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Abstract 
The goal of this project is to characterize the nature of human expertise using eye tracking 

methodologies, and then use these results to develop and refine quantitative metrics of the 
information contained in friction ridge patterns. Current quantitative approaches to fingerprint 
matching and analysis are not based on human data and therefore do not take advantage of the 
full capabilities of the human visual system. Since humans routinely outperform automated 
fingerprint recognition systems, it is clear that quantitative approaches can be improved by 
adopting some of the strategies that humans employ. However, humans often have difficulty 
describing the results of perceptual processing, and may not even know what information they 
are using. To address this deficit, we used eye tracking to identify what information human 
experts rely on. We constructed a portable eye tracking system that enables us to collect data 
from experts and novices while they perform tasks similar to latent print examinations. Once we 
analyzed the data we obtain a record of the regions visited by the experts as they compared pairs 
of fingerprints. We then developed a series of computational analyses to identify the nature of 
the expertise. This took the form of data reduction procedures on pixel crops from the fingerprint 
images, as well as the development of candidate information metrics that the data from experts 
helps validate. The results demonstrate clearly that human expertise can be inferred from eye 
gaze information through a process of carefully designed studies and hypothesis testing of 
candidate information metrics. Because our candidate metrics take the form of mathematical and 
computational models, they are readily applicable to machine comparison approaches, and also 
can be used to identify the diagnosticity and rarity of particular features in novel prints. 
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Executive Summary 
This Executive Summary is designed to 

provide an overview of the methods, findings 
and conclusions of the project. While it 
provides a summary of the results, many of 
the mathematical and computational 
approaches that are described require 
additional explication in order to gain a 
complete intuition for the methods. The main 
body of the report provides such detail, along 
with supporting figures that demonstrate the 
conclusions in graphical form. Thus the reader 
is encouraged to refer to the full text when 
necessary. 

Research Problem 
Human expertise can be remarkably 

difficult to transfer from one individual to 
another, in part because the tools we have to 
transfer this knowledge, mainly language, are 
sparse and incomplete representations of 
complex perceptual skills. Indeed, 
psychologists differentiate between 
knowledge learning and skill learning, as they 
appear to have different mechanisms 
supported by different brain substrates. This 
should come as no surprise to anyone who has 
ever coached a little league team, taught 
piano, or mentored a latent print trainee. 
Describing what we do is very different than 
actually being able to do it. 

The difficulty we have in translating 
perceptual skills from one person to another 
also implies that the skill that underlies latent 
print examinations may be difficult to 
demonstrate. An examiner can point to a 
region to indicate to another person what 
matches, but they can make the person ‘see’ 
the match in a visual comprehending sense. 
The MagicEye posters popular a few years 
back are a good example of how perception is 
a uniquely personal and private experience: 
Knowing that a dinosaur is hidden in the 
image doesn’t help until all of a sudden you 
can see it completely.  

This kind of perceptual experience can 
be difficult to transfer to others, and this may 
be why judges have been willing to listen to 
defense attorneys who have argued that latent 
print examiners do not have any special 
expertise, and that fingerprints should be just 
shown to the jury. At issue here is the fact that 
much of the process of perception can be 
difficult to translate into language (Snodgrass, 
Bernat, & Shevrin, 2004; Vanselst & Merikle, 
1993) and examinations may be subject to 
extra-examination biases (Dror & Charlton, 
2006; Dror, Charlton, & Peron, 2006; Dror, 
Peron, Hind, & Charlton, 2005). As a result, 
up until now we have been forced to trust the 
word of the examiner that they rely on the 
features they say they do. 

In this project we have used eye tracking 
methodologies, combined with computer and 
mathematical modeling approaches, to infer 
the nature of the expertise in latent print 
examiners. This allows us to address questions 
not only about what information experts rely 
on, but to create candidate models of this 
expertise using mathematical and 
computational approaches that can be 
validated against the human data. No longer 
do we need to simply ask examiners what they 
rely on, which is important because much of 
perception may reside below the level of 
consciousness. For example, the picture in 
Figure 1 illustrates that even though we know 
at a cognitive level that the two lines are 
straight, this knowledge does not allow us to 
perceive them as straight. 

The goal, then, of this project is to use 
eye gaze to identify the features and ridge 
detail information that experts rely on when 
conducting latent print examinations. This 
task is made possible by the fact that the eyes 
contain a region of high acuity, called the 
fovea, outside of which the representation is 
much coarser. Because ridge detail is fairly 
fine, most information must be acquired by 
moving the fovea so that it lands on the region 
of interest. Thus by tracking the position of 
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the eyes we gain a record of what features or 
ridge detail the examiner considers diagnostic 
or relevant. Such an approach has been used in 
question document applications (Dyer, Found, 
& Rogers, 2008). 

This task is complicated somewhat by 
the fact that the fovea is about 1 degree of 
visual angle, or about the width of your 
thumbnail seen with your arm outstretched (go 
ahead, stick your arm out and see how big this 
is). This area implies that, depending on the 
enlargement of the print, it could encompass 
several different ridges. To gain a final 
representation of what examiners are 
evaluating within this window of high acuity, 
we construct candidate mathematical models 
that we can test between by comparing data 
from experts with data from novices. The 
benefit of these approaches is that we are able 
to characterize the nature of expertise in 
computational form that is easy to implement 
in computer-based matching systems such as 
AFIS. As part of the development of these 
models we will need to describe some initial 
differences between experts and novices that 
will guide our model development. Note, 
however, that systems such as AFIS and 
human examiners have different goals. AFIS 
is designed to quickly return candidate 
matching prints from large stored databases. 
However, human examiners have more 
information available, since they can use 
features such as third level detail. In some 
sense it is desirable to have the two systems 
use different sources information, because 
independent sources give more reliability to 
the final conclusion. Of course, there is a 
potential built-in correlation if the expert only 
looks at prints returned by AFIS. 

Research Designs and Findings 
There are three major research questions 

in this project: 
1) How reliably can eye gaze data be 

collected from experts? 

2) Does this eye gaze data demonstrate 
differences between experts and novices? If 
so, what is the nature of the differences? 

3) How can data from experts 
discriminate between different candidate 
quantitative metrics of the information in 
latent fingerprints? 

These questions take multiple 
approaches to answer, and as a result we have 
combined the Research Designs and Findings 
sections into one, and broken down the 
individual data analyses into subsections 
below. 

Eye Tracking Data Processing 
To gather robust gaze data from 

examiners in the field, we designed a set of 
software tools that would allow us to record 
the video streams from two head-mounted 
cameras, one that monitored the position of 
the eye  relative to the head, and one that 
monitored the head relative to the world. By 
performing calibration procedures and 
tracking the corners of the computer monitor 
in the scene video we were able to determine 
the position of the eye on the fingerprint 
images to an average error of less than 1 
degree of visual angle. Note that this is on par 
with commercial eye tracking systems and is 
about the width of the fovea. Therefore, 
accuracy greater than this resolution probably 
is diminishing returns. 

We developed a number of innovations 
in order to reliably capture gaze information 
from videos taken in the field, and our eye 
model innovation is demonstrated in Figure 4. 
We had to deal with all kinds of difficulties, 
such as one recording session when the 
chandeliers from the hotel lobby were 
reflected in the pupil of our subjects. Because 
we can post-process our video we are able to 
recover much of the data that would be lost if 
we had tried to do online eye tracking. 

 We currently have data from 72 experts, 
10 trainees, and 32 novices, which we have 
processed through our software. We ask our 
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participants to perform abbreviated latent print 
examinations that allow 20-30 seconds per 
pair of images. This allows us to limit the 
recording sessions to 15 minutes to avoid eye 
fatigue, and to obtain eye gaze data from a 
wide variety of images, which is necessary for 
the data reduction procedures. This relative 
brief exposure requires the experts to move 
their gaze to regions that they consider to be 
most diagnostic.  

Figure 8 illustrates the eye gaze data 
collected from one expert, along with the 
fixations that are found by grouping the raw 
gaze data into clusters by computing the 
velocity of the track. It is this kind of data that 
provides the foundation for the analyses 
described in the next section. 

Eye Tracking Data Analyses 
We have three major types of 

experiments that we conduct. The first set uses 
standard latent/inked comparisons from NIST 
special database 27. We also obtained a set of 
clean prints from donors at Indiana University, 
and conducted a set of studies using clean 
images. More recently we have begun to add 
texture noise to clean prints to encourage 
examiners to treat them as latent prints. In all 
cases we ask our participants to determine 
whether the two prints come from the same 
source, although we give a ‘too soon to tell’ 
option as well. Based on these and the fact 
that we know the ground truth allows us to 
compute accuracy. In all cases we find that 
experts outperform novices in terms of overall 
measures of sensitivity. 

In the summaries below we characterize 
the nature of the individual analyses and 
provide a summary of the results. We do not 
provide the raw statistics for each conclusion, 
but refer the reader to the full text for such 
detail. 

Fixation statistics 
As a first step, we compared our experts 

and novices in terms of how often and how far 
them moved their eyes. We found no 

differences between the two groups in terms 
of the amount of time they spend in one 
location, but when experts move their eyes, 
then tend to make shorter jumps, at least 
within one print. 

This behavior is consistent with the idea 
that the information used by experts is not 
individual features to be matched across the 
prints, but collections of features. Since 
collections are much less likely to be 
spuriously matched, they provide much more 
diagnostic value. Of course the expert must be 
able to maintain the entire collection in visual 
memory, and other data from our lab suggests 
that they have longer-lasting visual memories 
(Busey & Vanderkolk, 2005). 

Consistency among experts and novice 
The gaze data provides collections of 

fixations for a given pair of prints for several 
different examiners. We can ask whether 
experts use similar kinds of information by 
looking to see whether they visit the same 
locations on the prints. We used a metric 
called the Earth Mover Distance, which 
computes the similarity between any two 
experts based on how easy it would be to 
move the fixations from one expert onto the 
fixations of another.  

