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ABSTRACT 

The overall goal of this project was to develop faster, more reliable, higher throughput, 

more sensitive and more thoroughly integrated technologies for forensic STR 

identification. Inspiration for this effort comes from technologies developed over the 

past 15 years as a part of the human genome project. These technologies include the use 

of more sensitive energy-transfer fluorescent dye labels, the development of 

microfabricated capillary array electrophoresis separation and fluorescence detection 

systems, and the integration of sample clean-up and PCR amplification with the 

separation structures. With this motivation we have: (i) developed a high-throughput 96 

channel microfabricated capillary array electrophoresis wafer system and confocal rotary 

fluorescence scanner and demonstrated its effectiveness for performing forensic STR 

separations with conventional commercial multiplex kits; (ii) transitioned this new 

microchip forensic analysis system to the forensic laboratory at the Department of 

Forensic Science at Virginia and established its practicality for routine forensic analysis 

(iii) developed a modified version of the PowerPlex 16 STR kit that employs energy-

transfer or ET dye labeling for enhanced (2-8-fold) signal strengths for improved STR 

fragment separation and detection; (iv) developed a portable single channel forensic 

analysis instrument that includes the steps of PCR amplification, sample and standard 

injection, separation and fluorescence detection in a single integrated chip and 

instrument. Following validation we have performed field trials to demonstrate the 

ability of this system to perform STR analysis in the field producing real-time forensic 

identification; (v) performed initial feasibility studies of using gel-supported 

oligonucleotide capture matrices for the concentration and purification of amplified STR 

products for enhanced sensitivity capillary electrophoresis injection and analysis; and (vi) 

initiated the development of a table top version of our 96 channel rotary scanner and chip 

system that will facilitate the wide utilization of this new technology by laboratories 

desiring both low and high throughput. 
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Summary of Research Findings and Conclusions 

1. Evaluation of µCAE performance with commercial STR typing systems 

A 96-channel microfabricated capillary array electrophoresis (µCAE) system as 

shown in Figure 1 was evaluated for forensic short tandem repeat (STR) typing using 

PowerPlex 16® and AmpFℓSTR® Profiler Plus® multiplex PCR systems. Performance 

evaluated included analysis speed, fragment resolution, profile concordance, mixture 

allele discrimination, sensitivity and real-world forensic sample typing capability. Results 

of this work and the technical details were disseminated in the Journal of Forensic 

Sciences. 1 

Speed, Resolution & Concordance: The high-throughput µCAE system produced 

96 high-speed (< 30 min) parallel sample separations with single-base resolution based 

on the 9.3/10 THO1 alleles in the PowerPlex 16 allelic ladder. Forty-eight single-source 

samples previously analyzed by PBSO were accurately typed, as confirmed on an ABI 

Prism 310 and/or the Hitachi FMBIO II. 

Mixture study: STR samples consisting of male and female DNA at the ratios of 

10:0, 9:1, 3:1, 3:2, 2:3, 1:3, 1:9 and 0:10 were analyzed. The 3:1 and 1:3 samples are the 

lowest (highest) ratios in which all minor components were detected and reliably typed. 

Sensitivity study: The sensitivity of the µCAE system was assessed using 

PowerPlex 16 and Profiler Plus samples amplified with serially diluted DNA templates 

(from 22 to 0.0054 ng). The instrument produced full profiles from sample DNA down to 

0.17 ng, yielding 100% of the expected profiles for both tying kits; a threshold similar to 

that found for the ABI 310. 

Forensic DNA sample typing: Seventeen non-probative samples were correctly 

typed from case evidence previously processed and analyzed by PBSO using both the 

PowerPlex 16 and Profiler Plus systems. The DNA extracts were collected from a variety 

of common stain sources encountered in forensic analysis, including semen, saliva, single 

and mixed blood stains from sexual assault, paternity, burglary, armed robbery as well as 

homicide cases. The DNA data obtained using the µCAE system for the less complicated 

paternity and single-source bloodstain case samples produced full profiles 
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Figure 1. (A) Layout of the 96-lane µCAE chip. The 96 adjacent microchannels are grouped into 48 
doublets on a 150-mm diameter glass wafer. (B) Each doublet contains two cross-injector structures 
with two sample wells that share a common cathode and waste wells. (C) The rotary confocal 
fluorescence scanning system consists of a 488-nm argon ion laser beam which is passed through a 
dichroic beam splitter and directed up the hollow shaft of a stepper motor. The emitted fluorescence 
travels back along the same path into a 4-color confocal detector. 

that matched with the previously reported case results. For the sexual assault DNA 

samples, both µCAE and ABI 310 profile results for the sperm-fraction obtained from the 

vaginal-swab semen agreed with the original report analysis - the DNA profile did not 

match the suspect’s DNA profile. However, the µCAE system was able to discern 

additional alleles in the nonsperm fraction of the semen stain, consistent with the semen 

contributor that were not callable previously using the FMBIO II. For the bloodstain 

mixture collected from a knife blade and another from a sandal in a homicide, the µCAE 

profile results were identical to the original report as well as to the ABI 310 analyses, 

even at loci with imbalanced peak heights indicating major and minor contributors. 
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This work successfully demonstrated that current standard commercial forensic 

typing kits can be effectively applied to our µCAE system with no modification - a 

significant step towards the ultimate goal of developing of a completely integrated 

forensic STR typing microsystem. 

2. Development and validation of a prototype µCAE forensic scanner for VDFS 

A prototype µCAE chip scanner system was successfully installed in VDFS and 

validated by VDFS forensic scientists in July 2007. The work on validation has been 

submitted to the Journal of Forensic Sciences2 . The system consists of a four-color 

microchannel plate (MCP) scanner (Fig. 2A), a gel/sample loader, and a chip cleaning 

station (Fig. 2B and 2C). There were three major stages in achieving this goal. 

In the first stage, we performed initial testing on the scanning system for STR 

typing operation, troubleshot and identified the needs of additional software for MCP 

plate focusing on the stage as well as electrical current monitoring functions. We also 

tested the gel/sample loader and chip cleaning station for their ability to perform the 

appropriate functions as expected. In December 2005, forensic scientists Susan 

Greenspoon and Amy McGuckian visited Berkeley for their first training on the system. 

The second stage marked the transfer of the MCP system outside of a research 

laboratory setting to a forensic one. The MCP system was shipped and installed at VDFS 

in April 2006 followed with fine tuning and minor adjustments of the operation 

procedures. 

The final stage marked the mastery of the MCP system by VDFS forensic 

scientists and its validation for forensic STR typing. Standard validation assays 

performed include resolution measurements, concordance, sensitivity and mixture studies 

as well as non-probative and Y-STR sample typing. We have also examined the success 

rate of the 96-lane system and investigated alternative microchannel coating methods for 

more user-friendly operation. STR data produced on both the µCAE device and the ABI 

310 were compared. The data produced from the µCAE device were sent to PBSO for 

comparison with previous DNA profiling results for the cases as well. 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
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A 

B C 

Figure 2. Pictures of 

the MCP system 

installed at VDFS 

consisting of (A) a 

four-color confocal 

scanner, (B) a 

gels/sample loader 

and (C) a microchip 

washing station. 

Operation of the µCAE device followed the procedures outlined by Yeung et al.1 

For µCAE chips coated using the modified Hjerten procedure,3 a fresh coating was 

applied every two weeks (S. Yeung, personal communication). For µCAE chips coated 

using the polyDuramide (pDuramide) dynamic coating polymer,4 we followed procedures 

outlined in Ref. 4. A fresh coating was applied every 5 days. The following highlights 

the findings and technical details associated with each study. 

Precision, Resolution, Success Rate & Concordance: Precision results obtained 

by separating PowerPlex 16 allelic ladder samples on the µCAE instrument were 

compared to those obtained on ABI 310 at VDFS as well as on commercial multi-

capillary instruments previously. The single capillary ABI 310 at VDFS displayed better 

precision than the µCAE as well as data previously obtained at Berkeley. However, the 

precision of µCAE is essentially equivalent to commercial CAE systems (ABI 3100, 

3700 and MegaBACE 100). 
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Resolution measurements were obtained based on the TH01, CSF1PO, TPOX & 

Amelogenin loci in PowerPlex 16 allelic ladder using methods detailed in Buel et al.5 

Briefly, resolution results obtained using µCAE were similar to those reported by various 

sources for ABI 310 as well as those measured for µCAE by Yeung et al. 1 using the 

TH01 locus. Resolution measurements for both Hjerten and pDuramide coating methods 

were nearly identical and were similar to those produced for the µCAE at Berkeley. Peak 

morphology and separation between the 9.3 and 10 alleles of the TH01 allelic ladder 

were virtually identical between the two coating procedures and similar to that produced 

by ABI 310. In addition, the pDuramide coated µCAE microchips (8 runs) demonstrated 

a greater number of open capillaries (~ 20% more) than the modified Hjerten coated 

microchips (7 runs). 

For the concordance study, 47 single-source DNA samples were extracted and 

purified from buccal swabs and dried blood cards by VDFS. Full concordance was 

obtained for all 47 DNA profiles as confirmed using the ABI 310 and by the VDFS staff 

DNA index. 

Sensitivity & mixture studies: The DNA samples were purified from either buccal 

swabs or tissue samples as defined.5 The sensitivity study was performed on microchips 

coated with the Hjerten and pDuramide dynamic coating procedure using a sensitivity 

series provided by NIST and VDFS. As demonstrated in Figure 3, the results showed that 

the sensitivity of the µCAE device was not affected by the coating and comparable to that 

reported for commercial CE instruments6-8 and to that reported by Yeung et al.1 

In mixture study, PowerPlex 16 samples amplified using mixed DNA samples 

prepared by VDFS at the ratios of 1:0, 9:1, 3:1, 3:2, 2:3, 1:3, 1:9 & 0:1 were analyzed 

using microchip coated with pDuramide. The majority of minor contributor alleles were 

detected at the 3:1 and 1:3 ratio samples. While all minor components were detected in 

these samples previously in Yeung et al. 1, alleles below threshold were observed for 

allele 12 at D3S for the 3:1 samples, as for allele 9 at TH01 and allele 11 at Penta E for 

the 1:3 sample. These differences were possibly due to the differences in methods used in 

estimating DNA concentration by VDFS and by NIST in Yeung et al.1 For both the 9:1 

and 1:9 samples, minor contributor alleles were above the peak threshold at many loci, 

consistent with other reports.1,7-9 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
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Figure 3. MicroCAE PowerPlex 16 profiles of sensitivity study samples using a single-source male DNA 
sample amplified with (A) 2 ng of input DNA and (B) 125 pg of input DNA. (Top: Fluorescein channel, 
Middle: TMR channel, Bottom: JOE channel.) 

Non-probative analyses: PowerPlex 16 samples of 19 non-probative DNA extracts 

from five cases were prepared. All DNA samples were quantified at PBSO. Although 

DNA profiling was originally done using various PCR-based human identification kits, 

100% concordance was obtained for µCAE data compared to the original case reports (C. 

Crouse, personal observations). 
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The successful transfer the prototype µCAE system to a forensic laboratory 

setting and its application to actual forensic STR typing samples without significant 

modifications further demonstrate its functionality and attests to ease of use of the final 

instrument and protocol. A review paper on this topic and the vision of integrated 

microchip technology for forensics will be published in Promega’s Profiles in DNA to 

inform the forensic community.10 

3. Development of energy-transfer (ET) cassette labeled multiplex typing systems 

A 16-plex STR typing system has been developed11 with improved energy-transfer 

fluorescent dye cassette labels using primer sequences in the PowerPlex 16 kit. This kit 

was chosen because of its readily available sequence information in the public domain.7 

To maintain similar dye-induced mobility shifts, FAM labeled loci were replaced with 

FAM-FAM cassette, JOE with a FAM-R6G cassettes, and TMR with FAM-TAMRA 

cassettes. Each ET primer was subject to systematic monoplex PCR and µCAE 

evaluations to ensure it was yielding the expected increase fluorescent signals before it 

was included in the multiplex. Before multiplex construction, we also looked at the 

effective annealing temperatures of three cassette labeled primers to show that ET-

primers behaved like the single-dye primers. We then compared the performance our ET 

16-plex with PowerPlex 16 to evaluate its ability to produce higher STR amplicon 

fluorescence signals from low-level DNA, to amplify DNA templates at reduced PCR 

cycle counts, and to perform typing on challenging DNA samples extracted from variety 

of forensic evidence. All µCAE operation and analysis procedures follow Yeung et al.1 

except for microchannel coating procedure which follows a pDuramide coating 

procedure. The findings and technical details are summarized below for each study. 

Annealing temperature study: The study characterized five annealing 

temperatures of energy-transfer (ET) cassette-labeled primers for three loci, (TH01, Penta 

D and vWA); each primer was coupled to a different ET-cassette label and compared in 

parallel to the corresponding single-dye labeled primers. The results of this study show 

that the ET-primers and single-dye primers follow similar annealing trends. It is 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
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observed that 60 oC is the most effective annealing temperature for all three ET-cassette 

labels. 

Increased fluorescent signals: Equimolar ET-cassette labeled STR primers were 

electrophoretically separated together with the corresponding single fluorescent-dye 

labeled primers. ET-cassette labeled primers yield 1.5–8X higher fluorescence 

intensities. To examine the effects of thermal cycling on ET-labeled amplicon signals, 

amplified PCR products were produced with both types of dye labeled primers on three 

STR loci under identical conditions. The amplified ET labeled PCR products displayed 

the expected increase in fluorescence intensities. These results confirm that higher 

fluorescence-signal PCR products can be achieved using ET-cassette labeled primers 

under the same PCR conditions as conventional single fluorescent-dye primers. 

The ET 16-plex typing system was constructed first using the same primer 

concentrations in PowerPlex 16 (Promega, personal communication) followed with 

subsequent adjustments of primer concentrations by typing of a single-source DNA 

sample, A-18 obtained from Promega. The final ET 16-plex primer concentrations used 

were either the same or lower than those in PowerPlex 16 with equal forward and reverse 

primer concentrations (except for vWA which is 2X the concentration of the commercial 

system for ease of balancing). A 10X single-dye primer mix was also prepared using the 

same primer concentrations for in-house control. 

Representative A-18 profiles generated with both ET 16-plex and the PowerPlex 

16 kit are shown in Figure 4. ET-cassette labeled STR alleles yielded 1.6–9X higher 

fluorescence intensities than single-dye labeled alleles amplified with PowerPlex 16. 

Figure 5 illustrates the increased signal-to-noise (S/N) ratios of 2–6.5X for FAM-FAM 

loci, 1.6–6.6X for FAM-R6G loci and 2–8.7X for FAM-TMR loci compared to the 

corresponding single-dye labeled fragments. The increased signal intensity at an STR 

locus is the averaged ratio of the ET-allele S/N to the single-dye labeled allele based on 

two data sets (four alleles for heterozygotes and two alleles for homozygotes) from 

identical PCR reactions analyzed within the same µCAE run. 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
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Figure 4. Profiles of 0.5 ng of A-18 DNA amplified with (A) ET 16-plex and (B) PowerPlex 16. 

Sensitivity study: The sensitivity of the ET 

16-plex STR typing system was assessed and 

compared to PowerPlex 16 using samples amplified 

from a dilution series of A-18 DNA. Figure 6 plots 

the percent allele detection from 0.25 to 0.0039 ng 

of DNA template. All 29 expected STR alleles 

(defined as S/N ≥ 3) are achieved with the 62.5-pg 

samples amplified with the ET 16-plex. At the same 

DNA input, only 79% and 72% of the profile was 

successfully typed from the PowerPlex 16 and the 

in-house SD 16-plex samples, respectively. With 

only 31.3 pg of DNA we could still detect ~97% of 

Figure 5. Average fluorescence intensity ratios of ET labels 
versus single-dye labels at each STR locus. (A) 2–6.5X for 
FAM-FAM labeled loci, (B) 1.6–6.6X for FAM-R6G loci and 
(C) 2–8.7X for FAM-TMR loci. 
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the profile using the ET 16-plex. This increase in sensitivity over the single fluorescent-

dye labeled multiplex systems demonstrates the capability of ET primers to achieve 

higher signals or the same signals with less template DNA. This achievement should 

advance low-copy number (LCN) typing6,12 by eliminating the need for increased thermal 

cycles which frequently results in non-specific amplification. At the same time, the 

reduced DNA requirement for a meaningful DNA profile translates into a higher STR 

typing success rate and reduces the cost and delay caused by repeat typing. 

Figure 6. Percentage of full STR profiles obtained for DNA samples amplified with ET 16-plex, single-dye 
16-plex and PowerPlex 16 as a function of (A) amount of input DNA and (B) the number of PCR cycles. 

Reduced PCR Cycle Study: The traditional approach for performing STR typing 

of poor-quality DNA is to increase the number of PCR cycles, but this can evoke false 

amplification or allele drop-in.6, 12-14 With the increased sensitivity of ET labels, we 

demonstrated the possibility of reducing the total number of PCR cycles to speed 

analyses and reduce non-specific background. We performed experiments to type 0.5 ng 

of DNA template at 30, 29, 28 and 27 cycles. Figure 6B illustrates that full profiles were 

obtained using the ET 16-plex with as few as 28 cycles and a 97% profile was obtained at 

27 cycles. The higher performance of the ET 16-plex was further exhibited when 

comparing the 27-cycle PCR samples (98% vs. 87% profile). The results of this study 

demonstrated the potential of using ET-cassette labeled primers to achieve typing of 

compromised DNA samples without raising the number of PCR cycles, thereby reducing 

analysis time and complication in DNA profile interpretation. 

Real World Samples Typing: To explore the potential of using ET cassette 

labeled primers to perform analyses on casework samples, we have typed 6 difficult 

forensic DNA samples from case evidence previously processed by PBSO. The sexual 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
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assault case DNA samples were extracted from buccal swabs, semen swab from 

underwear (both sperm and non-sperm fractions), whole blood and blood swabs from a 

towel. All DNA samples were amplified using the ET 16-plex and PowerPlex 16 systems 

under the same conditions and it was shown that the ET 16-plex produced equivalent or 

better results in all cases. 

4. Development of single channel integrated PCR-CE analysis system on a portable 

instrument: We have successfully developed and evaluated a portable forensic analysis 

system consisting of a microfluidic device for amplification and separation of STR 

fragments together with an instrument that contains 4-color confocal laser fluorescence 

detection and all the necessary optical and electronic components for chip operation. To 

explore the forensic applications of this portable system, a 4-plex mini-Y chromosome 

STR typing kit was first developed and successfully performed on the microsystem with 

a 90-min analysis time. The performance of this system for forensic STR typing was 

evaluated on sensitivity, real-case sample and mixture analyses. A field demonstration of 

the real-time DNA typing was successfully performed. Results of this work and the 

technical details were disseminated in the Analytical Chemistry. 15 To further realize a 

practical on-site STR typing, a 9-plex autosomal STR typing system was developed and 

optimized. We are now exploring the feasibility of using our portable microsystem to 

perform real-time DNA analysis at a mock crime scene in collaboration with PBSO. 

Microdevice design and fabrication: The 1st generation microdevice we developed for 4

plex mini-Y STR typing contains a 160-nL PCR chamber with an integrated heater and a 

four-point resistance temperature detector (RTD) for PCR amplification and a 7-cm-long 

CE separation channel for CE separation (Figure 7A). To extend the microdevice to 

autosomal STR typing, a 2nd generation of the PCR-CE microdevice with a co-injection 

structure has been constructed to achieve sizing calibration. As shown in Figure 7C, a 20

µm wide microchannel connected to a sizing standard reservoir was added to the cross 

injector. The width ratio of the co-injection channel to the PCR sample channel was 

optimized to achieve balanced injection of PCR amplicons and sizing standard 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
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simultaneously. Figure 7D shows a fluorescence image of PCR amplicons co-injected 

with a sizing standard. 

Portable instrument: The instrument used to perform analyses with the microdevice 

is shown in Figure 7E. The instrument contains a 488-nm frequency doubled diode laser, 

an optical system for detecting four different fluorescence signals, pneumatics for the on-

chip PDMS microvalves, electronics for PCR temperature control, and four high voltage 

power supplies for CE. 

(i) Quadruplex mini-Y STR typing: The quadruplex mini-Y STR system included 
amelogenin and three Y-chromosome STR loci, DYS390, DYS393 and DYS439. The 
operational details are summarized in the full technical report and in ref. 15. The key 

findings are summarized below. 

