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Abstract

Fingerprint friction ridge features are generally described in a hierarchical or-

der at three different levels, namely, Level 1 (ridge flow), Level 2 (minutiae points)

and Level 3 (pores and ridge shape, etc.). Current Automated Fingerprint Iden-

tification Systems (AFIS) generally rely only on a subset of Level 1 and Level 2

features (minutiae and core/delta) for matching. On the other hand, latent print

examiners frequently take advantage of a much richer set of features naturally

occurring in fingerprints. It is believed that this difference may be one of the rea-

sons for the superior performance of fingerprint examiners over AFIS, particularly

in case of difficult latent matches. Fingerprint features, other than minutiae and

core/delta, are also referred to as the extended feature set (EFS). The goal of this

study is to i) develop algorithms for encoding and matching extended features, ii)

develop fusion algorithms to combine extended features with minutiae information

to improve fingerprint matching accuracy, and iii) understand the contributions of

various extended features in latent fingerprint matching.

We study a number of extended features at all three levels, including ridge

flow map, ridge wavelength map, ridge quality map, ridge skeleton, pores, dots,

incipient ridges, and ridge edge protrusions. Feature extraction and matching algo-

rithms are developed for each type of feature. Relative contribution of each feature

towards the overall matching accuracy is evaluated by incrementally adding fea-

tures to baseline features (minutiae and core/delta). The order of adding features

is determined based on the amount of manual labour in feature marking and the

estimated importance of features. Latent fingerprint databases, NIST SD27 and

ELFT-EFS-PC, and several NIST rolled/plain fingerprint databases are used in our

experiments.

Based on extensive experiments, we report the following findings: i) almost all

the extended features lead to some improvement in latent matching accuracy, ii)

extended features at higher level are more effective in improving latent matching

accuracy than those at lower level, iii) high image resolution (at least 1000 ppi) is

necessary but not sufficient for reliably capturing Level 3 features.

Based on our study, we would like to offer the following recommendations: i)

extended features at Level 1 and Level 2 are strongly recommended to be incorpo-

rated into AFIS, ii) convenient GUI tools should be developed to help fingerprint

examiners manually mark extended features (especially ridge skeleton) at Level 1

and Level 2 in latents, iii) it is crucial to improve the quality of enrolled fingerprints

(so that a sufficient number of Level 3 features can be extracted) before Level 3

features can play an important role in AFIS.
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Executive Summary

Introduction
Over the past 40 years, Automated Fingerprint Identification Systems (AFIS) have

played a major role in forensics and criminal investigations. However, these systems

have not yet eliminated the need for manual examination and matching of fingerprints

by experienced human experts, particularly for latent prints. This is mainly because

“AFIS technology, since its onset, has utilized a very limited amount of fingerprint

detail. Latent print experts rely on far more information in effecting individualiza-

tions/exclusions than just ending ridges and bifurcations” [50].

Fingerprint features are generally categorized into three levels [6]. Level 1 features

are the macro details of the fingerprint such as ridge flow and pattern type. Level 2

features refer to the Galton characteristics or minutiae, such as ridge bifurcations and

endings. Level 3 features include all dimensional attributes of the ridge such as ridge

path deviation, width, shape, pores, edge contour, incipient ridges, breaks, creases,

scars, and other permanent details. The current FBI standard of fingerprint resolution

for AFIS is 500 ppi ( 50 microns pitch), which is inadequate to automatically and

reliably extract Level 3 features, such as pores ( 60 microns in radius). As a result,

state of the art AFIS technology is primarily based on Level 1 and Level 2 features.

With the advances in fingerprint sensing technology, many high resolution (i.e.,

1000 ppi) sensors are now available that makes the extraction of extended features

more feasible. The extended features that are well understood and often used by latent

experts include minutiae shape, dots and pores [6]. They are utilized in latent matching

when they are present in the input image and discernible to reach accurate conclu-

sions. Unfortunately, there have very few systematic studies on automatic fingerprint

identification using these extended features. Such studies are sorely needed with the

planned Next Generation Identification (NGI) project launched by the FBI that will use

fingerprints at 1000 ppi resolution.

At the 2005 ANSI/NIST fingerprint standard update workshop, SWGFAST [29]

proposed a minimum scanning resolution of 1000 ppi for latent, ten-print, and palm

print images and the inclusion of extended features in the FBI standard. This pro-

posal and its support by the forensic community calls for an urgent need for systematic

research in the use of extended feature set in automatic fingerprint identification. We

propose to develop an automated system that would robustly extract and match some of

the prominent extended features. This would enable us to quantify the discriminating

power of the extended features by evaluating their statistical significance.

Methods
We study a number of extended features at all three levels, including ridge flow map,

ridge wavelength map, ridge quality map, ridge skeleton, pores, dots, incipient ridges,

and ridge edge protrusions. Feature extraction and matching algorithms are devel-

oped for each type of feature. Relative contribution of each feature to matching accu-

racy is evaluated by incrementally adding features to baseline features (minutiae and

core/delta). The order of adding features is determined based on the amount of man-
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ual effort needed in feature marking and the estimated importance of features. Latent

fingerprint databases, NIST SD27 and ELFT-EFS-PC, and several NIST rolled/plain

fingerprint databases are used in our experiments.

Based on a conventional fingerprint feature extraction algorithm, which outputs

ridge skeleton image and minutiae, and a baseline minutiae matcher, which outputs

minutiae correspondences and minutiae match score, encoding and matching algo-

rithms are developed for extended features at three levels:

1. At Level 1, three types of extend features are considered, including ridge flow

map, ridge wavelength map, and ridge quality map. These features are used in

local matching stage to facilitate minutiae pairing as well as in global matching

stage to help separate genuine matches and impostor matches.

2. At Level 2, a ridge skeleton matching algorithm is developed. Starting with the

most similar minutiae pairs, the skeleton matching algorithm establishes skele-

ton correspondence through a skeleton propagation procedure. After skeleton

matching is finished, a skeleton match score is computed.

3. At Level 3, four types of extended features are considered, including pores, dots,

incipient ridges, and ridge edge protrusions. A topological level 3 feature match-

ing algorithm is developed for latent to full fingerprint matching. Unlike most

existing level 3 feature matching algorithms that only consider the feature loca-

tion, the proposed algorithm enforces the topological relationship between level

3 features, minutiae, and ridge skeletons.

Because the public domain 1000 ppi fingerprint databases are few and small in size,

we used different databases for extended features at different levels.

1. For experiments related to Level 1 and Level 2 features, 258 latent fingerprints

and mated rolled fingerprints in NIST SD27 are used. A total of 29K rolled

fingerprints in NIST SD4 and SD14 are additionally used as background data to

increase the gallery size. All these fingerprint images are captured at 500 ppi.

2. For experiments related to Level 3 features, 242 latent fingerprints and mated

rolled finger-prints in ELFT-EFS-PC are used. The gallery consists of 4,180

rolled fingerprints, where the additional rolled fingerprints are from NIST SD29

and SD30. All these fingerprint images are captured at 1000 ppi.

3. Because the poor quality of many latent and/or rolled fingerprints in ELFT-EFS-

PC restricts the efficacy of Level 3 features, a simulated 1000 ppi partial finger-

print database is constructed from rolled fingerprints in NIST SD30 to study the

potential values of Level 3 features. In all these databases, features in the latent

prints are manually marked, but features in the rolled fingerprints are automati-

cally extracted.

The first set of experiments is conducted to evaluate the proposed matching algo-

rithms for Level 1 and Level 2 extended features and to study the utility of various

Level 1 and Level 2 extended features.
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1. The performance, in terms of the Cumulative Match Characteristic (CMC) curve,

of the baseline minutiae matcher is first established by matching all latents against

the 29K gallery.

2. Extended features are incrementally added (in the following order: ridge quality

map, ridge flow map, ridge wavelength map, and finally ridge skeleton) and the

test is repeated.

3. Performance improvement of each extended feature is analyzed for the whole

database as well as separately for three quality levels of latent fingerprints (spec-

ified by fingerprint examiners).

The second set of experiments is conducted to evaluate the proposed encoding and

matching algorithms for Level 3 extended features and to study the utility of various

Level 3 extended features.

1. The joint distributions of the number of Level 3 features and the number of

minutiae in latents of ELFT-EFS-PC database and the West Virginia University

(WVU) latent database are analyzed.

2. The performance, in terms of the Cumulative Match Characteristic (CMC) curve,

of the baseline minutiae matcher is first established by matching all latents in

ELFT-EFS-PC against the 4180 rolled fingerprints.

3. Extraction accuracy of Level 3 features is evaluated on the simulated partial fin-

gerprint database by comparing them to ground truth.

4. Matching experiments using Level 3 features are conducted on both ELFT-EFS-

PC and the simulated partial fingerprint database.

Results
Experimental results are summarized as follows:

1. Extended features at Level 1 lead to the largest matching accuracy improvement

than extended features at the other two levels. Among the Level 1 extended

features, ridge quality map and ridge flow map are the most important.

2. Extended features at Level 2, namely ridge skeleton, improve the rank-1 recog-

nition rate by 5%.

3. The “ugly” latents in NIST SD27 benefit the most from using extended features

at Level 1 and Level 2. The rank-1 recognition rate for “ugly” latents using

all extended features at Level 1 is already comparable to the rank-1 recogni-

tion rate for “good” latents using the current FBI standard features (minutiae +

core/delta).

4. The contribution of Level 3 features on ELFT-EFS-PC is minor. But, on a sim-

ulated partial fingerprint database, they do show obvious improvement in the

matching accuracy.
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Conclusions
Based on the extensive experiments, the following conclusions are made:

1. All extended features at Level 1 and Level 2 should be incorporated into AFIS as

soon as possible, since (i) these features are insensitive to image quality, (ii) do

not rely on high resolution images, and (iii) do lead to significant improvement

in the matching accuracy.

2. Algorithms and GUI tools should be developed to help fingerprint examiners

manually mark extended features in latents, since it is a time-consuming task.

3. Utility of Level 3 features heavily rely on the image quality of both latents and

enrolled fingerprints. Hence it is crucial to improve the quality of enrolled fin-

gerprints (so that a sufficient number of Level 3 features can be extracted) before

Level 3 features can play an important role in design and development of next

generation AFIS.
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1 Introduction
Over the past 40 years, Automated Fingerprint Identification Systems (AFIS) have

played a major role in forensics and criminal investigations. However, these systems

have not yet eliminated the need for manual examination of fingerprints by experienced

human experts, particularly for latent prints. This is mainly because “AFIS technology,

since its onset, has utilized a very limited amount of fingerprint detail. Latent print

experts rely on far more information in effecting individualizations/exclusions than

just ending ridges and bifurcations” [50].

Three types of fingerprint images are commonly used in law enforcement appli-

cations: ink, live-scan, and latent (see Fig. 1). Inking method is the earliest method

for capturing and recording fingerprints. To capture the ink fingerprint images of a

subject, the finger is coated with ink and pressed or rolled against a paper card. The

print left on the card is then scanned to obtain a digital fingerprint image. Live-scan

fingerprint images are obtained by using optical, capacitive or other types of sensors

to directly image the finger. Latent fingerprint images are inadvertently left by per-

sons on surfaces of objects and are lifted or photographed by using various techniques,

e.g. chemical processing [3]. Compared to ink and live-scan fingerprint images, latent

fingerprint images are characterized by small area, poor quality, and large non-linear

distortion [56].

Fingerprint features are generally categorized into three levels [6]. Level 1 features

are the macro details of the fingerprint such as ridge flow and pattern type. Level 2

features refer to the Galton characteristics or minutiae, such as ridge bifurcations and

endings. Level 3 features include all dimensional attributes of the ridge such as ridge

path deviation, width, shape, pores, edge contour, incipient ridges, breaks, creases,

scars, and other permanent details. An example is given in Fig. 2 to show some of the

three level features. The current FBI standard of fingerprint resolution for AFIS is 500

ppi ( 50 microns pitch), which is inadequate to automatically extract Level 3 features,

such as pores ( 60 microns in radius). As a result, AFIS technology is primarily based

on Level 1 and Level 2 features.

With the advances in fingerprint sensing technology, many high resolution (i.e.,

1000 ppi) sensors are now available that makes the extraction of extended features

more feasible. The extended features that are well understood and often used by latent

experts include minutiae shape, dots and pores [6]. They have been relied upon in latent

matching when they are present and discernible to reach accurate conclusions. Unfor-

tunately, there have very few systematic studies on automatic fingerprint identification

using these extended features.