The Earth Mover metric provided some 
surprising results. When applied to 
latent/inked pairs, we found that experts were 
less consistent as a group. This suggests that 
they tended to use different sources of 
information, perhaps by wandering off the 
high-visibility regions of the prints into 
different parts of the noisy areas. The choice 
of which noisy areas to visit may have 
depended on their individual expertise and 
strengths. It will be up to the latent print 
community to decide whether this variability 
is a source of concern. 

We found the opposite result for clean 
image pairs. Now experts are showing more 
consistency as a group, despite the 
overwhelming wealth of ridge detail available 
in clean prints. This is consistent with the 
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suggestion that experts have an implicit sense 
as a community for which features are most 
diagnostic and tend to fixate them 
immediately. 

Use of minutiae by experts and novices 
One reason that experts produced greater 

consistency as a group with clean prints is that 
they tended to focus on the core and delta 
regions, which are rich in minutiae. Figure 13 
shows the locations of the fixations for experts 
and novices for a clean image pair, and the 
experts tend to send their gaze to regions that 
have much higher minutiae count. We did not 
have enough data to look at individual 
differences between examiners who profess to 
ignore minutiae and those who explicitly rely 
on minutiae, but such an analysis would be 
potentially revealing about the nature of 
individual differences among examiners. 

Machine translation approaches to 
data analysis 

In a separate project we addressed the 
ability of temporal information to determine 
whether two features match across an image 
pair. There have been reports in the eye 
tracking literature that gaze information may 
be more diagnostic than over responding, 
since subjects will often fixate a target one or 
more times before actually identifying it in a 
visual search task.  

We used algorithms adapted from 
machine translation approaches to identify 
corresponding regions in the two prints. Using 
the data from multiple experts, we found that 
the two images could be treated as two 
separate languages, and the pattern of eye 
gaze switches between the two prints acts as a 
translation dictionary. This approach builds up 
correspondences between regions in the prints, 
and the algorithm was much more successful 
in finding correspondences in data from 
experts than data from novices.  

This analysis suggests that gaze data 
alone may be sufficient to determine 
corresponding regions, and that there may be 
more information in the eye gaze channel than 

initially available from the behavioral 
responses of the examiner.  

Feature induction from fixation data  
In order to determine the exact nature of 

the information acquired by experts, we 
cropped out small, 48x48 pixel patches 
centered on each fixation. We then performed 
a data reduction procedure known as 
Independent Component Analysis, which 
seeks to find a common alphabet or feature set 
that best describes the entire dataset. We had 
over 30,000 image crops from experts, and we 
distilled these down to just 120 basis functions 
that, when combined, allow a fairly accurate 
reconstruction of the original image crops.  

This analysis demonstrated fundamental 
differences in the nature of the information 
acquired by experts and novices. While 
novices appeared to focus on fine details in 
high-signal regions, the experts were more 
likely to seek out regions that had more visual 
noise and lower spatial frequency information.  

Information theoretic approaches  
Our most sophisticated computational 

approaches rely on metrics derived from 
Shannon Information Theory (Shannon & 
Weaver, 1949). We trace the ridge elements 
and determine the orientation of the ridge at 
each pixel location. This allows us to collect 
these orientations, as well as the relative 
orientation change, which provides ridge 
curvature information. Figure 19 illustrates 
this procedure. 

The collection of orientations provides a 
measure of the entropy of the patch, and we 
can construct several different measures of 
entropy depending on the assumptions made 
about the frequency distribution.  

We computed the entropy of patches 
extracted at the fixations of experts and 
novices, and determined that some measures 
of entropy distinguished between experts and 
random fixations, while others distinguished 
between experts and novices. This approach 
appears promising in part because entropy can 
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be based on sources of information than ridge 
orientation.  

We were surprised to find that some 
measures of entropy that we though were 
extremely viable turned out not to 
discriminate between experts and novices, and 
others that we thought would not mean much 
turned out to be very diagnostic. This 
observation illustrates the value that the eye 
gaze data from experts and novices can 
provide in the model generation and testing 
process.  

Conclusions 
We had three main questions that we 

addressed in this project, which we can now 
answer. 

1) How reliably can eye gaze data be 
collected from experts? 

The accuracy of our system, computed 
by comparing the estimated eye gaze position 
against where we asked the participants to 
look, demonstrated that our system performs 
at the same level of accuracy as commercial 
systems. In addition, our post-processing 
procedures and innovative forward eye model 
allow us to deal with field data collection that 
would prove problematic for commercial 
systems. The fact that we built the system 
ourselves based on research articles describing 
different calibration procedures means that we 
understand and trust all aspects of our data. 
Thus the answer to this question is a definitive 
yes, and our results demonstrate that eye gaze 
data can provide strong evidence for the 
nature of expertise in examiners. 

2) Does this eye gaze data demonstrate 
differences between experts and novices that 
would support the continued use of human 
experts as expert witnesses is court cases? If 
so, what is the nature of the differences? 

We found that experts out-performed 
novices in all experiments, both in terms of 
the number of correct identifications and the 
number of correct exclusions. Experts were in 

general less likely to use the ‘too soon to tell’ 
option.  

This behavioral accuracy improvement is 
supported by a number of differences in the 
eye gaze data. Experts had shorter saccades 
between fixations, suggesting that they were 
looking for clusters of features rather than 
trying to match individual features. The 
combinatorial increase in diagnosticity that 
multiple features in combination provides 
makes this strategy potentially much more 
accurate. 

Experts and novices differed in their 
consistency as groups depending on the nature 
of the stimuli. For latent prints, experts 
showed less consistency overall than the 
novices, and we speculated that they were 
venturing into the less visible print regions 
and choosing different regions to visit 
depending on their own individual strengths. 
Novices tended to just focus on the clean 
portions of the latent prints regardless of 
whether there was diagnostic information 
there or not.  For the clean prints, however, 
experts showed more consistency overall 
despite the fact that there was a wealth of 
information through the print. This suggests 
that in this case experts have an implicit set of 
features that they acknowledge are most 
diagnostic and tend to fixate these as a group.  

Experts also tended to send their gaze to 
regions with more minutiae. Their fixations 
tended to land in and around the core and 
delta, where there is much more activity that 
creates minutiae.  

Our machine translation procedures used 
the temporal correspondences across subjects 
to identify regions that might match across a 
pair of prints. This technique found many 
more corresponding regions for the experts, 
suggesting that the eye gaze pattern alone can 
reveal portions of the prints that the examiner 
believes matches. 

3) How can data from experts 
discriminate between different candidate 
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quantitative metrics of the information in 
latent fingerprints? 

We used two complementary approaches 
to address the role that eye gaze data can play 
in discriminating between different candidate 
computational metrics that characterize the 
amount of information in fingerprints.  

The first used data reduction procedures 
on pixel crops taken at the locations of 
fixations. This analysis revealed strong 
differences between experts and novices in 
terms of the nature of the information acquired 
by each group. Experts appear to be acquiring 
information from regions that are noisier, 
perhaps because their training allows them to 
tolerate more noise. They appear to be relying 
on lower spatial frequencies and coarser 
features, suggestive of configural processing 
(Busey & Vanderkolk, 2005). 

The second approach defined several 
candidate entropy metrics using information 
theory and the angles of the ridge elements 
within a window. We found that some entropy 
measures performed better than others at 
discriminating between experts and novices. 
Overall this approach is extremely promising 
because in theory the angles of ridge elements 
provides a complete description of all of the 
information contained in fingerprints. 

Implications for Practice 
Together these results lay to rest the 

suggesting that experts have nothing more to 
add to court proceedings than a novice might. 
While it is true that humans in general have an 
intuitive sense for what features might be 
diagnostic, experts outperformed and looked 
different than novices on virtually all 
measures that we tested. 

From an engineering standpoint, human 
expert eye gaze data provides an important 
validation procedure for any proposed 
quantitative approach to fingerprint matching. 
Human experts have proven to be superior to 
computers in the actual matching procedures, 
in part because they have an ability to alter 

which kinds of information they rely on. If 
Level 3 detail is available, they likely rely on 
it, while they may be able to determine when 
distortions might have occurred and therefore 
not trust ridge curvature as much as they 
might otherwise. This suggests that targeted 
experiments with these particular scenarios 
will help engineers collect eye gaze data that 
would help them train a ‘collection of experts’ 
model in which separate modules each make a 
decision and then a voting scheme is 
performed to make a final decision. 

Experts should be cautioned that these 
differences between groups should not lead to 
complacency. Indeed, special abilities often 
come with vulnerabilities and care should be 
taken to avoid overconfidence. 
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Introduction 
The major goal of this grant is to acquire 

eye gaze data from expert latent print 
examiners in order to determine what features 
or detail they rely on when conducting latent 
print examinations. This information is 
important because experts still outperform 
computers when conducting actual 
examinations (although machines have the 
advantage of vast storage space and can 
provide an initial candidate set for an expert to 
examine). Thus the human expert appears to 
have knowledge that is still not incorporated 
into machine-based approaches. 

To determine which features experts rely 
on when examining latent and inked prints, we 
take advantage of the fact that the human 
visual system has a region of high acuity 
known as the fovea, and detail in regions 
outside this are (the periphery) are represented 
in much coarser detail. Since ridge 
information in fingerprints tends to be very 
fine detail, humans typically must move the 
location of their gaze around on a pair of 
prints, looking for regions that might match or 
definitively not match. By monitoring the 
position of the eye relative to the head, and the 
position of the head relative to the pair of 
prints, we can determine where their gaze 
lands on the ridges and therefore what 
information they choose to acquire. 