Monoplex and multiplex amplifications: We first performed singleplex amplifications on 

each locus to examine the functionality of the PCR-CE microsystem as well as the 

amplification performance of these DNA markers. As shown in Figure 8A, each DNA 

marker demonstrated a similar amplification efficiency and good sensitivity. Following 

successful amplifications on each locus individually, a multiplex PCR-CE experiment 

was carried out on this four-locus multiplex system. As shown in Figure 8A, all the peaks 

(106, 112, 123, 171 and 191 bp) were fully resolved and balanced. Compared with 

singleplex amplifications, multiplex STR amplifications exhibit lower amplicon yields 

due to competition between each locus. Therefore, both the initial template copy number 

(50 copies) and the PCR cycle number (35 cycles) were increased to compensate for this 

effect. 

A limit-of-detection (LOD) analysis for multiplex amplifications of 9948 male standard 

genomic DNA was performed. Figure 8 presents results from a series of amplifications 

conducted from 0, 20, 30 and 50 copies of template in the PCR chamber with 35 PCR 

cycles. Even with only 20 copies of DNA template in the reactor, the multiplex 

amplification still shows all the expected peaks in the electrophoregram. 
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Figure 7. (A) Mask design for the PCR-CE microchip. The glass microchannels are indicated in black, the 
microfabricated RTD and electrodes are in green, the heater is shown in red, the gold leads of the heater are 
in gold, and the valves are drawn in blue. (B) Exploded view of the assembly of the PCR-CE microchip, 
showing the RTDs on the upper surface of the RTD wafer, the glass microchannels etched in the lower 
surface, and the heaters fabricated on the upper surface of the heater/channel wafer. (C) Design of the PCR
CE chip with a co-injection structure. (D) Fluorescence image of the PCR amplicons and sizing standard 
co-injection. (E) Photograph of the portable PCR-CE system. 
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A B. 

C. D 

E. Figure 8. Studies of (A) singleplex and 
multiplex amplifications, (B) limit of 
detection, (C) casework sample analysis, and 
(D) mixture analysis using the PCR-CE 
integrated device on the portable instrument. 
The detect limit of the system was 
determined to be 20 copies. The portable 
system was able to analyze real world 
forensic casework samples from oral swab 
and bone extract and to perform successful 
1:10 male-female mixture samples. (E) 
Quadruplex mini-Y STR profile from 50 
copies of 9948 standard DNA obtained in the 
field demonstration at the Seventh Annual 
DNA Grantees’ Workshop. 
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Analysis of forensic casework samples: To verify the performance of our portable 

system on real-world forensic samples, we selected two typical samples, one from an oral 

swab and the other from human bone, which were previously processed and analyzed by 

the Palm Beach County Sheriff’s Office. Figure 8C (Trace A and B) presents the PCR 

analyses conducted from male and female standard DNA as controls, showing all the 

expected peaks with correct gender discrimination. Figure 8C (Trace C) presents an 

amplification and analysis of the DNA sample extracted from an oral swab. All the 

amplicons in four loci were successfully obtained, indicating the sample is male DNA. 

Trace D shows only one peak at 106 bp, corresponding to the successful amplification of 

female human bone DNA. 

Mixture analysis: Mixture analysis was carried out by mixing male and female 

standard genomic DNA together during the sample preparation. The results of this 

experiment in Figure 8D show that, as the ratio increased, the 106-bp amplicon from X 

chromosome became more and more dominant over the 112-bp Y-chromosome product. 

The peak area ratios are roughly equal to the initial template ratios of Y-to-X 

chromosomes (1:3, 1:11 and 1:21). The other three Y-chromosome loci (DYS390, 

DYS393 and DYS439) were still fully amplified and balanced in each case. 

Field demonstration: Finally, we carried out a field demonstration of the portable 

microsystem at the Seventh Annual DNA Grantees’ Workshop at Washington, D.C. in 

2006. As shown in Figure 8E, a full profile of the quadruplex STR system amplified from 

50 copies of 9948 male standard DNA was obtained, demonstrating the portability, 

robustness and reliability of the system. 

(ii) Nine-plex autosomal STR typing: To further extend the application of this 

portable microsystem, a 9-plex autosomal STR typing system has been constructed using 

primer sequences employed in PowerPlex® 16. It consists of Amelogenin, and eight STR 

loci (D3S1358, THO1, D21S11, D5S818, D13S317, D7S820, vWA, and D8S1179) with 

a size range of 106–258 bp The key findings are summarized in the following: 

System characterization: We first investigated on-chip PCR amplification and 

separation of 9947A and 9948 standard DNA using the 9-plex STR system on the 2nd 

generation microdevice. Figure 9 shows the successful amplification profiles on 9947A 
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and 9948 standard DNA obtained from 100 copies of template with 32 PCR cycles in 2.5 

hr. using this PCR-CE microdevice. All the alleles of 9947A and 9948 standard DNA 

were balanced, fully resolved, and correctly sized. 

Figure 9. 9-plex STR profiles obtained from 100 copies of (A) 9947A and (B) 9948 DNA on the portable 
PCR-CE microsystem with 32 PCR cycles. Separation was achieved in 5 % LPA with 6 M urea in a 7-cm 
microchannel at 250 V/cm. 

A limit-of-detection (LOD) analysis for multiplex amplifications of 9947A 

standard DNA was also performed with serially diluted DNA templates. The portable 

microsystem was able to produce 100% profiles down to 100 copies of DNA in the PCR 

reactor. 

Our demonstration of successful STR analyses performed on this portable PCR-CE 

system validates the concept of point-of-analysis DNA typing of forensic casework, of 

mass disaster samples, or of individuals at a security checkpoint. 

Dissemination: We have written or published five papers and made 10 conference 

presentations on this work. See detailed listing of these activities after the Technical 

Report. 
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DETAILED TECHNICAL REPORT 

Review of Literature 

The escalating backlog of crime scene evidence in forensic laboratories1 and the 

substantially increasing number of items submitted for DNA testing drives the need to 

automate forensic DNA analysis. However, forensic laboratories face unique challenges 

in achieving this goal since evidentiary samples are obtained from widely varying 

substrates, and have different degrees of DNA degradation, amounts of PCR inhibitors, 

and amounts of DNA. Any automated system used to perform the different steps involved 

in forensic DNA testing must be flexible and sensitive enough to accommodate the great 

disparity in DNA quality and quantity. While automated capillary electrophoresis (CE) 

systems for short tandem repeat (STR) analysis have been in place in forensic 

laboratories for several years,2-6 the application of robotic DNA extraction to casework 

samples7-9 and automated DNA quantitation systems10-14 have only appeared recently. It 

is also desirable to develop a thermocycler and DNA electrophoresis system that can 

substantially reduce the 3-hour PCR process using current commercial typing systems to 

improve the turn-around time as well as the number of cases an examiner can complete. 

One key issue in forensic laboratories is throughput. The highest throughput CE 

instrument currently available for forensic analysis is the ABI 3100 Capillary DNA 

Sequencer that contains only 16 capillaries.15 In order to complete analysis of a single 

tray of 96 samples, it still takes many hours for electrophoresis and data capture. Current 

capillary electrophoresis systems in place, however, are not equipped to sufficiently 

combine throughput with automation so that data are captured and analyzed in the most 

efficient, time saving manner. 

Another generic problem with capillary array separation systems is the inefficient 

injection (<1%) of STR fragments when injecting from high salt PCR solutions. This 

inefficiency is a disadvantage when performing “touch” evidence or low copy number 

(LCN) or degraded DNA typing. Although increased sensitivity required to successfully 

type LCN samples can frequently be achieved by use of additional PCR cycles16-18 or by 

reduced amplification reaction volume,19,20 drop-in alleles can be introduced which can 

potentially interfere with accurate sample profiling. Higher sensitivity fluorescence 

labeling and more efficient injection are needed to address these difficulties. 
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The forensic community would benefit from the development of a multi-capillary 

array electrophoresis system that has integrated sample processing including initially 

product desalting and concentration before injection, and eventually rapid thermocycling 

as well as DNA template capture and purification. These capabilities would shorten the 

time for the thermocycling and electrophoretic process, would increase reliable 

sensitivity for LCN profiling, and could dramatically reduce the amount of instrument 

and hands-on time necessary to analyze the STR samples. Moreover, since the DNA 

sample is placed only once into a well in an integrated system, a fully automated 

instrument would then carry the sample through the PCR process to electrophoresis and 

data capture and the combined system could reduce the possibility of sample mix-up and 

cross contamination. 

Many of these needs were critical issues in the Human Genome Project a decade ago 

and our group conquered them through the development of improved, high-throughput 

capillary array electrophoretic (CAE) separation systems,21, 22 through the development of 

better energy transfer dye labeling systems with 2- to 8-fold sensitivity enhancements23 

and through the utilization of conventional but very useful macro-robotic systems for 

sample transfer. Until recently, the focus of most new technology development has been 

on demonstrations of forensic multiplex STR separations in single channel devices.24, 25 

In 2006, our group established a milestone in high-throughput, high-quality forensic STR 

analysis using a 96-lane microfabricated capillary array electrophoresis (µCAE) system. 

The successful demonstration of the microdevice and collaboration with the Virginia 

Department of Forensic Science as well as the Palm Beach County Sheriff’s Office led 

the eventual technology transfer and validation of a prototype µCAE instrument at 

VDFS.26 This achievement is a major step in migrating towards microchip utilization for 

forensic DNA typing and sets the stage for the goal of incorporating the immediate 

upstream PCR processes to achieve a fully integrated STR analysis system. 

Over the past three years the state-of-the-art in integrated sample processing has 

dramatically advanced in our lab. The keys to this success were (i) the development of 

pneumatic PDMS valve structures for reliable fluidic containment, valving and 

pumping,27 (ii) the development of precisely microfabricated and reliable temperature 

sensors and integrated heater systems,28 and (iii) the development of integrated 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

http:devices.24


Mathies Technical Report 1/8/08 22 

oligonucleotide-gel capture matrices for PCR product purification.29 We have presented 

an integrated microfluidic system for Sanger sequencing suggesting that the entire 

process can be performed with at least a 10-fold volume reduction.30 If these same 

technologies can be applied to forensic identification, then a scaleable paradigm for 

integrated forensic DNA analysis will be in hand that can empower both small and large 

labs with the most modern technical capabilities. 

These technologies are sufficiently robust that they can be combined into complex 

integrated circuits to perform a wide variety of genetic analysis tasks. For example, 

Blazej et al.31 performed integrated thermal cycling in a 200 nL reactor coupled to 

integrated oligo-gel capture of the sequencing products and efficient (10%) injection 

producing over 500 base reads from only 1 femtomole of template. More recent work 

perfected an in-line capture and injection strategy that provides quantitative capture and 

injection of all of the thermally cycled products enabling sequencing from only 100 

attomoles of template.32 Sequencing and genetic analysis microdevices have also been 

extended to multiple reactors and separation channels. Liu et al. developed a four 

separation channel structure where each channel is coupled to an integrated PCR 

reactor.33 This device performed parallel multiplex PCR amplification, injection and 

separation of the ds-DNA products in under 30 min with 10-copy sensitivity. This four 

channel device was also modified to perform multiplex one-step RT (reverse 

transcriptase) PCR analysis of RNA targets.34 This device demonstrated sensitive (10 

copy) RNA analysis and multichannel multiplex RNA transcript analysis. Only the IR 

thermal cycler system by Landers has been similarly extended to perform complex 

sample-to-read analysis of infectious disease.35 It is notable that they accomplished this 

by using the PDMS valve structures developed in our group for fluidic control (following 

training at Berkeley). Clearly the separation, sample processing and target amplification 

technologies that have now been developed provide a remarkable robust platform that is 

ready to be transferred to address the needs of forensic analysis. 

Research Methods, Findings and Conclusions 

1. Evaluation of µCAE performance with commercial STR typing systems 
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A 96-channel microfabricated capillary array electrophoresis (µCAE) system as 

shown in Figure 1 was evaluated for forensic short tandem repeat (STR) typing using 

PowerPlex 16® and AmpFℓSTR® Profiler Plus® multiplex PCR systems in collaboration 

with VDFS and PBSO. Performance evaluated included analysis speed, fragment 

resolution, profile concordance, mixture allele discrimination, sensitivity and real-world 

forensic sample typing capability. Results of this work and the technical details were 

disseminated in the Journal of Forensic Sciences. 36 A copy of the paper is included in the 

Appendix. A summary of the key findings and technical details of this work is provided 

in the following. 

All microfabrication performed followed procedures detailed in Yeung et al.36 

Briefly, the microdevices were fabricated on 150-mm diameter borofloat glass wafers 

(Schott, Yonkers, NY) using standard photolithographic method. After photolithography, 

all features were isotropically etched to a depth of 25 µm with hydrofluoric acid. The 

post-etch width is 85 µm for the arm from the sample to the separation channel, 300 µm 

from the waste to the separation channel, and 200 µm for the separation channel 

connecting the cathode and the central anode. The fluidic wells were diamond-drilled into 

the etched wafers using a CNC mill. The wafer was then cleaned and thermally bonded to 

a blank wafer to create a closed channel sandwich structure. 

All DNA and PCR samples were prepared by PBSO using standard procedures 

following manufacturer protocols. Aliquots of the amplified samples were shipped to 

Berkeley and VDFS for independent analyses on the µCAE system and an ABI 310, 

respectively. Analysis of DNA profiles generated using the µCAE system was performed 

using the Amersham MegaBACE Fragment Profiler (GE Healthcare, Piscataway, NJ). 

Speed, Resolution & Concordance: The high-throughput µCAE system produced 

high-speed (< 30 min) parallel sample separations with single-base resolution based on 

the 9.3/10 THO1 alleles in the PowerPlex 16 allelic ladder. Forty-eight single-source 

samples (28 Hispanic, 3 Asian and 17 African American) previously analyzed by PBSO 

were accurately typed, as confirmed on an ABI Prism 310 and/or the Hitachi FMBIO II. 

Mixture study: STR samples consisting of male and female DNA at the ratios of 

10:0, 9:1, 3:1, 3:2, 2:3, 1:3, 1:9 and 0:10 were analyzed. The 3:1 and 1:3 samples are the 

lowest (highest) ratios in which all minor components were detected and reliably typed. 
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Figure 1. (A) Layout of the 96-lane µCAE chip. The 96 adjacent microchannels are grouped into 48 
doublets on a 150-mm diameter glass wafer. (B) Each doublet contains two cross-injector structures 
with two sample wells that share a common cathode and waste wells. During electrophoresis, the 
sample plug is formed at the intersection of the sample and waste arms and migrates down through 
the hyperturns towards the central anode. (C) The rotary confocal fluorescence scanning system 
consists of a 488-nm argon ion laser beam which is passed through a dichroic beam splitter and 
directed up the hollow shaft of a stepper motor. The beam is deflected 1 cm off the axis of rotation by 
a rhomb prism and focused by an objective on the microchannels. The emitted fluorescence travels 
back along the same path into a 4-color confocal detector. A polydemethlysiloxane (PDMS) 
elastomer ring is placed on top of the µCAE chip to create a continuous buffer reservoir for the 
cathode and waste wells. An electrode ring is used to supply voltage to sample wells. 

Sensitivity study: The sensitivity of the µCAE system was assessed using 

PowerPlex 16 and Profiler Plus samples amplified with serially diluted DNA templates 

(22, 11, 5.5, 2.75, 1.38, 0.69, 0.34, 0.17, 0.08, 0.043, 0.021, 0.011, and 0.0054 ng). The 

instrument produced full profiles from sample DNA down to 0.17 ng, yielding 100% of 

the expected profiles for both tying kits; a threshold similar to that found for the ABI 310. 

Forensic DNA sample typing: Seventeen non-probative samples were correctly 

typed from case evidence previously processed and analyzed by PBSO using both the 

PowerPlex 16 and Profiler Plus systems. The DNA extracts were collected from a variety 

of common stain sources encountered in forensic analysis, including semen, saliva, 

single, and mixed blood stains from sexual assault, paternity, burglary, armed robbery as 

well as homicide cases. The DNA data obtained using the µCAE system for the less 
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complicated paternity and single-source bloodstain case samples produced full profiles 

that matched with the previously reported case results. For the sexual assault DNA 

samples, both µCAE and ABI 310 profile results for the sperm-fraction obtained from the 

vaginal-swab semen agreed with the original report analysis - the DNA profile did not 

match the suspect’s DNA profile. However, the µCAE system was able to discern 

additional alleles in the nonsperm fraction of the semen stain, consistent with the semen 

contributor that were not callable previously using the FMBIO II. For the bloodstain 

mixture collected from a knife blade and another from a sandal in a homicide, the µCAE 

profile results were identical to the original report as well as to the ABI 310 analyses, 

even at loci with imbalanced peak heights indicating major and minor contributors. 

This work successfully demonstrated that current standard commercial forensic 

typing kits can be effectively applied to our µCAE system with no modification - a 

significant step and knowledge gain towards the ultimate goal of developing of a 

completely integrated forensic STR typing microsystem. 

2. Development and validation of a prototype µCAE forensic scanner for VDFS 

A prototype µCAE chip scanner system from GE Healthcare (formerly 

Amersham Bioscience) has been successfully installed in VDFS and validated by VDFS 

forensic scientists in July 2007. The work on validation has been submitted to the Journal 

of Forensic Sciences and included in the Appendix.37 The system consists of a four-color 

microchannel plate (MCP) scanner (Fig. 2A), a gel/sample loader and a chip cleaning 

station (Fig. 2B and 2C), and was first delivered to the Mathies Lab at Berkeley in April 

2005. There were three major stages in achieving this goal. 

In the first stage, we performed initial testing on the scanning system for STR 

typing operation, troubleshot and identified the needs of additional software for MCP 

plate focusing on the stage as well as electrical current monitoring functions. We also 

tested the gel/sample loader and chip cleaning station for their ability to perform the 

appropriate functions as expected. In December 2005, forensic scientists Susan 

Greenspoon and Amy McGuckian visited Berkeley for their first training on the system, 

provided feedbacks and suggestions on areas and functions to be improved and 
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Figure 2. Pictures of 

the MCP system at 

VDFS consisting of 

(A) a four-color 

confocal scanner, 

(B) a gels/sample 

loader and (C) a 

microchip washing 

station. 

B C 

A 

incorporated. These included further modifications on the gel/sample loader for better 

gel use monitoring and on the data acquisition/processing software to better streamline 

with the DNA profiling analysis software —MegaBACE Fragment Profiler. 

The second stage marked the transfer of the MCP system outside of a research 

setting laboratory to a forensic one. In Feb 2006, Susan Greenspoon from VDFS visited 

the Berkeley lab again for a final hands-on training and demonstrated that she could 

perform successful STR typing repeatedly without the intervention of Berkeley scientists. 

The MCP system was shipped and installed at VDFS in April 2006 followed with fine 

tuning and minor adjustments of the operation procedures for a forensic laboratory 

setting. 

The final stage marked the mastery of the MCP system by VDFS forensic 

scientists and its validation for forensic STR typing. Standard validation assays 

performed include resolution measurements, concordance, sensitivity and mixture studies 

as well as non-probative and Y-STR sample typing. We have also examined the success 

rate of the 96-lane system and investigated alternative microchannel coating methods for 
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more user-friendly operation. STR data produced on both the µCAE device and the ABI 

310 were compared. The data produced from the µCAE device were sent to PBSO for 

comparison with previous DNA profiling results for the cases as well. Twenty one µCAE 

STR trace sets were also sent out to Cybergenetics for analyses on True Allele® System 

which generated identical results as those obtained on the MegaBACE Fragment Profile 

(GE Healthcare) genotyping software.37 

All PCR samples were amplified using the PowerPlex® 16 or the PowerPlex Y 

system following the manufacturer’s recommendations 38, 39 on a GeneAmp System 9600 

cycler (except as noted otherwise). The STR amplicons were electrophoresed on both the 

ABI Prism® 310 Genetic Analyzer and the µCAE device. Preparation of samples for 

electrophoresis on the ABI 310 was as follows: 1 µL of each PCR product was added to a 

loading cocktail containing 24 µL Hi-Di™ Formamide (ABI) and 1 µL Internal Lane 

Standard 600 (ILS600) (Promega Corp.). One allelic ladder sample was included for 

approximately every 15 samples. The ladder was prepared in the same manner as PCR 

products with 1.0 µL PowerPlex® 16 or PowerPlex® Y Allelic Ladder Mix added to the 

loading cocktail. Samples were denatured for 3 minutes at 95oC and snap-cooled on ice 

prior to loading. 

