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Abstract

Impressions of footwear are commonly found in crime scenes. The quality and wide vari-
ability of these impressions and the large number of footwear outsole designs makes their
manual analysis time-consuming and difficult. The goal of this research was to develop new
computational methods that will eventually assist the forensic footwear examiner in the U.S.
Two scenarios encountered by the forensic examiner were addressed: (i) in the investigative
phase, to determine the source of an impression given a known set of outsole prints; which
is useful in homicides and assaults where there are no known prints to match, and (ii) in the
prosecutorial phase, to determine whether a particular impression evidence is from a known
suspect’s shoe with a quantification of similarity and uncertainty. The research commenced
with developing and acquiring representative footwear print images so that the algorithms
developed would relate to the real problem encountered. Algorithms for several sub-problems
were studied including image processing to improve the quality of the image for further au-
tomatic processing, extraction of features useful for discrimination, a measure of similarity
between impressions and a content-based image retrieval system to reduce possible matches
with knowns. The principal method pursued was one where the print is characterized as be-
ing composed of a pattern of geometric shapes, principally ellipses; with ellipses being able to
represent straight line segments and circles as well. A distance measure based on comparing
attribute relational graphs was developed. The retrieval system compares evidence features
with pre-computed features of database entries and since comparison is time-consuming the
database entries are clustered. Retrieval performance is better than that of other methods
described in the literature, very few of which deal with real crime scene prints. Future re-
search tasks are indicated including integration of the developed methods into a usable tool
and a probabilistic measure of uncertainty in the verification task.
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Chapter 1

Executive Summary

Impressions of footwear patterns are the most commonly found type of evidence in crime
scenes. Yet, the poor quality and wide variability of these impressions as well as the large
number of manufactured outsole patterns makes their analysis and courtroom presentation
difficult. The objective of this research was to develop new computational methods to assist
the forensic footwear examiner in the U.S. both in the investigative phase as well as the
prosecutorial phase.

After a review of methods of footwear print examination as practiced in the US, as well
as published literature on algorithms for footwear impression analysis, several subproblems
were identified as needing solutions: image processing to improve the quality of the image
for further automatic processing, extraction of features for class characterization, methods
for measuring the similarity of prints for the purpose of ranking the database, identifying
distinctive features for individualization, and characterizing uncertainty in individualization.

Two different approaches to separate foreground pixels from background pixels were
evaluated. The first uses contextual information present in nearby pixels and is based on
a machine learning approach known as conditional random fields. Since it uses contextual
information, it performed better than simple image thresholding algorithms such as one
based on the valley of the pixel histogram. However, an algorithm based on morphological
operations and edge detection performed better both in terms of speed and performance.

Three types of features were compared for their suitability for the task. The following
methods were implemented and evaluated : (i) a fixed length feature vector to represent the
entire image: which incorporates gradient, structural and concavity, or GSC features, and
one that has worked well in automatic handwriting recognition, (ii) a variable number of key
points in the image, each point represented by a fixed length feature vector: known as the
scale invariant feature transform or SIFT, used commonly in content-based image retrieval
search engines such as Google Similar Images, (iii) a graph representing the structure of
the components: an attribute relational graph (ARG), based on representing the image as a
composite of sub-patterns together with relationships between them. The structural method
was found to perform the best and was selected for image retrieval.

The structural method is based on first detecting the presence of geometrical patterns
such as short straight line segments, circles and ellipses. The presence of the primitive
elements is detected by using variations of a technique known as the Hough transform. The
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method is robust even when many of the defining pixels are absent. The relationships between
these elements in the print is then modeled as an ARG. Within the ARG, nodes represent
primitive elements together with defining attributes relating to parameters such as radius
as well as quality in the image. The edges are also attributed with a list of characteristics.
The similarity between ARGs is determined by using a graph distance measure, one related
to measuring histogram distance and the Wasserstein metric. It characterizes similarity by
a number ranging from 0 to 1.

The retrieval ask is to find the closest match to a crime scene print in a local/national
database so as to determine footwear brand and model. This process is made faster if
database prints are grouped into clusters of similar patterns. For this an ARG is constructed
for each known print, where each node is a primitive feature and each edge represents a spatial
relationship between nodes. The distance between ARGs is used as similarity measure.
This distance is computed between each known print and a pre-determined set of canonical
patterns to form clusters.

Several data sets were used in the research: (i) simulated prints (crime scene prints
obtained by stepping on talcum powder and then on carpet, and known prints by stepping
on chemically treated paper), (ii) photographs of outsoles retrieved by a web crawler from
shoe-vendor websites, and (iii) 350 actual crime scene prints and over 5,000 known prints.
Since results with simulated images tend to be over-optimistic most of the research reported
here focused on real crime scene prints.

The results reported are among the first to automatically match crime scene prints to
a data base of known prints. The performance appears to be significantly better than
the results of another effort, the only one reported in the literature. The efficiency of the
algorithms need to be improved before they can be useful for the practitioner. Some of
the tasks remaining are converting parts of the code from MATLAB into C++, creating
additional user interfaces where user input can be solicited and conversion of the results into
a form suitable for courtroom expression.

Future research topics are: (i) the design of efficient algorithms to overcome the combi-
natorial explosion of relationships between primitive elements, (ii) detection and use of more
complex primitive elements, and (iii) expressing the degree of certainty in foot-wear print
comparison, e.g., distributions of similarities conditioned on same and different footwear
prints, learnt from training samples, is used to determine the likelihood ratio for a print and
a known.
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Chapter 2

Research narrative

2.1 Introduction

Footwear impression marks – the mark made by the outside surface of the sole of a shoe (the
outsole) – are distinctive patterns often found at crime scenes. They are among the most
commonly found evidence at crime scenes and present more frequently than fingerprints.
Footwear marks provide valuable forensic evidence. In many instances, shoe marks can be
positively identified as having been made by a specific shoe to the exclusion of all other
shoes. Identification is based on the physical match of random individual characteristics the
shoe has acquired during its life. Evidence provided by a positively identified shoe mark is
as strong as the evidence from fingerprints, tool marks, and typewritten impressions [1].

Footwear impressions are created when footwear is pressed or stamped against a surface
such as a floor or furniture, in which process, the characteristics of the shoe is transferred
to the surface. Footwear marks can be broadly broken into two classes: 1) impressions
which contain 3-dimensional information (e.g., on snow, wet dirt or at the beach) and 2)
impressions which contain 2-dimensional information (e.g., on a floor or carpet).

There is variability in the quality of footwear impressions because of the variety of surfaces
on which the impressions are made. Detail retained in a shoe mark may be insufficient to
uniquely identify an individual shoe but is still very valuable. Due to the wide variety of
shoes available on the market, with most having distinctive outsole patterns, this implies that
any specific model of shoe will be owned by a very small fraction of the general population.
Furthermore the same outsole pattern can be found on several different footwear brands and
models. If the outsole pattern of a shoe can be determined from its mark, then this can
significantly narrow the search for a particular suspect.

2.1.1 Current practice

The forensic examiner collects and preserves footwear and tire tread impression evidence,
makes examinations, comparisons, and analyses in order to: (i) include, identify, or eliminate
a shoe, or type of outsole, as the source of an impression, (ii) determine the brand or
manufacturer of the outsole or footwear, (iii) link scenes of crime, and (iii) write reports and
provide testimony as needed. The photograph of the impression or of the lifted impression or
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2.1. INTRODUCTION CHAPTER 2. RESEARCH NARRATIVE

cast can be subsequently scanned and a digital image produced. Forensic analysis requires
comparison of this image against specific databases. These databases include: (i) marks
made by shoes currently and previously available on the market and (ii) marks found at
other crime scenes.

An image of a shoe mark can be obtained using photography, gel, or electrostatic lifting
or by making a cast when the impression is in soil. Subsequently, in the forensic laboratory,
the image of the shoe mark is compared with the shoe-prints and shoe impressions of known
shoe samples. Interactive image enhancement operations are available in Photoshop and
other image processing software that are available to the footwear examiner.

Footwear images collected directly from crime scenes are of poor quality. The environ-
ment under which the questioned shoe print is lifted at the crime scene is different from
those available in the known prints. One approach is to design digital image enhancement
techniques, such as contextual thresholding, to enhance the quality of questioned shoe-prints
to achieve feasibility of matching shoe-prints in the database. Debris and shadows and other
artifacts in the crime scene impressions are difficult to filter out from footwear impressions.
They have interfered with attempts to store and search in the database. Therefore, after
digital image enhancement, some algorithms are desired to be able to classify different re-
gions of footwear impression to be one of two types: useful regions (impressed by footwear)
and discardable regions (impressed by other artifacts such as debris).

In a computerized tool to assist in identification, firstly, known shoe-prints are scanned,
processed and indexed into a database. The collection of test prints involves careful human
expertise in order to ensure the capture of all possible information from the shoe-print.
All such information is indexed into a database so as to be matched against shoe-print
evidence. An automatic footwear identification system accepts as input shoe-print evidence
and retrieves the most likely matching prints.

There has been significant research conducted in footwear-print analysis in Europe fo-
cusing on the needs of the European forensic community. There are important differences
for the task in the US1. Homicides and assaults are paid more attention to than burglaries
in the U.S., where shoe prints have a very low likelihood of appearing in other cases. Due to
this reason the classification task, i.e., determining brand, style, size, gender etc., is of im-
portance. Through such classification, even if the person could not be identified, the search
could be narrowed down to a smaller set of suspects.

Forensic examiners of footwear and tire impression evidence are a community of about

1Europe has a few locations that collect sufficient footwear impressions from scenes to assemble into a
data base, which will be searched with detected impressions from future burglaries. Approximately 30% of
crime scenes have usable shoe-prints[2]. A study of several jurisdictions in Switzerland revealed that 35%
of crime scenes had usable footwear impressions in forensic investigation, and 30% of all burglaries provide
usable impressions[3]. It is known that the majority of crimes are committed by repeat offenders and it is
common for burglars to commit a number of offenses in the same day. As it would be unusual for an offender
to discard footwear between crimes[4] , timely identification and matching of shoe-prints allows different
crime scenes to be linked. Since manual identification is laborious there exists a real need for automated
methods.

However, this is not the practice in the US. Most crimes that time is spent on in the US are not burglaries,
but homicides and assaults. In those cases, particularly homicides, there is far less likelihood that those
impressions will appear in another case.
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200 professionals in the United States2. Footwear prints constitute about 80-90% of the
case-work of the tread examiner who deals with both footwear and tire-marks.

Due to its time consuming nature, footwear impression evidence is not used as frequently
as it could be3. This is because footwear impressions are usually highly degraded, prints are
inherently complex and databases are too large for manual comparison.

2.1.2 Statement of the problem

The tasks for the forensic footwear examiner are: (i) identification of class characteristics by
comparing the evidence against a possibly large set of knowns to determine generic footwear
brand, gender and size, and (ii) individualization of a known print as having been source of
the evidence. Comparing crime scene shoe mark images to databases, a task encountered in
the investigative phase, is currently a difficult and laborious task and it is commonly per-
formed manually by searching through catalogs or computer databases. An individualization
statement, useful for the prosecutorial phase, is realistically accompanied by a statement of
uncertainty involved. The goal of this research was to explore computational methods for
both phases, keeping in mind the needs of the U. S. forensic community. Computer-based
methods that reduce operator effort offers great benefit to forensic scientists and the criminal
justice system.

Tasks to be addressed were:

1. Develop or identify suitable image processing algorithms to enhance the quality of the
images for further processing.

2. Evaluate or develop feature extraction methods that are; (i) suitable for describing
geometrical patterns in outsoles and (ii) are robust in processing poor quality crime
scene images.

3. Develop similarity measures for the comparison of footwear prints based on the features
extracted.

4. Determine metrics to evaluate the algorithms and measures so developed on a realistic
and significant sized data set.

5. Develop measures for characterizing uncertainty of match between evidence and known.

2.1.3 Literature review

Most research on automated techniques have originated from European research groups
where the needs have important differences than in the U. S. The literature is described
below under the overlapping headings of: semiautomated methods, classification, feature
extraction and interpretation.

2Guidelines for the profession are given on the IAI website dealing with the Scientific Working Group on
Footwear and Tire Tread Evidence (SWGTREAD).

3For example, in 1993, only 500 of 14,000 recovered prints in the Netherlands were identified [5].
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Semi-automated methods

A number of semi-automatic shoe-print classification methods have been reported [3, 6].
Early work [7, 8] involves semi-automatic methods of manually annotated footwear print
descriptions using a codebook of shape primitives, e.g., wavy patterns, geometric shapes
and logos. The query print needs encoding in a similar manner. The most popular semi-
automated systems today are SOLEMATE and SICAR [9, 10]. These systems rely on manu-
ally encoding shoe-prints using a codebook of shapes and geometric primitives, such as wavy
patterns, zig-zags, circles, triangles. Then searching for similar patterns for a given query
shoe-print requires it to be encoded in a similar manner. This process is laborious, time-
consuming and can be the source of poor performance as the same pattern can be encoded
differently by different users. The study of automatic shoe-print pattern classification is still
new, immature and has not been adopted.