Up until this project no one had collected 
eyetracking data from latent print examiners. 
One reason for this is that experts tend to be 
located in crime labs, away from research 
facilities. Eyetracking equipment is typically 
large not portable, often taking whole rooms 
in research labs. A major initiative of the 
current program has been to develop a 
portable, research-grade eye tracker that could 
be used to reliably collect data from expert 
examiners. This hardware/software package, 
which we have made open-source, is termed 
ExpertEyes (a play on the word ‘expertise’). 
This package is a major contribution of the 

present grant, and we will describe its 
functionality in section A below. We currently 
have data from 72 experts, 10 trainees, and 32 
novices, which we have processed through our 
software. 

Once the eyetracking data has been 
processed, we have a record of where the gaze 
falls on the prints, for each point in time. This 
data is very simple in form, because it is just 
the x-y locations in time. However, it is also a 
very rich dataset, which can be related to the 
features of the print, or other measures. We 
discuss the analysis of the eye tracking data in 
section B below. 

Our rational for this research comes from 
the observation that no systematic study of 
expertise in latent print examiners has been 
conducted using eye gaze methods. Thus it is 
not known whether the experts are using 
features they say they are using. Indeed, there 
is evidence from radiology that expert 
radiologists fixate on regions other than what 
they say they are looking at (Krupinski, 1996). 

Because we have two major sets of 
accomplishments, one related to data 
collection, and the other related to data 
analyses, we discuss these in two separate 
sections, and within each section we include 
the methods, results and conclusions from 
each section. We have also discussed the 
relevant literature within each section. 

A. Eye tracking data processing 
Why not just ask examiners what 

features they rely on? One issue with this 
approach is the fact that perception is often 
difficult to express in language and many 
perceptual processes take place at a level 
below consciousness (Snodgrass, et al., 2004; 
Vanselst & Merikle, 1993). An easy 
demonstration of this is the perceptual illusion 
in Figure 1. The red lines are actually parallel, 
but knowing this fact does not allow observers 
to change their perception of the two lines 
warping. However, the edge of a sheet of 
paper reveals that the lines are actually 
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straight. This illustrates that conscious 
processes do not easily alter the output of the 
perceptual system, and that we do not have 
access to the basic levels of perception at the 
level of awareness. Many experts report 
having a flash of recognition or insight, and 
only then go back and document features that 
they now perceive as matching, a phenomenon 
known as the “Eureka” effect in the Cognitive 
Science literature (Ahissar & Hochstein, 
1997).  

How can we access the information that 
experts use, when the expert may not be 
consciously aware of what they rely on? How 
can we implement a quantitative approach 
(e.g. a cognitive model and/or a computer 
program) to extracting features that we don’t 
know? Our solution is to rely on collecting 
fine-grained behavioral data from experts in 
combination with tailored experiments and 
computational modeling to infer the set of 
features that characterize the information 
content in friction ridge impressions. 

A.1. Hardware and recording 
devices 

After a survey of the marketplace we 
determined that no commercial eye tracker fit 
our needs of high resolution and portability. 
We need to collect data at latent print 
conferences like IAI and the Daubert Las 
Vegas seminar where we have access to large 
numbers of potential participants. We needed 
a portable system that is tolerant to different 
lighting conditions, as well as eyeglasses since 
good examiners tend to be older and require 
glasses. We also required a system that had 
good spatial resolving power, since the 
features we thought experts might rely on 
could be as small as a single ridge.  

As no off-the-shelf system met these 
needs, we designed our own eyetracking 
system. It consists of two cameras, one of 
which records the scene and therefore the 
viewer’s location relative to the image, and 
the other which records the position of the eye 

relative to the head. Through some calibration 
procedures we can recover the position of the 
eye relative to the fingerprint image. The 
system is portable, lightweight, and quickly 
adaptable to different subjects for rapid data 
acquisition at conferences. 

Rather than try to analyze eye position in 
real time, we simply recording the video 
streams of the eye and scene cameras. We can 
take advantage of offline processing, which 
allows data processing that is extremely 
precise. We spend about 12 seconds 
processing each frame of a 30,000 frame 
movie that represents 15 minutes of data 
collection. Based on data collected during our 
calibration procedures, we reduce our location 
estimation error to around 1° of visual angle, 
which is about the size of the fovea and 
therefore represents close to what is 
meaningful since the human is acquiring 
information from the entire region contained 
within the fovea. We further improve our 
spatial resolving power by enlarging the 
fingerprint image on a 21” LCD monitor, thus 
making each feature large relative to the 
fovea. 

Our eye tracker consists of a set of 
cameras mounted on a set of safety glasses 
(see Figure 2). This set of cameras records the 
position of the head and eye at 30 frames per 
second, which is suitable for a task in which 
most of the fixations are fairly stable. 

A.2. Pupil and corneal reflection 
extraction 

To illuminate the eye, we shine an 
infrared LED on the eye from a position near 
the eye camera, which is pointed at the eye. 
This results in a bright spot appearing on the 
cornea, called the corneal reflection. The 
relation between this spot and the pupil varies 
systematically as the eye changes orientation. 
The first step is to identify the pupil and 
corneal reflection. While a variety of 
techniques have been proposed, we created a 
novel procedure in which a forward eye model 
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is created by drawing dark and light ovals 
over the eye image and adjusting the position 
of the two to find the best match. Figure 3 
illustrates this procedure, while Figure 4 
demonstrates the software that fits the forward 
eye model. 

These adjustment procedures are quite 
time-consuming, and take 6-8 seconds per 
frame to compute. Thus it can take several 
hours on an 8-core computer to fit the model 
to all 30,000 frames for each subject. 

A.3. Calibration with the scene 
view 

To make the link between the scene 
camera and the eye camera, we ask 
participants to look at black dots on a white 
screen. These appear for about 5 seconds and 
then move to another location. The 
ExpertEyes software contains a module that 
allows us to link an eye position with a 
position in the scene camera. The user selects 
a frame where the participant is assumed to be 
looking at the black dot, and then indicates the 
location of the dot in the scene camera. The 
computer then finds this dot in several 
subsequent frames to reduce noise.  

We then fit a two-dimensional 
polynomial function that relates the u-v 
location of the pupil to an x-y location on the 
scene camera. 

A.4. Monitor corner detection and 
rectification 

The second stage of analysis requires 
that we identify the location of the monitor in 
the scene camera. We apply a barrel distortion 
correction algorithm to each scene camera 
image and then have the user click on each of 
the four corners of the monitor in a 
thresholded scene image. We then use Gabor 
jets, which are an adaptive template match 
algorithm, to identify the corners in the rest of 
the images.  Figure 5 demonstrates how we 
correct for the barrel distortions that all 
cameras induce, and Figure 6 illustrates the 

procedures by which we search and identify 
the corners. The search space is found for each 
corner by a human coder using a shuttle-jog to 
quickly mark the search area for the entire 
movie for each corner. 

Once we know where the eye is in the 
scene view for a particular frame, as well as 
where the corners of the monitor are in the 
scene view, we can then interpolate the eye 
position back into the coordinates of the 
monitor. This gives us the position of the eye 
on the images that contain fingerprints.  

These procedures provide the ultimate 
goal of the eye tracker: the position of the eye 
on the fingerprint ridge detail. We can then 
tell, with accuracy that is about the size of the 
fovea, which information the expert is using 
when performing examinations. 

A.5. Trial and event extraction 
To obtain enough information about the 

diagnosticity of different kinds of information, 
we often conduct experiments with 30-40 
images, each shown for 20-30 seconds to 
encourage the examiners to focus on only the 
most diagnostic features. The ExpertEyes 
software contains a module that automatically 
extracts event information and allows human 
verification and correction. 

A.6. Data cleaning and export 
Eyetracking data invariably has some 

missing data, usually when the participant 
moves their head enough so that a corner of 
the monitor moves off the edge of the scene 
camera. Figure 7 illustrates the procedures that 
allow the user to identify and mark regions of 
the data that are bad. We typically throw out 
less than 5% of our data. 

A.7. Fixation finding 
The final step in the analysis process is 

to find fixations. The eye tends to move 
ballistically from one location to another on 
static images, with dwell times that average 
about 300 ms in duration. During this dwell 
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period the eye experiences micro-saccades, 
tiny movements that prevent the visual world 
from fading. However, these micro-saccades 
are typically not meaningful from an analysis 
standpoint, and there is also jitter from error in 
the estimation procedures. Thus to smooth the 
data we rely on fixation finding routines that 
perform a cluster analysis that groups similar 
eye gaze locations into fixations and saccades.  

 
We have developed our own algorithm 

of eye fixation finding which is composed of 
five step: 1) First, we compute the magnitude 
of velocity from raw eye movement data (x,y); 
2) we next use a pre-defined threshold to 
segment the whole continuous stream into 
several big segments that correspond to 
dramatic eye location changes; 3) we zoom 
into each big segment and re-segment each 
into individual segments that correspond to 
small eye position changes. Those small 
segments may or may not correspond to 
fixations; 4) Finally, we took spatial 
information into account by merging small 
segments (detected from Step 3) if they are 
spatially close to each other (e.g. eyes moving 
around  an area with a certain speed).  After 
the above five steps, we typically are able to 
successfully segment a continue eye 
movement stream into several eye fixations by 
integrating both temporal (the speed of eye 
movement, etc.) and spatial (the overall spatial 
changes of eye gaze location) information. 

 Figure 8 shows the raw eye trace along 
with the results of the fixation finding 
algorithm. The parameters are tuned by eye, 
since no objective criterion for fixations and 
saccades exists in the literature. 

A.8. Calibration verification and 
quantification 

An all-important task is to identify 
whether our calibration procedures accurately 
measure eye position. To ensure this, we ask 
our participants to perform an additional 
calibration procedure at the end of the 

experiment. We ask them to look at known 
locations on the monitor and then verify 
whether we can accurately track their gaze. As 
Figure 9 illustrates, we typically find that our 
calibration accuracy is quite high, comparable 
to commercial systems. In many respects our 
system is superior to commercial systems 
because we are able to go back and re-fit the 
eye model if the parameters are incorrectly 
specified. If we were recording live from the 
field we would simply not be able to use that 
data. Given how valuable the data is from 
experts, we are fortunate in that we are able to 
make full use of almost all of the data we 
gather from examiners. 

