0.000       | -0.73580                     | -21.44               | 0.000       | 0.00004                      | 10.43                | 0.000       |
| Income          | 0.00005                      | 10.18            | 0.000       | 0.00000                      | 2.77                 | 0.006       | 1.81698                      | 12.92                | 0.000       |
| Government      | -0.95900                     | -0.98            | NS          | 2.43440                      | 10.47                | 0.000       | -3.40708                     | -3.71                | 0.000       |
| U. Rate         | -0.01900                     | -0.02            | NS          | 0.26190                      | 1.00                 | ***NS       | -0.52359                     | -0.52                | NS          |
| Race            | -4.37220                     | -5.80            | 0.000       | 0.16190                      | 0.96                 | ***NS       | -4.72626                     | -6.56                | 0.000       |
| DC              | 2.50900                      | 3.04             | 0.003       | 4.00860                      | 20.89                | 0.000       | -1.52727                     | -1.96                | 0.051       |
| First           | -1.27890                     | -7.32            | 0.000       | -0.05430                     | -1.29                | NS          | -1.25009                     | -7.55                | 0.000       |
| Second          | -0.64480                     | -5.33            | 0.000       | -0.01340                     | -0.43                | NS          | -0.65485                     | -5.76                | 0.000       |
| Third           | -0.91400                     | -6.57            | 0.000       | 0.00693                      | 0.21                 | NS          | -0.91807                     | 6.98                 | 0.000       |
| Fourth          | -0.31750                     | -3.11            | 0.002       | -0.01960                     | -0.88                | NS          | -0.28828                     | -2.90                | 0.004       |
| Sixth           | -0.78910                     | -5.99            | 0.000       | 0.01930                      | 0.67                 | NS          | -0.81590                     | -6.40                | 0.000       |
| Seventh         | -0.89250                     | 6.60             | 0.000       | -0.04710                     | -1.46                | NS          | -0.82915                     | 6.48                 | 0.000       |
| Eighth          | -0.92820                     | -6.18            | 0.000       | -0.02540                     | -0.70                | NS          | -0.91723                     | -6.45                | 0.000       |
| Ninth           | -0.58970                     | -5.20            | 0.000       | 0.05830                      | -1.97                | NS          | -0.51816                     | -4.87                | 0.000       |
| Tenth           | -0.69790                     | -5.02            | 0.000       | 0.03550                      | -1.02                | NS          | -0.67345                     | -5.13                | 0.000       |
|                 |                              |                  |             |                              |                      |             |                              |                      |             |
| Overall Signifi | Overall Significance = 0.000 |                  |             | Overall Significance = 0.000 |                      |             | Overall Significance = 0.000 |                      |             |
| N = 418         |                              |                  | 5           | N = 418                      |                      |             |                              |                      |             |

Table A.2.6. Circuit-wide Models with Circuit Dummies and without South v. Non-South Indicator Variable

| Total Sta      | atewide with Cir             | cuit Dumm | nies        | U.S. Statewide with          | Circuit D           | ummies      | Private Statewide wit        | h Circuit I      | Dummies |  |
|----------------|------------------------------|-----------|-------------|------------------------------|---------------------|-------------|------------------------------|------------------|---------|--|
| Variables      | Coefficient<br>Estimates     | t-values  | p-<br>value | Coefficient Esti-<br>mates   | <i>t-</i><br>values | p-<br>value | Coefficient Esti-<br>mates   | <i>t</i> -values | p-value |  |
| Constant       | 0.5891                       | 7.33      | <.0001      | 0.08433                      | 3.16                | 0.0016      | 0.40721                      | 7.71             | <.0001  |  |
| Density        | -0.0014                      | -8.42     | <.0001      | -0.00038                     | -7.23               | <.0001      | -0.00066                     | -6.29            | <.0001  |  |
| Income         | 1.7E-05                      | 8.03      | <.0001      | -1.2E-06                     | -1.79               | 0.0742      | 1.75E-05                     | 12.85            | <.0001  |  |
| Government     | 0.3195                       | 0.88      | 0.3807      | 0.37003                      | 3.06                | 0.0023      | -0.36729                     | -1.54            | 0.125   |  |
| U. Rate        | 0.054                        | 8.53      | <.0001      | 0.0302                       | 14.35               | <.0001      | 0.02948                      | 7.09             | <.0001  |  |
| Race           | 0.0064                       | 5.16      | <.0001      | 0.00086                      | 2.09                | 0.0365      | 0.00615                      | 7.54             | <.0001  |  |
| DC             | 8.5842                       | 14.56     | <.0001      | 3.55576                      | 18.15               | <.0001      | 4.01095                      | 10.36            | <.0001  |  |
| First          | -0.3412                      | -5.17     | <.0001      | -0.01252                     | -0.57               | 0.5683      | -0.29242                     | -6.75            | <.0001  |  |
| Second         | -0.1885                      | -2.93     | 0.0035      | -0.01499                     | -0.70               | 0.4837      | -0.27024                     | -6.39            | <.0001  |  |
| Third          | -0.2211                      | -3.32     | 0.0009      | -0.02319                     | -1.05               | 0.295       | -0.11183                     | -2.56            | 0.0107  |  |
| Fourth         | -0.3606                      | -7.19     | <.0001      | 0.03426                      | 2.06                | 0.04        | -0.34141                     | -10.37           | <.0001  |  |
| Sixth          | -0.3759                      | -6.75     | <.0001      | 0.00565                      | 0.31                | 0.7601      | -0.3273                      | -8.95            | <.0001  |  |
| Seventh        | -0.5518                      | -9.07     | <.0001      | -0.07222                     | -3.57               | 0.0004      | -0.37937                     | 9.49             | <.0001  |  |
| Eighth         | -0.3875                      | -7.40     | <.0001      | 0.03195                      | 1.84                | 0.0665      | 0.32618                      | -9.49            | <.0001  |  |
| Ninth          | -0.4537                      | -10.26    | <.0001      | -0.02172                     | -1.48               | 0.1397      | -0.38099                     | -13.12           | <.0001  |  |
| Tenth          | -0.3474                      | -6.76     | <.0001      | 0.00172                      | 0.1                 | 0.9197      | -0.2585                      | -7.66            | <.0001  |  |
|                |                              |           | 8           |                              |                     |             |                              |                  |         |  |
| Overall Signif | Overall Significance = 0.000 |           |             | Overall Significance = 0.000 |                     |             | Overall Significance = 0.000 |                  |         |  |
| N = 1173       |                              | . <u></u> |             | N = 1173                     |                     |             |                              |                  |         |  |

Table A.2.7. Statewide Models with Circuit Dummies, 1976-1998

•

.

#### **APPENDIX 3**

Table A.3.1. District-Wide Data (1968-1998) with No Lags

- A. Fixed effects models to explain variations in median time from filing to disposition (in months) of civil cases (fixed effects coefficients are excluded)
- 1. Dependent Variable = Filing to Disposition (in months) of Civil Cases

| Variable                       | Estimate | St. Error | t-stat | p-value |
|--------------------------------|----------|-----------|--------|---------|
| Intercept                      | 4.61838  | 0.66144   | 6.98   | <.0001  |
| Criminal Filing to Disposition | 0.27568  | 0.06211   | 4.44   | <.0001  |

 $R^2 = 0.48$ 

N = 1,530

2. Dependent Variable = Filing to Disposition (in months) of Civil Cases

| Variable                        | Estimate | St. Error | t-stat | p-value |
|---------------------------------|----------|-----------|--------|---------|
| Intercept                       | 6.48528  | 0.67911   | 9.55   | <.0001  |
| Number of Authorized Judgeships | -0.1419  | 0.08744   | -1.62  | 0.1048  |
| Criminal Filing to Disposition  | 0.28287  | 0.06223   | 4.55   | <.0001  |

 $R^2 = 0.48$ N = 1,530

#### 3. Dependent Variable = Filing to Disposition (in months) of Civil Cases

| Variable                        | Estimate | St. Error | t-stat | p-value |
|---------------------------------|----------|-----------|--------|---------|
| Intercept                       | 7.07582  | 1.41387   | 5.00   | <.0001  |
| Number of Authorized Judgeships | -0.15446 | 0.08776   | -1.76  | 0.0786  |
| Criminal Filing to Disposition  | 0.27946  | 0.06224   | 4.49   | <.0001  |
| Percent Drug & Immigration      | -1.18637 | 0.75466   | -1.57  | 0.1162  |

 $R^2 = 0.49$ 

N = 1,530

- B. Least squares models to explain variations in median time from filing to disposition (in months) of civil cases
- 1. Dependent Variable = Filing to Disposition (in months) of Civil Cases

| Variable                       | Estimate | St. Error | <i>t</i> -stat | p-value |
|--------------------------------|----------|-----------|----------------|---------|
| Intercept                      | 8.37611  | 0.25490   | 32.86          | <.0001  |
| Criminal Filing to Disposition | 0.14501  | 0.04306   | 3.37           | 0.0008  |

 $R^2 = 0.01$ 

N = 1,530

#### Dependent Variable = Filing to Disposition (in months) of Civil Cases 2.

| Variable                        | Estimate | St. Error | <i>t</i> -stat | p-value |
|---------------------------------|----------|-----------|----------------|---------|
| Intercept                       | 8.21045  | 0.27269   | 30.11          | <.0001  |
| Number of Authorized Judgeships | 0.13186  | 0.04372   | 3.02           | 0.0026  |
| Criminal Filing to Disposition  | 0.90208  | 0.52827   | 1.71           | 0.0879  |

 $R^2 = 0.01$ N = 1,530

#### Dependent Variable = Filing to Disposition (in months) of Civil Cases 3.

| Variable                        | Estimate | St. Error | <i>t</i> -stat | p-value |
|---------------------------------|----------|-----------|----------------|---------|
| Intercept                       | 8.59290  | 0.26991   | 31.84          | <.0001  |
| Number of Authorized Judgeships | -0.13161 | 0.01517   | 8.68           | <.0001  |
| Criminal Filing to Disposition  | 0.19900  | 0.04339   | 4.59           | <.0001  |
| Percent Drug & Immigration      | 1.27354  | 0.51763   | 2.46           | 0.0140  |