Features

Features for class characterization are those image measurements that are useful for discrim-
inating between different sole types. They capture the geometry of the pattern so as to be
able to distinguish it from every other sole type. Since there a large number of sole types,
the task of determining sole type is a problem of image retrieval where the query is the print
of unknown type and the database consists of all known prints.

Features for individualization are characteristics that are unique to the particular shoe
that made the crime scene print. Characteristics for individualization based on shoe sole
defects are described by Stone [11]. Defects consist of nicks, scratches, cuts, punctures,
tears, embedded air bubbles caused by manufacturing imperfections, and ragged holes. A
combination of position, configuration, and orientation of each defect, which are the result
of events that occurred in its life, are unique to each shoe. A defect position is characterized
relative to: shoe print perimeter, particular tread elements or portions of patterns, or other
defects. A defect shape is characterized by its length, width, and other shape measures. The
rotational orientation of the defect helps differentiate from other similarly shaped defects.
These individual characteristics, along with the class characteristics, enable determining
whether a crime scene print matches a known.

Feature-point based methods, such as SIFT (Scale invariant feature transform) [12], have
demonstrated good performance in image retrieval due to invariance with respect to scale,
rotation and translation. However, they may be inappropriate for shoe-prints. This is
partly because, as local extrema in the scale space, SIFT key points may not be preserved
both among different shoes of the same class and through the life-time of a shoe. This
problem is further complicated by the extremely poor quality and incompleteness of crime
scene footwear impressions. Pavlou and Allinson (2006) [13] presented footwear classification
results where maximally stable extremal region (MSER) feature detectors are encoded with
SIFT descriptors as features after which a Gaussian feature similarity matrix and Gaussian
proximity matrix are used as the similarity measure. In some crime scenes, only partial
shoe-prints (termed as “half prints” and “quarter prints”) are available. Partial shoe-print
matching has to focus on how to fully make use of regions available, with the accuracy of
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matching algorithms decreasing with print size.
Prints found at crime scenes can be used to narrow-down the search space. This is

done by elimination of the type of shoe, by matching it against a set of known shoe-prints
(captured impressions of many different types of shoes on a chemical surface). Most existing
footwear print retrieval systems are semi-automatic. De Chazal et al. [14] proposed a fully
automated shoe print classification system which uses power spectral density of the print as
a pattern descriptor; crucial information of the print is preserved by removing low and high
frequency components. Zhang et al. [15] proposed an automated shoe-print retrieval system
in which edge direction histogram is used to find the closest matching print. There is no
published literature on mining footwear print databases to aid in retrieval. As an exercise
in data mining, Sun et. al. [16] clustered shoe outsoles using color (RGB) information as
features where the number of clusters k was varied from 2 to 7 and the clustering results of
k-means and expectation maximization were compared; the results are of limited use since
RGB information of outsole photographs are absent in impression evidence.

Algarni and Hamiane (2009) [17] proposed an automatic shoe-print retrieval system in
which Hu’s moment invariants are used as features. Then results from standard similarity
measures like Euclidean, city block, Canberra and correlation distances are compared. Xiao
and Shi (2008) [18] presented a computerized shoe-print matching using PSD and Zernike
moments. Jing et al. (2009) [19] presented a new feature, directionality to match shoe-prints.
Here, features extracted from co-occurrence matrix, Fourier transform and directional mask
are matched using sum-of-absolute-difference. Nibouche et al. (2009) [20] proposed a solution
for matching rotated partial shoe-prints. Harris points encoded with SIFT descriptors are
used as features and they are matched using random sample consensus (RANSAC).

Dardi et al. (2009) [21] described a texture based retrieval system for shoe-prints. A Ma-
halanobis map is used to capture texture and then matched using a correlation co-efficient
measure. In subsequent work [22, 23] they offer a cumulative match score comparison be-
tween Mahanalobis, [14] and [24].

Wang et al. (2009) [25] presented a wavelet and fuzzy neural network to recognize
footprints. Patil et al. (2009) [26] proposed using the Gabor transform to extract multi-
resolution features and then the Euclidean distance for matching.

Automatic classification

Mikkonen and Astikainen (1994) [27] proposed a classification system for shoe-prints in which
classification codes based on basic shapes are used as a pattern descriptor to identify and clas-
sify the partial footwear impressions. Geradts and Keijzer (1996) [5] described an automatic
classification for shoe outsole designs. Here, different shapes in shoes are recognized using
Fourier features and then these features are used in a neural network to classify the footwear.
Alexander et al. (1999) [2] presented a fractal pattern matching technique with mean square
noise error as a matching criteria to match the collected impression against database prints.
de Chazal et al. (2005) [14] proposed a fully automated shoe print classification system
which uses power spectral density (PSD) of the print as a pattern descriptor. Here, PSD
is invariant to translation and rotation of an image, crucial information of the print is pre-
served by removing the low and high frequency components and 2D correlation coefficient
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is used as similarity measure. Zhang and Allinson (2005) [15] proposed an automated shoe
print retrieval system in which edge direction histogram is used to represent the shapes in
shoes. The features consist of 1-D discrete Fourier Transform (FT) on the normalized edge
direction histogram and the Euclidean distance is used as similarity measure.

The approach of [5] employs shapes generated from footwear prints using image mor-
phology operators. Spatial positioning and frequencies of shapes are used for classification
with a neural network. No performance measures are reported. [2, 4] uses fractals to rep-
resent prints and mean square noise error classification. FT features, which are invariant
to translation and rotation, have also been used for classification of full and partial prints
[28, 14]. First and fifth rank classification are 65% and 87% on full-prints, and 55% and
78% for partials. The approach shows that although footwear prints are processed globally
they are encoded in terms of the local information evident in the print. In [15] pattern edge
information is employed for classification. After image de-noising and smoothing operations,
extracted edge directions are grouped into a quantized set of 72 bins at five degree intervals.
This generates an edge direction histogram for each pattern which after applying a Discrete
FT provides a description with scale, translational and rotational invariance. The approach
deals well with variations, however query examples originate from the learning set and no
performance is given for partial prints.

In [2], fractals are used to represent shoe-prints and a mean squared noise error method
is adopted for the final matching. Fourier transform is used in [14] to process the full and
partial prints and a 2D correlation coefficient similarity measure is used for matching. Most
recently, Gabor transform [26] has been used to extract multi-resolution features of a shoe-
print. Rotation of a shoe-print image is estimated by Radon Transform and compensated
by rotating the image in opposite direction.

Ghouti et al. (2006) [29] describe a so-called ShoeHash approach for classification where
directional filter banks (DFB) are used to capture local/global details of shoe-prints with
energy dominant blocks used as feature vector and normalized Euclidean-distance similarity.
Su et al. (2007) [30] proposed a shoe-print retrieval system based on topological and pattern
spectra, where a pattern spectrum is constructed using the area measure of granulometry, the
topological spectrum constructed using the Euler number and a normalized hybrid measure of
both used for matching. Crookes et al. (2007) [31] described two ways to classify shoe-prints:
(i) in the spatial domain, modification of existing techniques: Harris-Laplace detectors and
SIFT descriptors is proposed; the Harris corner detector is used to find local features; Laplace
based automatic scale selection is used to decide the final local features and a nearest neighbor
similarity measure, and (ii) in the transform domain, phase-only correlation (POC) is used
to match shoe-prints. Gueham et al. (2008) [24] evaluated the performance of Optimum
Trade-off Synthetic Discriminant Function (OTSDF) filter and unconstrained OTSDF filter
in classifying partial shoe-prints.

Interpretation

For an automated shoe-print retrieval and examination system, the role of a forensic scientist
is not only to provide a technical solution, but also to interpret the results in terms of the
strength of the evidence it can support. There are many statistical methods for computing
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the strength of evidence, e.g., [32], for presenting forensic evidence in the courtroom.
For evidence interpretation, three different approaches have been stated: “Classical”,

“Likelihood Ratio” and “Full Bayes’ Rule”. The likelihood ratio approach [33] is widely
accepted among various forensic investigations as it provides a transparent, consistent and
logical framework to discriminate among competing hypotheses. In the Full Bayes’ Rule
approach, the posterior probability of a set of hypotheses given the existing evidence is de-
termined. Although this method has been a very common practice of forensic document
examiners in central European countries, it has been said that there is no creditable justifi-
cations for its validity and appropriateness[34].

In order to establish a uniform ground for intepretating shoeprint evidence, ENFSI
shoeprint and toolmark Working Group have proposed a 5-point conclusion scale4, rang-
ing from identification, very strong (strong) support, moderately strong support, limited
support. A rule for converting likelihood ratios into scales has also been suggested[35].

2.1.4 Rationale for the research

While there have been several academic papers on the design of algorithms for footwear
image analysis none have dealt with the challenging problem of real crime scene impressions.
The large number of outsoles manufactured makes the database matching problem a difficult
one. There are many image processing and feature extraction algorithms in the literature
and it is not clear as to which ones are most suitable for the problem, The need for matching
of prints in a time-efficient manner poses another requirement on the algorithms designed.

2.2 Methods

The research methods are described under the following headings: (i) Data Sets, (ii) System
Design, (iii) Image Pre-processing, (iv) Feature Extraction, (v) Graph Representation, (vi)
Similarity Measurement, (vii) Clustering, (viii) System Evaluation and (viii) Uncertainty
Computation.

2.2.1 Data sets

Three different data sets were created/acquired for this research:

1. Simulated Crime Scene: Volunteers were asked to step on talcum powder and then onto
a carpet to create a simulated crime scene print. Their prints were also captured on
chemical paper to create the known. Both were converted into digital camera images,
examples of which are shown in Fig. 2.1. Since the simulated crime scene prints were
of relatively high quality this led to over-optimistic results in both verification and
identification.

4http://www.intermin.fi/intermin/hankkeet/wgm/home.nsf/files/Harmonized_Conclusion_
Scale_of_EWGM/\$file/Harmonized_Conclusion_Scale_of_EWGM.pdf
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(a) (b)

Figure 2.1: Simulated crime scene and known prints: (a) print on carpet with powder, and (b)
chemical print.

2. Photographs of Outsoles: A web crawler was written to download outsoles of shoes in
commercial vendor websites. About 10,000 such images were downloaded. An example
of the types of photographs available is given in Fig. 2.2.

3. Crime scene database: This database consists of 350 crime scene images and over
5,000 known prints. The known prints were created by taking impressions of footwear
outsoles provided by footwear vendors. Sample crime scene images are shown in Fig.
2.3, and samples from the known set are given in Figure 2.4. The ground truth for the
crime scene database is in the form of Excel spread-sheets as shown in Fig. 2.5.
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(a) (b) (c)

Figure 2.2: Shoe photographs of outsoles and uppers on commercial website. Model shown is Nike
Air Force 1 which is most often encountered in U. S. crime scenes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Some crime scene images in database.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2.4: Some known prints in database.
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There are multiple prints from the same crime scene, e.g., in the first set 194 crime
scene images are from 176 crime scenes and 144 crime scene images in the second
are from 126 crimes. Each crime scene image of the 50 crime scene images in the
first dataset came from a different crime scene. Among these there are multiple shoe
prints such as two partial shoe marks from the same crime scene, same marks taken at
different illumination, same marks taken at different angles/orientation etc. We plan
to combine the partial shoe marks at the image level for the shoe marks which has
some degree of overlap between them. For shoe marks taken at different illumination
and different orientation, the best image– one that is rich with features– would be
interactively chosen by a human operator.

The resolution of database images varies from 72 dpi to 150 dpi. Crime scene image
resolution varies from 72 dpi to 240 dpi. The crime scene image dataset contains an
equal number of color and gray-scale images. Only 3% of the database images are
direct photographs of the outsole of brand new shoes. The database images can be
broke down as follows. 97% are gray scale images. they are actually prints. 3% are
color images, which are direct photographs of the outsole of the shoes on the market.
Very few (less than 0.1%) are binary images.

2.2.2 Retrieval system design

An overview of the processes necessary for a system to retrieve closest matches to a query
image are shown in Figure 2.6. image enhancement operations are used on both crime
scene and known images. Examples of such techniques are edge detection or contextually
based image pixel labeling. Next, we build a feature representation for the image either
by extracting them from the entire image or by detecting local patterns found in outsoles.
The design should attempt to integrate several levels of analysis: (i) global shoe properties:
heavily worn or brand new, shape, size etc., (ii) detailed and distinctive local features should
be utilized to increase the discriminative power in order to confirm a match. Each level
requires a different variety of image analysis techniques from robust geometric and texture
feature detectors to detailed correlation of distinctive minutiae and their spatial arrangement.

A similarity measure appropriate to the feature description is used in the comparison of
two images. Based on experiments with several approaches the final method chosen was a
graph representation where each node denotes a single geometrical primitive, such as a circle,
an ellipse, a line segment, with attributes describing unary features of this primitive; each
attributed edge between a pair of nodes represents spatial relationships between them. Thus
the problem of image retrieval and matching is converted to an attributed graph matching
problem. It involves establishing correspondence between the nodes of the two graphs.
Retrieving the most similar prints to an impression can be made faster by clustering the
database prints beforehand.