A.9. System integration 
The ExpertEyes software integrates four 

major modules: eye calibration, trial marking, 
data cleaning and eye model fitting. Figure 10 
illustrates the main screen of the software that 
integrates these different modules for one 
subject’s data. 

B. Data analyses 
The analyses of eyetracking data have 

subsumed much of our research efforts for the 
latter portion of the grant. Perfecting our eye 
tracker to enable research-grade data required 
an iterative procedure of testing and 
development, and the result is that we are 
much further along with the software tools to 
gather eye tracking data than we are with the 
data processing. The data analysis is 
complicated by the fact that there are several 
major classes of approaches that can be used 
to identify the nature of expertise in latent 
print examiners.  

Below we describe the six different types 
of analyses that we have conducted. Note that 
each of these approaches relies on 
sophisticated mathematical modeling and 
machine learning techniques, which are quite 
time consuming to implement and test. Thus 
the results below represent in many cases 
completed analysis, but also signposts to 
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future analyses as is often the case in the 
hypothesis development and testing loop of 
science. The first three sections below are 
described in Busey et al. (Submitted 
Manuscript) and portions of the text below 
also appear in the submitted manuscript. The 
methods of data collection are presented in the 
appendix of this Final Report. 

We compared the behavioral results 
found a mean d’ for experts of 2.47 and a 
mean d’ for novices of 1.30. Thus experts 
seem to be able to reliably out-perform 
novices and have fairly high d’ values even 
with short viewing times. The experts had a 
false alarm rate of 0.007 (or .7%) while the 
novices had a false alarm rate of .25. These 
numbers are based on relatively small number 
of participants, but it does indicate the rather 
large accuracy difference between the two 
groups. 

B.1. Fixation statistics 
The first step in analyzing eyetracking 

data is to compute various summary statistics 
that are likely to be related to the strategies 
used by experts and novices. These are 
essential to determine whether the eyetracking 
data contains the kind of structure that will 
allow us to extract information about the 
quantitative information content as revealed 
by eyetracking scan paths. 

At each point during the experiment, the 
eyes are at a location on the latent/inked print 
pair. Eyetracking researchers distinguish 
between two main states of eye position: 
fixations and saccades. Fixations are periods 
where the eye is relatively stable on the image, 
and tends to last between 200 and 500 
milliseconds. Saccades are periods where the 
eyes move rapidly from one region to another 
for a period of around 20-170 ms. Note that 
these two categories characterize a dataset that 
is often more continuous, since the eyes can 
move slowly and smoothly at times as in 
smooth pursuit of moving objects or when 
experts follow a ridge. These, however, tend 

to be second-order effects and there are a 
number of accepted techniques that are used to 
decide whether the eye is currently in a 
fixation or saccade state. 

Once the fixations and saccades have 
been identified, we can compute statistics 
about the expert and novice groups. We had 
no prior expectations for these data, since this 
kind of data has not been collected before. 
Perhaps somewhat surprisingly, experts and 
novices spend the same proportion of time 
looking at latent and inked prints (about 67% 
on latent) and the mean fixation duration is 
about the same on the latent image, for about 
400 ms. Both groups made longer fixation 
durations on the inked print, by a factor of 
50% more. Thus for these two groups, the 
statistics are quite similar, and may reflect 
low-level eye movement programming 
behavior that is shared by all human 
observers. 

We found that experts and novices have 
equal numbers of saccades (F(1,11)<1) but the 
experts had much shorter saccades than 
novices both on the latent print side ( 66.3 vs. 
100.7 pixels, F(1,11) = 9.0, p<0.05) and on the 
inked print side (57.5 vs. 99.8 pixels, F(1,11) 
= 12.3, p<0.01). These results are consistent 
with experts making smaller eye movements 
to regions that are close together. 

In addition, experts make an average of 
58.9 saccades within a fingerprint vs. 24.7 for 
novices. So while experts make more saccades 
than novices, they still find a way to suppress 
saccade length with a mean length of 171.8 vs. 
191 pixels for novices. One possibility is that 
experts might know the layout of fingerprints, 
allowing them to encode information at highly 
diagnostic fixations and reduce extraneous 
saccade. Also, experts are able to make more 
contiguous fixations on one side before 
switching (mean 5.46 vs. 4.32 for novices). 
All of this converting evidence suggests that 
they approach the task of print matching in a 
different way than novices and may intuitively 
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understand which features are most 
diagnostic. 

To validate these candidate hypotheses, 
however, we have to look at the locations 
visited by experts, and we rely on a 
comparison across observers to look for 
consistency within groups. If experts rely on a 
common feature set and quickly identify the 
most informative regions in a print pair, we 
should see common regions visited by all 
experts. This is discussed in the following 
section. 

B.2. Consistency among experts 
and novices 

To visualize the regions visited by 
experts and novices, we create a visualization 
called a heat map by accumulating the 
duration spent at each location and 
representing this information as color applied 
transparently over the print pair. Figure 11 
shows two example print pairs from two 
participants, one expert and one novice. 

These heat maps represent regions that 
were visited for longer durations as hotter 
colors. As can be seen in Figure 11, the expert 
tends to focus their attention on a few regions, 
while the novice tends to distribute their gaze 
across disparate locations.  

We noticed that this was a general trend. 
Not only did experts tend to focus on fewer 
regions, they tended to be the same regions 
across experts for a print pair.  

To confirm this, we computed a 
consistency analyses. This relies on a 
statistical algorithm known as the Earth 
Movers Distance. To gain an intuitive sense of 
this comparison technique, imagine that one 
expert’s heat maps represent piles of dirt, with 
hotter colors representing taller piles. A 
second subject’s heat map represents holes in 
which dirt can be added. The Earth Mover’s 
Distance computes the shortest path that a 
dump truck could take to move the dirt from 
the piles to the holes. If two experts have very 
similar maps then this is a very short distance 

since the piles and the holes align. However, if 
two subjects (say two novices) have very 
different heat maps, the distance to move the 
‘dirt’ from one subject to another will be quite 
large. In essence this quantifies in a formal 
way the intuitive procedure of printing out 
both heatmaps on transparencies and holding 
them up to see if they align across subjects. 

We performed this analysis with both 
latent and inked prints. With latent prints, of 
the 90 trials in the experiment, experts were 
more similar to other experts on only 29 trials, 
while on the remaining 61 trials the novices 
were more consistent with each other. We 
computed the mean of the inter-expert 
distances, which was 48.4. The mean of the 
novices was smaller at 45.04. A paired t-test 
computed across the trials was significant 
(t(89) = 2.19; p < 0.031). 

With inked prints, we found the opposite 
results. We again computed the earth mover 
distance for each trial (including each of the 
individual presentations within each trial) 
between each expert and every other expert, as 
well as between each novice and all the other 
novices. However, contrary to the latent/inked 
prints, we find that now the experts show 
much more consistency than the novices. 
Experts had smaller distances to other experts 
on 78 trials and novices had smaller distances 
to other novices on only 12 trials. Experts had 
an average distance to other experts of 133.2, 
while the average distance of novices to other 
novices was 196.4 (F(1,178) = 97.9; p<0.001). 
This suggests that experts have an intuition for 
which areas are likely to be the most 
diagnostic, and given high quality prints they 
are able to quickly move to those areas and 
begin to acquire information. 

Implications for training and practice 
The consequences of greater or less 

variability is something that we believe the 
community should discuss. It is entirely 
possible that a consistent conclusion could be 
reached by examiners using different sources 
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of information. However, it may be troubling 
from a legal or policy standpoint to have 
different examiners relying on different 
sources of information. Until we have an 
independent information metric (discussed 
later), we do not have direct comments on this 
issue. We do believe that issues of consistency 
should be discussed by professional 
organizations. It is possible that it did not 
appear as an issue until now due to the lack of 
eyetracking data. 

It will also be important for the 
community to continue to monitor the state of 
eyetracking research. The present results are 
based on a relatively few numbers of subjects, 
and more data may refine the conclusions 
about which group has more variability. 

B.3. Use of minutiae by experts 
and novices 

Minutiae provide the foundation for 
many strategies of latent print identification, 
and may be used implicitly by examiners even 
if they do not explicitly rely on these sources. 
Experts might be more or less likely to visit 
regions that include minutiae. If the novices 
all tended to gravitate toward a cluster of 
high-quality inked prints and the experts 
tended to focus instead on non-minutiae 
information such as ridge orientation and 
inflection, we might find differences in terms 
of the number of minutiae each group visits. 

To assess this computationally, we 
defined a circle of arbitrary size (we chose 50 
pixels but the conclusions do not depend on 
this value) and centered this circle on each 
fixation. We then counted the number of 
minutiae inside this circle, as illustrated by 
Figure 12. 

We found that experts tended to have 
many more minutiae near each fixation. 
Experts had an average of 1.50 minutiae near 
each fixation, while novices had only an 
average of 1.16, which is a significant 
difference. The 95% confidence interval based 
on the null hypothesis of no difference 

between the two groups is [-0.24,  0.26] which 
does not include the actual difference of 
0.344. 

Figure 13 demonstrates why experts have 
so many minutiae near each fixation. The 
expert fixations are in red plus signs, and the 
novices are in magenta asterisks. On this 
particular trial the experts had 1.42 minutiae 
near each fixation, while the novices had only 
1.05, which is a statistically significant 
difference. The novices tended to look at the 
top portion of the print, which has relatively 
few minutiae. The experts tended to look at 
the core and lower-right regions, which tend 
to have much more movement and activity in 
the ridges, leading to more minutiae. This 
practice will lead to not only looking at more 
minutiae, but also greater consistency among 
experts if they all follow a similar pattern of 
looking in these high-density regions. 