 $R^2 = 0.06$ N = 1,530

#### Table A.3.2. District-Wide Data (1968–1998) with Lags

A. Fixed effects model to explain variations in median time from filing to disposition (in months) of civil cases with one-period lagged value of time to disposition of criminal cases (fixed effects coefficients are excluded)

| Variable                             | Estimate | St. Error | <i>t</i> -stat | p-value |
|--------------------------------------|----------|-----------|----------------|---------|
| Intercept                            | 6.52466  | 1.44170   | 4.53           | <.0001  |
| Number of Authorized Judgeships      | -0.19918 | 0.09067   | -2.20          | 0.0282  |
| Criminal Filing to Disposition (t)   | 0.17319  | 0.07842   | 2.21           | 0.0274  |
| Criminal Filing to Disposition (t-1) | 0.17869  | 0.07962   | 2.24           | 0.0250  |
| Percent Drug and Immigration Cases   | -0.68612 | 0.75048   | -0.91          | 0.3608  |

Dependent Variable = Filing to Disposition (in months) of Civil Cases

 $R^2 = 0.51$ 

N = 1,440

B. Least squares model to explain variations in median time from filing to disposition (in months) of civil cases with one-period lagged value of time to disposition of criminal cases using district-wide data, 1968–1998

Dependent Variable = Filing to Disposition (in months) of Civil Cases

| Variable                             | Estimate | St. Error | <i>t</i> -stat | p-value |
|--------------------------------------|----------|-----------|----------------|---------|
| Intercept                            | 8.75419  | 0.27910   | 31.37          | <.0001  |
| Number of Authorized Judgeships      | -0.13640 | 0.01508   | -9.04          | <.0001  |
| Criminal Filing to Disposition (t)   | 0.10129  | 0.08414   | 1.20           | 0.2288  |
| Criminal Filing to Disposition (t-1) | 0.09522  | 0.08791   | 1.08           | 0.2789  |
| Percent Drug & Immigration           | 1.07758  | 0.52137   | 2.07           | 0.0389  |

 $R^2 = 0.06$ 

N = 1,440

C. Least squares model to explain variations in median time from filing to disposition (in months) of civil cases with one-period lagged value of time to disposition of criminal cases using annual series, 1968–1998

Dependent Variable = Filing to Disposition (in months) of Civil Cases

| Variable                             | Estimate | St. Error | <i>t</i> -stat | p-value |
|--------------------------------------|----------|-----------|----------------|---------|
| Intercept                            | 11.8442  | 0.8498    | 13.94          | <.0001  |
| Number of Authorized Judgeships      | -0.0116  | 0.0029    | -4.02          | 0.0005  |
| Criminal Filing to Disposition (t)   | 1.0597   | 0.5156    | 2.06           | 0.0504  |
| Criminal Filing to Disposition (t-1) | -0.6328  | 0.4843    | -1.31          | 0.2032  |

 $R^2 = 0.43$ 

.

#### **APPENDIX 4**

In this appendix, we present details on in-sample and out-of-sample forecasting. In addition to presenting in-sample estimates for the full baseline period (1904–1998), we analyze three other time periods, 1904–1990, 1940–1998 and 1940–1995. The last of these is the baseline period used by the Judicial Conference of the United States for the forecasts reported in its *Long Range Plan for the Federal Courts*.

Presentation of the in-sample estimates for the 1904–1998 period. Table A.4.1 presents the in-sample forecasts based on the autoregressive integrated (ARI) models estimated over the full sample for civil, criminal and total caseloads. We also present forecasting accuracy metrics such as root mean squared error (RMSE) and mean absolute deviation (MAD) in Table A.4.1.

*Estimation over the 1904–1990 period, then forecasting over 1991–1998.* We perform a model validation exercise by estimating the model over the 1904–1990 period (our "training set") and then generating forecasts over the remainder of the sample period 1991–1998 (our validation test). We subsequently compare the generated forecasts to the actual, observed values and comment on the forecasting performance of the estimated models. Table A.4.2 presents the selected ARI models over the sample period 1904–1990. The model selection strategy is similar to the one for the other sample periods considered earlier. Each series possesses a single unit root (integrated of order one) and an autoregressive filter is applied to the first-differenced series. The forecasted values over the period 1991-1998 are presented with the realized values of the civil, criminal, and total caseloads over the same subperiod in Table A.4.3.

Out-of-sample forecasts based on models estimated over the 1940–1998 period. Table A.4.4 presents the selected ARI models over the sample period 1904–1998. In Table A.4.5, we present the out-of-sample forecasts based on ARI models estimated over the sample period 1940-

1998 for civil, criminal, and total caseloads. This choice of sample period is made to coincide with the start of the sample period employed in the JCUS study (1940–1995). The model selection strategy is similar to the one for the other sample periods considered earlier. Each series possesses a single unit root (integrated of order one) and an autoregressive filter is applied to the first-differenced series. The multi-step-ahead dynamic forecasts over the period 1999–2020 generated by each model and for each series presented in Table A.4.5 are broadly consistent with those based on alternative sample periods.

*Out-of-sample forecasts based on models estimated over the 1940–1995 period.* Table A.4.6 presents the selected ARI models over the sample period 1940–1995. In Table A.4.5, we present the in-sample forecasts based on ARI models estimated over the sample period 1940–1995 for civil, criminal, and total caseloads and Table A.4.8 presents the out-of-sample forecasts based on ARI models estimated over the sample period 1940–1995 for civil, criminal, and total caseloads and Table A.4.8 presents the out-of-sample forecasts based on ARI models estimated over the sample period 1940–1995 for civil, criminal, and total caseloads and Table A.4.8 presents the out-of-sample forecasts based on ARI models estimated over the sample period 1940–1995 for civil, criminal, and total caseloads. This choice of sample period is made to coincide with the sample period employed in the JCUS study (1940–1995). The model selection strategy is similar to the one for the other sample periods considered earlier. Each series possesses a single unit root (integrated of order one) and an autoregressive filter is applied to the first-differenced series. The forecasts for the period 1999–2020 are multi-step ahead forecasts which are based solely on the observed values during the sample period 1940–1995.

# Table A.4.1. Regression Results for the 1904–1990, 1940–1998 and 1940–1995 Periods

## CIVIL CASES 1

| Estimation by Least        |                                                     |
|----------------------------|-----------------------------------------------------|
| Squares                    | ·                                                   |
| Dependent Variable         | First Differ-<br>enced Civil<br>Cases 1904–<br>1990 |
| Usable Observations        | 83                                                  |
| Degrees of Freedom         | 79                                                  |
| Centered R <sup>2</sup>    | 0.27                                                |
| Adjusted R <sup>2</sup>    | 0.24                                                |
| Uncentered R <sup>2</sup>  | 0.32                                                |
| T*R <sup>2</sup>           | 26.91                                               |
| Mean of Dep. Variable      | 2397.43                                             |
| St. Error of Dep. Variable | 8548.37                                             |
| St. Error of Estimate      | 7438.92                                             |
| Sum of Squared Errors      | 4371668179                                          |
| F-Statistic                | 9.76                                                |
| Significance of F          | 0.000001499                                         |
| D-W                        | 1.99                                                |

| Variable    | Coefficient | St. Error | t-stat   | p-value |
|-------------|-------------|-----------|----------|---------|
| Constant    | 978.7414781 | 890.3636  | 1.09926  | 0.27499 |
| DDEPVAR{1}  | 0.5766388   | 0.11283   | 5.1107   | 2.2E-06 |
| DDEPVAR {2} | -0.2242973  | 0.12766   | -1.75699 | 0.08279 |
| DDEPVAR {3} | 0.1909498   | 0.113578  | 1.68122  | 0.09667 |

## **CIVIL CASES 2**

| Estimation by Least        |                                                |
|----------------------------|------------------------------------------------|
| Squares                    |                                                |
| Dependent Variable         | First Differenced<br>Civil Cases 1940–<br>1998 |
| Usable Observations        | 53                                             |
| Degrees of Freedom         | 47                                             |
| Centered R <sup>2</sup>    | 0.31                                           |
| Adjusted R <sup>2</sup>    | 0.24                                           |
| Uncentered R <sup>2</sup>  | 0.39                                           |
| T*R <sup>2</sup>           | 20.58                                          |
| Mean of Dep. Variable      | 3840.58                                        |
| St. Error of Dep. Variable | 10988.71                                       |
| St. Error of Estimate      | 9586.19                                        |
| Sum of Squared Errors      | 4319071295                                     |
| F-Statistic                | 4.27                                           |
| Significance of F          | 0.00279529                                     |
| D-W                        | 1.91                                           |

| Variable | Coefficient | St. Error  | t-stat   | p-value |
|----------|-------------|------------|----------|---------|
| Constant | 2272.57896  | 1550.83208 | 1.46539  | 0.14947 |
| DCVL{1}  | 0.51900     | 0.13388    | 3.87668  | 0.00033 |
| DCVL{2}  | -0.15046    | 0.14009    | -1.07401 | 0.28830 |
| DCVL{3}  | -0.05055    | 0.15284    | -0.33073 | 0.74232 |
| DCVL{4}  | 0.39310     | 0.15551    | 2.52790  | 0.01489 |
| DCVL{5}  | -0.38338    | 0.14499    | -2.64418 | 0.01110 |

## **CIVIL CASES 3**

| Estimation by Least        |                                        |
|----------------------------|----------------------------------------|
| Squares                    |                                        |
|                            | First Differenced<br>Civil Cases 1940– |
| Dependent Variable         | 1995                                   |
| Usable Observations        | 50                                     |
| Degrees of Freedom         | 44                                     |
| Centered R <sup>2</sup>    | 0.29                                   |
| Adjusted R <sup>2</sup>    | 0.21                                   |
| Uncentered R <sup>2</sup>  | 0.37                                   |
| T*R <sup>2</sup>           | 18.68                                  |
| Mean of Dep. Variable      | 3710.56                                |
| St. Error of Dep. Variable | 10311.06                               |
| St. Error of Estimate      | 9162.88                                |
| Sum of Squared Errors      | 3694165802                             |
| F-Statistic                | 3.61                                   |
| Significance of F          | 0.00802046                             |
| D-W                        | 1.92                                   |

| Variable | Coefficient | St. Error  | t-stat   | p-value |
|----------|-------------|------------|----------|---------|
| Constant | 2134.16926  | 1503.05177 | 1.41989  | 0.16269 |
| DCVL{1}  | 0.50806     | 0.13721    | 3.70274  | 0.00059 |
| DCVL{2}  | -0.08254    | 0.15092    | -0.54689 | 0.58722 |
| DCVL{3}  | -0.02162    | 0.15811    | -0.13671 | 0.89188 |
| DCVL{4}  | 0.26910     | 0.17463    | 1.54101  | 0.13048 |
| DCVL{5}  | -0.27799    | 0.15810    | -1.75834 | 0.08564 |