2.2.3 Image pre-processing

The matching of crime scene impressions to known prints largely depends on the quality of
the extracted image from the crime scene impression. Thus the first step in dealing with
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both crime scene prints and database prints is that of processing them in a way that makes
further processing more effective and/or efficient. Two approaches were tried: image labeling
and edge detection.

Image pixel labeling

The shoe-print image enhancement problem is formulated as an image labeling problem.
Different pixels or regions of the image are labeled as foreground (shoeprint) or background.
The labeling problem is naturally formulated as a machine learning task and has several
different approaches. Different machine learning strategies can generate a labeled image.

One simple method is global thresholding. A threshold value is selected and all pixels
with an intensity lower than this value are marked as background and all pixels with higher
values are marked as foreground. Different strategies for determining the global thresholding
value exist. A simplistic method, for example, models the intensities as a histogram with
the assumption of two main intensity peaks (foreground and background), selecting a middle
point as the threshold. A more sophisticated method is Otsu thresholding [36]. One major
drawback of global thresholding algorithms is their inability to cope with images that have a
variety of intensity. A latent print on carpet, for example, is often difficult to threshold with
global thresholding since when the background is completely below the chosen threshold
value, large portions of the shoeprint will also be missing.

The thresholding algorithm to determine whether a pixel is part of the foreground or
background using contextual information from other pixels is based on conditional random
fields(CRFs) [37]. A similar approach was used for an analogous problem in handwriting
labeling [38]. The model exploits the inherent long range dependencies that exist in the
latentprint and hence is more robust than approaches using neural networks and other bi-
narization algorithms.

The probabilistic CRF model is given below.

P (y|x, θ) =
eψ(y,x;θ)∑
y′ e

ψ(y′,x;θ)
(2.1)

where yi ∈ {Shoeprint, Background} and x : Observed image and θ : CRF model parameters.
It is assumed that an image is segmented into 3×3 non-overlapping patches. The patch size
is chosen to be small enough for high resolution and big enough to extract enough features.
Then

ψ(y, x; θ) =

m∑
j=1

A(j, yj,x; θs) +
∑

(j,k)∈E

I(j, k, yj, yk,x; θt)

 (2.2)

The first term in equation 2.2 is called the state term and it associates the characteristics
of that patch with its corresponding label. θs are called the state parameters for the CRF
model. Analogous to it, the second term, captures the neighbor/contextual dependencies by
associating pair wise interaction of the neighboring labels and the observed data. θt are called
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the transition parameters of the CRF model. E is a set of edges that identify the neighbors
of a patch. A 24 neighborhood model was used. θ comprises of the state parameters,θs and
the transition parameters,θt.
The association potential can be modeled as

A(j, yj,x; θs) =
∑
i

(fi · θij)

where fi is the ith state feature extracted for that patch and θli is the state parameter. The
state features, fl are transformed by the tanh function to give the feature vector h. The
transformed state feature vector can be thought analogous to the output at the hidden layer
of a neural network. The state parameters θs are a union of the two sets of parameters θs1

and θs2 .

The interaction potential I(·) is generally the inner product between the transition pa-
rameters θt and the transition features ft. The interaction potential is defined as follows:

I(j, k, yj, yk,x; θt) =
∑
l

(f l(j, k, yj, yk,x) · θtl)

Features of a shoe-print might vary according to the crime scene. It could be powder on a
carpet, mud on a table etc. So generalization of the texture of shoe-prints is difficult. So we
resort to the user to provide the texture samples of the foreground and background from the
image. The sample size is fixed to be 15×15 which is big enough to extract information and
small enough to cover the print region. There could be one or more samples of foreground and
background. The feature vector of these samples are normalized image histograms. The two
state features are the cosine similarity between the patch and the foreground sample feature
vectors and the cosine similarity between the patch and the background sample feature
vectors. Given normalized image histogram vectors of two patches the cosine similarity is
given by

CS(P1, P2) =
P1 ∗ P2

|P1||P2|
(2.3)

The other two state features are entropy and standard deviation. Given the probability
distribution of gray levels in the patch the entropy and standard deviation is given by

E(P ) = −
n∑
i

p(xi) ∗ log(p(xi)) (2.4)

STD(P ) =

√√√√ n∑
i

(xi − µ)2 (2.5)

The transition feature is the cosine similarity between the current patch and the surrounding
24 patches.

For the purpose of baseline comparison, pixels of the same images were labeled using Otsu
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thresholding and neural network methods, with the results shown in Fig. 2.7. The CRF
approach tends to outperform both by exploiting dependency between the current patch and
its neighborhood.

Figure 2.7: Results of image pixel labeling: (a) latent image, (b) Otsu thresholding, (c) neural
network thresholding and (d) CRF segmentation.

A third method for separating foreground and background images is adaptive threshold-
ing. In this method, a single threshold value is not selected for the entire image. Instead,
the threshold value is dynamically determined throughout the image. This method has the
advantage of being able to cope with larger changes in background, such as variations in
background material (carpet, flooring, etc.) and lighting. Such images often lack the separa-
tion of peaks necessary to use global thresholding. Smaller sub-images are much more likely
to be more uniform than the image overall. It selects the threshold value for each individual
pixel based on the local neighborhood’s range of pixel intensities. For some n pixels around
a given pixel, the thresholding value is calculated via mean, median, mean-C, etc. and used
to determine whether a single pixel is part of the foreground or background, with different
selections of sampling giving different results. After tuning the method to shoe-prints, this
method gives high quality results at reasonable resolution. Some sample images are shown
in Figure 2.8.

Edge detection

Rather than labeling pixels in the gray-scale image to convert to a binary image, an alterna-
tive is to use edge detection as the starting point. This has a firm basis in biological vision
and has been studied extensively. Among various edge detectors the Canny edge detector
[39]has been shown to have many useful properties. It is considered to be the most powerful
edge detector since it uses a multi-stage algorithm consisting of noise reduction, gradient
calculation, non-maximal suppression and edge linking with hysteresis thresholding. The
detected edges preserve the most important geometric features on shoe outsoles, such as
straight line segments, circles, ellipses. The results of applying the Canny edge operator to
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Figure 2.8: Adaptive thresholding results: (a) original impression (b) enhanced image using adap-
tive thresholding.

crime scene images is shown in Fig. 2.9. Results with some database images are shown in
Fig. 2.10.

Prior to edge detection, morphological operations are performed on database images
[40]. The morphological operations are: dilation, erosion and filling holes in the binary
image5. The result is a more exact region boundary that improves the quality of edge
detection. Morphological operations play a vital role in fetching the exact contours of the
different shapes like line, ellipse and circle. We perform morphological operations (dilation
and erosion) to make the interior region of the boundary uniform and then extract the
boundary using Canny edge detection. Since the interior region is uniform, canny edge
detector does not detect any edges inside the boundary and it improves the quality of edge
detection. Specifically, each database shoe-print is processed in the following order: Edge
detection → Dilation → Erosion → Flood fill → Complement. This procedure is illustrated
using a sample print in the Fig. 2.11(a-f). As shown in Fig. 2.11(g), the edge image of the
enhanced print has much better quality for feature extraction.

Dilation and erosion make the interior region of the boundary uniform and then extract
the boundary using edge detection. Since the interior region is uniform the edge detector
does not detect any edges inside the boundary. Edge detection showing the intermediate
results of morphological operations is shown in Figure 2.12. Database Prints are subject to
the sequence: Edge Detection, Morphological Operation and Edge Detection. Crime Scene
Prints are subjected to only Edge Detection. For crime scene prints, because of their poor

5http://www.mathworks.com/access/helpdesk/help/toolbox/images/imfill.htmlhttp:
//www.academictutorials.com/graphics/graphics-flood-fill.asp
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(a) (b) (c) (d)

(e) (f)

Figure 2.9: Results of edge detection on crime scene images: (a), (c) and (e) are originals, (b),(d)
and (f) are corresponding edge images.
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(a) (b)

Figure 2.10: Results of edge detection on data base images.

quality, we directly extract features from the edge image of original image. It takes 4-5
seconds to process one image on a desktop computer.
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(a) Original
print

(b) Edge im-
age

(c) After di-
lation

(d) After ero-
sion

(e) After
flood fill

(f) After
complement:
final output

(g) Edge
image of
enhanced
print

Figure 2.11: Morphological Operations for Shoe-print Enhancement.
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(a)

(b)

Figure 2.12: Results of edge detection showing intermediate morphological operations on data
base images.
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2.2.4 Feature extraction

The extraction of suitable features for discrimination is the fundamental step of pattern
recognition. The features extracted should discriminate between different outsoles but as well
be invariant to various geometrical transformations. Once a set of features are determined
there is also a need for a suitable measure of similarity between feature sets.

Color, texture and shapes of primitive elements can be used to distinguish images in
general [41]. However color features are absent since acquired impression prints are gray-
scale images. Textures are sensitive to acquisition methods and susceptible to wear while
shapes are resistant to wear and present over a long period of time. Shape features are also
robust against occlusion and incompleteness, i.e., the wear or variation of a local region on
the outsole will be less likely to affect shape features in other regions.

Three different feature types, and associated similarity measurement methods, were tried
for their suitability with footwear print images:

1. GSC: Features previously used with success in document analysis tasks of handwriting
recognition and writer verification are GSC (gradient, structural, concavity) features
which detect local, intermediate and global features (see Fig. 2.13) [42]. The basic
unit of an image is the pixel and we are interested in its relationships to neighbors
at different ranges from local to global. In a sense, we are taking a multi-resolution
approach to feature generation. GSC features are generated at three ranges: local,
intermediate and global. In the basic approach the feature vector consists of 512 bits
corresponding to gradient (192 bits), structural (192 bits), and concavity (128 bits)
features. Each of these three sets of features rely on dividing the scanned image into a
4×4 region. Gradient features capture the frequency of the direction of the gradient, as
obtained by convolving the image with a Sobel edge operator, in each of 12 directions
and then thresholding the resultant values to yield a 192-bit vector. The structural
features capture, in the gradient image, the presence of corners, diagonal lines, and
vertical and horizontal lines, as determined by 12 rules. Concavity features capture,
in the binary image, major topological and geometrical features including direction of
bays, presence of holes, and large vertical and horizontal patterns. The input shoe-
print is represented as two 4×4 regions or a fixed-dimensional (1028-bit) binary feature
vector. The similarity between two GSC feature vectors is computed using a correlation
measure.

2. SIFT: A commonly used feature known as the scale invariant feature transform, or
SIFT (Scale Invariant Feature Transform) [43]. It is an algorithm to extract and de-
scribe invariant features from images that can be used to perform reliable matching
between different views of an object or scene. It consists of four major steps includ-
ing scale-space extrema detection, key point localization, orientation assignment and
keypoint descriptor construction. Specifically, in the scale space constructed by con-
volving the input image with a Gaussian function and resampling the smoothed image,
maxima and minima are determined by comparing each pixel in the pyramid to its 26
neighbors(in a 3x3 cube). These maxima and minima in the scale space are called
as key points, which are in turn described by a 128-dimensional vector: a normalized
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Figure 2.13: GSC representation: (a) shoe-print characterized by (b) a 1024 dimensional binary
feature vector.

description of gradient histogram of the region around that keypoint. The number of
key points detected by the SIFT algorithm varies from image to image. Keypoints of a
shoe-printt image are shown in Fig. 2.14(a) where there are 15499 key points. One such
key point descriptor is shown in Fig. 2.14(b). The similarity between two descriptors
is computed using Euclidean distance between the two 128-d vectors and the similarity
between two images is the number of keypoints that match. SIFT is commonly used
in content-based image retrieval and is said to be used in Google image search.

3. ARG of shapes: Construct an attribute relational graph (ARG) whose nodes repre-
sent detected primitive shapes (that are prevalent in the shoe-print) and edges their
relationships. Since this approach was determined to be the best performing, it is
described in detail in Section 2.2.5.

GSC features are very fast and work well with complete shoe-prints but break-down when
prints are partial; a fix can be made by detecting whether the print is partial. SIFT features
work better than GSC in such cases, particularly since they were designed to handle occlusion
in scenes. While SIFT has demonstrated [12] good performance due to scale, rotation and
translation invariance, when applied to matching shoeprints, it may have trouble. This is
partly because, as local extrema in the scale space, SIFT keypoints may not be preserved
both among different shoes of the same class and throughout the lifetime of a single shoe.
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(a)

(b)

Figure 2.14: SIFT Representation: (a) key points where each blue arrow shows key point orienta-
tion, and (b) descriptor for one key point.
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Table 2.1: Distribution of geometric patterns in footwear outsole prints.
Fundamental Patterns No. of Prints

Line segments 3397
Lines & Circles 812
Lines & Ellipses 285

Only Circles/Arcs 73
Lines, Circles & Ellipses 37

Only Ellipses 15
Circles & Ellipses 5

Texture 410
Total - 5034 prints

Features based on primitive shapes worked better than SIFT in retrieval as is described later
in this report (see Fig. 2.42).