B.4. Machine translation 
approaches to data analysis 

The major goal in this type of data 
analysis was to integrate data from human 
experts with statistical machine learning 
algorithms to provide a quantitative analysis 
of the information that was available in inked 
and latent prints. We argue that the 
quantitative evaluation of the information 
contained in latent and inked prints can be 
vastly improved by using elements of human 
expertise to assist the statistical modeling.  
The eye tracking technique allowed us to 
monitor the expert’s momentary gaze 
moments when s/he is engaged in examining a 
fingerprint. We argue that eye movement data 
indicate what participants visually attend to 
when they examine a fingerprint image. Thus, 
participants may not know explicitly their 
matching algorithms or strategies, and they 
may not be able to formally describe what 
they are doing. However, their eyes are 
moving rapidly in our task and actively 
collecting the information for the brain. Every 
single eye movement indicates what 
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information is required in the internal 
computation.  

We have recruited two groups of 
participants in our study – an expert group (n 
= 6) and a novice group (n = 6). Each 
participant in each group was asked to 
examine 30 ink and latent print pairs display 
simultaneously on a computer screen. In each 
trial, they were asked to make a judgment 
whether the latent print in the current trial 
matches with the ink print. Besides this task, 
there was no constraint how long they may 
take to make this decision, and what visual 
features they should pay attention to. We used 
a Tobii eye tracker to monitor their gaze at a 
frequency of 50Hz. In total of 30 trials, we’ve 
collected 45,000 data points per participant. 
The goal of our data analysis was to 
demonstrate potential differences between 
novices and experts. We intended to find the 
differences between experts and novices based 
on their eye movements. This aim was 
particularly challenging given the following 
observations: 1) Different experts may 
visually attend to different subsets of features 
and used them to perform the matching task; 
2) Novices may visually attend to most salient 
areas in both inked prints and latent prints, 
which may contain important features; and 3) 
Different prints may pose different challenges 
to individual participants.   

Our solution was based on advanced 
techniques in machine translation. Briefly 
speaking, given two sets of text in parallel (for 
example, one in English and one in French), 
current machine translation techniques can 
compute which words in English maps to 
which words in French. Similarly here, if we 
treated the areas of interests in the ink and 
latent prints as two languages, then we can 
compute which region in one image is mapped 
to which area in the other image. Our 
hypothesis was that experts might be able to 
identify more such pairings while novices 
might not be able to do so.  

Given a fingerprint-matching task, 
subjects (either fingerprint experts or novices) 
generate multiple eye movements on both the 
ink print and the latent print displayed 
simultaneously on the computer screen. We 
are interested in visual features that are used 
to make a decision. To do so, we need to find 
which eye movements on the ink print 
correspond to which ones on the latent print. 
The correspondences can be potentially 
estimated based on two streams of eye 
movements that jointly determine which ink-
latent patch pairing is relevant. As shown in 
Figure 14, we can conceptualize patch-to-
patch mapping as a translation problem - how 
to cognitively translate image patches in an 
ink print into image patches in a latent print. 
Thus, the learning mechanism we propose 
rests on advances in machine translation. 
Briefly, machines ‘learn’ word 
correspondences (which word in one language 
corresponds to which word in another 
language) by finding statistical regularities 
across large parallel corpora in two languages. 

Here, we use a similar computational 
approach with eye movements in latent prints 
as one language, and eye movements in latent 
prints as the other. This conceptualization 
provides a unique way to discover patch 
correspondences. More specifically, the 
learning process can be formalized as an 
expectation-maximization algorithm (EM) 
(Dempster, Laird, & Rubin, 1977). The idea 
of EM is that there is a way of representing 
the data as the sum of component probability 
distributions. More specifically, the 
probability of an ink patch is expressed as a 
weighted mixture of the conditional 
probabilities of the latent patches. The goal of 
our data analysis algorithm is to find those 
reliable correspondences that maximize the 
likelihood function of observing the whole 
data set. The method computes association 
probabilities of all the possible patch pairs 
simultaneously.  
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This technique not only reveals the 
corresponding regions between latent and 
inked prints, it also simultaneously estimates 
the features used to make these 
correspondences. The first step in this process 
is to identify clusters of fixations and use the 
temporal sequences of fixations to determine 
correspondences between the latent and inked 
prints. Figure 15 shows an example from an 
expert. The white lines link and highlight 
corresponding areas in two images identified 
by two experts, which is very similar to each 
other. 

Figure 16 shows two major results that 
come out of this analysis. First, experts 
identify far more corresponding areas between 
latent and ink prints (m=12.3) compared with 
novices. This confirmed our hypothesis that 
fingerprint expertise can be demonstrated by 
their fine-grained behavioral data in real-time 
examination. More interestingly, we also 
found a reliable consistence of the area pairs 
identified across by different experts. 
Moreover, Figure 16 showed individual 
differences with novices. We found an outlier 
subject #4 in this group. It turned out that 
subject #4 was a graduate student in the PI’s 
lab and has extensive experiences with 
fingerprint and interactions with fingerprint 
experts. Interestingly, even that subject didn’t 
get a formal training to be a fingerprint expert. 
Through daily research experience with 
fingerprints, this individual also acquired 
some expertise that is comparably significant 
compared with other novices.  

B.5. Feature induction from 
fixation data 

The machine translation approach takes 
advantage of contextual information when 
matching regions or clusters across observers. 
If two or more observers tend to jointly fixate 
two regions across a print pair, the algorithm 
will identify these correspondences, much like 
hearing an unknown word in the context of 

known foreign words help establish the 
meaning in terms of know English words. 

These analyses do not have access to the 
underling feature information; only the 
fixations from experts and novices along with 
the x and y coordinates of the fixations. To 
take full advantage of the feature information 
available when linking the fixations back to 
the ridge detail, we have extracted out small 
windows of features centered on each fixation, 
like those shown in Figure 17. 

We then collect all such image windows 
from all 6 of our experts on the clean images 
and perform several different kinds of feature 
induction analyses. We have included the data 
from 25 experts across 4 different 
experiments, giving a total of over 38,000 
image windows from 270 unique fingerprints. 
We also included some 32,000 fixations from 
18 novices on the same images. We analyzed 
the data separately for the two groups in order 
to make comparisons across the groups in 
terms of the features they rely on.  

Our first data analysis relies on a 
technique called independent components 
analysis (ICA). This approach relies on 
looking for spatial correlations, much like 
principal components analysis, but with the 
orthogonality constraint relaxed. We extract 
out a set of features that forms the 
fundamental alphabet for image 
representation. 

The left panel of Figure 18 illustrates the 
results of one such analysis. It shows a large 
set of features derived from ICA that represent 
the basic features used by examiners. The 
image patches were rotated vertically prior to 
data reduction, which account for the fact that 
the majority of energy is in the vertical plane. 
The individual features are grouped together 
by similarity to demonstrate how the 
algorithm can handle spatial uncertainty. 

The right panel of Figure 18 illustrates 
the feature set derived from the novices. 
Despite an approximately equal number of 
image patches in the two datasets, there are 
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striking differences between the two sets of 
recovered features. The experts appear to rely 
on features that are of coarser scale, which 
would be consistent with the use of integration 
over greater spatial extents (see (Busey & 
Vanderkolk, 2005) for more on configural 
processing in experts). The novices appear to 
rely on finer regions that are more noise-free. 
These regions may not be as diagnostic as 
more noisy areas, since the identification task 
sometimes requires obtaining information 
from regions with poor signal to noise ratios. 

We can use these derived filters in 
several different ways. The feature set can be 
used as a basis set similar to that used in 
image compression (Portilla, Strela, 
Wainwright, & Simoncelli, 2003). We have 
begun to ask whether the feature set for 
experts is easier to compress using the fixed 
120-element feature set than the novice set. If 
it were, this would suggest that experts have 
an implicit agreed-upon set of features that 
they naturally gravitate to. 

The basis set also allows us to 
characterize the high-dimensional space of 
each patch (each patch has 48*48 or 2304 
dimensions) in a much lower, 120 dimensional 
space. This space simply indicates the 
contributions of each of the 120 basis features 
to each patch. The reconstruction will have 
some error, but the redundancy seen with the 
images in Figure 18 suggests it will be 
minimal. This low-dimensional representation 
then allows us to compute the relative base 
rates of different types of features, expressed 
in terms of their position in the 120 
dimensional space. If we have a feature that 
falls in a relatively sparse region in this space 
(acknowledging that most things are in sparse 
regions in a 120 dimensional space) this might 
suggest that this may be particularly 
diagnostic or rare. 

B.6. Information theoretic 
approaches 

We can use the eye tracking data derived 
from experts to help test candidate 
information quantification approaches. The 
idea is to create several candidate measures of 
information and use the data from the experts 
to determine whether they tend to fixate on 
regions that have more information by a 
particular metric. If so, we can then use this to 
begin to explore extensions to the metric to 
determine how it might be extended and 
improved. Once we have a revised metric, we 
can then use to suggest changes that the 
experts might make to their procedures, or 
provide base-rate information on particular 
types of features. Thus the refinement of a set 
of metrics and testing against human data is a 
feedback loop that can be used to improve 
both human performance and measures of 
information in fingerprints. 