At the 2005 ANSI/NIST fingerprint standard update workshop, SWGFAST [29]

proposed a minimum scanning resolution of 1000 ppi for latent, ten-print, and palm

print images and the inclusion of extended features in the FBI standard. This proposal

and its strong endorsement by the forensic community calls for systematic research in

the use of extended feature set in automatic fingerprint identification. We propose to

develop an automated system that would robustly extract and match some of the promi-

nent extended features. This would enable us to quantify the discriminating power of

the extended features by evaluating their statistical significance.
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1.1 Statement of the problem
We propose to develop an automated system that would robustly extract and match

some of the prominent extended features for both latent-to-full and full-to-full finger-

print matching. Using this system, we will quantify the discriminating power of the

extended features by evaluating their statistical significance.

1.2 Literature review
It is a common practice to improve the capability of a minutiae matcher by using

Level 1 and Level 2 features. These include singular points and pattern type [24],

ridge flow map (or orientation field) [24, 31–35], ridge wavelength map (or frequency

map) [31,36], skeleton [24,25,31,37,38], and crease [39]. However, these studies pri-

marily address full fingerprint matching and, to our knowledge, there is no published

algorithm on using extended features for latent matching. NIST has conducted an eval-

uation of latent fingerprint technology using extended feature set (ELFT-EFS) [55].

Extended feature set (EFS) was manually marked in the latent fingerprints, and their

contribution to latent search was assessed by using matchers from the participants. The

NIST evaluation showed that EFS did improve the latent search accuracy. However,

because the ELFT-EFS test did not evaluate each extended feature separately, the con-

tribution of individual features is not known from this evaluation.

There is a growing interest in using Level 3 features, such as pores [35, 40, 41, 53,

54], ridge contours [35, 41], dots and incipient ridges [42], for fingerprint matching.

It is claimed that Level 3 features contain discriminating information and can improve

the performance of matching rolled/plain to rolled/plain fingerprints. However, these

conclusions are not easy to extend to latent fingerprint matching, because

• Latent fingerprints are generally of poor quality.

• Since latent images need to be matched against rolled/plain fingerprints, the re-

peatability or consistency of Level 3 features is critical. Repeatability of Level

3 features in images acquired with different techniques is much lower than that

in [35, 41, 42] where the same sensor was used to capture both template and

query fingerprints. The survey performed by Anthonioz et al. [43] among sev-

enty latent examiners shows that there is no clear consensus on the repeatability

of Level 3 features.

• Level 3 features such as pores and ridge edges are correlated with skeleton and

ridge flow map. Therefore, it is not evident if the performance improvement

reported in [35, 41, 42] is due to Level 3 features or Level 2 features that have

been implicitly used.

1.3 Rationale for the research
The rational for the proposed research and methods are as follows:

1. Latent examiners routinely use a rich set of fingerprint features in manual la-

tent fingerprint matching. However, current AFIS rely mainly on minutiae and
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core/delta. Thus it is reasonable to hypothesize that the large performance gap

between AFIS and latent examiners is due to features utilized in matching.

2. Previous studies have shown that some of the extended features are able to im-

prove the matching accuracy of minutiae matcher in full fingerprint matching.

Thus it is reasonable to hypothesize that with proper algorithm design, extended

features will also help improve latent matching accuracy.

3. Extended features are not independent from each other. In fact, higher level

features can be determined from lower level features. For example, orientation

field can be determined from ridge skeletons and ridge skeletons can be deter-

mined from ridge contours. Thus it is reason-able to incrementally incorporate

each type of extended feature into AFIS and to study the additive value of each

extended feature.

4. Higher level extended features are more insensitive to image quality and resolu-

tion than lower level extended features. Thus it is reasonable to use higher level

features ahead of lower level features.
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2 Methods

2.1 Features
The proposed system utilizes the following features: Level 1 features (reference points

(core/delta), ridge quality map, ridge flow map, and ridge wavelength map), Level 2

features (minutiae and skeleton), and Level 3 features (dots, incipient ridges, pores, and

ridge edge protrusions). Since all these features are defined in the CDEFFS document

[30], we use terms that are consistent with these definitions.

• Reference points have location, direction and type (see [30]).

• Ridge flow map, ridge wavelength map, and ridge quality map are obtained by

dividing the image into non-overlapping bocks of size 16 × 16 and assigning a

single orientation, wavelength, and quality value to each block. We define three

quality levels for a block: level 0 (background), level 1 (clear ridge flow and

unreliable minutiae), and level 2 (clear minutiae).

• A minutia consists of five attributes, namely x and y coordinates, minutiae di-

rection, type, and quality. The quality of minutia is defined to have two levels: 0
(unreliable) and 1 (reliable).

• A skeleton is one-pixel-wide ridge, which is traced in the thinned image and

represented as a list of points.

• Level 3 features (dots, incipient ridges, pores, and ridge edge protrusions) are

represented as a set of points.

2.2 Feature Extraction
2.2.1 Level 1 and Level 2

While the features at Level 1 and Level 2 have been manually marked for 258 latents

in SD27 (see Fig. 3 for a latent in SD27 with manually marked features and Fig. 4 for

three latents in ELFT-EFS-PC with manually marked features), the rolled fingerprints

are automatically processed to obtain all the features. The feature extraction algorithm

consists of two modules: preprocessing and postprocessing. In this work, Neurotech-

nology Verifinger 4.2 SDK [44] was used as a preprocessor. Due to the presence of

background noise (characters and strokes on many fingerprints scanned from paper,

such as the rolled prints in NIST SD4, SD14, and SD27), Verifinger produces many

false minutiae. Therefore, a ridge validation algorithm is used to classify each ridge or

ridge segment as true or false, and a minutiae validation algorithm is used to classify

each minutia as false, reliable, or unreliable.

A minutia is deemed as false if it is close to the background region. A minutia is

deemed as unreliable if it forms an opposite pair with another minutia. An opposite pair

is a pair of minutiae which are spatially close but have opposite directions. Remaining

minutiae are deemed as reliable.
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Ridge validation consists of the following two steps: 1) each ridge is broken into

multiple segments at unreliable positions; 2) the segments are grouped and those be-

longing to large groups are deemed as reliable.

A block containing true ridges is labelled as foreground; otherwise as background.

For each sample point (at intervals of 6 pixels) on each ridge, the tangent direction is

computed and the distance from the adjacent ridges on both sides is computed. The

ridge flow and ridge wavelength in each foreground block are estimated by majority

voting. Singular points are extracted by the Poincaré index method [45]. An example

is given in Fig. 5 to show the results of these processing steps.

2.2.2 Level 3

Level 3 fingerprint features considered here include pores, dots, incipient ridges and

ridge edge protrusions. Pores appear as bright blobs on ridges and the other three fea-

tures appear between ridges (see Fig. 2(c)). We first discuss pore extraction, followed

by extraction algorithm for the other three features.

Pores Pores, also known as sweat pores, are located on finger ridges. They are

formed in the sixth month of gestation due to the sweat-gland ducts reaching the sur-

face of the epidermis. Once the pores are formed, they are fixed on the ridges; typically,

there are between 9 and 18 pores along a centimeter of a ridge [45]. A pore can be visu-

alized as open on one print, but as closed on another print of the same finger depending

on the finger pressure and whether it is exuding perspiration. As shown in Fig. 2(c), a

closed pore appears as an isolated dot on the ridge, while an open pore is connected to

one or both of the two valleys surrounding it. As a result, the shape and size of pores

can vary from one impression to another, and therefore only the pore position is used

in matching.

The basic idea of the proposed pore extraction method is to model the spatial

appearance of pores in fingerprint images and detect them via filtering the images

with suitable matched filters. In [53], it was shown that along the ridge tangential

orientation, the intensity profile across the pore has a Gaussian shape irrespective of

whether it is open or closed (see Figs. 6(a) and 6(b)). Based on this observation, an

anisotropic pore model was established and an adaptive pore extraction algorithm was

proposed [53]. One drawback of the method is that it sets the scale parameter in the

pore model as a constant multiple of local ridge period. Such a constant ratio param-

eter is however difficult to specify for all fingerprints, especially when large distortion

exists across the fingerprint images such as latents. As an improvement to the method

in [53], we propose a new pore matched filter based on the automatic scale selection

technique [58]. Let X and Y be the horizontal (column) and vertical (row) axes of the

global image coordinate system (x and y are the corresponding coordinates), and V
and U denote the local ridge tangential and normal orientation, respectively. Let θ be

the local ridge (tangential) orientation with respect to the X axis. The proposed pore

matched filter is defined as

P γ
POR(v, u; tV , tU , θ) = −t3/4V gV V (v; tV )g(u; tU ), (1)

where
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• (v, u) = (x cos θ − y sin θ, x sin θ + y cos θ),

• g(u; tU ) = 1/(
√
2πtU )e

−u2/(2tU ) is Gaussian along the ridge normal orienta-

tion and constant along the ridge tangential orientation,

• gV V (v; tV ) = (v2 + tV )/(
√

2πt5V )e
−v2/(2tV ) is Laplacian along the ridge tan-

gential orientation and constant along the ridge normal orientation,

• and tV and tU are, respectively, the variances along the ridge tangential orienta-

tion and the ridge normal orientation.

Note that unlike [53], we describe the intensity appearance of a pore along the ridge

tangential orientation by using a Laplacian kernel because it is more robust to noise.

The Gaussian kernel along the other orientation is used merely for smoothing the noise

along the ridge normal orientation.

In order to apply the above pore matched filters, we first divide the fingerprint

image into blocks and estimate the local ridge orientation θ. We then instantiate a

pore matched filter for each block that has dominant ridge orientation (called a well-

defined block) according to eq. 1. The parameter tU in the pore matched filter is set

to a constant because it is used merely for noise smoothing. As for the parameter tV ,

a multiscale setting is adopted so that pores of varying sizes can be detected. More

specifically, a set of pore matched filters are constructed for each well-defined block

and convolved with the block. The maximum response among the sets of pore matched

filters is binarized, resulting in the pore map; candidate pore pixels have value 1 and

the non-pore pixels have value 0.

The pore map contains some falsely detected pores. To remove them, the following

post-processing steps are conducted: (i) candidate pores which are not on ridges are

removed; (ii) connected components on the pore map whose area is either too small

or too large are discarded; (iii) connected components on the pore map are removed if

the intensity of their pixels is too low. After these post-processing operations, many

spurious pores are excluded, and each connected component in the post-processed pore

map corresponds to a pore. The centroids of these detected pores are recorded. Fig.

7(a) shows a portion of a rolled ink fingerprint image, and Fig. 7(b) shows the pores de-

tected in it by the proposed method. The pore extraction results of the latent fingerprint

image in Fig. 1(c) are shown in Fig. 7(c). Due to the poor quality of latent fingerprint

images, more false pores are detected in the latent than in the rolled image. Yet, most

of the true pores are correctly extracted in latents. Therefore, the automatic pore ex-

traction algorithm proposed here may provide useful information to latent examiners

and cut down their workload in manually marking pores.

Dots, Incipient Ridges, and Ridge Edge Protrusions (DIP) While typical ridges

stretch over a large area of fingerprints and their width varies from 100μm to 300μm
[45], there are occasionally some ridges which are quite short or substantially thin (see

Fig. 2(c)). These are actually dots and incipient ridges, two additional types of level 3

features in fingerprints [6]. Unlike pores, which are present in almost every finger, dots

and incipient ridges can be found in fingerprints of only about 45% of the population
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and 13.5% of the fingers [35]. They reside in fingerprint valleys and, if observed in

small areas, have been claimed to be distinctive for differentiating fingerprints.

Along a ridge, variations in ridge width can be observed. This gives rise to ridge

edge features, including protrusions, indentations, and discontinuities (see Fig. 2(c)),

among which protrusions are the most notable ridge edge feature. A ridge edge pro-

trusion refers to an abrupt increase in ridge width that is not long enough to be called

a bifurcation. Although ridge edge protrusions, dots, and incipient ridges are defined

as different features, their appearance in fingerprint images can be greatly affected by

finger pressure and imaging conditions [35], and consequently, they can be confused

with each other in different impressions of the same finger. As shown in Fig. 8, a

dot in one impression can appear as a ridge edge protrusion in the other impression,

and an incipient ridge can appear as a series of separated dots. Therefore, we do not

distinguish among these three types of level 3 features for extraction and matching, but

collectively label them as a single feature type (denoted as DIP).

