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Abstract

Hepler, Amanda Barbara. Improving Forensic Identification Using Bayesian Networks

and Relatedness Estimation: Allowing for Population Substructure (Under the direc-

tion of Bruce S. Weir.)

Population substructure refers to any population that does not randomly mate. In

most species, this deviation from random mating is due to emergence of subpopulations.

Members of these subpopulations mate within their subpopulation, leading to different

genetic properties. In light of recent studies on the potential impacts of ignoring these

differences, we examine how to account for population substructure in both Bayesian

Networks and relatedness estimation.

Bayesian Networks are gaining popularity as a graphical tool to communicate com-

plex probabilistic reasoning required in the evaluation of DNA evidence. This study

extends the current use of Bayesian Networks by incorporating the potential effects

of population substructure on paternity calculations. Features of HUGIN (a software

package used to create Bayesian Networks) are demonstrated that have not, as yet,

been explored. We consider three paternity examples; a simple case with two alleles, a

simple case with multiple alleles, and a missing father case.

Population substructure also has an impact on pairwise relatedness estimation. The

amount of relatedness between two individuals has been widely studied across many

scientific disciplines. There are several cases where accurate estimates of relatedness

are of forensic importance. Many estimators have been proposed over the years, how-

ever few appropriately account for population substructure. New maximum likelihood

estimators of pairwise relatedness are presented. In addition, novel methods for re-

lationship classification are derived. Simulation studies compare these estimators to

those that do not account for population substructure. The final chapter provides real

data examples demonstrating the advantages of these new methodologies.
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Chapter 1

Bayesian Networks and Population

Substructure

1.1 Introduction

Population Substructure Effects on Forensic Calculations

One method of evaluating a body of evidence is to calculate a likelihood ratio [4]. This

is a ratio of two probabilities:

LR =
Pr(Evidence given the prosecutor’s hypothesis)

Pr(Evidence given the defendant’s hypotheses)
. (1.1)

Generally, the defense’s hypothesis is that the evidence profile reflects someone other

than the defendant. The prosecution, in contrast, argues that the match between the

evidence profile and the defendant’s profile means that the defendant was the source of

the evidence. The denominator of this likelihood ratio requires that a forensic scientist

determine the probability of observing the same DNA profile twice, commonly referred

to as the match probability [2]. The numerator is typically 1, as the prosecutor is

proposing that the evidence points to the defendant. In this case, the likelihood ratio

reduces to the inverse of the match probability. Likelihood ratios can take on values

from 0 to ∞. If we obtain a value of 100 for our ratio, the common interpretation is

“The evidence is 100 times more probable if the suspect left the evidence than if some

unknown person left the evidence” [2].

When population substructure is ignored, the match probability is simply the rela-

tive frequency of the defendant’s profile in the suspected population of the culprit [5].

Essentially, this treats each human population as large and randomly mating, ignoring

1
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possible subpopulations. People in these subpopulations could tend to mate within

their subpopulation which would lead to different allelic frequencies than those esti-

mated from the overall population. To estimate these possible differences, it is nec-

essary to introduce a measure of background relatedness among the subpopulations

under consideration. This term, typically denoted θ, is commonly referred to as the

inbreeding coefficient [4]. In 1994, Balding and Nichols proposed a method for calcu-

lating match probabilities, which makes use of this inbreeding coefficient [6]. We use

this methodology here, and it is further examined in Sections 1.2 and 1.3.

Bayesian Networks in Forensics

Likelihood ratios can be calculated rather simply using Bayesian Networks (also known

as Probabilistic Expert Systems or Bayesian Belief Networks). A Bayesian Network

(BN) is a graphical and numerical representation which enables us to reason about

uncertainty. Contrary to the name, BNs are not dependent upon Bayesian reasoning.

In fact, the methods and assumptions we use in this research are not Bayesian in

nature, we appeal only to Bayes Theorem and probability calculus. BNs are simply a

tool to make the implications of complex probability calculations clear to the layperson,

without requiring an understanding of the complexity involved [7]. They provide an

automated way to calculate likelihood ratios in cases where the calculations are quite

laborious to perform analytically.

The use of BNs for forensic calculations has been gaining popularity over the past

decade due to the development of several software packages available which make the

construction of these networks relatively simple. These packages include HUGIN1

(which is used in this study), XBAIES2, Genie3, WINBUGS4, and most recently

FINEX5 [8]. A detailed discussion of BNs and their applications can be found in [9],

1Free evaluation version available at http://www.hugin.dk
2Free to the public, available at http://www.staff.city.ac.uk/∼rgc
3Available at http://www2.sis.pitt.edu/∼genie
4Free to the public, available at http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
5Not yet available to the public, for updates see http://www.staff.city.ac.uk/∼rgc
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however a brief introduction is presented in Appendix A.

In this study extensive use is made of a table generating feature of HUGIN Version

6.3. This feature allows the use of general formulas for probability tables and avoids

the need to enter each probability by hand. The use of this feature should significantly

reduce data entry time which historically has been one of the major complaints in using

BN software.

1.2 Review of Relevant Literature

The examination of DNA evidence has become important to legal systems throughout

the world. Because of this, considerable research has focused on the validity and

reliability of current methods used to evaluate DNA. Two aspects of this research are

reviewed. First, the current state of forensic research concerning DNA calculations,

when accounting for population substructure, is summarized. It is also important to

critically examine the contributions of research using Bayesian Networks to answer

relevant questions in this forensic area.

Effects of Population Substructure

Incorporating population substructure in the evaluation of DNA profile evidence is

relatively recent. Several researchers, including Balding and Nichols [6, 5] and Weir

et al. [10, 11, 4], have pioneered examining the impact of population substructure on

DNA evidence evaluation. In 1995, Balding and Nichols conclude ignoring population

substructure “would unfairly overstate the strength of the evidence against the de-

fendant and the error could be crucial in some cases, such as those involving partial

profiles or large numbers of possible culprits, many of whom share the defendant’s

ethnic background” [5]. In this review, we demonstrate the detrimental effects of ig-

noring population substructure when evaluating DNA evidence. Balding and Nichols’

approach for accounting for population substructure is also reviewed.
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In 1994, Weir calculated estimates of the inbreeding coefficient, θ, using data ob-

tained from the Arizona Department of Public Safety on Native American, Hispanic,

African American, and Caucasian populations [11]. Weir showed a tenfold increase

in θ values for the Native American sample, relative to the other samples considered.

These estimates for θ ranged from 0.001 up to 0.097. Weir also demonstrated the

potential impacts of using a subpopulation with a high background relatedness factor.

For example, when assuming θ = 0, and an allele frequency of 0.05, the likelihood

ratio obtained is 200. However, if the true value of θ was actually 0.05, the likeli-

hood ratio obtained is 58. According to Evett and Weir [2], these two values could be

communicated as “moderate support” (LR=58) versus “strong support.” These two

interpretations could have quite a large impact when presented to a jury, and Weir’s

study demonstrates that the effects of population substructure need to be taken into

account when evaluating DNA evidence.

A relatively simple method of taking population substructure into account while

investigating DNA evidence was proposed by Balding and Nichols in 1994. This method

is being used in some UK courts and has been endorsed by several researchers [4, 12,

13]. As mentioned earlier, to calculate a likelihood ratio in a DNA evidence case

one needs to determine the match probability. Balding and Nichols proposed that

these calculations need to take into account all other observed alleles, whether taken

from the suspect or not. For example, suppose we are considering a paternity case in

which we have the genotypes for the mother, child, putative (alleged) father, as well

as both of the mother’s parents. In this case, Balding and Nichols propose that the

probability the putative father’s genotype matches the true father’s varies based on

the observed genotypes of all others involved. The actual formula used is presented in

Section 1.3. Their derivation of this formula depends upon the assumptions that they

have a “randomly-mating subpopulation partially isolated from a large population,

in which migration and mutation events occur independently and at constant rates.”

They provide both a genetical derivation and a statistical derivation of this formula.

In conclusion, Balding and Nichols claim the “proposed method captures the primary

4

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.
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effects [of population substructure] and other sources of uncertainty” [6].

The 1996 National Research Committee (NRC) report discussed the most appro-

priate way of accounting for population substructure when evaluating DNA evidence.

They concluded in Recommendation 4.2 that “if the allele frequencies for the subgroup

are not available, although data for the full population are, then the calculations should

use the population-structure equations [derived by Balding and Nichols]” [14]. In light

of this recommendation, and due to the simple nature of Balding and Nichols’ method,

it is used to calculate all match probabilities in this research.

In summary, the cited research demonstrates the impact of population substruc-

ture on the evaluation of DNA evidence. The chance of this background relatedness

occurring in certain populations is large, and ignoring this potential could lead to er-

rors in probability calculations. It seems reasonable that there is a higher amount

of background relatedness among many populations, in addition to those discussed in

Weir’s 1994 article. Several cultures throughout the United States have a high oc-

currence of inbreeding, which speaks to the importance of ongoing research in this

area. Today, DNA evidence is used routinely by courts to establish guilt or innocence.

Population substructure must be considered or the credibility of this evidentiary tool

could be called into question. Balding and Nichols have proposed a method of taking

into account population substructure when evaluating DNA evidence. This method-

ology provides a simple, effective way to incorporate population substructure into our

Bayesian Network.

Bayesian Networks in Forensics

Bayesian Networks are gaining popularity in the forensic sciences as a tool to graph-

ically represent the complexities that arise in evaluating various types of evidence.

These networks provide a means of performing calculations that are very involved,

generally requiring extensive understanding of probability calculus. Bayesian Net-

works help scientists “follow a logical framework in complex situations” and “aid in
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constructing legal arguments” [15, 13]. Recently, Evett et al. claimed that BNs will

play an increasingly important role in forensic science and that their power lies in “en-

abling the scientist to understand the fundamental issues in a case and to discuss them

with colleagues and advocates [which] is something that has not been previously seen

in forensic science” [16].

Researchers have examined a wide array of forensic cases over the past few years

with the aid of BNs, ranging from simple car accident scenarios [17] to a highly com-

plex murder case [15]. Other researchers have explored using BNs to model the most

complex DNA evidence cases. The cases that have been examined to date are quite

exhaustive and include: paternity determination [3, 8], taking into account muta-

tion [3, 18], small quantities of DNA [16], cross-transfer evidence [19], and mixture

cases with partial profiles involved [20, 21, 8].

Considering the importance of DNA evaluation to our legal system, further research

into using Bayesian Networks seems prudent. Their graphical representations provide

a vehicle for communication between practitioners when discussing very complex cases.

They reduce the amount of confusion that can occur, by presenting important rela-

tionships between evidence in a logical way. No calculations are required to use these

networks, which is a major benefit to the forensic scientist. In addition, once a net-

work has been created, it can be used repeatedly in similar cases. For DNA evidence

cases, the only modification needed is the specification of allele frequencies, inbreeding

coefficient, and evidentiary profiles, as these values change from case to case. BNs

are fulfilling a need in the forensic community, and this study intends to explore their

usefulness in a wider array of cases. To date, BN studies have not taken into account

the impact that population substructure may have on final DNA analysis. This study

examines various DNA profile cases using BNs and explores potential improvements

that can be made in DNA examination by considering population substructure.
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1.3 Research Methods

Each Bayesian Network we consider here is some variation of a paternity case. In these

cases, the likelihood ratio given in Equation 1.1 is termed the paternity index, or PI. Let

E denote the evidence, PF denote putative father, M denote mother, and C denote

child. Here the prosecutor’s and defendant’s hypotheses are formed by considering

whether or not the putative father is the true father:

Hp: PF is the father of C.

Hd: Some other man is the father of C.

Thus, the PI is

PI =
Pr(E|Hp)

Pr(E|Hd)
. (1.2)

Denote the genotype of person X as GX , and assume the only evidence is the gentoypes

of the child, mother, and putative father. Then the PI from Equation 1.2 can be

rewritten as

PI =
Pr(GC , GM , GPF |Hp)

Pr(GC , GM , GPF |Hd)
. (1.3)

Using conditional probability properties (Box 1.2 of [2]), we have

PI =
Pr(GC |GM , GPF , Hp)

Pr(GC |GM , GPF , Hd)
×

Pr(GM , GPF |Hp)

Pr(GM , GPF |Hd)
. (1.4)

The mother’s and putative father’s observed genotypes do not depend on which hy-

pothesis is true and thus the second term is one. Therefore, the PI for the simple

paternity case is the ratio of two conditional probabilities:

PI =
Pr(GC |GM , GPF , Hp)

Pr(GC |GM , GPF , Hd)
. (1.5)

The match probabilities needed to compute the denominator in Equation 1.5 can

be calculated using the aforementioned methodology of Balding and Nichols [6]. Before

we present this method, we introduce some notation (which differs from that presented

in [6]). First, pi is the frequency of the ith allele in the subpopulation being studied.

The number of observed Ai alleles is denoted ni, whereas n denotes the total number
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of alleles observed. Finally, θ represents the inbreeding coefficient. With this notation

in place, the probability of observing the ith allele, given ni alleles have already been

observed is denoted Pi, and its value can be calculated as shown in Equation 1.6:

Pi = Pr(Ai|ni) =
niθ + pi(1 − θ)

1 + (n− 1)θ
. (1.6)

To illustrate the proper use of this formula, we give a short example. First, we refer

to the kth founder allele observed as Founderk. Suppose we have observed two alleles

in our subpopulation and would like to obtain the appropriate allele frequencies for

the third allele observed, Founder3. Also, suppose that the locus under consideration

has only two alleles, A1 and A2. The appropriate frequencies can be obtained from

Equation 1.6 and are shown in Table 1.1. For example, the formula given in the

Table 1.1: Algebraic Pi Values for Founder3 using Equation 1.6.

Founder1 A1 A2

Founder2 A1 A2 A1 A2

A1
2θ+p1(1−θ)

1+θ
θ+p1(1−θ)

1+θ
θ+p1(1−θ)

1+θ
p1(1−θ)

1+θ

A2
p2(1−θ)

1+θ
θ+p2(1−θ)

1+θ
θ+p2(1−θ)

1+θ
2θ+p2(1−θ)

1+θ

first cell of Table 1.1 corresponds with Equation 1.6 by letting i = 1 (the observed

value of Founder3 is A1), n1 = 2 (two A1 alleles have already been seen), and n = 2,

(we have observed a total of two alleles). As a numerical example, we could calculate

these values in the hypothetical case where θ = 0.03, p1 = 0.10, and p2 = 0.90. These

values are presented in Table 1.2. As can be seen, the allele frequencies depend upon

how many of that allele have already been observed. If two A1 alleles have been seen

already, then the probability of observing another from Founder3 increases 50% from

the original p1 value of 0.10 to 0.1524. If no A1 alleles have been observed, then the

value decreases to 0.0942.

One of the major advantages of Balding and Nichols’ method is its simplicity. This
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Table 1.2: Numerical Pi Values for Founder3 using Equation 1.6.

Founder1 A1 A2

Founder2 A1 A2 A1 A2

A1 0.1524 0.1233 0.1233 0.0942

A2 0.8476 0.8767 0.8767 0.9058

allows us to enter formulas into HUGIN for most nodes, as opposed to having to

enter each number by hand. The next section demonstrates how this method can be

incorporated into a Bayesian Network.

1.4 Example One: A Simple Paternity Case with

Two Alleles

Consider the simple paternity case, where the genotypes of the mother, child and pu-

tative father are known. For simplicity, we consider only one locus, with two alleles. In

future networks created in this study, we incorporate evidence from multiple loci using

the method endorsed by [14], which recommends that likelihood ratios be multiplied

together. We also consider cases where we have several alleles at a particular locus.

The BN for the simple paternity case with two alleles was first published by Dawid

et al. in [3]. Here, we provide a brief description of their network, then extend it to

account for population substructure.

In paternity cases, there is typically genotype data on three individuals; mother,

child, and putative father. Three nodes are required in the BN to describe each in-

dividual. The first two nodes represent the maternal and paternal genes (or alleles)

passed down to the individual. These nodes can take on values A1 or A2, where Ai

represents the ith allele. To differentiate gene nodes, their names end in either “pg”

for the paternal gene, or “mg” for the maternal gene. The third node needed for each
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individual represents their actual genotype. These node names will end in “gt,” for

genotype, and can take on values A1A1, A1A2, or A2A2. Arrows in the network show

that the genotype node depends on the maternal and paternal gene nodes. Figure 1.1

shows the graphical representation for the putative father (pf).

Figure 1.1: Putative Father’s Node Trio.

Along with each node, there are associated probability tables. For example, the

probability pfpg will take on the value A1 is the population allele frequency of the first

allele. Figure 1.2 illustrates how HUGIN represents the probability table, assuming

the frequency for A1 is 0.10. The probability table will look exactly the same for the

Figure 1.2: Probability Table for Putative Father’s Paternal Gene Node.

node pfmg. For node pfgt, the probabilities are determined by the values of pfpg

and pfmg. To demonstrate, Figure 1.3 shows probability table for pfgt, conditional

on pfpg and pfmg. The first cell must be one, as it represents the probability pfgt

takes on the value A1A1, given that both maternal and paternal alleles are A1. Similar
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Figure 1.3: Conditional Probability Table for Putative Father’s Genotype Node.

arguments are used to arrive at the other cell values.

As mentioned, each individual in the network will have node trios similar to that

shown in Figure 1.1. The first letters of each node indicate which individual is being

considered. The notation and descriptions for these nine nodes are given in Table 1.3.

Table 1.3: Notation for Putative Father, Mother and Child Nodes.

Node Description

pfpg Putative father’s paternal gene

pfmg Putative father’s maternal gene

pfgt Putative father’s genotype

mpg Mother’s paternal gene

mmg Mother’s maternal gene

mgt Mother’s genotype

cpg Child’s paternal gene

cmg Child’s maternal gene

cgt Child’s genotype

Three final nodes are required to complete the Bayesian Network for this example.

The first two are the true father’s paternal and maternal genes, tfpg and tfmg. Their

values will depend upon whether or not the putative father is the true father. This

relationship is expressed by adding a boolean node, tf=pf?, that is either true or false.
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This node is termed the hypothesis node, and it will eventually be used to compute

the PI given by Equation 1.5. The relationships between these three nodes, along with

the putative father nodes, are shown in Figure 1.4. For all of the networks presented

Figure 1.4: Network for Hypothesis, True Father and Putative Father Nodes.

here, we make the simplistic assumption that the prior odds of putative father being

the true father is one. Thus, the two entries in the probability table for node tf=pf?

are both 0.50. Conditional probabilities for nodes tfpg and tfmg are similar, thus only

the table for tfpg is shown in Figure1.5. If the hypothesis node is true, then the values

Figure 1.5: Conditional Probability Table for True Father’s Paternal Gene Node.

for tfpg and tfmg are directly determined by the values from pfpg and pfmg. If the

hypothesis node is false, the probabilities are simply the respective allele frequencies.
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Again, the values in Figure 1.5 assume allele A1 occurs with frequency 0.10. The entire

network with all twelve nodes is shown in Figure 1.6.

Figure 1.6: Simple Paternity Network from Dawid et al. [3].