2.2.5 Geometrical patterns

Patterns of outsoles usually contain small geometrical patterns involving short straight line
segments, circles and ellipses. An analysis of 5,034 outsole prints revealed that 67% have
only line segments (some examples are shown in Fig. 2.15, where the line segments have a
minimum length of 25 pixels), 1.5% have only circles (Fig. 2.16), 0.004% have only ellipses
(Fig. 2.17), and 24% are combinations of lines, circles and ellipses. The principal combination
of shapes are lines-circles which constitute 16% (Fig. 2.18), lines-ellipses constitute 6% (Fig.
2.19), circles-ellipses-0.1% (Fig. 2.20) and lines-circles-ellipses-0.7% (Fig. 2.21). Texture
patterns (Fig. 2.22) constitute the remaining 8%. The complete distribution is given in Table
2.1. This analysis shows that the three basic shapes are present in 92% of outsole prints.
Furthermore, patterns other than circles and ellipses can be approximated by piecewise lines.

In fact when projected on to a plane, most man-made objects can be represented as
combinations of straight line and ellipse segments. Mathematically, straight line segments
and circles are special cases of ellipses. An ellipse with zero eccentricity is a circle and an
ellipse with eccentricity of 1 is a straight line; where the eccentricity of an ellipse is defined
as
√

1− (b/a)2 where a and b are the lengths of the semi-major and semi-minor axes.
While an ellipse detector alone can capture 92% of the primitive shapes, we choose to

use specialized detectors for straight lines and circles since they are more efficient. The
feature extraction approach is to detect the presence, location and size of three basic shapes:
straight line segments, circles/arcs and ellipses. Since all three are geometrical shapes with
simple parametric representations, they are ideal for the application of a robust method of
detecting shapes.

The Hough transform[44] is a method to automatically detect basic geometrical patterns
in noisy images. It detects features of a parametric form in an image by mapping foreground
pixels into parameter space, which is characterized by an n dimensional accumulator ar-
ray, where n is the number of parameters necessary to describe the shape of interest. Each
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(a) (b) (c) (d)

Figure 2.15: Footwear outsole patterns containing line segments only.

(a) (b) (c) (d)

Figure 2.16: Footwear outsole patterns containing circles only.
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(a) (b) (c) (d)

Figure 2.17: Footwear outsole patterns containing ellipses only.

(a) (b) (c) (d)

Figure 2.18: Footwear outsole patterns containing lines and circles.
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(a) (b) (c) (d)

Figure 2.19: Footwear outsole patterns containing lines and ellipses.

(a) (b) (c) (d)

Figure 2.20: Footwear outsole patterns containing circles and ellipses.
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(a) (b) (c) (d)

Figure 2.21: Footwear outsole patterns containing lines, circles and ellipses.

(a) (b) (c) (d)

Figure 2.22: Footwear outsole patterns containing texture only.
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significant pixel from the shape of interest would cast a vote in the same cell of an accumu-
lator array, hence all pixels of a shape gets accumulated as a peak. The number of peaks
corresponds to the number of shapes of interest in the image.

The Hough transform was originally designed for detecting straight lines in cloud chamber
photographs. Later it was generalized to circles and ellipses. It has found success in many
applications such as detecting cancerous nodules in radiological images and structure of
textual lines in document images[45].

1. Line Segments: Using the polar coordinate system, a straight line can be represented
by two parameters r and θ. The Hough transform maps each pixel in the Cartesian
x-y plane to a 2-dimensional accumulator array using the transformations defined by
x = rcosθ and y = rsinθ. The values of r and θ at which the accumulator elements
peak represent the presence of straight lines.

2. Circles: It involves building a 3-dimension accumulator array corresponding the center
coordinates and the radius. Gradient orientation is used to limit the generation of
spurious votes. Further, spatial constraints are used to identify spurious circles. Gra-
dient orientation is used to limit the generation of spurious votes[46]. Further, spatial
constraints are used to eliminate spurious circles.

3. Ellipses In a Cartesian plane, an ellipse can be described by its centre (p, q), length
of the semi-major axis a, length of the semi-minor axis b and the angle θ between the
major axis and the x-axis. Thus five parameters (p, q, a, b, θ) are required to uniquely
describe an ellipse[47]. These five parameters demand a five-dimensional accumulator
which is computationally expensive but the Randomized Hough transform (RHT) [48]
for ellipse detection, described next, is more efficient.

Algorithm RHT: Randomized Hough Transform

(a) Pick three foreground pixels p1, p2 and p3 randomly and fit a tangent at each of the
picked point, namely t1, t2 and t3

(b) Find intersection of the tangent pairs ( t1, t2), and (t2, t3)

(c) Find straight line passing through midpoint of pixels p1 and p2 and the intersection of
their tangents. Repeat the same step with pixels p2 and p3. The intersection of the two
lines gives the centre of the ellipse

(d) Shift ellipse center to the origin to get rid of parameters w4 and w5 in conic equation

w1x
2 + w2xy + w3y

2 + w4x+ w5y + w6 = 0 (2.6)

(e) Find coefficients w1, w2 and w3 in conic equation by substituting the co-ordinates of
the three picked points and by solving the system of linear equations.

The RHT cannot be used directly for ellipse detection in outsole print images. This is because
there are around 50,000 foreground pixels in a print of typical size 600 × 800 and picking
three random foreground pixels will never narrow down to the right ellipse.

38

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



2.2. METHODS CHAPTER 2. RESEARCH NARRATIVE

The solution proposed is to determine connected components in the edge image. To reduce
computation certain connected components are eliminated based on the eccentricity property
of the region enclosed by each component. Within a connected component three pixels are
randomly selected and bad ones eliminated using gradient information. Then each connected
component is scanned for an ellipse using RHT. The fraction of foreground pixels that satisfies
the ellipse equation are determined. Spurious pixels are eliminated by comparing gradient
direction and orientation. The complete algorithm follows.

Algorithm ED: Ellipse Detection
Input: Edge image after removing all the on-circle pixels BW and original image I
Output: Detected ellipses and their parameters

(a) Compute gradient orientation of I

(b) Find the connected components and their eccentricities e in BW

(c) Eliminate the connected components with e < 0.3 or size < 20 pixels (noise)
for each connected component do

i. Randomly pick three pixels
ii. Compute the standard deviation of gradient orientation at each pixel’s 7×7 neigh-

bor and get s1, s2 and s3

iii. if (s1 ∈ [minS,maxS]) & (s2 ∈ [minS,maxS]) & (s3 ∈ [minS,maxS]) then
A. Apply RHT and find parameters (p, q, a, b, θ) of the ellipse
B. Find candidate foreground pixels that satisfy ellipse equation

((x−p) cos θ+(y−q) sin θ)2

a2 + ((y−q) cos θ+(x−p) sin θ)2

b2
= 1 (2.7)

C. Find analytical derivative D at each candidate pixel using

(−2

a2
)(x−p) cos θ sin θ+(y−q) sin2 θ+( 2

b2
)(y−q) cos2 θ−(x−p) cos θ sin θ

(−2

a2
)(x−p) cos2 θ+(y−q) cos θ sin θ+( 2

b2
)(y−q) cos θ sin θ−(x−p) sin2 θ

(2.8)

D. If difference between D and tangent of gradient orientation is below threshold
T1, declare it as a true ellipse pixel

E. If ratio of number of true ellipse pixels to circumference of ellipse is above
threshold T2, declare component as ellipse

end if

end for

The fraction of true ellipse pixels to ellipse perimeter is a measure of ellipse quality. Ellipses
detected before and after elimination of spurious ones, in Steps D-E, are shown in Figure
2.23.

Final results of extracting circles, ellipses and straight line segments in both crime scene
and data base prints are shown in Figures 2.24 and 2.25 respectively.
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(a) (b)

Figure 2.23: Elimination of spurious ellipses using gradient orientation. (a) before elimination,
and (b) after elimination.

(a) (b)

Figure 2.24: Shapes automatically detected in crime scenes: (a) print where circles (red) are
prominent, and (b) print where line segments (green) are prominent.
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(a) (b) (c) (d) (e) (f)

Figure 2.25: Shapes detected in database prints: lines, circles and ellipses are shown in green, red
and blue respectively.
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2.2.6 Graph representation

Structural representations have long been used in computer vision to represent complex
objects and scenes for image matching [49]. Graph representations have a great advantage
over feature vectors because of they can explicitly model the relationship between different
parts and feature points [50].

After detecting their presence, the impression image is decomposed into a set of prim-
itives. To obtain a structural representation of these primitives, an attributed relational
graph(ARG) [51, 52] is built. An ARG is a directed graph that can be represented as a
3-tuple (V,E,A) where V is the set of vertices, also called nodes, E is the set of relations
(edges) and A is the set of attributes. Each edge describes the spatial relationship between a
pair of nodes. The attributes include node attributes (unary) and edge attributes (binary).

There are three types of nodes, corresponding to lines (L), circles (C) and ellipses (E), and
nine types of edges: line-to-line (L2L), line-to-circle (L2C), line-to-ellipse (L2E), circle-to-
circle (C2C), circle-to-ellipse (C2E), ellipse-to-ellipse (E2E), circle-to-line (C2L), ellipse-to-
line (E2L) and ellipse-to-circle (E2C). Attributes of nodes and edges should be defined such
that they are scale/rotation invariant, and capture spatial relationships such as distance,
relative position, relative dimension and orientation.

Attributes of vertices

Three attributes are defined for nodes which represent the basic shapes detected6.

1. Quality is the ratio of the number of points on the boundary of the shape (perimeter
pixels) to the perimeter of the shape.

2. Completeness is the standard deviation of the angles of all on-perimeter pixels with
respect to the center of circle/ellipse, stdd, normalized as stdd/180. If a wide range
of angles are present, implying that most of the shape is represented, there will be
more angles represented and this value is high, while a partial figure will have smaller
diversity of angles and this value will be low. While the range of angles is 0 to 360
for circles and ellipses, for a straight line there are only two angles with respect to the
center, 0 and 180.

3. Eccentricity is the degree of elongation, defined as the square root of 1 minus square
of ratio of minor to major axes. For a circle eccentricity is 0 and for a straight line
eccentricity is 1.

Node attributes are summarized in Table 2.2.

Attributes of relations

Edge attributes are dependent upon the pair of shapes they connect. They use the relative
position definitions between lines, circles and ellipses shown in Fig. 2.27. Some attributes
with value x are normalized to the range [0,1] by using the sigmoid function

6In the implementations described later, node attributes were implemented for circles/ellipses but not for
straight lines.
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Table 2.2: Node Attribute Definitions

Attributes Definition

Eccentricity
√

1− b2

a2 (see definitions of a, b below)

Quality Ratio of no. of on-shape pixels to circumference (equal to the length for lines)

Completeness Std. Dev. of angle that on-shape pixels make with center

(a) Node Attributes of Circle, Ellipse and Line

Symbols Definition Symbols Definition

L Line segment len Length

C Circle N Normalized

E Ellipse m mid-point of a line segment

cen center e eccentricity

dE Euclidean distance |.| absolute value

rd Relative distance a Semi-major axis of ellipse

ro Relative orientation b Semi-minor axis of ellipse

rs Relative size ER Geometric mean:
√
a× b

θ Orientation max maximum

r Radius min minimum

(b) Symbol definitions
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s(x) = x/
√

1 + x2 (2.9)

which is also depicted in Figure 2.26.

Figure 2.26: Normalization of some attributes is done using the squashing function f(x) =
x/
√

1 + x2. When only positive vales of x are input, the attribute is normalized to have values in
the interval [0,1].

1. Line-to-Line (L2L): There are five attributes for a pair of straight line segments L1 and
L2: (i) normalized relative angle N − α: acute angle between L2 and L1, normalized
as α/180 (ii) normalized relative size N − rs : the length of L1 divided by that of
L2, normalized as len(L1)/(len(L1) + len(L2)), (iii) relative distance rd: defined as
the length of the line segment connecting the mid-points M1,M2 of these two lines,
divided by the length of L2, normalized as len(M1M2)/(len(M1M2) + len(L2)). (iv)
perpendicular distance pd: distance of mid-point of L1 to L2 divided by the sum of their
lengths. (v) relative position rp1, rp2 , which describes how the two lines are connected
or to be connected. If the point where they meet is located at O on both lines, this
attribute is calculated by dividing the shorter one of the two sub-segments OA and
OB by the longer one of them. If the point of intersection lies outside of the two line
segments, it is calculated by dividing the length of OB by minus length of OA. This
attribute is normalized as (rp+ 1)/2.

2. Circle-to-Circle (C2C): There are three attributes for a pair of circles C1 and C2: (i)
Normalized relative size N − rs: : the radius of C1 divided by that of C2, normalized
as r(C1)/(r(C1) + r(C2)) (ii) relative distance rd1: the distance between two centers
divided by the sum of the radiuses of C1 and C2, normalized as s(rd1) using Eq. 2.9,
(iii) relative distance rd2: the distance between two centers divided by the difference
between the radiuses of C1 and C2, normalized as s(rd2).

44

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



2.2. METHODS CHAPTER 2. RESEARCH NARRATIVE

(a)

(b)

Figure 2.27: Relative position definitions for line-line, line-circle and circle-ellipse.
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3. Line-to-Circle (L2C): There are three attributes between a line segment L and circle
C: (i) Normalized relative size N − rs: the length of L divided by the radius of C,
normalized as len(L)/(len(L) + r(C)), (ii) relative distance rd: the distance from the
center of C onto L or its extension divided by the radius of C, normalized as s(rd) (iii)
relative position rp: the perpendicular line passing through the center of C intersects L
at some point P . P divides L into two sub-segments S1 and S2. The relative position
is defined as the ratio between min(S1, S2) and max(S1, S2).