In order to extract the DIP features, a procedure similar to that for pore extraction is

applied, but with matched filters designed for DIP. Fig. 6 shows that the intensity pro-

files along the ridge normal orientation are shaped as a full or half negative Gaussian.

Therefore, we define the following matched filters for the DIP features,

P γ
DIP (v, u; tV , tU , θ

⊥) = t
3/4
U g(v; tV )gUU (u; tU ), (2)

where θ⊥ is the local ridge normal orientation at the DIP feature (perpendicular to θ).

The DIP matched filters are applied for each block that has dominant ridge orientation

with tV set to a constant, and tU to a multiscale setting. The resulting DIP map then

goes through the following post-processing steps. First, the candidate DIP pixels which

are not in the valleys are removed, because the DIP features should reside in valleys

only. Second, the connected components in the DIP map of either too small or too

large area are discarded. Third, those components in the DIP map whose intensity

is too high are removed. After these post-processing operations, many spurious DIP

are excluded. The remaining connected components in the DIP map are then thinned

to single-pixel curves. If a curve bends too much, i.e. the maximum distance from

its pixels to the chord (straight line connecting its two ends) is too large, it is divided

into two curves at the pixel which is farthest from the chord. Finally, the centroids of

these curves are recorded to represent the extracted DIP features in the fingerprint. The

DIP extraction results of the proposed method for an example rolled ink fingerprint

fragment are shown in Fig. 9(a) and Fig. 9(b) (note that if the length of a detected DIP

is larger than the local ridge period, it is displayed as an incipient ridge. See the blue

lines in Fig. 9(b)). The DIP extraction results in the latent fingerprint image in Fig.

4(b) are shown in Fig. 9(c). Despite the poor quality of the latent, most of the true

DIP features have been correctly extracted by the proposed method, but there are many

false detections (most of which are due to ridge edge features).
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2.3 Matching
2.3.1 Level 1 and Level 2

To understand the relative importance of various extended features, they are incremen-

tally used for matching and the performance gains are examined. Starting with the

baseline matching algorithm, which uses only minutiae, additional features (reference

points, overall image characteristics and skeleton) are incrementally used. This order is

roughly based on the required time in manual feature marking. The baseline matching

algorithm is not only a matcher for minutiae-only templates, but also serves as a frame-

work to match and fuse various extended features. We provide a detailed description

of the baseline matcher and then describe the approaches to using various extended

features.

Baseline Matching Algorithm The baseline matching algorithm takes only minutiae

as input and consists of the following steps:

1. Local minutiae matching: Similarity between each minutia of latent fingerprint

and each minutia of rolled fingerprint is computed.

2. Global minutiae matching: Using each of the five most similar minutia pairs

found in Step 1 as an initial minutia pair, a greedy matching algorithm is used to

find a set of matching minutia pairs.

3. Matching score computation: A matching score is computed for each set of

matching minutia pairs and the maximum score is used as the matching score

between the latent and rolled prints.

Local minutiae matching In local minutiae matching, the similarity between

each minutia of latent fingerprint and each minutia of rolled fingerprint is computed.

Since the basic properties of a minutia, like location, direction and type, are not very

distinctive features, additional features, which are collectively referred to as a descrip-

tor, are computed for each minutia. Figure 10 show five types of features that have been

used as minutiae descriptors in the literature [31, 46, 47]. In the baseline algorithm,

a neighboring minutiae-based descriptor is used, since only minutiae information is

available.

The neighborhood of a minutia is defined to be a circular region with an 80-pixel

radius. All minutiae lying in this neighborhood are called the neighboring minutiae.

Let p and q be the two minutiae whose similarity needs to be computed. For each

neighboring minutia pi of p, we examine if there is a neighboring minutia of q whose

location and direction are similar to those of pi. If such a minutia exists, pi is deemed

as a matching minutia; otherwise pi is checked against the following two criteria: 1)

the minutia is unreliable, 2) it does not fall in the foreground region (the convex hull

of minutiae) when mapped to the other fingerprint based on the alignment parameters

between p and q. If pi satisfies either one of these two criteria, it will not be penalized;

otherwise, it will be penalized. The above process is also applied to the neighboring
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minutiae of q. The similarity between two neighboring minutiae-based descriptors is

computed as:

sm =
mp + 1

mp + up + 3
· mq + 1

mq + uq + 3
, (3)

where mp and mq denote the number of neighboring minutiae of p and q that match, up

and uq denote the number of penalized unmatched neighboring minutiae of p and q, the

value 1 in the numerator is used to deal with the case where no neighboring minutiae

are available, and the value 3 in the denominator is empirically chosen to favor the case

where there are more neighboring minutiae that match. Note that mp may be different

from mq since we do not establish a one-to-one correspondence between minutiae.

Global minutiae matching Given the similarity among all minutia pairs, the

one-to-one correspondence between minutiae is established in the global minutiae

matching stage. Greedy strategy is used to find matching minutia pairs in the decreas-

ing order of similarity. In order to give priority to those minutia pairs that are not only

similar to each other but also dissimilar with other minutiae, a normalized similarity

measure sn is defined based on similarity s as:

sn(i, j) =
(NL

m +NR
m − 1) · s(i, j)

∑NR
m

k=1 s(i, k) +
∑NL

m

k=1 s(k, j)− s(i, j)
(4)

where s(i, j) denotes the similarity between minutia i and minutia j, and NL
m and NR

m

denote the number of minutiae in the latent and rolled, respectively. All minutia pairs

are sorted in the decreasing order of normalized similarity, and each of the top 5 minu-

tia pairs is used to align the two sets of minutiae. Minutiae are examined according

to the decreasing order of their similarity; minutiae that are close in both location and

direction, and have not been matched to other minutiae are deemed as matching minu-

tiae. After all the minutia pairs have been examined, a set of matching minutiae is

returned.

Matching score computation The matching score between two fingerprints is

a measure that reflects the likelihood that they are from the same finger. A desired

property of matching scores is that the score for fingerprints that have many matched

minutiae and few unmatched minutiae in the common area should be very high, the

score between fingerprints that appear obviously different should be very low, and the

score between fingerprints that share small common area or whose common areas are

of poor quality should be in the middle.

Computing matching scores or simply scoring is typically approached in two ways:

formula-based and classifier-based. In formula-based approach [32,48], an empirically

chosen formula is used to compute matching scores. In classifier-based approach [31,

49], scoring is regarded as a two-category classification problem. A pair of fingerprints

is classified by a traditional classifier, such as Artificial Neural Network (ANN) or

Support Vector Machine (SVM), as a genuine match or an impostor match based on

a feature vector extracted from matching these two fingerprints. A major problem

with classifier-based approach is that the training targets of all genuine matches are the
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same, say 1, no matter how many minutiae are matched. Similarly, the training targets

of all impostor matches are also the same, say 0, no matter how many minutiae in the

common area are unmatched. This violates the desired property for matching scores. It

is also not practical to use a classifier-based scoring approach in latent matching since

obtaining manually marked latents is very difficult. For the above two reasons, we

adopted a formula-based scoring approach in this paper.

Our scoring method is described as follows. When fewer than three minutiae are

matched, the matching score SM is set to 0; otherwise SM is the product of a quantita-

tive score Smn and a qualitative score Smq:

SM = Smn · Smq. (5)

The quantitative score Smn is computed as Mm/(Mm + 8), where Mm denotes the

number of matched minutiae and the value 8 is an estimate of the average number of

matching minutiae for low quality latents. The qualitative score is computed as:

Smq = Sd · Mm

Mm + UL
m

· Mm

Mm + UR
m

(6)

where Sd is the average similarity of descriptors for all matching minutiae, and UL
m

and UR
m denote the number of penalized unmatched minutiae in latent and rolled prints,

respectively.

Additional Features

Reference Points Using the spatial transformation between the two images, which

is estimated based on the matched minutiae, the reference points (if present) of the la-

tent are transformed into the coordinate system of the rolled print. The distance and

angle difference between reference points of the same type are computed and com-

pared to predefined thresholds (30 for distance and π/4 for angle). If both values are

less than their respective thresholds, the reference points are deemed as matched. The

accumulated matching score is computed as:

SR = SM + Cr · Sr, (7)

where Sr denotes the matching score based on reference points, namely, the number of

matched reference points and Cr is a constant value empirically set as 0.03.

Ridge Quality Map Ridge quality map is used in local minutiae matching and

matching score computation stages to ignore the unmatched minutiae of one fingerprint

that are mapped to the low quality region (quality level 0 or 1) of the other fingerprint.

As will be shown in the experimental results section, this modification significantly

improves the matching accuracy. The accumulated matching score SQ is computed by

Eqs. (5) and (7).
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Ridge Flow Map Ridge flow map is used in two stages: local minutiae matching

and matching score computation.

For every minutia, a local coordinate system is defined with the minutia as the ori-

gin and its direction as the positive x axis. A set of fixed sample points is defined [32]

and the local ridge flow at these sample points form the flow descriptor. The similarity

of two descriptors is computed as the mean value of the similarity of all valid sample

points (a sample point falling in background region is deemed as invalid). The similar-

ity between the flow at two sample points is computed as sf = exp(−|Δθ|/(π/16)),
where Δθ denotes the angle between the two flows. If the number of common valid

sample points is less than 25% of the total number of sample points, the similarity

of two minutiae is set to 0. The similarity between two minutiae is computed as the

weighted sum of the neighboring minutiae-based similarity and flow-based similarity:

s = wm · sm + (1− wm) · sf , (8)

where the weight wm for the neighboring minutiae-based descriptor is empirically set

as 0.6, due to its superior performance compared to flow-based descriptor.

The ridge flow maps of latent and rolled prints are aligned using the spatial trans-

formation estimated based on the matched minutia pairs. The matching score Sf based

on ridge flow is the product of a quantitative score Sfn and a qualitative score Sfq .

The quantitative score Sfn is computed as Nb/(Nb +100), where Nb is the number of

blocks where the difference in flow is less than π/8 and the value 100 is an estimate of

the average number of 16× 16 blocks in low quality latents. The qualitative score Sfq

is computed as (1− 2 ·Df/π), where Df is the mean of the difference of flow values

in all overlapping blocks.

The accumulated matching score SF between two fingerprints is computed as:

SF = SM + Cr · Sr + Cf · Sf , (9)

where the constant Cf is empirically set as 0.2.

Ridge Wavelength Map Ridge wavelength map is used in two stages: local

minutiae matching and matching score computation.

Wavelength-based minutia descriptor is composed of the ridge wavelength at the

same set of sample points as ridge flow-based descriptor. The similarity between the

wavelength of two sample points is computed as sw = exp(−|Δw|/3), where Δw de-

notes the wavelength difference at the two sample points. The similarity between two

minutiae is computed as the weighted sum of the neighboring minutiae-based similar-

ity, flow-based similarity, and wavelength-based similarity:

s = wm · sm + wf · sf + (1− wm − wf ) · sw, (10)

where the weights wm and wf for the neigbhoring minutiae-based and flow-based de-

scriptors are empirically set as 0.6 and 0.2, respectively.

The ridge wavelength maps of latent and rolled prints are aligned using the spatial

transformation estimated based on the matched minutia pairs. The matching score Sw

based on wavelength is the product of a quantitative score Swn and a qualitative score
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Swq . The quantitative score Swn is computed as Nb/(Nb + 100), where Nb is the

number of blocks where the difference in wavelength is less than 3 pixels and the value

100 is an estimate of the average number of 16 × 16 blocks in low quality latents.

The qualitative score Swq is computed as the average similarity of wavelength in all

overlapping blocks.

The accumulated matching score SW between two fingerprints is computed as:

SW = SM + Cr · Sr + Cf · Sf + Cw · Sw, (11)

where the constant Cw is empirically set as 0.2.

Skeleton Minutiae can be deemed as an abstract representation of ridge skeleton.

However, the skeleton image contains more information than minutiae. The skeleton

matching algorithm is similar in spirit to the “ridges in sequence” idea recommended

by SWGFAST [50]. Hara and Toyama [25] describe an interesting skeleton matching

algorithm, which consists of the following steps: 1) select the most reliable minutiae

pair from all the matched minutiae pairs as the base paired minutiae (BPM); 2) remove

minutiae pairs that are inconsistent with BPM; 3) modify the two skeleton images to

make them more similar; and 4) incrementally match skeleton points guided by the

matched minutiae or skeleton points. While their approach needs at least three pairs

of correctly matched minutiae to guide the skeleton matching process, our approach

needs only a pair of correctly matched minutiae as starting point, which is useful in

matching latent prints with very small area.