Sample preparation for µCAE analysis was as follows: 1 µl of each PCR product 

was mixed with 3 µL Hi-Di™ Formamide, 3 µL sterile Type 1 H2O, and either 1 or 0.75 

µL ILS600 following the procedure used by Yeung et al.36 The ladder was prepared by 

adding 2.0 µL PowerPlex® 16 Allelic Ladder Mix or PowerPlex® Y Allelic Ladder Mix 

(for PowerPlex® Y amplified samples) to a cocktail containing 2.5 µL Hi-Di™ 

Formamide, 2.5 µL sterile Type 1 H2O, and either 1 or 0.75 µL ILS600. Samples were 

denatured for 3 minutes at 95 °C and snap-cooled on ice prior to loading. 

For the ABI 310 analysis, the operation of the instrument followed the 

manufacturer’s directions for use with the STR typing kits.38, 39 The raw data were 

collected with ABI Data Collection Software and analyzed using GeneScan and 

Genotyper software, versions 3.1 and 2.5, respectively. Allele calls were performed 

using the PowerTyper™ 16 or PowerTyper™ Y Macros (Promega Corp.). 

Operation of the µCAE device followed the procedures outlined by Yeung et al.36 

For µCAE chips coated using the modified Hjerten procedure,40 a fresh coating was 
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applied every two weeks (S. Yeung, personal communication). For µCAE chips coated 

using the polyDuramide (pDuramide) dynamic coating polymer,41 the procedure for 

coating was as follows: µCAE chips were first flushed with deionized sterile water 

(dH2O) from the central anode to distribute fluid to all capillaries, then the microchannels 

were filled with 1 M HCl for 15 minutes followed with a dH2O flush. The microchannels 

were then filled with pDuramide coating solution and incubated for 15 minutes, followed 

with a dH2O flushed with then dried for use. A fresh coating was applied every 5 days. 

The following highlights the findings and technical details associated with each 

study. 

Precision, Resolution, Success Rate & Concordance: Precision results obtained 

by separating PowerPlex 16 allelic ladder samples on the µCAE instrument were 

compared to those obtained on ABI 310 at VDFS as well as on commercial multi-

capillary instruments previously. The single capillary ABI 310 at VDFS displayed better 

precision than the µCAE as well as data previously obtained at Berkeley. However, the 

precision of µCAE is essentially equivalent to commercial CAE systems (ABI 3100, 

3700 and MegaBACE 100) as shown on Table 1. 

Resolution measurements were obtained based on the TH01, CSF1PO, TPOX & 

Amelogenin loci in PowerPlex 16 allelic ladder using methods detailed in Buel et al.42 

Briefly, resolution results as shown in Table 2 obtained using µCAE were similar to those 

reported by various sources for ABI 310 as well as those measured for µCAE by Yeung 

et al36 using the TH01 locus. Resolution measurements for both Hjerten and pDuramide 

coating methods were nearly identical and were similar to those produced for the µCAE 

at Berkeley. Peak morphology and separation between the 9.3 and 10 alleles of the TH01 

allelic ladder were virtually identical between the two coating procedures and similar to 

that produced by ABI 310. In addition, the pDuramide coated µCAE microchips (8 runs) 

demonstrated a greater number of open capillaries (~ 20% more) than the modified 

Hjerten coated microchips (7 runs). 
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Table 1. Sizing Precision 

Instruments 
ABI 310 (VDFS) 

Sizing pre
Within-run 
0.03-0.06 bp 

cision (S.D.) 
Between-run 

0.03-0.06 bp 
± 3 S.D. 
± 0.18 bp 

µCAE (VDFS) 0.02-0.23 bp 0.08-0.14 bp ± 0.42 bp 
µCAE (Mathies’ lab data) --- 0.11-0.31 bp ± 0.93 bp 

ABI 3775 0.01-0.09 bp --- ---
ABI 37743 0.03-0.10 bp --- ---
ABI 3102 --- 0.02-0.12 bp ± 0.36 bp 
ABI 3105 --- 0.04-0.12 bp ---
ABI 31044 0.10 bp 0.20 bp ---
ABI 31045 0.01-0.13 bp ≤0.16 bp ---
ABI 310043 --- 0.03-0.17 bp ---
ABI 370043 --- 0.02-0.21 bp ---
FMBIO II46 --- --- ± 0.40-0.80 bp 

MegaBACE 100043 --- 0.04-0.17 bp ---

Table 2. Measurements of Resolution 

Instruments 
ABI 310 (VDFS) 

Rb 
1.15-1.72 

RSL 
0.67-0.99 

Vv 
0.64 

µCAE (Mathies’ lab data) 1.30-1.61 0.74-1.04 0.73 
µCAE (VDFS) Hjerten coating 1.35-1.53 0.78-0.91 0.80 

µCAE (VDFS) pDuramide coating 1.31-1.54 0.78-0.904 0.74 
ABI 31042 1.04-1.64 0.61-0.96 0.51 
ABI 31045 1.24-1.31 --- 0.43-0.49 

ABI 3105 --- --- ~0.30 
ABI 3103 1.13-1.49 --- ---
µCAE36 1.3 0.76 ---

For the concordance study, 47 single-source DNA samples were extracted and 

purified from buccal swabs and dried blood cards by VDFS using the DNA IQ™ System 

(Promega Corp., Madison, WI) according to the manufacturer’s protocol with minor 

modifications for buccal swab and blood stains samples as described47 and outlined in the 

VDFS procedure manual48 or using an organic extraction, followed by Micron YM-100 

clean-up as described in the manual. Full concordance was obtained for all 47 DNA 

profiles as confirmed using the ABI 310 and by the VDFS staff DNA index. 

Sensitivity & mixture studies: The DNA samples were purified from either buccal 

swabs or tissue samples as defined47 using the robotic DNA IQ™ extraction procedure or 

an organic extraction method as described above. The sensitivity study was performed on 

microchip coated with the Hjerten and pDuramide dynamic coating procedure using a 

sensitivity series provided by NIST (10, 5, 2.5, 1.25, 0.63, 0.31 and 0.15 ng) and VDFS 

(2, 1, 0.5, 0.25, 0.125, 0.062, 0.031 & 0.015 ng), respectively. As demonstrated in Table 

3 and Figure 3, the results showed that the sensitivity of the µCAE device was not 
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affected by the coating and comparable to that reported for commercial CE 

instruments17,49 and to that reported by Yeung et al.36 

In mixture study, PowerPlex 16 samples amplified using mixed DNA samples 

prepared by VDFS at the ratios of 1:0, 9:1, 3:1, 3:2, 2:3, 1:3, 1:9 & 0:1 were analyzed 

using microchip coated with pDuramide. The majority of minor contributor alleles were 

detected at the 3:1 and 1:3 ratio samples. While all minor components were detected in 

these samples previously in Yeung et al. 36, alleles below threshold were observed for 

allele 12 at D3S for the 3:1 samples, as for allele 9 at TH01 and allele 11 at Penta E for 

the 1:3 sample. These differences were possibly due to the differences in methods used in 

estimating DNA concentration by VDFS and by NIST in Yeung et al.36 For both the 9:1 

and 1:9 samples, minor contributor alleles were above the peak threshold at many loci, 

consistent with other reports.36, 46, 49, 50 

Non-probative & Y-STR analyses: PowerPlex 16 samples of 19 non-probative DNA 

extracts from five cases (two sexual assaults, a hit-and-run, aggravated battery, and 

aggravated robbery/aggravated battery) were prepared. All DNA samples were quantified 

at PBSO with Quantifiler™ Human DNA Quantification Kit (ABI), on a Biomek® 2000 

Laboratory Automation Workstation (Beckman Coulter, Inc., Fullerton, CA) for qPCR 

reaction set up. Fluorescent signals were detected using the ABI 7000 following the 

manufacturer’s recommendations.51 Although DNA profiling was originally done using 

various PCR-based human identification kits, 100% concordance was obtained for µCAE 

data compared to the original case reports (C. Crouse, personal observations). As shown 

in Figure 4, the minor contributor alleles from the sperm DNA which carried over into the 

non-sperm fraction are clearly visible and the major profile is consistent with the victim. 
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Figure 3. PowerPlex 16 profiles of sensitivity study samples using a single-source male DNA sample 
amplified with (A) 2 ng of input DNA and (B) 125 pg of input DNA. (Top: Fluorescein channel, Middle: 
TMR channel, Bottom: JOE channel.) 
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Table 3. Sensitivity Data.


VDFS DNA sample – pDuramide coating

FGA TPOX D8 vWA Amel P.E. D18 D21 TH01 D3 P.D. CSF D16 D7 D13 D5 

In house 
sample 
2 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
1 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
0.5 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
0.25 ng 22,24 8,11 10,13 18,20 XY 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
0.125 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10 10,11 11 10,11 11,13 
0.062 ng - - - - X,Y - 11 - 9 15 - - - - -
0.031 ng - 8,11 - 18 X,Y 5 15 - 9 15 - - - - - -
0.015 ng - - - - Y - - - 9 15 - - - - - -

NIST sample – modified Hjerten coating 
FGA TPOX D8 vWA Amel P.E. D18 D21 TH01 D3 P.D. CSF D16 D7 D13 D5 

NIST 
sample 
10 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
5 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
2.5 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
1.25 ng* 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
0.62 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
0.31 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
0.15 ng 19 8 14 17,18 X,Y 5 14,16 31.2,33.2 7 16 14 12 9 11 - -

*Data for sample obtained from a µCAE device run performed on a different day. 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Mathies Technical Report 1/8/08 33 

B. Victim 

A. Non-Sperm Fraction 

Figure 4. PowerPlex 16 profiles of (A) Non-sperm fraction mixed sample and (B) victim DNA sample 
obtained using the µCAE device. Top: Fluorescein channel, Middle: TMR channel, Bottom: JOE 
channel. 

In a Y-STR typing study, 12 PowerPlex Y samples were prepared from DNA 

extracts of mock sexual assault stain samples created by placing amounts of 1,000 (1K), 

10,000 (10K) or 50,000 (50K) spermatozoa on a half-epithelial swab (buccal or vaginal) 

provided by Promega Corporation. DNA samples were extracted either with the semi-

automated Differex™ method according to the vendor’s protocol52 or as described,47 and 

were quantified with the AluQuant® Human DNA Quantitation System (Promega Corp.). 
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A Biomek® 2000 Laboratory Automation Workstation (Beckman Coulter, Inc., Fullerton, 

CA) was used to set up the enzymatic reaction and the Luminoskan luminometer 

(Thermoelectron, West Palm Beach, FL) to detect the signal produced. DNA profile 

results were concordant between the two DNA separation instruments with some of the 

lower-signal samples (peak heights close to the 100 rfu threshold on the ABI 310 – or 

S/N < 3:1 for the µCAE data) not labeled. Note that no formal threshold for forensic 

STR typing has been established for the prototype µCAE instrument yet. Nonetheless, 

majority of the mock sexual assault samples provided STR profiles of similar high 

quality to those produced by the ABI 310. 

The successful transfer the prototype µCAE system to a forensic laboratory 

setting and its application to actual forensic STR typing samples without significant 

modifications further demonstrate its functionality and attests to ease of use of the final 

instrument and protocol. This milestone also establishes a significant step towards the 

development of a completely integrated STR analysis microdevice. A review paper on 

this topic and the vision of integrated microchip technology for forensics will be 

published Promega’s Profiles in DNA to inform the forensic community (Greenspoon, 

S.A., Yeung, S.H.I., Ban, J.D. and Mathies, R.A. Microchip capillary electrophoresis: A 

step towards DNA integrated forensic analysis system, Profiles in DNA, Promega Corp.). 

3. Development of energy-transfer (ET) cassette labeled multiplex typing systems 

A 16-plex STR typing system has been developed53 with improved energy-transfer 

fluorescent dye cassette labels using primer sequences in the PowerPlex 16 kit. This kit 

was chosen because of its readily available sequence information in the public domain.49 

To maintain similar dye-induced mobility shifts, FAM labeled loci were replaced with 

FAM-FAM cassette, JOE with a FAM-R6G cassettes, and TMR with FAM-TAMRA 

cassettes. Each ET primer was subject to systematic monoplex PCR and µCAE 

evaluations to ensure it was yielding the expected increase fluorescent signals before it 

was included in the multiplex. Before multiplex construction, we also looked at the 

effective annealing temperatures of three cassette labeled primers to show that ET-

primers behaved like the single-dye primers. We then compared the performance our ET 

16-plex with PowerPlex 16 to evaluate its ability to produce higher STR amplicon 
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fluorescence signals from low-level DNA, to amplify DNA templates at reduced PCR 

cycle counts, and to perform typing on challenging DNA samples extracted from variety 

of forensic evidence. All µCAE operation and analysis procedure follow Yeung et al.36 

except for microchannel coating procedure which follows a pDuramide coating procedure 

described in Development and validation of a prototype µCAE forensic scanner for 

VDFS session above. The findings and technical details are summarized below for each 

study. 

Annealing temperature study: The effective annealing temperature of three 

cassette labeled primers were investigated and determined to be 60 oC. The study 

characterized five annealing temperatures (58, 59, 60, 61 and 62 oC) of energy-transfer 

(ET) cassette-labeled primers for three loci, (TH01, Penta D and vWA); each primer was 

coupled to a different ET-cassette label and compared in parallel to the corresponding 

single-dye labeled primers. The FAM labeled TH01 primer was compared with the FAM

FAM label; the JOE labeled Penta D with FAM-R6G; and the TAMRA labeled vWA 

with FAM-TAMRA. All PCR reactions (25-µL) were prepared with 1 ng of 9947A DNA 

and amplified with 0.4 µM fluorescent primers for thirty-two cycles following the 

manufacturer recommended conditions for PowerPlex 16. Equal fractions of the ET- and 

single-dye labeled PCR products amplified at the same annealing temperature for each 

locus were mixed with the ILS 600 and injected for µCAE analyses using the same 

conditions detailed in Yeung et al.36 Each mixed sample was loaded into two to four 

microchannels and the averaged signal-to-noise (S/N) ratio for each allele was 

investigated as a function of the annealing temperature at each locus. The results of this 

study show that the ET-primers and single-dye primers follow similar annealing trends. 

It is observed that 60 oC is the most effective annealing temperature for all three ET-

cassette labels. 

Increased fluorescent signals: Equimolar ET-cassette labeled STR primers were 

electrophoretically separated together with the corresponding single fluorescent-dye 

labeled primers. ET-cassette labeled primers yield 1.5–8X higher fluorescence intensities 

as shown in Figure 5A. To examine the effects of thermal cycling on ET-labeled 

amplicon signals, amplified PCR products were produced with both types of dye labeled 

primers on three STR loci under identical conditions. The amplified ET labeled PCR 
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products displayed the expected increase in fluorescence intensities as presented in 

Figure 5B. Mobility shifts (10.1 bases for FAM-FAM, 9.9 bases for FAM-R6G, and 8.9 

bases for FAM-TMR) were observed for the ET-cassette labeled products as a result of 

the extra fluorescent dye and the sugar phosphate backbone structure in the ET cassette. 

These results confirm that higher fluorescence-signal PCR products can be achieved 

using ET-cassette labeled primers under the same PCR conditions as conventional single 

fluorescent-dye primers. 

Figure 5. (A) Electropherograms of 
equimolar ET-cassette labeled primers and 
their corresponding single-dye labels. (i) 
FAM-FAM primer gives ~1.5X increase in 
intensity vs. FAM primer, (ii) FAM-R6G 
gives ~2.5X vs. JOE and (iii) FAM-TMR 
gives ~ 3X vs. TMR. (B) 
Electropherograms of equal fraction of 
monoplex PCR reactions amplified with 
ET cassette labeled primers and single-dye 
labeled primers. 

The ET 16-plex typing system was constructed first using the same primer 

concentrations in PowerPlex 16 (Promega, personal communication) followed with 

subsequent adjustments of primer concentrations by typing of a single-source DNA 

sample, A-18 obtained from Promega. The final ET 16-plex primer concentrations used 

were either the same or lower than those in PowerPlex 16 with equal forward and reverse 

primer concentrations (except for vWA which is 2X the concentration of the commercial 

system for ease of balancing). A 10X single-dye primer mix was also prepared using the 

same primer concentrations for in-house control. All DNA samples were previously 

purified by Promega or PBSO using standard DNA extraction protocols. All assays were 

performed with 0.5 ng of input DNA in 12.5-µL reactions for 31 cycles unless noted 
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otherwise. For multiplex construction, the PCR reaction (0.5 µL) was mixed with 1 µL of 

ILS 600 and brought up to 18 µL in 50% formamide prepared in deionized water. For all 

other studies, the PCR (1 µL) reaction was mixed with 1 µL of ILS 600 and brought up to 

8 µL with 50% formamide. µCAE analyses followed the previous description in Yeung et 

al.36 

Representative A-18 profiles generated with both ET 16-plex and the PowerPlex 

16 kit are shown in Figure 6. ET-cassette labeled STR alleles yielded 1.6–9X higher 

fluorescence intensities than single-dye labeled alleles amplified with PowerPlex 16. The 

FAM dye peak observed on the ET 16-plex samples is a contaminant that could be 

removed by more rigorous ET-cassette- primer purification. Figure 7 illustrates the 

increased signal-to-noise (S/N) ratios of 2–6.5X for FAM-FAM loci, 1.6–6.6X for FAM

R6G loci and 2–8.7X for FAM-TMR loci compared to the corresponding single-dye 

labeled fragments. The increased signal intensity at an STR locus is the averaged ratio of 

the ET-allele S/N to the single-dye labeled allele based on two data sets (four alleles for 

heterozygotes and two alleles for homozygotes) from identical PCR reactions analyzed 

within the same µCAE run. 

Figure 6. Profiles of 0.5 ng of A-18 DNA amplified with (A) ET 16-plex and (B) PowerPlex 16. The minor 
dye impurity observed at ~ 9 minutes in some of the ET 16-plex traces does not interfere with any of the 
calls and is easily removed by additional purification. 
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Sensitivity study: The sensitivity of the ET 

16-plex STR typing system was assessed and 

compared to PowerPlex 16 using samples amplified 

from a dilution series of A-18 DNA. Figure 8 plots 

the percent allele detection from 0.25 to 0.0039 ng 

of DNA template. All 29 expected STR alleles 

(defined as S/N ≥ 3) are achieved with the 62.5-pg 

samples amplified with the ET 16-plex. At the same 

DNA input, only 79% and 72% of the profile was 

successfully typed from the PowerPlex 16 and the 

in-house SD 16-plex samples, respectively. With 

only 31.3 pg of DNA we could still detect ~97% of 

the profile using the ET 16-plex. This increase in 

sensitivity over the single fluorescent-dye labeled 

multiplex systems demonstrates the capability of ET 

primers to achieve higher signals or the same signals 

with less template DNA. This achievement should advance low-copy number (LCN) 

typing by eliminating the need for increased thermal cycles which frequently results in 

non-specific amplification. At the same time, this increased sensitivity should improve 

typing of poor quality DNA samples by making minor or imbalanced alleles more readily 

detectable at the LCN threshold. 

Figure 7. Average fluorescence intensity ratios of 
ET labels versus single-dye labels at each STR 
locus. (A) 2–6.5X for FAM-FAM labeled loci, 
(B) 1.6–6.6X for FAM-R6G loci and (C) 2–8.7X 
for FAM-TMR loci. 

Figure 8. Percentage of full STR profiles obtained for DNA samples amplified with ET 16-plex, single-dye 
16-plex and PowerPlex 16 as a function of (A) amount of input DNA and (B) the number of PCR cycles. 
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Reduced PCR Cycle Study: The traditional approach for performing STR typing 

of poor-quality DN is to increase the number of PCR cycles, but this can evoke false 

amplification or allele drop-in.16-18, 55 With the increased sensitivity of ET labels, we 

demonstrated the possibility of reducing the total number of PCR cycles to speed 

analyses and reduce non-specific background. We performed experiments to type 0.5 ng 

of DNA template at 30, 29, 28 and 27 cycles. Figure 8B illustrates that full profiles were 

obtained using the ET 16-plex with as few as 28 cycles and a 97% profile was obtained at 

27 cycles. The higher performance of the ET 16-plex was further exhibited when 

comparing the 27-cycle PCR samples (98% vs. 87% profile). The results of this study 

demonstrated the potential of using ET-cassette labeled primers to achieve typing of 

compromised DNA samples without raising the number of PCR cycles, thereby reducing 

analysis time and complication in DNA profile interpretation. 

Real World Samples Typing: To explore the potential of using ET cassette 

labeled primers to perform analyses on casework samples, we have typed 6 difficult 

forensic DNA samples from case evidence previously processed by PBSO. The sexual 

assault case DNA samples were extracted from buccal swabs, semen swab from 

underwear (both sperm and non-sperm fractions), whole blood and blood swabs from a 

towel. All DNA samples (0.5 ng) were amplified using the ET 16-plex and PowerPlex 16 

systems under the same conditions, except for one sample which had only enough DNA 

for ET 16-plex analysis. DNA profiles generated on the µCAE system from samples 

amplified by both 16-loci multiplex kits were compared to the originally reported DNA 

profiles obtained by PBSO using the 9-loci PowerPlex 1.1 typing system wherever 

possible. 

