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Abstract

The primary question in geographic profiling is, given the locations of a series of crimes committed
by the same serial offender, to estimate the location of that offender’s anchor point. Currently, there
are three main approaches to the problem, exemplified by the three software systems- CrimeStat,
Dragnet, and Rigel. Though the details of the approaches taken by these software packages differ,
they share a common mathematical heritage.

In our work, we developed an fundamentally new mathematical framework for the geographic
profiling problem. Our framework meets our five essential goals:

1. The framework is mathematically rigorous;

2. There are explicit connections between assumptions on offender behavior and the compo-
nents of the mathematical model;

3. The framework takes into account local geographic features; in particular it accounts for

(a) Geographic features that influence the selection of a crime site, and

(b) Geographic features that influence the potential anchor points of offenders;

4. The framework is based exclusively on data that is local to the jurisdiction(s) where the
offenses occur; and

5. The framework returns a prioritized search area for law enforcement officers.

Our mathematical approach to this problem is based on Bayesian inference, and begins with
the explicit ansatz that the offender’s choice of targets depends only on (1) the distance between
the target and the offender’s anchor point, and (2) local geographic features of the target location.
The algorithm requires a representative list of historical crimes of the same type as the series; this
is used to estimate the local target attractiveness. The algorithm uses an estimate of the prior distri-
bution of offender anchor points taken from local population density. The algorithm also estimates
the structure of the offender’s distance decay behavior; as a prior it takes a list of solved crimes
together with the corresponding anchor point. With the model and appropriate priors selected, the
mathematical framework then used Bayesian methods to develop an estimate for the probability
distribution of the offender’s anchor point based on the locations of the crime series.

This mathematical model has been implemented in software. Our tool is broken down into two
packages. The first is a graphical user interface that lets the analyst or officer enter the required
data, and comes complete with help features, and a set of instructions. The second tool performs
the actual mathematical analysis; because it is separate from the user interface, it could potentially
be used as a component in other tools.

The software tool is freely available for download, and is now currently being tested by both the
Baltimore County Police Department as well as the Los Angeles Police Department. The source
code for both tools are available, together with extensive documentation.
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Chapter 1

Executive Summary

The primary question in geographic profiling is, given the locations of a series of crimes committed
by the same serial offender, to estimate the location of that offender’s anchor point. Currently, there
are three main approaches to the problem, exemplified by the three software systems- CrimeStat,
Dragnet, and Rigel. Though the details of the approaches taken by these software packages differ,
they share a common mathematical heritage.

In our work, we developed an fundamentally new mathematical framework for the geographic
profiling problem and implemented in prototype software that is now freely available for down-
load1. Both our mathematical approach and our software tool are able to account for geographic
features that affect the selection of the crime sites, geographic features that affect the distribution
of potential anchor points, differences in the travel distances of different offenders, and certain
demographic characteristics (race/ethnic group, age, and sex) of the offender.

To begin our discussion of our mathematical model, let us agree to adopt some common nota-
tion. A pointx will have two componentsx = (x(1), x(2)). These can be latitude and longitude,
or distances from a fixed pair of perpendicular reference axes. We presume that we are working
with a series ofn linked crimes, and the crime sites under consideration are labeledx1,x2, . . . ,xn.
We use the symbolz to denote the offender’s anchor point. The anchor point can be the offender’s
home, place of work, or some other location of importance to the offender.

We begin by assuming that our offender chooses potential locations to offend randomly ac-
cording to some unknown probability density functionP (x). The use of a probability distribution
here is not meant to indicate that the offender is choosing targets randomly, though that may be the
case. Instead it represents our lack of knowledge of the decision making process of the offender.

We assume thatP depends on just two factors; first is the anchor pointz of the offender. Second
is the average distance that our offender is willing to travel to offend. We know that different
offenders have a different willingness to travel and that the travel patterns of a fifteen year old will
be different that those of a forty year old. For that reason we explicitly allow for the possibility
that the offender’s average travel distance may affect the choice of targets by the offender.

Thus, our initial mathematical model is that the offender with anchor pointz and average
offense distanceα chooses to offend at the locationx according to an unknown probability distri-
butionP (x | z, α). The elements of the crime seriesx1,x2, . . . ,xn then represent a sample from
this unknown distribution.