4. Line-to-Ellipse (L2E) Attributes: There are four attributes between a straight line
segment L and ellipse E: (i) Normalized relative size N − rs: len(L) divided by the
sum of equivalent radius (ER) of ellipse (geometric mean of lengths of semi-axes) and
len(L), (ii) relative distance rd: ratio of distance between center of ellipse and mid-
point of line to sum of ER and len(L), (iii) relative position rp: relative position of
major axis of ellipse and the line, (iv) Normalized relative orientation N − ro: relative
angle of major axis of ellipse and the line.

5. Circle-to-Line (C2L) Attributes: There are two attributes between a circle C and line
segment L: (i) relative size rs: the ratio of radius of C and the length of L, normalized
as C.radius/(L.length + C.radius) (ii) relative distance rd: distance from the center
of C onto L or its extension divided by the radius of C, normalized as s(rd).

6. Circle-to-Ellipse (C2E) Attributes: There are three attributes similar to that for Line-
to-Ellipse.

7. Ellipse-to-Ellipse (E2E) Attributes: There are six attributes between ellipses E1, E2:
(i) eccentricity ratio er: ratio of eccentricity of E1 to sum of their eccentricities, (ii)
eccentricity difference ed: normalized difference of eccentricities, (iii) relative distance
rd is similar to relative distance of circle to ellipse, (iv) Normalized relative size N−rs:
is similar to circle-to-circle, (v) Normalized relative orientation N − ro is the absolute
difference between the orientations divided by 90, (vi) relative position rp: relative
position of the two major axes.

The cases of ellipse-to-line (E2L) and ellipse-to-circle (E2C) are defined similar to the
above. All attributes are normalized to the interval [0.1]. The edge attribute definition are
summarized in Tables 2.3 and 2.4; the weights shown for each attribute are defined using
sensitivity analysis described in Section 2.2.8.

Graph connectivity

So as to handle missing nodes or incorrectly detected nodes, which may arise due to noise,
occlusion and incompleteness, a fully-connected graph is used. If for the sake of computational
efficiency we consider only local relationships, as is often done in Markov models, it would
lead to poor results since the only image components discernible in a print may be those at
the extremities.

This means that there is a directed edge from each node to all nodes including itself;
a node is connected to itself because we can use a general formula for computing the cost
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Table 2.3: Edge Attribute Definitions

Attribute Symbol Definition Normalizn Weight

Normalized relative angle N − α |L1.θ−L2.θ|
180 already normalized 0.4472

Normalized relative size N − rs L1.len
L1.len+L2.len already normalized 0.4472

Relative distance rd dE(L1.m,L2.m)
L1.len+L2.len s(rd) 0.4472

Perpendicular distance pd dE(L1.m,L2)
L1.len+L2.len s(pd) 0.4472

Relative position rp1
min(OA,OB)
max(OA,OB)

rp1+1
2 0.4472

Relative position rp2 −min(|OA|,|OB|)
max(|OA|,|OB|)

rp2+1
2 0.4472

(a) Line-to-Line (L2L)

Symbol Definition Normalizn Weight

N − rs C1.r
C1.r+C2.r - 0.7071

rd1
dE(C1.cen,C2.cen)

C1.r+C2.r s(rd1) 0.7071

rd2
dE(C1.cen,C2.cen)

max(|C1.r−C2.r|,10−3)
s(rd2) 0.0

(b) Circle-to-Circle (C2C)

Symbol Definition Normalizn Weight

N − rs L.len
C.r+L.len - 0.5774

rd dE(C.cen,L)
C.r s(rd) 0.5774

rp min(S1,S2)
max(S1,S2)

rp+1
2 0.5774

(c) Line-to-Circle (L2C)

Symbol Definition Normalizn Weight

N − rs L.len
E.ER+L.len - 0.5

rd dE(E.cen,L.m)
L.len+E.ER s(rd) 0.5

rp1
min(OA,OB)
max(OA,OB)

rp1+1
2 0.5

rp2 −min(|OA|,|OB|)
max(|OA|,|OB|)

rp2+1
2 0.5

N − ro |L.θ−E.θ|
180 - 0.5

(d) Line-to-Ellipse (L2E)

Symbol Definition Normalizn Weight

N − rs C.r
C.r+L.len - 0.5774

rd dE(C.cen,L)
C.r s(rd) 0.5774

rp min(S1,S2)
max(S1,S2)

rp+1
2 0.5774

(e) Circle-to-Line (C2L)
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Table 2.4: Edge Attribute Definitions (Continued)

Attribute Symbol Definition Normalization Weight

Normalized relative size N − rs C.r
C.r+E.ER

- 0.5774

Relative distance rd dE(C.cen,E.cen)
C.r+E.ER

s(rd) 0.5774

Relative position rp min(OA,OB)
max(OA,OB)

rp+1
2

0.5774

(a) Circle-to-Ellipse (C2E)

Attribute Symbol Definition Normalizn Weight

Eccentric. ratio er E1.e
E1.e+E2.e

- 0.2236

Eccentric. diff. ed E1.e−E2.e+1
2

- 0.2236

Rel. distance rd dE(E1.cen,E2.cen)
E1.ER+E2.ER

s(rd) 0.4472

Norm. rel. size N − rs E1.ER
E1.ER+E2.ER

- 0.4472

Norm. rel. orient. N − ro |E1.θ−E2.θ|
90

- 0.4472

Rel. position rp rp(E1.maj − axis, E2.maj − axis) rp+1
2

0.4472

(b) Ellipse-to-Ellipse (E2E)
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(a) (b)

(c) (d)

Figure 2.28: Attribute relational graph of a crime scene print: (a) print image, (b) detected circles
and straight lines with magnified sub-image showing three straight lines to left of circle, (c) centers
of 61 straight line segments (green points) and 5 circles (red), and (d) sub-graph for the three
straight lines and circle in (b) whose attributes are given in Table 2.5.
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Table 2.5: Node and Edge Attributes for subgraph in Figure 2.28(d).
Nodes and Edges Attributes

Node 1 [0.0000, 0.7468, 0.5699]
Node 2 N/A
Node 3 N/A
Node 4 N/A
E11 [0.5000, 0.0000, 0.0000]
E12 [0.4285, 0.1976, 0.5989]
E13 [0.4593, 0.1976, 0.3195]
E14 [0.4809, 0.1387, 0.2316]
E21 [0.5715, 0.1976, 0.5989]
E22 [0.0000, 0.5000, 0.0000, 0.0000, 0.0200]
E23 [0.0000, 0.5312, 0.0584, 0.0000, 0.0200]
E24 [0.0323, 0.5527, 0.0609, 0.0146, 0.0626]
E31 [0.5407, 0.1976, 0.3195]
E32 [0.0000, 0.4688, 0.0584, 0.0000, 0.0200]
E33 [0.0000, 0.5000, 0.0000, 0.0000, 0.0200]
E34 [0.0324, 0.5217, 0.0091, 0.0090, 0.1018]
E41 [0.5191, 0.1387, 0.2316]
E42 [0.0323, 0.4473, 0.0609, 0.0085, 0.0901]
E43 [0.0324, 0.4783, 0.0091, 0.0091, 0.0903]
E44 [0.0000, 0.5000, 0.0000, 0.0000, 0.0200]

between two graphs. Thus in a directed graph with N nodes there will be N + 2(N(N −
1)/2) = N2 edges. The number of attributes at each edge depends on the types of nodes it
connects.

The ARG for a crime scene print is shown in Fig. 2.28; the values of node and edge
attributes for a portion of the subgraph with four nodes are given in Table 2.5.
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2.2.7 Graph distance

Central to both retrieval and identification is a method for computing similarity between
images. Equivalently, the inverse of similarity is a distance measure. The choice of similarity
or distance measure is important since it influences the retrieval result, uncertainty of match,
and the quality of clusters in partitioning the database for efficiency.

Image retrieval applications typically employ histogram (or probability density) distance
measures. Bin-by-bin distance measures such as Euclidean distance (or its generalization
known as the Minkowski distance), and Kulback-Leibler divergence are perceptually unsat-
isfactory. Cross-bin measures are quadratic similarity and Kolgomogorv-Smirnov distance;
the former is perceptually unsatisfactory, while Kolmogorv-Smirnov is only applicable to
one-dimensional problems. A cross-bin distance metric, known as the Wasserstein metric,
or the Earth Mover’s Distance (EMD) has become most popular in content-based image
retrieval [53]. Advantages of EMD include: allowing for partial matches, ability to efficiently
handle high-dimensional feature spaces and closeness to perceptual similarity when applied
to image histograms. Since EMD computation forms an essential part of attribute relational
graph matching, we describe it first.

Earth Mover’s Distance

The goal of EMD is to determine the least amount of work that is needed to transform one
distribution into the other. It has to take into account the weights found in each of the two
sets of bins and the ground distances between bins. From this it has to find the flow from
each bin of the first histogram to the bins of the second histogram. Once the optimal flow
is found the total amount transferred is the EMD.

Consider the evaluation of the distance between two signatures (also histograms or piles
of dirt) P1 = {P1i|i = 1, , n1} and P2 = {P2j|i = 1, , n2}. The elements, or bins, P1i have
corresponding weights (or ”supplies”) W1 = [w1i] and similarly P2j has weights W2 = [w2j].

The ground distance matrix C = [cij] specifies ground distance for all pairs of bins, cij.
The flow matrix F = [fij], where fij denotes the amount of “supplies” transferred from P1i

to P2j, which minimizes the overall work is determined as follows

WORK(W1,W2, C, F ) =

n1∑
i=1

n2∑
j=1

cijfij (2.10)

which is subject to the following constraints:

fij ≥ 0, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, (2.11)

n2∑
j=1

fij ≤ w1i, 1 ≤ i ≤ n1, (2.12)

n1∑
i=1

fij ≤ w2j, 1 ≤ j ≤ n2, (2.13)
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and
n1∑
i=1

n2∑
j=1

fij = min(

n1∑
i=1

w1i,

n2∑
j=1

w2j). (2.14)

Constraint 2.11 allows moving “supplies” from P1 to P2 and not vice versa. Constraint
2.12 limits the amount of “supplies” that can be sent by the nodes in P1 to their weights.
Constraint 2.13 limits the nodes in P2 to receive no more “supplies” than their weights.
Constraint 2.14 forces to move the maximum amount of “supplies” possible. This amount
is referred to as the total flow in the transportation problem.

This is a linear programming problem which is solved efficiently by the transportation
simplex algorithm [54]. Once the flow matrix is found, the distance is defined as the overall
matching cost normalized by the sum of all the weights transferred from P1 to P2.

D(P1, P2) =

∑n1

i=1

∑n2

j=1 cijfij∑n1

i=1

∑n2

j=1 fij
(2.15)

Attribute Relational Graph Distance

The task at hand is ARG matching rather than histogram matching. ARG matching requires
an assignment algorithm which yields not only a correspondence between two sets of vertices
but also the similarity between them. Some assignment algorithms are nearest neighbor
search, Hausdorff distance and bipartite matching. However the EMD has shown itself
to be versatile in solving the assignment problem [55]. The bins are replaced by vertices
and relations between vertices. Both vertices (nodes) and relations (edges) have attributes
associated with them. The vertices also have associated weights with them, which are useful
in performing assignment.

A completely connected ARG is formally defined as P = (V,R, n) where V = {Vi|1 ≤
i ≤ n} is the set of nodes and R = {Rij|1 ≤ i, j ≤ n} is the set of relations between nodes.
Each node has a weight and an attribute vector, Vi = (wi,vi) and each relation Rij has an
attribute vector rij.

We wish to compute the distance between two ARGs, P1 = (V1, R1, n1) and P2 =
(V2, R2, n2). This involves finding an appropriate mapping M between the two sets of nodes
according to the basic philosophy of a given assignment algorithm. The cost or ground dis-
tance matrix is C = [cij] where cij = c(V1i, V2j|V1i ∈ V1, V2j ∈ V2). The unit cost between V1i

and V2j is evaluated based on the similarity of the spatial configurations at the two nodes,
which is explained later in this discussion.

By providing identical weights the nested structure of EMD can handle the case of sub-
graph matching, i.e.,

w1i = w2j =
1

max(n1, n2)
, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. (2.16)

Unlike EMD, a node from P1 can only transfer its weight to a single node in P2, which
is known as the one-to-one constraint, i.e., enforce a one-to-one correspondence, each node i
in the first ARG can only match one node j in the second ARG or be left unmatched.
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Since the weight transferred from i to j, fij, can only assume the value of either 1
max(n1,n2)

or 0 we can rewrite Eq 2.15 as

D(P1, P2) =

1
max(n1,n2)

∑
{(i,j)|fij>0} cij∑

{(i,j)|fij>0} fij
(2.17)

The total number of correspondence pairs between the two ARGs is min(n1, n2). So the

whole flow transferred from P1 to P2 is min(n1,n2)
max(n1,n2)

. Substituting this term for the denominator,

D(P1, P2) =

∑
{(i,j)|fij>0} cij

min(n1, n2)
(2.18)

Now for the determination of cost between two vertices. For a given pair of vertices
in two graphs, how one vertex is different from the other depends not only on the vertex,
but also on how they relate to their neighbors in terms of distance, orientation, position
etc. This means that the similarity between two vertices should be evaluated based on the
similarity between an attributed relational sub-graph rooted at the first vertex and another
attributed relational sub-graph rooted at the second vertex. The attributed relational sub-
graph is an Attributed Tree(AT) [56]. This leads to a nested structure of ARG matching
or EMD computation. It consists of inner and outer steps.