All measures of the information content 
in friction ridge impressions must first create a 
feature set. For example, many current 
approaches rely on the locations and 
orientation of minutiae (Egli, Champod, & 
Margot, 2007; Neumann, et al., 2007; Su & 
Srihari, 2008) or ridge elements (Su & Srihari, 
2008). These approaches have real strengths, 
in that they are easily identified and face 
validity in that experts report using minutiae 
and relative locations of ridges. They also 
allow statistical approaches that model the 
variability within different impressions of the 
same finger as compared with other prints 
(Neumann, et al., 2007) and provide 
generative models that can be used to 
characterize the probability of any one 
particular print relative to the entire database 
(Srihari & Su, 2008). However, minutiae and 
ridge endings may represent only a subset of 
the information used by experts, even if the 
print is too noisy for third level detail. Indeed, 
there is a published report of a small friction 
ridge impression that was individualized 
despite the lack of any ridge ending or 
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bifurcation minutiae (Reneau, 2003). Thus, 
the feature set used by experts may contain 
many different sources of information, only 
some of which is captured in current 
quantitative approaches. 

Engineers have tried many different 
techniques to quantify the information 
available in fingerprints, including minutiae-
based systems, ridge flow and even level 3 
detail. However, the development of each of 
these systems tends to ignore the expertise that 
resides in the latent print examiners’ visual 
systems, which have proven to be much better 
than computer recognition systems. We are 
using our eye tracking data to validate 
candidate information metrics, under the 
assumption that experts will move their eyes 
to regions they deem most diagnostic or 
contain the most information. Below we 
describe one set of metrics based on 
information theory, and then describe the 
validation process. 

One possible metric for measuring 
characteristics of locations being looked at by 
finger print examiners is the amount of 
information contained in the locations.   In this 
analysis, we focus on the ridge edge direction 
information being taken in by the examiners 
through their eye fixations on a print.  Here, 
we use Shannon information theory (Shannon 
& Weaver, 1949) as the measure of the 
information.  The detail of how we perform a 
measurement is as follows. 

As shown in Figure 19, we extract  
fingerprint ridge orientation information and 
create the enhanced fingerprint image using 
Peter Kovesi’s implementation1 of the 
technique proposed by (Hong, Wan, & Jain, 
1998).  Then ridge edges are detected from the 
enhance fingerprint image using boundaries 
detection function (bwboundaries) from 
MATLAB Image Processing Toolbox.   We 
then work along the individual ridges in the 

                                                 
1http://www.csse.uwa.edu.au/~pk/Research/MatlabFn
s/index.html 

print and encode the orientation of each ridge 
edge element into strings.  In order to use 
Shannon theory, the orientation is rounded off 
to a full degree (so we have 181 symbols 
representing 0 to 180 degrees to use for 
encoding a string).  The following equation is 
then used to compute information amount 
presented: 

€ 

I = − p(xi)log2(p(xi))
i=1

n

∑  (1) 

where n is the total number of edge elements.  
p(xi) is the probability that the orientation of 
the edge element i appear in the observed area. 

Using above metric, we investigate the 
amount of information taken in by expert and 
novice fingerprint examiners.  Given a 
fixation point on the fingerprint, we 
approximate the area observed by taking a 
square patch around the fixation, a 50x50 
pixel area in a 1050 x 1680 pixel fingerprint 
image in our experiment. 

In order to visualize the possible 
successes and limitations of each candidate 
information metric, we have developed a 
color-based visualization that illustrates the 
amount of information contained at each 
location as determined by a particular 
algorithm. These Figures are found at the end 
of this report due to the large size of the 
figures. 

Figure 20 and Figure 21 illustrate two 
information metrics, where the amount of red 
in the visualization display implies a greater 
amount of potential information available. The 
relative information metric in Figure 20 seems 
to correspond to what intuitively seems 
informative, mainly regions of minutiae, as 
well as large changes in curvature. Figure 21 
also shows these regions, with the addition 
that this metric may not discriminate as well 
between high and low information regions. 
However, whether these metrics are actually 
useful depends on whether they correspond to 
whether they are fixated by experts. If so, we 
can begin to refine our information metric. 
However, if we don’t see differences between 
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experts and novices, or between experts and 
random fixations, we will need to abandon 
this particular set of information metrics and 
look to other possibilities. 

The validation procedures with experts 
and novices are described next. This is an 
important step and highlights the value of our 
expert data. Rather than simply coming up 
with a metric that we think might work, we 
verify that experts might intuitively use such a 
metric, even if they do not explicitly calculate 
the probabilities. Instead, we are modeling 
processes in the visual system that may 
approximate these calculations. 

Information Use by Experts and Novices 
A reasonable approach to testing various 

metrics is to determine whether experts rely 
on the regions determined to be most 
informative by a particular metric. One could 
simply ask experts what information they use, 
but often they have difficulty explaining what 
regions or information they actually use. This 
results from the fact that much of perception 
resides below the level of consciousness, and 
can be difficult to explain in the sparse code of 
human language.  

We compute the information contained at 
each location for each subject, and then 
average these across trials for each subject. 
We are interested in whether experts tend to 
visit regions with different information values 
than novices do. 

Figure 22 and Figure 23 show the 
fixations from two experts, superimposed over 
a relative information metric based on the 
difference between two consecutive angles. 
The fixations appear to fall in regions that 
have higher information content. Figure 24 
and Figure 25 show the same information 
metric applied to data from two novices. Here, 
the fixations seem to fall in regions that have 
lower information content. 

To test these observations, we compared 
the average information value visited by 
experts and compared this with that visited by 

novices. We found that three metrics reliably 
differentiated between experts and novices 
(t(11) = 2.88; p = 0.015). We computed the 
information at each fixation of the experts and 
averaged these across the fixations for all 
trials in which individual images were shown. 
Experts reliably visited regions that had lower 
values of entropy, meaning that these were 
regions that tended to have more variable 
ridge detail. This was true whether entropy 
was calculated along a ridge line, or just 
averaged over all pixels in a region around the 
fixation. 

We also found that experts rely on much 
more informative regions that one might 
expect on average. We computed the entropy 
values at random locations, taking X and Y 
values from different fixations to ensure that 
we drew entropy values from valid locations. 
Experts performed reliably better on many 
measures, including the standard entropy 
measure described above (t(11) = 2.81; p = 
0.017). In fact, the novice data looks very 
similar to the random data, suggesting that 
novices may not have a clear idea of where to 
look in the image. 

These results validate our entropy 
measure as an approximation to the kinds of 
information that experts are using when 
matching latent to inked prints. This is an 
important step because this metric quantifies 
the total information available in fingerprints, 
given our particular definition of information.  

Not all metrics proved diagnostic. We 
had high hopes that the relative angle 
measure, computed by taking the difference of 
the angles along a ridge, might also be 
diagnostic. However it did not reliably 
differentiate between experts and novices, 
suggesting that experts may not rely on this 
information. 

Additional Entropy Analyses 
In addition to the analyses described 

above, we have to other analyses that we have 
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begun to explore. The analyses of these 
metrics are ongoing. 

If experts can reliably match a region on 
the latent with a region on the inked print, 
they may do so because the two patches have 
similar entropy values. This suggests that we 
can compute the combined entropy for the two 
patches across a saccade that bridges the two 
prints. We should find that these entropy 
values are reliably different than ones 
computed from novices across saccade pairs.  

This analysis will help determine what 
strategies and information sources experts use 
when making saccades across image pairs. 

Implications for training and practice 
It is likely too soon to draw firm 

conclusions about possible changes to training 
procedures given that we have only begun to 
explore various information theoretic 
approaches. However, we anticipate being 
able to make such conclusions in the coming 
years. 

B.7. Linguistic identifiers assigned 
to extracted features 

In addition to the visual-based 
approaches described in the previous sections, 
we collected linguistic labels from examiners 
in an attempt to use these to provide a source 
of data compression.  

To obtain linguistic labels, we presented 
examiners with 48x48 pixel crops from latent 
and inked prints that were centered on the 
fixations from expert examiners. These were 
not otherwise standardized or rotated. We 
asked the examiners to provide a description 
of the features in such a way that this might 
enable individualization.  

This study produced mixed results. The 
examiners expressed some frustration with 
this task, since we asked them to provide just 
2-4 words or phrases per crop. They 
discovered that this format was not nearly rich 
enough to capture the detail of the crop that 
would enable individualization. They used 

phrases such as: “core, short ridge, incipient 
ridge, bifurcation up, recurve, ending ridge, 
bend down, short near core, and incipient 
spur”. While these were accurate, they were 
analogous to describing the Mona Lisa as 
‘white female with dark hair’.  

 Despite the relative sparse nature of 
language for the description of uniqueness in 
fingerprints, there may be situations in which 
linguistic identifiers may play a role. For 
example, mentors may use linguistic terms for 
perceptual features during training procedures 
with novice examiners. This may enable the 
trainee to comprehend the classes of different 
sources of detail in prints. 

B.8. Summary of data analyses 
Patterns of eye movements reveal 

whether experts move their gaze to regions 
that are most informative as defined by 
different information metrics. The collection 
of such data allows us to validate candidate 
metrics and improve them where they tend to 
deviate from expert eye gaze. In essence we 
are reverse-engineering the human visual 
system in order to better engineer computer-
based approaches to fingerprint quantification. 
Linking the gaze back to the physical features 
of friction ridge patches will illustrate the 
nature of expertise, and help improve 
machine-based analyses of latent prints. 

C. Conclusions and implications 
for policy and practice. 
Prior to this project, virtually nothing 

was known about the differences between 
experts and novices in terms of the 
information they choose to acquire, since no 
one had collected the eye tracking data. Once 
we established a reliable software toolkit that 
enabled robust data collection, we were able 
to use expert/novice comparisons to 
demonstrate a number of important 
conclusions: 

First, while the basic timing of eye 
fixations and saccades does not differ between 
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the two groups, experts make smaller 
saccades, which suggest that they are looking 
at clusters of nearby features or combinations 
of features. Novices may be attempting to 
match individual features across the prints, 
which are not nearly as diagnostic since the 
combinatorial explosion of clusters makes 
these much more diagnostics. 