To incorporate population substructure into this network we need to introduce

several new nodes. First, we create a node for the value of θ and label it theta. This

node takes on the value of θ we propose is associated with our population, and can take

on any value the user chooses. Next, we add a node that contains the population’s

allele frequency for the A1 allele. This is denoted Specified p, and the values can

range from 0 - 1, as specified by the user. Now we need to keep track of how many

Ai alleles have already been seen. This is easily done by introducing several counting

nodes labeled n2, n3, n4, and n5. These replace the variable ni that is present in

Equation 1.6. In particular, n2 is the value of n1 after seeing two genes; n3 is the

value of n1 after seeing three genes, etc. Note that no n1 node is necessary, as we can

simply place an arrow between the first gene node and the second gene node. We also

keep track of the number of founder genes in the graph, by adding “ k” to the node

name. For example, pfmg is labeled as the second founder gene and the node is named
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pfmg 2. The new network created appears in Figure 1.7.

Figure 1.7: Population Substructure Simple Paternity Network.

We have rearranged the nodes in this network to ensure the reader can view all

relationships present among our new nodes. The relationships, represented by arrows,

are simply a result of what information is needed in our formulas to generate the

allele frequencies, according to Equation 1.6. Specified p and theta are needed to

calculate each founder’s frequencies, therefore there are arrows from those nodes to

every founder node in the graph. For the counting nodes, consider the node n3. It

needs the information from n2 to know how many Ai alleles have occurred up until that

point, resulting in one arrow. The node n3 also needs information from the current

node to update the number of Ai occurrences, resulting in another arrow. This node

is then used in the formulas to determine the allele frequencies for the fourth founder,

resulting in an arrow from n3 to mmg 4.
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Now we must discuss the numerical portion of our network. HUGIN allows the

user to specify an expression to generate a conditional probability table. There are

two ways to do this: enter a distribution or enter if-then-else statements. Here, we use

the distribution method. To do this, the user types the following into the Expression

line of the table: Distribution(Formula for A1, Formula for A2). In our case, the

formula for A1 is taken directly from the formula given in Equation 1.6, with n = 2 as

we have observed two founder alleles at this point, and i = 1. The formula for A2 is

simply one minus the value calculated for A1. HUGIN then generates the conditional

probability table, shown in Figure 1.8 for the node mpg 3, based on the distribution

we entered.

Figure 1.8: Conditional Probability Table for Mother’s Paternal Gene.

These values can then be verified against those calculated by hand in Table 1.2, as

the same values for θ and p1 were used. To do this, the numbers listed in Table 1.2 under

Founder1 = A1 and Founder2 = A1 match with the numbers listed in Figure 1.8 under

theta = 0.03, Specified p = 0.1, and n2 = 2. The numbers listed in Table 1.2 under

Founder1 = A1 and Founder2 = A2 as well as those listed under Founder1 = A2 and

Founder2 = A1 match with those listed in Figure 1.8 under theta = 0.03, Specified

p = 0.1, and n2 = 1, and so on. The amount of time saved at this point may not

seem overwhelming, however in more complex examples the formula entry option is an

invaluable tool. We do not display all founder tables created, as they are very similar

to this case. The counting node tables are given in Figure 1.9, and their derivation
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comes from simply counting how many times the A1 allele is seen.

Figure 1.9: Probability Tables for Counting Nodes.

Once the network is created, HUGIN calculates the paternity index for various

combinations of evidence. In [2] (Table 6.6), formulas for several cases are given using

Balding and Nichols’ methodology. An adapted version of this table is provided in
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Table 1.4, with actual PI values listed for the case when θ = 0.03 and p1 = 0.1. For

Table 1.4: Paternity Index Formulas Derived in [2].

mgt cgt pfgt PI PI (θ = 0.03, p1 = 0.1)

A1A1 A1A1 A1A1
1+3θ

4θ+(1−θ)p1
5.02

A1A1 A1A1 A1A2
1+3θ

2[3θ+(1−θ)p1]
2.91

A1A1 A1A2 A2A2
1+3θ

2θ+(1−θ)p2
1.17

A1A1 A1A2 A1A2
1+3θ

2[θ+(1−θ)p2]
0.60

A1A2 A1A1 A1A1
1+3θ

3θ+(1−θ)p1
5.83

A1A2 A1A1 A1A2
1+3θ

2[2θ+(1−θ)p1]
3.47

example, consider the case when mgt = A1A1, cgt = A1A1, and pfgt = A1A2. We

would like to verify that HUGIN matches the value of 2.91 seen in Table 1.4. After

entering in the evidence provided by the mother, child, and putative father, HUGIN

displays the tables shown in Figure 1.10. First, note that the evidence entered is

Figure 1.10: HUGIN’s Output After Entering the Evidence, Simple Paternity Network.

represented by the 100% next to corresponding genotypes in the tables for pfgt, cgt,

and mgt. The PI is obtained by taking the value shown in the tf=pf? table next to
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“Yes” and dividing it by the value displayed next to “No,” and is given in Equation 1.7,

PI =
74.45

25.55
= 2.91. (1.7)

We attempted all of the cases presented in Table 1.4 and obtained matching results

using HUGIN.

Now we would like to compare our new network with the one presented in Figure 1.6.

In total, we added only six new nodes. The nodes Specified p and theta require

entering in only one number each, and do not increase the complexity of the conditional

probability tables associated with the other nodes. The addition of the counting nodes

do, however, increase the complexity of the probability tables of other nodes. For

example, the node mpg 3 previously required the entry of only two probabilities. Now

there are two probability entries for each value of n2, leading to a total of six entries.

This type of increase occurs with each founder node. However, with the use of the table

generating feature and the use of the formulas given by Balding and Nichols, no data

entry for any of these nodes is required. One must simply enter the correct formula

in each table and let HUGIN calculate the actual values. As a result, the amount of

time needed to create our new network, after the formulas have been established, turns

out to be less than that of the previous network. In addition, the two networks take

an equivalent amount of time to run using a reasonably equipped personal computer.

It is important to note that our new network provides the exact same results as the

previous network by simply entering in θ = 0, making it flexible enough to handle both

cases.

1.5 Example Two: A Simple Paternity Case with

Multiple Alleles

Here we consider the case where there are more than two alleles at a particular locus.

The mother and putative father could have at most four distinct alleles between them.
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We arbitrarily call them Ai, i = 1, 2, 3, 4. The allele frequencies in our population

associated with these alleles are again denoted pi. We then pool all other possible

alleles into one group, denoted X where the probability of having one of these grouped

alleles would be 1 − p1 − p2 − p3 − p4. Our new network needs additional nodes to

incorporate these new alleles. First, we create nodes p Ai, for i = 1, 2, 3, 4. Each of

these take on the values of the allele frequencies specified by the user. In this example,

we assume that pi = 0.1 for all i. The final nodes we need to modify in this network

are the counting nodes. Previously, we recorded only how many A1 alleles were seen.

Now we must keep a count of how many A1, A2, A3, and A4 alleles are seen. We now

have n2 A1, n2 A2, n2 A3, and n2 A4 to replace n2, and n3 A1, n3 A2, n3 A3,

and n3 A4 to replace n3, and so on. The new network is displayed in Figure 1.11.

Figure 1.11: Population Substructure Paternity Network for Multiple Alleles.

The conditional probability tables for this network are generated in a similar fashion

to those in our first example, with a few caveats. The most obvious difference is that

there are now additional states that the nodes can take. For example, the node mpg 3
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previously only took on the values A1 and A2. Now, it can take on values A1, A2,

A3, A4, and X. This means the entry in the Expression line has five items in the

distribution statement, instead of only two.

A more subtle difference involves the counting nodes. In this network, there is a

different counting node for each of the first four alleles. There is nothing inherent

in our network that requires these nodes to add up to the number of alleles we have

seen. For example, consider the counting nodes for the second allele observed, n2 A1,

n2 A2, n2 A3, and n2 A4. Each of these nodes can take on values 0, 1, or 2. Thus,

it is possible each node could each take on the value of two. If this situation were

to occur, using Equation 1.6 with certain allele frequencies could produce negative

values in some of the conditional probability table cells for the node mpg 3. To

prevent this, we employ an If statement in the Expression line: If X, Distribution(A),

Distribution(B). This is interpreted as “If X is true, distribution A is used. Otherwise,

distribution B is used.” In this example, X represents the inequality n2 A1 + n2 A2

+ n2 A3 + n2 A4 ≤ 2. Distribution(A) is given by Equation 1.6 and Distribution(B)

is given by the original allele frequencies. The complete statement for node mpg 3 is

as follows:

if (n2_A1+n2_A2+n2_A3+n2_A4 <= 2,

Distribution ((n2_A1*theta+p_A1*(1-theta))/(1+theta),

(n2_A2*theta+p_A2*(1-theta))/(1+theta),

(n2_A3*theta+p_A3*(1-theta))/(1+theta),

(n2_A4*theta+p_A4*(1-theta))/(1+theta),

((2-(n2_A1+n2_A2+n2_A3+n2_A4))*theta

+ (1-(p_A1+p_A2+p_A3+p_A4))*(1-theta))/(1+theta)),

Distribution (p_A1, p_A2, p_A3, p_A4, 1-(p_A1+p_A2+p_A3+p_A4))).

For node mmg 4, the If statement will read if (n3_A1+n3_A2+n3_A3+n3_A4 <= 3,

and so on. The counting node tables are created in the same manner as those in the

previous example, and have not been included here due to space considerations.

The paternity index can now be obtained from HUGIN for various cases. Here we

consider the case where the mother’s genotype is A1A3, the putative father’s genotype

is A2A4, and the child’s genotype is A1A2. Evett and Weir [2] provide a PI formula for
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this case and it is shown in Equation 1.8,

PI =
1 + 3θ

2{θ + (1 − θ)p2}
. (1.8)

When θ = 0.03 and p2 = 0.1, this formula gives PI = 4.29. Using HUGIN, we obtain

the same result. Figure 1.12 gives HUGIN’s output after entering in the evidence. The

corresponding PI is given in Equation 1.9,

PI =
81.10

18.90
= 4.29. (1.9)

Figure 1.12: HUGIN’s Output After Entering the Evidence, Multiple Allele Network.

In contrast to this network, one not taking population substructure into account

would appear exactly as the network proposed for the two allele case (Figure 1.6).

The changes needed to go to a multiple allele case would occur when specifying the
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conditional probability tables. Each founder node would have five states instead of

just two, as there are five possible alleles (A1, A2, A3, A4, or X). Each genotype node

would have a total of ten states, as there are 10 ways to select two alleles from a total

of five possible alleles. Previously, each genotype had only three states (A1A1, A1A2,

and A2A2).

Our network shown in Figure 1.11 adds a total of 21 nodes to the network which does

not consider population substructure. The first five (theta and p Ai, i = 1, 2, 3, 4)

only require one number entered for each node. However, the various counting nodes do

add quite a bit of complexity. Typing in each of the tables associated with the counting

nodes is quite time consuming, although not very complex to derive. Again, the use of

the table generating feature simply nullifies any added complexity that may occur in the

founder nodes due to the addition of the counting nodes. The only data entry required is

the formulas for each node, which is essentially the same amount of work required in the

two allele case. In terms of running time, this network takes approximately one minute

to run, whereas the non-population substructure network takes approximately three

seconds (again, on a reasonably equipped personal computer). This time difference is

substantial, however computing time is not as much of a concern in recent times, due

to increasing technology. Overall, our new network is substantially more complex than

its counterpart. However, this complexity is by no means prohibitive, as it needs to be

created only once. From then on, the network is flexible enough to handle any type

of paternity case that could arise when all three genotypes are given (including the

scenario in Example One).

1.6 Example Three: A Complex Paternity Case

with Two Alleles

Our final example considers the more complex situation that can occur when forensic

scientists do not have access to the putative father’s DNA. Instead, suppose they have
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a sample from a relative of the putative father. In particular, consider the case when

DNA is available from a brother of the putative father. A simple network depicting

this situation is provided in Figure 1.13. A table listing the new notation used in this

Figure 1.13: Complex Paternity Network.

network is shown in Table 1.5.

Table 1.5: Notation for Network in Figure 1.13.

Node Description

gmpg Mother of Putative father’s paternal gene

gmmg Mother of Putative father’s maternal gene

gfpg Father of Putative father’s paternal gene

gfmg Father of Putative father’s maternal gene

bpg Brother of Putative father’s paternal gene

bmg Brother of Putative father’s maternal gene

bgt Brother of Putative father’s genotype

Incorporating population substructure requires nodes to be added to the current
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network, similar to those added in the previous two examples. We add one node

containing our theta value (theta), one containing our allele frequencies (Specified

p), and several counting nodes (n2 - n7). For simplicity this network only considers

the two allele case, however it can be extended to incorporate multiple alleles in a

manor similar to Example Two. The final network, with the new nodes included, is

displayed in Figure 1.14.

Figure 1.14: Population Substructure Complex Paternity Network.

This scenario was examined very early on in [22] and later appeared in [2]. The

likelihood ratio in this case is sometimes referred to as the Avuncular Index (AI), as

opposed to the paternity index. The plaintiff’s new hypothesis is that tested man is

a paternal uncle of the child. The defense hypothesis contends that the tested man

is unrelated to the child. A simple mathematical relationship between the paternity
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index and the avuncular index was discovered in [22], and it is given by Equation 1.10.

AI = (1/2)PI + 1/2 (1.10)

Recall the PI given in Example One (Equation 1.5) where we observed genotypes

from the putative father, mother and child. If instead of observing pfgt = A1A2, we

observe bpg = A1A2, according to Equation 1.10, we should obtain the AI shown in

Equation 1.11,

AI = (1/2)(2.91) + 1/2 = 1.96. (1.11)

Now, we attempt to arrive at this same result using our new BN given in Figure 1.14.

To arrive at the AI above, we assumed θ = 0.03 and p1 = 0.1. If we make those same

assumptions now, and we enter in our observed genotypes, HUGIN displays the results

shown in Figure 1.15. We do in fact arrive at the same result given in Equation 1.11 by

Figure 1.15: HUGIN’s Output After Entering the Evidence, Complex Paternity Network.

dividing the percentages displayed in the table for tf=pf?, as is shown in Equation 1.12,

AI =
66.18

33.82
= 1.96. (1.12)

Here, we added a total of eight nodes (theta, Specified p, and the six counting

nodes). The resultant network has similar advantages and disadvantages to the network

created in Example One. It is a much more flexible network, and is actually simpler

to create than its non-population substructure counterpart (again, as a result of the

table generating feature).
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1.7 Discussion

Bayesian Networks are clearly a useful tool for DNA evidence evaluation. They allow

scientists to point and click their way to solutions for very difficult probability calcula-

tions. They also provide a graphical representation of, at times, highly complex forensic

scenarios. One way to fully make use of this valuable tool is to provide several “shell”

networks that can be used over and over again by anyone. This work contributes a few

“shells” that allow scientists to make inferences based on DNA evidence while taking

into account population substructure. With the advent of HUGIN, along with the

table generating feature, these networks are not only possible, but relatively simple to

create. Graphical methods, such as BNs, are bringing the power of complex statistical

methodology into the forensic laboratory. Here, we have presented an extension of an

already established graphical tool to further empower the forensic scientist.
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Chapter 2

Pairwise Relatedness and Population

Substructure

2.1 Introduction

Pairwise relatedness describes the amount of relatedness between two individuals or

organisms. In our context, the amount of genetic similarity observed can be used as

a measure or indicator of relatedness. To illustrate, suppose two individuals are full

siblings. Their DNA will be made up of DNA passed down through their respective

ancestors. Since they are siblings, they have the exact same ancestors. As a result,

they will have a higher level of genetic similarity than an unrelated pair of individuals.

That is, the greater the number of ancestors in common (increasing relatedness) leads

to greater amounts of genetic similarity.

An important concept that helps describe genetic similarity is commonly referred

to as identity by descent or IBD. Two alleles are IBD if they are direct copies of a

single ancestral allele. For example, suppose X and Y are full siblings. Let X have

alleles labeled a and b, and let Y have alleles labeled c and d. This particular situation

is diagrammed in Figure 2.1. Here, there is a chance that a and c are IBD as they

could both be a copy of the same maternal allele.

An inbred individual is one that carries IBD alleles. Most populations will always

have a low level of inbreeding, due to population substructure. Inbreeding, of any

amount, will necessarily have an effect on pairwise relatedness estimates. If two indi-

viduals share some background relatedness due to inbreeding we would arrive at inflated

estimates of relatedness. It would be useful to quantify the effects of background relat-
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Figure 2.1: Diagram of IBD Relationship Between Two Siblings X and Y .

edness and incorporate them into our estimation technique. However, most pairwise

relatedness estimators developed thus far have ignored population substructure.

Accurately estimating pairwise relatedness is important in many diverse fields, in-

cluding forensic genetics, quantitative genetics, conservation genetics, and evolutionary

biology [23]. Perhaps the most common forensic application of pairwise relatedness

is in remains identification. Traditionally, dental records or fingerprints are used to

identify remains. However, in many cases these methods are impractical (high temper-

ature fires, explosive impact, etc.). Pairwise relatedness estimation can facilitate the

identification process in these cases. Indeed, within the last decade, several remains

identification projects have made extensive use of pairwise relatedness (kinship) esti-

mation [24, 25, 26, 27, 28]. In addition, there are scenarios where pairwise relatedness

estimates may be helpful in the courtroom. For example, the defense may suggest that

a relative of the suspect is the true culprit. An estimate of the amount of relatedness

between the suspect and the donor of the crime stain may be useful in this case. When

authorities are unable to apprehend a suspect and a crime stain is available, related-

ness estimation could be invaluable. If a known relative’s DNA is available, pairwise

relatedness estimation may give the authorities evidence to infer innocence or guilt.
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Measuring Pairwise Relatedness

One common measure of pairwise relatedness is referred to as the coancestry coefficient,

denoted θXY . It is defined as the probability a random allele from individual X is IBD

to a random allele from individual Y . To illustrate, consider the case where X and

Y are parent and child, respectively. Also assume there is no underlying population

substructure (non-inbred). Suppose X has alleles a and b. Due to Mendelian inher-

itance laws, with equal probability X will pass Y either allele a or allele b. Without

loss of generality, we assume that a is passed from X to Y . In this case, the prob-

ability of randomly selecting allele a from X is 1/2. In addition, the probability of

randomly selecting allele a from Y is also 1/2. This leads to an overall probability of

(1/2)(1/2) = 1/4, which is θXY in the parent-child case. Similar arguments can be

used to arrive at the other θXY values listed in Table 2.1. The relatedness coefficient

is another common measure, and is simply 2θXY (in the non-inbred case).

Table 2.1: Common θXY Values.

Relationship θXY
Unrelated 0

Cousins 1/16

Full Siblings, Parent/Child 1/4

Identical Twins 1/2

The final and most descriptive method of measuring non-inbred pairwise relatedness

was first introduced by Cotterman [29]. It involves the use of three parameters, whose

definition here follows the notation of Evett and Weir [2]. Define P0, P1, and P2 as

the probability, at a particular locus, that two individuals share 0, 1, or 2 alleles IBD,

respectively. Figure 2.2 is a diagram of the possible IBD relationships (or patterns)

that could occur between four alleles taken from two individuals, X and Y . Later we

see when population substructure exists, there are nine possible IBD patterns. For

now we assume two alleles within the same individual cannot be IBD, thus only three
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Figure 2.2: IBD Patterns Between Two Individuals, for the Non-Inbred Case.