For the outer step, the unit matching cost between nodes V1i and V2j, is defined as

c(V1i, V2j) = D(ATV1i
, ATV2j

), (2.19)

where AT V1i
and AT V2j

are attributed trees rooted at V1i and V2j in the two ARGs. The
attributed tree ATV1i

consists of the vertex V1i, all the vertices it is connected to, together
with the relations in common. In the case of a completely connected graph there are n1 − 1
such relations.

To calculate the distance between the two trees AT V1i
and AT V2j

, we need to build the
inner cost matrix C = [cîĵ] whose elements correspond to pairwise node-to-node (V1̂i to V2ĵ)
distances in the two trees. The inner cost between V1̂i and V2ĵ is calculated as follows. It
takes into account not only the unary attributes of the vertices but also the binary relations
of the related edges.

c(V1̂i, V2ĵ) = αdE(v1̂i,v2ĵ) + (1− α)dE(r1îi, r2jĵ), (2.20)

where α is a weight coefficient in the interval [0, 1] reflecting the relative importance of the
difference of node attributes and the difference of edge attributes in the evaluation of inner
cost between two nodes, dE stands for Euclidean distance and r1îi is the attribute vector of
edge between V1i and V1̂i.

The nodes V1i and V2j have one of three possible labels L, C or E corresponding to
line, circle, or ellipse. Thus there are 9 combinations of labels for (V1i, V2j). A line and
a circle or an ellipse do not match regardless of their attributes and neighbors; while a
circle and ellipse can match. Thus the unit matching cost for non-matching label pairs is
c(L,C) = c(L,E) = 1. For the others the node-to-node inner costs are determined using
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Eq. 2.20.
Algorithm PD, which summarizes the discussion above, computes the distance between

two ARGs.

Algorithm PD: Distance betwen prints represented as ARGs
Input: Two ARGs, P1 = (V1, R1, n1), P2 = (V2, R2, n2)

where V1 = {(V1i, w1i,v1i)|i = 1, ..n1}, V2 = {(V2j, w2j,v2j)|j = 1, ..n2}
and R1 = {(R1is, r1is)|i, s = 1, ..n1}, R2 = {(R2jt, r2jt)|j, t = 1, ..n2}

Output: D(P1, P2)

1. Set each component w1i = w2j = 1
max(n1,n2)

, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

2. Compute outer cost matrix C
for k1 = 1 to n1

for k2 = 1 to n2

if (isCompatible(V1k1 , V2k2) == false)
c(k1, k2) = 1

else
Build attributed trees rooted at V1k1 and V2k2 , viz., AT V1k1

and AT V2k2

for i = 1 to n1

for j = 1 to n2

if (isCompatible(V1i, V2j) == false)
c′(i, j) = 1

else
c′(i, j) = α ∗ dE(v1i,v2j) + (1− α) ∗ dE(r1k1i, r2k2j)

end if
end for

end for
c(k1, k2) = D(AT V1k1

, AT V2k2
)

end if
end for

end for

3. Compute flow matrix F using simplex method to minimize WORK(W1,W2, C, F )

4. Return D(P1, P2) =
∑
{(i,j)|fij>0} cij/min(n1, n2)

The function isCompatible checks to see if the node types are compatible, e.g., if one is
a line and other is a circle then they are incompatible, as follows:

Function isCompatible(Node V1, Node V2)
if (V1.label == ‘L’) & (V2.label == ‘C’|| V2.label == ‘E’)
return false;
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else if(V2.label == ‘L’) & (V1.label == ‘C’|| V1.label == ‘E’)
return false;

else return true;
end if

Example of Distance Computation

As an illustrative example, consider two simple prints and their graphs shown in Fig. 2.29.
Print P1 has five imperfect elements: three circles, an ellipse and a straight line, its ARG
has five nodes {V11, ..V15}. Print P2 has six imperfect elements: two circles, one ellipse and
three straight line segments, its ARG has six nodes {V21, ..V26}. Thus the number of edges
in their ARGs are 2×

(
5
2

)
= 20 and 2×

(
6
2

)
= 30 respectively. Their corresponding node and

edge attribute tables are shown in Tables 2.6 and 2.7 respectively.
To find the overall cost matrix between the ARGs of P1 and P2, the unit matching cost

between V1i and V2j is to be determined. For illustration, the method to compute the unit
matching cost between V11 and V21 alone is described. The two attributed trees (shown in
Fig.2.29) rooted at V11 and V21 are constructed so that all the neighbors of V11 and V21 are
also considered during cost computation.

The cost matrices are shown in Table 2.8. The 5 × 6 inner cost matrix is obtained for
each node of P1 by comparing its tree of five descendants (including itself) with each of the
six nodes of P2.

The unit matching cost between V11 and V21 is another distance. Hence an inner cost
matrix (shown in Table 2.8(a)) c′ij between the two trees is to be determined. If ith node is a
line and jth node is a circle/ellipse then c′ij =1 else it is computed using c′ij = αdE(v1i,v2j)+
(1 − α)dE(Q ∗ r11i, Q ∗ r21j) where dE stands for Euclidean distance, α was set to 0.5 and
Q, given in Table 2.3 and 2.4, was determined using sensitivity analysis, where * denotes
element-wise vector multiplication, which is discussed fully in (Section 2.2.8).

Once the inner cost matrix is determined, each node is assigned a weight of 1/6. Then the
flow matrix [fij] is initialized to a feasible solution to determine the overall cost

∑n1

i=1

∑n2

j=1 fijcij.
This process is repeated iteratively to find the optimal flow matrix which minimizes the over-
all cost. Eventually, the cost between V11 and V21 is obtained using Eq 2.15.

Similarly the unit matching cost between the rest of V1i and V2j is calculated to get an
outer cost matrix shown in Table 2.8(b). Once the outer cost matrix is determined, the
flow matrix fij is computed as described earlier. Finally, the distance between P1 and P2 is
obtained using Eq 2.15. Using the attribute tables shown this evaluates to 0.5674.

The process of similarity computation in a more realistic scenario involving actual footwear
prints is shown in Figure 2.30. In this case the distance evaluates to a much smaller value
of 0.0835 indicating a finer degree of match.
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(a) (b) (c)

(d) (e) (f)

Figure 2.29: Illustration of distance computation between two simple prints: (a) print P1 with five
primitive elements, (b) attributed relational graph of P1 with vertices V11..V15, (c) attributed tree
rooted at V11, (d) print P2 with six elements, (e) attributed relational graph of P2 with vertices
V21..V26 and (f) attributed tree rooted at V21. Using the attribute values shown in Tables 2.6 and
2.7 the distance evaluates to 0.5674.
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Table 2.6: Node and edge attribute values of print P1 shown in Fig. 2.29 (a)

Circle No. Eccent. Quality Completeness

C1 0 0.8692 0.5755
C2 0 0.8325 0.5795
C3 0 0.7835 0.5661

(a) Node Attributes (Circles)

Ellipse Eccent. Quality Completeness

E1 0.8365 0.8972 0.8214

(b) Node Attribute (Ellipse)

N − rsN − rd1 N − rd2

C1–C2 0.5 0.8245 1.0
C1–C3 0.5 0.6541 1.0
C2–C1 0.5 0.5748 1.0
C2–C3 0.5 0.8245 1.0
C3–C1 0.5 0.6541 1.0
C3–C2 0.5 0.5748 1.0

(c) Edge Attributes (Circle-
Circle)

N − rsN − rdN − rp
L1–C1 0.9219 0.9502 0.8829
L1–C2 0.9219 0.7378 0.3132
L1–C3 0.9219 0.8245 0.4639

(d) Edge Attributes (Line-
Circle)

N − rsN − rdN − rp
C1–L1 0.0781 0.9502 0.8829
C2–L1 0.0781 0.7378 0.3132
C3–L1 0.0781 0.9383 0.4639

(e) Edge Attributes (Circle-
Line)

ed N − rsN − rdN − rp
C1–E1 0.8365 0.2111 0.1641 0.3009
C2–E1 0.8365 0.2111 0.1357 0.5086
C3–E1 0.8365 0.2111 0.1302 0.8866

(f) Edge Attributes (Circle-Ellipse)

ed N − rsN − rdN − rp
E1–C1 0.8365 0.7889 0.1641 0.3009
E1–C2 0.8365 0.7889 0.1357 0.5086
E1–C3 0.8365 0.7889 0.1302 0.8866

(g) Edge Attributes (Ellipse-Circle)

ed N − rsN − rdN − rpN − ro
E1–L1 0.1635 0.2405 0.0517 0.2312 0.5845

(h) Edge Attributes (Ellipse-Line)

ed N − rsN − rdN − rpN − ro
L1–E1 0.1635 0.7595 0.0517 0.3324 0.5845

(i) Edge Attributes (Line-Ellipse)
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Table 2.7: Node and edge attributes of print P2 shown in Fig. 2.29 (d)

Circle No. Eccentricity Quality Completeness

C1 0 0.8332 0.5441
C2 0 0.7596 0.5839

(a) Node Attributes (Circles)

Ellipse No. Eccentricity Quality Completeness

E1 0.7564 0.8524 0.6913

(b) Node Attribute (Ellipse)

N − rsN − rdN − rp
L1–C1 0.8996 0.6415 0.3286
L1–C2 0.9181 0.0123 0.3577
L2–C1 0.8733 0.0430 0.1984
L2–C2 0.8960 0.6959 0.2213
L3–C1 0.6606 0.3656 0.5794
L3–C2 0.7087 0.4106 0.7587

(c) Edge Attributes (L2C)

N − rsN − rdN − rp
C1–L1 0.1004 0.6415 0.3286
C1–L2 0.1267 0.0430 0.1984
C1–L3 0.3394 0.3656 0.5794
C2–L1 0.0819 0.0123 0.3577
C2–L2 0.1040 0.6959 0.2213
C2–L3 0.2913 0.4106 0.7587

(d) Edge Attributes (C2L)

ed N − rsN − rdN − rp
C1–E1 0.7564 0.3515 0.2702 0.1050
C2–E1 0.7564 0.3025 0.2698 0.1162

(e) Edge Attributes (C2E)

ed N − rsN − rdN − rp
E1–C1 0.7564 0.6485 0.2702 0.1050
E1–C2 0.7564 0.6975 0.2698 0.1162

(f) Edge Attributes (E2C)

ed N − rsN − rdN − rpN − ro
E1–L1 0.2436 0.1707 0.0169 0.0288 0.0285
E1–L2 0.2436 0.2112 0.0197 0.0202 0.0062
E1–L3 0.2436 0.4866 0.1708 0.1968 0.0285

(g) Edge Attributes (E2L)

ed N − rsN − rdN − rpN − ro
L1–E1 0.2436 0.8293 0.0169 0.0419 0.0285
L2–E1 0.2436 0.7888 0.0197 0.0212 0.0062
L3–E1 0.2436 0.5134 0.1708 0.2341 0.0285

(h) Edge Attributes (L2E)

N − rsN − rd1 N − rd2

C1–C2 0.5556 0.3875 0.9809
C2–C1 0.4444 0.3875 0.9809

(i) Edge Attributes (C2C)

N − αN − rsN − rpN − rdN − pd
L1–L2 0.0111 0.5654 0.0258 0.0211 0.0210
L1–L3 0.0000 0.8216 0.0200 0.0547 0.0168
L2–L1 0.0111 0.4346 0.0239 0.0211 0.0209
L2–L3 0.0111 0.7797 0.0326 0.0722 0.0168
L3–L1 0.0000 0.1784 0.0200 0.0547 0.0168
L3–L2 0.0111 0.2203 0.0212 0.0722 0.0192

(j) Edge Attributes (L2L)
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Table 2.8: Cost Matrices in comparing P1 and P2.

0.1061 0.0000 0.3898 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 0.9701 0.7419 1.0000
1.0000 1.0000 1.0000 0.7918 0.1452 1.0000
1.0000 1.0000 1.0000 0.9545 0.3675 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 0.4214

(a) Inner Cost matrix for nodes V11 and
V21

0.5084 0.5133 0.5515 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 0.4999 0.5123 0.9990
1.0000 1.0000 1.0000 0.3873 0.3880 0.9990
1.0000 1.0000 1.0000 0.5167 0.5055 0.9990
1.0000 1.0000 1.0000 0.9687 0.9860 0.4406

(b) Outer Cost Matrix

(a) (b)

(c)

Figure 2.30: Similarity between a crime scene and a known print:(a) inputs, (b) detected lines and
circles, and (c) graphs, where only nodes are shown for clarity, and similarity value.
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2.2.8 Sensitivity analysis

Sensitivity analysis [57] is a system validation technique which can be used to determine
robustness of the distance measure when the inputs are slightly disturbed. Its application
here is to determine as to how sensitive the distance measure is to changes with respect
to attributes (which were defined in Tables 2.3 and 2.4). Results of these experiments are
shown as graphical plots in Fig.2.31, where 1,400 prints were used in the experiments.