In one casework sample, DNA profiles could only be obtained using the ET 16

plex for the blood standards of the suspect and the victim as well as a blood swab from a 

towel. Six and seven alleles were detected from the victim’s whole blood (Figure 9A) and 

towel blood swab (Figure 9B) using the ET 16-plex while zero or one allele was obtained 

using PowerPlex 16. The partial ET 16-plex blood standard profile provided additional 

allele information (2 alleles) and hence discrimination power for identification. For the 
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blood swab sample, since typing using PowerPlex 16 did not generate any profile 

information, the partial ET 16-plex profile was particularly useful as it offered enough 

information to link the blood on the towel to the victim, excluding the suspect. The 

broader ladder peaks compared to Figure 9B are partly due to the smaller time scale used 

and possibly old polymer and coating, which can be observed with commercial CE 

systems and is not characteristic of this platform or the chip itself which exhibits an 

~90% success rate. 

Figure 9. Profiles of closed PBSO casework DNA samples extracted from (A) victim’s whole blood and 
(B) towel swab, both amplified under the same conditions with (i) ET 16-plex and (ii) PowerPlex 16. 
Partial profiles (6 – 7 alleles) were obtained for samples amplified using the ET 16-plex while only 1 
allele or none were typed using PowerPlex 16. 

In a second set of casework samples, DNA profiles for the suspect’s buccal swab 

and the non-sperm fraction semen swab samples produced using both multiplex typing 

systems were comparable. Nonetheless, the non-sperm fraction profile information linked 
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the underwear back to the victim, who was uncertain about the possession of the 

underwear and this conclusion could not be drawn on the original report. Due to limited 

DNA availability, only ET 16-plex profile results were obtained for the sperm fraction of 

the semen swab sample. Although no comparison could be made to a PowerPlex 16 

profile for this sample, the partial ET profile results (6 alleles) provided additional allele 

information to those obtained by PBSO. The ability to gain additional profile information 

from previously difficult casework samples demonstrates the importance superior 

performance of ET labeled primers to type challenging DNA samples commonly 

encountered in forensic investigation. 

The development and demonstration of a multi-color energy-transfer cassette 

labeled 16-plex DNA typing system that produces higher sensitivity than conventional 

single-fluorescence dye labels offers a powerful tool for human identification. The facile 

cassette-primer coupling procedure provides a convenient alternative to new typing 

system construction. With its higher sensitivity, ET labeled multiplex can generate DNA 

profiles from minute amount of DNA, which is crucial to forensic investigation. It also 

allows the use of fewer PCR cycles to reduce the incidence of allele drop-in and false 

amplifications, producing cleaner DNA profiles for more reliable profile interpretation 

when typing poor-quality DNA samples. The combination of ET dye labels with µCAE 

technology presents another advancement to the field of forensics DNA typing. 

4. Development of single channel integrated PCR-CE analysis system on a portable 

instrument: We have successfully developed and evaluated a portable forensic analysis 

system consisting of a microfluidic device for amplification and separation of STR 

fragments together with an instrument that contains 4-color confocal laser fluorescence 

detection and all the necessary optical and electronic components for chip operation. To 

explore the forensic applications of this portable system, a 4-plex mini-Y chromosome 

STR typing kit was developed and successfully performed on the microsystem with a 90

min analysis time. The performance of this system for forensic STR typing was evaluated 

on sensitivity, real-case sample and mixture analyses. A field demonstration of the real-

time DNA typing was successfully performed. Results of this work and the technical 
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details were disseminated in the Analytical Chemistry54 . To further realize a practical on-

site STR typing, a 9-plex autosomal STR typing system was developed and optimized. 

We are now exploring the feasibility of using our portable microsystem to perform real-

time DNA analysis at a mock crime scene in collaboration with PBSO. Our 

demonstration of successful STR analyses performed on this portable PCR-CE system 

validates the concept of point-of-analysis DNA typing of forensic casework, of mass 

disaster samples, or of individuals at a security checkpoint. 

Microdevice design and fabrication: The 1st generation microdevice we developed 

for 4-plex mini-Y STR typing contains a 160-nL PCR chamber with an integrated heater 

and a four-point resistance temperature detector (RTD) for PCR amplification and a 7

cm-long CE separation channel for CE separation (Figure 10A). The structure of this 

microfluidic system is similar to the device developed in our group previously,54 but the 

design has been adapted for the portable instrument. The microdevice is constructed with 

four layers: a glass manifold, a PDMS membrane, a glass heater/channel wafer, and a 

glass RTD wafer (Figure 10B). The PCR chamber (bottom side of the heater/channel 

wafer) and the RTD (top side of the RTD wafer) are laid next to each other after bonding. 

The microfabricated PCR heater is deposited on the top side of the heater/channel wafer 

and covers the PCR chamber and the RTD to facilitate thermal cycling under the control 

of the temperature feedback from the RTD. The glass manifold wafer actuates the PDMS 

microvalves for fluidic control. The integrated PCR heater was re-designed in an iterative 

process using computational simulation as a guide to create uniform heating over the 

entire PCR chamber and to facilitate fast thermal response times for high-efficiency and 

balanced amplification of multiple STR loci. With this new heater, the temperature 

differences between the center and the edge of the PCR chamber were reduced to less 

than 1 oC. The temperature ramp rates can reach 11.5 oC/s for heating and 4.7 oC/s for 

cooling without any active cooling. 

To extend the microdevice to autosomal STR typing, a 2nd generation of the PCR

CE microdevice with a co-injection structure has been constructed to achieve sizing 

calibration. As shown in Figure 10C, a 20-µm wide microchannel connected to a sizing 

standard reservoir was added to the cross injector. The width ratio of the co-injection 

channel to the PCR sample channel was optimized to achieve balanced injection of PCR 
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amplicons and sizing standard simultaneously. Figure 10D shows a fluorescence image of 

PCR amplicons co-injected with a sizing standard. Since the fluorescence of the sizing 

standard is relatively weak, only the PCR product can be seen on this image. 

Nevertheless, it clearly shows that the PCR product encompasses half the sample plug in 

the cross injector and the sizing standard the other half. 

Figure 10. (A) Mask design for the PCR-CE microchip. The glass microchannels are indicated in black, the 
microfabricated RTD and electrodes are in green, the heater is shown in red, the gold leads of the heater are 
in gold, and the valves are drawn in blue. (B) Exploded view of the assembly of the PCR-CE microchip, 
showing the RTDs on the upper surface of the RTD wafer, the glass microchannels etched in the lower 
surface, and the heaters fabricated on the upper surface of the heater/channel wafer. (C) Design of the PCR
CE chip with a co-injection structure. (D) Fluorescence image of the PCR amplicons and sizing standard 
co-injection. (E) Photograph of the portable PCR-CE system. The analysis system box has dimensions 12 × 
10 × 4 in. 

The microfabrication process is similar to that described previously.55, 56 Briefly, to 

form the heater/channel wafer, a 550-µm thick D263 glass wafer was coated with 2000-Å 
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amorphous silicon on one side and 200-Å Ti and 2000-Å Pt on the other side. The 

channel pattern was photolithographically transferred to the amorphous silicon side, then 

the sacrificial silicon was etched using SF6 and the exposed glass was etched to a depth of 

38 µm in a 49% hydrofluoric acid bath. The integrated PCR heaters were fabricated on 

the Ti-Pt side of the same wafer. The gold heater leads (5 µm thick) were patterned and 

electroplated onto the open Ti-Pt seed layer. Photoresist was then removed and the wafer 

was repatterned to define the heating elements using an ion beam etching system. Finally, 

holes were drilled using a CNC mill for via holes, fluidic reservoirs, as well as electrical 

and pneumatic access holes. The RTD wafer was fabricated on a 700-µm thick D263 

glass wafer coated with 200-Å Ti and 2000-Å Pt using similar photolithography and 

etched using hot aqua regia. The RTD wafer and the heater/channel wafer were thermally 

bonded in a vacuum furnace at 580 oC for 6 hr. The glass manifold was fabricated from a 

700-µm D263 glass wafer using the same glass etching method described above, and 

diced into 23 × 18 mm pieces. The microvalves were assembled by cleaning the PDMS 

membrane in a UV-ozone cleaner for 1 min and then sandwiching the membrane between 

the bonded wafer stack and the glass manifold. This method results in a tight but 

reversible glass-PDMS bonding. 

Portable instrument: The instrument used to perform analyses with the microdevice 

is shown in Figure 10E. The instrument contains a 488-nm frequency doubled diode 

laser, an optical system for detecting four different fluorescence signals, pneumatics for 

the on-chip PDMS microvalves, electronics for PCR temperature control, and four high 

voltage power supplies for CE. The weight of the instrument is 10 kg with a power 

consumption of 20 W, which can be supplied by a car battery. A LabVIEW graphical 

interface (National Instruments, Austin, TX) developed in-house was used to control the 

system through two DAQ boards (National Instruments). The detailed information can be 

found in Appendix A. 

(i) Quadruplex mini-Y STR typing: The quadruplex mini-Y STR system included 
amelogenin and three Y-chromosome STR loci, DYS390, DYS393 and DYS439. The 

forward primers were labeled with energy transfer (ET) dye cassettes developed in our 

group. The 20-µL PCR mixture prepared for each experiment was comprised of Gold 
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ST*R buffer (Promega), templates ranging from 0-50 copies in the 160-nL PCR chamber, 

primers, and FastStart Taq DNA polymerase (Roche Applied Science, Indianapolis, IN). 

The thermal cycling protocol begins with the activation of the Taq polymerase at 95 oC 

for 4 min, followed by 35 PCR cycles of 95 oC for 10 s, 58 oC for 60 s, 72 oC for 30 s, 

and a final extension step for 2 min at 72 oC. The total PCR time is 64 min. 

Linear polyacrylamide (LPA) (5% w/v) with 6 M urea in 1×Tris TAPS EDTA 

(TTE) buffer was firstly loaded into the entire CE separation system. PCR mixture in the 

sample reservoir was then moved into the PCR chamber by vacuum applied at the vent 

reservoir. After PCR, the CE channel was heated to 70 oC using the channel heater. After 

opening the microvalve adjacent to the sample reservoir, the amplified sample was 

electrophoretically injected into the CE channel towards the waste by applying an electric 

field of ~100 V/cm while floating the anode and cathode. A separation field of 250 V/cm 

was then applied between the cathode and anode, and a 5-s backbias was applied to the 

sample and waste at 80 V/cm, and floated for the rest of the separation. After each run, 

the glass manifold was removed, the PDMS membrane was replaced, and channels and 

chambers were cleaned completely using piranha solution (7:3 H2SO4: H2O2). Data 

processing procedures include baseline adjustment, fluorescence cross-talk analysis and 
convolution filtering in BaseFinder 4.0 program. The key findings are summarized 
below. 

Monoplex and multiplex amplifications: We first performed singleplex 

amplifications on each locus to examine the functionality of the PCR-CE microsystem as 

well as the amplification performance of these DNA markers. In these PCR experiments, 

each DNA marker was amplified from 20 copies of 9948 male standard genomic DNA 

with 32 PCR cycles. As shown in Figure 11A, each DNA marker demonstrated a similar 

amplification efficiency and good sensitivity. Following successful amplifications on 

each locus individually, a multiplex PCR-CE experiment was carried out on this four-

locus multiplex system. Starting template (50 copies of 9948 male standard DNA) was 

loaded in the PCR chamber and 35 PCR cycles were performed. As shown in Figure 

11A, all the peaks (106, 112, 123, 171 and 191 bp) were fully resolved and balanced. 

Compared with singleplex amplifications, multiplex STR amplifications exhibit lower 

amplicon yields due to competition between each locus. Therefore, both the initial 
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template copy number (50 copies) and the PCR cycle number (35 cycles) were increased 

to compensate for this effect. 

A B. 

C. D 

E. 

Figure 11. Studies of (A) singleplex and multiplex 
amplifications, (B) limit of detection, (C) casework 
sample analysis, and (D) mixture analysis using the 
PCR-CE integrated device on the portable instrument. 
The detect limit of the system was determined to be 20 
copies. The portable system was able to perform real 
world forensic casework sample from oral swab and 
bone extract and to perform successful 1:10 male-female 
mixture samples. (E) Quadruplex mini-Y STR profile 
from 50 copies of 9948 standard DNA obtained in the 
field demonstration at the Seventh Annual DNA 
Grantees’ Workshop. 
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A limit-of-detection (LOD) analysis for multiplex amplifications of 9948 male 

standard genomic DNA was performed. Figure 11B presents results from a series of 

amplifications conducted from 0, 20, 30 and 50 copies of template in the PCR chamber 

with 35 PCR cycles. Even with only 20 copies of DNA template in the reactor, the 

multiplex amplification still shows all the expected peaks in the electrophoregram. An 

amplification from 10 copies was also performed, however, a complete profile was not 

obtained. Finally, it should be noted that the absence of any amplicons in the negative 

control (0 initial copies) demonstrates the effectiveness of the piranha cleaning conducted 

after each run. 

Analysis of forensic casework samples: To verify the performance of our portable 

system on real-world forensic samples, we selected two typical samples, one from an oral 

swab and the other from human bone, which were previously processed and analyzed by 

the Palm Beach County Sheriff’s Office. Figure 11C (Trace A and B) presents the PCR 

analyses conducted from male and female standard DNA as controls, showing all the 

expected peaks with correct gender discrimination. Figure 11C (Trace C) presents an 

amplification and analysis of the DNA sample extracted from an oral swab. All the 

amplicons in four loci were successfully obtained, indicating the sample is male DNA. 

Figure 11C (Trace D) shows only one peak at 106 bp, corresponding to the successful 

amplification of female human bone DNA. 

Mixture analysis: Mixture analysis was carried out by mixing male and female 

standard genomic DNA together during the sample preparation. The male DNA in each 

run was maintained at 50 copies, while the female DNA was increased to achieve ratios 

of male-to-female genomic DNA of 1:1, 1:5 and 1:10, respectively, resulting in ratios of 

Y-to-X chromosomes of 1:3, 1:11 and 1:21. The results of this experiment in Figure 11D 

show that, as the ratio increased, the 106-bp amplicon from X chromosome became more 

and more dominant over the 112-bp Y-chromosome product. The peak area ratios are 

roughly equal to the initial template ratios of Y-to-X chromosomes (1:3, 1:11 and 1:21). 
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The other three Y-chromosome loci (DYS390, DYS393 and DYS439) were still fully 

amplified and balanced in each case. However, slight signal reductions were observed, 

due largely to the increase of the 106-bp X-chromosome amplicon which used up most of 

the PCR resources. 

Field demonstration: Finally, we carried out a field demonstration of the portable 

microsystem at the Seventh Annual DNA Grantees’ Workshop at Washington, D.C. in 

2006. As shown in Figure 11E, a full profile of the quadruplex STR system amplified 

from 50 copies of 9948 male standard DNA was obtained, demonstrating the portability, 

robustness and reliability of the system. 

(ii) Nine-plex autosomal STR typing: To further extend the application of this 

portable microsystem, a 9-plex autosomal STR typing system has been constructed using 

primer sequences employed in PowerPlex® 16. It consists of Amelogenin, and eight STR 

loci (D3S1358, THO1, D21S11, D5S818, D13S317, D7S820, vWA, and D8S1179) with 

a size range of 106–258 bp. The on-chip thermal cycling protocol is the same as those in 

the Promega PowerPlex® 16 Technical Manual, except that the Taq activation time, the 

extension holding time in each cycle, and the post extension time were reduced to 4 min, 

30 s, and 10 min, respectively. Therefore, the total PCR time was shortened to 2 hr. To 

achieve sizing calibration, a sizing standard (MegaBACE ET550-R, GE Healthcare) was 

loaded into the sizing standard reservoir after the thermal cycling. During the sample 

injection for CE separation, same voltage was applied on the sample and sizing standard 

reservoirs to inject the PCR products and sizing standard into the injection channel. The 

four-color fluorescence data recorded by the portable instrument were first converted to 

binary format and appended with proper header information by a custom LabVIEW 

program (National Instruments). The pre-processed data files were then input into 

MegaBACE Fragment Profiler 1.2 (Amersham Biosciences) for allele calling. The key 
findings were summarized in the following: 

System characterization: We first investigated on-chip PCR amplification and 

separation of 9947A and 9948 standard DNA using the 9-plex STR system on the 2nd 

generation microdevice. Figure 12 shows the successful amplification profiles on 9947A 

and 9948 standard DNA obtained from 100 copies of template with 32 PCR cycles in 2.5 
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hr. using this PCR-CE microdevice. Sizing standard ET 550-R was co-injected with PCR 

products in each run to facilitate the size calculation of alleles. All the alleles of 9947A 

and 9948 standard DNA were balanced, fully resolved, and correctly sized. To further 

evaluate the performance and reproducibility of the portable instrument, three 

independent analyses on each sample with 100 copies of starting template were 

performed. Table 4 lists the average fragment sizes and the standard deviations (<0.5 bp) 

of all the alleles (except for D13S), demonstrating the good performance of the co

injection structure. While there is some loss of resolution due to the short separation 

channel (7 cm), we found that this channel length is sufficient for fragment size of 100

250 bp for initial human identification purpose. Further improvements can be easily 

made by increasing the channel length and optimizing the separation conditions. 

Figure 12. 9-plex STR profiles obtained from 100 copies of (A) 9947A and (B) 9948 DNA on the portable 
PCR-CE microsystem with 32 PCR cycles. Separation was achieved in 5 % LPA with 6 M urea in a 7-cm 
microchannel at 250 V/cm. 

Figure 13. Percent of the full 9-plex STR profiles obtained on the portable microsystem as a function of 
input genomic DNA. 
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A limit-of-detection (LOD) analysis for multiplex amplifications of 9947A 

standard DNA was also performed with serially diluted DNA templates (200, 100, 50, 20, 

10 and 0 copies). Figure 13 shows that the portable microsystem was able to produce 

100% profiles down to 100 copies of DNA in the PCR reactor. Even with only 10 copies 

of DNA template, the multiplex amplification still showed 61.5% of the total expected 

peaks (average 8 in 13 expected peaks) in the electrophoregram, which may provide 

useful information to forensic investigation. Additionally, the negative control (0 initial 

copies) shows no amplicons, demonstrating the absence of carry-over and contamination. 

Table 4. Average fragment sizes for standard DNA samples using coinjector structure 

9947A Female Standard DNA 9948 Male Standard DNA 

Allele: Average 
Size (bp) 

Standard 
Deviation (bp) 

Allele: Average 
Size (bp) 

Standard 
Deviation (bp) 

D3S1358 14:126.5 0.26 15:131.2 0.06 
15: 131.0 0.23 17: 139.2 0.10 

THO1 8: 177.3 0.35 6: 168.2 0.26 
9.3: 185.2 0.46 9.3: 185.3 0.42 

D21S11 30: 234.8 0.40 29: 231.2 0.17 
30: 235.0 0.15 

D5S818 11:139.4 0.49 11:139.8 0.06 
13: 148.3 0.06 

D13S317 11: 204.0 0.80 11: 203.9 0.21 

D7S820 10: 239.7 0.26 11: 243.9 0.12 
11: 243.5 0.35 

Amelogenin X: 107.3 0.06 X: 107.3 0.12 
Y: 113.2 0.10 

vWA 17:156.4 0.10 17: 156.4 0.12 
18: 160.7 0.12 

D8S1179 13: 238.7 0.40 12: 234.7 0.06 
13: 239.0 0.10 

Evaluation of DNA extraction: DNA extraction is critical for performing real-time 

STR typing using the portable microsystem. The extraction method should be compatible 

with on-site rapid analysis, and should provide sufficient DNA in quality and quantity. 

We evaluated four DNA extraction methods (Maxwell® 16 system, DNA-IQTM , 

QIAampTM, and UltracleanTM) in collaboration with PBSO. DNA samples were extracted 

from blood on swabs by PBSO using these DNA extraction methods according to 

manufacturer’s protocols. Then these samples were shipped to Berkeley to run on the 
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portable instrument. As shown in Figure 14, all the extraction methods yielded DNA 

samples with reasonable quality and quantity for full STR profiles on our PCR-CE 

microdevice. After carefully exam their performance and operation, we finally chose 

Maxwell® 16 system as our on-site DNA extraction method, since it provides more 

reproducible DNA samples. 