In each group, the two upper dots represent the alleles in individual X. The two lower dots

represent the alleles in Y . A line between two dots indicates those alleles are IBD.

patterns are required. Consider the first diagram in Figure 2.2. There are two alleles

shared between X and Y that are IBD. Thus, the probability of this pattern occurring

is P2. The probability of the second pattern is then P1, and P0 is the probability of

the final pattern.

The coancestry coefficient can be written as a function of these “P -coefficients”.

Recall θXY is the probability a random allele from individual X is IBD to a random

allele from individual Y . In the first pattern, with probability 1/2 any random allele

from X will be IBD to a random allele from Y (half the time the IBD allele from Y

will be selected and half the time the non-IBD allele from Y will be selected). In the

second pattern, only half of the time will you select the IBD allele from X. When this

is coupled with the chance of selecting the IBD allele from Y (1/2), you arrive at an

overall probability of 1/4. The remaining pattern has no lines connecting X’s alleles

to Y ’s alleles and therefore does not contribute to the value of θXY . Thus the following

holds:

θXY =
1

4
P1 +

1

2
P2. (2.1)

The coancestry coefficient, relatedness coefficient and P -coefficients are just a few

of the existing parameters which can be used to measure pairwise relatedness. The

purpose of this research is to adapt an existing estimator of pairwise relatedness. A

reliable and simple estimator of pairwise relatedness is sought that can account for the
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potential effects of population substructure.

2.2 Review of Relevant Literature

Pairwise relatedness estimation is important in several diverse fields of study. As a

result, several estimators of pairwise relatedness have been proposed using a variety of

methodologies. The most commonly used technique (Queller and Goodnight [30]) was

derived from a quantitative genetics point of view. The second group of estimators we

consider makes use of the method of moments. Finally, maximum likelihood estimators

will be reviewed. Note that the maximum likelihood approach will receive the most

attention, as it is the foundation for the new estimator proposed. A comprehensive

review of all techniques listed above is found in [23] and a biologist’s perspective is

given in [31]. A statistical comparison of several estimators (oddly excluding maximum

likelihood) is found in [32].

In 2003, Milligan performed a simulation study designed to compare various pair-

wise relatedness estimators [33]. Several currently used estimators, including those

we consider here, were examined. The results obtained are in agreement with most

other studies. As a general rule, the amount of available genetic information impacts

the quality of any pairwise relatedness estimator(i.e. number of loci, number of alle-

les, allele frequency distributions). Thus, Milligan used several simulated data sets.

The number of loci ranged from five to thirty, and the number of alleles ranged from

two to twenty. Allele frequencies were taken from three types of distributions: equal

frequencies, one highly frequent allele (0.8), Dirichlet distribution with all parameters

one. The findings of this study will be referred to often when comparing the various

methods we consider in this section.
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Queller and Goodnight’s Estimator

A commonly used technique for estimating pairwise relatedness was studied by Queller

and Goodnight [30], though it was first derived by Grafen [34]. The estimate is of the

relatedness coefficient (rXY ) as opposed to the coancestry coefficient (θXY ). They de-

rive an estimator for the average relatedness between groups of individuals, as opposed

to pairs. However, they provide a modification of this method for pairwise estimation.

The derivation provided in both [30, 34] is based on quantitative genetic theory. The

reader is referred to [30] for details, as they are outside the scope of this review. Here,

we will simply describe the estimator and discuss the advantages and disadvantages of

using this technique.

First, define alleles to be identical in state (IBS) if they are of the same allelic type.

It is important to note the difference between IBS and IBD. Alleles which are IBD are

required to be IBS as well, because they are copies of the exact same ancestral allele.

However, the reverse is not true. If two alleles are IBS, they could have descended from

two different individuals (therefore not IBD). Next, label individual X’s alleles as a

and b, and individual Y ’s alleles as c and d (these are just labels and do not necessarily

imply different allelic types). Now we define indicator variables,

Sij =











1 if allele i is IBS to allele j,

0 otherwise.
(2.2)

Finally, let pi represent the population frequency of the ith allele. Queller and Good-

night’s estimate of rXY is then

r̂xy =
0.5(Sac + Sad + Sbc + Sbd) − pa − pb

1 + Sab − pa − pb
. (2.3)

The value of r̂xy will depend on which individual is assigned the label X and which is

Y . To arrive at an overall estimate, they propose using the average:

r̂XY + r̂Y X
2

. (2.4)
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Queller and Goodnight’s estimator is undefined when individual X is a heterozygote

and there are only two alleles. In addition, it is possible to arrive at estimates that are

outside the meaningful parameter space (0, 1
2
). According to Milligan’s [33] simulations,

this estimator is unbiased, although it tends to have a left skewed distribution. Thus,

the most probable estimate will often be an incorrect one. The standard error for this

estimate, as with all others considered, decreases with increasing numbers of loci and

alleles. A major advantage of this method is that the creators have posted a program

online that is free to download and simple to use 1.

Moment Estimators

Several moment estimators have been developed to estimate pairwise relatedness [35,

36, 37, 23, 1, 38]. Two techniques are reviewed here: Li et al.’s [36] modification of

Lynch’s [35] estimator; Lynch and Ritland’s [23] estimator. Of the other moment esti-

mators, some are algebraically complex and others are very similar to those described

below and are thus not considered in this review. Appendix B contains comments and

corrections to the paper by Jinliang Wang [1].

Lynch and Li Estimator

First we consider Lynch’s [35] moment estimator, incorporating a slight modification

by Li et al. [36]. They are also estimating the relatedness coefficient. To begin, define

the similarity index (SXY ) as the average fraction of alleles at a locus in either X or

Y for which there is another allele in the other individual which is IBS. For example,

suppose X has genotype AiAi and Y has genotype AiAj . Both of X’s alleles are IBD

to an allele from Y . Additionally, one of Y ’s two alleles are IBD to an allele from X.

Thus SXY equals the average of 2
2

and 1
2

which is 3
4
. Table 2.2 lists the SXY values

for all nine possible IBS patterns, denoted λ1, . . . , λ9. The concept behind Lynch’s

estimator is if two individuals are related to a degree rXY , the expected value of SXY is

1http://www.gsoftnet.us/GSoft.html
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Table 2.2: Similarity Index (SXY ) Values for All IBS Patterns.

IBS Patterns SXY

λ1 AiAi, AiAi ∀i 1

λ2 AiAi, AjAj ∀i,∀j 6= i 0

λ3 AiAi, AiAj ∀i,∀j 6= i 3/4

λ4 AiAi, AjAk ∀i,∀j 6= i,∀k > j, k 6= i 0

λ5 AiAj , AiAi ∀i,∀j 6= i 3/4

λ6 AjAk, AiAi ∀i,∀j 6= i,∀k > j, k 6= i 0

λ7 AiAj , AiAj ∀i,∀j > i 1

λ8 AiAj , AiAk ∀i,∀j 6= i,∀k 6= i, j 1/2

λ9 AiAj , AkAl ∀i,∀j > i,∀k 6= i, j,∀l > k, l 6= i, j 0

simply the sum of two terms. The first quantity is the fraction of alleles shared because

they are identical by descent and the second is the fraction shared because they are

identical in state. This leads to the following equation:

E(SXY ) = rXY + (1 − rXY )S0, (2.5)

where S0 is the expected value of SXY at a locus for two unrelated individuals in

a randomly mating population. The value of S0 is rarely known, and Li et al. [36]

propose Ŝ0 =
∑n

i=1 p
2
i (2 − pi), where n is the number of alleles at the locus and pi is

the population frequency of the ith allele. Setting SXY equal to its expectation and

substituting in estimates for the unknown values, we have

SXY = r̂XY + (1 − r̂XY )Ŝ0. (2.6)

The moment estimator is then found by solving Equation 2.6 for r̂XY ,

r̂XY =
SXY − Ŝ0

1 − Ŝ0

. (2.7)

To obtain a multi-locus estimate, the r̂XY values are simply averaged over loci.

Wang criticizes this approach, stating “although relatedness estimates from unlinked
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loci . . . are independent, they could be dramatically different in sampling variance and

ideally should not be simply averaged to give the overall estimate” [1]. Meaningful

values for rXY range from 0 to 1. It is important to note that Equation 2.7 does

require the estimates to be less than one, as SXY must be less than or equal to one.

It is possible to obtain a negative estimate, which would fall outside of the parameter

space. This happens whenever SXY < S0, which occurs at times due to sampling

error [23]. Also note this estimator is always defined, as long as at least one allele

frequency is greater than zero.

Lynch and Ritland’s Estimator

The next moment estimator was proposed by Lynch and Ritland [23]. To begin, define

two new parameters: φXY is the probability of X and Y having one pair of IBD alleles;

∆XY is the probability of X and Y having two pairs of IBD alleles. In our notation,

these two parameters are equivalent to P1 and P2. Lynch and Ritland use these param-

eters because in quantitative genetics, they are both involved in measuring the genetic

covariance between individuals. In particular, the additive genetic covariance between

individuals is a function of rXY , whereas the dominance genetic covariance is a function

of ∆XY . The relatedness coefficient can then be written in terms of these parameters:

rXY =
φXY

2
+ ∆XY . (2.8)

Lynch and Ritland focus on the conditional probabilities of individual Y ’s genotype

given individual X’s genotype. Here we will consider when Y is homozygous and refer

the reader to [23] for the other possible cases. Let Pr(ii|ii) denote the probability of X

and Y having two pairs of alleles in common and let Pr(īi|ii) denote the probability of

them having only one pair in common. Lynch and Ritland give these probabilities as

Pr(ii|ii) = p2
i + pi(1 − pi)φXY + (1 − p2

i )∆XY , (2.9)

Pr(īi|ii) = 2pi(1 − pi) + (1 − pi)(1 − 2pi)φXY − 2pi(1 − pi)∆XY . (2.10)

35

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Chapter 2. Pairwise Relatedness and Population Substructure

It is assumed that the population allele frequencies are known. To use the method of

moments, two functions are required whose expected values are Pr(ii|ii) and Pr(īi|ii).

Lynch and Ritland propose two indicator variables, that are assigned 1 if the corre-

sponding genotype pattern is observed and 0 is assigned for all other patterns. These

equations, with the indicator functions substituted in, can then be solved to obtain

estimates for φXY and ∆XY . Using Equation 2.8, and substituting in φ̂XY and ∆̂XY

will give the estimator:

r̂XY =
P̂r(īi|ii) + 2P̂r(ii|ii) − 2pi

2(1 − pi)
. (2.11)

As mentioned, the equation above holds only when Y is a homozygote. Lynch and

Ritland additionally provide a general form of their estimator that holds for all cases

(Equation 5 in [23]). Since their estimates will differ depending on which person is

labeled Y , they suggest averaging the two cases, as done by Queller and Goodnight

in Equation 2.4. Finally, to obtain multi-locus estimates they propose using a weight-

ing system. The actual weights that will minimize the variance of their estimator are

functions of parameters and thus cannot be obtained. Lynch and Ritland use approx-

imations which make the inconsistant assumption that X and Y are unrelated.

A major limitation of this estimation technique is this necessity to assume X and

Y are unrelated. It requires assuming a particular value for relatedness (namely 0),

when it is relatedness itself that we are trying to estimate. As with Queller and

Goodnight’s estimator above, this estimate can also be undefined. This occurs when

X is a heterozygote for a locus with two equally frequent alleles.

Another potential disadvantage is that negative estimates of rXY can occur. Ob-

taining estimates outside of the meaningful parameter space is an issue that deserves

some attention. Mainly due to the competing perspectives that exist about its mean-

ing. Lynch and Ritland state that these estimates are in fact meaningless, and it is a

drawback to using their estimators. Milligan and Wang agree [33, 1]. However, Hardy

states

It is important to keep in mind that relatedness coefficients depend on a
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Chapter 2. Pairwise Relatedness and Population Substructure

‘reference population’ (or ‘reference sample’), and express a degree of ge-

netic similarity between individuals relative to the average genetic similarity

between the individuals found in the reference population. Consequently,

negative values of the relatedness coefficient may be obtained, meaning X

and Y are less related on average than random individuals from the ‘refer-

ence’ population.

He also states “a relatedness coefficient must always be defined relative to some refer-

ence level of relatedness” [38].

Milligan [33] evaluated both moment estimators described here. Both were un-

biased; however for both first cousins and unrelated individuals, almost half of the

estimates fell outside the meaningful parameter space. Thus, if we were to truncate

the values to lie in the meaningful space, there would be some amount of bias observed.

The standard error for Lynch and Ritland’s estimator was lower than Lynch and Li’s

estimator, especially in cases of low relatedness. For both estimators, standard errors

are extremely dependent on the sampling conditions and on the actual degree of relat-

edness. A free software program, IDENTEX, has been created by Belkhir et al. that

calculates pairwise relatedness estimates using either Lynch and Ritland’s methodology

or Queller and Goodnight’s technique [39].

Perhaps the most detrimental attribute of moment estimators overall, is the chal-

lenges that arise when attempting to extend them to other data types. New derivations

are required to handle any deviations from the typical sampling scheme. For example,

there are large differences in the derivations for dominant versus codominant allele

structures. Also, no easy way exists to incorporate the effects of population substruc-

ture into their estimators. These moment estimators, which estimate a continuous

parameter of relatedness, cannot be easily converted to a discrete relationship estima-

tor. All of these difficulties have been handled quite easily using maximum likelihood

techniques; a major reason why this methodology was implemented here. The next

section fully examines these techniques.
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Maximum Likelihood Estimators

As mentioned above, maximum likelihood techniques have been derived and adapted

to handle a wide variety of cases. They have been used to arrive at both a discrete

estimate (as done by Thompson [40]) and a continuous estimate of relatedness (as

in [33]). The likelihood technique has also been extended to incorporate the effects

of linkage between loci [41]. Hypothesis testing using the likelihood function has also

been explored [42]. A comprehensive review of earlier work in maximum likelihood

estimation and the handling of various extensions is provided in [43]. First we describe

the original maximum likelihood estimator (MLE) proposed in 1975 by Thompson [40].

Then we discuss how Milligan proposed expanding Thomson’s model from three to nine

parameters in order to allow for population substructure.

Three Parameter MLE

Likelihood techniques estimate the coancestry coefficient (θXY ) defined in Section 2.1.

The invariance property states if θ̂ is the maximum likelihood estimator of θ, then for

any function τ(θ), the MLE of τ(θ) is τ(θ̂). This property implies that once we obtain

the MLEs for the three P -coefficients (defined in Section 2.1), we can use Equation 2.1

to find the MLE for θXY .

Assume we observe data on the genotypes of two individuals at several unlinked

loci. Nine distinct IBS patterns, λi, i = 1, . . . 9, were discussed in the previous section

(Table 2.2). The likelihood of P given an observed IBS pattern λi is

Li(P|λi) = Pr(λi|P). (2.12)

The subscript i on the likelihood makes it explicit that the likelihood function varies

based on which IBD pattern is observed. Let the three IBD patterns in Figure 2.2 be

S7, S8, and S9 (the purpose for this notation will become clear when we discuss the

nine parameter MLE). Then, making use of law of total probability (see Appendix A),
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we have

Li(P|λi) = Pr(λi|S7) Pr(S7) + Pr(λi|S8) Pr(S8) + Pr(λi|S9) Pr(S9)

= Pr(λi|S7)P2 + Pr(λi|S8)P1 + Pr(λi|S9)P0.
(2.13)

If we denote the frequency of the ith allele as pi, the values for Pr(λi|Sj) are given in

Table 2.3. To illustrate, consider the first cell of Table 2.3. In this case, all alleles

Table 2.3: Conditional Probabilities Pr(λi|Sj), with No Population Substructure.

IBD Pattern

IBS Pattern S7 S8 S9

λ1 AiAi, AiAi p2
i p3

i p4
i

λ2 AiAi, AjAj 0 0 p2
i p

2
j

λ3 AiAi, AiAj 0 p2
i pj 2p3

i pj

λ4 AiAi, AjAk 0 0 2p2
i pjpk

λ5 AiAj , AiAi 0 p2
i pj 2p3

i pj

λ6 AjAk, AiAi 0 0 2p2
i pjpk

λ7 AiAj , AiAj 2pipj pipj(pi + pj) 4p2
i p

2
j

λ8 AiAj , AiAk 0 pipjpk 4p2
i pjpk

λ9 AiAj , AkAl 0 0 4pipjpkpl

are of type i and we are given that two pairs of alleles are IBD. Thus, the probability

of this event is the chance that X randomly gets two i alleles. When there is no

population substructure, X receives the i alleles independently. Therefore it is simply

the frequency of the ith allele squared. The other cells can be determined using similar

arguments. This likelihood equation will be further examined and an example of its

use is provided in Section 2.3.

To obtain the MLEs for the P -coefficients we need to maximize the likelihood

with respect to the parameters of interest. In some cases, this can be performed

analytically (see Appendix A of [33]). However, in the majority of cases the maximum

must be found using some numerical maximizing technique. Here we use the downhill

simplex method which will be discussed at length in Section 2.3. To obtain multi-locus
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estimates, the likelihoods for each loci are simply multiplied together to arrive at one

overall likelihood function, as loci are assumed independent. This overall likelihood

is then maximized to obtain the MLE. Recalling the weighting method of Lynch and

Ritland that required the (perhaps incorrect) assumption thatX and Y were unrelated,

this multiplicative property of likelihoods is quite an advantage.

A disadvantage of the three dimensional maximum likelihood estimator is the large

biases that occur for some relationships. This problem can be severe if the relationship

is close to the endpoints of the parameter space. This bias occurs because the maximum

likelihood technique requires its estimates to fall within the valid space. For example,

if the true relationship is unrelated (θXY = 0), we will never get an unbiased result as

we are unable to obtain values less than zero. Milligan found that genetic sampling

has a large effect on the amount of bias, stating that it can be reduced by sampling

loci with more alleles (>20), with non-skewed frequency distributions [33]. Another

disadvantage is that software is not freely available to implement this method.

An advantage of the three parameter likelihood technique is the small standard

errors observed. Milligan showed, depending on sampling conditions, that the standard

errors for the non-likelihood based estimators were between 2% and 250% larger. In

addition he found that the errors for the MLE were less influenced by degree of actual

relatedness. This was not the case for the other estimators considered. When the root

mean-squared error was studied, the likelihood maintains very low values. To conclude,

Milligan writes “although some non-likelihood estimators exhibit better performance

with respect to specific metrics under some conditions, none approach the high level of

performance exhibited by the likelihood estimator across all conditions and all metrics

of performance.”

Overall, it seems clear that a maximum likelihood approach has many advantages

over the other estimators reviewed here. According to current studies, the bias that

is observed can be overcome by sampling a large number of loci, as well as increasing

the number of alleles. In previous decades, this has meant that the likelihood method

has fallen by the wayside. However, as technology is improving, vast amounts of
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genetic data are becoming available on a much larger number of species. Thus, the

likelihood method is gradually becoming a more popular method of pairwise relatedness

estimation.