There are fifteen graphs shown (labelled a− o), each of which is a plot of distance with
respect to one of the features. The first four correspond to how the distance between two
lines (L2L) changes as each of five features are varied; they correspond to the features:
N − α,N − rs,N − rd + N − pd, and rp. They are followed by three for distance between
two circles (C2C): N − rs,N − rd1, N − rd2, and one for circle completeness. There are six
for distance between two ellipses (E2E): ed,N − rs,N − rd,N − ro, rp and rd.

A linear change is consistent with human perception whereas nonlinear behavior needs
justification for its suitability. A linear correlation is seen between distance and most at-
tributes indicating their acceptability. The exceptions are the four plots (b, j, n, o) which are
explained as follows:
(b) L2L N − rs: distance drops after reaching a peak, e.g., say two lines l1 and l2, where
l1.len > l2.len, as l1 becomes shorter l1.len < l2.len is reached and in that case the algorithm
will switch their roles to minimize distance,
(j) C2C ed: similar reason as (b),
(n) E2E rp: initially increases fast and then saturates because when the major axes of two
ellipses is far, the rate of change in rp becomes increasingly small,
(o) C2C rd: when the radius r of one of the two circles vary randomly within 15%, the
change of distance is always below 0.025.

Distance between ARGs has different sensitivities for different sets of attribute values.
So we introduce a weight vector Q to take into account the difference in sensitivities. The
calculation of inner cost is modified as follows

c(V1̂i, V2ĵ) = αdE(v1̂i,v2ĵ) + (1− α)dE(Q ∗ r1îi, Q ∗ r2jĵ) (2.21)

where ∗ is the element-wise or Hadamard (Schur) product between two vectors.
Consider two synthetic prints shown in Figure 2.32, each of which contains two identical

ellipses, i.e., n1 = n2 = 2. We assume that α equals 0.5, which means that node attributes
and edge attributes are weighed equally. Using algorithm PD we arrive at the following
distance between the two prints

D(P1, P2) = 0.25(dE(v11,v21) + dE(v12,v22) + dE(Q ∗ r112, Q ∗ r212) (2.22)

Following similar reasoning for two prints with arbitrary n1 and n2 nodes, with n1 ≤ n2,
we have

D(P1, P2) =
α{
∑n1

i=1 n1dE(v1ni ,v2ni) + 2
∑
{(i,j)|i<j} dE(Q ∗ r1ij, Q ∗ r2ij)}

n2
1

(2.23)
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(a) P1 (b) P2

Figure 2.32: Example of two 2-node prints used in sensitivity analysis.

Here we assume that we can make a print become totally different from itself by changing
each value of all the attributes (including node and edge attributes) from one extreme to
the other, which means ∆r = 1, where r is an edge attribute. Suppose that P1 and P2 are
such two prints whose distance D(P1, P2) equals 1. Assuming that the difference of node
attributes in each correspondence pair, as well as the difference of edge attributes in each
correspondence pair, take equal responsibility for the distance D(P1, P2). The number of
shares of such responsibility is n2

1 + n1(n1 − 1) = n1(2n1 − 1).

dE(Q ∗ r1is, Q ∗ r2jt) =
n1

α(2n1 − 1)
, 1 ≤ i, s ≤ n1, 1 ≤ j, t ≤ n2. (2.24)

We can rewrite the above equality as follows.√√√√ m∑
k=1

Qk(r1isk − r2jtk)
2 =

n1

α(2n1 − 1)
, (2.25)

where m is the dimension of the edge attribute vector.
Finally we arrive at the values of weight vector as follows.

Qk =

√
[

n2
1

αn1(2n1−1)
]2

m

1
=

2n1

(2n1 − 1)
√
m
,∀k ∈ {1, 2, ...,m} (2.26)

For large n1, 2n1

(2n1−1)
≈ 1, thus we have Qk ≈ 1√

m
. When n1 = 2, Qk = 4

3
√
m

. This

indicates that we can determine the weights {Qk, k = {1, ...,m}} by first deriving the value
of Qk in the case of 2-nodes, then multiplying it by 3

4
. The contribution of each edge attribute

for all pairs of nodes to distance can be calculated as
2n1

(2n1−1)∗
√
n
∗1∗n1(n1−1)∗α
n2

1
= n1−1

(2n1−1)
√
n
.
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Figure 2.33: Plot of distance D against scale factor Qk for attribute E2E N -rd. Prints with only
two nodes were used in the experiments. N -rd(P1) = 0, N -rd(P2) = 1.

From the previous definition of edge attributes as shown in Table 2.3 and 2.4, E2E
(Ellipse-to-Ellipse) edge has 6 attributes. Since the attribute er and ed bear apparent de-
pendency between each other, the number of independent attributes for E2E edge is 5, i.e.
m = 5. We chose the attribute Normalized relative distance N -rd to conduct the experi-
ments on prints with only two nodes to determine the relationship between the distance D
and N -rd as well as the weight Qk. This attribute is supposed to contribute to the final
distance an amount of 2−1

(2∗2−1)
√

5
= 0.1491.

In the experiments, the maximum change of N -rd is 1. Our goal is to find the value of
Qk s.t. the distance reaches 0.1491 when the change of N -rd, ∆N -rd is equal to 1 (We set
the N -rd of P1 to be 0, so ∆N -rd = N -rd(P2)). From Figure 2.33, we can get the value of
Qk as 0.5963, which is the same as what we would get if we substitute 5 for n in Eq 2.26.
Finally, we obtain the weight Qk with the attribute of E2E N -rd for prints with n1 nodes
(n1 large) by multiplying 0.5963 by 3

4
to get 0.4472.

All the weights have been determined by means of both experiments and mathematical
derivations and summarized in Tables2.3 and 2.4.

The resulting weights are shown in the last columns in the definitions of edge attributes
in Tables 2.3 and 2.4. They are used as the weight vector Q in distance computation as
shown in Eq. 2.21.
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2.2.9 Clustering

The process of comparing ARGs is extremely slow. The computational complexity of distance
computation is O(n1n2max(n1, n2)). This is essentially cubic in the number of nodes n [55].
Thus it is necessary to use approximate methods to speed-up the computation. One approach
is to eliminate several edge evaluations. Another is to cluster the known data set such that
not all comparisons need to be made against the database. The clustering approach was
developed as described here.

Clustering algorithms can be generally divided into partition-based, density-based and
hierarchical based methods [58]. Algorithms like k-means, hierarchical clustering, and ex-
pectation maximization requires similarity matrix consisting of pair-wise distance between
every footwear prints in dataset. Building similarity matrix is computationally expensive
for a large dataset. Further, the ARG representing a footwear print has 200-300 nodes on
average and nodes can vary considerably in terms of relative size, position etc. This makes
the feature space very sparse and therefore similar footwear prints tend to stay close to each
other and dissimilar ones stay apart. Hence, to cluster the entire dataset we use recurring
patterns as fixed cluster centers [59].

Recurring patterns [3, 6] such as waves and concentric circles are common in footwear
outsoles and each of them can be used to represent a group of similar prints. These patterns
are simple in structure and the graphs constructed, from these patterns, have many fewer
nodes. Hence, recurring patterns can be used as query to fetch similar database prints.
This drastically reduces the computation required and does not require a similarity matrix.
Although this clustering requires domain knowledge to determine recurring patterns, it avoids
the problems of deciding the number of clusters beforehand (unlike k-means).

From visual inspection of 1000 prints, 20 recurring patterns(shown in Fig. 2.35) were
determined and used as cluster representatives. For each database footwear print, we com-
puted its FPD to each pattern and then assigned it to the nearest cluster representative.
These cluster representatives are similar to cluster means in k-means algorithm but these
”means” are fixed. This efficiency is achieved by exploiting sparseness of the feature space.
Most prints have a resolution of either 150 or 72 DPI.

Step 1 (Morphology): The first step in the feature extraction is to perform morphological
operations such as dilation and erosion. This makes the interior region of the boundary uni-
form and hence the Canny edge detector [60] does not detect any edges inside the boundary.
This helps to enhance the quality of the edge image. Result of step 1 for a sample footwear
print is shown in Figure 2.36.

Step 2(Hough Transform): SHT is used to detect circles in footwear prints. Pixels of
detected circles shown in Fig. 2.37(a) are removed from the edge image and fed as input for
ellipse detection using RHT. Pixels of detected ellipses shown in Fig. 2.37(b) are removed
from the edge image and the output is fed as input for line detection in Fig. 2.37(c). Features
are extracted in the order: circle, ellipse and line. This is because circles are degenerated
ellipses and arbitrary shapes in footwear print are approximated by piecewise lines. Fig.
2.37(d) sums up all the features.

Step 3(ARG): For each detected feature, node attributes like completeness & quality of
circle, eccentricity of the ellipse etc. are computed. Further, edge attributes like relative
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Figure 2.35: Canonical Patterns for Clustering.

(a) (b) (c) (d)

Figure 2.36: Clustering Step 1(Morphology): (a) Original Gray-scale Image, (b) Edge Image of
(a), (c) Result of Morphological Operation on (a), (d)Edge Image of (c).
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(a) (b) (c) (d)

Figure 2.37: Clustering Step 2 (Hough Transform). Extracting features in the sequence
circle→ellipse→line: (a) Circles. (b) Ellipses. (c) Line Segments. (d) All features. Red box
indicates a small region in the footwear print.

distance & position between nodes are calculated and finally an ARG is constructed. One
such ARG is shown in Fig. 2.38.

Step 4(Distance): FPD between each database print and every cluster representative is
calculated. Then each print is assigned to the nearest representative, for which the FPD is
below threshold T . If FPD between a print and cluster representatives are greater than T ,
then the print remains as a single cluster. In our experiments, T was set to 0.15.

The method was evaluated on 1000 footwear prints. The system assigned 550 footwear
prints to one of 20 clusters wheras the remaining 450 prints were so unique that each of them
was a cluster by itself. Two sample clusters based on the canonical patterns of Fig. 2.35 are
shown in Fig. 2.39.

Retrieval performance was measured by the F -measure, the weighted harmonic mean of
precision and recall. Its value is also a measure of clustering’s accuracy.

F =
2× Precision×Recall
Precision+Recall

(2.27)

The Precision vs. Recall curve and the maximum F -measure are shown in Fig. 2.40.
One advantage of this clustering method is huge reduction in computation. For a database

of 1000 prints, existing clustering algorithms would require 1000C2 = 499, 500 FPD compu-
tations to build the similarity matrix. However, our clustering method would take 1000× k
FPD computations, where k is the number of recurring patterns. In our case, k = 20, so
the computation is reduced by 96%. This efficiency is achieved without compromising the
accuracy or recall rate (shown in Fig. 2.39).
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(a) (b)

Figure 2.38: Clustering Step 3 (ARG): (a) nodes in graph corresponding to image in Figure 2.37
with edges omitted due to complete connectivity, (b) subgraph for region enclosed in the red box
of Figure 2.37 (d). Red and green dots represent circles and lines respectively.
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Figure 2.39: Sample clusters based on using the canonical patterns in Fig. 2.35.
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Figure 2.40: Retrieval Performance: F-measure corresponds to its maximum value.
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2.2.10 Retrieval performance evaluation

An evaluation of the end-to-end performance of soleprint image retrieval was performed
in terms of both retrieval performance and speed. A preliminary set of experiments were
performed using a dataset of 50 crime scene shoeprints as query and a database of 1066
known shoeprints. Each known shoeprint has meta data information such as brand and
model of the shoe. In the clustered database, each crime scene mark was used as a query
and the closest prints were retrieved. The crime scene mark was matched against every
cluster representative to find the closest cluster. In the closest cluster, crime scene mark was
matched against each of the prints and the top n matches from the cluster were retrieved.
Sample retrieval results for two crime scene marks are shown in Fig.2.41.

In terms of overall performance, the performance metric known as the cumulative match
characteristic (CMC) was chosen as it can answer the question [14] “what is the probability
of finding a match in the first n percent of database images?”. The probability of a match
(cumulative match score) was estimated by the proportion of times during the tests when
a match shoeprint appears in the first n percent of sorted database. Also, this metric is
suitable when there is only one matching shoeprint in the database. The CMC curve of the
system before clustering and of SIFT are shown in Fig.2.42.

For a baseline comparison, experiments were also performed using the SIFT feature
descriptor. SIFT [43] being a robust image retrieval algorithm. SIFT is the apparent method
used in Google’s Similar Image search. The resulting CMS is much better than the CMS of
SIFT. Dardi et al. [21], the only ones to report accuracy with crime scene marks, state 72%
accuracy. The algorithm proposed here achieves an accuracy of 92 % for crime scene marks
& an accuracy of 100% for degraded prints. Tests with crime scene marks have an error
of 0.08% but from the confidence interval of sample size we found that true error ranges
between 0.03% and 0.18% for the used sample size. A comparison with the state-of-the art
techniques as described in the literature reveals that the proposed system outperforms each
of them (see Table 2.9).