The proposed skeleton matching algorithm is an improved version of the algorithm

in [37]. Its main steps are briefly described as follows.

1. Similarity between minutiae of two fingerprints is computed.

2. For each of the five most similar minutiae pairs, steps 3 to 5 are performed to

establish correspondence between skeletons of two fingerprints and compute a

matching score. The maximum value of these scores is used as the skeleton

matching score.

3. The associated skeletons of the initial minutiae pair are assumed to be matched

and used as a reference.

4. Skeletons adjacent to reference skeleton pair are aligned according to reference

skeleton pair and then matched. Newly matched skeletons are used a new refer-

ence. This step is iteratively performed until no more skeletons can be matched.

5. A skeleton matching score is computed.

The differences from the algorithm in [37] lie in the computation of minutiae simi-

larity and skeleton matching score. The similarity between minutiae is now computed

using the composite minutiae descriptor based on neighboring minutiae, ridge flow,

and wavelength features. The similarity computation is described in previous subsec-

tions. This composite descriptor is more robust to noise than the ridge structure based
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descriptor used in [37]. The skeleton matching score is computed as the product of a

quantitative score Ssn and a qualitative score Ssq:

Ss = Ssn · Ssq. (12)

The quantitive score Ssn is computed as:

Ssn =
Ms

Ms + 400
, (13)

where Ms denotes the number of matched skeleton points and the value 400 is an

estimate of the average number of skeleton sample points in low quality latents. The

qualitative score is computed as:

Ssq =
Ms

Ms + UL
s

· Ms

M + UR
s

, (14)

where UL
s and UR

s denote the number of unmatched skeleton sample points of latent

and rolled prints in their common region, respectively.

The accumulated matching score SS is obtained by combining Ss and SW com-

puted in Eq. (11):

SS = SW + Cs · Ss, (15)

where the constant Cs is empirically set as 1. For efficiency, skeleton matching is

performed only for the top 100 candidates found by the minutiae matcher.

2.3.2 Level 3

Algorithm Overview Given a latent fingerpint, it is first matched with the exemplars

in the background database by using a minutiae matcher (VeriFinger [44] was used

in our experiments). The rank 1 minutiae match score is then examined to determine

if it is necessary to invoke the level 3 feature matching module. Specifically, if the

rank 1 minutiae match score is already above a prespecified threshold, the matcher will

directly output the identification results (e.g. the list of top N candidates); otherwise,

the level 3 features will be further compared, and the final identification results will be

based on the fusion of the matching results of minutiae and level 3 features. Fig. 11

illustrates this algorithm.

We first match the minutiae because i) minutiae have already been shown to be

stable and discriminative, and ii) minutiae form the basis of all the available AFIS.

In the rest of this section, we will describe the three modules of the proposed level 3

feature matching method, i.e. ridge correspondence establishment, pore matching, and

DIP matching.

Ridge Correspondence Establishment The level 3 feature matching method

proposed here differs from existing methods in that it matches level 3 features along the

ridges and incorporates the topological relationship between level 3 features, minutiae,

and ridges. Given a query latent Fq and an exemplar full fingerprint Ft, the proposed

matcher first establishes the ridge correspondences between the two fingerprints. To
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facilitate ridge matching process, the ridges in each fingerprint are traced and sam-

pled at a constant interval (in our experiments, the interval is set to 10 pixels, which is

the allowed tolerance of location displacement between two matched level 3 features).

During the ridge tracing and sampling, the associated minutiae (if any) are recorded for

each of the ridges, and the neighboring ridges and the neighboring sampling points on

the left-hand and right-hand sides at each sampling point of the ridge are also recorded.

Algorithm 1 Ridge Correspondence Establishment

Require: MM : Mated minutiae pairs between Fq and Ft; Rq , Rt: Ridges in Fq and

Ft

Ensure: sr: Similarity between ridges in Fq and Ft; MR: Mated ridge pairs between

Fq and Ft, and corresponding sampling points on them

1: sr ← 0, MR← NULL
2: for each pair of mated minutiae, {M1,M2}, in MM do
3: for each pair of ridges, {R1, R2}, associated with M1 and M2 do
4: Generate candidate aligned ridge pairs CR = {RSP1, 0, RSP2, 0} from

{R1, R2}
5: MRSP ← IntraRidgeMatch(CR)
6: if |MRSP | > 4 then
7: (mr, s)←

InterRidgePropagation(Rq, Rt,MRSP )
8: if sr < s then
9: sr ← s, MR← mr

10: end if
11: end if
12: end for
13: end for

Algorithm 1 describes the ridge correspondence establishment. Suppose a set of

mated minutiae are found between Fq and Ft by the minutiae matcher. Fig. 12

shows an example latent and its mated rolled fingerprint in ELFT-EFS-PC. There are

three pairs of mated minutiae in them. From each pair of mated minutiae, several

pairs of candidate aligned ridges can be obtained from the ridges associated with

the two minutiae in the pair. A candidate aligned ridge pair is defined as CR =
{RSP1, PR1;RSP2, PR2}, where RSP1 and RSP2 are the two candidate ridges (or

ridge segments) represented by their sampling points and the first sampling points on

them are assumed to be matched (here, the sampling points corresponding to the mated

minutiae) and PR1 and PR2 are the parent ridges from which this candidate aligned

ridge pair is generated. For the candidate aligned ridge pairs generated from mated

minutiae, the parent ridges are set to 0, which means they have no parent ridges. The

parent ridges will be used in Inter-Ridge propagation to ensure that only the sampling

points neighboring to the parent ridges are matched during the propagation. For exam-

ple, for the mated minutiae pair {Fq.M1, Ft.M1} in Fig. 12(a), each of the three ridges

associated with Fq.M1 is paired with the corresponding ridge associated with Ft.M1,

resulting in three pairs of candidate aligned ridges. Note that if a ridge ending is mated

with a ridge bifurcation, we will have two pairs of aligned ridges, while if two ridge
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endings are mated, we will get only one pair of aligned ridges.

From each of these aligned ridge pairs, the two ridges in the pair are first compared

by the Intra-Ridge matching procedure. If the two ridges can be matched (i.e. more

than four sampling points are matched between them), the Inter-Ridge propagation

procedure is invoked to match the remaining ridges in the two fingerprints based on

the mated sampling points on the two ridges. After all the aligned ridge pairs have

been considered, the ridge correspondences obtained from the one which gives the

highest similarity between the ridges in the two fingerprints are taken as the final result.

Next, we introduce the two main procedures, Intra-Ridge matching and Inter-Ridge

propagation, involved in ridge correspondence establishment.

Given a candidate aligned ridge pair CR = {RSP1, PR1, RSP2, PR2}, Intra-

Ridge matching is used to find the corresponding sampling points on the two aligned

ridges (or ridge segments). This is essentially a string matching problem given that the

first sampling points in RSP1 and RSP2 are matched. We employ the dynamic pro-

gramming technique [37] to find the longest sequence of mated sampling points on the

two ridges, MRSP = {RSPm
1 , RSPm

2 }, such that (i) the indices of mated sampling

points monotonously increase in both RSPm
1 and RSPm

2 , (ii) changes between indices

of adjacent mated sampling points are less than 3 (i.e. no more than 3 sampling points

can be skipped during matching), and (iii) if PRi �= 0, all the mated sampling points

in RSPm
i should have PRi as their neighboring ridges (i = 1, 2). In our implemen-

tation, two mated sampling points should satisfy i) the absolute difference between the

distances from them to the first sampling points is below a given threshold (i.e. 10 pix-

els), and ii) the absolute difference between the ridge curvatures at them is also below

a given threshold (i.e. 15 degrees). We measure the distance between two sampling

points on a ridge by using the absolute difference between their indices, which is sim-

ilar to geodesic distance. The ridge curvature at a sampling point is measured by the

change in local ridge orientation at the point with respect to the ridge orientation at the

first sampling point.

Given the mated points between two ridges, the similarity between the ridges is

computed as follows. Because short ridges are mostly unreliable, if there are fewer than

4 mated points between two ridges, we discard them. Otherwise, we further examine

the neighboring ridge structures of the mated sampling points. Let nmsp = |MRSP |
be the number of mated sampling points found on RSP1 and RSP2. For all the mated

sampling points in RSPm
i (i = 1, 2), we examine on left-hand and right-hand sides,

repsectively, if the neighboring ridges of each two adjacent sampling points are dif-

ferent or not, resulting in two feature vectors, NRl
i ∈ {0, 1}nmsp−1 and NRr

i ∈
{0, 1}nmsp−1, in which ‘0’ means same ridge and ‘1’ means different ridges. NRl

1

and NRr
1 are then compared with NRl

2 and NRr
2, respectively, and the number of the

same entries between them is counted, denoted as nl
NR and nr

NR for the left-hand and

right-hand sides, respectively. The similarity between the neighboring ridge structures

of the mated sampling points on the two ridges is then calculated by

sN = 0.5× nl
NR

nmsp − 1
+ 0.5× nr

NR

nmsp − 1
. (16)

If the mated sampling points on the two ridges have very low similarity between their

neighboring ridge structures, they are also discarded. Fig. 12(b) shows the Intra-Ridge
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matching results for the ridges Fq.R1 and Ft.R1 associated with the mated minutiae

Fq.M1 and Ft.M1 in Fig. 12(a).

Given a set of mated sampling points on the two ridges found by the Intra-Ridge

matching procedure, the Inter-Ridge propagation procedure, as sketched in Algorithm

2, matches all the remaining ridges. A queue (denoted as Q) is constructed to store the

candidate aligned ridge pairs. The queue is initialized by generating candidate aligned

ridge pairs from each pair of mated sampling points. The candidate aligned ridge pairs

are the neighboring ridges on the corresponding sides of the mated sampling points.

After the initialization of Q, we start the main loop of the Inter-Ridge propagation

procedure to compare the ridges in each of the candidate aligned ridge pairs in Q until

Q is empty. The first candidate in Q is popped out and matched by the Intra-Ridge

matching procedure. If more than four mated sampling points are established, new

candidate aligned ridge pairs are generated and pushed into Q. When Q is empty, the

Inter-Ridge propagation procedure terminates with a set of mated ridge pairs as well

as the corresponding mated sampling points. Figs. 12(c) and 12(d) shows the mated

ridge pairs found between the two example fingerprints as the procedure Inter-Ridge

propagation proceeds from the mated ridge pairs shown in Fig. 12(b).

Let s̄N , d̄loc, and d̄ori be the average similarity between neighboring ridge struc-

tures of all the mated ridge pairs, the average location displacement and the average

orientation difference between all the mated sampling points, respectively. Let nMRSP

and nRSP denote the total number of mated sampling points on the ridges in the two

fingerprints and the total number of sampling points on ridges in the query fingerprint,

respectively. Then the similarity between the ridges in the two fingerprints is defined

as

sr = 0.3× s̄N + 0.2× 10− d̄loc
10

+ 0.2× 15− d̄ori
15

+ 0.3× nMRSP

nRSP
. (17)

Pore Matching Once the correspondences between ridges are obtained, the level

3 features can be matched along the mated ridges. To implement this, we need to first

associate the level 3 features with the ridges. In this section we discuss the matching

of pores; the matching of DIP features will be discussed in the next section. Recall that

pores in a fingerprint are all located on ridges. Hence, for each pore, we find the closest

ridge to it and its projection point on this ridge. The pores on the same ridge are then

grouped together and ordered along the ridge tracing direction.

Given a pair of mated ridges, the correspondences between pores on these two

ridges are found using the following method. For each pore on a ridge, POR1, we

first find its closest sampling point SP1 on the ridge (denote the ridge as R1). If SP1

does not have a mated sampling point, then POR1 does not have any mated pores;

otherwise, we find the nearest pore, POR2, to the mated sampling point, SP2, of SP1.

The location displacement di between PORi and SPi (i = 1, 2) is calculated as the

difference between the sampling indices of the projection point of PORi and SPi.