Nine Parameter MLE

In 2003, Milligan extended the work of Thompson by defining the maximum likelihood

estimator in a way that can account for population substructure [33]. This natural

extension increases the number of parameters needed from three to nine. The previous

approach allowed for only three IBD patterns, as presented in Figure 2.2. When

population substructure exists, there are more possibilities. There is now a chance

that X’s (or Y ’s) parents have ancestors in common. This implies that the two alleles

received by an individual from their parent could be IBD. In particular, six additional

IBD patterns must be considered. The full set of nine IBD states Sj are shown in

Figure 2.3. This expanded set of patterns requires that nine parameters be estimated:

∆j = Pr(Sj) for j = 1, . . . , 9. (2.14)

They are referred to as Jacquard’s coefficients, as they were first developed by Jacquard

in [44]. The data we observe are the possible IBS patterns, λi, given in Table 2.3. Thus,

the nine parameter likelihood function is

Li(∆|λi) =
9

∑

j=1

Pr(λi|Sj)∆j , (2.15)

as ∆j = Pr(Sj), and where Pr(λi|Sj) values are given in Table 2.4, adapted from [33].

We derive two cells here and refer the reader to [33] for further details.

Consider the cell in Table 2.4 corresponding to IBD pattern S4 (see Figure 2.3)

and IBS pattern λ3 (AiAi, AiAj). In this case, the two alleles from X are IBD to each

other, but no other alleles are IBD. Thus, we only need to include the probability of

obtaining allele Ai once (pi). The probability of Y having alleles AiAj , given there are

no IBD relationships involving these alleles is 2pipj. The factor of 2 is because order is
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Figure 2.3: IBD Patterns Between Two Individuals, for the Inbred Case.

In each group, the two upper dots represent the alleles from individual X. The two lower

dots represent the alleles from Y . A line between two dots indicates those alleles are IBD.

Table 2.4: Conditional Probabilities Pr(λi|Sj), with Population Substructure.

S1 S2 S3 S4 S5 S6 S7 S8 S9

λ1 pi p2
i p2

i p3
i p2

i p3
i p2

i p3
i p4

i

λ2 0 pipj 0 pip
2
j 0 p2

i pj 0 0 p2
i p

2
j

λ3 0 0 pipj 2p2
i pj 0 0 0 p2

i pj 2p3
i pj

λ4 0 0 0 2pipjpk 0 0 0 0 2p2
i pjpk

λ5 0 0 0 0 pipj 2p2
i pj 0 p2

i pj 2p3
i pj

λ6 0 0 0 0 0 2pipjpk 0 0 2p2
i pjpk

λ7 0 0 0 0 0 0 2pipj pipj(pi + pj) 4p2
i p

2
j

λ8 0 0 0 0 0 0 0 pipjpk 4p2
i pjpk

λ9 0 0 0 0 0 0 0 0 4pipjpkpl
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not considered within an individual; Y ’s alleles could be AiAj or AjAi. Therefore, the

probability of observing IBS pattern λ3 given IBD pattern S4 is 2p2
i pj. Now consider

Pr(λ7|S8). Here we observe IBS pattern AiAj , AiAj and one allele from X is IBD to

one allele from Y . One possibility is that the Ai alleles are IBD. In this case, the

probability of observing the pattern is pip
2
j . If, instead, the Aj alleles are IBD the

probability of observing λ7 is p2
i pj. When these two probabilities are summed, we

arrive at pipj(pi + pj).

Thus, Milligan has defined a likelihood that can be maximized to find the MLEs

of Jacquard’s coefficients. Making use of the MLE’s invariance property, an MLE for

θXY can be obtained. Recall θXY is the probability a random allele from individual

X is IBD to a random allele from individual Y . Using this definition, we can relate

Jacquard’s parameters to θXY :

θXY = ∆1 +
1

2
(∆3 + ∆5 + ∆7) +

1

4
∆8. (2.16)

To arrive at this equation, consider the state S1 in Figure 2.3. In this case, with

probability one, any random allele from X will be IBD to a random allele from Y . In

state S3, with probability 1/2 any random allele from X will be IBD to a random allele

from Y (half the time the IBD allele from Y will be selected and half the time the

non-IBD allele from Y will be selected). The same is true for patterns S5 and S7. In S8

only half of the time will you select the IBD allele from X. When this is coupled with

the chance of selecting the IBD allele from Y (1/2), you arrive at an overall probability

of 1/4. The remaining states (S2, S4, S6, and S9) have no lines connecting X’s alleles

to Y ’s alleles and therefore do not contribute to the value of θXY .

After providing this derivation, Milligan finishes his study performing simulations

comparing the various aforementioned estimators. He simply ignores the effects of

population substructure, and performs his studies using the simplified three parameter

model presented above. No detailed study of the properties of the nine parameter

estimator has been done. For this reason, the nine parameter estimator is further

examined in the next section.
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2.3 Research Methods

This section extends the body of work on the estimation of relatedness using maximum

likelihood techniques. First, an example of the use of the nine parameter MLE is

provided. Similar to the three parameter MLE, analytical expressions for the MLE do

not exist and numerical methods must be employed. The downhill simplex method

is reviewed an examples of its use are provided. A new seven parameter estimator is

also derived that still accounts for population substructure while reducing the number

of parameters to estimate. Finally, a new methodology is developed that can infer

relationships from any of the three types of MLE estimates. We conclude by describing

the design of the simulation study used to compare the three, seven and nine paramter

MLEs.

Nine Parameter MLE, Continued

To facilitate the understanding of the nine parameter likelihood function given by

Equation 2.15, consider the following scenario. Suppose we observe genotype data for

two individuals at two loci. Let individual X have alleles A1A2 at locus one and B1B2

at locus two. Let individual Y have alleles A1A1 at locus one and B1B2 at locus two.

Label the allele frequencies p1, p2 and q1, q2 at the two loci, respectively. Consider the

first locus, with IBS pattern λ5 (AiAj , AiAi). Using Equation 2.15, coupled with the

appropriate line from Table 2.4 we find the likelihood for locus one is

L5(∆|λ5) =

9
∑

j=1

Pr(λ5|Sj)∆j = p1p2∆5 + 2p2
1p2∆6 + p2

1p2∆8 + 2p3
1p2∆9. (2.17)

Now consider the second locus, and assume it is independent (unlinked) from the

first locus. Here, the IBS pattern is λ7 (BiBj, BiBj). The corresponding line from

Table 2.4 leads to the likelihood

L7(∆|λ7) =

9
∑

j=1

Pr(λ7|Sj)∆j = 2q2
1q2∆7 + q1q2(q1 + q2)∆8 + 4q2

1q
2
2∆9. (2.18)
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Since the loci are independent, we simply multiply the two likelihoods together to

obtain an overall likelihood,

L(∆) =
(

p1p2∆5 + 2p2
1p2∆6 + p2

1p2∆8 + 2p3
1p2∆9

)

×
(

2q2
1q2∆7 + q1q2(q1 + q2)∆8 + 4q2

1q
2
2∆9

)

.
(2.19)

Now we need to maximize the likelihood, using some numerical method. Additional

complexity is introduced as we have the following constraints on our parameters:

•
∑9

i=1 ∆i = 1,

• 0 ≤ ∆i ≤ 1, ∀i.

The first constraint is due to the fact that the nine IBD states are exhaustive, thus

their total probability must equal one. The second constraint is simply a result of

each parameter representing a probability, thus must lie between zero and one. One

numerical technique that caters to functions with constraints is the downhill simplex

method. For a complete description of the method, see [45]. The next section briefly

describes the method and continues this example.

Downhill Simplex Method

The downhill simplex method was first described by Nelder and Mead [46]. This

method was chosen because it is fast and accurate. Additional random walk methods

were attempted, however the estimates obtained were exactly those of the simplex

method. Additionally, the random walk programs took several hours to run, whereas

the simplex method only needed seconds. The simplex method was also employed in

Milligan’s study [33], allowing for verification of results.

The downhill simplex method is a numerical minimizing technique that facilitates

functions with constraints. An N -dimensional simplex is a geometrical figure of N + 1

points and all connecting line segments and faces. (In 2-dimensions it is a triangle.)

To begin, an initial simplex must be given. The method will then take a series of steps

changing the dimensions of the simplex. Each step either reflects, expands, or contracts

the simplex allowing the simplex to “blob” around the surface of the function, always
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searching for lower values. Eventually the simplex will pull itself in around the lowest

point, which will be the minimum value. Throughout the process, there are constant

checks to ensure the constraints are met. A C++ program was created implementing

this method (see Appendix C), adapting code provided in [45]. As mentioned, this is

a minimizing routine. Here we obtain the maximum value by minimizing the negative

likelihood.

Recall the likelihood equation for the example provided in the previous section:

L(∆) =
(

p1p2∆5 + 2p2
1p2∆6 + p2

1p2∆8 + 2p3
1p2∆9

)

×
(

2q2
1q2∆7 + q1q2(q1 + q2)∆8 + 4q2

1q
2
2∆9

)

.
(2.20)

We would like to maximize the likelihood with respect to ∆. For demonstration pur-

poses, we consider the special case where no population substructure exists. This

assumption requires ∆1 = . . . = ∆6 = 0. If we additionally assume (arbitrarily) that

p1 = p2 = q1 = q2 = 0.30, and note that ∆9 = 1−∆7 −∆8, the likelihood is reduced to

L(∆) = −0.0215∆2
7 − 0.0037∆2

8 + 0.0168∆7 + 0.0063∆8 + 0.0047. (2.21)

Figure 2.4 provides a graph of this function.

To get a better idea of where the maximum occurs, Figure 2.5 shows the likelihood

with an intercepting plane, showing the maximum occurs when ∆7 ≈ 0.40 and ∆8 ≈ 0.

We can use the simplex method to obtain exact results. The following is output from

our program:

Delta 7 = 0.390

Delta 8 = 0.0

Delta 9 = 0.610

Maximum = 0.008

Theta_XY = 0.195

This method required 254 function evaluations

As predicted above, the MLEs for ∆7 and ∆8 are 0.390 and 0, respectively. The MLE

for ∆9 is simply one minus the MLE values for ∆7 and ∆8. The output gives us the

actual value of the likelihood at the maximum, 0.008, which also agrees with our plots
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Figure 2.4: Graph of Likelihood Function.
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Figure 2.5: Graph of Likelihood Function with Intercepting Plane.
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in Figures 2.4 and 2.5. The MLE for θXY is given, which we can verify using using

Equation 2.16:

(θXY )MLE =
1

2
(0.390) +

1

4
(0) = 0.195. (2.22)

Finally, the number of function evaluations required is also listed in the output. This

refers to how many times the likelihood function was computed for a particular set

of parameter values before the “best” value was obtained. The computationally de-

manding portion of this program is the function evaluations. Thus, the number of

evaluations is reported to give an idea of how long the program took to run. In this

case, it only took a fraction of a second. While this simplified example was in two

dimensions, the simplex method works exactly the same in N -dimensions (N = 8 in

the population substructure case).

The nine dimensional method requires a distinction between X and Y . In some

cases, this distinction is not necessary. For example, if X and Y are drawn from

the same subpopulation, the probability that X has two IBD alleles is equal to the

probability that Y has two IBD alleles. The nine parameter model assumes these two

probabilities are distinct. If the distinction between X and Y is unnecessary the nine

parameter model is at a disadvantage, as extraneous parameters are being estimated.

This is the motivation for the seven parameter model proposed in the next section.

Seven Parameter MLE

As mentioned, in the nine parameter case different estimates can occur depending on

which individual is labeled X and which is labeled Y . This phenomenon occurs because

the patterns shown in Figure 2.3 are ordered with respect to X and Y . For example,

if we were to ignore the ordering of X and Y , S3 and S5 would be the same pattern.

In addition, S4 and S6 would also be the same pattern. If we assume X and Y come

from the same subpopulations, one new parameter could replace ∆3 and ∆5. If another

parameter replaced ∆4 and ∆6, the total number of parameters is reduced to seven.

A new set of notation is needed to define the seven parameter estimate. To begin,
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there are now only seven distinct IBD patterns possible between the four alleles from

X and Y . These patterns are denoted S ′

1, . . . S
′

7 and are shown in Figure 2.6. Pattern
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Figure 2.6: IBD Patterns Between Two Individuals, for the Seven Parameter Inbred Case.

S ′

3 replaces both S3 and S5 from Figure 2.3, as the ordering between X and Y does not

matter. Similarly, S ′

4 replaces both S4 and S6. Thus, the new parameters of interest

are

φj = Pr(S ′

j) for j = 1, . . . , 7. (2.23)

A description of the relationships among the new φ’s, Jacquard’s coefficients, and Evett

and Weir’s commonly used δ coefficients [2] is given in Table 2.5.

In addition to reducing the number of IBD states, we also reduce the number of IBS

states. Now that ordering between X and Y no longer matters, pattern λ3 (AiAi, AiAj)

is the same as pattern λ5 (AiAj , AiAi). Similarly, λ4 (AiAi, AjAk) is the same as λ6

(AjAk, AiAi). Thus, we define a new set of IBS patterns, λ′1, . . . , λ
′

7 and they are listed

in Table 2.6. The likelihood is similar to that in Equation 2.15,

Li(∆|λ′i) =

7
∑

j=1

Pr(λ′i|S
′

j)φj, (2.24)

where Pr(λ′i|S
′

j) is given by Table 2.6.
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Table 2.5: Relationships Among Various Relateness Coefficients.

New Jacquard [44] Evett & Weir [2]

φ1 ∆1 δabcd
φ2 ∆2 δab.cd
φ3 ∆3 + ∆5 δabc + δabd + δacd + δbcd
φ4 ∆4 + ∆6 δab + δcd
φ5 ∆7 δac.bd + δad.bc
φ6 ∆8 δac + δbd + δad + δbc
φ7 ∆9 δ0

Table 2.6: Conditional Probabilities based on Seven Parameters.

IBSPatterns S ′

1 S ′

2 S ′

3 S ′

4 S ′

5 S ′

6 S ′

7

λ′1 = AiAi, AiAi pi p2
i p2

i p3
i p2

i p3
i p4

i

λ′2 = AiAi, AjAj 0 pipj 0 pip
2
j 0 0 p2

i p
2
j

λ′3 = AiAi, AiAj 0 0
pipj

2
p2
i pj 0 p2

i pj 2p3
i pj

λ′4 = AiAi, AjAk 0 0 0 pipjpk 0 0 2p2
i pjpk

λ′5 = AiAj , AiAj 0 0 0 0 2pipj pipj(pi + pj) 4p2
i p

2
j

λ′6 = AiAj , AiAk 0 0 0 0 0 pipjpk 4p2
i pjpk

λ′7 = AiAj , AkAl 0 0 0 0 0 0 4pipjpkpl

To demonstrate the conversion from the nine by nine Table 2.4 to the seven by

seven table here, consider the first row. The value for Pr(S ′

3|λ
′

1) is simply the average

of the appropriate probabilities from Table 2.4:

Pr(S ′

3|λ
′

1) =
Pr(S3|λ1) + Pr(S5|λ1)

2
=
p2
i + p2

i

2
= p2

i . (2.25)

Similarly,

Pr(S ′

4|λ
′

1) =
Pr(S4|λ1) + Pr(S6|λ1)

2
=
p3
i + p3

i

2
= p3

i . (2.26)

The other entries in the first row are the exact same as those in Table 2.4, noting

S7 = S ′

5, S8 = S ′

6, S9 = S ′

7. The same process is used to arrive at the values for rows
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2, 5, 6, and 7. Now consider the third row of Table 2.6. The first two and last three

cells are obtained by averaging the corresponding values from Table 2.4 in the third

and fifth rows. For example, Pr(λ′3|S
′

6 is the average of p2
i pj and p2

i pj . Pr(S ′

3|λ
′

3) is

obtained by averaging four cells from Table 2.4,

Pr(S ′

3|λ
′

3) =
Pr(S3|λ3) + Pr(S5|λ3) + Pr(S3|λ5) + Pr(S5|λ5)

4
. (2.27)

A similar average is used for the next cell,

Pr(S ′

4|λ
′

3) =
Pr(S4|λ3) + Pr(S6|λ3) + Pr(S4|λ5) + Pr(S6|λ5)

4
. (2.28)

The fourth row is derived in a similar manner to row three.

Therefore, we have defined a likelihood that can be maximized to find the MLEs

for φ1, . . . φ7. The relationship between these parameters and the coancestry coeficient,

θXY = φ1 +
1

2
(φ3 + φ5) +

1

4
φ6, (2.29)

allows us to obtain the MLE for θXY , similar to the nine parameter case.

Both the seven and nine parameter models give one summary value (MLE of θXY )

which can then be used to infer a relationship. For example, if we get an estimate

of 0.24 and if there is no inbreeding, and the ages of X and Y are fairly close (to

rule out the parent-child possibility), we could predict that it is a full sibling pair.

Unfortunately, this is not the most satisfying result. We would like to say they are full

siblings with absolute certainty, or with at least some idea of the error rates associated

with our estimate. In addition, we may not have information about the individuals’

ages. Thus, it would be impossible to differentiate between full sibling and parent-child

pairs. Ideally, we would like to have some sort of classification mechanism that could

place paired observations into one of several groups. Then an estimated relationship

could be given, as well as some accuracy rates based on simulation study results. To

this end, a distance metric method of classifying pairwise relationships was developed.
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Distance Metric Method of Relationship Classification

Through maximizing the likelihood, we have obtained estimates for either Jacquard’s

nine coefficients or the seven φ’s. When estimating the continuous parameter θXY , we

use only a function of these parameters. Additionally, that function only contains five

of the nine (or four of the seven) parameters estimated. In our classification method we

make use of all available MLE values; hypothesizing that the more information used,

the better the estimates.

To begin, we can quantify the amount of population substructure that exists using

what is commonly referred to as the inbreeding coefficient, denoted ψ. (Note that this

is the same parameter as θ defined in Chapter 1, it is relabeled here to avoid confusion

with θXY .) If we assume the value of ψ is known, it is possible to determine the true

values for either Jacquard’s coefficients or the seven φ’s for any imaginable relationship.

The true values of Jacquard’s coefficients, in terms of ψ, for some common relationships

are given in Table 2.7. Numerical values for the full sibling case, at several different

values of ψ, are given in Table 2.8.

Next, define ∆U , ∆F , . . . to be the known relationship vectors for unrelated pairs,

full sib pairs, etc. We can then compute the Euclidean distance (DU , DF , . . .) between

the estimated vector (∆̂) and several of the true vectors. For example, the distance

formula for unrelated individuals in the nine parameter case is

DU = ‖∆̂− ∆U‖ =

√

√

√

√

9
∑

i=1

(∆̂i − ∆U,i)2, (2.30)

These distances can be computed for any number of competing relationships. The

relationship that obtains the minimum distance will then become our discrete estimate.

To illustrate the classification method, suppose we obtain the following nine parameter

MLE:

∆̂ = (0.0524, 0.0000, 0.0336, 0.0358, 0.0517, 0.0631, 0.0527, 0.4605, 0.2502). (2.31)

Assume we have prior knowledge that unrelated, cousin, half sib, and full sib pairs are
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Table 2.7: Jacquard’s Coefficients in Terms of the Inbreeding Coefficient (ψ) for Some Com-
mon Relationships.