Figure 14. Evaluation on DNA extraction methods. Blood-on-swab samples were processed using (A) 
Maxwell® 16 system, (B) DNA-IQTM, (C) QIAampTM, and (D) UltracleanTM. Each extracted DNA (100 
copies) was successfully typed with similar performance on the portable instrument. 

Simulated casework sample analysis: We also explored the ability of our system 

to analyze samples from commonly encountered stain sources in forensic investigations. 

The simulated casework samples were prepared as following: 30-µL blood for each stain 
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was dropped on a piece of cloth and a magazine surface. After air drying, these stains 

were wiped with swabs. Then, these swabs were processed and DNA was extracted 

following the Maxwell 16 system protocol. The extracted DNA samples were analyzed 

on the portable microsystem with about 300 copies of template. Figure 15 shows that 

both stains processed using Maxwell system can provide enough DNA for our system to 

produce complete and balanced 9-plex STR profiles. All the alleles were correctly typed 

and confirmed PBSO using PowerPlex 16 BIO. This work establishes the protocols 

Figure 15. 9-plex STR analysis on simulated casework samples extracted from stains on (A) cloth and (B) 
magazine using Maxwell system. In each case, 30 starting template copies were amplified and typed on the 
portable instrument. 

that will be used in the future to perform a real-time forensic analysis at a mock crime 

scene in collaboration with PBSO. 

5. Integration of capillary electrophoresis with sample cleanup: Allele or locus 

drop-out of the larger loci is often encountered when typing challenging DNA samples. 

This loss can be due to insufficient amplification during PCR, and/or inefficient injection 

during CE. We have previously demonstrated the power of integrating sample 

purification with DNA separation for sequencing applications.29-32 This technology has 

been successfully demonstrated on-chip to pre-concentrate and clean-up DNA 

sequencing reactions by employing a capture gel matrix containing a short oligo sequence 

complementary to a sequence found among all amplified sequencing reaction products.29 

A similar approach should also be valuable for forensic DNA typing.58 We began the 
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transfer of this technology to forensics by designing short DNA capture probes targeted 

to internal but nonrepeating sequences in each of the sets of STR products. We selected 

the primer sequences used in PowerPlex 16 (as well as in our ET multiplex kit) to 

facilitate this capture strategy. The fundamental advantage of this approach is that by 

selecting the mole fraction of the various capture oligonucleotides, the contribution of the 

various captured fragments can be normalized to make peak heights more uniform and 

the improved injection efficiency will enhance LCN and degraded DNA typing. 

We designed 16 capture oligos to have a melting temperature (Tm) of ~ 55 °C to 

facilitate a target capture (hybridization) temperature of 50 °C. A series of cross-

hybridization checks using commercial software were performed comparing the capture 

oligo sequences with themselves as well as with the primer and the products of different 

loci to ensure specificity prior to syntheses of the capture gel. Our initial evaluation of 

capture temperature was performed for a limited multiplex with the focus on optimization 

of the basic procedures, chip and process design on a microdevice containing individual 

capture reactors. 

Since capture oligo technology was originally developed for ssDNA sequencing 

reaction cleanup while the STR reaction produces dsDNA, we also investigated the 

possibility of generating ssDNA for forensic STR amplifications using locked nucleic 

acid (LNA) modified primers which allow higher Tm’s without adjusting the primer 

sequence. In this approach, a lower annealing temperature was used in the first series of 

PCR cycles for dsDNA generation followed with a higher annealing temperature for the 

later series of PCR cycles. By this process only LNA-primers would bind to the 

templates at the higher temperatures to generate primarily ssDNA products. Dr. George 

Sensabaugh’s student Sandy Calloway, supported by this grant, worked with Stephanie 

Yeung to perform studies of the annealing temperatures and primer concentrations in 

monoplex reactions using LNA-modified primers. The results of the studies showed low 

efficiency of ssDNA generation, an obstacle in developing a multiplex system with LNA-

primers. We therefore discarded this strategy and reverted to the capture of ssDNA from 

thermally denatured dsDNA products. 

A bench-top capture system was constructed to serve as an emulation of capturing 

real PCR reactions while allowing us to image the capture process easily using sample 
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with sufficient fluorescence intensity. The system consisted of a thermal cycler for 

temperature control, a power supply for voltage control, and a inverted U-shape glass 

capillary tube (1.1 mm I.D., 1.3 mm O.D., 5 cm length) with each end inserted inside a 

600-µL microfuge tube, one containing amplified PCR products and the other containing 

running buffer. Capture gel matrix was loaded into the glass tube prior to capture. Dr. 

George Sensabaugh’s student Jessica James, supported by this grant, worked with 

Stephanie Yeung to investigate the feasibility of this device and to characterize the 

optimal capture conditions of both fluorescently labeled ssDNA oligos complementary to 

capture probe sequence as well as dsDNA from STR reactions. However, there were two 

major drawbacks of this system — the large capture oligo consumption due to the 

microliter-volume glass tube as well as the relatively large elution volume required in the 

microfuge tubes resulted in low-concentration elution products for detection. We 

therefore switched to an alternative microfluidic approach. 

Recently, our group has developed a nanoliter-scale microdevice that integrates the 

three Sanger sequencing steps31 as well as a 4-lane integrated PCR-CE array microdevice 

to amplify femtogram amounts of dsDNA followed by electrophoretic separation in less 

than 30 min.33 We have also perfected an even more efficient direct injection method that 

permits nearly quantitative injection of the selected fragments. 57 By adopting this inline 

injector geometry, which eliminates the delicate cross-injector timing, we expect a 

decadic improvement in sample injection efficiency and also dramatically improved 

reliability for microchip CE analysis. This method allows sample desalting and 

concentration in a single step and precise quantitation of the captured samples. At the 

same time, we have conducted preliminary studies on capture efficiency as a function of 

the target capture sequence locations within dsDNA products. Results of this study 

indicated that capture efficiency decreases as the target capture sequence is shifted further 

from the ends of the dsDNA. In DNA sequencing, the design of capture oligo targets a 

universal sequence between the primer and the unknown sequences. In STR typing, 

however, the entire amplicon sequence, except for the number of repeats, is well known 

and should therefore allow better capture efficiency with a capture probe targeting the 

end product sequence. 
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We are now combing the integrated capture cleanup-µCE device and the better 

inline injector geometry together with the alternative end-capture oligo design for STR 

product cleanup and typing. Note that the current integrated capture-CE microdevice 

relies only on the detection of simple DNA fragments during the very last separation step, 

while leaving the behavior of dsDNA products in the upstream processes 

uncharacterized. However, from our previous experiments, we have determined that a 

higher-sensitivity imaging system that will allow us to visualize the capture-CE interface 

process will be critical to understanding the physical and chemical phenomena that 

determine the efficiency of our capture system. Such knowledge will help us accelerate 

towards our end goal by shortening the amount of time and effort in troubleshooting an 

integrated process, especially for complicated STR samples. After the completion of ET-

multiplex development, Stephanie Yeung is now focusing on setting up a higher-

sensitivity imaging system and apply it for on-chip STR sample cleanup and separation. 

At the same time, a rotation student Nadia Del Bueno has also been investigating the 

possibility of using photopolymerizable capture gel to precisely define the captured DNA 

sample plug for improved peak resolution and morphology. Once the most efficient 

capture-CE conditions are defined, monoplex and limited multiplex STR reactions will be 

tested and their sensitivity characterized on a single-channel device. Once perfected this 

technology will be integrated into a multi-channel platform for our 2nd generation bench-

top rotary fluorescence scanner. 

6. Development of the 2nd generation forensic scanner: A 2nd generation bench-top rotary 

µCAE scanner with reduced size and operational complexity and enhanced capabilities 

has also been designed. This scanner will have a footprint of ~12”x 12”x 10” and feature 

an integrated 488-nm laser, temperature-controlled microchip stage, a rotary scanning 

objective, all the electronics (such as high voltage power supplies, PMT and software 

interface), optics and fluidic controls. This system will have the flexibility of 

accommodating one 150-mm diameter wafer in different throughput (12, 24, 48 or 96 

channel) configurations. This rotary scanner will be built to accommodate four or more 

fluorescence color detection in order to suit the increasing need of additional colors for 

higher discrimination in future STR typing systems. This system will be capable of 

performing µCAE analysis alone, like the current system installed in VDFS, cleanup and 
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injection of separately amplified samples, and eventually high-throughput integrated PCR 

- capture cleanup - CE and other integrated steps. 
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MICROCHIP 

The integration of 
PCR with capillary 
electrophoresis on a 
microchip is 
undeniably a 
significant step 
toward a total 
integrated forensic 
analysis system. 
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IINNTTRROODDUUCCTTIIOONN
Integration of capillary electrophoresis (CE) onto a microchip for forensic short 
tandem repeat (STR) analysis is the first critical step to produce a fully integrated and 
automated STR analysis system. Microchip capillary array electrophoresis (µCAE) 
analyzers provide rapid high-throughput separation of forensic samples and can 
increase workflow and reduce costs (1). The microchip CE format is also important 
because it facilitates electrophoretic analysis of submicroliter to nanoliter sample 
volumes. This low-volume analysis capability facilitates integration of PCR on the 
microchip, which will further increase automation, improve reliability and reduce 
operator intervention (2,3). Ultimately such PCR-CE technology also should be 
integrated with DNA extraction, STR sample cleanup and desalting (4) to make a 
fully integrated forensic analysis system for both high-throughput work and point-of­
analysis applications. The goal of this review is to describe the current capabilities 
of microchip CE technology and point the way to the future. 

MMIICCRROOCCHHIIPP CCAAPPIILLLLAARRYY EELLEECCTTRROOPPHHOORREESSIISS
The advent of microchip-based CE separations of DNA can be traced back more 
than a decade to a number of laboratories engaged in the effort (5,6). These 
microchips consist of a glass wafer that has been chemically etched through a 
photolithographic pattern to define the injection and separation channels. The 
etched wafer is then bonded to a second wafer containing drilled holes to provide 
fluidic access to the channels (Figure 1). The transition from conventional glass 
capillary systems used in DNA sequencing to an etched glass plate demanded 
that obstacles be surmounted, including the development of 1) reliable cross-
injection designs and methods on capillary chips, 2) new separation matrices that 
provide single-base resolution and are easily pumped into the microchip channels, 
and 3) novel turn geometries to increase capillary length with no loss in resolution. 
Such improvements allowed the development of dense microfluidic circuitry while 
keeping the microchip similar in size to a compact disc (1). 

Work in the Mathies’ lab at the University of California, Berkeley, and at the Virginia 
Department of Forensic Science (VDFS) has demonstrated that this microchip 
system, together with the rotary confocal scanner developed by Scherer et al. at 
Berkeley, produces rapid reliable state-of-the-art forensic analyses. The fast heat 
dissipation enabled by the high surface-to-volume ratios of microCE (µCE) channels 
allows high-voltage separation of the nanoliter DNA sample plug. By pairing this 
virtue with a high-performance sieving matrix, such as linear polyacrylamide (LPA), 
rapid 20-minute CE with single-base resolution can be achieved. Yeung et al. (7) 
accurately profiled nonprobative and mock forensic samples in <30 minutes using a 
96-capillary µCAE device (Figure 2). Data generated by Yeung et al. were comparable 
in quality to commercial CE systems. Moreover, a similar system was successfully 
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implemented at the VDFS as a 
collaborative effort between the 
Mathies’ lab at UC Berkeley, VDFS 
and Palm Beach County Sheriff’s 
Office (manuscript submitted). 

MMIICCRROOCCHHIIPP PPCCRR
The versatility of PCR in genetic 
analysis has attracted interest in 
miniaturization and integration with 
microchip CE analysis for applications 
ranging from genotyping for disease 
diagnostics to forensic DNA profiling. 
Standalone microchip PCR reactors 
were initially demonstrated in stationary 
fluid cycling (8,9) and continuous-flow 

FFiigguurree 11.. PPaanneell AA.. Schematic of the 96-channel 
microfabricated capillary array electrophoresis 
chip. PPaanneell BB.. Each doublet includes an injector 
with two sample wells that share common 
cathode and waste wells. The sample plug is 
formed at the intersection of the sample and 
waste arms and electrophoretically migrates 
toward the central anode, where it is detected 
by the confocal fluorescence scanner. 

systems (10,11). To fully realize the 
potential of microchip PCR, however, it 
must be integrated with other upstream 
or downstream analysis steps, such as 
CE. The first demonstration of coupling 
microchip PCR with µCE analysis was 
performed in the Mathies’ lab in 1996 
(2). This was followed by incorporation 
of polydimethylsiloxane (PDMS) 
membrane pneumatically actuated 
valves and vents for fluidic control and 
a 280 nl PCR chamber to achieve 
20 PCR cycles in only 10 minutes 
(3; Figure 3, Panel A). This integrated 
format was recently scaled to multiple 
reactors on the same chip and applied 
to genotyping, infectious disease 
detection and expression monitoring 
(12). The capabilities of rapid thermal 
cycling and electrophoresis as a result 
of fast heat dissipation were critical to 
shortening analysis time. The precise 
positioning of tiny heating elements 
and sensors on a microchip makes 
temperature control and monitoring 
more accurate. More importantly, the 
nanoliter PCR reactor reduces the 
consumption of expensive PCR 
reagents, decreasing cost while 

minimizing pipetting errors between 
the two steps. The integration of PCR 
with CE is undeniably a significant 
step toward a total integrated forensic 
analysis system. 

PPOORRTTAABBLLEE AANNAALLYYSSIISS SSYYSSTTEEMMSS
There is increasing interest in portable 
point-of-analysis forensic STR typing 
systems for military, antiterrorism and 
mass disaster applications as well as 
limited crime scene processing (13,14). 
Toward this end, Liu and co-workers 
demonstrated STR typing of forensic 
DNA samples on a portable briefcase-
sized device (Figure 3, Panels B and C) 
that integrates PCR, CE, and 
fluorescence excitation and detection 
(13). This system produces a multiplex 
Y-STR DNA profile from a sample in 
only 1.5 hours. Figure 4 presents STR 
results from a real-time demonstration 
of integrated microchip PCR-CE on a 
benchtop detection unit at the National 
Institute of Justice’s Grantees’ 
conference in July of 2006, where a 
DNA sample was profiled during the 
poster session (15). 

FFiigguurree 22.. NNoonnpprroobbaattiivvee sseexxuuaall aassssaauulltt ccaasseewwoorrkk ssaammppllee pprrooffiillee ggeenneerraatteedd wwiitthh tthhee µµCCAAEE..
PowerPlex® 16 electropherogram showing results from the sperm fraction. 
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FFUUTTUURREE DDIIRREECCTTIIOONNSS
What do these technological advances 
mean for the future of forensic DNA 
profiling? Rapid, integrated sample 
analysis systems may create a 
flexible, dynamic and much more 
active role for the forensic laboratory. 
Reaping the greatest benefit requires 
the concomitant pairing of microchip 
technologies and expert systems for 
extremely rapid sample profiling. 

FFiigguurree 33.. PPaanneell AA.. Design of the integrated 
PCR-CE microchip. PPaanneell BB.. Photograph of the 
portable PCR-CE system. The analysis system 
has dimensions of 12 × 10 × 4 inches. PPaanneell CC..
Close-up of the microchip and manifold. 

Ultimately we envision a microchip 
system that incorporates DNA 
extraction from a raw sample, as well 
as improved processes for STR 
product cleanup and concentration 
normalization. Development is in 
progress to integrate microchip CE with 
affinity gel capture-based PCR sample 
cleanup, as recently demonstrated for 
sequencing (16). This may facilitate 
extremely sensitive, low-copy-number 
(LCN) profiling, eliminating the need 
for increased PCR cycle number while 
reducing the incidence of 
contamination, leading to higher rates 
of success for samples with <100 pg 
of DNA (17). Moreover, research is 
also being conducted on STR profiling 
using plastic chips, furthering efforts 
to produce commercially viable 
microchip systems (18). New 
separation polymers, such as the 
thermally controlled “viscosity 
switching” polymers, may facilitate 
mobile microchip systems by removing 
the requirement for high-pressure 
loading while providing a viscous 
medium for high-resolution fragment 
separation (19). 

CCOONNCCLLUUSSIIOONN
While an integrated or modular 
microchip system capable of rapid DNA 
extraction, amplification, normalization, 
fragment separation and data analysis 
will not relieve the ever-present 
bottlenecks of evidence examination, 
presumptive testing, report writing and 
peer review for complex samples, it 
may produce an automated system that 
can seamlessly and rapidly perform 
DNA analysis tasks. This will greatly 
reduce turnaround times and backlogs, 
and enhance forensic capacity without 
increasing cost and staff requirements. 
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ABSTRACT 

The Berkeley microfabricated capillary array electrophoresis device provided 

high quality STR profiling using simulated and non-probative forensic samples. A 

pre-commercial prototype instrument was installed at the Virginia Department of 

Forensic Science for testing. The successful electrophoresis and short tandem 

repeat profiling of single source samples and nineteen non-probative casework 

samples with the PowerPlex® 16 System verified mastery of the device. Sensitivity 

series and mixture samples were typed with the Powerplex® 16 System and mock 

sexual assault samples with the PowerPlex® Y System. Instrument performance 

was assessed as a function of resolution and precision. Resolution measurements 

were performed using the TH01, CSF1PO, TPOX and Amelogenin loci and precision 

data collected. Replacement of the Hjerten capillary coating method with a dynamic 

coating polymer was assessed and ultimately adopted. Successful operation of the 

µCAE device demonstrates the capacity of this technology to transition out of the 

research venue and into a practitioner laboratory. 

Key Words: Forensic science, microfabricated capillary array electrophoresis, 

micro-chip, capillary electrophoresis, polyDuramide, PowerPlex® 16, PowerPlex® Y 
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Technological advancements adopted by forensic science are driven by the 

need for improved efficiency. While DNA profiling in the forensic arena has 

undergone dramatic changes in the past two decades, from RFLP to PCR-based 

hybridization techniques to contemporary short tandem repeat (STR) typing (1,2,3), 

developments in technology continue to transpire that will ultimately produce 

dramatic changes in the manner in which DNA testing occurs, specifically in the 

detection, collection and interpretation of amplified DNA products. Advances in 

basic research must eventually transition to forensic DNA testing in order to continue 

moving this important field forward. 

Microfabricated and microfluidic chip devices offer much more than a promise 

of greater speed of forensic analysis. Integration of many of the steps of DNA typing 

can be realized using the microchip platform, thus making the entire process more 

automated, more robust and requiring less user manipulation. Microfabricated 

capillary devices have been successfully integrated with on-chip thermocycling in the 

research laboratory venue (4-9). This seamless integration not only decreases the 

reagent volumes required and the overall time consumed for the analysis process, 

but additionally reduces sample handling, which can eliminate the potential for 

sample mix-up at those steps and can reduce the risk of laboratory sources of 

contamination. 

Increased speed of fragment separation is better realized using 

microfabricated capillary array electrophoresis devices (µCAE) than existing 

commercial capillary systems. While commercial capillary systems, such as the 16 

capillary 3130xl Genetic Analyzer (Applied Biosystems [ABI], Foster City, CA) and 
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also the 48 capillary 3730xl Genetic Analyzer, in use for forensic database samples 

(ABI), can rapidly achieve fragment separation and detection, the fine tuning 

capabilities engineered into the microfabricated capillary array electrophoresis 

process, such as sample plug formation, can enhance resolution while utilizing a 

shorter capillary length, thereby reducing the time required for fragment separation 

(10-13). Moreover, advances in novel separation polymer synthesis will generate 

separation matrices with even greater resolving power that are ideal for microchip 

applications (14,15). Unique approaches to optimizing capillary electrophoresis on 

microchip, such as the integrated sample clean-up using affinity gel capture 

technology, have the potential to enhance the performance of the capillary 

electrophoresis process in a hands-off, automated fashion (16-18). Additionally, 

portable capillary electrophoresis microchip instruments have been developed thus 

providing us a glimpse into potential future directions in which DNA testing may 

evolve (5,19). 

Advances in microfabricated chip technologies are not limited to capillary 

electrophoresis. Micro-chips capable of DNA purification from samples that may be 

routinely encountered in a forensic laboratory have been successfully developed 

(20-22). Many research laboratories are pursuing a total automation system on 

micro-chip with “sample in, answer out” capabilities. 