The location displacement between the two pores, POR1 and POR2, is then defined
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Algorithm 2 Inter-Ridge Propagation

Require: MRSP : Mated sampling points on two ridges in Fq and Ft; Rq , Rt: Ridges

in Fq and Ft

Ensure: sr: Similarity between ridges in Fq and Ft; MR: Mated ridge pairs between

Fq and Ft, and corresponding sampling points on them

1: MR←MRSP
2: Initialize the queue of candidate aligned ridge pairs, Q, based on MRSP

3: while Q is not empty do
4: Retrieve the first candidate aligned ridge pair in Q: CR
5: mrsp← IntraRidgeMatch(CR)
6: if |mrsp| > 4 then
7: Append mrsp to MR
8: Generate new candidate aligned ridge pairs based on mrsp
9: Push the new candidate aligned ridge pairs into Q

10: end if
11: end while
12: Calculate the similarity between the ridges in Fq and Ft: sr

as dloc = |d1 − d2|. If dloc is smaller than a given threshold (i.e. 10 pixels for 1000ppi

fingerprint images), POR1 is mated with POR2. After all the pores in the latent are

examined, we get the mated pores between the two fingerprints. Fig. 13(a) shows the

mated pores obtained between a latent and its mated exemplar.

To calculate the pore match score, we compare the neighboring ridge structures

and pore distribution of the mated pores on each pair of mated ridges (recall that the

pores on a ridge are ordered, so are the mated pores). A comparison of neighboring

ridge structures is the same as being described for mated sampling points on ridges. As

for the neighboring pore distribution, if two mated pores both have a neighboring pore

on its left-hand side or right-hand side neighboring ridge, the location displacement

between the neighboring pores is calculated. Let dl,iNP be the location displacement

between the neighboring pores on the left-hand side of the ith mated pores on the

mated ridges, and dr,iNP the location displacement between the neighboring pores on

the right-hand side of them. The similarity between the neighboring ridge structures

and pore distribution of the mated pores in the two ridges can be then calculated as

sN = 0.4× nl
NR

nmp − 1
+ 0.4× nr

NR

nmp − 1

+ 0.1× Σ
nl
NP

i=1 (10− dl,iNP )

10× nl
NP

+ 0.1× Σ
nr
NP

i=1 (10− dr,iNP )

10× nr
NP

, (18)

where nmp is the number of mated pores on the two ridges and nl
NP and nr

NP are

the number of cooccurring neighboring pores on the left-hand and right-hand sides,
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respectively. Finally, the pore match score between the two fingerprints is defined as

sPOR = 0.8 × sr + 0.2 × (0.3 × s̄N + 0.3 × 10− d̄loc
10

+ 0.4 × nMP

nP
), (19)

where s̄N is the average similarity between neighboring ridge structures and pore dis-

tribution of all the mated pores on the mated ridge pairs, d̄loc is the average location

displacement between all the mated pores, and nMP and nP denote the total number

of mated pores and the number of pores in the query latent fingerprint, respectively. It

is worth mentioning that the above match score measures the similarity between fin-

gerprints by considering not only the location displacement between mated pores and

the number of mated pores, but also the consistency of the ridge structures and feature

distribution surrounding the mated pores, whereas existing methods [35, 54] consider

only the location displacement or the number of mated pores.

DIP Matching The matching of DIP features is also constrained along mated

ridges. Unlike pores, DIP features reside on valleys rather than ridges. Therefore, we

associate each DIP feature with two ridges that are on the left-hand and right-hand sides

of the valley on which it resides. Given a DIP feature DIP1 which is associated with

two ridges R11 and R12, the nearest sampling point to its projection on the ridge R11 is

first found, denoted as SP1. If SP1 does not have mated sampling points, then DIP1

does not have mated DIP features; otherwise, the nearest DIP feature to the mated

sampling point SP2 on the mated ridge R21 of R11 is found, denoted as DIP2. Let

di be the location displacement between DIPi and SPi (i = 1, 2), then the location

displacement between DIP1 and DIP2 is dloc = |d1− d2|. Let R22 be the other ridge

associated with DIP2. DIP1 and DIP2 are mated DIP features only if i) dloc ≤ 10
and ii) R12 and R22 are mated ridges. After enumerating all the DIP features in Fq , we

obtain the mated DIP features. Fig. 13(b) shows the mated DIP features in a latent and

its mated exemplar.

Let d̄loc be the average location displacement between all the mated DIP features

and nMDIP and nDIP be the total number of mated DIP features and the number of

DIP features in the query latent fingerprint, respectively. The DIP match score between

the two fingerprints is then defined as

sDIP = 0.8 × sr + 0.2 × (0.3 × 10− d̄loc
10

+ 0.7 × nMDIP

nDIP
). (20)
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3 Results

3.1 Statement of results
3.1.1 Level 1 and Level 2

Database To evaluate the latent fingerprint matching algorithm, 258 latent finger-

prints in NIST SD27, which also contains the mated rolled prints, were matched against

a large background database of rolled prints. This is the only public domain database

available containing mated latent and rolled prints. Since there are only 257 (excluding

one duplicate image) rolled fingerprints in SD27, to make the latent-to-rolled match-

ing problem more realistic, we expand the background database by adding fingerprints

from NIST SD4 and SD14 databases. There are 2,000 different fingers and 2 rolled

impressions per finger in SD4, and 27,000 fingers and 2 rolled impressions per finger

in SD14. These fingerprints were also scanned from paper and have similar character-

istics to the rolled prints in SD27. The 29,000 file fingerprints in SD4 and SD14 are

combined with the 257 rolled images in SD27 to form a background database contain-

ing 29,257 rolled prints. We search the 258 latents against this background database of

29,257 rolled prints. All these fingerprint images are scanned at 500 ppi.

Matching Accuracy The Cumulative Match Characteristic (CMC) curve of the pro-

posed algorithm in searching all 258 latents against the background database of 29,257

rolled prints is shown in Fig. 14. A CMC curve plots the rank-k identification rate

against k, for k = 1, 2, · · · , 20. The rank-k identification rate indicates the proportion

of times the mated fingerprint occurs in the top k matches. A rank-1 identification

rate of 74.0% and a rank-20 identification rate of 82.9% were achieved by our sys-

tem. Note that no systematic procedure has been used to select the best parameters in

matching score computation, due to lack of a large number of latents. The matching

accuracy can be further improved by fusing the matching results of latent-to-rolled and

latent-to-plain, as shown in [51].

Latent Quality Fingerprint quality has a significant impact on the matching accuracy

of fingerprint matchers. The number of minutiae is the most important indicator of

fingerprint quality [49, 52]. We conducted an experiment to examine the impact of

subjective quality and the number of minutiae on matching accuracy, respectively.

The 258 latent prints in SD27 were subjectively classified by latent examiners into

three quality levels, namely: Good, Bad, and Ugly. There are 88 Good, 85 Bad, and

85 Ugly latent prints in SD27. Figure 15a shows the CMC curves of the proposed

algorithm separately for Good, Bad, and Ugly quality latent prints. As expected, the

matching performance for Good quality latents is significantly better than those for

the latents belonging to the other two quality groups. Three examples of successful

identification (one from each quality group) are shown in Fig. 16. In all these three

cases, the mated rolled print was found at rank 1. It should be noted that although there

are only 4 matching minutiae in the Ugly latent (Fig. 16), our algorithm still identified

it correctly at rank-1.
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Based on the distribution of the number n of minutiae in latents in SD27, these

latents are classified into three types: Large (n ≥ 21), Medium (13 < n < 22), and

Small (n ≤ 13). There are 86 Large, 85 Medium, and 87 Small latents in SD27. Figure

15b shows the CMC curves of the proposed algorithm separately for these three types

of latent prints. The curves in Fig. 15b are quite consistent with those in Fig. 15a.

This indicates that the number of minutiae has similar capability as subjective quality

in predicting latent matching performance.

Although the quality of latent prints is a good indicator of the matching perfor-

mance, the identification result of a given latent print depends on both the latent and

its mated rolled print. If a large number of spurious minutiae are detected in the over-

lapping region of latent and rolled prints, the matching algorithm will fail as shown in

Fig. 17.

Importance of Extended Features Figure 18a plots the rank-1 identification rates

for all the 258 latents when extended features are incrementally used. The largest ac-

curacy improvement is due to singularity feature; ridge quality map and ridge flow map

also significantly improve the matching accuracy. Figure 18b shows the rank-1 identifi-

cation rates separately for each quality level when extended features are incrementally

used. It can be observed that Ugly quality latents benefit the most from the use of ex-

tended features. Figure 19 shows the matched minutiae and skeletons between a latent

and its mated rolled print. In this example, with the incremental use of extended fea-

tures, the rank of the mated rolled print is 206 (minutiae), 114 (singularity), 5 (quality),

2 (flow), 2 (wavelength), and 1 (skeleton), respectively.

Speed The experiments were conducted on a PC with Intel Core2 Duo CPU and

Windows XP operating system. The automatic feature extraction takes 580 ms for a

rolled print in NIST SD4 and 735 ms for a print in NIST SD27 and SD14. It takes

around eight minutes to match a latent against all the 29,257 rolled prints.

3.1.2 Level 3

Databases Two latent databases were used in this study. One is the ELFT-EFS-PC

database [55], which has 242 1000 ppi latent fingerprints (most of them are from the

same source as the latents in NIST SD27) with 1000 ppi mated full prints. The level

3 features in these latents have already been manually marked by latent examiners.

The background database consists of 4,180 1000 ppi fingerprint images, which were

collected from the mated fingerprints of the latents and the “B” session fingerprint

images in the NIST SD29 and the NIST SD30 datasets. The second latent database

was collected at West Virginial University (WVU). It has 127 latents in which the level

3 features have been manually marked. While these latents are at 1000 ppi, the full

fingerprints in the background database are only at 500 ppi. In an earlier study [57], we

investigated the utility of pores in the context of varying fingerprint image quality and

resolution by using the rolled ink fingerprint images in NIST SD30 and a commercial

minutiae matcher (VeriFinger [44]). It was reported that automatic pore extraction and

the resulting matching accuracy are significantly affected by fingerprint image quality.
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Further, it is only at high resolution (1000 ppi) and for good quality fingerprint images

that the pores can improve the fingerprint verification accuracy and even then only

marginally. Hence, the WVU database is not suitable for studying the utility of level 3

features in latent matching (although many latents in it have large number of pores, the

mated rolled images at 500 ppi do not have sufficient number of pores), and we simply

used it for reporting the statistics of level 3 features in latents.

Statistics of Level 3 Features in Latents The statistics of level 3 features in the

latents in the ELFT-EFS-PC and WVU databases have been collected based on the

manual markup data. Fig. 20 shows the number of level 3 features (i.e. pores and DIP

features) with respect to the number of minutiae. It can be seen that there is a large

variance in the number of level 3 features across different latent fingerprints. In ELFT-

EFS-PC, very few of the latents (only 6 of 242 latents) have any pores. Fig. 21 shows

three example latents in ELFT-EFS-PC, which have 91, 17, and 0 pores marked by the

latent exminers, respectively. Given such a small number of latents in ELFT-EFS-PC

which have pores, pore matching is not likely to improve the latent matching accuracy

on this database. Since no public domain latent database is suitable for studying the

utility of pores, we constructed a simulated partial fingerprint database and investigated

the effectiveness of pores on that dataset (see Section 3.1.2). On the other hand, many

(79 out of 242) latents in ELFT-EFS-PC do have DIP features. So, we will use the

ELFT-EFS-PC database for studying the effectiveness of DIP features.

Feature Detection Accuracy Sixty partial fingerprints (320×240 pixels) were cropped

from the 1000 ppi rolled ink fingerprint images (∼1500×1500 pixels) in NIST SD30.