Relationship

Coefficient Unrelated Cousins Half Siblings Full Siblings

∆1
6ψ3

(1+ψ)(1+2ψ)
ψ2(1+11ψ)

2(1+ψ)(1+2ψ)
ψ2(1+5ψ)

(1+ψ)(1+2ψ)
ψ(1+7ψ+16ψ2)
4(1+ψ)(1+2ψ)

∆2
ψ2

−ψ3

(1+ψ)(1+2ψ)
3(ψ2

−ψ3)
4(1+ψ)(1+2ψ)

ψ2(1−ψ)
2(1+ψ)(1+2ψ)

ψ2(1−ψ)
4(1+ψ)(1+2ψ)

∆3
4(ψ2

−ψ3)
(1+ψ)(1+2ψ)

ψ(1+13ψ−14ψ2)
4(1+ψ)(1+2ψ)

ψ(1+5ψ−6ψ2)
2(1+ψ)(1+2ψ)

ψ(1+3ψ−4ψ2)
2(1+ψ)(1+2ψ)

∆4
ψ(1−2ψ+ψ2)
(1+ψ)(1+2ψ)

3ψ(1−2ψ+ψ2)
4(1+ψ)(1+2ψ)

ψ(1−2ψ+ψ2)
2(1+ψ)(1+2ψ)

ψ(1−2ψ+ψ2)
4(1+ψ)(1+2ψ)

∆5
4(ψ2

−ψ3)
(1+ψ)(1+2∗ψ)

ψ(1+13ψ−14ψ2)
4(1+ψ)(1+2ψ)

ψ(1+5ψ−6ψ2)
2(1+ψ)(1+2ψ)

ψ(1+3ψ−4ψ2)
2(1+ψ)(1+2ψ)

∆6
ψ(1−2ψ+ψ2)
(1+ψ)(1+2ψ)

3ψ(1−2ψ+ψ2)
4(1+ψ)(1+2ψ)

ψ(1−2ψ+ψ2)
2(1+ψ)(1+2ψ)

ψ(1−2ψ+ψ2)
4(1+ψ)(1+2ψ)

∆7
2(ψ2

−ψ3)
(1+ψ)(1+2ψ)

ψ(7ψ−8ψ2
−1)

4(1+ψ)(1+2ψ)
ψ(1+3ψ−4ψ2)
2(1+ψ)(1+2ψ)

1+4ψ+3ψ2
−8ψ3

4(1+ψ)(1+2ψ)

∆8
4ψ(1−2ψ+ψ2)
(1+ψ)(1+2ψ)

14ψ3
−27ψ2+12ψ+1

4(1+ψ)(1+2ψ)
2+7ψ−20ψ2+11ψ3

4(1+ψ)(1+2ψ)
1+2ψ−7ψ2+4ψ3

2(1+ψ)(1+2ψ)

∆9
1−3ψ+3ψ2

−ψ3

(1+ψ)(1+2ψ)
3(1−3ψ+3ψ2

−ψ3)
4(1+ψ)(1+2ψ)

1−3ψ+3ψ2
−ψ3)

2(1+ψ)(1+2ψ
1−3ψ+3ψ2

−ψ3)
4(1+ψ)(1+2ψ

Table 2.8: Jacquard’s True Parameter Values for Full Siblings.

ψ

Parameter 0 0.05 0.10 0.20

∆1 0 0.0150 0.0352 0.0905

∆2 0 0.0005 0.0017 0.0048

∆3 0 0.0247 0.0477 0.0857

∆4 0 0.0098 0.0153 0.0190

∆5 0 0.0247 0.0477 0.0857

∆6 0 0.0098 0.0153 0.0190

∆7 0.25 0.2411 0.2693 0.2762

∆8 0.50 0.4688 0.4295 0.3429

∆9 0.25 0.1856 0.1381 0.0762

θXY 0.25 0.2875 0.3250 0.40
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the only possible relationships. Also suppose the population we are considering has

a (rather large) inbreeding coefficient of 0.10. Then for each possible relationship, we

can list the true vectors and compute DU , DC , DH , and DF which appear in Table 2.9.

From these results, we estimate the true relationship to be half siblings, as 0.0048 is

Table 2.9: MLE, True ∆ Vectors, and Euclidean Distances for Example in Section 2.3.

∆̂ ∆̂U ∆̂C ∆̂H ∆̂F

0.0524 0.0045 0.0080 0.0114 0.0352

0.0000 0.0068 0.0051 0.0034 0.0017

0.0336 0.0273 0.0409 0.0545 0.0477

0.0358 0.0614 0.0460 0.0307 0.0153

0.0517 0.0273 0.0409 0.0545 0.0477

0.0631 0.0614 0.0460 0.0307 0.0153

0.0527 0.0136 0.0307 0.0477 0.2693

0.4605 0.2455 0.3682 0.4909 0.4295

0.2502 0.5523 0.4142 0.2761 0.1381

Distances 0.1427 0.0385 0.0048 0.0637

the minimum distance observed. In fact, these data were simulated assuming half sib

relationship. The same methodology applies to the two or seven parameter model,

and comparisons among the these classification methods are included in the simulation

study described in the next section.

Experimental Design

A simulation study was designed to evaluate the performance of the seven and nine

parameter MLE, as well as the various distance metric methods of classification. We

wanted to determine the advantage (or disadvantage) of accounting for population

substructure in various population types. Thus, we simulated data assuming inbreeding

coefficients of 0, 0.05, 0.10. As Milligan notes, the quality of our estimates will depend

highly on the number of loci and the number of alleles per locus [33]. We considered
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2, 5, and 10 alleles for 20, 40, 60, 80 and 100 loci to evaluate these effects. When

ψ > 0, allele frequencies were assumed to come from a Dirichlet distribution, with

parameter (1 − ψ)pi/ψ. This particular Dirichlet distribution is appropriate in the

population substructure case [2]. Equal allele frequencies were assumed when ψ = 0.

Finally, we varied the true relationship to include unrelated, cousin, half sibling, and

full sibling pairs. For each combination of estimation method, allele number, loci

number, inbreeding coefficient and true relationship we simulated 500 observations. In

this study, the other pairwise relatedness estimators discussed in Section 2.2 were not

included, as previous comparison studies have been done [33, 23, 32].

2.4 Results

Continuous Estimation of θXY

We refer to the three parameter estimator as the 2D MLE as the maximization takes

place in two dimensional space. 6D MLE and 8D MLE refer to the seven and nine

parameter estimates, respectively. Several plots representing the mean values 2D MLE

are shown in Figure 2.7. Increasing the number of both loci and alleles increases the

accuracy of the estimator in the non-inbred case (ψ = 0.0). However, this trend does

not continue as ψ increases. In fact, in most cases the average estimated values are

moving further away from the true value as loci and alleles increase. These results are

expected, as this estimator assumes ψ = 0. In the non-inbred case the bias increases as

the true relationship decreases. This is also expected, as we are approaching the edge of

the parameter space. To demonstrate the potential effects of population substructure,

consider the plot for cousins when ψ = 0.05. In this case, the 95% confidence interval

is (0.0963, 0.1043). If we assume no population substructure, the true θXY value

for cousins is 0.0625. It is quite tempting to incorrectly conclude a higher degree of

relatedness than truly exits.

Similar plots for the 8D MLE are displayed in Figure 2.8. In every case, increasing
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Figure 2.7: Means Plots for 2D MLE, Based on 500 Simulated Data Points per Plot.

the number of loci and the number of alleles improves the accuracy of the MLE. In

addition, it appears that the bias is decreasing as ψ is increasing. Except for the unre-

lated case, the bias of this estimator does not seem influenced by the true relationship.

This is quite an advantage over other estimators [33]. Again, consider cousins when

ψ = 0.05. If we allow for population substructure, the true θXY value is 0.1094, which

falls within the 95% confidence interval, (0.1089, 0.1177).

To examine the differences between all three estimators, Figure 2.9 plots the means

for the 2D, 6D, and 8D MLEs for unrelated and full sibling pairs, with ten alleles per
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Figure 2.8: Means Plots for 8D MLE, Based on 500 Simulated Data Points per Plot.

locus. There is an increase in accuracy when reducing the number of parameters from

nine to seven, markedly so in the non-inbred, unrelated case. Based on the assumptions

made during the simulation, the nine parameter model is estimating extra parameters,

that are in fact not necessary. We assumed individuals X and Y are simulated from the

same subpopulation, and thus their ordering is not significant. Therefore, the increase

in accuracy for the seven parameter model is expected. These graphs also show the

underestimation that occurs when using the 2D MLE for inbred individuals (ψ > 0).

Similar results were found for cousin and half sibling pairs, and for loci with two and
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Figure 2.9: Plots of the Bias for 2D, 6D, and 8D MLEs, Based on 500 Simulated Data Points
per Plot, Ten Alleles per Locus.

five alleles (results not shown).

The standard deviations for the 2D and 8D MLEs are shown in Figures 2.10

and 2.11. In most cases, the standard deviations for the 8D MLE are a small amount

larger than those observed with with the 2D MLE. This is to be expected, as the new

MLE requires the estimation of all 8 independent Jacquard’s coefficients whereas the

2D MLE only estimates two. In all cases the standard deviations are reduced by in-

creasing the number of both loci and alleles. In particular, there is a larger advantage

when moving from two to five alleles, as compared to the effect of moving from five to

ten alleles. Varying the true relationship does not appear to have a large effect on the

standard deviations of either estimator. In addition, the true value of ψ also has little

to no effect on the standard deviations.

When reducing the number of parameters from nine to seven, we hypothesized the

amount of variation of the MLE would be reduced. Figure 2.12 plots the standard

deviations of the 2D, 6D, and 8D MLE for unrelated and full sibling pairs, with ten

alleles per locus. Surprisingly, no significant reduction in variation is observed when
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Figure 2.10: Standard Deviations for 2D MLE, Based on 500 Simulated Data Points per Plot.

moving from nine to seven parameters. In each case, the standard errors are smaller

for the 2D MLE than the other two estimators. Similar results were again found for

cousin and half sibling pairs, and for loci with two and five alleles (results not shown).
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Figure 2.11: Standard Deviations for 8D MLE, Based on 500 Simulated Data Points per Plot.
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Figure 2.12: Plots of the Standard Deviations for 2D, 6D, and 8D MLEs, Based on 500
Simulated Data Points per Plot, Ten Alleles per Locus.
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Discrete Estimation of Relationships

Both the 2D estimates and the 8D estimates were used to evaluate the performance

of the distance metric method of classification. Preliminary studies showed that the

results for the 6D estimator were approximately the same as those of the 8D estimator,

and is thus was not considered separately in this study. It is important to note that the

true values for each case were used assuming the appropriate ψ values. To demonstrate,

suppose we generate a pair of individuals taken from a population with ψ = 0.05. Also

suppose the 8D estimates are (0.018, 0.000, 0.026, 0.000, 0.058, 0.000, 0.144, 0.510,

0.244), and the 2D estimates are (0.175, 0.596, 0.229). To arrive at the full sibling

distance, we calculate the Euclidian distance between the 8D estimate and the values

given in Table 2.8: (0.015, 0.001, 0.025, 0.010, 0.025, 0.010, 0.241, 0.469, 0.186). In

the 2D case, we calculate the Euclidian distance between the estimate the last three

of the true values, (0.241, 0.469, 0.186). Another option for the 2D case would be to

calculate the distances using the true values when ψ = 0 for all cases, regardless of

the ψ value used to simulate the data. In this sense we are not comparing estimators

that do and do not account for population substructure. We are simply investigating

if there is any advantage to using all nine estimates, as opposed to just three.

Table 2.10 gives the accuracy rates for the two methods, under the best possible

conditions: 100 loci each having 10 alleles. For both estimators, the accuracy rates were

Table 2.10: Simulated Accuracy Rates for the Distance Metric Classification Methods.

For each cell, the rates are based on 500 simulated pairs with 100 loci, ten alleles per loci.

ψ = 0.0 ψ = 0.05 ψ = 0.10

2D 8D 2D 8D 2D 8D

Unrelated 0.976 0.828 0.966 0.876 0.936 0.844

Cousins 0.900 0.850 0.770 0.748 0.644 0.622

Half Sibs 0.958 0.896 0.910 0.850 0.906 0.856

Full Sibs 0.998 0.984 0.994 0.980 0.986 0.984

the highest for unrelated, and full sib pairs. In the majority of cases, the 2D estimate
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Chapter 2. Pairwise Relatedness and Population Substructure

tends to be more accurate. The performance of both estimators was poorest when the

true relationship was cousins. These trends were found in all cases, regardless of the

number of loci or the number of alleles (results not shown). The accuracy rates for the

2D estimate, under all of the various sampling scenarios, appear in Figure 2.13. The
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Figure 2.13: Accuracy Rates for 2D Method, Based on 500 Simulated Data Points per Plot.

accuracy rates for unrelated, half sib and full sib pairs are all above 90% when there

are high numbers of alleles (≥ 10) and loci (≥ 100). Performance of both estimators

using biallelic data from large quantities of loci is studied further in Chapter 3.

In light of the results shown here, we recommend using the 2D version as a cursory

estimate of relationships that are distant from each other, such as unrelated and full
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Chapter 2. Pairwise Relatedness and Population Substructure

sib pairs. This method is quick, easy, and not nearly as computationally demanding as

other methods [42, 47]. It also accounts for population substructure, so it is highly rec-

ommended for populations with large estimated inbreeding. However, for the purposes

of forensic identification, existing techniques are superior. For example, likelihood ratio

methodology has already been used and established in US courts. Thus, the methods

used in the Kinship software program [48] would provide a better alternative when no

population substructure is suspected. However, further research in this area is needed

to incorporate population substructure into existing estimates.

2.5 Discussion

In summary, when estimating the continuous parameter θXY , the nine parameter

method described here displays both smaller bias and smaller standard errors than

the three parameter maximum likelihood estimate whenever population substructure

exists. With the exception of unrelated pairs and when ψ = 0, the 95% confidence

intervals for the 8D MLE always include the true value. The same cannot be said for

the 2D MLE. When no population substructure is suspected, two dimensional methods

provide accurate estimates with somewhat smaller standard errors. If one is comfort-

able making the additional assumption that the pair of individuals under consideration

are from the same subpopulation, the 6D MLE provides a more accurate alternative to

the 8D MLE. When attempting to describe relatedness with a discrete estimate, the two

dimensional version provided here is a simple and accurate method that appropriately

accounts for population structure.

Accurately estimating relatedness is an important topic across scientific disciplines.

In many circumstances, population substructure exists and can thus have a large impact

on the estimates. Most estimators in current use simply ignore this potential, and are

therefore not always appropriate. Here we have provided much needed alternative

estimates that should prove useful for researchers with genetic data from structured

populations.
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Chapter 3

Applications to Real Data

3.1 Introduction

Various genetic data sets for individuals from various populations are available online.

We use three such data sets to explore applications of both Bayesian Networks and

pairwise relatedness estimation. Pairwise relatedness is estimated using two, six, and

eight dimensional maximum likelihood estimates. We also evaluate a new classification

technique, based on the maximum likelihood estimates. This method is designed to

predict, or classify, the actual relationship between two individuals. Three data sets

are used to estimate relatedness, as they each have different numbers of loci, rang-

ing from 20 to over 500. To demonstrate the multiple allele Bayesian Network from

Chapter 1, a fictitious inbred paternity case is considered. Genotypes are available

for the mother, putative father, and child at twenty loci with varying numbers of al-

leles. All of the results presented in this chapter support the notion of accounting for

population substructure when analyzing genetic data. The following examples show

that underestimation of pairwise relatedness occurs when population substructure is ig-

nored. The final example considered shows that vastly different paternity index values

can be obtained when accounting for structured populations.
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3.2 Pairwise Relatedness Estimation

CEPH Family Data

The first data set is maintained by the Fondation Jean Dausset (CEPH) laboratory

and is available online1. The version of the database used here (V10.0 - November

2004) contains genotypes for 65 families at 32,356 genetic markers or loci. Up to fifty

loci from ten chromosomes were selected for the various analyses, with up to seventeen

alleles per locus. Appendix D lists the name, location and allele frequency values for

each locus.

Ten families were selected (CEPH Family Numbers: 102, 884, 1331, 1332, 1333,

1346, 1347, 1362, 1413, 1424) and a representative pedigree is shown in Figure 3.1.

Eight families are residents of Utah with ancestry from northern and western Europe.

1 2

4 5 83 6 7 9

1 22

4 5 83 6 7 9

Figure 3.1: Representative CEPH Family Pedigree.

A square indicates the individual is male, circle indicates female. Individuals 1 and 2 are the

parents of individuals 3 - 9.

Family 102 is from Venezuela and 884 is an Amish family. These particular families

were chosen because they had the most data available for the selected loci. Relatedness

was estimated for pairs of individuals with varying true relationships. One unrelated

pair (individuals 1 and 2 in Figure 3.1), one random full sibling pair and one random

parent child pair were selected from each family.

1http://www.cephb.fr/cephdb/php/
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Results

Continuous Estimation of Relatedness. The maximum likelihood techniques de-

scribed in Section 2.3 were used to obtain maximum likelihood estimators (MLEs) of

the coancestry coefficient (θXY ). The two, six, and eight dimensional MLE values for

the unrelated pairs of individuals are plotted in Figure 3.2. Based on twenty loci, two
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Figure 3.2: 2D, 6D and 8D MLEs for Unrelated CEPH Individuals, based on 20 or 50 loci.

families (102 and 1331) appear to have higher estimated relatedness than would be

expected for unrelated individuals. As we increase loci, the estimates decrease, but

family 102 still has particularly large estimates. Another anomaly occurs in the 8D

MLE when increasing the number of loci. Several families estimates actually increase;

884, 1346, 1362, 1413. Assuming no inbreeding, the biases should be getting smaller

(estimates getting closer to zero) as the number of loci increase. More investigation is

needed to determine the cause of these inflated estimates.

The variability of the MLEs can be estimated using a bootstrap technique. For

each pair of individuals, 1000 bootstrap samples were generated by randomly selecting

the corresponding number of loci, without replacement. For each bootstrap sample,

the MLE was obtained using the three different methods. The variance of these MLEs

approximates the true variance of the estimate. Table 3.1 shows the MLE, estimated

variances, and bootstrap confidence intervals for the unrelated pairs from families 102
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and 1331. The bootstrap confidence interval endpoints are the fifth and ninety-fifth

Table 3.1: 2D, 6D and 8D MLEs, Bootstrap (BS) Standard Errors and 90% BS CIs.

Husband wife pairs from CEPH families 102 and 1331. 1000 BS replicates were generated in

each case.