Ultimately, the technology developed in the basic research laboratory must be 

transitioned into the setting for which it is intended. Not only does that attest to the 

question of ease of use, but also provides evidence that the technology in question 

is not out of reach for scientists not versed specifically in the branch of science that 
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produced the instrumentation. With that in mind, as part of a collaborative effort 

between the laboratory of Dr. Richard Mathies at the University of California, 

Berkeley, the Virginia Department of Forensic Science (VDFS) and the Palm Beach 

County Sheriff’s Office (PBSO), a prototype Microfabricated Capillary Array 

Electrophoresis device (µCAE) was installed at VDFS for testing in a forensic 

laboratory by forensic scientists (Figure 1). This study reports our efforts to master 

the operation of the µCAE device, test its performance using routine validation 

assessments (concordance, sensitivity, mixture analysis and non-probative sample 

typing) and evaluate improvements in its routine operation, such as the use of a 

dynamic coating polymer to coat the glass surface. 

MATERIALS AND METHODS 

Sample Preparation 

DNA samples for the concordance study were prepared from a total of 47 

single-source DNA samples obtained from the research laboratory at VDFS, which 

included buccal swabs and dried blood cards. The 47 samples were extracted and 

purified manually using the DNA IQ™ System (Promega Corp., Madison, WI) 

according to the manufacturer’s protocol with minor modifications for buccal cell 

samples and blood stains as described (23) and outlined in the VDFS procedure 

manual (24) or using an organic extraction procedure, followed by Micron YM-100 

clean-up as described (24). The DNA from either buccal swabs or tissue samples 

was purified for the sensitivity and mixture studies as defined (23) utilizing the 

robotic DNA IQ™ extraction procedure or using an organic extraction method as 
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described above. Mock sexual assault samples were provided by Promega 

Corporation. Twelve samples were created by placing amounts of 1,000 (1K), 

10,000 (10K) or 50,000 (50K) spermatozoa on a half-epithelial swab (buccal or 

vaginal). The mock sexual assault samples were extracted either with the semi-

automated Differex™ method according to the vendor’s protocol (25) or as 

described (23). 

All samples were quantified with the AluQuant® Human DNA Quantitation 

System (Promega Corp.), utilizing a Biomek® 2000 Laboratory Automation 

Workstation (Beckman Coulter, Inc., Fullterton, CA) to set up the enzymatic reaction 

and the Luminoskan luminometer (Thermoelectron, West Palm Beach, FL) to detect 

the light signal produced. Samples were quantified with minor modifications from 

the manufacturer’s protocol as outlined in the VDFS procedure manual and as 

described (24,26). Resulting concentration data were used to dilute the DNA 

extracts to a concentration of 0.15 ng/µL, for a total of 0.75 ng in the amplification 

reaction or as indicated. 

The sensitivity series were created by placing the indicated quantity of diluted 

DNA into the amplification reaction. For mixture assays, two purified and quantified 

DNA samples were mixed together at differing ratios as indicated and placed into the 

PCR amplification reaction such that the total quantity of DNA amplified was one 

nanogram (ng). 

Non-probative Samples 

Nineteen non-probative samples from five different cases were provided by 

the PBSO laboratory. DNA extracts were quantified at PBSO with Quantifiler™ 
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Human DNA Quantification Kit (ABI), utilizing a Biomek® 2000 Laboratory 

Automation Workstation (Beckman Coulter, Inc., Fullerton, CA) to set up the qPCR 

reaction and the ABI 7000 to detect fluorescent signal produced following the 

manufacturer’s recommendations (27) and amplified using the PowerPlex® 16 

System following the manufacturer’s recommendations (28). Samples were 

analyzed on both the µCAE device and the ABI 310 and results compared. The data 

produced from the µCAE device were sent to PBSO for comparison with previous 

DNA profiling results for the cases. 

PCR Amplification – DNA samples were amplified using the PowerPlex® 16 

System (PowerPlex® 16) or the PowerPlex® Y System (PowerPlex® Y), both 

manufactured by Promega Corp., multiplex STR amplification kits as described by 

the manufacturer (28,29), except for where indicated otherwise, PowerPlex® 16 

amplified samples were amplified at half the manufacturer’s recommended volume, 

as described (26). PCR amplification was completed in a GeneAmp System 9600 

thermalcycler (ABI). 

Separation and Detection – Where indicated, the STR amplicons were 

electrophoresed on both the ABI Prism® 310 Genetic Analyzer and the µCAE device. 

Preparation of samples for electrophoresis on the ABI 310 was as follows: 1 µL of 

each PCR product was added to a loading cocktail containing 24 µL Hi-Di™ 

Formamide (ABI) and 1 µL Internal Lane Standard 600 (ILS600) (Promega Corp.). 

One allelic ladder sample was included for approximately every 15 samples. Ladder 

was prepared in the same manner as PCR products with 1.0 µL PowerPlex® 16 or 

PowerPlex® Y Allelic Ladder Mix added to the loading cocktail. Samples were 
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denatured for 3 minutes at 95oC and snap-cooled on ice prior to loading. 

Electrophoresis and data analysis were performed as recommended (28,29). 

Preparation of the samples for electrophoresis on the µCAE was as follows: 

1 µl of each PCR product was added to a loading cocktail containing 3 µL Hi-Di™ 

Formamide, 3 µL sterile Type 1 H2O, and either 1 or 0.75 µL ILS600 following the 

procedure used by Yeung et al (13). Ladder was prepared by adding 2.0 µL 

PowerPlex® 16 Allelic Ladder Mix or PowerPlex® Y Allelic Ladder Mix (for 

PowerPlex® Y amplified samples) to a loading cocktail containing 2.5 µL Hi-Di™ 

Formamide, 2.5 µL sterile Type 1 H2O, and either 1 or 0.75 µL ILS600. Samples 

were denatured for 3 minutes at 95oC and snap-cooled on ice prior to loading. 

Instrument Operation and Data Acquisition 

For the ABI 310, the operation of the instrument followed the manufacturer’s 

directions for use with the STR typing kits (28,29). The raw data were collected with 

ABI Data Collection Software and analyzed using GeneScan and Genotyper 

software, versions 3.1 and 2.5, respectively. Allele calls were performed using the 

PowerTyper™ 16 or PowerTyper™ Y Macros (Promega Corp.). 

Operation of the µCAE device followed the procedures outlined by Yeung et 

al (13). For µCAE chips coated using the modified Hjerten procedure (32), a fresh 

coating was applied every two weeks as recommended (S. Yeung, personal 

communication). For µCAE chips coated using the polyDuramide (pDuramide; 13) 

dynamic coating polymer, the procedure for coating was as follows: µCAE chips 

were first flushed with deionized sterile water (dH2O) from the central anode to 

distribute fluid to all capillaries and sample wells, then the chips were filled with 1 M 
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HCl and allowed to stand for 15 minutes, after which the chips were again flushed 

with dH2O, followed by filling with the pDuramide and incubation for 15 minutes. 

After the pDuramide treatment, the chips were flushed with dH2O, then dried and 

stored until use. The chips were employed for 5 days following coating after which a 

fresh coating was applied. To setup the chip, a polydimethylsiloxane (PDMS) 

elastomer ring was placed on top of the cathode and waste wells to create 

continuous buffer reservoirs. All 96 lanes of the chip were filled simultaneously 

through the central anode with MegaBACE™ Long Read Matrix linear 

polyacrylamide (GE Healthcare, Piscataway, NJ) using a high-pressure automatic 

gel loader. Gel was evacuated from the sample wells and replaced with 2.3 µl of 

each prepared sample or ladder loading cocktail. The µCAE chip was placed onto 

the instrument stage heated to 67°C prior to electrophoresis, an electrode array ring 

containing one electrode pin for each sample well was placed into the sample wells, 

and a smaller PDMS ring was placed around the central anode. The buffer 

reservoirs and central anode well were filled with 5X TTE (250 mM Tris, 250 mM 

TAPS, 5 mM EDTA, pH 8.3) electrophoresis buffer. Sample injection occurred for 

55-65 seconds at 170 V while grounding the sample wells and floating the cathode 

and the central anode wells. The parameters for electrophoresis in the capillary 

were: a grounded cathode, 2500 V applied to the anode, 200 V to the sample, and 

200 V to the waste. Total run time was 28 minutes for the 96 channel chip to 

electrophorese PowerPlex® PCR products. Although the PowerPlex® Y amplicons 

were shorter and thus the total time could have been reduced, the same parameters 

were used for PowerPlex® Y product separation and detection. Following each run, 
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the chip was placed into an automated high-pressure washer to flush the linear 

polyacrylamide out of the channels using deionized water. Raw data were collected 

with a custom LabView program (National Instruments, Austin, TX), the data files 

baseline corrected and annotated (LabView) appropriately for analysis using Genetic 

Profiler/Fragment Profiler software (GE Healthcare), then imported into MegaBACE 

Fragment Profiler v 1.2 software (GE Healthcare) for fragment sizing, color 

separation and allele designation. Fragment Profiler v 1.2 does not perform peak 

smoothing of the data. 

Appropriate peak filters and bin sets for PowerPlex® 16 and PowerPlex® Y 

were created using Fragment Profiler (v 1.2). Color separation matrices were also 

created using the Fragment Profiler software program. In lieu of commercially 

established threshold settings for peak heights, a signal to noise ratio (S/N) of 3:1 

was applied. 

Data Analysis for Resolution and Precision studies 

Only allelic ladder samples were used for both the precision and resolution 

calculations. For the ABI 310, two runs containing 15 and 13 allelic ladders, 

respectively, were completed for a total of 28 samples. Ladders were prepared for 

electrophoresis in the same manner as described above. 

For the µCAE device, a total of 16 and 33 allelic ladder samples were 

successfully detected using the modified Hjerten and Poly-n-hydroxy

ethylacrylamide (pDuramide) coating procedures, respectively, through a series of 

four runs for both. 

11 
This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Precision Study – Sizing precision is defined as the ability to reproducibly 

estimate fragment sizes from run to run on any given instrument (30). Precision was 

calculated by averaging the standard deviation of size estimates across alleles at 

each locus. Within-run precision consisted of the standard deviation of size 

estimates for only those ladders contained within a single electrophoretic run, and 

between-run precision was calculated by combining data from all runs. All 

calculations for data from this study, as well as from previously generated data on 

the µCAE device, were completed in Microsoft (MS) Excel. 

Resolution Study – Resolution, defined as the ratio of peak separation to the 

main peak width, measures the ability of an instrument to separate components (30, 

31). A standard chromatographic equation to measure resolution relates the 

distance between two peaks to the widths of those peaks at half height (Eq 1): 

R = [2(ln2)]1/2(ΔX)/(Wh1 + Wh2) (1) 

where ΔX is the peak to peak distance, Wh1 is the width at half height of peak 1, and 

Wh2 is the width at half height of peak 2 (31). 

Two different measures of resolution related to this equation, Rb and RSL, 

were calculated for this study as described by Buel et al using both Amelogenin 

peaks, alleles 7 and 8 in TH01, alleles 9 and 10 in TPOX, and alleles 10 and 11 at 

CSF1PO (31). 

Rb, or base resolution, gives the value of resolution in bases (Eq 2): 

Rb = ΔM/R (2) 

where ΔM is the distance between two peaks in bases (31). 
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RSL, or resolution length, is an alternative measurement which evaluates a 

single peak (Eq 3): 

RSL = Wh/(ΔX/ΔM) (3) 

where Wh is the peak width at half height for the peak of interest, ΔX is the distance 

between this peak and an adjacent peak, and ΔM is the difference between the two 

peaks in bases (31). 

A fourth resolution measurement, valley value (Vv), is an assessment of the 

resolution between peaks that differ in length by a single base (31), and was 

calculated for the 9.3 and 10 alleles of TH01 only (Eq 4): 

Vv = V/H (4) 

where V is equal to the height of the valley, or the point where the two peaks merge, 

and H is the peak height of the larger peak. 

Measurements of peak widths, heights, and distances between peaks for data 

obtained in this study, as well as for data from the µCAE device previously 

generated at UC Berkeley, were obtained using calipers on printed 

electropherograms as described in Buel et al (31). Distances between peaks in 

bases were obtained from the appropriate Genotyper or Fragment Profiler software. 

All calculations were completed in MS Excel. 

RESULTS 

Concordance Study 

Once successful operation of the µCAE had been established at VDFS, 47 

single-source samples were amplified with PowerPlex® 16, electrophoresed and 
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analyzed. Allele calls were compared with the VDFS staff DNA index, typed using 

PowerPlex® 16 BIO System as described (26,35) and PowerPlex® 16 profiles 

obtained from the same amplified samples analyzed using the ABI 310. All profiles 

obtained using the µCAE were consistent with those generated using the ABI 310 

and also with the VDFS staff DNA index (data not shown). 

Use of Hjerten and pDuramide Coating Procedures 

The Hjerten coating of glass capillaries involves the covalent, silanol 

mediated bonding of acrylamide to the sides of the glass capillary wall (32). This 

prevents electroosmotic flow (EOF) as well as analyte adsorption and is used in 

combination with a high sieving capacity linear polyacrylamide for efficient fragment 

separation and resolution (14,16,32). Drawbacks to the use of the Hjerten coating 

for microchip capillary electrophoresis are the propensity for capillary clogging and 

difficulties with consistently applying the coating to all capillaries of the microcapillary 

array. An alternative capillary coating procedure, pDuramide, a dynamic coating 

polymer, was evaluated for resolution, data quality and ease of use (14, 15). The 

use of the Long Read linear polymer acrylamide was still necessary as the 

separation polymer. Measurements for resolution performance, as well as sensitivity 

tests, both described in the Resolution, Precision and Sensitivity studies, 

demonstrated that the pDuramide coated chips performed nearly identically to the 

Hjerten coated chips, with the advantage of greater ease-of-use. Thus, the 

pDuramide was used exclusively for microchip coating for all subsequent fragment 

separations. 
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Resolution and Precision Studies 

Measures of resolution and precision were performed in order to assess the 

performance of the prototype µCAE instrument in combination with Fragment Profiler 

compared with a commercial capillary electrophoresis instrument employed by many 

forensic laboratories, the ABI 310. Precision calculations were performed using 

PowerPlex® 16 allelic ladder samples on both the ABI 310 and the µCAE, using 

modified Hjerten coated microchips. As shown in Table 1, the ABI 310 displayed 

precision superior to the µCAE instrument utilized in the VDFS laboratory as well as 

the µCAE device data obtained from runs performed at the Mathies’ laboratory. 

However, when the performance of the µCAE instrument is compared with reports 

for commercial multi-capillary array instruments, rather than the single capillary ABI 

310, the performances for the ABI 3100, 3700 and the MegaBACE 1000 are 

essentially equivalent to the µCAE device. The sizing precision for the µCAE device 

using data produced at the Mathies’ laboratory displayed a wider range than that 

produced at VDFS. That is likely due to the optimization of the instrument run 

parameters and software applications that were ongoing during the time frame in 

which the data were generated in the Mathies’ laboratory as well as the less rigorous 

ambient temperature control compared to VDFS. Conditions utilized at VDFS varied 

little from those reported in the Yeung et al. paper. 

Resolution measurements were derived as described in the Buel et al. report 

(31), providing a broad evaluation of capillary electrophoresis resolution. Larger 

molecular weight loci, such as CSF1PO, as well as the smallest molecular weight 

locus, Amelogenin, were evaluated as described, using PowerPlex® 16 allelic ladder 
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samples. As seen in Figure 2 and Table 2, the base resolution (Rb), resolution 

length (RSL) and the valley value (Vv) are similar to those reported by various 

sources for the ABI 310 and those measured by Yeung et al for the µCAE device 

using the TH01 locus. Values were also calculated by VDFS for the µCAE device 

using data generated in the Mathies’ laboratory using loci (CSF1PO, TPOX and 

Amelogenin) in addition to TH01. This was performed in order to compare it to the 

µCAE device operation at VDFS utilizing all of the same loci as Buel et al. for direct 

comparison. In addition, VDFS calculated values from µCAE device runs performed 

at VDFS using microchips coated with the modified Hjerten procedure as well as the 

pDuramide dynamic polymer coating. Values produced from data generated at 

VDFS for microchips coated using the two coatings were nearly identical and were 

similar to those produced for the µCAE device operated in the Mathies’ laboratory. 

Moreover, peak morphology and the separation between the 9.3 and 10 alleles of 

the TH01 allelic ladder were virtually identical between the two different microchip 

coating procedures and were very similar to that produced by the ABI 310 (Figure 2). 

Furthermore, the pDuramide coated µCAE microchips demonstrated a significantly 

greater number of open, unclogged capillaries than the modified Hjerten coated 

microchips; an average of approximately 20% more open capillaries were obtained 

(n=7 runs using Hjerten coating for a total of 672 capillaries; n=8 runs using 

pDuramide for a total of 768 capillaries; data not shown). 

Sensitivity Assays 
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Evaluation of instrument sensitivity is essential for validation studies and 

performance checks. Sensitivity assays were performed for both the modified 

Hjerten coated chips, using a National Institute of Standards and Technology (NIST) 

provided sensitivity series and the pDuramide coated chips, using sensitivity series 

generated from a DNA sample prepared at VDFS. As demonstrated in Table 3 and 

displayed in Figure 3, the sensitivity for the µCAE device was comparable to that 

reported for commercial capillary electrophoresis instruments (33,34) and to that 

reported by Yeung et al. Moreover, the coating procedure applied to the microchips 

did not appear to affect sensitivity. 

Mixture Studies 

As with sensitivity assays, mixture studies are a critical component to 

validation work. Table 4 displays the PowerPlex® 16 typing results for a mixture 

study. While the majority of minor contributor alleles were observed at the 3:1 and 

1:3 ratios, at the 3:1 ratio, a 12 allele at D13S317 was below the threshold for 

reporting as were a 9 allele at TH01 and an 11 allele at Penta E at the 1:3 ratio. 

These findings are not unexpected and are consistent with previously reported 

mixture results using commercial detection platforms (34,35). All minor contributor 

alleles were reported in the Yeung et al. paper for the 1:3 and 3:1 mixture ratios 

analyzed with the µCAE device. This minor performance difference may be due to 

the different methods employed for estimating DNA concentration since the mixture 

samples in the Yeung et al paper were prepared by NIST using a different 

methodology for DNA quantitation than that employed at VDFS (13). Collins et al. 
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(35) reported full detection of the minor contributor at the 3:1 and 1:3 ratios however, 

the threshold setting was lower than that routinely applied to casework samples (50 

rfu) and minor contributor alleles at the stutter position were excluded from analysis, 

which was not the case in the study reported here. Minor contributor alleles were 

above the peak threshold at many loci for both the 9:1 and 1:9 ratios as is also 

consistent with other reports (13,34-36). The dynamic coating polymer, pDuramide, 

was utilized for microchip coating in this experiment, which again indicated that this 

alternative coating procedure did not adversely impact µCAE device performance. 

Non-probative sample analysis 

Nineteen non-probative case samples from five different cases were analyzed 

using the µCAE device. Non-probative cases included two sexual assaults, a hit-

and-run, aggravated battery, and aggravated robbery/aggravated battery. 

PowerPlex® 16 profiles produced employing the µCAE device were consistent with 

profiles produced with the ABI 310 using the same PowerPlex® 16 amplicons (data 

not shown). Although original DNA typing was conducted on the 19 samples using 

various forensic PCR-based human identification kits, results were in 100% 

concordance with regards to conclusions that may be drawn from the µCAE device 

data compared to the original case reported conclusions (C. Crouse, personal 

observations; Figure 4). As shown in Figure 4, the minor contributor alleles from the 

sperm DNA which carried over into the non-sperm fraction are clearly visible and the 

major profile is consistent with the victim profile. This is consistent with the Yeung et 
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al. report which demonstrated that an array of casework could be successfully typed 

using the µCAE device. 

STR Typing using the PowerPlex® YSystem 

Mock sexual assault samples, consisting of 6 sperm fractions (1,000 sperm 

on swab [1K], 10,000 sperm on swab [10K] and 50,000 sperm on swab [50K]) and 

the 6 corresponding non-sperm fractions, were amplified for PowerPlex® Y and 

subjected to analysis using both the µCAE device and the ABI 310. Results were 

concordant between the two instruments and software platforms. However, for 

some samples with low signal (peak heights close to the 100 rfu threshold on the 

ABI 310), some peaks could not be labeled if the S/N ratio of 3:1 was applied to data 

generated using the µCAE device (data not shown). Although no attempts were 

made to optimize PowerPlex® Y typing of samples using the µCAE device, the 

majority of the mock sexual assault samples provided STR profiles of similar high 

quality to those produced by the ABI 310 (Figure 5). 