#### **CRIMINAL CASES 1**

| Estimation by Least        |                                         |
|----------------------------|-----------------------------------------|
| Squares                    |                                         |
| Domondont Variable         | Criminal Cases<br>(Levels)<br>1904-1990 |
| Dependent Variable         |                                         |
| Usable Observations        | 79                                      |
| Degrees of Freedom         | 71                                      |
| Centered R <sup>2</sup>    | 0.13                                    |
| Adjusted R <sup>2</sup>    | 0.04                                    |
| Uncentered R <sup>2</sup>  | 0.13                                    |
| T*R <sup>2</sup>           | 10.33                                   |
| Mean of Dep. Variable      | 428.44                                  |
| St. Error of Dep. Variable | 7194.95                                 |
| St. Error of Estimate      | 7043.62                                 |
| Sum of Squared Errors      | 3522494501                              |
| F-Statistic                | 1.48                                    |
| Significance of F          | 0.1869571                               |
| D-W                        | 1.96                                    |

| Variable    | Coefficient | St. Error   | t-stat   | p-value  |
|-------------|-------------|-------------|----------|----------|
|             |             |             |          |          |
| Constant    | 338.0621593 | 797.0368066 | 0.42415  | 0.67274  |
| DDEPVAR{1}  | 0.2328821   | 0.1165457   | 1.9982   | 0.049525 |
| DDEPVAR{2}  | -0.1491343  | 0.1162436   | -1.28295 | 0.203683 |
| DDEPVAR{3}  | 0.1434511   | 0.1170792   | 1.22525  | 0.224531 |
| DDEPVAR{4}  | -0.0343099  | 0.1176772   | -0.29156 | 0.771474 |
| DDEPVAR {5} | 0.084421    | 0.1165375   | 0.72441  | 0.471194 |
| DDEPVAR {6} | -0.2402088  | 0.1156338   | -2.07732 | 0.04139  |
| DDEPVAR {7} | 0.1911306   | 0.1160747   | 1.64662  | 0.104056 |

#### CRIMINAL CASES 2

| Estimation by Least        |                   |
|----------------------------|-------------------|
| Squares                    |                   |
|                            | First Differenced |
| Den en dent Verichie       | Criminal Cases    |
| Dependent Variable         | 1940-1998         |
| Usable Observations        | 57                |
| Degrees of Freedom         | 55                |
| Centered R <sup>2</sup>    | 0.02              |
| Adjusted R <sup>2</sup>    | 0.003             |
| Uncentered R <sup>2</sup>  | 0.02              |
| $T^*R^2$                   | 2.443             |
| Mean of Dep. Variable      | 453.82            |
| St. Error of Dep. Variable | 3020.28           |
| St. Error of Estimate      | 3015.67           |
| Sum of Squared Errors      | 500182977         |
| F-Statistic                | 1.17              |
| Significance of F          | 0.28              |
| D-W                        | 1.9               |

| Variable | Coefficient | St. Error | t-stat  | p-value |
|----------|-------------|-----------|---------|---------|
| Constant | 408.84340   | 401.59056 | 1.01806 | 0.3131  |
| DCML{1}  | 0.15116     | 0.13965   | 1.08240 | 0.2838  |

#### **CRIMINAL CASES 3**

| Estimation by Least        |                                     |
|----------------------------|-------------------------------------|
| Squares                    |                                     |
|                            | First Differenced<br>Criminal Cases |
| Dependent Variable         | 1940-1995                           |
| Usable Observations        | 57                                  |
| Degrees of Freedom         | 55                                  |
| Centered R <sup>2</sup>    | 0.01                                |
| Adjusted R <sup>2</sup>    | -0.01                               |
| Uncentered R <sup>2</sup>  | 0.02                                |
| $T^*R^2$                   | 1.072                               |
| Mean of Dep. Variable      | 242.61                              |
| St. Error of Dep. Variable | 2916.41                             |
| St. Error of Estimate      | 2925.21                             |
| Sum of Squared Errors      | 444956581                           |
| F-Statistic                | 0.68                                |
| Significance of F          | 0.41                                |
| D-W                        | 1.98                                |

| Variable | Coefficient | St. Error   | <i>t</i> -stat | p-value  |
|----------|-------------|-------------|----------------|----------|
| Constant | 217.2610941 | 399.2535597 | 0.54417        | 0.588652 |
| DCML{1}  | 0.11339471  | 0.13736932  | 0.82547        | 0.412874 |

## TOTAL CASES 1

| Estimation by Least        |                                   |
|----------------------------|-----------------------------------|
| Squares                    |                                   |
| Dependent Variable         | Total Cases (Levels)<br>1904-1990 |
| Usable Observations        | 83                                |
| Degrees of Freedom         | 79                                |
| Centered R <sup>2</sup>    | 0.15                              |
| Adjusted R <sup>2</sup>    | 0.12                              |
| Uncentered R <sup>2</sup>  | 0.2                               |
| T*R <sup>2</sup>           | 16.34                             |
| Mean of Dep. Variable      | 2765.77                           |
| St. Error of Dep. Variable | 12076.87                          |
| St. Error of Estimate      | 11315.69                          |
| Sum of Squared Errors      | 10115545786                       |
| F-Statistic                | 4.8                               |
| Significance of F          | 0.004                             |
| D-W                        | 1.97                              |

| Variable   | Coefficient | St. Error   | t-stat   | p-value  |
|------------|-------------|-------------|----------|----------|
| Constant   | 1605.569104 | 1323.281722 | 1.21332  | 0.228621 |
| DDEPVAR{1} | 0.402242    | 0.111551    | 3.60589  | 0.000543 |
| DDEPVAR{2} | -0.189512   | 0.118397    | -1.60065 | 0.113447 |
| DDEPVAR{3} | 0.179931    | 0.111747    | 1.61016  | 0.111352 |

#### **TOTAL CASES 2**

| Estimation by Least        |                                        |
|----------------------------|----------------------------------------|
| Squares                    |                                        |
|                            | First Differenced<br>Total Cases 1940- |
| Dependent Variable         | 1995                                   |
| Usable Observations        | 51                                     |
| Degrees of Freedom         | 43                                     |
| Centered R <sup>2</sup>    | 0.38                                   |
| Adjusted R <sup>2</sup>    | 0.28                                   |
| Uncentered R <sup>2</sup>  | 0.46                                   |
| T*R <sup>2</sup>           | 23.64                                  |
| Mean of Dep. Variable      | 4515.86                                |
| St. Error of Dep. Variable | 11446.97                               |
| St. Error of Estimate      | 9732.15                                |
| Sum of Squared Errors      | 4072731981                             |
| F-Statistic                | 3.74                                   |
| Significance of F          | 0.003                                  |
| D-W                        | 1.93                                   |

| Variable  | Coefficient | St. Error | <i>t</i> -stat | p-value |
|-----------|-------------|-----------|----------------|---------|
|           |             | r         | ,<br>          |         |
| Constant  | 2898.3719   | 1730.8740 | 1.6745         | 0.1013  |
| DTOTAL{1} | 0.4731      | 0.1482    | 3.1932         | 0.0026  |
| DTOTAL{2} | 0.0470      | 0.1610    | 0.2918         | 0.7719  |
| DTOTAL{3} | -0.2760     | 0.1523    | -1.8125        | 0.0769  |
| DTOTAL{4} | 0.4506      | 0.1485    | 3.0352         | 0.0041  |
| DTOTAL{5} | -0.2969     | 0.1619    | -1.8342        | 0.0736  |
| DTOTAL{6} | -0.2948     | 0.1714    | -1.7198        | 0.0927  |
| DTOTAL{7} | 0.2706      | 0.1567    | 1.7264         | 0.0914  |

•

## TOTAL CASES 3

| Estimation by Least        |                                        |
|----------------------------|----------------------------------------|
| Squares                    |                                        |
|                            | First Differenced<br>Total Cases 1940- |
| Dependent Variable         | 1995                                   |
| Usable Observations        | 50                                     |
| Degrees of Freedom         | 44                                     |
| Centered R <sup>2</sup>    | 0.38                                   |
| Adjusted R <sup>2</sup>    | 0.24                                   |
| Uncentered R <sup>2</sup>  | 0.16                                   |
| T*R <sup>2</sup>           | 0.33                                   |
| Mean of Dep. Variable      | 16.454                                 |
| St. Error of Dep. Variable | 3820.46                                |
| St. Error of Estimate      | 10801.06                               |
| Sum of Squared Errors      | 9914.37                                |
| F-Statistic                | 4324970637                             |
| Significance of F          | 0.027                                  |
| D-W                        | 1.88                                   |

| Variable  | Coefficient | St. Error | <i>t</i> -stat | p-value |
|-----------|-------------|-----------|----------------|---------|
| Constant  | 2559.7151   | 1650.5514 | 1.5508         | 0.1281  |
| DTOTAL{1} | 0.4531      | 0.1395    | 3.2473         | 0.0022  |
| DTOTAL{2} | -0.0268     | 0.1483    | -0.1804        | 0.8576  |
| DTOTAL{3} | -0.1369     | 0.1533    | -0.8929        | 0.3767  |
| DTOTAL{4} | 0.3148      | 0.1750    | 1.7994         | 0.0788  |
| DTOTAL{5} | -0.2840     | 0.1641    | -1.7304        | 0.0906  |