Family 102 Family 1331

Method Loci MLE (BS SE) BS CI MLE (BS SE) BS CI

2P 20 0.0887 (0.0584) (0.0021, 0.2038) 0.0467 (0.0418) (0.0000, 0.1359)
50 0.0494 (0.0418) (0.0000, 0.1276) 0.0209 (0.0246) (0.0000, 0.0693)

6P 20 0.0881 (0.0600) (0.0109, 0.2164) 0.0531 (0.0454) (0.0007, 0.1426)
50 0.0550 (0.0380) (0.0031, 0.1297) 0.0121 (0.0252) (0.0003, 0.0802)

8P 20 0.1028 (0.0589) (0.0319, 0.2339) 0.0562 (0.0447) (0.0113, 0.1549)
50 0.0573 (0.0352) (0.0131, 0.1266) 0.0305 (0.0260) (0.0047, 0.0860)

percentile values of the 1000 bootstrap MLEs obtained in each case. Each estimation

method provides similar results. In all cases, increasing the number of loci tends to

decrease the MLE value by about half. It also reduces the width of the confidence

interval by about half. The standard errors for all three estimators are similar, and

are reduced by increasing the number of loci. It is important to note that the results

for these families are extreme. The average 20 loci CI lengths for the other eight

families were 0.0450, 0.0626, and 0.0894, for the 2D, 6D, and 8D estimation methods,

respectively. In the 50 loci case, these average lengths reduced to 0.0128, 0.0297, and

0.0591.

Plotting the estimated values of P0 versus P1 is a more informative way to visualize

the results. Recall, from Section 2.1, the measures P0, P1, and P2. They represent

the probability that two individuals share 0, 1, or 2 alleles identical by descent (IBD),

respectively. These values can be expressed as functions of Jacquard’s coefficients,

P0 = ∆2 + ∆4 + ∆6 + ∆9,

P1 = ∆3 + ∆5 + ∆8,

P2 = ∆1 + ∆7,
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and as functions of the seven parameter model φ-coefficients,

P0 = φ2 + φ4 + φ7,

P1 = φ3 + φ8,

P2 = φ1 + φ7.

The plots for unrelated estimates based on 20 and 50 loci are shown in Figure 3.3. The

true, non-inbred values for any particular relationship are also plotted along with the

estimates. The plot based on 20 loci clearly indicates the husband-wife pair for family
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Figure 3.3: P0 versus P1 Plots for Unrelated CEPH Individuals.

102 are highly related. In fact, all MLEs fall in between the true values for cousins and

full siblings. The plot based on 50 loci indicates a lesser relationship, as the plotted

values now fall between unrelated and cousins. Thus, increasing the number of loci

has reduced the estimated relatedness for families 102 and 1331. More investigation is

needed (increasing the numbers of loci) to determine if the husband and wife pairs for

these two families are in fact related.

Plots of full sibling and parent child pair MLE estimates and their associated boot-

strap confidence intervals appear in Figure 3.4. In each family, one sibling pair and

one parent child pair were randomly selected, and the estimates are based on fifty loci.

In most of the full sibling cases, the true value for θXY falls within the bounds of the
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Figure 3.4: 2D, 6D and 8D MLEs for Full Sibling and Parent Child CEPH Pairs

Based 50 loci, interval around MLE values based on 1000 bootstrap samples. True value

based on the assumption of no inbreeding.

bootstrap CIs. The major exception occurs with the pair from family 884. The 2D,

6D, and 8D estimates in this case were 0.0705, 0.0706, and 0.0749. More investigation

is needed here to determine if these individuals are actually siblings. It worth enter-

taining the idea that perhaps they are half siblings, and the CEPH database entries

were incorrect. For most of the full sibling pairs the three estimates were very similar,

and tend to underestimate the true relationship. The average biases over families (ex-

cluding family 884), were -0.0164, -0.0189, and -0.0095 for the 2D, 6D, and 8D MLEs
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respectively. The average CI lengths were also very similar: 2D = 0.1402, 6D=0.1583,

8D=0.1582.

The plot in Figure 3.4 based on parent child pairs clearly show the advantages of

reducing the number of parameters in the model. Both the 2D and 6D methods are

performing quite well, whereas the 8D method is showing less reliable results. The

8D estimator is showing large biases, and the MLE values tend to lie closer to the

endpoints of the CIs. This effect does is not evident in the 2D and 6D cases These

plots also help show the performance of all three estimators is highly dependent on the

true relationship. The CIs for the 2D and 6D estimates were much smaller than those

observed for full sibs (averages were 0.0331 and 0.1060 respectively). This reduction

in CI length was not observed for the 8D estimate, as the average length increased to

0.1747. The true value of θXY is contained in the CIs for every family.

Based on these results, we conclude the 8D estimator is more biased and exhibits

higher standard errors than the 2D counterpart. The increase in variance can be

attributed to the large number of estimates required for the 8D estimator. This could

also affect the bias, as in the non-inbred case the true values for ∆1, . . . ,∆6 are zero,

regardless of the true relationship. Thus, we have increased the dimensionality when

in fact it was unnecessary. When the number of parameters is reduced to six, some

improvement was seen when the true relationships were unrelated and parent child.

Based on the estimates obtained here, the parents of family 102 are more related than

we would expect. In this case, the 8D and 6D methods for full sibs and parent-child

will be more accurate. For example, one full sib pair from this family had a 2D MLE

of 0.2234, a 6D MLE of 0.2424, and an 8D MLE of 0.2754. If we set the inbreeding

coefficient equal to 0.09 (the smaller estimated relatedness between individuals 1 and

2) the true value of θXY is 0.3175. Thus, the 8D MLE is much closer to the true value

than the 2D MLE.

Discrete Estimation of Relatedness. The classification techniques described in

Section 2.3 were used to obtain discrete estimates of relatedness. The two, six, and
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eight dimensional accuracy rates for unrelated, full sib, and parent-child pairs are

shown in Figure 3.5. The 10 unrelated pairs are simply the husband-wife pairs from
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Figure 3.5: CEPH Data Accuracy Rates for 2D, 6D and 8D Discrete Relatedness Estimates.

The rates are based on 10 unrelated pairs, 50 full sibling pairs, and 50 parent-child pairs.

each family. The five full sibling and five parent child pairs were randomly chosen from

each family, giving rise to 50 observations in those cases. The accuracy rates based on

twenty loci are relatively high with the exception of the 8D rate for parent-child pairs.

In this case, 29 out of the 50 pairs were misclassified as full sibling pairs, and one pair

was misclassified as unrelated. These, for the most part, were evenly spread among

the 10 families. The exception was family 102, where 4 of the 5 parent-child pairs were

misclassified. Again, this is most likely due to the high relatedness observed between

the parents. Overall, it is difficult to conclude from these results which method proved

more accurate. A similar statement can be made concerning the results from 50 loci.

Accuracy rates do improve in every category, but which one is “best” is still not clear.

The 6D and 8D methods work well for full siblings, but the 2D method is superior

for parent-child pairs. Overall, the 6D method provides adequate results, even in the

non-inbred case.

As a final note, recall that all estimates reported here are based on only 20 or 50

loci. According to the simulation results provided in Chapter 2, these numbers are not

sufficient to expect accurate estimators. As such, the results stated here are tentative
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and need further verification using more loci.

FBI Data

Another data set available online is provided by the FBI2. Genotypes at several loci are

provided for samples obtained from six different human populations; 210 US African

Americans (AA), 162 Bahamians (BA), 244 Jamaicans (JA), 209 US Hispanics (HI),

85 Trinadadians (TR) and 203 US Caucasians (CA). All samples were genotyped at

the thirteen CODIS3 loci. In addition, the African American, Caucasian, and Hispanic

samples were also typed for the loci HLA-DQA1, LDLR, GYPA, HBGG, D7S8, Gc,

and D1S80. The number of alleles per locus vary from 2 to 28. Allele frequencies were

estimated from each population separately, using all observations from each sample.

Within each sample, 500 randomly selected pairs comprised the unrelated data set.

Additionally, 500 random pairs were selected and “mated” to obtain parent-child pairs

and full sibling pairs.

Results

Continuous Estimation of Relatedness. If we assume no population substruc-

ture exists in these six populations, all three estimators are biased high (Figure 3.6).

In most cases, the biases observed for the 8D and 6D MLEs were much larger than

those observed for the 2D MLE. The most extreme difference occurred when the true

relationship was parent child. Reducing the dimensionality from eight to six did not

have an effect on the biases, as few differences exist between the 6D and 8D MLE.

Since pairs are “mated” to arrive at full sibling and parent child pairs, the variability

can be estimated by computing the standard deviation of the 500 estimates in each

case. This is in contrast to the bootstrap technique used for the CEPH data, where

we were relying on the data to determine true relationships. The standard deviations

2http://www.fbi.gov/hq/lab/fsc/backissu/july1999/budowle.htm
3See http://www.fbi.gov/hq/lab/codis/ for more information about the FBI’s CODIS program.
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Figure 3.6: Plotted Biases of the 2D, 6D and 8D MLEs, FBI Data.

Each plot based on 500 observations, biases were calculated assuming no population sub-

structure

for each case are shown in Figure 3.7. The standard deviations are very similar across
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Figure 3.7: Plotted Standard Deviations of the 2D, 6D and 8D MLEs, FBI Data.

Each plot based on 500 observations.

estimators in the unrelated and full sibling cases. The 2D MLE shows much smaller

values in the parent child case. The variation between populations appears to be a

direct function of the bias. For example, the Jamaican sample showed the highest

MLE values and they also display the highest standard deviations.
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If the no population structure assumption is incorrect, then the bias for the 8D

and 6D MLEs would be reduced. In [49], Weir and Hill calculated single-population

estimates of the inbreeding coefficient for three of the six populations, based on the 13

CODIS loci: African American, ψ̂ = 0.010; Caucasian, ψ̂ = 0.017; Hispanic, ψ̂ = 0.032.

The biases were recalculated for the 2D and 8D estimates, using these estimated in-

breeding coefficients, and are presented in Table 3.2. The 6D MLE is not included

Table 3.2: Biases and Standard Errors for the 2D and 8D MLEs, FBI Data.

Each estimate is based on 500 observations. Biases were calculated assuming inbreeding

coefficients of 0.010, 0.017, 0.032 for the AA, CA, and HI samples, respectively. Standard

deviations are given in parentheses.

Unrelated Full Siblings Parent-Child

2D 8D 2D 8D 2D 8D

AA 0.022(0.040) 0.037(0.050) -0.001(0.065) 0.021(0.074) 0.007(0.023) 0.038(0.049)

CA 0.010(0.034) 0.022(0.041) -0.020(0.061) 0.000(0.072) -0.011(0.019) 0.020(0.045)

HI -0.004(0.037) 0.010(0.043) -0.008(0.065) 0.013(0.073) -0.002(0.019) 0.030(0.051)

in this table, as the estimates are very similar to the 8D case. The biases for both

estimators have been reduced by accounting for population substructure. When using

the 2D MLE, the biases are mostly negative confirming the simulation results provided

in Chapter 2. The standard deviations are highest for full siblings, though not by a sig-

nificant amount. The 2D standard deviations are approximately 0.01 less than the 8D

standard deviations in all cases except for parent-child. Here, the standard deviations

for the 8D MLE are at least twice the size of the 2D MLE standard deviations.

To examine the variability and bias of the estimates further, consider the P0 versus

P1 plots shown in Figure 3.8 for the African American sample. These plots show clearly

the additional variation in both the six and eight dimensional MLEs, when compared

to the 2D MLE. In the non-inbred case, parent-child pairs must share one allele IBD.

Thus, the probability of sharing zero alleles is alway zero in the 2D case. With the 6D

and 8D MLE, this is not the case. For example, the probability of zero alleles IBD in
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the 8D case consists of several IBD patterns (S2, S4, S6, S9 from Chapter 2, Table 2.3),

all of which could have probability greater than zero, if population substructure exists.

This causes the extra variation seen in the higher dimension P0 versus P1 plots, and

their MLEs. For this reason, if no inbreeding is suspected we recommend using the 2D

MLE.

Figure 3.8 also demonstrates the advantages of techniques estimating more than one

parameter. Recall from Figure 3.7 that the 6D and 8D θXY estimates displayed very

similar standard deviations. Thus, if the estimates were only one dimensional (like the

moment estimators of Chapter 2) we would conclude both estimates are equally biased

and have similar variability. However, different conclusions would be drawn based on

the two dimensional P0-P1 plots. They show many 8D estimates falling in the full

sibling range, whereas the 6D estimates are more confined to the parent child range.

Thus we would conclude that the 6D method is in fact superior to the 8D method,
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Figure 3.8: P0 versus P1 Plots for Simulated Parent-Child Pairs from AA Sample.
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with respect to both bias and variability.

Discrete Estimation of Relatedness. Figure 3.9 presents the accuracy rates, av-

eraged over the 6 populations. The results here are very similar to those obtained
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Figure 3.9: Mean Accuracy Rates for FBI Data.

Means were obtained by averaging all accuracy rates obtained for the six samples.

for the CEPH data set, except the 8D accuracy rates are higher. Table 3.3 provides

individual accuracy rates for each of the six samples. As in the CEPH example, the

Table 3.3: Individual Accuracy Rates for FBI Data.

Unrelated Full Siblings Parent-Child

Sample 2D 6D 8D 2D 6D 8D 2D 6D 8D

AA 0.890 0.900 0.896 0.816 0.842 0.878 0.914 0.834 0.704

BA 0.902 0.888 0.886 0.782 0.814 0.864 0.782 0.820 0.668

JA 0.840 0.808 0.806 0.704 0.758 0.788 0.704 0.738 0.626

HI 0.932 0.926 0.922 0.786 0.810 0.846 0.786 0.842 0.712

TR 0.906 0.860 0.864 0.792 0.818 0.848 0.792 0.798 0.708

CA 0.940 0.924 0.940 0.806 0.840 0.882 0.806 0.848 0.720

accuracy rates are relatively high for most cases, considering only twenty loci were
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used. The estimator with the highest accuracy varies between populations and true

relationships. The accuracy rates for all methods are affected by the increased variabil-

ity evident in the MLEs for the Jamaican sample. The lower rates for the 8D estimate

in the parent-child case are most likely due to the additional variation observed in the

8D MLE (see Figure 3.8). Again, it is difficult to conclude from these results which

method is more accurate. The next data set provides genetic data on a large number

of loci, and should thus provide less ambiguous results.

HapMap Data

The International HapMap Project is a multi-country effort to genotype humans from

several populations [50]. The samples are from a total of 209 individuals, including 60

Yoruba people in Ibadan, Nigeria, 44 Japanese in Tokyo, 45 Han Chinese in Beijing,

and 60 Americans from the CEPH families previously mentioned. The amount of

data the HapMap Consortium has made available is massive. We consider here only

observations from loci on chromosome 2. There are a total of 54,649 equally spaced loci

typed, each with two alleles. In this study, we use every 100th locus, for a total of 547

loci. Allele frequencies were again estimated from each individual sample. Unrelated,

parent-child, and full sib pairs were generated using the same methods as for the FBI

data set, taking care that repeat pairs did not occur.

Results

Continuous Estimation of Relatedness. Plots of the biases, assuming no popu-

lation structure are shown in Figure 3.10. First note the drastic reduction in bias for

this data set, as compared to the biases for the FBI data set given in Figure 3.6. For

example, for unrelated pairs, the 2D MLE biases ranged between 0.02 and 0.05. With

the increase in loci, the range is now reduced to (0.006, 0.008). Similar results are seen

with the 6D and 8D MLEs. It is encouraging to see these results, considering there are

only 2 alleles per locus. In most cases the 6D and 8D MLEs are still displaying higher
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Figure 3.10: Plotted Biases of the 2D and 8D MLEs, HapMap Data.

Each plot based on 500 observations, biases were calculated assuming no population sub-

structure.

biases than the 2D estimate, as population substructure is not suspected in these pop-

ulations. In the full sibling case however, the 6D MLE is actually underestimating

θXY . These biases are small, and range from -0.009 to -0.003.

Increasing the number of loci also had an impact on the amount of variation seen

in the estimates. Table 3.4 gives the standard deviation values for two samples, the

FBI African American sample and the HapMap CEU sample. These results confirm

Table 3.4: Standard Errors of the 2D, 6D and 8D MLE for Selected Samples.

Unrelated Full Siblings Parent-Child

Sample 2D 6D 8D 2D 6D 8D 2D 6D 8D

FBI(AA) 0.040 0.046 0.294 0.065 0.069 0.074 0.023 0.044 0.049

HAP (CEU) 0.012 0.011 0.011 0.020 0.030 0.023 0.006 0.019 0.023

that increasing the number of loci, even if they are biallelic, increases all estimators’

accuracy and precision. Next, we consider the impact of increasing loci on the discrete

estimation of relationships.
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Discrete Estimation of Relatedness. When estimating discrete relatedness every

relationship was estimated with at least 90% accuracy using all three methods. The

accuracy rates averaged over populations appear in Figure 3.11. The lowest values
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Figure 3.11: Mean Accuracy Rates for Hapmap Data.

Means were obtained by averaging all accuracy rates obtained for the four samples.

obtained were 0.908 (8D, Parent Child, HI data) and 0.92 (6D, Parent Child, AA and

BA data). All cases showed drastic improvement from the accuracy using the FBI data

set. Consider the two P0 versus P1 plots for the CEU sample shown in Figure 3.12.

In the first plot, there are distinct clusters for each of the groups. In addition, within

each cluster, the observations are all closest to the appropriate true relationship value.

This is not the case in the second two plots. Similar to the results shown in Figure 3.8,

we see quite a bit of scatter when the true relationship is parent child. Several 8D

observations are still closer to the true value for full siblings than parent-child.

The results we have shown here have assumed that there were only three possible

relationship categories: unrelated, full sibling, and parent-child. However, there are

realistic circumstances where the number of categories will be more than three. As

such, we obtained accuracy rates for the case when there are five possible relationship

types: unrelated, cousins, half siblings, full siblings, and parent-child. These results

are summarized in Table 3.5. Increasing the number of alternatives did not impact
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Figure 3.12: P0 versus P1 Plots for Simulated Pairs from CEU Sample.

Table 3.5: Individual Accuracy Rates for HapMap Data.

These results were obtained by considering five different relationship types, instead of three.

Unrelated Full Siblings Parent-Child

Sample 2D 6D 8D 2D 6D 8D 2D 6D 8D

CEU 0.976 0.968 0.966 0.972 0.958 0.752 1.000 0.920 0.930

HCB 0.974 0.972 0.970 0.982 0.954 0.728 1.000 0.920 0.944

JPT 0.982 0.970 0.972 0.964 0.972 0.802 1.000 0.938 0.946

YRI 0.966 0.954 0.948 0.980 0.956 0.760 1.000 0.930 0.908

the accuracy of the 2D estimator significantly. The 2D classification method is now at

least 96% accurate, whereas in the three alternative case it was at least 98% accurate.

However, there was a large impact on the 8D estimator for full sibling case. This is

due to the additional scatter that is seen in the 8D P0 versus P1 plots in Figure 3.12.

81

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Chapter 3. Applications to Real Data

Reductions in accuracy also occurred with the 6D method for full siblings, although

not as extreme. Both full sibs and unrelated pairs were most commonly misclassified

as cousins (detailed results for the 8D full sibling case are given in Figure 3.13). A

reduction in the accuracy in the parent-child case was not seen, as no other competing

relationship was added that is closer than full siblings to the parent child space.
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Figure 3.13: Classification Rates for the 8D Method when True Relationship is Full Sibling.