The ratios of finding a correct match within the first 1, 2, 5, 10, 20, 50 images in the sorted
database are listed in Figure 2.42(b). SIFT performs only slightly better than randomly
selecting an image. This is possibly because SIFT features are not preserved among different
shoes of the same class and throughout the lifetime of a single shoe. The proposed ARG-
EMD method greatly outperforms SIFT. From the curve we can see that, if looking at the
very first 0.1% database images, we still have the probability of 0.426 to find a correct
match. This means only reviewing the first 10 images for a database of 10, 000 images. This
is because our method extracts geometric shapes such as circles, lines, which are the most
durable and preservable features, and the attributed relational structure constructed based
on primitive features is able to capture the distinctiveness of each shoeprint pattern, and
have the desirable scale, rotation invariances. Finally ARG-EMD matching allows partial
matching in a natural way and is robust to the change of the relational structure. In addition
to the quantitative analysis, we present some retrieval results in Figures 2.41 to show how
these results are close to perceptual similarity.
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(a)

(b)

Figure 2.41: Results of automatic retrieval with two queries shown as the left-most images followed
on the right by the top database entries retrieved. It can be seen that the top choices are similar
to human perception.
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Table 2.9: Comparision of ARG-FPD approach with the state-of-the-art
State-of-
the-art

Full print Partial print Experiments
with Scene of
Crime (SoC)

Short-
coming

Dataset

CMS
@
1%

CMS
@
5%

CMS
@
10%

CMS
@
1%

CMS
@
5%

CMS
@
10%

de Chazal
et al.
(2005)

64 87 90 50 70 77 - Lacks
Scaling
invari-
ance

475 prints
from For.
Sci. Lab,,
Ireland

Zhang et
al. (2005)

85.4 95 97.44 - - - - Not
tested
with
partials

512 prints
from F &
F

Pavlou et
al. (2006)

86 90 93 85 90 92 - Not
tested
with
real SoC
marks

368 prints
of For.
Sci. Serv,
UK

Crookes
et al.
(2007)

100 100 100 100 100 100 - Tested
with
synthe-
sized
SoCs

500 clean
prints, 50
degraded

Crookes
et al.
(2007)

100 100 100 100 100 100 - Lacks
rota-
tional
invari-
ance

100 clean
prints, 64
synthetic

Gueham
et al.
(2008)

- - - - - 95.68 - Tested
with 100
prints

100 F & F
prints

Dardi et
al. (2009)

- - - - - - CMS @ 10% is
73% CMS @ 5%
is 40% CMS @
1% is 10%

Tested
with 87
known
prints
and 30
SoCs

87 known
and 30
real SoC
ENSFI

Srihari et.
al. ARG-
FPD
(2010)

100 100 100 100 100 100 CMS @ 10% is
92% CMS @ 5%
is 90% CMS @
1% is 70%

- 1400 de-
graded,
1000
known &
50 real
SoC
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Figure 2.42: Cumulative Match Characteristic of ARG-EMD and SIFT.

Table 2.10: Retrieval speed before and after clustering.
No of crime scene marks Ave time before Ave time after

50 120 mins 8 mins

Speed

The speed of comparison before and after clustering is given in Table 2.10. CMC curve
remains the same before and after clustering but clustering makes significant improvement
in retrieval speed.

Speed of clustering was improved by adding a pre-filtering procedure that computes the
Euclidean distance between global feature vectors of the query shoeprint and each database
shoeprint, and ignores those database images which are too far from the query to be a
potential match

The time for processing a crime scene image and a database image depends on the
number of nodes in each graph constructed on each image. On average, it takes 30 seconds
to compute one FPD. Thus for a single query and 1,000 database entries, it takes 20-30
minutes. In a large shoe-print database, the efficiency(speed) of retrieving a query print
becomes important. Effective indexing techniques should be designed to enter standard
shoeprint prototypes.

The focus for speed-up can determined from the following break-down: (i) Hough trans-
form: 15s (detect lines) + 60s (detect circles) = 75s, (ii) graph construction: 0.1s, and (iii)
FPD distance computation for each pair: 30s. Distance computation is slow since it involves
a nested structure. The number of FPDs that need to be computed is the product of the
number of nodes in the query and the database entry.

Speed can be improved by: (i) reducing the number of nodes by merging two detected
lines which are associated with a single straight boundary (to be done), (ii) using pre-filtering
to enhance the speed performance e.g., computing the Euclidean distance between global

74

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



2.2. METHODS CHAPTER 2. RESEARCH NARRATIVE

Figure 2.43: Probabilistic Model: intra- and inter-class distributions of distance allow computing
likelihood ratios.

feature vectors of the query print and each database print, and ignoring those database
prints too far from the query to be a potential match, (iii) relaxing full connectivity in graph
by triangulation, and (iv) other improvements.

2.2.11 Uncertainty computation

In the previous sections an approach has been proposed to compute the similarity between a
query print and a database print. The similarity measure is not only useful for database re-
trieval but can also form the important first step for measuring the degree of uncertainty. To
evaluate the strength of the evidence, it is necessary to either transfer the distance/similarity
measure or the number of matching features into a probability measure.

The likelihood ratio is the ratio of the two probabilities of the evidence given two com-
peting hypotheses: H − the crime scene print is created by the same footwear as the known
print and H̄ − the crime scene print is not from the known. This ratio can be expressed
as: LR = Pr(E|H,I)

Pr(E|H̄,I) . where E is the evidence given by the crime scene mark, and I is all the

background information relevant to this case. This approach can be decomposed into the
following three steps: (i) estimate the within-class and between-class shoeprint variability as
measured by graph distance (see Figure 2.43), (ii) compute the LR for the evidence, and (iii)
convert the LR into a verbal scale which can be conveyed to different shoeprint examiners.

Degradation Model: Features present in a footwear print can be classfied into two cate-
gories: manufacturing and acquired. Manufacturing features are those that comes from the
manufacturing process. Acquired features are features that have been acquired during the
lifetime of the shoe, such as wear pattern and damaging features.

Within-class variability measures the variance of features of multiple shoeprints from the
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same shoe. To be able to simulate different variations caused by wears, incompleteness and
the change of medium and illumination, we apply image degradation models multiple times
on each database image to produce a set of degraded shoeprints. Our matching algorithm
will be applied to calculate the distance between each pair of within-class shoeprints. Then
we will be able to build a probability distribution of within-class distance.

Between-class variability measures the variance of features of multiple shoeprints that
are from different classes. This distribution can be built following a similar way as for
within-class variability.

Given a distance between the crime scene mark and a test mark made by the suspect’s
shoe, we can compute how likely is the distance given the hypothesis that the two marks are
from the same source, as well as how likely is the distance given the hypothesis that the two
marks are from different sources. The ratio of these two likelihood is then calculated to get
the LR. The distribution of LRs, determined from a learning set, can be used to convert the
LR value into an opinion scale.

2.2.12 User interface

A preliminary system to retrieve known images from given a crime scene image has been put
together for demonstration purposes. It runs under the Windows operating system. The
opening splash screen is shown in Figure 2.44(a). There are user options for opening image
files and for performing the search. An example of the results of matching a query crime
scene print against a set of knowns is shown in Figure 2.44(b). Note that the query image
has present in it several cracks in the sidewalk on which the impression was created, which
does not affect the results of matching. In this demonstration the features of the knowns
and the query were pre-computed. Computing the features takes about fifteen minutes per
image on a Windows PC using the current implementation in MATLAB.

2.3 Conclusions

The research has articulated tasks in footwear outsole impression evidence matching that
are suitable for automation. Computational methods were defined and studied for sev-
eral sub-problems. They include methods for enhancing the quality of images, extracting
features useful for comparison, determining the degree of similarity between evidence and
known, efficient implementation of algorithms to retrieve closest matches in a database, and
computation of match uncertainty. Major findings in each of these areas are summarized
below.

2.3.1 Discussion of findings

1. Image enhancement methods. Several algorithms for extracting foreground pixels from
the crime scene image were studied. Among these a method based on utilizing sta-
tistical dependencies between nearby pixels worked better than simpler thresholding
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(a)

(b)

Figure 2.44: User Interface: (a) opening screen with tool bar, and (b) a query and results.
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algorithms used in applications such as document processing. Morphology based algo-
rithms also performed well.

2. Methods of representing footwear outsole patterns. Three different methods of extract-
ing features were investigated and compared. Features based on detecting component
geometric shapes, principally as ellipses of different eccentricities, is more reliable than
either global image features used in questioned document examination (such as GSC)
and in three-dimensional scenes (such as SIFT). Experimental evaluation with crime
scene images suggest that geometric shapes are robust to various degradations and
that an attributed relational structure is a robust descriptor.

3. Computing similarity between patterns. A similarity measure based on comparing node
and edge attributes in ARGs is robust with respect to small variations in the input
features.

4. Clustering of patterns. By clustering known images into cognitively similar patters,
higher efficiency is achieved in retrieval.

5. Performance evaluation. a graph matching algorithm based on a nested distance com-
putation structure can achieve stable and prominent performance even under moderate
change of the topology of the graph.

2.3.2 Implications for policy and practice

1. Automated tools, such as those developed here, have the potential to assist footwear
impression evidence examiners in searching through large data bases to find footwear
impression type. This should enable more use of footwear impression evidence in crime
scene investigation.

2. Measures of similarity developed will not only allow retrieval of known prints in the
investigative phase but will also be useful in the prosecutorial phase. A quantitative
similarity measure will allow quantification of uncertainty in presenting evidence in the
courtroom. This will allow moving away from individualization testimony involving
absolutes, which is a point underscored in the NAS report [61].

3. Project has synergy with other areas of impression evidence, specifically questioned
document examination and latent print analysis. The graph structure method de-
scribed will be particularly useful when the impression evidence involves man-made
geometrical patterns.

2.3.3 Implications for further research

The following are areas that needs to further studied:

1. Statistical machine learning approaches can be used effectively in several phases of
the task. This research has developed algorithms for image processing, feature extrac-
tion, similarity computation, and clustering. While CRFs were shown to be useful
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for extracting foreground image pixels, the model needs to be further studied for its
practicality. More sophisticated clustering algorithms such as EM could be tried.

2. A standardized database of crime scene marks will allow researchers to measure the
performance of their systems.

3. The variability of the similarity measure needs to be further studied, e.g., different sizes
of the query image, increased number of footwear models, etc. The distribution of the
similarity measure is also central to the quantification of uncertainty. The similarity
measure is analogous to other such measures in impression evidence. For instance the
similarity between two latent prints is measured using the Bozorth matcher, which is
also based on a graph representation of minutiae.

4. Similarity computation is very slow due to O(N3) computation in the number primitive
shapes. Thus more efficient implementations that perform approximate matching need
to be designed.

5. The use of the similarity metrics in the computation of likelihoods for the prosecution
and defense hypotheses need to be studied so as to provide uncertainty measures in
comparison.

6. Most of the code in this research was implemented in MATLAB, a programming en-
vironment suitable for exploratory research. These need to be further refined and
converted to C++ for speed and efficiency.

7. A preliminary user interface for a system for image retrieval was developed. The
developed algorithms need to be integrated so that the system can be a practically
useful tool for the forensic footwear examiner.

2.4 Dissemination

2.4.1 Publications

The following papers were published:

1. V. Ramakrishnan, M. Malgireddy and S. N. Srihari, ”Shoe-print Extraction from La-
tent Images using CRF,” Computational Forensics: Proceedings of International Work-
shop on Computational Forensics, Washington DC, Springer LNCS 5158, 2008, pp.
105-112.

2. V. Ramakrishnan and S. N. Srihari, ”Extraction of Shoe-print Patterns from Impression
Evidence using Conditional Random Fields,” Proceedings of International Conference
on Pattern Recognition, Tampa, FL, IEEE Computer Society Press, 2008, pp. 1-4.

3. Y. Tang, S. N. Srihari and H. Kasiviswanathan, ”Similarity and Clustering of Footwear
Prints,” Proceedings of International Symposium on Foundations and Practice of Data
Mining, GrC 2010, August 2010, San Jose, CA
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4. Y. Tang and S. N. Srihari, ”Footwear Print Retrieval System for Real Crime Scene
Marks,” Proceedings of International Workshop on Computational Forensics, IWCF,
November 2010, Tokyo, Japan

2.4.2 Presentations

Portions of this research were presented at:

1. SWGTREAD Biannual meeting in VA, October 2008.

2. Foster and Freeman on July 2, 2009 in Evesham, UK.

3. Discovery Channel, Canada made a video of our research in Fall 2009 and it was aired
on Canadian television.

4. NIJ Grantees Meeting at IAI in Louisville, KY, July 2009.

5. FBI, Quantico, VA in February 2010.

6. NIJ Conference in Arlington, VA in June 2010.

7. Foster and Freeman on July 6, 2010 in Evesham, UK.
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Chapter 3

References

The references in the Program Narrative are given below. The references are in the order in
which they are referred to in the text.
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