Second, experts acquire data from 
resource-rich regions of fingerprints, which 
are associated with more minutiae. However, 
they are also more willing to wander into 
regions that have poorer signal-to-noise ratios 
in an attempt to find information from a 
partial print that might prove diagnostic. We 
can infer this from the structure of the feature 
set found thorough the ICA data reduction 
procedures. 

Third, we documented the conditions 
under which experts may be more or less 
consistent with each other as a group, 
depending on image quality and the content of 
the fingerprints. 

Fourth, we adapted techniques from 
machine translation to demonstrate how these 
procedures could be used to identify 
corresponding regions of the fingerprints. 

Finally, we demonstrated how we could 
create several candidate information theoretic 
metrics that describe in quantitative terms the 
information contained in fingerprints. We 
used the expert/novice comparisons to 
demonstrate how one can discriminate 
between these candidate measures. 

These conclusions have a number of 
applied applications. First, they go a long way 
toward addressing the criticism that experts do 
not bring anything of value when they testify. 
It is clear now from a number of studies that 
experts have special abilities that exceed those 
of novices, and therefore should be allowed to 
share that expertise in court. 

The results also suggest that engineers 
who are refining fingerprint-matching 
algorithms should look to data from human 
experts to validate their approaches. The 

advantage of approaches such as the data 
reduction and information theoretic metrics 
described in Section B is that the models are 
built on the same math and computer code that 
computer-based fingerprint identification 
systems use. Therefore the results should be 
easy to adopt by those working on computer-
based matching. 

All of our studies were done using 
abbreviated testing conditions in order to 
obtain the amount of data necessary to test 
candidate models, and therefore care should 
be taken when generalizing these results to 
full-blown latent print examinations. Future 
studies should address the changes that might 
occur when experts are given more time with 
the images.  

Finally, there is a wealth of other studies 
and analyses that could be done with the rich 
nature of eye gaze data, and additional 
scientists should be recruited to help address a 
variety of different questions related to the 
nature of expertise in latent print examiners. 

D. Products, publications and 
presentations 

D.1. Products 
This project produced several different 

scientific advancements. The most 
fundamental achievement was the 
demonstration that eyetracking data could be 
reliably gathered in the field from active latent 
print examiners. This took a great deal of 
work to accomplish because no system existed 
that was reliable and portable for such an 
endeavor. Our ExpertEyes software is 
available to download for free, and we have 
several groups interested in adopting our 
system. The hardware schematics are also 
online. 

The second major achievement is the 
demonstration that the eyetracking data 
acquired from experts and novices could be 
used to improve upon existing quantitative 
approaches to fingerprint detail. There are 
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many different approaches, and we have 
endeavored to touch on each of these 
techniques. The best demonstration of the 
utility of our approach comes from the 
information theoretic techniques, in which the 
data from experts can be used to demonstrate 
which of several different computations of 
entropy are most likely to be used by experts. 

In addition to these accomplishments, we 
have the following publications and 
presentations that reflect our dissemination 
efforts. 

D.2. Publications 
The following publications are made 

possible with the support of the current grant.  
 

Busey, T.A. & Loftus, G. R. (2007). 
Cognitive science and the law. Trends 
in Cognitive Sciences, 11, 3, 111-117. 

 
Busey, T.A. & Dror, I. (in press). Special 

Abilities and Vulnerabilities in 
Forensic Expertise. To appear in The 
Latent Print Sourcebook. Alan 
McRoberts (Ed). Published by the 
National Institutes of Justice. 

 
Busey, T. A., Yu, C., Wyatte, D., 

Vanderkolk, J., Parada, F., & Akvipat, 
R. (Submitted Manuscript). 
Consistency and Variability Among 
Latent Print Examiners as Revealed by 
Eye Tracking Methodologies. Journal 
of Forensic Identification. 

 
Busey, T. A. & Parada, F. (in press). The 

Nature of Expertise in Fingerprint 
Examiners. In press at Psychonomic 
Bulletin & Review. 

 

D.3. Presentations 
We believe that outreach activities in the 

form of presentations at scientific and 
educational conferences is crucial to 

dissemination activities. We have made every 
effort to present our work for critical appraisal 
and discussion, including the following 22 
presentations, listed in chronological order: 

Busey, T. A. & Vanderkolk, J. R. (2005). 
Expertise in Fingerprint Examiners. 
Paper presented at the New England 
Society for Identification annual 
meeting. 

Busey, T. A. (2005). The role of 
configural processing in the 
development of visual expertise. Paper 
presented at the Annual 
Interdisciplinary Conference. 

Busey, T. A., & Vanderkolk, J. R. (2005). 
Behavioral and electrophysiological 
evidence for configural processing in 
fingerprint experts [Abstract]. Journal 
of Vision, 5(8), 635a, 
http://journalofvision.org/5/8/635/ 

Vanderkolk, J. R., & Busey, T. A. (2005). 
Forensic individualization of images. 
Forensic Identification Seminar of 
Toronto, Canada. 

Vanderkolk, J. R., & Busey, T. A. (2005). 
Expert and novice fingerprint studies. 
Fingerprint Society Lectures, Brighton, 
United Kingdom. 

Busey, T. A. & Vanderkolk, J. R. (2005). 
Expertise in Fingerprint Examiners. 
Paper presented at the International 
Association of Firearm and Toolmark 
Examiners annual meeting. 

Busey, T.A. (2006). How The Cognitive 
and Visual Sciences Might Help (and 
Hurt) in a Daubert Hearing. Paper 
presented at the 2006 meeting of 
Forensic Document Examiners 
Society. 

Busey, T.A. (2006). Measuring Expertise 
in Latent Print Examiners to Improve 
the Quantitative Analyses of Latent 
Prints. Paper presented at the 2006 
meeting of the International 
Association for Identification, Boston, 
MA. 
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Busey, T.A. (2006). Quantifying Human 
Expertise During Latent Print 
Examinations. Paper presented at the 
annual meeting of the National 
Institutes of Justice, Boston, MA. 

Schneider, B., DeLong, J., Wyatte, D., 
James, K., & Busey, T. (2007). The 
neural correlates of face-like expertise 
in fingerprint examiners [Abstract]. 
Journal of Vision, 7(9):575, 575a, 
http://journalofvision.org/7/9/575/, 
doi:10.1167/7.9.575. Paper presented 
at the Vision Sciences Conference, 
Sarasota, FL. 

Blaha, L., & Busey, T. (2007). 
Electrophysiological substrates of 
configural learning [Abstract]. Journal 
of Vision, 7(9):796, 796a, 
http://journalofvision.org/7/9/796/, 
doi:10.1167/7.9.796. Paper presented 
at the Vision Sciences Conference, 
Sarasota, FL. 

Busey, T. A. (2007) Expertise in Latent 
Print Examiners. Invited paper 
presented at the Indiana Society for 
Identification annual meeting, 
Evansville, IN. 

Busey, T.A. (2007). Measuring Expertise 
in Latent Print Examiners. Paper 
presented at the 2007 meeting of the 
International Association for 
Identification, San Diego, CA. 

Busey, T.A. (2007). Extracting Expertise 
from Latent Print Examiners. Paper 
presented at the annual meeting of the 
National Institutes of Justice, San 
Diego, CA. 

Busey, T. A. (2007) Cognitive psychology 
and fingerprint experts. Paper 
presented at the Illinois Society for 
Identification annual meeting, Peoria, 
IL. 

Busey, T., Schneider, B. & Wyatte, D. 
(2008). Expertise and the width of the 
visual filter in fingerprint examiners. 
Volume 8, Number 6, Abstract 178, 

Page 178a 
http://journalofvision.org/8/6/178/ 

Schneider, B., Harman-James, K., Wyatte, 
D & Busey, T. (2008). A noise x 
inversion paradigm reveals the nature 
of fingerprint expertise for latent print 
examiners in EEG and fMRI. Volume 
8, Number 6, Abstract 177, Page 177a 
http://journalofvision.org/8/6/177/  

 Wyatte, D. & Busey, T. (2008). Low and 
high level changes in eye gaze 
behavior as a result of expertise. 
Volume 8, Number 6, Abstract 112, 
Page 11 
http://journalofvision.org/8/6/112/ 

Busey, T, & Vanderkolk, J. (2008). 
Measuring Expertise in Latent Print 
Examiners. Talk presented at the 2008 
International Association for 
Identification Annual Meeting in 
Louisville, KY, August 2008. 

Busey, T, Yu, C. & Vanderkolk, J. (2008). 
The Varieties of Expertise in Latent 
Print Examiners. Talk presented at the 
2008 International Association for 
Identification Annual Meeting in 
Louisville, KY, August 2008. 

Busey, T. (2008). Expertise in Latent Print 
Examiners As Revealed by Behavior, 
Electrophysiology, and Eyetracking. 
Invited Symposium presented at the 
2008 Psychonomics Society Annual 
Meeting, Chicago, IL. 

Busey, T, Yu, C., Akavipat, R. & 
Vanderkolk, J. (2009). Adding Human 
Expertise to the Quantitative Analysis 
of Fingerprints. Talk presented at the 
2009 National Institutes of Justice 
Grantees meeting in Tampa, FL, 
August 2009 
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Appendix 

Methods for Latent/Inked comparisons 
The procedures below describe how we collected the data for our latent/inked comparisions. 

Stimuli 
The stimuli for Experiment 1 come from the National Institutes of Standards and 

Technology Special Database 27, which has previously determined identifications of latent and 
inked prints that are typical of what is traditionally found during casework. The images were 
grouped into good, bad and ugly prints by an expert with an obvious affinity for Clint Eastwood 
western movies. We used a mixture of all three types, which produced trials that could be quite 
challenging at times.  

We created three lists of images, each of which has 30 pairs of images. We had relatively 
few non-matching prints since our analyses are less applicable to non-matching pairs. List 1 had 
5 non-matches (exclusions), list 2 had 3 nonmatches, and list 3 had 8 nonmatches.  