To conclude, the 2D method of classification is very accurate when large numbers of

loci are given. They provides results that are over 97% accurate in every case considered

here. Future studies are needed before the 6D and 8D estimators can be recommended

for forensic uses. First, one should investigate whether or not the accuracy for parent-

child improves with larger number of alleles per locus. In addition, studies such as

those performed here should be conducted with real data that is known to have a

large inbreeding coefficient. Studies such as these would help determine if the best

discrete estimator to use depends upon population substructure, which it most likely

will. Finally, simulation studies should be done comparing the discrete estimators

discussed here with other existing methods of relationship classification.
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3.3 Multiple Allele Paternity Network Example

The Bayesian Network (BN) examples considered in Chapter 1 used data from only

one locus. We present here a more realistic example. Consider family 102 from the

CEPH data set. From the analyses performed in the previous section, we have reason

to believe this family has an inbreeding coefficient (ψ) greater than zero. Thus, this

family would be an interesting case to consider for the BN described in Example Two

from Chapter 1 (Figure 1.11). The genotypes for the mother and child (individual 3)

are available at 19 loci (the mother’s genotype is missing for locus GATA41A01). We

can then suppose the “putative” father is individual 1 (the actual father) and use the

BN to calculate paternity indices (PIs) for each locus.

For this example, we set the inbreeding coefficient to be 0.0917, the 2D MLE for the

coancestry coefficient between the mother and putative father. The PI for each locus

was also calculated using a non-population substructure network, which assumes ψ = 0.

The genotypes and PIs for each locus are provided in Table 3.6. Assuming these loci are

independent, the overall paternity index is obtained by multiplying all of the individual

PI values. When ψ = 0.0917, the overall PI is 22405 and when ψ = 0 the PI is 551,758.

Both PIs are large and either case would lead us to conclude that the putative father

is the father of the child in question. However, when population structure is ignored

the overall PI is about 25 times larger. In certain circumstances, this overestimation

could lead to an incorrect statement about paternity. This example helps demonstrate

the high dependence of the PI upon the population substructure assumptions. Thus,

if there is evidence to conclude that there is a moderate amount of substructure, the

BN of Figure 1.11 should be employed.

Approximately one hour was needed to enter in the allele frequencies, genotypes,

and to obtain the output from HUGIN using the population substructure network.

This is in contrast to the twenty minutes needed for the non-population substructure

network. In practice, both of these times are inadequate. These calculations can be

done using existing software in a matter of seconds. Before Bayesian Networks can be
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Table 3.6: CEPH Family 102 Genotypes and PI Values.

The genotypes are given by pairs of allele numbers, where the numbers correspond with

Appendix D. Paternity index (PI) values were obtained using the Bayesian Nework in Fig-

ure 1.11.

Genotypes PI

Locus Chr. P. Father Mother Child ψ = 0 ψ = 0.0917

ATA1G10 8 32 32 32 1.13 1.09

CEB42 8 12 34 23 2.00 2.00

FB12B7 8 56 22 25 1.91 1.93

GATA23C09 8 31 22 32 1.57 1.68

MFD159A 8 17 37 13 6.16 3.85

GATA27G11 12 31 11 31 1.40 1.53

LMS43 12 12 13 13 1.33 1.03

MFD84 12 13 15 15 1.55 1.12

PTHIZ53 12 22 22 22 1.21 1.14

ACT1A01 18 42 55 52 3.26 2.76

AFM123YA1 18 12 23 23 1.02 0.88

ATA1H06 18 52 56 62 17.66 5.43

GATA28D12 18 32 32 32 2.21 1.64

GATA30C02 18 43 44 43 0.95 1.12

MFD302 18 13 13 33 3.44 2.02

CYP2DP8 22 12 13 12 1.70 1.78

GCT10C10 22 11 14 14 1.49 1.31

IL2RB 22 12 11 12 1.30 1.45

PH41A 22 24 22 24 2.69 2.45

widely accepted and used by forensic scientists, this time constraint must be addressed.

One simple solution would be to automate the data entry. If HUGIN could read in

genotypes and allele frequencies from a data file and then perform the appropriate

calculations, the time needed would be greatly reduced. Additional time would be

saved if HUGIN could output the results into another data file. This is one area that

needs more research, in collaboration with BN software providers.
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3.4 Discussion

When estimating pairwise relatedness, we have shown that accounting for substructure

is possible. In fact, the methodology does not differ substantially from methods already

in use. We provided a very simple extension from a two dimensional maximization

problem to a six or eight dimensional problem. The first two data sets considered here

have helped to demonstrate the need for a large number of loci for both methods. The

HapMap Consortium projects 6.8 million single nucleotide polymorphisms or SNPs,

each with a unique genomic position, will be genotyped for a total of 270 individuals

included in their study [50]. The vast majority of these SNPs are biallelic. Recent

technology advances allow genotyping of large samples of individuals at thousands of

SNP loci [51]. The results presented here using a subset of the HapMap data showed

that SNP data is sufficient to accurately estimate pairwise relatedness, especially when

we can assume no population substructure exists (2D MLE).

Bayesian Networks are commonly used to calculate various probabilities from foren-

sic genetic data. We have shown that accounting for substructure is possible. In addi-

tion, the resultant networks are not significantly more complex than those that already

exist. The real data example provided in this chapter demonstrates the vastly different

results that can be obtained. This example also shows that more research on Bayesian

Networks is needed, primarily to explore reducing data entry time.
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Appendix A

A Simple Bayesian Network

This example will provide a basic introduction to Bayesian Networks. It is not intended

to provide a realistic example in which a Bayesian Network can be used, but simply

intended to give an illustrative example. Several unrealistic assumptions are made

purely for the sake of simplicity.

To begin, every BN will have a graphical portion which contains nodes and directed

lines. Each node in the graph represents a variable (or an event), and each directed

line describes the associations that may exist between the variables in the graph. To

demonstrate, a very simple example will be presented that has been adapted from

Aitken et al. [19]. Suppose a crime was committed. The police have a suspect, and

have recovered a blood stain from the crime scene. The proposition that the suspect

is the source of the stain (for simplicity we will say this represents guilt), versus the

proposition that the suspect is not the source of the stain (is not guilty) will be ex-

amined, using the evidence provided by the crime stain. To this end, we will calculate

the following likelihood ratio:

LR =
Pr(Evidence|Guilty)

Pr(Evidence|NotGuilty)
. (A.1)

Three nodes (or variables) will be needed in the BN:

Guilty (G) = Proposition that the suspect is guilty

True Match (M) = Evidence of a true match

91

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.
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Reported Match (RM) = Evidence of a reported match

It is important to mention if we have a “true match” this means that the evidentiary

DNA matches exactly to the suspect’s DNA. We are assuming this implies the culprit

and the suspect are one and the same. In practice, this is not a valid assumption. The

culprit and the suspect could match on a particular set of loci, and it still may not be

reasonable to conclude that they are one in the same.

Each of the variables listed above has two different possible states, either yes or

no. This is an over simplified case, and it is important to note that the variables

within a BN can take on binary (as in this example), categorical, or continuous values.

This allows the flexibility to consider various types of evidence within the same BN.

Figure A.1 is the graphical representation of this hypothetical case.

Figure A.1: A Simple Bayesian Network.

The directed lines in this network indicate the relationships between the three

variables. The arrow from Guilty to True Match indicates that the variable True

Match is dependent upon the variable Guilty. In other words, if Guilty takes on

the value of false, the True Match variable must also take on the value false. The

arrow from True Match to Reported Match indicates the same type of relationship.

When there is a true match, the probability of a Reported Match will necessarily

increase, as long as the match reporting mechanism is working correctly. It is important

to note the absence of a relationship between Guilty and Reported Match. The
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probability of a reported match should not depend upon the state of Guilty directly,

only indirectly through the variable True Match.

Along with this graphical representation, the BN will also have a numerical repre-

sentation through various conditional and unconditional probability tables. A proba-

bility table will be associated with every node in a graph. If a node is a parent node,

meaning it does not have any arrows pointing to it, then the probabilities will be uncon-

ditional. This means that the probability of each state of this variable does not depend

on the states of any other variables. There is one such node in this example; Guilty.

For this network, the assumption is that the suspect has a 50% chance of being guilty,

and a 50% chance of being innocent. This implies that the prior odds (Probability

Guilty / Probability Not Guilty) of being guilty are 1; a frequentist assumption. If

one were to appeal to Bayesian reasoning, the prior odds could be specified otherwise,

based upon prior information about the suspect. See [2] for a detailed discussion of the

specification of prior odds for likelihood ratio calculations. The assumption we have

made will lead to the unconditional probability table shown in Table A.1.

Table A.1: Unconditional Probability Table for Guilty Node.

Pr(G)
Yes 0.50
No 0.50

The other two nodes are considered child nodes, as they have arrows pointing to

them. Each will have a conditional probability table associated with it, as they are

both dependent on other nodes in the graph. The True Match node probabilities

will depend on the current state of Guilty. For example, if Guilty takes on the value
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false, then the probability of having a true match must be 0. Table A.2 presents the

entire probability table. Note that G indicates Not Guilty.

Table A.2: Conditional Probability Table for True Match Node.

Pr(M |G) Pr(M |G)
Yes 1 0
No 0 1

The final node to be considered is Reported Match. The probabilities of this node

will depend on the value of True Match. For example, if True Match takes on the

value No, then the probability of Reported Match is determined by the chance that

the reporting tool will present a false positive. In this example, arbitrary assumptions

are made that the chance of reporting a false positive is 2% and the chance of reporting

a false negative is 1%. This is required to differentiate between True Match and

Reported Match. In practice, these numbers are significantly lower if not zero. The

need to incorporate them into this network is a result of the previous assumption that

a true match implies the culprit and the suspect are one in the same. Note that we are

not implying that these are reasonable values, they are simply chosen for illustrative

purposes. These assumptions concerning the match reporting mechanism lead to the

conditional probabilities presented in Table A.3. One can enter the probabilities into

Table A.3: Conditional Probability Table for Reported Match Node.

Pr(RM |M) Pr(RM |M )
Yes 0.99 0.02
No 0.01 0.98
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HUGIN, and the resultant tables are shown in Figure A.2.

Figure A.2: Probability Tables from HUGIN.

The current example requires a calculation of the likelihood ratio shown in Equa-

tion A.1. The evidence mentioned in this equation is replaced with the variable Re-

ported Match. When coupled with the notation G = Not Guilty, the following equation

represents the likelihood ratio:

LR =
Pr(RM |G)

Pr(RM |G)
(A.2)

To calculate this value, we will make use of the law of total probability, adapted from [2]:

Law of Total Probability

If A1 and A2 are mutually exclusive and exhaustive events, then for any other event

H ,

Pr(H|E) = Pr(H|A1, E) Pr(A1|E) + Pr(H|A2, E) Pr(A2|E).

Now Pr(RM |G) can be calculated:

Pr(RM |G) = Pr(RM |M,G) Pr(M |G) + Pr(RM |M,G) Pr(M |G)
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by the law of total probability, as M and M are mutually exclusive and exhaustive

events. Keeping in mind that the variable Reported Match is independent of the

variable Guilty, and that Pr(M |G) = 1 − Pr(M |G), we have

Pr(RM |G) = Pr(RM |M) Pr(M |G) + Pr(RM |M)(1 − Pr(M |G)).

Finally, taking similar steps we find Pr(RM |G):

Pr(RM |G) = Pr(RM |M,G) Pr(M |G) + Pr(RM |M,G) Pr(M |G)

= Pr(RM |M) Pr(M |G) + Pr(RM |M )(1 − Pr(M |G).

(A.3)

The resultant likelihood ratio is

LR =
Pr(RM |M) Pr(M |G) + Pr(RM |M )(1 − Pr(M |G))

Pr(RM |M) Pr(M |G) + Pr(RM |M)(1 − Pr(M |G)
. (A.4)

Given the formula in Equation A.4, and entering the values from the probability tables

above, Equation A.5 results.

LR =
0.99 ∗ 1 + 0.02 ∗ 0

0.99 ∗ 0 + 0.02 ∗ 1
=

0.99

0.02
= 49.5. (A.5)

HUGIN can be used to perform the same calculations in this BN. Figure A.3 is HUGIN’s

display before any evidence is entered. After entering the evidence of obtaining a

Figure A.3: Before Entering the Evidence.

reported match, HUGIN will display the tables shown in Figure A.4. First, note that
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Figure A.4: After Entering the Evidence that we have a Reported Match.

the evidence entered is represented by the 100% next to “Yes” in the Reported Match

table. The likelihood ratio is obtained by taking the value shown in the Guilty table

next to “Yes” and dividing it by the value displayed next to “No.”

LR =
98.02

1.98
= 49.5. (A.6)

This value is the result shown in Equation A.5.
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Appendix B

Corrections and Comments on Wang’s

Paper [1]

In a paper published in 2002 by Jinliang Wang [1], there appear to be several mistakes.

To begin, in the third paragraph of page 1204, Wang states “For a marker locus with

n co-dominant alleles indexed by i, j, k, l = 1, 2, . . . , n there would be G = n(n+ 1)/2

possible genotypes and C = n(n+1)[n(n+1)+2]/8 possible combinations of genotypes

for a pair of individuals.” This statement is false. Consider the counter example of n =

3. Then G = 6, therefore C =
(

6
2

)

= 15. However C = 3(3+1)[3(3+1)+2]/8 = 21 6= 15.

Another discrepancy occurs on page 1205, Table 1. There are several probabilities

that are incorrect, namely Pr(ij, ij),Pr(ii, ij),Pr(ij, kl). These same probabilities are

derived by Evett and Weir in [2], pages 112-1151. Noting the definitions for P0, P1,

and P2 given by Equation 4.12 in [2], Table B.1 summarizes the errors found in [1].

As a final note, Wang states

The ML method can be used to distinguish among different relationships.

Though it can also be used to estimate relatedness, it results in much

larger biases and sampling variances that the moment estimators unless the

number of marker loci is unrealistically large...This is perhaps because the

1There is a typographical error in the first equation on page 113 of [2]. It should read
P (AiAi, AjAk) = 2(δ0p

2

i pjpk + δabpipjpk)
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ideal properties of the likelihood method are asymptotic and apply to large

data sets only...The data set involved in estimating pairwise relatedness is

extremely small, only two individual genotypes.

This statement is incorrect. The asymptotic properties of the maximum likelihood

technique will apply as the number of loci approach ∞, not as the number of individuals

approach ∞.

Table B.1: Mistaken Probabilities in Wang [1].

P0 = 1 − φ− ∆

P1 = φ

P2 = ∆

Weir Wang

Pr(ij, ij) 4P0p
2
i p

2
j + P1pipj(pi + pj) 2p2

i p
2
j + 1

2
φpipj(pi + pj − 4pipj)

Weir = 2(Wang) +2P2pipj +∆pipj(1 − 2pipj)

Pr(ii, ij) 4p3
i pj + 2φp2

i pj(1 − 2pi)

Weir = 2(Wang) 2P0p
3
i pj + P1p

2
i pj −4∆p3

i pj

Pr(ij, kl)

Weir = 4(Wang) 4P0pipjpkpl pipjpkpl − φpipjpkpl − ∆pipjpkpl
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Appendix C

Downhill Simplex Method C++ Code

C.1 C++ Function Obtaining 8D MLE

void Get8DMLE(double& max, //i-o variable containing maximum likelihood value

double& theta, //i-o variable containing coancestry coefficient MLE

double init[], //input variable containing 8D initial simplex

double lambda, //input variable contianing scaling factor

int loci, //input variable containing number of loci

double d[]) //i-o variable containing Jacquard’s 8D MLE

//global variable

//LikeClass like[NUM_LOCI]; //One likelihood for each locus

{

SimplexClass simplex;

double iter_delta[N+1][N];

double like_values[N+1];

int n_eval=0;

int j, k;

double sum;

double new_inits[N];

int iter=5;

simplex.InitP(iter_delta, init, lambda, 1);

simplex.InitL_Values(iter_delta, like_values, 1, loci, like);

n_eval=0;

simplex.Amoeba(iter_delta, like_values, n_eval, 1, loci, like);

//restarting simplex at found point

lambda=0.001;

for(j=0; j<iter; j++)

{

for(k=0; k<N; k++)

new_inits[k]=iter_delta[0][k];

simplex.InitP(iter_delta, new_inits, lambda, 1);

simplex.InitL_Values(iter_delta, like_values, 1, loci, like);

n_eval=0;

simplex.Amoeba(iter_delta, like_values, n_eval, 1, loci, like);

}

sum=0.0;

for(k=0; k<N; k++)
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{

d[k]=iter_delta[0][k];

sum+=d[k];

}

d[8]=1.0-sum;

theta=ThetaFct(d);

max=exp(-like_values[0]);

}

C.2 Simplex Class C++ Header File

const int N=8;

const int MAX_NEVAL=100000;

const double TINY = 1.0e-10;

const double FTOL = 1.0e-10;

#include "like_class.h"

class SimplexClass

{

public:

SimplexClass();

void Swap(double &a, double &b);

void Get_psum(double[][N], double[], int);

double Function(const double[], int, int, LikeClass[]);

void InitP(double[][N], const double[], const double, int);

void InitL_Values(double[][N], double[], int, int, LikeClass[]);

double Amotry(double p[][N], double y[], double psum[], const int ihi,

const double fac, int rel, int loci, LikeClass[]);

void Amoeba(double[][N], double[], int &n_eval, int, int, LikeClass[]);

private:

};

C.3 Simplex Class C++ Implementation File

#include "simplex_class.h"

#include <iostream.h>

#include <stdlib.h>

#include <math.h>

#include <iomanip.h>

void SimplexClass::Swap(double &a, double &b)

{

double temp=a;

a=b;

b=temp;

}

101

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Appendix C. Downhill Simplex Method C++ Code

void SimplexClass::Get_psum(double p[N+1][N], double psum[], int rel)

{

int i,j;

double sum;

int mpts;

int ndim;

if (rel==0)

{

mpts=3;

ndim=2;

}

else

{

mpts=N+1;

ndim=N;

}

for(j=0; j<ndim; j++)

{

for(sum=0.0, i=0; i<mpts; i++)

sum+=p[i][j];

psum[j]=sum;

}

}

void SimplexClass::InitP(double p[N+1][N], const double p_0[N],

const double lambda, int rel)

{

int mpts, ndim, i, j, k, index;

double val[8+1];

if (rel==0)

{

mpts = 3;

ndim = 2;

int e[2][2]={{1, 0}, {0, 1}};

for(j=0; j<ndim; j++)

p[0][j] = p_0[j];

for(i=1; i<mpts; i++)

{

for(j=0; j<ndim; j++)

{

val[j]=p_0[j]+lambda*e[i-1][j];

if (fabs(1.0-val[j])<TINY)

val[j]=1.0;

else if (fabs(0.0-val[j])<TINY)

val[j]=0.0;

}
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val[2]=1.0-val[0]-val[1];

for(k=0; k<=ndim; k++)

{

if(val[k]<0.0)

{

index=(int)(((double)rand()/(double)(RAND_MAX+1))*2);

while(val[index]<=fabs(val[k]))

index=(int)(((double)rand()/(double)(RAND_MAX+1))*2);

val[index]=val[index]+val[k];

val[ndim]=1.0-val[0]-val[1];

}

}

if (val[2]>1)

{

cout << "BADNESS IN INITP" << endl;

val[2]=1.0;

}

p[i][0]=val[0];

p[i][1]=val[1];