DISCUSSION 

Much of the work reported here involved the reproduction of experiments 

performed in the Mathies’ laboratory at the University of California, Berkeley and 

reported in Yeung et al. (2006). While Yeung et al. clearly demonstrated that the 

µCAE device performance was consistent with industrial capillary electrophoresis 

instruments, all without the benefit of commercial, customized software, further 

demonstration of instrument utility in a forensic laboratory was merited. We report 
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the successful transfer of this technology from an academic environment to a 

forensic laboratory, clearly demonstrating the feasibility of using a microfabricated 

capillary electrophoresis system, capable of both rapid and high throughput STR 

typing for forensic DNA profiling.. 

The precision study was performed solely using the modified Hjerten coated 

microchips and displayed a sizing precision comparable to commercially available 

multi-capillary array instruments. This result is of import as neither the software nor 

the separation polymer have been commercially optimized or customized for use 

with the µCAE device. 

The resolution data produced by the µCAE device was very similar to data 

produced by the ABI 310 and reported by various laboratories; data quality appeared 

to be unchanged when compared with data generated using the modified Hjerten 

procedure. The study comparing the resolving power of microcapillary array chips 

coated using the modified Hjerten coating with those coated using p-Duramide, 

showed no statistical difference in performance between the two coating procedures. 

Given the greater ease of application and shorter preparation time, pDuramide 

became the coating of choice. . 

The sensitivity assays produced results similar to those observed with 

commercial systems as well as results reported for the µCAE system by Yeung et al. 

The apparent sensitivity was also consistent between the two different microchip 

coating methods for two different sensitivity series; one prepared internally and one 

by NIST. The conversion from the modified Hjerten coating procedure to the 

dynamic coating polymer, pDuramide, proved to be expeditious and fortuitous. Not 
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only was the resolution comparable to that obtained using the modified Hjerten 

procedure, but a reproducibly greater proportion of the capillaries in the 96 capillary 

microarray remained open and useful for genotyping, thereby circumventing a 

predominant obstacle for the efficient performance of microchip capillary array 

electrophoresis. An added bonus was that the pDuramide coating process required 

less time (~30 minutes versus ~2 hours) and was far easier to apply. 

The successful PowerPlex® 16 STR profiling of 19 non-probative casework 

samples using the µCAE device demonstrated that the system installed at VDFS 

was correctly operated and was capable of rapidly and accurately typing the 

samples. These findings are also consistent with the previously reported data 

generated by Yeung et al. 

Finally, successful typing of PowerPlex® Y amplified mock casework samples 

using the µCAE device further demonstrated its functionality and attests to ease of 

use of the final instrument and protocol. While the tested instrument is not a 

commercially manufactured system and lacks the rigor of production line assembly 

and a customized software, the µCAE device still provides sufficient ease of use that 

one can run different STR typing systems without changing the operation 

parameters. 
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Table 1. Sizing Precision 

Instruments 
Sizing precision (S.D.) 

Within-run Between-run ± 3 S.D. 
ABI 310 (VDFS) 0.03-0.06 bp 0.03-0.06 bp ± 0.18 bp 
µCAE (VDFS) 0.02-0.23 bp 0.08-0.14 bp ± 0.42 bp 

µCAE (Mathies’ lab data) --- 0.11-0.31 bp ± 0.93 bp 
ABI 37737 0.01-0.09 bp --- ---
ABI 37738 0.03-0.10 bp --- ---
ABI 31030 --- 0.02-0.12 bp ± 0.36 bp 
ABI 31037 --- 0.04-0.12 bp ---
ABI 31039 0.10 bp 0.20 bp ---
ABI 31040 0.01-0.13 bp ≤0.16 bp ---

ABI 310038 --- 0.03-0.17 bp ---
ABI 370038 --- 0.02-0.21 bp ---
FMBIO II35 --- --- ± 0.40-0.80 bp 

MegaBACE 100038 --- 0.04-0.17 bp ---

29 
This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Table 2. Measurements of Resolution 

Instruments Rb RSL Vv 
ABI 310 (VDFS) 1.15-1.72 0.67-0.99 0.64 

µCAE (Mathies’ lab data) 1.30-1.61 0.74-1.04 0.73 
µCAE (VDFS) Hjerten coating 1.35-1.53 0.78-0.91 0.80 

µCAE (VDFS) pDuramide coating 1.31-1.54 0.78-0.904 0.74 
ABI 31031 1.04-1.64 0.61-0.96 0.51 
ABI 31040 1.24-1.31 --- 0.43-0.49 
ABI 31037 --- --- ~0.30 
ABI 31030 1.13-1.49 --- ---
µCAE13 1.3 0.76 ---
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Table 3. Sensitivity Data.


VDFS DNA sample – pDuramide coating

FGA TPOX D8 vWA Amel P.E. D18 D21 TH01 D3 P.D. CSF D16 D7 D13 D5 

In house 
sample 
2 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
1 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
0.5 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
0.25 ng 22,24 8,11 10,13 18,20 XY 5,13 11,15 29,30 9 15 10,11 10,11 10,11 11 10,11 11,13 
0.125 ng 22,24 8,11 10,13 18,20 X,Y 5,13 11,15 29,30 9 15 10,11 10 10,11 11 10,11 11,13 
0.062 ng - - - - X,Y - 11 - 9 15 - - - - -
0.031 ng - 8,11 - 18 X,Y 5 15 - 9 15 - - - - - -
0.015 ng - - - - Y - - - 9 15 - - - - - -

NIST sample – modified Hjerten coating 
FGA TPOX D8 vWA Amel P.E. D18 D21 TH01 D3 P.D. CSF D16 D7 D13 D5 

NIST 
sample 
10 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
5 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
2.5 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
1.25 ng* 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
0.62 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
0.31 ng 19,23 8 14 17,18 X,Y 5,16 14,16 31.2,33.2 6,7 16 11,14 11,12 9,11 9,11 8,12 11,12 
0.15 ng 19 8 14 17,18 X,Y 5 14,16 31.2,33.2 7 16 14 12 9 11 - -

*Data for sample obtained from a µCAE device run performed on a different day. 
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Table 4. Mixture study 

Mixture Data Sample #1:Sample #2 
1:0 9:1 3:1 3:2 2:3 1:3 1:9 0:1 

Sample 1 
Sample 2 

14/14 
0/14 

14/14 
4/14 

14/14 
13/14 

14/14 
14/14 

14/14 
14/14 

14/12* 
14/14 

8/14 
14/14 

0/14 
14/14 

KEY: 16/16 indicates all of the PowerPlex 16 loci amplified and were correctly typed. All 
numbers less than 16 indicate the number of loci that were successfully typed. 
Note: CSF1PO and Amelogenin loci excluded since alleles were identical for both samples. 
* At two of the loci, only one of the minor contributor alleles was observed above peak threshold. 
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FIGURE LEGENDS 

Figure 1. (A) Design of the 96-channel microfabricated capillary array 

electrophoresis (µCAE) microchip used at VDFS. (B) Expanded view of channel 

doublet including two sample reservoirs and the common cathode and waste 

reservoirs. (C) Expanded view of a hyperturn within the channel. (D) Photograph of 

uCAE device prototype installed at VDFS. Figure modified from Paegel et al.(9). 

Figure 2. Separation of the 9.3/10 alleles of PowerPlex® 16 allelic ladder obtained 

on, (A) µCAE chip using the pDuramide, dynamic polymer coating. (B) µCAE chip 

using the modified Hjerten coating. (C) ABI 310 Genetic Analyzer. 

Figure 3. PowerPlex® 16 profiles of sensitivity study samples using a single source 

male DNA amplified with, (A) 2 ng of input DNA and, (B) 125 pg of input DNA. 

Figure 4. Non-probative sample analysis by the µCAE device using PowerPlex® 16. 

(A) Non-sperm fraction mixed profile. (B) Victim profile. 

Figure 5. PowerPlex® Y profile generated from the sperm fraction of the 50K buccal, 

mock sexual assault swab. 
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Integrated Portable Polymerase Chain 
Reaction-Capillary Electrophoresis Microsystem 
for Rapid Forensic Short Tandem Repeat Typing 

Peng Liu,† Tae Seok Seo,‡ Nathaniel Beyor,† Kyoung-Jin Shin,§ James R. Scherer,‡ 

and Richard A. Mathies*,†,‡ 

UCSF/UC Berkeley Joint Graduate Group in Bioengineering, and Department of Chemistry, University of California, 
Berkeley, California 94720 

A portable forensic genetic analysis system consisting of 
a microfluidic device for amplification and separation of 
short tandem repeat (STR) fragments as well as an 
instrument for chip operation and four-color fluorescence 
detection has been developed. The microdevice performs 
polymerase chain reaction (PCR) in a 160-nL chamber 
and capillary electrophoresis (CE) in a 7-cm-long separa­
tion channel. The instrumental design integrates PCR 
thermal cycling, electrophoretic separation, pneumatic 
valve fluidic control, and four-color laser excited fluores­
cence detection. A quadruplex Y-chromosome STR typing 
system consisting of amelogenin and three Y STR loci 
(DYS390, DYS393, DYS439) was developed and used 
for validation studies. The multiplex amplification of these 
4 loci with 35 PCR cycles followed by CE separation and 
4-color fluorescence detection was completed in 1.5 h. 
All the amplicons can be detected with a limit of detection 
of 20 copies of male standard DNA in the reactor. Real-
world forensic analyses of oral swab and human bone 
extracts from case evidence were also successfully per­
formed. Mixture analysis demonstrated that a balanced 
profile can be obtained even at a male-to-female template 
ratio of 1:10. The successful development and operation 
of this portable PCR-CE system establishes the feasibility 
of rapid point-of-analysis DNA typing of forensic casework, 
of mass disaster samples or of individuals at a security 
checkpoint. 

Short tandem repeat (STR) assays have become an indispen­
sable and routine technique in modern forensic casework since 
their first application in 1991.1 Polymerase chain reaction (PCR)­
based amplification of multiple STR loci followed by capillary 
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electrophoretic (CE) separation provides STR assays with high 
sensitivity and high discrimination power.2-4 In addition to forensic 
identification, STR assays have found application in paternity 
testing, missing person investigations, human identification in 
mass disasters, evolution, and clinical diagnosis.5,6 However, the 
limited capabilities of current genotyping technologies, which are 
time-consuming, labor-intensive, and expensive, have resulted in 
backlogs in forensic laboratories around the world. To address 
these issues, high-throughput and integrated instruments are 
needed to improve the data productivity. In addition, rapid and 
portable DNA typing devices that can provide on-site forensic 
analysis could be valuable in crime scene investigation and for 
law enforcement and security applications. 

In the quest to produce portable, real-time analytical devices 
as well as high-throughput analyzers, microfabricated microfluidic 
analysis systems, so-called micro total analysis systems (µTAS), 
have attracted increasing attention due to their ability to integrate 
multiple molecular biology processes at the microliter to nanoliter 
scale in a single device. Since the inception of µTAS in 1990,7 

much progress has been made to miniaturize and integrate DNA 
analysisstepsintoamicrochipformat,8,9 includingDNAextraction,10-12 

PCR amplification,13,14 and CE separation.15-17 These technologies 
are now beginning to be translated to forensic applications. 
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In 1997, Ehrlich’s group demonstrated that a quadruplex STR 
system (CSF1PO, TPOX, THO1, vWA) could be separated with 
high accuracy in less than 2 min by microchip capillary electro­
phoresis.18 More recent work in our group demonstrated the use 
of a 96-channel microfabricated capillary array electrophoresis 
device coupled to a four-color confocal fluorescence scanner for 
high-performance STR typing using both the PowerPlex 16 and 
AmpFlSTR Profiler Plus multiplex PCR systems.19 The separations 
were completed in less than 30 min with single-base resolution 
on 96 CE channels simultaneously. Although these systems 
heavily rely upon conventional off-chip sample preparation, they 
do indicate that chip-based CE technology is poised for application 
in forensic laboratories. 

The on-chip integration of DNA sample amplification by PCR 
has also been demonstrated. An integrated PCR-CE microdevice 
consisting of a silicon reaction chamber attached to a glass CE 
analysis chip was developed in our laboratory in 1996 to amplify 
and analyze PCR products, providing rapid reaction times, low 
sample consumption, and potential on-chip integration with other 
analytical techniques.20 Since then, great progress has been made 
in the development of PCR microdevices, including alternative chip 
formats (flow-through and stationary chamber), substrate materi­
als (silicon, glass, and polymer), and heating methods (contact 
and noncontact heating).21,22 However, most of these systems 
either require a high starting template concentration or are not 
suitable for integration with CE separation. 

Based on the development of integrated PCR-CE micro-
devices by Lagally et al.,23-25 a fully integrated portable PCR-CE 
microsystem was recently demonstrated for pathogen detection 
applications. The limit of detection for this system was 2-3 
Escherichia coli cells, and the amplifications required only 20 min.26 

More recently, a nanoliter-scale microdevice was developed, that 
integrates the three Sanger sequencing steps: thermal cycling, 
sample purification, and capillary electrophoresis.27 Building on 
this work, a four-lane integrated PCR-CE array microdevice was 
also demonstrated to amplify femtogram amounts of DNA followed 
by electrophoretic separation in less than 30 min.28 These advances 
raise the possibility that these technologies can also be used for 
forensics whose stringent requirements include high efficiency 
and balanced amplification of multiple STR loci, reproducible 
electrophoretic separation under denaturing conditions, and high-
sensitivity, four-color fluorescence detection. 
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Here we present the design and operation of a new PCR-CE 
microdevice for forensic STR analysis, as well as a new portable 
analysis instrument, which contains all the electronics and optics 
for temperature control, microfluidic manipulation, CE separation, 
and four-color fluorescence detection. To explore the utility of this 
system for forensic DNA typing, a quadruplex STR system was 
developed with amelogenin, a sex-typing marker, and three Y 
chromosome STR loci. As over 89% of violent offenses are 
committed by men,29 Y-STR assays have a unique value in forensic 
DNA typing, particularly in sexual assault cases.6,30,31 Due to the 
lack of recombination, Y-STR assays have also become a popular 
tool for paternity testing, evolutionary studies, and historical and 
genealogical research.6 With this quadruplex Y-STR system, we 
evaluated the limit of detection of the portable PCR-CE micro-
system as well as its ability to analyze forensic casework samples 
and to detect male DNA in a background of female DNA. 

EXPERIMENTAL SECTION 
Microdevice Design. The microdevice contains two identical 

PCR-CE systems, symmetrically arranged on the 4-in. wafer 
(Figure 1A). The structure of each system is similar to the device 
developed in our group previously,26 but the design has been 
adapted for the portable instrument. Each system consists of a 
160-nL PCR chamber, an integrated heater, a four-point resistance 
temperature detector (RTD), two poly(dimethysiloxane) (PDMS) 
microvalves, and a 7-cm-long CE separation channel. The PCR 
reactor region with the relative positions of the PCR chamber, 
heater, and RTD is shown in Figure 1B. 

The microdevice is composed of a glass manifold, a PDMS 
membrane, a glass heater/channel wafer, and a glass RTD wafer 
(Figure 1C). The PCR chamber (bottom side of the heater/ 
channel wafer) and the RTD (top side of the RTD wafer) are 
positioned next to each other after bonding. The microfabricated 
PCR heater is deposited on the top side of the heater/channel 
wafer and covers the PCR chamber and the RTD to facilitate 
thermal cycling under the control of the temperature feedback 
from the RTD. The PCR chamber contains three exits, two of 
which are connected to a loading reservoir and a vent reservoir, 
respectively, through microvalves for the sample loading. The last 
exit is coupled to a CE separation channel through a narrow 
injection channel. The glass manifold wafer actuates the PDMS 
microvalves for fluidic control.32 

PCR Heater Design. The design of the microfabricated PCR 
heater is intended to create uniform heating over the entire PCR 
chamber and to facilitate fast thermal response times. In general, 
the edges of the heater show the most deviation from temperature 
set point due to the higher thermal dissipation. To adequately 
maintain the entire chamber volume at a single temperature and 
keep the thermal mass of the PCR system as low as possible, the 
thermal power at the extremities of the heater was increased to 
diminish the temperature deviation. The PCR heater was designed 
in an iterative process using computational simulation as a guide. 
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Figure 1. (A) Mask design for the PCR-CE microchip. The glass 
microchannels are indicated in black, the microfabricated RTD and 
electrodes are in green, the heater is shown in red, the gold leads of 
the heater are in gold, and the valves are drawn in blue. (B) Expanded 
view of the heater, RTD, PCR chamber, and CE injector. (C) Exploded 
view of the assembly of the PCR-CE microchip, showing the RTDs 
on the upper surface of the RTD wafer, as well as the glass 
microchannels etched in the lower surface and the heaters fabricated 
on the upper surface of the heater/channel wafer. 

As shown in Figure 2, an optimized heater design contains eight 
serpentine heating elements connected to gold leads in parallel. 
The width of each heating element in the center region was set 
to 140 µm. Optimal heating distribution was achieved by narrowing 
the width to 70 µm on the ends of the central six heating elements, 
and to 130 µm on the outer two heating elements. Figure 2 (top) 
shows a color contour plot of the simulated temperature distribu­
tion of the PCR chamber at 95 °C using FEMLAB 2.3 (COMSOL, 
Inc., Burlington, MA). Using this design method, the temperature 
differences between the center and the edge of the PCR chamber 
were reduced to less than 1 °C in both the X and Y directions. 
Figure 2 (bottom) presents two typical PCR cycles. The temper­
ature ramp rates can reach 11.5 °C/s for heating and 4.7 °C/s for 
cooling without any active cooling. 

Microfabrication. The microfabrication process is similar to 
that described previously.25,26 Briefly, to form the heater/channel 

Figure 2. (Top) Color contour plot of the simulated temperature 
distribution of the PCR chamber layer at 95 °C. By varying the widths 
of the heating elements in the different regions of the heater, a uniform 
profile was achieved. The differences between the center and the 
edge of the heater are only 1 °C. (Bottom) Thermal cycling amplifica­
tion profile. Black line shows the measured temperature from the RTD 
and red line is the set temperature. Temperature ramp rates were 
11.5 °C /s for heating and 4.7 °C /s for cooling. 

wafer, a 550-µm-thick D263 glass wafer was coated with 2000-Å 
amorphous silicon on one side and 200-Å Ti and 2000-Å Pt on 
the other side. The channel pattern was photolithographically 
transferred to the amorphous silicon side, and then the sacrificial 
silicon was etched using SF6 in a parallel-plate reactive ion etching 
system creating a hard mask for subsequent glass etching. The 
exposed glass was etched to a depth of 38 µm in a 49% hydrofluoric 
acid bath. After etching, the photoresist and silicon were removed 
using acetone and SF6, respectively. The integrated PCR heaters 
were fabricated on the Ti-Pt side of the same wafer. Using a 
backside contact aligner, a pattern defining the gold heater leads 
was photolithographically transferred to the surface. Gold was 
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Figure 3. (A) Photograph of the portable PCR-CE system. The analysis system box has dimensions 12 × 10 × 4 in. (B) Closeup of the 
microchip and the manifold. A plexiglass manifold was used to fix the microchip in place and supply the electrical and pneumatic connnections 
to the chip. (C) The schematic of confocal fluorescence detection system. (D) Expanded top view of the four-color detection cube. 

electroplated onto the open Ti-Pt seed layer to a thickness of 
5 µm to form the heater leads. Photoresist was then removed, 
and the wafer was repatterned to define the heating elements. 
Using an ion beam etching system, the heating elements were 
etched into the Ti-Pt seed layer. Finally, holes were drilled using 
a CNC mill for via holes, fluidic reservoirs, and electrical and 
pneumatic access holes. 

To form the RTD wafer, a 700-µm D263 glass wafer coated 
with 200-Å Ti and 2000-Å Pt was patterned with photoresist and 
etched using hot aqua regia. To form the glass microchannels 
and PCR chambers, the RTD wafer and the heater/channel wafer 
were thermally bonded in a vacuum furnace at 580 °C for 6 h.  
The glass manifold was fabricated from a 700-µm D263 glass wafer 
using the same glass etching method described above and diced 
into 23 × 18 mm pieces. The microvalves were assembled by 
cleaning the PDMS membrane in a UV-ozone cleaner for 1 min 
and then sandwiching the membrane between the bonded wafer 
stack and the glass manifold. This method results in a tight but 
reversible glass-PDMS bonding. 

Instrumentation. The instrument used to perform analyses 
with the microdevice is shown in Figure 3A and B. The instrument 
contains a 488-nm, frequency-doubled diode laser, an optical 

system for detecting four different fluorescence signals, pneumat­
ics for the on-chip PDMS microvalves, electronics for PCR 
temperature control, and four high-voltage power supplies for CE. 
The weight of the instrument is 10 kg with a power consumption 
of 20 W, which can be supplied by a car battery. A LabVIEW 
graphical interface (National Instruments, Austin, TX) developed 
in-house was used to control the system through two DAQ boards 
(National Instruments). 