The pores, dots, incipient ridges, and ridge edge protrusions in these sixty partial fin-

gerprint images were manually marked for the purpose of evaluating their automatic

detection accuracy. In order to study the impact of image quality on the automatic de-

tection accuracy, the 60 partial fingerprint images were divided into two quality groups

(good and bad) according to their image quality evaluated by the method in [59]. Two

pore detection methods were considered, i.e. the proposed method and the method

in [35]. These two methods differ in that the proposed method conducts filtering in the

spatial domain using an anisotropic model, whereas the method in [35] applies filtering

in the frequency domain with an isotropic model. Table 1 gives the average pore detec-

tion accuracy along with the standard deviation of the two methods on the ground truth

dataset; Rt, the true detection rate, is defined as the ratio of the number of true detected

pores to the total number of ground truth pores, and Rf , the false detection rate, is de-

fined as the ratio of the number of falsely detected pores to the total number of detected

pores. These results show that the detection accuracy of both the methods degrades as

the fingerprint image quality goes down. As the fingerprint image quality changes from

good to bad, the true detection rate decreases by about 5%, and the false detection rate

increases more by about 10%. According to the standard deviation of the detection

accuracy, in general, the automatic pore detection methods are more robust on good

quality fingerprint images than on bad quality fingerprint images. Table 2 presents the

detection accuracy of the proposed DIP detection method ( [35] did not present a DIP

feature extractor), where Nm and Ns denote the numbers of missing features and spu-
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rious features, respectively. Note that the average numbers of observable DIP features

on good and bad quality fingerprint images in the ground truth dataset are 12 and 27,

respectively. Again, poor quality fingerprint images cause more missing features as

well as more spurious features. These results show that improving the quality of full

fingerprint images in the background database is very important for the effectiveness

of level 3 features in latent fingerprint matching. We will further demonstrate this in

the next section.

Latent Fingerprint Matching We have evaluated the latent matching performance

with pores and DIP features on the 242 latents in ELFT-EFS-PC. Features (includ-

ing minutiae, ridge skeletons, pores, and DIP) were manually marked in latents, and

automatically extracted from full fingerprints in the background database by using Ver-

iFinger and the proposed level 3 feature extraction methods. As discussed in Section

2.3.2, level 3 features are matched only when the rank 1 minutiae match score of a

latent is smaller than the given threshold (in our experiments, it was empirically set to

80 according to the raw match scores of VeriFinger on ELFT-EFS-PC which ranged

from 0 to 248). For the sake of efficiency, we matched level 3 features only between

the latent and the top 100 candidate exemplars retrieved by VeriFinger. The match

scores of VeriFinger and level 3 features were then combined by using the weighted

sum rule [60]. Before the fusion, the minutiae match scores of each query latent fin-

gerprint were normalized by using the max-min normalization method [60] based on

the maximum and minimum scores between it and the exemplars.

According to the experimental results, among the 6 latents in ELFT-EFS-PC which

have any pores, three are already correctly identified at rank 1 by VeriFinger, two

(L030G with 91 pores and L201U with 17 pores, see Figs. 21(a) and 21(b)) are cor-

rectly matched with their true mates after rank 1 but before rank 100, and the remain-

ing one (L014G with 83 pores, see Fig. 4(b)) is correctly matched at rank 2874. By

applying the proposed level 3 feature based latent matching method, however, the iden-

tification results of the latents L030G and L201U are not improved. This is because

i) the number of pores is small or the pores are sparsely distributed in the latent (e.g.

L201U), or ii) the corresponding region of the latent in its mated full fingerprint image

is of poor quality and has few pores (e.g. L030G). Fig. 22 shows the latent L030G and

its mated full fingerprint. As can be seen, although there are nine mated minutiae in

them, no corresponding pores are found in the full fingerprint for any of the markup

pores in the latent because of the poor quality of the corresponding region in the full

fingerprint.

Fig. 23 presents the Cumulative Match Curves of VeriFinger and combination of

VeriFinger and the proposed DIP matcher on the ELFT-EFS-PC database. At rank

1, VeriFinger correctly identified 65 latents; this number was improved to 75 after

incorporating the proposed DIP matcher. In addition, many of the other latents had

the ranks of their true mates improved. For example, for the latent shown in Fig.

13(b), its true mate was ranked at 82 by VeriFinger; after incorporating the proposed

DIP matcher, the rank was improved to 4. From these results, we can see that level

3 features, when reliably present in both latents and their mated full fingerprints, are

indeed useful in improving the latent matching accuracy.
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Unfortunately, there are many difficulties in using level 3 features on the available

latent databases. For one thing, there are very few latents in the latent databases with

sufficient number of level 3 features. This is not only because of the generally low

quality of latent fingerprints, but also because latent experts often are not able to mark

some of the level 3 features. While we can clearly see a large number of pores in the

latent shown in Fig. 1(c), according to the markup data in ELFT-EFS-PC, three of the

four latent experts did not mark any pores in it. Another concern is that the quality of

the exemplar full fingerprints in these databases is not good enough to automatically

extract reliable level 3 features. As a consequence, it is not possible to utilize the

level 3 features even though they are present in latents (as shown in Fig. 22). Such

problem of reproducibility of level 3 features in exemplar full fingerprints has also

been acknowledged in a recent survey on level 3 features among latent examiners [43].

Simulated Partial Fingerprint Recognition The experimental results presented above

not only show the potential of level 3 features in improving latent matching accuracy,

but also demonstrate the difficulty of using level 3 features in existing latent databases

due to the small number of latents having level 3 features and the poor quality of mated

full fingerprints. In order to better understand the utility of level 3 features, in particular

pores, we constructed an additional set of 131 simulated partial fingerprint images of

small area (320×240 pixels). They were cropped from the 1000ppi “B” session rolled

ink fingerprint images (∼1500×1500 pixels) in NIST SD30. The pores in these 131

partial fingerprints were manually marked, whereas the minutiae and ridge skeletons

were extracted by VeriFinger [44]. The background database in the experiments was

the same as in our experiments with ELFT-EFS-PC except that the exemplars from

the “B” session rolled ink fingerprint images in NIST SD30 were substituted with the

corresponding “A” session images in the database (since the simulated partial finger-

print images as the query fingerprints were cropped from the “B” session images). All

features in the exemplars were automatically extracted by VeriFinger and the proposed

level 3 feature extraction methods. Next, we report the performance of the proposed

pore matching method, and compare it with VeriFinger and the ICP based pore match-

ing method [35] to show the effectiveness of the proposed method and the utility of

pores.

The identification accuracy on this dataset is presented in Fig. 24. Using VeriFin-

ger, among the 131 query partial fingerprints, 80 fingerprints were correctly identified

at rank 1. After incorporating the proposed pore matcher, 27 additional fingerprints

were successfully identified at rank 1. Compared with the results on ELFT-EFS-PC,

these results are much more promising, which show the effectiveness of level 3 features

in matching partial fingerprints of small area which will otherwise pose challenge to

minutiae based AFIS because they contain a limited number of minutiae. Moreover, the

importance of collecting good quality full fingerprints can also be seen from these re-

sults. With the fast development of fingerprint imaging techniques and the widespread

use of high resolution (1000 ppi) live-scan fingerprint scanners, we believe that it is

becoming feasible to collect good quality fingerprints. This will facilitate extraction of

reliable level 3 features and thereby further improve the latent matching accuracy of

existing AFIS by incorporating level 3 features.
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Fig. 25 compares the fingerprints which are correctly identified at rank 1 by both

VeriFinger and the proposed method with those which are correctly identified after rank

1 by VeriFinger but at rank 1 after incorporating the proposed method. Interestingly,

the improvement due to level 3 features is only in situations where fingerprints have

small number of minutiae or low minutiae match scores. This indicates that i) minu-

tiae matchers usually work very well when there is a sufficient number of minutiae,

and ii) the contribution of level 3 features is more effective for fingerprints which have

few minutiae or low minutiae match scores. In [43], about one-third of the participant

latent examiners reported that they do not consider level 3 features when level 2 fea-

tures are of sufficient quality and are sufficient in number, which confirms our findings

here. Moreover, these observations also justify the proposed level 3 feature based latent

fingerprint matching algorithm sketched in Section 2.3.2.

For comparison, the ICP based level 3 feature matching method in [35] has also

been implemented. Given a pair of mated minutiae between two fingerprints, the

method in [35] first uses the two mated minutiae to align the level 3 features (here,

pores) in the two fingerprints, and then employs the ICP algorithm to further align

and match the level 3 features. The match score for the two fingerprints was fi-

nally computed based on the average distance, d̄, between the obtained mated pores:

sPOR = 1− d̄/dMax, where dMax is the maximum distance between mated pores (in

our experiments, the distance threshold between two mated pores was set to 10 pix-

els). The CMC of the ICP based method in Fig. 24(a) shows that its performance is

much worse than the proposed method: Only 10 fingerprints are correctly identified at

rank 1. By fusing its scores with the scores of VeriFinger, we did not get consistent

improvement in the identification accuracy (see Fig. 24(b)).

Fig. 26 shows the pore matching results on an example partial fingerprint and its

mated full fingerprint (cropped for display purposes) by using the proposed method

and the ICP based method, respectively. Obvious distortion can be observed between

the two fingerprints (note the polygons highlight the corresponding minutiae). As a

consequence, in the ICP based method, most pores are falsely matched (see Fig. 26(b)).

On the contrary, most pores are correctly matched by the proposed method despite the

large distortion (see Fig. 26(a)). Based on the match scores, the rank of the mated

fingerprint in this pair is 1 (the proposed method) and 16 (the ICP based method),

respectively, while VeriFinger ranks it at 5. These results illustrate the advantage of

the proposed method in considering ridge structures and inter-feature topology when

matching level 3 features in fingerprints.
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3.2 Tables

Table 1: Average pore detection accuracy and standard deviation

Method Proposed Method in [35]

Quality Good Bad Good Bad

Rt(%) 73± 9.5 67± 14.6 69± 16.0 63± 12.5
Rf (%) 20± 12.2 30± 14.4 27± 11.7 40± 18.1

Table 2: Average DIP detection accuracy and standard deviation

Quality Good Bad

Nm 6± 5.6 12± 8.5
Ns 4± 3.6 10± 7.0
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3.3 Figures

(a) (b) (c)

Figure 1: Three types of fingerprint images: (a) Ink, (b) live-scan, and (c) latent finger-

prints.
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Figure 2: Fingerprint features: (a) Level 1 (ridge orientation field and singular points),

(b) level 2 (minutiae, i.e. ridge endings and ridge bifurcations), (c) and level 3 (pores,

dots, incipient ridges, and ridge edge protrusions).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Features in a latent fingerprint. (a) Grayscale image, (b) minutiae, (c) singular

points (cores), (d) ridge quality map (darkness indicates high quality level), (e) ridge

flow map, (f) ridge wavelength map, (g) skeletonized image, (h) dots and incipient

ridges.
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(a) (b) (c)

Figure 4: Some example latent fingerprints from the ELFT-EFS-PC database. Minutiae

(marked by red rectangles), pores (green circles), dots (cyan circles), incipient ridges

(blue lines), and ridge edge protrusions (magenta circles) in latents were manually

marked by latent experts. Some latents may have small number of minutiae together

with some extended features (c). In the ELFT-EFS-PC database (255 latents), there

are, on average, about 18 minutiae in a latent, compared to 133 minutiae in a rolled

ink fingerprint in the background database (4180 full fingerprints). Some latents in this

database have only 4 minutiae.

(a) (b) (c) (d)

Figure 5: Feature extraction in a rolled fingerprint. (a) Gray image, (b) thinned image,

(c) ridges and minutiae (green: reliable minutiae, red: unreliable minutiae), (d) ridge

flow map and ridge quality map (green: reliable blocks, red: unreliable blocks).
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Figure 6: Properties of level 3 features. (a) and (b): Intensity profile across a pore

along the ridge tangential orientation has a Gaussian shape. (c), (d), and (e): Intensity

profile across a dot, an incipient ridge, or a ridge edge protrusion along the ridge normal

orientation has the shape of a full or half negative Gaussian.

(a) (b) (c)

Figure 7: Example pore extraction results. (a) Part of a rolled ink fingerprint image in

NIST SD30. (b) Pores detected in (a). (c) Pores detected in the latent fingerprint image

in Fig. 1(c).
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Figure 8: Dots, incipient ridges, and ridge edge protrusions are easily confused with

each other in different impressions of the same finger. We thus unify them into a single

feature type.

(a) (b) (c)

Figure 9: Example DIP extraction results. (a) Part of a rolled ink fingerprint image in

NIST SD30. (b) DIP features detected in (a). (c) DIP features detected in the latent

fingerprint image in Fig. 4(b).

(a) (b) (c) (d) (e)

Figure 10: Minutia descriptors. (a) Local grayscale image, (b) neighboring minutiae,

(c) local ridge quality map, (d) local ridge flow map, and (e) local ridge wavelength

map.
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Figure 11: An overview of the proposed latent fingerprint matching algorithm which

utilizes level 3 features.