}

}

else

{

mpts = N+1;

ndim = N;

int e[N][N]={

{1, 0, 0, 0, 0, 0, 0, 0},

{0, 1, 0, 0, 0, 0, 0, 0},

{0, 0, 1, 0, 0, 0, 0, 0},

{0, 0, 0, 1, 0, 0, 0, 0},

{0, 0, 0, 0, 1, 0, 0, 0},

{0, 0, 0, 0, 0, 1, 0, 0},

{0, 0, 0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 0, 0, 1}

};

for(j=0; j<ndim; j++)

p[0][j] = p_0[j];

for(i=1; i<mpts; i++)

{

for(j=0; j<ndim; j++)

{

val[j]=p_0[j]+lambda*e[i-1][j];

if (fabs(1.0-val[j])<TINY)

val[j]=1.0;

else if (fabs(0.0-val[j])<TINY)

val[j]=0.0;
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}

val[ndim]=1.0-val[0]-val[1]-val[2]-val[3]

-val[4]-val[5]-val[6]-val[7];

for(k=0; k<=ndim; k++)

{

if(val[k]<0.0)

{

index=(int)(((double)rand()/(double)(RAND_MAX+1))*8);

while(val[index]<=fabs(val[k]))

index=(int)(((double)rand()/(double)(RAND_MAX+1))*8);

val[index]=val[index]+val[k];

val[ndim]=1.0-val[0]-val[1]-val[2]-val[3]

-val[4]-val[5]-val[6]-val[7];

if (fabs(1.0-val[ndim])<TINY)

val[ndim]=1.0;

else if (fabs(0.0-val[ndim])<TINY)

val[ndim]=0.0;

}

if(val[k]<0.0)

cout << "**badness in InitP**" << endl;

}

if (fabs(1.0-val[ndim])<TINY)

val[ndim]=1.0;

else if (fabs(0.0-val[ndim])<TINY)

val[ndim]=0.0;

if (val[ndim]>=0 && val[ndim]<=1)

{

for(j=0; j<ndim; j++)

p[i][j]=val[j];

}

else

cout << "badness in InitP" << endl;

}

}

}

void SimplexClass::InitL_Values(double p[N+1][N], double y[N+1], int rel, int loci,

LikeClass like[])

{

int ndim;

int mpts;

double x[N];

if (rel==0)

{

ndim = 2;

mpts = 3;
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}

else

{

ndim = N;

mpts = N+1;

}

for(int i=0; i<mpts; i++)

{

for(int j=0; j<ndim; j++)

x[j]=p[i][j];

y[i]=Function(x, rel, loci, like);

}

}

double SimplexClass::Amotry(double p[][N], double y[], double psum[],

const int ihi, const double fac, int rel,

int loci, LikeClass like[])

{

int valid=1;

int j;

double last;

int ndim;

double ptry[N];

double fac1, fac2, ytry;

if (rel==0)

ndim=2;

else

ndim=N;

fac1=(1.0-fac)/(double)ndim;

fac2=fac1-fac;

for(j=0; j<ndim; j++)

ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;

for (j=0; j<ndim; j++)

{

if (ptry[j]>=0.0 && ptry[j]<=1.0)

valid*=1;

else

valid*=0;

}

if (rel==0)

{

last=1.0-ptry[0]-ptry[1];

if (valid==0 || last<0 || last>1)

return y[ihi];

else

{ ytry=Function(ptry, rel, loci, like);

double sum=0.0;
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for(int i=0; i<ndim; i++)

sum+=ptry[i];

if (ytry < y[ihi] && ((1.0-sum)>=0.0) && ((1.0-sum)<=1.0))

{

y[ihi]=ytry;

for(j=0; j<ndim; j++)

{

psum[j]+=ptry[j]-p[ihi][j];

p[ihi][j]=ptry[j];

}

}

return ytry;

}

}

else

{

last=1.0-ptry[0]-ptry[1]-ptry[2]-ptry[3]-ptry[4]-ptry[5]-ptry[6]-ptry[7];

if (valid==0 || last<0 || last>1)

return y[ihi];

else

{

ytry=Function(ptry, rel, loci, like);

double sum=0.0;

for(int i=0; i<ndim; i++)

sum+=ptry[i];

if (ytry < y[ihi] && ((1.0-sum)>=0.0) && ((1.0-sum)<=1.0))

{

y[ihi]=ytry;

for(j=0; j<ndim; j++)

{

psum[j]+=ptry[j]-p[ihi][j];

p[ihi][j]=ptry[j];

}

}

return ytry;

}

}

}

void SimplexClass::Amoeba(double p[][N], double y[], int &n_eval, int rel,

int loci, LikeClass like[])

{

int i, ihi, ilo, inhi, j;

double rtol, ysave, ytry;

double small=1e-10;

int mpts, ndim;

double psum[N];
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if (rel==0)

{

mpts = 3;

ndim = 2;

}

else

{

mpts = N+1;

ndim = N;

}

int count=0;

Get_psum(p, psum, rel);

for(;;)

{

ilo = 0;

ihi= y[0]>y[1] ? (inhi=1,0) : (inhi=0,1);

for(i=0; i<mpts; i++)

{

if (y[i]<=y[ilo])

ilo=i;

if (y[i]>y[ihi])

{

inhi=ihi;

ihi=i;

}

else if (y[i]>y[inhi] && i!=ihi)

inhi=i;

}

count++;

rtol = 2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo])+TINY);

if(rtol<FTOL)

{

Swap(y[0], y[ilo]);

for (i=0; i<ndim; i++)

Swap(p[0][i], p[ilo][i]);

break;

}

if (n_eval >= MAX_NEVAL)

{

Swap(y[0], y[ilo]);

for (i=0; i<ndim; i++)

Swap(p[0][i], p[ilo][i]);

cout << "MAX_NEVAL Exceeded " << rel << endl;

break;

}

n_eval+=2;

ytry = Amotry(p, y, psum, ihi, -1.0, rel, loci, like);

107

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Appendix C. Downhill Simplex Method C++ Code

if(ytry<=y[ilo])

ytry=Amotry(p, y, psum, ihi, 2.0, rel, loci, like);

else if (ytry>=y[inhi])

{

ysave = y[ihi];

ytry=Amotry(p, y, psum, ihi, 0.5, rel, loci, like);

if (ytry>=ysave)

{

for(i=0; i<mpts; i++)

{

if (i != ilo)

{

for(j=0; j<ndim; j++)

p[i][j]=psum[j]=0.5*(p[i][j]+p[ilo][j]);

y[i]=Function(psum, rel, loci, like);

}

}

n_eval+=ndim;

Get_psum(p, psum, rel);

}

}

else

--n_eval;

}

}

double SimplexClass::Function(const double delta[], int rel,

int loci, LikeClass like[])

{

double fctn;

if(like[0].Value(delta, rel, N)==0 || like[0].missing_flag==-1)

fctn=0.0;

else

fctn=log(like[0].Value(delta, rel, N));

for(int i=1; i<loci; i++)

{

if(like[i].Value(delta, rel, N)==0|| like[i].missing_flag==-1)

fctn+=0.0;

else

fctn+=log(like[i].Value(delta, rel, N));

}

return -fctn;

}
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C.4 Likelihood Class C++ Header File

class LikeClass

{

public:

int locus; //gives corresponding locus number

double prob[9]; //conditional probabilities determined by Table 2.4

int missing_flag; //indicates whether genotype data is missing (= -1)

LikeClass();

double Value(const double delta[], int rel, int n);

void InitProbs(int num, double p[], int a, int b, int c, int d, int rel);

void ReInit();

private:

};

C.5 Likelihood Class C++ Implementation File

#include "like_class.h"

#include <math.h>

#include <iostream.h>

#include <iomanip.h>

LikeClass::LikeClass()

{

locus = -1;

int i;

for (i=0; i<9; i++)

prob[i] = 0;

missing_flag=0;

}

double LikeClass::Value(const double delta[], //input vector of Jacquard’s MLEs

int dim) //input variable: =0 if 2D, =1 if 8D

{

int ndim;

double d9;

double small=1e-10;

double fctn=0.0;

if (dim==0)

{

ndim=2;

d9=1.0-delta[0]-delta[1];

if (fabs(1.0-d9)<small)

d9=1.0;

else if (fabs(0.0-d9)<small)

d9=0.0;

}
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else

{

ndim=8;

d9=1.0-delta[0]-delta[1]-delta[2]-delta[3]

-delta[4]-delta[5]-delta[6]-delta[7];

if (fabs(1.0-d9)<small)

d9=1.0;

else if (fabs(0.0-d9)<small)

d9=0.0;

}

if(d9>=0 && d9<=1)

{

for(int i=0; i<ndim; i++)

{

fctn+=prob[i]*delta[i];

}

fctn+=prob[ndim]*d9;

return fctn;

}

else

{

cout << "badness in value" << endl;

return 0.0;

}

}

void LikeClass::InitProbs(int num, //in variable giving row number, see Table 2.4

double p[], //in variable giving allele frequencies

int i, int j, int k, int l, //in variables, see Table 2.4

int dim) //in variable: =0 if 2D, =1 if 8D

{

if (dim==0)

{

switch(num){

case 0:

prob[0]=pow(p[i],2);

prob[1]=pow(p[i],3);

prob[2]=pow(p[i],4);

break;

case 1:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=pow(p[i],2)*pow(p[j],2);

break;

case 2:

prob[0]=0.0;

prob[1]=pow(p[i],2)*p[j];
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prob[2]=2*pow(p[i],3)*p[j];

break;

case 3:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=2*pow(p[i],2)*p[j]*p[k];

break;

case 4:

prob[0]=0.0;

prob[1]=pow(p[i],2)*p[j];

prob[2]=2*pow(p[i],3)*p[j];

break;

case 5:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=2*pow(p[i],2)*p[j]*p[k];

break;

case 6:

prob[0]=2*p[i]*p[j];

prob[1]=p[i]*p[j]*(p[i]+p[j]);

prob[2]=4*pow(p[i],2)*pow(p[j],2);

break;

case 7:

prob[0]=0.0;

prob[1]=p[i]*p[j]*p[k];

prob[2]=4*pow(p[i],2)*p[j]*p[k];

break;

case 8:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=4*p[i]*p[j]*p[k]*p[l];

break;

default:

cout << "badness in InitProbs" << endl;

}

}

else

{

switch(num){

case 0:

prob[0]=p[i];

prob[1]=pow(p[i],2);

prob[2]=pow(p[i],2);

prob[3]=pow(p[i],3);

prob[4]=pow(p[i],2);

prob[5]=pow(p[i],3);

prob[6]=pow(p[i],2);
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prob[7]=pow(p[i],3);

prob[8]=pow(p[i],4);

break;

case 1:

prob[0]=0.0;

prob[1]=p[i]*p[j];

prob[2]=0.0;

prob[3]=p[i]*pow(p[j],2);

prob[4]=0.0;

prob[5]=pow(p[i],2)*p[j];

prob[6]=0.0;

prob[7]=0.0;

prob[8]=pow(p[i],2)*pow(p[j],2);

break;

case 2:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=p[i]*p[j];

prob[3]=2.0*pow(p[i],2)*p[j];

prob[4]=0.0;

prob[5]=0.0;

prob[6]=0.0;

prob[7]=pow(p[i],2)*p[j];

prob[8]=2*pow(p[i],3)*p[j];

break;

case 3:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=0.0;

prob[3]=2*p[i]*p[j]*p[k];

prob[4]=0.0;

prob[5]=0.0;

prob[6]=0.0;

prob[7]=0.0;

prob[8]=2*pow(p[i],2)*p[j]*p[k];

break;

case 4:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=0.0;

prob[3]=0.0;

prob[4]=p[i]*p[j];

prob[5]=2*pow(p[i],2)*p[j];

prob[6]=0.0;

prob[7]=pow(p[i],2)*p[j];

prob[8]=2*pow(p[i],3)*p[j];

break;
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case 5:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=0.0;

prob[3]=0.0;

prob[4]=0.0;

prob[5]=2*p[i]*p[j]*p[k];

prob[6]=0.0;

prob[7]=0.0;

prob[8]=2*pow(p[i],2)*p[j]*p[k];

break;

case 6:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=0.0;

prob[3]=0.0;

prob[4]=0.0;

prob[5]=0.0;

prob[6]=2*p[i]*p[j];

prob[7]=p[i]*p[j]*(p[i]+p[j]);

prob[8]=4*pow(p[i],2)*pow(p[j],2);

break;

case 7:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=0.0;

prob[3]=0.0;

prob[4]=0.0;

prob[5]=0.0;

prob[6]=0.0;

prob[7]=p[i]*p[j]*p[k];

prob[8]=4*pow(p[i],2)*p[j]*p[k];

break;

case 8:

prob[0]=0.0;

prob[1]=0.0;

prob[2]=0.0;

prob[3]=0.0;

prob[4]=0.0;

prob[5]=0.0;

prob[6]=0.0;

prob[7]=0.0;

prob[8]=4*p[i]*p[j]*p[k]*p[l];

break;

default:

cout << "badness in InitProbs" << endl;

}
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}

}

void LikeClass::ReInit()

{

locus = -1;

int i;

for (i=0; i<9; i++)

prob[i] = 0;

missing_flag=0;

}
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Appendix D

Summary of Loci from CEPH Families

Table D.1: CEPH Family Locus Numbers, Names, and Chromosome Locations.

Locus Name Chromosome Locus Name Chromosome

1 ACT1A01 18 26 T66—PvuII 4

2 afm123ya1 18 27 cCI6-24—PvuII 4

3 ATA1G10 8 28 pEFD6—BglII 4

4 ATA1H06 18 29 1346—(AC)n 6

5 CEB42 8 30 5-22—PvuII 6

6 CYP2DP8 22 31 CRI-R117—MspI 6

7 FB12B7 8 32 D1S57—TaqI 6

8 GATA23C09 8 33 LMYC—EcoRI 6

9 GATA27G11 12 34 MFD3—pcr 6

10 GATA28D12 18 35 Mfd126—(AC)n 6

11 GATA30C02 18 36 R6-2-3—BglII 6

12 GATA41A01 8 37 SL1—(GT)n 6

13 GCT10C10 22 38 SnRNP—MspI 6

14 IL2RB 22 39 HG2A—(GATA)n 10

15 LMS43 12 40 Mfd150—(AC)n 10

16 Mfd159A 8 41 Mfd28—(AC)n 10

17 Mfd302 18 42 RBP3-Bg—BglII 10

18 Mfd84 12 43 RBP3-H4—MspI 10

19 pH41A 22 44 VNTR—TaqI 10

20 pTHIZ53 12 45 ZNF22—(AC)n 10

21 CO91100—enz 4 46 afm066xa1—(AC)n 10

22 HLA—A 4 47 Mfd164-2—(AC)n 10

23 HLA—B 4 48 CYP19—(TTTA)8 15

24 HLA—DR 4 49 ZI-280—(AC)n 15

25 PLG—SacI 4 50 afm016yg1-2—(AC)n 15
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Table D.2: Allele Frequencies for CEPH Loci Defined in Table D.1.

Locus Number 1 2 3 4 5 6 7 8

Allele

1 0.0806 0.1916 0.0726 0.0189 0.2458 0.4958 0.1746 0.1667

2 0.1532 0.3879 0.5726 0.0283 0.2500 0.2941 0.3254 0.4286

3 0.3065 0.1028 0.3145 0.1415 0.2627 0.2101 0.0556 0.3175

4 0.3387 0.0374 0.0403 0.0849 0.2415 0.0238 0.0556

5 0.1210 0.2056 0.2547 0.2619 0.0317

6 0.0654 0.3585 0.1270

7 0.0093 0.1132 0.0317

8 0.0000

Locus Number 9 10 11 12 13 14 15 16

Allele

1 0.2937 0.0081 0.0079 0.0242 0.4670 0.3621 0.1955 0.0812

2 0.3254 0.1290 0.1587 0.2097 0.3077 0.3836 0.1864 0.1453

3 0.3571 0.3226 0.5238 0.2016 0.0055 0.1724 0.1818 0.1923

4 0.0159 0.2903 0.2063 0.4274 0.2033 0.0647 0.1545 0.1966

5 0.0079 0.2419 0.0952 0.1129 0.0165 0.0129 0.0955 0.0983

6 0.0081 0.0079 0.0242 0.0043 0.0955 0.1923

7 0.0000 0.0636 0.0940

8 0.0273

Locus Number 17 18 19 20 21 22 23 24

Allele

1 0.2419 0.0413 0.0091 0.1657 0.0280 0.3679 0.3459 0.3522

2 0.2500 0.0207 0.6707 0.8283 0.0000 0.2453 0.2547 0.3585

3 0.1452 0.2851 0.0183 0.0060 0.0807 0.3428 0.2736 0.2484

4 0.1210 0.0950 0.1860 0.0528 0.0440 0.1258 0.0409

5 0.1935 0.2810 0.1159 0.1491

6 0.0403 0.0537 0.2795

7 0.0081 0.2231 0.2267

8 0.0342

9 0.0839

10 0.0062

11 0.0373

12 0.0000

13 0.0000

14 0.0186

15 0.0000

16 0.0000

17 0.0031
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Locus Number 25 26 27 28 29 30 31 32

Allele

1 0.7610 0.4704 0.0123 0.0220 0.4469 0.5682 0.8217 0.3875

2 0.2390 0.1776 0.1481 0.9780 0.2063 0.4318 0.1783 0.4344

3 0.3520 0.4444 0.2063 0.1781

4 0.3951 0.1031

5 0.0313

6 0.0063

Locus Number 33 34 35 36 37 38 39 40

Allele

1 0.5395 0.2065 0.2421 0.8141 0.3250 0.0350 0.0216 0.0000

2 0.4605 0.2645 0.1604 0.1859 0.0094 0.9650 0.0031 0.0798

3 0.3419 0.2642 0.0375 0.1142 0.3558

4 0.1871 0.2107 0.0719 0.2500 0.2055

5 0.1006 0.0500 0.4660 0.0583

6 0.0031 0.1375 0.0586 0.1258

7 0.0189 0.2688 0.0864 0.0399

8 0.0438 0.0429

9 0.0000 0.0920

10 0.0219

11 0.0281

12 0.0063

Locus Number 41 42 43 44 45 46 47 48

Allele

1 0.0248 0.8500 0.6875 0.0062 0.0342 0.0932 0.0309 0.0154

2 0.3354 0.1500 0.3125 0.1429 0.0590 0.0031 0.1821 0.4012

3 0.0280 0.5093 0.5000 0.0901 0.3827 0.0185

4 0.0994 0.0559 0.1491 0.3665 0.3148 0.0000

5 0.4037 0.0000 0.0000 0.0186 0.0895 0.1358

6 0.1025 0.0031 0.0559 0.0745 0.0556

7 0.0062 0.0031 0.1180 0.1087 0.3735

8 0.0342 0.0373 0.1708

9 0.2174 0.0000 0.0559

10 0.0280 0.0000 0.0186

11 0.0031

12 0.0124

13 0.0031

14 0.0280
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Locus Number 49 50

Allele

1 0.0535 0.0000

2 0.0283 0.0854

3 0.1635 0.5443

4 0.1006 0.0728

5 0.1289 0.0000

6 0.1604 0.0285

7 0.0503 0.2690

8 0.2075

9 0.1069
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