# Table A.4.2. In-sample Estimates: Full Sample 1904–1998

Civil Cases

| Year | Civil  | Civil Forecasts | RMSE        | MAD    |
|------|--------|-----------------|-------------|--------|
| 1904 | 14,888 | NA              | NA          | NA     |
| 1905 | 16,002 | NA              | NA          | NA     |
| 1906 | 15,986 | NA              | NA          | NA     |
| 1907 | 18,434 | NA              | NA          | NA     |
| 1908 | 14,905 | NA              | NA          | NA     |
| 1909 | 13,127 | NA              | NA          | NA     |
| 1910 | 13,788 | 14,171          | 146,409     | 383    |
| 1911 | 14,001 | 16,930          | 8,577,362   | 2,929  |
| 1912 | 14,993 | 13,784          | 1,461,042   | 1,209  |
| 1913 | 14,935 | 17,644          | 7,337,617   | 2,709  |
| 1914 | 16,288 | 17,285          | 994,832     | 997    |
| 1915 | 15,268 | 18,508          | 10,497,929  | 3,240  |
| 1916 | 17,352 | 16,622          | 533,277     | 730    |
| 1917 | 17,551 | 19,841          | 5,243,021   | 2,290  |
| 1918 | 16,756 | 19,573          | 7,935,925   | 2,817  |
| 1919 | 18,800 | 17,318          | 2,197,007   | 1,482  |
| 1920 | 22,109 | 22,605          | 245,697     | 496    |
| 1921 | 32,175 | 24,492          | 59,033,782  | 7,683  |
| 1922 | 31,745 | 37,699          | 35,453,760  | 5,954  |
| 1923 | 30,716 | 32,816          | 4,411,599   | 2,100  |
| 1924 | 34,211 | 32,470          | 3,029,590   | 1,741  |
| 1925 | 38,035 | 40,080          | 4,183,994   | 2,045  |
| 1926 | 38,721 | 37,745          | 953,378     | 976    |
| 1927 | 40,856 | 40,003          | 727,814     | 853    |
| 1928 | 44,445 | 44,960          | 264,933     | 515    |
| 1929 | 45,287 | 47,728          | 5,960,009   | 2,441  |
| 1930 | 48,325 | 45,935          | 5,709,935   | 2,390  |
| 1931 | 49,332 | 51,821          | 6,196,071   | 2,489  |
| 1932 | 60,515 | 51,656          | 78,474,787  | 8,859  |
| 1933 | 52,453 | 66,360          | 193,403,183 | 13,907 |
| 1934 | 35,959 | 49,728          | 189,595,516 | 13,769 |
| 1935 | 36,082 | 30,612          | 29,921,325  | 5,470  |
| 1936 | 39,391 | 43,697          | 18,540,692  | 4,306  |
| 1937 | 32,899 | 36,473          | 12,773,482  | 3,574  |
| 1938 | 33,591 | 28,113          | 30,010,803  | 5,478  |

| Year | Civil   | <b>Civil Forecasts</b> | RMSE        | MAD    |
|------|---------|------------------------|-------------|--------|
| 1939 | 33,810  | 41,716                 | 62,508,777  | 7,906  |
| 1940 | 34,734  | 36,676                 | 3,769,731   | 1,942  |
| 1941 | 38,477  | 33,610                 | 23,689,764  | 4,867  |
| 1942 | 38,140  | 44,055                 | 34,982,970  | 5,915  |
| 1943 | 36,789  | 39,056                 | 5,139,033   | 2,267  |
| 1944 | 30,896  | 38,178                 | 53,031,587  | 7,282  |
| 1945 | 53,236  | 31,117                 | 489,238,037 | 22,119 |
| 1946 | 58,454  | 64,702                 | 39,031,860  | 6,248  |
| 1947 | 49,606  | 59,158                 | 91,244,270  | 9,552  |
| 1948 | 37,420  | 44,866                 | 55,440,036  | 7,446  |
| 1949 | 44,037  | 44,241                 | 41,752      | 204    |
| 1950 | 45,085  | 45,324                 | 57,353      | 239    |
| 1951 | 41,938  | 41,808                 | 16,849      | 130    |
| 1952 | 48,442  | 40,666                 | 60,463,192  | 7,776  |
| 1953 | 53,469  | 59,636                 | 38,028,580  | 6,167  |
| 1954 | 49,058  | 54,905                 | 34,186,729  | 5,847  |
| 1955 | 49,056  | 46,647                 | 5,803,610   | 2,409  |
| 1956 | 52,174  | 54,570                 | 5,740,208   | 2,396  |
| 1957 | 54,143  | 55,037                 | 799,895     | 894    |
| 1958 | 59,308  | 53,271                 | 36,448,686  | 6,037  |
| 1959 | 49,586  | 64,486                 | 222,015,006 | 14,900 |
| 1960 | 51,063  | 47,222                 | 14,754,059  | 3,841  |
| 1961 | 51,225  | 54,483                 | 10,612,058  | 3,258  |
| 1962 | 54,615  | 54,030                 | 341,845     | 585    |
| 1963 | 57,028  | 52,939                 | 16,722,498  | 4,089  |
| 1964 | 61,093  | 62,935                 | 3,392,472   | 1,842  |
| 1965 | 62,670  | 63,922                 | 1,567,948   | 1,252  |
| 1966 | 66,144  | 65,652                 | 242,089     | 492    |
| 1967 | 66,197  | 68,984                 | 7,769,478   | 2,787  |
| 1968 | 66,740  | 68,097                 | 1,841,028   | 1,357  |
| 1969 | 72,504  | 67,962                 | 20,633,079  | 4,542  |
| 1970 | 82,665  | 77,484                 | 26,846,000  | 5,181  |
| 1971 | 89,318  | 87,167                 | 4,625,559   | 2,151  |
| 1972 | 92,385  | 92,817                 | 186,676     | 432    |
| 1973 | 96,056  | 96,333                 | 76,906      | 277    |
| 1974 | 101,345 | 100,663                | 465,134     | 682    |
| 1975 | 115,098 | 104,058                | 121,875,020 | 11,040 |
| 1976 | 128,361 | 121,320                | 49,575,270  | 7,041  |

| Year | Civil   | <b>Civil Forecasts</b>                | RMSE         | MAD    |
|------|---------|---------------------------------------|--------------|--------|
| 1977 | 128,899 | 134,506                               | 31,433,581   | 5,607  |
| 1978 | 137,707 | 129,619                               | 65,419,234   | 8,088  |
| 1979 | 153,552 | 146,341                               | 51,995,043   | 7,211  |
| 1980 | 167,871 | 161,515                               | 40,397,073   | 6,356  |
| 1981 | 179,803 | 169,934                               | 97,402,501   | 9,869  |
| 1982 | 205,525 | 187,741                               | 316,273,107  | 17,784 |
| 1983 | 241,159 | 219,907                               | 451,654,151  | 21,252 |
| 1984 | 260,785 | 255,450                               | 28,457,698   | 5,335  |
| 1985 | 273,056 | 265,985                               | 50,001,627   | 7,071  |
| 1986 | 254,249 | 282,501                               | 798,181,922  | 28,252 |
| 1987 | 238,394 | 249,694                               | 127,683,613  | 11,300 |
| 1988 | 239,010 | 230,976                               | 64,544,147   | 8,034  |
| 1989 | 232,921 | 241,376                               | 71,494,292   | 8,455  |
| 1990 | 217,421 | 221,642                               | 17,819,923   | 4,221  |
| 1991 | 207,094 | 213,398                               | 39,736,290   | 6,304  |
| 1992 | 230,212 | 211,461                               | 351,592,740  | 18,751 |
| 1993 | 229,440 | 241,746                               | 151,434,995  | 12,306 |
| 1994 | 236,149 | 224,306                               | 140,249,033  | 11,843 |
| 1995 | 238,764 | 242,241                               | 12,092,831   | 3,477  |
| 1996 | 269,132 | 251,872                               | 297,916,263  | 17,260 |
| 1997 | 272,027 | 276,833                               | 23,101,242   | 4,806  |
| 1998 | 256,787 | 273,393                               | 275,765,429  | 16,606 |
|      |         | · · · · · · · · · · · · · · · · · · · | Foreaget MAD | 5 014  |
|      |         |                                       | Forecast MAD | 5,814  |
|      |         |                                       | Forecast MSE | 8,053  |

Notes: NA indicates that the values for those years were part of the conditioning set in the estimation process.

.

#### Criminal Cases

| Year | Criminal | <b>Criminal Forecasts</b> | RMSE          | MAD    |
|------|----------|---------------------------|---------------|--------|
| 1904 | 18,488   | NA                        | NA            | NA     |
| 1905 | 18,900   | NA                        | NA            | NA     |
| 1906 | 17,435   | NA                        | NA            | NA     |
| 1907 | 18,332   | NA                        | NA            | NA     |
| 1908 | 13,345   | NA                        | NA            | NA     |
| 1909 | 14,505   | NA                        | NA            | NA     |
| 1910 | 14,864   | NA                        | NA            | NA     |
| 1911 | 15,057   | NA                        | NA            | NA     |
| 1912 | 15,935   | 16,239                    | 92,399        | 304    |
| 1913 | 16,753   | 15,704                    | 1,100,799     | 1,049  |
| 1914 | 18,399   | 18,642                    | 59,073        | 243    |
| 1915 | 19,868   | 18,035                    | 3,361,339     | 1,833  |
| 1916 | 20,243   | 20,606                    | 131,901       | 363    |
| 1917 | 19,628   | 20,813                    | 1,403,473     | 1,185  |
| 1918 | 35,096   | 19,883                    | 231,420,158   | 15,213 |
| 1919 | 47,443   | 39,174                    | 68,379,427    | 8,269  |
| 1920 | 55,587   | 48,294                    | 53,180,606    | 7,293  |
| 1921 | 54,487   | 58,197                    | 13,767,745    | 3,710  |
| 1922 | 60,722   | 54,852                    | 34,453,572    | 5,870  |
| 1923 | 71,077   | 64,717                    | 40,454,432    | 6,360  |
| 1924 | 70,168   | 69,762                    | 164,985       | 406    |
| 1925 | 76,136   | 70,322                    | 33,807,915    | 5,814  |
| 1926 | 68,582   | 79,475                    | 118,657,195   | 10,893 |
| 1927 | 64,614   | 68,211                    | 12,936,601    | 3,597  |
| 1928 | 83,372   | 65,074                    | 334,800,940   | 18,298 |
| 1929 | 86,348   | 86,043                    | 93,241        | 305    |
| 1930 | 87,305   | 87,054                    | 63,120        | 251    |
| 1931 | 83,747   | 88,048                    | 18,501,609    | 4,301  |
| 1932 | 92,174   | 85,615                    | 43,024,444    | 6,559  |
| 1933 | 82,675   | 95,899                    | 174,871,910   | 13,224 |
| 1934 | 34,152   | 74,429                    | 1,622,251,975 | 40,277 |
| 1935 | 35,365   | 28,903                    | 41,758,543    | 6,462  |
| 1936 | 35,920   | 41,261                    | 28,525,503    | 5,341  |
| 1937 | 35,475   | 31,714                    | 14,146,547    | 3,761  |
| 1938 | 34,202   | 34,024                    | 31,713        | 178    |
| 1939 | 34,808   | 34,707                    | 10,102        | 101    |
| 1940 | 33,401   | 45,071                    | 136,197,321   | 11,670 |