Participants 
Our experts were recruited from forensic science laboratories in Indiana, Illinois and 

Nevada that were associated with state or large metropolitan agencies. They had an average of 
15.3 years working as latent print examiners and were an average of 45 years old. There were 4 
men and 2 women. Four of the six had trained other examiners. The novices were recruited from 
the Indiana University student body, had no prior experience with latent prints, and tended to be 
younger with a mean age of 23 years. There were three men and three women.  

All participants were tested according to the procedures of the Human Subjects Protection 
committee of Indiana University. 

Procedures 
Participants were seated approximately 36 inches away from a 17” inch LCD monitor set at 

a resolution of 1024x768 pixels. The images were scaled so that the latent and inked prints 
together filled the horizontal dimension, with 138 pixel horizontal borders on the top and bottom 
of the prints. The monitor was part of a model 1750 Tobii eyetracking system (Tobii 
Technology) which uses infrared cameras positioned on the monitor to track the position of the 
eye gaze by monitor both eyes. After a calibration procedure that established the relation 
between the observer’s eye position and positions on the screen, the participant was shown pairs 
of prints and asked to determine whether they came from the same source. They were given up to 
one minute to make this determination, and if they came to a conclusion sooner they stated this 
conclusion and proceeded to the next image. An experimenter recorded their response as either 
identification or exclusion. Due to a disk crash and a corrupted backup disk, the responses for 
three novices were lost. 

Methods for Inked/Inked comparisons 
The methods below describe how we collected data on inked/inked comparisons. 
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Stimuli 
We created 30 pairs of images by obtaining clean impressions from volunteers at Indiana 

University. These were made using ink stamp pads and placed on glossy ink jet photo paper. 
These were scanned using an Epson 4870 scanner at 1200 pixels per inch, and then cropped so 
that they fit inside a rectangle of 840x1050 pixels. Two image pairs were selected to be non-
matching. The non-matching prints were selected by left-right reflecting or image reversing a 
print from the same finger of the other hand. These often have the same general ridge flow but 
will differ in the exact ridge details.  

Participants 
We tested 6 expert and 7 novice participants, including one expert who had participated in 

Experiment 1. The experts were recruited at forensic identification conferences in Michigan, 
Illinois and Indiana, while the novices were members of the Indiana University community. The 
mean age of the experts was 43 and the mean number of years of experience was 9.3. There were 
5 men and 1 woman. All had self-reported 20/20 vision (corrected or uncorrected). 

The novices had a mean age of 32 years and there were 4 men and 3 women. 

Procedures 
Participants were seated approximately 60 cm (~24 inches) away from a 21” LCD monitor. 

To ensure the quality of the data we used a chinrest for some participants to reduce head 
movements. Participants wore a head-mounted eyetracker which uses two small cameras to 
monitor the eye and the view of the scene respectively according to the hardware proposed by 
(Babcock & Pelz, 2004). Both cameras are mounted and specially located on a pair of 
lightweight safety glasses. One infrared light is located next to the eye-camera in order to 
illuminate the eye properly. This light provides us a constant spot of white light known as the 
first corneal reflection, which will be used for further offline analysis using the ‘ExpertEyes 
Software’, an open source approach for analyzing eye-tracker data 
(http://code.google.com/p/experteyes/wiki/ExpertEyes) developed by our research group.  

Using this setup we record the streaming from both cameras, which is split later into image 
sequences. These images are used by the two modules of our software for further temporal 
alignment, calibration and gaze estimation. The first module uses the images from the eye stream 
in order to calculate the relationship in time between the pupil and the corneal reflection and fit 
the eye model. The second module uses the images from both streams and the eye model data to 
synchronize and calibrate both streams.    

The ExpertEyes eyetracking system allows the computation of the average error of the eye 
tracker. The Tobii system reports the average error of 0.5 degrees of visual angle under typical 
use. We found that our eye tracker produced values in a similar range. The mean error for 
experts was .71 degrees, while the mean error for novices was 0.60 degrees. These values were 
not significantly different for the two groups (t(11) = 2.02; p > 0.05). Thus we are confident that 
our eye tracking results from the inked/inked comparisions are comparable in accuracy to those 
of the commercial system used for the latent/inked comparisions. 
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Figures 
 
 

 
Figure 1. Example of a perceptual illusion that cannot be overcome through knowledge. 

The red lines are actually parallel, but knowledge of this does not make them appear straight. 
However, a sheet of paper next to the line illustrates that it is straight. 
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Figure 2. Our eye tracker worn by a participant in the eyetracking studies. It consists of one 

camera that monitors the position of the eye relative to the head, and a second camera that 
monitors the position of the head relative to the images being examined. 
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Figure 3. Example eye model fit which estimates the locations of the pupil (dark circle) and 
corneal reflection (white circle). The left panel shows the masked eye camera frame, while the 
right panel shows the fit of the eye model, which adjusts the locations of the black and white 
ovals to find the best overlap with the pupil and corneal reflection. The centers of each oval 
define the position of the eye. 
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Figure 4. Forward eye model interface. The pupil (dark circle) and corneal reflection (white 
circle) are identified using a forward eye model that adjusts the parameter settings based on the 
location of the pupil. Once a set of parameters is found for each region, the program fits the eye 
model to the entire dataset, which can take 2-16 hours of CPU time on a 3 GHz computer. 
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Figure 5. Eliminating image distortions. When the head-mounted video camera is positioned 
away from the center of the monitor, image distortions result. In this case the upper-right corner 
of the monitor in the image on the left is distorted. We created an undistortion algorithm that 
eliminates these distortions and allows us to accurately project the eye location onto the original 
image (right panel). 
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Figure 6. Search algorithm to identify the corners of the 
monitor in the scene camera after barrel distortions have been 
removed from the image. Red squares indicate our search 
space and green marks indicate the identified corner regions. 
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Figure 7. Screen that plots the eye data, along with the fitted pupil and corneal reflection 
parameters, along with the estimated eye gaze location in the scene camera (red plus). Graphs 
along the bottom show the pupil location for frames around the current frame. The large 
discontinuities in the blue and red curves are eye blinks. This particular screen allows the user to 
identify and correct portions of the data that have missing or incorrect data. 
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Figure 8. Gaze data from one subject. Green dots are raw gaze estimates, red dots are 
fixations that are determined using a velocity-based measure, and blue lines are saccades from one 
location to another. 
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Figure 9. Results of the calibration procedures. Green dots are locations on the monitor that 
were fixated, and red dots are the estimated eye positions. The close clustering of each set of red 
dots illustrates the accuracy of our system, which is comparable to commercial systems. We 
typically see error on the projected monitor of less than 1 degree of visual angle and often less 
than .5 degrees, which is similar to commercial systems such as the Tobii system. 
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Figure 10. System integration screen which binds together folders containing scene 
information, eye information, gaze and corner information, and allows the user to synchronize 
the video streams, calibrate the gaze information, clean bad frames, and mark events from the 
experiment. 
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Expert Data      Novice Data 

 

 

 

 
Figure 11. Examples of heat maps. Color indicates the amount of time spent at each 

location. The left column contains data from a latent print expert on two pairs of images, while 
the right column contains data from a novice. In general, experts show much tighter 
concentrations of fixations around relatively few locations, while novices direct their attention to 
many more locations.  
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Figure 12. Graphical illustration of counting nearby minutiae. The Universal Latent 

Workstation was used to computer-code the locations of the minutiae, shown here as green 
crosses. We then determined the fixations for each user (shown as red crosses) and counted the 
number of minutiae contained in a circle centered on each fixation (green circles). 
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Figure 13. Graphical illustration of fixations of all novices (in blue) and all experts (in red) 

for one representative image pair. The expert fixations tend to focus at and below the core, while 
novice fixation tend to distribute along the top of the fingerprint. The core tends to have many 
more minutiae, leading to a difference between the groups in terms of the number of nearby 
minutiae. 
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Figure 14. Parallel translation allows for the inference of correspondences between latent 

and inked prints. 
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Figure 15. Fixations (circles) are clustered based on spatial location and a distance-based 

criterion. Fixations that fall in the same cluster are colored using the same color. Machine 
translation algorithms can be used to assign correspondences between clusters in the two prints by 
assuming that experts are looking at corresponding locations one after another. The machine 
translation algorithm uses the temporal information in the gaze sequence to identify 
corresponding clusters.  
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Figure 16. Left panel: Results of the machine translation analysis demonstrating that experts 

had many more correspondences than novices. Right panel: Histogram of the number of 
correspondences for each of our 6 novices. There is an outliner (number 4) who turns out to be a 
graduate student working on the fingerprint project and therefore not a true novice. 
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Figure 17. Example image window patches extracted at eye fixation locations that can be 

used to induce the nature of the features inspected by examiners. 
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Figure 18. Feature basis set derived from expert data (left) and novice data (right).  
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Figure 19. The process of converting fingerprint ridges to strings of direction orientation 
information and converting edges to strings of orientations. 
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Figure 20. Amount of information contained at each location, as determined by the 

information contained in relative angle measurements. The amount of red at each location is a 
visualization of how much information that location contains by this measure. This particular 
measurement looks at the orientation changes that occur along a ridge. 
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Figure 21. The information contained in the absolute orientation of ridge elements. Red 

regions are those that are more informative by this measure. 
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Figure 22. Fixation data from one expert overlaid on one information metric (relative 

information). Fixations tend to occur in higher-information regions. 
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Figure 23. A second expert on the same set of prints and information metric as Figure 22. 
Again we see the fixation from experts in higher-information regions. 
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Figure 24. Data from a novice on the same set of prints and information metric as Figure 22 

and Figure 23. The fixations appear to land in lower-information regions. 
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Figure 25. Similar to Figure 24, this is data from a second novice with fixations that tend to 

land in lower-information regions. 
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