The schematic of the detection system is shown in Figure 3C. 
The beam from the laser (Protera, Novalux Corp., Sunnyvale, CA) 
is reflected by a dichroic mirror (505DCXT, Chroma Technology 
Corp., Brattleborro, VT) into an attenuator that limits the power 
intensity of the laser beam to 4 mW (measured from the objective). 
Then, the attenuated beam is reflected by a second dichroic mirror 
(505DCXT), passes through a dichroic beam splitter (488DCSXBP, 
Chroma), and is focused into the channel in the microdevice with 
a custom-built objective (0.70-mm focal length in D263 glass, 0.88 
NA). The returning fluorescent signal is collected by the objective 
and reflected into a four-color confocal detection cube by the 
dichroic beam splitter. As shown in Figure 2D, the detection cube 
separates fluorescent light into four distinct channels, blue (505­
530 nm), green (530-560 nm), yellow (560-595 nm), and red 

1884 Analytical Chemistry, Vol. 79, No. 5, March 1, 2007 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Table 1. Locus Information, Dye Labeling, and Primer Sequences 

a FAM, 5-carboxyfluorescein; R6G, rhodamine 6G; TMR, N,N,N′,N′-tetramethyl-6-carboxyrhodamine; ROX, 6-carboxy-x-rhodamine. b The 5′ G 
of the DYS439 reverse primer was added to promote adenylation. c Compound tetranucleotide repeat. 

(>595 nm), by sequential reflection from a serial of dichroic beam 
splitters (595DCXR, 570DCXR, 537DCLP, Chroma). Fluorescent 
light is further filtered by a filter in each channel (Ch1, D520/26 
m; Ch2, D550/20 m; Ch3, D580/26 m; Ch4, E600LP, Chroma). 
The filtered light is focused by an achromat lens (45208, Edmund 
Optics, Barrington, NJ) into an optical fiber (Newport Corp., Irvine, 
CA), the entry of which functions as a confocal pinhole and is 
provided with xyz adjustment, and then guided by an optical fiber 
to the desired PMT (H9306-03, Hamamatsu Corp., Bridgewater, 
NJ). The four signals are processed using an active 5-Hz, low-
pass filter and collected at 10 Hz using the 16-bit DAQ board. 

The microdevice is placed onto a recessed area on the top of 
the instrument and held in place with a plexiglass manifold. Two 
PDMS spacers are used to support the manifold and provide a 
soft contact to the microdevice. The manifold contains six spring-
loaded pins pressed against the electrical pads on the device, 
providing the connections for sensing the RTD and powering the 
PCR heater. The manifold also contains Pt electrodes that are 
positioned within the reservoirs on the microchip for application 
of high voltages during CE. A thin-film heater, (9.2 �, Minco, 
Minneapolis, MN), sandwiched between the microchip and a 
magnet, is used to heat the CE separation channel. Flush contact 
between the magnetic heater and the chip is obtained by 
embedding a steel bar on the surface of the instrument. 

The design of the electrical circuits for driving the RTD and 
heater is the same as presented eariler.26 Briefly, a 4-mA current 
source powers the RTD through the outer set of leads, and the 
resulting voltage is sensed through the inner set. The signal is 
processed using an active low-pass filter at 5 Hz and then 
transferred to the DAQ board. Temperature control is ac­
complished through a proportion/integrator/differentiator module 
within the LabVIEW program, which outputs through the DAQ 
board to control the PCR heater power supply within the 
instrument. 

The PDMS microvalves are controlled using vacuum or 
pressure supplied through pneumatic connections to the valve 

access holes on the glass manifold. Eight pneumatic lines are 
available for fluidic control. Each line can be switched between 
vacuum (open valve) and pressure (closed valve) using a solenoid 
valve (H010E1, Humphrey, Kalamazoo, MI) controlled through 
the DAQ board. Pressure (4.5 psi) and vacuum (-8 psi) were 
separately supplied by two rotary pumps (G12/02-8-LC, Thomas, 
Sheboygan, WI) inside the instrument. 

Microdevice Preparation. Before operation, the channels 
were first coated for 1 min with a dynamic coating diluted 1:1 
with methanol (DEH-100, The Gel Co., San Francisco, CA) to 
minimize electroosmotic flow. The separation matrix, 5% (w/v) 
linear polyacrylamide with 6 M urea in 1× Tris TAPS EDTA (TTE) 
buffer, was loaded from anode reservoir with a syringe to fill the 
entire CE separation system. A prepared PCR mixture (10 µL) 
was pipetted into the sample reservoir. Vacuum applied at the 
vent reservoir moved the sample into the PCR chamber, and a 
gel-solution interface was formed at the end of the narrow 
injection channel. This interface functioned as a passive barrier 
to prevent the flow of reagents into the CE channels during 
thermal cycling. Using this method bubble-free loading of the PCR 
reactor was consistently achieved. After sample loading, the PDMS 
microvalves were closed by applying pressure to prevent hydro­
dynamic flow. 

PCR Amplification and Capillary Electrophoresis. PCR 
amplifications were conducted from 9948 male and 9947A female 
genomic DNA (Promega commercial genomic DNA controls, 
Promega, Madison, WI), as well as two samples from forensic 
casework previously processed by the Palm Beach County 
Sheriff’s Office. These casework samples were extracted from an 
oral swab and human bone, respectively, using the DNA IQ 
system (Promega), and then quantified using Quantiblot (Applied 
Biosystems, Foster City, CA) with Hitachi CCDBio (Hitachi, 
Alameda, CA) signal detection. All the DNA templates were also 
amplified in a traditional thermal cycler and analyzed in an ABI 
Prism 3100 genetic analyzer (Applied Biosystems) to obtain the 
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sizes of the allele fragments and validate corresponding on-chip 
results. 

The quadruplex STR system included amelogenin and three 
Y-chromosome STR loci, DYS390, DYS393, and DYS439. Table 1 
presents the PCR primers and associated dye labels, as well as 
the expected STR repeat numbers and amplicon lengths. The 
forward primers were labeled with energy-transfer dye cassettes 
developed in our group and described previously.33 The 20-µL PCR 
mixture prepared for each experiment was composed of gold ST*R 
buffer (50 mM KCl, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 
0.1% Triton X-100, 160 µg/mL BSA, 200 µM each dNTP) 
(Promega), templates ranging from 0 to 50 copies in the 160-nL 
PCR chamber, primers, and FastStart Taq DNA polymerase 
(Roche Applied Science, Indianapolis, IN). The corresponding 
primer concentrations in the singleplex PCR amplifications were 
150 nM for amelogenin, 80 nM for DYS390, 120 nM for DYS393, 
and 180 nM for DYS439, respectively. In the multiplex PCR 
reactions, the primer concentrations were adjusted to 150 nM for 
amelogenin, 150 nM for DYS390, 120 nM for DYS393, and 
180 nM for DYS439. The final DNA polymerase concentration was 
0.2 unit/µL in all experiments except for the analyses of male 
DNA in female DNA background, where the concentration was 
increased to 0.4 unit/µL. The thermal cycling protocol was 
composed of initial activation of the Taq polymerase at 95 °C for 
4 min, followed by a PCR cycle of 95 °C for 10 s, 58 °C for 60 s, 
72 °C for 30 s, and a final extension step for 2 min at 72 °C. For 
the singleplex reactions, 32 cycles were employed while 35 cycles 
were used for the multiplex. 

Following microchip PCR amplification, the CE separation 
channel was heated to 70 °C using the channel heater. After the 
microvalve adjacent to the sample reservoir was opened, the 
amplified sample was electrophoretically injected into the CE 
system toward the waste by applying an electric field of 
�100 V/cm while floating the anode and cathode. A separation 
field of 250 V/cm was then applied between the cathode and 
anode. In the first 5 s of the  separation, a backbiasing field of 80 
V/cm was applied at the sample and waste, which were floated 
for the remainder of the separation. Raw electropherograms were 
processed with BaseFinder 4.0. Processing procedures include 
baseline adjustment, cross-talk analysis, and convolution filtering. 
After each run, the glass manifold was removed, the PDMS 
membrane was replaced, and channels and chambers were 
cleaned using piranha (7:3 H2SO4/H2O2) to prevent run-to-run 
carryover contamination. 

RESULTS AND DISCUSSION 
The quadruplex STR system for testing the portable four-color 

PCR-CE microsystem consists of the loci DYS390, DYS393, 
DYS439, and amelogenin. DYS390, DYS393, and DYS439 are 
members of the extended minimal haplotype loci, which play 
central roles in the current Y-STR DNA typing.34 The haplotype 
diversity of these three loci is 0.9473 in the U.S. population. In 
addition to these three Y-STR loci, amelogenin, which codes for 
a protein found in tooth enamel, was employed. PCR amplification 

(33) Medintz, I. L.; Berti, L.; Emrich, C. A.; Tom, J.; Scherer, J. R.; Mathies, 
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Mehdi, S. Q.; Rosser, Z.; Stoneking, M.; Jobling, M. A.; Sajantila, A.; Tyler-
Smith, C. Am. J. Hum. Genet. 2004, 74, 1183-1197. 

Figure 4. Singleplex and multiplex STR amplification performed 
on the PCR-CE microsystem. (A) Amplification of the amelogenin 
marker from male standard genomic DNA. A 106-bp X-chromosome 
and a 112-bp Y-chromosome amplicon labeled with FAM-FAM were 
amplified from 20 copies of the template with 32 PCR cycles. 
(B) DYS390 Y-chromosome amplicon (171 bp) labeled with FAM­
R6G from standard male genomic DNA. (C) A 123-bp DYS393 
amplicon from male standard genomic DNA labeled with FAM-TMR. 
(D) A 191-bp DYS439 amplicon labeled with FAM-ROX. (E) Multiplex 
PCR of all four loci from 50 template copies with 35 PCR cycles. 

of this marker produces a 106-bp and a 112-bp amplicon from the 
X and Y chromosomes, respectively. Amelogenin is widely used 
for sex-typing and sample quality evaluation in the forensic 
community.35 In our system, amelogenin serves as a positive 
control, providing important information about sample quality and 
amplification performance. 

Singleplex and Multiplex STR Amplification. Singleplex 
amplifications on each locus were performed first to examine the 
functionality of the PCR-CE microsystem as well as the amplifica­
tion performance of these DNA markers. In these PCR experi­
ments, each DNA marker was amplified from 20 copies of 9948 
male standard genomic DNA templates in the 160-nL PCR 
chamber with 32 PCR cycles. After thermal cycling, the PCR 
product was immediately injected and separated on the electro­
phoresis channel. An entire analysis was completed in 1.5 h. Panel 
A in Figure 4 presents an amplification of the amelogenin marker. 
A 106-bp X-chromosome and a 112-bp Y-chromosome amplicon 
labeled with FAM-FAM were observed, indicating that the 
template is male DNA as expected. Panel B presents an amplifica­
tion and detection of the DYS390 locus, revealing a 171-bp 

(35) Sullivan, K. M.; Mannucci, A.; Kimpton, C. P.; Gill, P. Biotechniques 1993, 
15, 637-641. 
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Figure 5. Limit of detection for multiplex analyses of 9948 male 
standard genomic DNA using the PCR-CE microdevice. PCR cycles 
were 35 in each case. The trace obtained from 20 template copies 
was enlarged twice for display. A negative control experiment was 
performed to confirm the absence of carryover. 

amplicon labeled with FAM-R6G. Similarly, a 123-bp DYS393 
amplicon labeled with FAM-TMR and a 191-bp DYS439 amplicon 
labeled with FAM-ROX were obtained, respectively, in panels C 
and D. With optimized primer concentrations (150 nM ameloge­
nin, 80 nM DYS390, 120 nM DYS393, and 180 nM DYS439), each 
DNA marker demonstrated a similar amplification efficiency and 
good sensitivity. 

Following successful amplifications on each locus individually, 
a multiplex PCR-CE experiment was carried out on this four-
locus multiplex system. Starting template (50 copies of 9948 male 
standard genomic DNA) was loaded in the PCR chamber, and 
35 PCR cycles were performed. Primer concentrations used in 
the multiplex system were adjusted slightly to maintain balanced 
peak intensities for each locus (150 nM for amelogenin, 150 nM 
for DYS390, 120 nM for DYS393, and 180 nM for DYS439). As 
shown in Figure 4 (panel E), all the peaks (106, 112, 123, 171, 
and 191 bp) were fully resolved and balanced. Compared with 
singleplex amplifications, multiplex STR amplifications exhibit 
lower amplicon yields due to competition between each locus. 
Therefore, both the initial template copy number (50 copies) and 
the PCR cycle number (35 cycles) were increased to compensate 
for this effect. 

A limit-of-detection analysis for multiplex amplification of 9948 
male standard genomic DNA was performed. Figure 5 presents 
results from a series of amplifications conducted from 0, 20, 30, 
and 50 copies of template in the PCR chamber with 35 PCR cycles. 

Even with only 20 copies of DNA template, the multiplex 
amplification still shows all the expected peaks in the electro­
phoregram. An amplification from 10 copies was also performed; 
however, a complete profile was not obtained. The amplicon peak 
intensities are reduced and show more variability as the initial 
templates decrease from 50 to 20 copies. When the template copy 
numbers fall into the low copy number amplification range 
(<100 pg or <33 copies),2 stochastic effects occur, and repeated 
amplifications of identical solutions exhibit fluctuations in peak 
intensity. Finally, it should be noted that the absence of any 
amplicons in the negative control (0 initial copies) demonstrates 
the effectiveness of the piranha cleaning conducted after each run. 

Analysis of Forensic Casework. Samples obtained from 
forensic casework usually have lower amplification efficiency, due 
to PCR inhibitors, which remain with the DNA throughout the 
sample preparation process,36,37 or due to DNA degradation by 
exposure to environmental elements or natural contaminants.38 

Here we selected two typical samples, one from an oral swab and 
the other from human bone, which were previously processed 
and analyzed by the Palm Beach County Sheriff’s Office. Buccal 
cell collection with a cotton oral swab is often used in cases where 
reference samples from suspects or family members are needed 
to perform comparative DNA testing.39 Human bone remains in 
forensic casework represent one of the most degraded biological 
materials for PCR-based DNA typing, since they are usually 
collected after a long period of exposure in a harsh environment, 
such as burial in soil.40 Therefore, these two typical samples were 
chosen to test our integrated PCR-CE forensic system. 

Four separate amplifications, including 9948 male and 9947A 
female standard genomic DNA, which serve as controls, and two 
casework samples from an oral swab and human bone, were 
conducted from 50 template copies with 35 PCR cycles. Panels A 
and B in Figure 6 present the PCR analyses conducted from male 
and female standard DNA, showing all the expected peaks with 
correct gender discrimination. Figure 6C presents an amplification 
and analysis of the DNA sample extracted from an oral swab. All 
the amplicons in four loci were successfully obtained, indicating 
the sample is male DNA. Figure 6D shows only one peak at 106 
bp, corresponding to the successful amplification of female human 
bone DNA. Off-chip results using an ABI Prism 3100 confirmed 
the genders of these two samples and indicated that the amplicon 
lengths of the oral swab sample in DYS390 and DYS439 are 167 
and 187 bp, one repeat less than those corresponding amplicons 
from 9948 standard DNA. These differences were also observed 
in the on-chip results, by aligning the profiles of the male standard 
DNA and the oral swab sample. 

Mixture Analysis. The ability of our system to provide 
interpretable DNA amplification profiles, when a minute amount 
of male DNA is present in a high background of female DNA, is 
very critical, as this situation is often encountered in Y-STR 
forensic analysis.6 Quadruplex amplification and detection was 

(36) Wilson, I. G. Appl. Environ. Microbiol. 1997, 63, 3741-3751. 
(37) Radstrom, P.; Knutsson, R.; Wolffs, P.; Lovenklev, M.; Lofstrom, C. Mol. 

Biotechnol. 2004, 26, 133-146. 
(38) Bar, W.; Kratzer, A.; Machler, M.; Schmid, W. Forensic Sci. Int. 1988, 39, 

59-70. 
(39) Burger, M. F.; Song, E. Y.; Schumm, J. W. Biotechniques 2005, 39, 257­

261. 
(40) Opel, K. L.; Chung, D. T.; Drabek, J.; Tatarek, N. E.; Jantz, L. M.; McCord, 

B. R. J. Forensic Sci. 2006, 51, 351-356. 
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Figure 6. Multiplex STR forensic analysis using the PCR-CE 
microdevice conducted from standard genomic DNA and from 
samples extracted from an oral swab and human bone, respectively. 
In each case, 50 starting template copies and 35 PCR cycles were 
employed. (A) Analysis conducted from 9948 male standard DNA, 
showing the presence of all the amplicons on these four loci. 
(B) Analysis of 9947A female standard DNA, showing only the 
expected presence of the 106-bp X-chromosome peak. (C) Analysis 
conducted on genomic DNA extracted from an oral swab. All the 
expected peaks were observed, showing the source is male. (D) 
Analysis of a human bone sample. Only one 106-bp amplicon was 
detected, showing the source is female. 

carried out by mixing male and female standard genomic DNA 
together during the sample preparation. The male DNA in each 
run was maintained at 50 copies, while the female DNA was 
increased to achieve ratios of male-to-female genomic DNA of 1:1, 
1:5, and 1:10, respectively, resulting in ratios of Y-to-X chromo­
somes of 1:3, 1:11, and 1:21. Since a high yield of the 106-bp 
X-chromosome product is expected to overwhelm the other 
Y-chromosome amplicons, the DNA polymerase concentration was 
increased from 0.2 to 0.4 unit/µL to ensure full amplification and 
to produce balanced profiles. The results of this experiment in 
Figure 7 show that, as the ratio increased, the 106-bp amplicon 
from X chromosome became more and more dominant over the 
112-bp Y-chromosome product. The peak area ratios are roughly 
equal to the initial template ratios of Y-to-X chromosomes (1:3, 
1:11, and 1:21). The other three Y-chromosome loci (DYS390, 
DYS393, and DYS439) were still fully amplified and balanced in 
each case. However, slight signal reductions were observed, due 
largely to the increase of the 106-bp X-chromosome amplicon, 
which used up most of the PCR resources. These data indicate 
that the system is capable of analyzing male DNA in the presence 

Figure 7. Multiplex STR analysis of male genomic DNA (50 copies) 
in the presence of a female genomic DNA background using the 
PCR-CE microsystem (35 PCR cycles). The template ratios of male-
to-female range from 1:1 to 1:10. As the ratio increased, the 106-bp 
amelogenin amplicon from the X-chromosome became more and 
more dominant over the 112-bp Y-chromosome product. 

of a high female DNA background. Although the ratio could be 
lowered further in amplifications without the amelogenin marker, 
additional valuable information, such as the male-to-female DNA 
ratio, is obtained with this quadruplex system from the peak area 
ratio of the two peaks in amelogenin. 

CONCLUSIONS 
A fully integrated PCR-CE microdevice has been optimized 

for forensic analysis and combined with a new portable instrument 
including controls for chip operation and four-color fluorescence 
detection. This system was used to perform a quadruplex STR 
forensic analysis; the entire assay was finished in 1.5 h due to 
the rapid low-volume (160 nL) thermal cycling and integrated high-
speed electrophoretic separation. The detection limit of this system 
for multiplex amplification of genomic DNA is as low as 20 copies 
in the PCR chamber. Two real-world forensic casework samples 
extracted from an oral swab and human bone were successfully 
analyzed, showing the practical application of this system. Finally, 
male genomic DNA was tested in the presence of excess female 
genomic DNA background. Intense balanced peaks were observed 
even at the male-to-female DNA ratio of 1:10. 

This microdevice presents a first and significant step toward 
a fully integrated and portable system allowing highly sensitive, 
rapid STR analyses in a setting outside a forensic laboratory. For 
practical forensic applications in the future, a co-injection structure 
can be included in the microdevice to facilitate running sizing and 
allelic ladders,26 and more STR loci should be included to improve 
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the discrimination power. Additionally, autosomal STR typing is 
under investigation to extend the application range of the portable 
microsystem. The integrated, high-speed and low-volume STR 
typing methods developed here will accelerate the forensic 
identification process and lower the assay cost, thereby reducing 
backlogs and advancing forensic DNA applications. Furthermore, 
our demonstration of successful STR analyses on a portable PCR­
CE system validates the concept of point-of-analysis DNA typing 
in crime scene, mass disaster, or security checkpoint applications, 
where rapid on-site human identification is demanded.5,41,42 
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