| Year   | Criminal | <b>Criminal Forecasts</b> | RMSE       | MAD   |
|--------|----------|---------------------------|------------|-------|
| 1941   | 31,823   | 24,247                    | 57,393,796 | 7,576 |
| 1942   | 33,294   | 32,246                    | 1,097,802  | 1,048 |
| 1943 - | 36,588   | 34,161                    | 5,892,688  | 2,427 |
| 1944   | 39,621   | 37,628                    | 3,970,205  | 1,993 |
| 1945   | 39,429   | 40,035                    | 366,957    | 606   |
| 1946   | 33,203   | 40,097                    | 47,531,259 | 6,894 |
| 1947   | 34,563   | 32,756                    | 3,265,857  | 1,807 |
| 1948   | 33,300   | 35,627                    | 5,414,412  | 2,327 |
| 1949   | 35,686   | 32,133                    | 12,622,086 | 3,553 |
| 1950   | 37,720   | 37,049                    | 449,895    | 671   |
| 1951   | 39,830   | 38,204                    | 2,642,429  | 1,626 |
| 1952   | 39,022   | 42,296                    | 10,717,512 | 3,274 |
| 1953   | 38,504   | 37,630                    | 763,029    | 874   |
| 1954   | 43,196   | 39,836                    | 11,291,136 | 3,360 |
| 1955   | 37,123   | 43,929                    | 46,327,054 | 6,806 |
| 1956   | 30,653   | 35,582                    | 24,293,154 | 4,929 |
| 1957   | 30,078   | 30,895                    | 667,935    | 817   |
| 1958   | 30,737   | 30,833                    | 9,129      | 96    |
| 1959   | 30,707   | 30,999                    | 85,491     | 292   |
| 1960   | 29,828   | 29,521                    | 94,170     | 307   |
| 1961   | 30,268   | 31,944                    | 2,809,829  | 1,676 |
| 1962   | 31,017   | 31,236                    | 48,032     | 219   |
| 1963   | 31,746   | 30,431                    | 1,730,225  | 1,315 |
| 1964   | 31,733   | 32,043                    | 95,999     | 310   |
| 1965   | 33,334   | 32,190                    | 1,309,050  | 1,144 |
| 1966   | 31,494   | 34,411                    | 8,509,637  | 2,917 |
| 1967   | 32,207   | 31,038                    | 1,367,230  | 1,169 |
| 1968   | 32,571   | 33,201                    | 396,484    | 630   |
| 1969   | 35,413   | 32,639                    | 7,696,561  | 2,774 |
| 1970   | 39,959   | 36,811                    | 9,909,595  | 3,148 |
| 1971   | 43,157   | 40,528                    | 6,910,506  | 2,629 |
| 1972   | 49,054   | 44,798                    | 18,115,218 | 4,256 |
| 1973   | 42,434   | 50,405                    | 63,531,392 | 7,971 |
| 1974   | 39,754   | 41,077                    | 1,751,547  | 1,323 |
| 1975   | 43,282   | 40,886                    | 5,740,214  | 2,396 |
| 1976   | 41,020   | 43,489                    | 6,096,629  | 2,469 |
| 1977   | 41,464   | 40,771                    | 480,423    | 693   |
| 1978   | 35,983   | 41,573                    | 31,249,355 | 5,590 |

| Year | Criminal | Criminal Forecasts | RMSE       | MAD   |
|------|----------|--------------------|------------|-------|
| 1979 | 32,688   | 37,100             | 19,465,339 | 4,412 |
| 1980 | 28,921   | 32,907             | 15,887,393 | 3,986 |
| 1981 | 31,287   | 26,729             | 20,777,577 | 4,558 |
| 1982 | 32,682   | 33,664             | 963,562    | 982   |
| 1983 | 35,872   | 31,778             | 16,762,670 | 4,094 |
| 1984 | 36,845   | 38,352             | 2,271,817  | 1,507 |
| 1985 | 39,500   | 36,659             | 8,071,083  | 2,841 |
| 1986 | 41,490   | 41,204             | 81,774     | 286   |
| 1987 | 43,292   | 40,890             | 5,769,203  | 2,402 |
| 1988 | 44,585   | 44,490             | 9,093      | 95    |
| 1989 | 45,995   | 44,807             | 1,410,961  | 1,188 |
| 1990 | 48,904   | 47,265             | 2,685,247  | 1,639 |
| 1991 | 45,735   | 49,597             | 14,915,195 | 3,862 |
| 1992 | 48,366   | 45,325             | 9,244,683  | 3,041 |
| 1993 | 46,786   | 50,183             | 11,539,054 | 3,397 |
| 1994 | 45,473   | 46,097             | 389,453    | 624   |
| 1995 | 44,924   | 46,359             | 2,058,065  | 1,435 |
| 1996 | 47,889   | 44,458             | 11,769,496 | 3,431 |
| 1997 | 50,363   | 50,362             | 2          | 1     |
| 1998 | 57,691   | 49,595             | 65,538,995 | 8,096 |

| Forecast MAD | 3,781 |
|--------------|-------|
| Forecast MSE | 6,468 |

#### Total Cases

| Year | Total   | Total Forecasts | RMSE          | MAD    |
|------|---------|-----------------|---------------|--------|
| 1904 | 33,376  | NA              | NA            | NA     |
| 1905 | 34,902  | NA              | NA            | NA     |
| 1906 | 33,421  | NA              | NA            | NA     |
| 1907 | 36,766  | NA              | NA            | NA     |
| 1908 | 28,250  | NA              | NA            | NA     |
| 1909 | 27,632  | NA              | NA            | NA     |
| 1910 | 28,652  | 30,521          | 3,494,345     | 1,869  |
| 1911 | 29,058  | 31,649          | 6,715,317     | 2,591  |
| 1912 | 30,928  | 29,357          | 2,468,856     | 1,571  |
| 1913 | 31,688  | 35,298          | 13,032,400    | 3,610  |
| 1914 | 34,687  | 34,374          | 97,680        | 313    |
| 1915 | 35,136  | 37,933          | 7,824,937     | 2,797  |
| 1916 | 37,595  | 37,576          | 368           | 19     |
| 1917 | 37,179  | 40,693          | 12,351,604    | 3,514  |
| 1918 | 51,852  | 39,513          | 152,250,118   | 12,339 |
| 1919 | 66,243  | 58,682          | 57,175,093    | 7,561  |
| 1920 | 77,696  | 71,768          | 35,136,467    | 5,928  |
| 1921 | 86,662  | 82,513          | 17,215,260    | 4,149  |
| 1922 | 92,467  | 94,065          | 2,552,825     | 1,598  |
| 1923 | 101,793 | 96,254          | 30,679,992    | 5,539  |
| 1924 | 104,379 | 106,469         | 4,368,782     | 2,090  |
| 1925 | 114,171 | 106,352         | 61,129,422    | 7,819  |
| 1926 | 107,303 | 119,405         | 146,469,491   | 12,102 |
| 1927 | 105,470 | 107,021         | 2,406,183     | 1,551  |
| 1928 | 127,817 | 107,533         | 411,443,826   | 20,284 |
| 1929 | 131,635 | 138,284         | 44,207,988    | 6,649  |
| 1930 | 135,630 | 129,541         | 37,070,246    | 6,089  |
| 1931 | 133,079 | 141,246         | 66,700,255    | 8,167  |
| 1932 | 152,689 | 138,498         | 201,397,509   | 14,191 |
| 1933 | 135,128 | 158,633         | 552,479,710   | 23,505 |
| 1934 | 70,111  | 129,341         | 3,508,174,088 | 59,230 |
| 1935 | 71,447  | 53,940          | 306,482,655   | 17,507 |
| 1936 | 75,311  | 84,552          | 85,395,512    | 9,241  |
| 1937 | 68,374  | 67,868          | 255,923       | 506    |
| 1938 | 67,793  | 60,249          | 56,914,503    | 7,544  |
| 1939 | 68,618  | 82,703          | 198,374,283   | 14,085 |
| 1940 | 68,135  | 71,250          | 9,702,925     | 3,115  |