(a) (b)

(c) (d)

Figure 12: Ridge correspondence establishment results for the latent L177B and its

mated exemplar in ELFT-EFS-PC. (a) Three pairs of mated minutiae are found between

the latent and its exemplar. (b) The ridges Fq.R1 and Ft.R1 associated with the mated

minutiae pair {Fq.M1, Ft.M1} are matched by Intra-Ridge matching. (c) The mated

ridges found at an intermediate step as the procedure Inter-Ridge propagation proceeds

from the mated ridges in (b). (d) The final mated ridges between the two fingerprints

obtained by the proposed method. Corresponding ridges are marked by the same color.
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(a)

(b)

Figure 13: Example level 3 feature matching results. (a) Mated pores in the latent

shown in Fig. 4(b) and its mated exemplar. Corresponding pores are marked by the

same color. (b) Mated DIP features in the latent shown in Fig. 12(a) and its mated

exemplar.
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Figure 14: CMC curve of the proposed algorithm in matching 258 latents against a

background database of 29,257 rolled prints.

(a) (b)

Figure 15: CMC curves for different types of latents. (a) Three types of latents ac-

cording to subjective quality: Good (88), Bad (85), and Ugly (85). (b) Three types of

latents according to the number of minutiae: Large (86), Medium (85), and Small (87).

40



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16: Examples of successful matchings. Three latents (classified as (a) good, (d)

bad and (g) ugly by latent examiners), the corresponding regions in the mated rolled

prints ((b), (e), (h)), and the mated rolled prints ((c), (f), (i)). In all these three cases,

our algorithm found the true mate at rank one.
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Figure 17: Example of an incorrect match. The mated rolled print (right) of the latent

(left) was ranked 200 by our algorithm. Many spurious minutiae are detected in the

rolled print.

(a) (b)

Figure 18: Plot of rank-1 identification rates vs. features. (a) All 258 latents, (b) Good,

Bad and Ugly quality latent prints.
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(a)

(b)

Figure 19: The matching result of a pair of mated fingerprints. (a) Minutiae matching,

(b) skeleton matching.
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Figure 20: The number of features in the latents in the ELFT-EFS-PC and WVU

databases. (a) Number of pores vs. Number of minutiae. (b) Number of DIP features

vs. Number of minutiae.
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Figure 21: Example latents in ELFT-EFS-PC with markup pores. (a) 91 pores, (b) 17

pores, and (c) 0 pores.

(a) (b)

Figure 22: Poor quality of exemplar fingerprints significantly degrades the utility of

level 3 features. (a) Latent L030G in ELFT-EFS-PC, and (b) its mated full fingerprint

image. Nine mated minutiae are found between them. But none of the 91 pores marked

in the latent (as shown in (a)) has any corresponding pore in the mated full fingerprint.
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Figure 23: Identification accuracies of VeriFinger and combination of VeriFinger and

the proposed DIP matcher on the ELFT-EFS-PC database.
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Figure 24: Identification accuracy of the 131 simulated partial fingerprints and 4180

background exemplars. (a) Performance of the proposed pore matcher and the ICP

based pore matcher. (b) Performance of combing VeriFinger and pore matchers.
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Figure 25: Number of minutiae vs. the minutiae match scores in fingerprints with

different identification results.

(a) (b)

Figure 26: Pore matching results on an example partial fingerprint and its mated full

fingerprint (cropped for display purposes) by using (a) the proposed method and (b)

the ICP based method. The polygons highlight the corresponding reference minutiae

between the fingerprints. Due to the large distortion in the fingerprints, the ICP based

method mis-matches many pores; on the contrary, the proposed method is more robust

to distortion, and can still correctly match most of the pores.
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4 Conclusions

4.1 Discussion of findings
Experimental results are summarized as follows:

1. Extended features at Level 1 lead to the largest matching accuracy improvement

than extended features at the other two levels. Among the Level 1 extended

features, ridge quality map and ridge flow map are the most important.

2. Extended features at Level 2, namely ridge skeleton, improve the rank-1 recog-

nition rate by 5%.

3. The “ugly” latents in NIST SD27 benefit the most from using extended features

at Level 1 and Level 2. The rank-1 recognition rate for “ugly” latents using

all extended features at Level 1 is already comparable to the rank-1 recogni-

tion rate for “good” latents using the current FBI standard features (minutiae +

core/delta).

4. The contribution of Level 3 features on ELFT-EFS-PC is minor. But, on a sim-

ulated partial fingerprint database, they do show obvious improvement in the

matching accuracy.

4.2 Implications for policy and practice
Based on the extensive experiments, we would like to offer the following recommen-

dations:

1. All extended features at Level 1 and Level 2 should be incorporated into AFIS as

soon as possible, since (i) these features are insensitive to image quality, (ii) do

not rely on high resolution images, and (iii) do lead to significant improvement

in the matching accuracy.

2. Algorithms and GUI tools should be developed to help fingerprint examiners

manually mark extended features (especially ridge skeleton) at Level 1 and Level

2 in latents, since it is a time-consuming task and general-purpose image editing

software (such as Photoshop) is not convenient for this task.

3. Utility of Level 3 features heavily rely on the image quality of both latents and

enrolled fingerprints. Since it is generally difficult or not possible to improve the

quality of latent prints, it is crucial to improve the quality of enrolled fingerprints

so that a sufficient number of Level 3 features can be extracted. This is necessary

for Level 3 features to play an important role in design and development of next

generation AFIS.

4.3 Implications for further research
The proposed matching algorithm is still inferior to the performance of experienced la-

tent examiners, which may be caused by three major differences between the method-

ologies used by latent examiners and automatic matchers.
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• Approaches used in matching ridge skeleton and minutiae (or Level 2 features)

are different. Latent examiners employ a “ridges in sequence” method [50] in the

matching process, which is robust to noise and distortion. While the proposed

skeleton matching algorithm tries to mimic such a method, it is not robust in

the presence of large amounts of noise and distortion. The minutiae matching

algorithm is also prone to spurious minutiae and distortion.

• The approach used to match the detailed ridge features (or Level 3 features) is

different. When latent examiners compare the detailed ridge features in finger-

prints, there is no explicit separation between feature extraction and matching

stages. The separation of feature extraction and matching in automatic systems

leads to some information loss. In addition, the automatic feature extractor may

not be able to extract Level 3 features from rolled prints that are always compat-

ible with the features marked by latent examiners.

• The approach to utilizing negative evidence is different. Latent examiners can

determine a pair of fingerprints as unmatched based on a single unmatched minu-

tia which is located in the good quality region of the two fingerprints. This is a

risky proposition for fingerprint algorithms.

We plan to improve the latent matching accuracy by reducing these differences.

Our study shows that extended features at Level 3 lead to much smaller contribu-

tion to matching accuracy compared to extend features at Level 1 and Level 2. Since

the image quality of enrolled fingerprints in the databases used in this study is not

sufficiently good for extracting Level 3 features, the experiments on Level 3 features

should be repeated when other fingerprint databases with better image quality become

available. The experiments reported here utilized a 500 ppi database and a 1000 ppi

database, but not a database of mixed resolution images. As pointed out by a reviewer

of this report, “the real world state of AFIS databases will be of mixed resolution.”

This calls for additional experiments involving extended features on mixed resolution

databases.

Manual feature markings for poor quality latent fingerprints is a time consuming

and tedious task. Considering that latent examiners often have to process many latents

within a limited time period, significant attention should be paid to the automatic la-

tent feature extraction problem. Given the performance gap between automatic and

semi-automatic latent matching systems, human intervention is likely to be necessary

for some time. One way to reduce manual processing is to define a latent fingerprint

quality measure, which is continuously updated when latent examiners are marking

features. Once the quality measure reaches a predefined threshold, the latent exam-

iners are notified that the image quality is already good enough to perform a latent

search.
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Abstract— In this paper, we present a new fingerprint 
matching algorithm based on a local skeleton descriptor. This 
descriptor uses ridge count information to encode minutiae 
locations in a small neighborhood. Taking advantage of ridge 
count properties, our descriptor is robust to distortions. We 
developed an efficient algorithm to match our descriptor and a 
strategy to combine matchings of many local descriptors. Our 
algorithm obtains interesting results on both tenprint 
-to-tenprint and latent-to-tenprint matchings. 

I. INTRODUCTION 
INGERPRINT matching is extensively used in biometric 
identification. As database size is still growing, we need 

increasingly accurate algorithms to make the distinction 
between very similar non matching fingerprints.  

Most fingerprint matchers mainly use positions and 
orientations of minutiae (bifurcations and endpoints of the 
ridges) to compute a similarity score between two 
fingerprints. Several authors have proposed to use additional 
information to build more accurate algorithms. Jain et al. [1] 
propose to use skin pores as discriminative features. Skeleton 
is another common feature used to enhance the matching. In 
[2] Feng et al. enforce the minutiae matching by following the 
ridges to avoid wrong matchings. Ridge count has been used 
as complementary information to minutiae as in [3] where 
Sha et al. use the ridge count between pairs of minutiae. 
Octant [4] is a standard method based on the ridge count, the 
ridge counts of the closest minutiae in eight directions are 
used to improve the minutiae matching. In the EFS format 
[5], the NIST proposes a standardized extended feature set 
including skeleton, dots and pores. 

Distortion is one of the major issues in fingerprint 
matching. Most authors do not take the distortion explicitly 
into account and deals with it by making the matching 
tolerant to small displacements of features. In [6], Bazen and 
Gerez propose to cancel the distortion using a non-rigid 
registration. 

In this paper we propose a method based on a local 
skeleton descriptor which encodes the position of minutiae of 
a region in a specific coordinate system. The descriptor is 
detailed in Section 2. In Section 3 we describe an algorithm to 
match two skeleton descriptors and a method to merge 
matchings of many descriptors to compute a global similarity 
score between two fingerprints. Experiments which 
demonstrate the accuracy of our algorithm on 
tenprint-to-tenprint (TPTP) and latent-to-tenprint (LTTP) 
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matchings are shown in Section 4. 

II. LOCAL SKELETON DESCRIPTOR 
When minutiae positions are defined by their location in 

the image, the distortion affects both 2D coordinates. In this 
section we present a local coordinate system in which only 
one coordinate is sensitive to distortions by using the ridge 
count. The ridge count between two points is defined as the 
number of ridges crossed by the line segment linking these 
two points. When the line linking the two points is close to the 
orthogonal to the ridge flow it is very unlikely that any 
distortion could affect the ridge count. Our local skeleton 
descriptor presented in the next paragraphs takes advantage 
of this property. 

The neighborhood of a point p is described by the relative 
minutiae positions as follows: we draw a curve segment 
centered in p called “base ridge” which follows the direction 
of the ridge flow. An orientation is arbitrarily chosen on this 
segment to define a 2D coordinate system. Minutiae are then 
projected on this base ridge following the orthogonal to the 
ridge flow direction. The first coordinate of a minutia is the 
algebraic curvilinear distance between the projection of the 
minutia on the base ridge and p. The second coordinate is the 
signed ridge count between the minutia and the projection of 
the minutia on the base ridge (Fig. 1). 

Minutiae can be divided in two types: endpoints and 
bifurcations (Fig. 2). Unfortunately this distinction is not 
always stable because an endpoint often becomes a 
bifurcation when the finger is pressed harder on the sensor. In 
addition it is sometimes very hard to classify a minutia into 
one category especially in poor quality images. Instead of 

Fingerprint Skeleton Matching based on Local Descriptor 
Julien Bohné and Vincent Despiégel 
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Fig. 1. Local coordinate system 

   
Fig. 2. Endpoint / bifurcation switch.
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using minutiae valence, we split minutiae into two categories: 
"positive minutiae" have the same orientation as the base 
ridge and “negative minutiae" have an opposite orientation 
relative to the base ridge (Fig. 3). As opposite to the 
endpoint/bifurcation distinction, these classes are very stable. 
Each minutia is represented by a triplet ),,( typeyxM =  in 
the descriptor. Fig. 5 shows the description of a skeleton. 

We empirically tuned the size of the region described by 
one descriptor to 200 pixels long (500dpi) along the ridge 
flow and 20 ridges high. 

Valence errors (transformations of endpoints into 
bifurcations) can change the ridge count coordinate of 
minutiae. To be less sensible to valence errors, we compute 
the ridge count coordinate so that the type switch only 
induces a difference of 0.5 in the ridge count. When a minutia 
is a bifurcation, the ridge count value is equal to the number 
of ridges between the minutia and its projection on the base 
ridge. When it is an endpoint, the absolute value of the 
number of crossed ridges decreased by 0.5 (Fig. 4). By doing 
so there is only a difference of 0.5 in the ridge count 
coordinate with the case where a valence error occurs. 