| Year | Total   | <b>Total Forecasts</b> | RMSE        | MAD    |
|------|---------|------------------------|-------------|--------|
| 1941 | 70,300  | 68,350                 | 3,802,756   | 1,950  |
| 1942 | 71,434  | 74,586                 | 9,937,517   | 3,152  |
| 1943 | 73,377  | 74,105                 | 529,335     | 728    |
| 1944 | 70,517  | 76,145                 | 31,669,617  | 5,628  |
| 1945 | 92,665  | 72,254                 | 416,615,830 | 20,411 |
| 1946 | 91,657  | 102,410                | 115,618,019 | 10,753 |
| 1947 | 84,169  | 90,977                 | 46,348,651  | 6,808  |
| 1948 | 70,720  | 84,946                 | 202,381,128 | 14,226 |
| 1949 | 79,723  | 73,832                 | 34,706,244  | 5,891  |
| 1950 | 82,805  | 81,999                 | 649,111     | 806    |
| 1951 | 81,768  | 83,063                 | 1,677,252   | 1,295  |
| 1952 | 87,464  | 83,089                 | 19,137,373  | 4,375  |
| 1953 | 91,973  | 95,865                 | 15,147,107  | 3,892  |
| 1954 | 92,254  | 93,963                 | 2,921,752   | 1,709  |
| 1955 | 86,179  | 93,838                 | 58,667,551  | 7,659  |
| 1956 | 82,827  | 88,009                 | 26,854,349  | 5,182  |
| 1957 | 84,221  | 84,616                 | 156,049     | 395    |
| 1958 | 90,045  | 86,264                 | 14,297,149  | 3,781  |
| 1959 | 80,293  | 92,798                 | 156,374,642 | 12,505 |
| 1960 | 80,891  | 79,425                 | 2,147,996   | 1,466  |
| 1961 | 81,493  | 85,830                 | 18,811,527  | 4,337  |
| 1962 | 85,632  | 84,040                 | 2,535,864   | 1,592  |
| 1963 | 88,774  | 86,617                 | 4,652,115   | 2,157  |
| 1964 | 92,826  | 93,499                 | 453,310     | 673    |
| 1965 | 96,004  | 96,389                 | 147,842     | 385    |
| 1966 | 97,638  | 99,705                 | 4,273,475   | 2,067  |
| 1967 | 98,404  | 100,222                | 3,304,658   | 1,818  |
| 1968 | 99,311  | 101,163                | 3,428,645   | 1,852  |
| 1969 | 107,917 | 101,805                | 37,355,708  | 6,112  |
| 1970 | 122,624 | 112,696                | 98,573,022  | 9,928  |
| 1971 | 132,475 | 128,573                | 15,226,777  | 3,902  |
| 1972 | 141,439 | 136,844                | 21,115,583  | 4,595  |
| 1973 | 138,490 | 147,798                | 86,638,926  | 9,308  |
| 1974 | 141,099 | 140,479                | 383,807     | 620    |
| 1975 | 158,380 | 144,342                | 197,069,535 | 14,038 |
| 1976 | 169,381 | 165,546                | 14,707,235  | 3,835  |
| 1977 | 170,363 | 171,308                | 892,944     | 945    |
| 1978 | 173,690 | 173,868                | 31,598      | 178    |

| Year | Total   | <b>Total Forecasts</b> | RMSE        | MAD    |
|------|---------|------------------------|-------------|--------|
| 1979 | 186,240 | 180,212                | 36,337,159  | 6,028  |
| 1980 | 196,792 | 191,113                | 32,252,524  | 5,679  |
| 1981 | 211,090 | 199,495                | 134,433,515 | 11,595 |
| 1982 | 238,207 | 218,023                | 407,403,766 | 20,184 |
| 1983 | 277,031 | 249,809                | 741,034,601 | 27,222 |
| 1984 | 297,630 | 289,155                | 71,824,216  | 8,475  |
| 1985 | 312,556 | 304,377                | 66,891,135  | 8,179  |
| 1986 | 295,739 | 321,973                | 688,239,163 | 26,234 |
| 1987 | 281,686 | 294,129                | 154,826,341 | 12,443 |
| 1988 | 283,595 | 279,233                | 19,025,443  | 4,362  |
| 1989 | 278,916 | 285,989                | 50,025,069  | 7,073  |
| 1990 | 266,325 | 273,119                | 46,164,770  | 6,794  |
| 1991 | 252,829 | 265,918                | 171,326,158 | 13,089 |
| 1992 | 278,578 | 254,833                | 563,830,292 | 23,745 |
| 1993 | 276,226 | 288,812                | 158,411,558 | 12,586 |
| 1994 | 281,622 | 272,521                | 82,825,465  | 9,101  |
| 1995 | 283,688 | 287,695                | 16,056,865  | 4,007  |
| 1996 | 317,021 | 292,617                | 595,543,700 | 24,404 |
| 1997 | 322,390 | 325,270                | 8,295,353   | 2,880  |
| 1998 | 314,478 | 323,952                | 89,748,737  | 9,474  |

| Forecast MAD | 7,771  |
|--------------|--------|
| Forecast MSE | 11,533 |

Table A.4.3. Autoregressive Models Chosen for the Civil, Criminal and Total Cases Time Series over the 1904–1990 Period

| Series         | Sample Period<br>1904–1990 |
|----------------|----------------------------|
| Civil Cases    | ARI(3, 1)                  |
| Criminal Cases | ARI(7, 1)                  |
| Total Cases    | ARI(3, 1)                  |

Table A.4.4. Estimation over the 1904–1990 Period and Forecasting 1991–1998

| Year | Civil   | Civil<br>Forecasts | MAD    | Criminal | Criminal<br>Forecasts | MAD   | Total   | Total<br>Forecasts | MAD    |
|------|---------|--------------------|--------|----------|-----------------------|-------|---------|--------------------|--------|
| 1991 | 207,094 | 210,945            | 3,851  | 45,735   | 49,549                | 3,814 | 252,829 | 264,096            | 11,267 |
| 1992 | 230,212 | 204,432            | 25,780 | 48,366   | 45,241                | 3,125 | 278,578 | 250,550            | 28,028 |
| 1993 | 229,440 | 243,878            | 14,438 | 46,786   | 50,215                | 3,429 | 276,226 | 290,833            | 14,607 |
| 1994 | 236,149 | 222,816            | 13,333 | 45,473   | 45,962                | 489   | 281,622 | 269,577            | 12,045 |
| 1995 | 238,764 | 245,584            | 6,820  | 44,924   | 46,381                | 1,457 | 283,688 | 290,477            | 6,789  |
| 1996 | 269,132 | 239,598            | 29,534 | 47,889   | 44,316                | 3,573 | 317,021 | 284,679            | 32,342 |
| 1997 | 272,027 | 288,317            | 16,290 | 50,363   | 50,405                | 42    | 322,390 | 332,614            | 10,224 |
| 1998 | 256,787 | 268,363            | 11,576 | 57,691   | 49,430                | 8,261 | 314,478 | 320,210            | 5,732  |

MAD

15,203

3,024

| Series         | Sample Period<br>1940–1998 |
|----------------|----------------------------|
| Civil Cases    | ARI(5, 1)                  |
| Criminal Cases | ARI(1, 1)                  |
| Total Cases    | ARI(7, 1)                  |

Table A.4.5. Autoregressive Models Chosen for the Civil, Criminal and Total Cases over the 1940–1998 Period

Table A.4.6. Out-of-Sample Forecasts for the 1940-1998 Period

| Year | Civil   | Criminal | Total   |
|------|---------|----------|---------|
| 1999 | 247,635 | 58,100   | 311,677 |
| 2000 | 258,240 | 58,509   | 323,577 |
| 2001 | 257,659 | 58,918   | 327,532 |
| 2002 | 251,396 | 59,326   | 319,207 |
| 2003 | 252,215 | 59,735   | 323,593 |
| 2004 | 263,562 | 60,144   | 337,062 |
| 2005 | 267,623 | 60,553   | 345,771 |
| 2006 | 268,015 | 60,962   | 343,020 |
| 2007 | 272,030 | 61,371   | 347,811 |
| 2008 | 280,268 | 61,779   | 358,735 |
| 2009 | 283,438 | 62,188   | 364,166 |
| 2010 | 284,511 | 62,597   | 362,216 |
| 2011 | 287,875 | 63,006   | 365,485 |
| 2012 | 293,271 | 63,415   | 375,008 |
| 2013 | 295,872 | 63,824   | 380,150 |
| 2014 | 297,718 | 64,232   | 380,612 |
| 2015 | 301,196 | 64,641   | 384,750 |
| 2016 | 305,696 | 65,050   | 393,573 |
| 2017 | 308,641 | 65,459   | 398,711 |
| 2018 | 311,318 | 65,868   | 400,072 |
| 2019 | 314,968 | 66,277   | 404,209 |
| 2020 | 319,020 | 66,686   | 411,714 |

| Series         | Sample Period<br>1940–1995 |  |
|----------------|----------------------------|--|
| Civil Cases    | ARI(5, 1)                  |  |
| Criminal Cases | ARI(1, 1)                  |  |
| Total Cases    | ARI(5, 1)                  |  |

Table A.4.7. Autoregressive Models Chosen for the Civil, Criminal and Total Cases over the 1940–1995 Period

| Civil | Cases |
|-------|-------|
|       |       |

| Year | Civil   | Civil Forecast | MAD    |
|------|---------|----------------|--------|
| 1940 | NA      | 34,734         | NA     |
| 1941 | NA      | 38,477         | NA     |
| 1942 | NA      | 38,140         | NA     |
| 1943 | NA      | 36,789         | NA     |
| 1944 | NA      | 30,896         | NA     |
| 1945 | NA      | 53,236         | NA     |
| 1946 | 66,105  | 58,454         | 7,651  |
| 1947 | 61,253  | 49,606         | 11,647 |
| 1948 | 45,121  | 37,420         | 7,701  |
| 1949 | 41,630  | 44,037         | 2,407  |
| 1950 | 45,924  | 45,085         | 839    |
| 1951 | 43,637  | 41,938         | 1,699  |
| 1952 | 41,424  | 48,442         | 7,018  |
| 1953 | 59,286  | 53,469         | 5,817  |
| 1954 | 56,131  | 49,058         | 7,073  |
| 1955 | 47,257  | 49,056         | 1,799  |
| 1956 | 54,070  | 52,174         | 1,896  |
| 1957 | 55,533  | 54,143         | 1,390  |
| 1958 | 54,436  | 59,308         | 4,872  |
| 1959 | 65,062  | 49,586         | 15,476 |
| 1960 | 47,152  | 51,063         | 3,911  |
| 1961 | 54,301  | 51,225         | 3,076  |
| 1962 | 54,372  | 54,615         | 243    |
| 1963 | 54,374  | 57,028         | 2,654  |
| 1964 | 63,205  | 61,093         | 2,112  |
| 1965 | 64,653  | 62,670         | 1,983  |
| 1966 | 66,085  | 66,144         | 59     |
| 1967 | 69,532  | 66,197         | 3,335  |
| 1968 | 68,460  | 66,740         | 1,720  |
| 1969 | 68,365  | 72,504         | 4,139  |
| 1970 | 78,017  | 82,665         | 4,648  |
| 1971 | 88,523  | 89,318         | 795    |
| 1972 | 94,000  | 92,385         | 1,615  |
| 1973 | 96,709  | 96,056         | 653    |
| 1974 | 100,790 | 101,345        | 555    |

| Year | Civil   | Civil Forecast | MAD    |
|------|---------|----------------|--------|
| 1975 | 104,763 | 115,098        | 10,335 |
| 1976 | 122,680 | 128,361        | 5,681  |
| 1977 | 136,119 | 128,899        | 7,220  |
| 1978 | 130,317 | 137,707        | 7,390  |
| 1979 | 146,216 | 153,552        | 7,336  |
| 1980 | 162,744 | 167,871        | 5,127  |
| 1981 | 172,240 | 179,803        | 7,563  |
| 1982 | 188,696 | 205,525        | 16,829 |
| 1983 | 221,249 | 241,159        | 19,910 |
| 1984 | 258,465 | 260,785        | 2,320  |
| 1985 | 268,624 | 273,056        | 4,432  |
| 1986 | 282,639 | 254,249        | 28,390 |
| 1987 | 247,830 | 238,394        | 9,436  |
| 1988 | 229,136 | 239,010        | 9,874  |
| 1989 | 241,019 | 232,921        | 8,098  |
| 1990 | 223,781 | 217,421        | 6,360  |
| 1991 | 213,131 | 207,094        | 6,037  |
| 1992 | 209,966 | 230,212        | 20,246 |
| 1993 | 243,469 | 229,440        | 14,029 |
| 1994 | 227,019 | 236,149        | 9,130  |
| 1995 | 242,786 | 238,764        | 4,022  |

-

MAD

#### **Criminal Cases**

| Year | Criminal | Criminal Forecast | MAD   |
|------|----------|-------------------|-------|
| 1940 | 33,401   | NA                | NA    |
| 1941 | 31,823   | NA                | NA    |
| 1942 | 33,294   | 31,861            | 1,433 |
| 1943 | 36,588   | 33,678            | 2,910 |
| 1944 | 39,621   | 37,179            | 2,442 |
| 1945 | 39,429   | 40,182            | 753   |
| 1946 | 33,203   | 39,624            | 6,421 |
| 1947 | 34,563   | 32,714            | 1,849 |
| 1948 | 33,300   | 34,934            | 1,634 |
| 1949 | 35,686   | 33,374            | 2,312 |
| 1950 | 37,720   | 36,174            | 1,546 |
| 1951 | 39,830   | 38,168            | 1,662 |
| 1952 | 39,022   | 40,287            | 1,265 |
| 1953 | 38,504   | 39,148            | 644   |
| 1954 | 43,196   | 38,663            | 4,533 |
| 1955 | 37,123   | 43,945            | 6,822 |
| 1956 | 30,653   | 36,652            | 5,999 |
| 1957 | 30,078   | 30,137            | 59    |
| 1958 | 30,737   | 30,230            | 507   |
| 1959 | 30,707   | 31,029            | 322   |
| 1960 | 29,828   | 30,921            | 1,093 |
| 1961 | 30,268   | 29,946            | 322   |
| 1962 | 31,017   | 30,535            | 482   |
| 1963 | 31,746   | 31,319            | 427   |
| 1964 | 31,733   | 32,046            | 313   |
| 1965 | 33,334   | 31,949            | 1,385 |
| 1966 | 31,494   | 33,733            | 2,239 |
| 1967 | 32,207   | 31,503            | 704   |
| 1968 | 32,571   | 32,505            | 66    |
| 1969 | 35,413   | 32,830            | 2,583 |
| 1970 | 39,959   | 35,953            | 4,006 |
| 1971 | 43,157   | 40,692            | 2,465 |
| 1972 | 49,054   | 43,737            | 5,317 |
| 1973 | 42,434   | 49,940            | 7,506 |
| 1974 | 39,754   | 41,901            | 2,147 |
| 1975 | 43,282   | 39,667            | 3,615 |
| 1976 | 41,020   | 43,899            | 2,879 |

| Year | Criminal | Criminal Forecast | MAD   |
|------|----------|-------------------|-------|
| 1977 | 41,464   | 40,981            | 483   |
| 1978 | 35,983   | 41,732            | 5,749 |
| 1979 | 32,688   | 35,579            | 2,891 |
| 1980 | 28,921   | 32,532            | 3,611 |
| 1981 | 31,287   | 28,711            | 2,576 |
| 1982 | 32,682   | 31,773            | 909   |
| 1983 | 35,872   | 33,057            | 2,815 |
| 1984 | 36,845   | 36,451            | 394   |
| 1985 | 39,500   | 37,173            | 2,327 |
| 1986 | 41,490   | 40,018            | 1,472 |
| 1987 | 43,292   | 41,933            | 1,359 |
| 1988 | 44,585   | 43,714            | 871   |
| 1989 | 45,995   | 44,949            | 1,046 |
| 1990 | 48,904   | 46,372            | 2,532 |
| 1991 | 45,735   | 49,451            | 3,716 |
| 1992 | 48,366   | 45,593            | 2,773 |
| 1993 | 46,786   | 48,882            | 2,096 |
| 1994 | 45,473   | 46,824            | 1,351 |
| 1995 | 44,924   | 45,541            | 617   |

MAD

#### Total Cases

| Year | Total   | Total Forecast | MAD    |
|------|---------|----------------|--------|
| 1940 | 68,135  | NA             | NA     |
| 1941 | 70,300  | NA             | NA     |
| 1942 | 71,434  | NA             | NA     |
| 1943 | 73,377  | NA             | NA     |
| 1944 | 70,517  | NA             | NA     |
| 1945 | 92,665  | NA             | NA     |
| 1946 | 91,657  | 104,813        | 13,156 |
| 1947 | 84,169  | 93,849         | 9,680  |
| 1948 | 70,720  | 78,878         | 8,158  |
| 1949 | 79,723  | 75,310         | 4,413  |
| 1950 | 82,805  | 81,139         | 1,666  |
| 1951 | 81,768  | 86,291         | 4,523  |
| 1952 | 87,464  | 80,435         | 7,029  |
| 1953 | 91,973  | 98,865         | 6,892  |
| 1954 | 92,254  | 94,979         | 2,725  |
| 1955 | 86,179  | 92,839         | 6,660  |
| 1956 | 82,827  | 87,449         | 4,622  |
| 1957 | 84,221  | 83,794         | 427    |
| 1958 | 90,045  | 87,142         | 2,903  |
| 1959 | 80,293  | 93,673         | 13,380 |
| 1960 | 80,891  | 78,758         | 2,133  |
| 1961 | 81,493  | 84,576         | 3,083  |
| 1962 | 85,632  | 87,082         | 1,450  |
| 1963 | 88,774  | 85,245         | 3,529  |
| 1964 | 92,826  | 95,522         | 2,696  |
| 1965 | 96,004  | 96,591         | 587    |
| 1966 | 97,638  | 100,597        | 2,959  |
| 1967 | 98,404  | 100,112        | 1,708  |
| 1968 | 99,311  | 101,215        | 1,904  |
| 1969 | 107,917 | 101,887        | 6,030  |
| 1970 | 122,624 | 113,859        | 8,765  |
| 1971 | 132,475 | 131,270        | 1,205  |
| 1972 | 141,439 | 137,994        | 3,445  |
| 1973 | 138,490 | 148,235        | 9,745  |
| 1974 | 141,099 | 140,311        | 788    |
| 1975 | 158,380 | 142,617        | 15,763 |
| 1976 | 169,381 | 169,128        | 253    |

| Year | Total   | Total Forecast | MAD    |
|------|---------|----------------|--------|
| 1977 | 170,363 | 172,631        | 2,268  |
| 1978 | 173,690 | 172,366        | 1,324  |
| 1979 | 186,240 | 180,924        | 5,316  |
| 1980 | 196,792 | 192,818        | 3,974  |
| 1981 | 211,090 | 200,526        | 10,564 |
| 1982 | 238,207 | 218,896        | 19,311 |
| 1983 | 277,031 | 254,232        | 22,799 |
| 1984 | 297,630 | 294,256        | 3,374  |
| 1985 | 312,556 | 306,276        | 6,280  |
| 1986 | 295,739 | 320,488        | 24,749 |
| 1987 | 281,686 | 291,980        | 10,294 |
| 1988 | 283,595 | 271,742        | 11,853 |
| 1989 | 278,916 | 288,547        | 9,631  |
| 1990 | 266,325 | 271,695        | 5,370  |
| 1991 | 252,829 | 263,396        | 10,567 |
| 1992 | 278,578 | 254,844        | 23,734 |
| 1993 | 276,226 | 292,874        | 16,648 |
| 1994 | 281,622 | 276,244        | 5,378  |
| 1995 | 283,688 | 282,491        | 1,197  |

MAD

.

| Table A.4.9. Estimation over the 1940–19 | 995 Period and Forecasting 1996–2020 |
|------------------------------------------|--------------------------------------|
|                                          |                                      |

| ~      | $\sim$  |
|--------|---------|
| 1 1171 | 1 '0000 |
| UIVII  | Cases   |
|        |         |

| Year   | Civil   | Civil Forecast | MAD    |
|--------|---------|----------------|--------|
| 1996   | 269,132 | 250,782        | 18,350 |
| 1997   | 272,027 | 252,026        | 20,001 |
| 1998   | 256,787 | 255,764        | 1,023  |
| 1999   | 260,271 | 258,274        | 1,997  |
| 2000   | 259,517 | 263,855        | 4,338  |
| 2001   | 250,907 | 265,531        | 14,624 |
| 2002   | 274,841 | 268,661        | 6,180  |
| 2003   | NA      | 271,763        | NA     |
| 2004   | NA      | 275,983        | NA     |
| 2005   | NA      | 278,837        | NA     |
| 2006   | NA      | 282,382        | NA     |
| 2007   | NA      | 285,956        | NA     |
| 2008 · | NA      | 289,824        | NA     |
| 2009   | NA      | 293,147        | NA     |
| 2010   | NA      | 296,734        | NA     |
| 2011   | NA      | 300,308        | NA     |
| 2012   | NA      | 303,938        | NA     |
| 2013   | NA      | 307,363        | NA     |
| 2014   | NA      | 310,902        | NA     |
| 2015   | NA      | 314,438        | NA     |
| 2016   | NA      | 317,985        | NA     |
| 2017   | NA      | 321,466        | NA     |
| 2018   | NA      | 325,000        | NA     |
| 2019   | NA      | 328,533        | NA     |
| 2020   | NA      | 332,067        | NA     |