Projecting of minutiae is equivalent to unfolding the 
fingerprint before registering the minutiae into our coordinate 
system. The resulting descriptor does not take into account 
neither the directions of the ridge flow nor the distortions 
affecting it. The descriptor is sensitive only to distortions 
collinear to the ridge flow direction. In [7] Bazen and Gerez 
present a coordinate system also computed by unfolding 

regions of fingerprints. The fingerprint is cut into regions so 
that the unfolding process does not tear the fingerprint. We do 
not address this problem explicitly so the description is quite 
unstable close to singular points. Since we use many 
descriptors to describe one fingerprint, many of them are not 
affected by the tearing. 

As the orientation of the base ridge is chosen arbitrarily, 
the same skeleton region can be described by two different 
descriptors. These two descriptors are linked by a rotation of 
180 degrees and the switch of minutiae types (positive or 
negative). 

Our local skeleton descriptor can be compared to the RCS 
presented in [9]. RCS also uses the projection into a 
distance-along-the-ridge / ridge count coordinate system. As 
opposed to our descriptor, the ridge flow direction is not used 
for the projection. In addition, whereas all sampled ridge 
points are recorded to build a descriptor, our representation is 
much more compact as only minutiae projections are 
computed. These differences lead to two very different 
matching strategies. 

 
Fig. 5. Local skeleton descriptor corresponding to a skeleton. 

Positive minutiae are represented by blue stars and negative minutiae by red crosses 

 
Fig. 4. Ridge count for bifurcation and endpoint minutiae 

   
Fig. 3. Positive minutia / Negative minutia. 
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III. FINGERPRINT MATCHING ALGORITHM USING LOCAL 
SKELETON DESCRITORS 

A. Outline 
Our matching algorithm can be summarized as follows: 

1. Fingerprints are registered based on matched 
minutiae using our standard minutiae matcher; 

2. N pairs of corresponding points are selected in the 
two fingerprints and a descriptor is computed for 
each point; 

3. Corresponding descriptors are matched: they are 
first aligned then the similarity between the two 
descriptors is computed; 

4. The average of the N scores is outputted. 

B. Matching of two local skeleton descriptors 
The descriptor presented in the previous section is sensitive to 
some perturbations. The matching algorithm is designed to 
address the following issues: 

1. The distortion along the ridge flow direction; 
2. A small relative displacement of the origins of the 

descriptors; 
3. The arbitrary choice of the orientation of base 

ridges; 
4. The appearance / disappearance of minutiae between 

the search print and the reference print; 
5. The noise in the location of the minutiae in the 

direction of the ridge flow. The location of a minutia 
can shift up to fifteen pixels at 500dpi when an 
endpoint becomes a bifurcation. 

The matching algorithm is composed of two stages. The 
first stage performs the alignment of the two descriptors and 
addresses issues of translations, distortions and the arbitrary 
choice of the base ridges orientations. Once the two 
descriptors are registered, the second stage finds pairs of 
minutiae between the search print and the reference print 
using dynamic programming. These pairs are used to 
compute a similarity score between the two descriptors. 
1) Registering stage 

The objective of this stage is to register the descriptor from 
the reference fingerprint on the descriptor from the search 
fingerprint to best superpose matching minutiae. As our local 
descriptor is around 200 pixels long along the ridge flow 
direction, we consider that the distortion along the ridge flow 
direction can be approximated by a simple linear stretch. The 
transformation is defined by s the linear stretch along the 
ridge flow, tx the translation along the ridge flow and ty the 
translation orthogonal to the ridge flow. The main issue in 
estimation of the best transformation is that matching 
minutiae pairs are unknown. We therefore think in a 
probabilistic way and seek for the transformation which best 
superposes the biggest minutiae set. 

To find the optimal parameters (s,tx,ty) we use a 
generalized Hough transform. Each couple of pairs of 
potentially matched minutiae votes for each (s,tx,ty) in the 
discretized parameter space proportionally to the probability 
that (s,tx,ty) superposes the two pairs of minutiae. We 

consider that two minutiae can potentially match if they are of 
same type (positive or negative). As the multiplication is the 
natural operator in the scale space, the algorithm works in log 
scale. Votes are accumulated in the parameter space 
considering every couple of pairs of potentially matched 
minutiae: 
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To be robust to the arbitrary choice for the base ridge 
orientation, two parameter spaces are used: one for each 
possible orientation of the reference base ridge. To register 
the two descriptors, we choose the (s,tx,ty) which receives the 
most votes in the parameter space. 

As the two variables TX and TY are independent we have: 
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In the remaining part of this section we describe how to 
compute these expressions. 

Let us first focus on the two first parameters: s and tx.  
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The matcher needs to be robust to noise in the minutiae 
locations. To take explicitly this noise into account we want 
to compute the probability distribution function 
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known standard deviation. Unfortunately this distribution 
cannot be accurately approximated by a 2D gaussian centered 
on the best (s,tx) with a fixed covariance matrix because the 
distances k
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expression [10]: 
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Given a scale s, the pdf of the random variable TX 
representing the translation in x can easily be computed. As 
we consider a gaussian noise on minutiae positions, the 
probability of TX given S considering each of the two 
minutiae pairs is gaussian too. 
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The multiplication being the natural operator in the scale 
space, it is more convenient to work in log scale using a 
change of variables: 
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We now focus on the variable TY, ( )j
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to compute because there is no scale parameter involved. 
Considering a gaussian noise on minutiae positions, 
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(a) Small distances between minutiae 

 

         
(b) Large distances between minutiae 

Fig. 6. Examples of pdf of (s,tx) function of minutiae positions considering A matches with C and B matches with D. We can observe the influence of distances 
between minutiae on the distribution entropy 
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2) Minutiae matching and score computation 
When the descriptors are registered, the probability that 

two minutiae match is function of their type (positive or 
negative) and of the distance between them: 
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σx needs to be much bigger than σy because the ridge count 
is more stable than the location along the ridge flow direction. 
The matching needs to be less tolerant in areas of high 
minutiae density to avoid matching any of these areas with 
any other high density area. Therefore σx and σy are functions 
of the local minutiae density. 

Finding the best matches is a bipartite graph matching 
problem. From a cost matrix ( )( )j

Ref
i
Srcij MMmatchPcost ,1−=  

we search for the set A of matches minimizing the sum of 
matching costs with the constraint that no minutia is used 
more than once. The value of the minimum can be used to 
compute a similarity score. 
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under constraints AkiAji ∈¬∃⇒∈ ),(),(  with k ≠ j. 
The Kuhn-Munkres algorithm [9] also called Hungarian 

algorithm solves this problem with polynomial complexity 
using dynamic programming. With the previously presented 
cost matrix, the score always increases when adding matches, 
even if those matches are highly improbable. This is not the 
sought behaviour because it automatically boosts the score 
when there are many minutiae. 

The tuning of the tradeoff between the influence of true and 
wrong matches can be achieved by subtracting a constant 
α∈[0,1] to each value of the cost matrix. If α is close to 0, 
good matches increase the score but wrong ones do not have 
any effect. If α is close to 1, wrong matches decrease the 
score but good ones do not have any effect. In our 
implementation, we set α=0.6 to balance the influence of 
good and wrong matches.  

Some minutiae cannot be matched between the search and 
the reference. Instead of matching minutiae at any cost we 
would rather consider some minutiae as outliers. It can be 
done by simply adding lines and columns for outliers in the 
cost matrix: 

( )( ) }
}     minutiaesearch  #

minutiae reference#

minutiae reference #minutiaesearch  #

0
2/)(

2/)(
,1

⎟⎟
⎠

⎞−
⎜⎜
⎝

⎛

−
−−

=
α

α
α penalty

penalty
MMmatchP

cost
j

Ref
i
Src  

with penalty-α the threshold below which two minutiae are 
not matched. 
Minutiae matched with lines and columns of penalties are 
considered as outliers. 

We use the score computed by the Hungarian algorithm fed 
by this matrix as similarity score between two descriptors. 

C. Similarity score of two fingerprints 
To compute a global similarity score between two 

fingerprints, we merge scores obtained from many local 

descriptors.  
We first compute matched minutiae pairs with our standard 

minutiae matcher and use these matches to register the two 
fingerprints using a thin plate spline. This strategy is close to 
that of Bazen and Gerez in [6] but unlike them we do not use 
an iterative scheme. Descriptors with the same location on the 
two registered fingerprints are then compared. The global 
similarity score is the mean of the similarity scores of all 
descriptors pairs. 

We want to describe locations which are more likely to 
give discriminative descriptors. The selection of the 
descriptors used to compute the global similarity score is 
based on the minutiae density on the search fingerprint. Areas 
with very high minutiae density are not discriminative 
because they often contain many false minutiae. Areas with 
very low minutiae density are not discriminative because of 
the lack of information. 

We also want selected descriptors to be scattered over the 
fingerprint. The number of extracted descriptors usually 
varies from 3 to 10. A greedy selection which balances these 
two objectives is done as follows: 

1. A descriptor is computed for every point of a regular 
grid to make a candidate list; 

2. A potential is computed for each descriptor function 
of the local minutiae density in the descriptor; 

3. The descriptor d with the highest potential is 
selected and removed from the candidate list; 

4. If the potential p(d) is below a threshold or there are 
more than N descriptors selected, exit; 

5. The potential of every descriptor d’ is updated with 

the rule: ( ) ( )
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with dst(d,d’) being the Euclidian distance between 
d and d’ locations; 

6. Go to step 3. 

IV. EXPERIMENTS 

A. Tenprint-to-tenprint matching 
We evaluate our local skeleton descriptor matching 

algorithm on a proprietary database composed of 30 000 
rolled fingerprints on which skeletons are automatically 
extracted by our proprietary coder. We run 15 000 genuine 
tests and 900 000 impostor tests. We compare our skeleton 
algorithm with our standard minutiae matcher. We can see in 
Fig. 7 that the skeleton algorithm makes around twice as 
many false acceptance as the minutiae matcher. This 
difference of accuracy can be explained by the fact that the 
skeleton algorithm does not use orientation information and 
that it only performs many local matchings and does not use 
global coherence as the minutiae matcher does. In addition, 
the skeleton algorithm uses correspondences from the 
minutiae matcher to register the two fingerprints, therefore 
when the minutiae matcher fails completely the skeleton 
algorithm fails too. However the information used by the 
skeleton algorithm is complementary of the minutiae, so the 
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fusion of the two algorithms brings a substantial 
improvement in accuracy over the minutiae matcher alone. 
The fusion just consists of averaging the score of the two 
matchers. 

B. Latent-to-tenprint matching 
Latent fingerprints are taken on crime scenes by 

investigators. This type of fingerprints is particularly hard to 
match because of many issues including strong noise, non 
uniform background and small surface. Skeletons and 
minutiae are hand marked by an expert on the latent 
fingerprints and are automatically extracted on reference 
fingerprints by our proprietary coder. We conduct 
experiments on the NIST27 latent database. This database is 
composed of 258 latent fingerprints and their corresponding 
TP. An additional 1000 rolled fingerprints database has been 
used to evaluate the accuracy of our skeleton matcher shown 
in Fig. 8. 

The NIST27 database is divided into 3 parts of different 
difficulty. Our algorithm performs quite well on good quality 
fingerprints but the accuracy lowers when the quality 
decreases. Our algorithm is especially sensitive to the surface 
of the fingerprint. In LTTP the fusion with the minutiae 
matcher does not improve the accuracy. 

V. CONCLUSION 
In this paper, a local skeleton descriptor and an associated 

matching algorithm have been presented. The descriptor 
takes advantage of the discriminative power of the ridge 
count information to build a compact and distortion robust 
representation of neighbouring minutiae. The two-step 
matching algorithm first registers couple of descriptors using 
a voting scheme and then matches them using dynamic 
programming. 

Our algorithm achieves good accuracy especially in TPTP 
matching. Since our descriptor uses only the topological 
information from the skeleton, one of the most promising 
directions for further improvements is to combine our 
descriptor with another one based on the directional field like 
FingerCode [11] for example. Since the presented algorithm 
uses a minutiae matcher to perform the global matching, it 
would be interesting to develop another strategy to avoid it. 
This should lead to accuracy improvements especially for the 
fusion with the minutiae matcher. 
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