MAD

## **Criminal Cases**

.

| Year | Criminal | Criminal Forecast | MAD    |
|------|----------|-------------------|--------|
| 1996 | 47,889   | 45,141            | 2,748  |
| 1997 | 50,363   | 45,359            | 5,004  |
| 1998 | 57,691   | 45,576            | 12,115 |
| 1999 | 59,251   | 45,793            | 13,458 |
| 2000 | 62,152   | 46,010            | 16,142 |
| 2001 | 62,134   | 46,228            | 15,906 |
| 2002 | 66,452   | 46,445            | 20,007 |
| 2003 | NA       | 46,662            | NA     |
| 2004 | NA       | 46,879            | NA     |
| 2005 | NA       | 47,097            | NA     |
| 2006 | NA       | 47,314            | NA     |
| 2007 | NA       | 47,531            | NA     |
| 2008 | NA       | 47,748            | NA     |
| 2009 | NA       | 47,966            | NA     |
| 2010 | NA       | 48,183            | NA     |
| 2011 | NA       | 48,400            | NA     |
| 2012 | NA       | 48,617            | NA     |
| 2013 | NA       | 48,835            | NA     |
| 2014 | NA       | 49,052            | NA     |
| 2015 | NA       | 49,269            | NA     |
| 2016 | NA       | 49,486            | NA     |
| 2017 | NA       | 49,704            | NA     |
| 2018 | NA       | 49,921            | NA     |
| 2019 | NA       | 50,138            | NA     |
| 2020 | NA       | 50,356            | NA     |

MAD

#### Total Cases

| Year | Total   | Total Forecast | MAD    |
|------|---------|----------------|--------|
| 1996 | 317,021 | 299,301        | 17,720 |
| 1997 | 322,390 | 300,088        | 22,302 |
| 1998 | 314,478 | 304,670        | 9,808  |
| 1999 | 319,522 | 306,265        | 13,257 |
| 2000 | 321,669 | 313,646        | 8,023  |
| 2001 | 313,041 | 314,692        | 1,651  |
| 2002 | 341,293 | 318,530        | 22,763 |
| 2003 | NA      | 320,990        | NA     |
| 2004 | NA      | 326,290        | NA     |
| 2005 | NA      | 328,893        | NA     |
| 2006 | NA      | 333,064        | NA     |
| 2007 | NA      | 336,403        | NA     |
| 2008 | NA      | 340,977        | NA     |
| 2009 | NA      | 344,263        | NA     |
| 2010 | NA      | 348,306        | NA     |
| 2011 | NA      | 351,850        | NA     |
| 2012 | NA      | 355,949        | NA     |
| 2013 | NA      | 359,453        | NA     |
| 2014 | NA      | 363,345        | · NA   |
| 2015 | NA      | 366,981        | NA     |
| 2016 | NA      | 370,888        | NA     |
| 2017 | NA      | 374,527        | NA     |
| 2018 | NA      | 378,363        | NA     |
| 2019 | NA      | 382,068        | NA     |
| 2020 | NA      | 385,903        | NA     |

MAD

- Administrative Office of the United States District Courts (various years). Annual Report of the Director. Washington, DC: Administrative Office of the United States District Courts.
- Administrative Office of the United States District Courts (various years). Federal Court Management Statistics. Washington, DC: Administrative Office of the United States District Courts.
- Administrative Office of the United States District Courts (1995). Judicial Business of the United States Courts: Report of the Director. Washington, DC: Administrative Office of the United States District Courts.
- Benson, Bruce L. (1990). The Enterprise of Law: Justice without the State. San Francisco, CA: Pacific Research Institute for Public Policy.
- Boyum, Keith O. and Sam Krislov (Eds.) (1990). Forecasting the Impact of Legislation on Courts. Washington, D.C: National Academy Press.
- Brock, W., W.D. Dechert, J. Scheinkman and B. LeBaron (1996). A test for independence based on the correlation dimension. *Econometric Reviews* 15(3): 197–235.
- Clark, Charles. (1994). Mules and wagons A plea for jurisdictional reform. *Mississippi College Law Review* 14: 263–269.
- Clemente, J., A. Montanes, and M. Reyes (1998). Testing for a unit root in variables with a double change in the mean. *Economics Letters* 59: 175-82.
- Cooter, Robert D. and Daniel L. Rubinfeld (1990). Trial courts: An economic perspective. Law and Society Review 24: 533-46.
- Elliott, G., T.J. Rothenberg, and H.J. Stock (1996). Efficient tests for an autoregressive unit root. *Econometrica* 64: 813–36.
- Figueiredo, John M. de and Emerson H. Tiller (1996). Congressional control of the courts: A theoretical and empirical analysis of expansion of the Federal Judiciary. *Journal of Law and Economics* 39: 435–62.
- Geweke, J. and J. Porter-Hudak (1983). The estimation and application of long memory time series models. *Journal of Time Series Analysis* 4: 221–38.
- Geyh, Charles G. (1995). Overcoming the competence/credibility paradox and the politics of interbranch relations. In A. Fletcher Magnum (Ed.), Conference on Assessing the Effects of Legislation on the Workload of the Courts: Papers and Proceedings, 79–94. Washington, DC: Federal Judicial Center.

- Greene, William H. (2000). Econometric Analysis, 4th ed. Upper Saddle River, NJ: Prentice-Hall.
- Hamilton, James D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press.
- Hausman, J.A. (1978). Specification tests in econometrics. *Econometrica* 46(6): 1251-71.
- Heydebrand, Wolf and Carroll Seron (1990). Rationalizing Justice: The Political Economy of Federal District Courts. Albany, NY: State University of New York Press.
- Hobijn, B., P.-H. Franses and M. Ooms (1998). Generalizations of the KPSS test for stationarity. Econometric Institute Report 9802/A, Econometric Institute, Erasmus University, Rotterdam.
- Holloway, William J. Jr. (1989). Certifying questions to state supreme courts. In Cynthia Harrison and Russell R. Wheeler (Eds.), *The Federal Appellate Judiciary in the 21<sup>st</sup> Century*, 93–96. Washington, DC: Federal Judicial Center.
- Johansen, S. (1988). Statistical analysis of cointegrating vectors. Journal of Economic Dynamics and Control 12: 231-54.
- Johansen, S. and K. Juselius (1990). Maximum likelihood estimation and inference on cointegration-with applications to the demand for money. Oxford Bulletin of Economics and Statistics 52: 169–210.
- Judicial Conference of the United States (1995). Long Range Plan for the Federal Courts. Washington, DC: Judicial Conference of the United States.
- Kanzler, L. (1999). Very fast and correctly sized estimation of the BDS statistic. Unpublished working paper, Oxford University.
- Krislov, Samuel (1995). Caseloading in the balance. In A. Fletcher Mangum (Ed.), Conference on Assessing the Effects of Legislation on the Workload of the Courts: Papers and Proceedings, 33-46. Washington, DC: Federal Judicial Center.
- Kwiatkowski, D., P.C. Phillips, P. Schmidt and Y. Shin (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? *Journal of Econometrics* 54: 159–78.
- Landes, William M. (1971). An economic analysis of the courts. *Journal of Law and Economics* 14: 61–109.
- Nelson, Charles R. and Heejoon Kang (1984). Pitfalls in the use of time as an explanatory variable in regression. *Journal of Business and Economic Statistics* 2(1): 73-82.

Newey, W.K. and K.D. West (1994). Automatic lag selection in covariance matrix estimation.

Review of Economic Studies 61: 631-53.

- Newman, Jon O. (1989). Discretionary access to the Federal Courts. In Cynthia Harrison and Russell R. Wheeler (Eds.), *The Federal Appellate Judiciary in the 21<sup>st</sup> Century*, 63–67. Washington, DC: Federal Judicial Center.
- Ng, S. and P. Perron (1995). Unit root test in ARMA models with data-dependent methods for the selection of the truncation lag. *Journal of the American Statistical Association* 90: 268–281.
- Ng, S. and P. Perron (2001). Lag length selection and the construction of unit root tests with good size and power. *Econometrica*, in press.
- Osterwald-Lenum, M. (1992). A note with quantiles of the asymptotic distribution of the maximum likelihood cointegration rank test statistics. Oxford Bulletin of Economics and Statistics 54: 461–72.
- Perron, P. and T. Vogelsang (1992). Nonstationarity and level shifts with an application to purchasing power parity. *Journal of Business and Economic Statistics* 10: 301–20.
- Phillips, P.C.B. (1999). Unit root log periodogram regression. Unpublished working paper no. 1244, Cowles Foundation for Research in Economics, Yale University.
- Posner, Richard A. (1986), Economic Analysis of Law, ed. Boston, MA: Little Brown.
- Posner, Richard A. (1996), The Federal Courts: Challenge and Reform. Cambridge, MA: Harvard University Press.
- Redish, Martin H. (1989). The role of the Federal Judiciary and the allocation of jurisdiction. In Cynthia Harrison and Russell R. Wheeler (Eds.), *The Federal Appellate Judiciary in the 21<sup>st</sup> Century*, 39–50. Washington, DC: Federal Judicial Center.
- Reiss, Albert J. Jr. (1990). Longitudinal study of trial courts: A plea for development of explanatory variables. *Law and Society Review* 24: 545–52.
- Sanders, Joseph. (1990). The interplay of micro and macro processes in the longitudinal study of courts: Beyond the Durkheimian tradition. *Law and Society Review* 24: 240–48.

SAS Institute, Inc. (1999). SAS/ETS User's Guide, Version 8. Cary, NC: SAS Institute, Inc.

- U.S. Department of Commerce (various years). *Statistical Abstract of the United States*. Washington, DC: U.S. Government Printing Office.
- Wright, J. H. (1995). Stochastic orders of magnitude associated with two-stage estimators of fractional ARIMA systems. *Journal of Time Series Analysis* 16: 119-25.