1http://pages.towson.edu/moleary/Profiler.html
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Now we suppose that we specify the form ofP (x | z, α); then the geographic profiling problem
becomes a parameter identification problem for the unknown parametersz andα. We approach
this problem using Bayesian methods to try to find a probability distribution for the unknown
parameters. Standard Bayesian theory tells us that the posterior distribution ofz andα given a
series of crimesx1,x2, . . . ,xn is

P (z, α |x1,x2, . . . ,xn) =
P (x1,x2, . . . ,xn | z, α)π(z, α)

P (x1,x2, . . . ,xn)
.

HereP (x1,x2, . . . ,xn | z, α) is our model of offender behavior; it specifies the probability density
that the offender will offend at all of the locationsx1,x2, . . . ,xn given that they have anchor point
z and average offense distanceα. The factorπ(z, α) is the prior distribution of anchor point and
offense distance; it represents what we know about the offender before we take into account the
information from the crime series itself. The factorP (x1,x2, . . . ,xn) is the marginal distribution;
since it does not depend on eitherz or α, we can remove it provided we replace the equality by a
proportionality, so

P (z, α |x1,x2, . . . ,xn) ∝ P (x1,x2, . . . ,xn | z, α)π(z, α).

We next assume that the different crime sites were chosen independently of one another. This
choice is made because it is the simplest way we can relate the distributionP (x1,x2, . . . ,xn | z, α)
to our model of offender behaviorP (x | z, α). However, there is some evidence that criminal
offense sites are not independent, which would require a more sophisticated model for offender
behavior. Proceeding with the simplest model of independence though, we can then say that

P (x1,x2, . . . ,xn | z, α) = P (x1 | z, α)P (x2 | z, α) . . . P (xn | z, α).

The simplest approach to the priorπ(z, α) is to assume that anchor points and offense distances
are independent; then we can write

π(z, α) = H(z)π(α).

HereH(z) represents our knowledge of the distribution of offender anchor points before we in-
corporate information about the crime series. We take the approach that the distribution of anchor
points can be modeled by population density; areas with high population density will correspond
to areas with high anchor point density. We can then calculateH(z) by simply using U.S. Census
data; moreover because U.S. Census data is sorted by sex, age, and race / ethnic group all the
way to the block level, we can incorporate these demographic factors whenH(z) is calculated. In
practice, we calculateH(z) from the Census data by using a kernel density parameter estimation
technique

H(z) =

Nblocks
∑

i=1

= piK(z − qi |
√

Ai)

where each block has populationpi, centerqi and for each block we have chosen a different
bandwidth equal to the side length of a square with the same areaAi as the block. HereK(x | λ)
is a truncated quartic kernel with bandwidthλ, so that

K(x|λ) =







3

πλ6
(|x|2 − λ2)2 if |x| ≤ λ,

0 if |x| ≥ λ.
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The prior distribution of offender average offense distanceπ(α) is more difficult to estimate.
Indeed, though distribution of distances are available across offenses from aggregated historical
data, we need to obtain the distribution of average offense distances across offenders. However,
we are able to link the historical aggregate data with the behavior of individual offenders through
a Fredholm integral equation, whose solution can then be estimated. This process is entirely au-
tomated within our software tool, and the user simply needs to obtain a list of historical solved
crimes of the same general type as the crime series.

Combining these, we then see that we have the relationship

P (z, α |x1,x2, . . . ,xn) ∝ P (x1 | z, α)P (x2 | z, α) . . . P (xn | z, α)H(z)π(α)

and since we are only interested in the distribution of the anchor points, we take the conditional
distribution to obtain

P (z |x1,x2, . . . ,xn) ∝
∫ ∞

0

P (x1 | z, α)P (x2 | z, α) . . . P (xn | z, α)H(z)π(α) dα

which gives the probability distribution that the offender has anchor pointz, given that they have
committed crimes atx1,x2, . . . ,xn.

For this approach to be useful though, we still need to specify a model for offender behavior
P (x | z, α). We take the approach that this has the form

P (x | z, α) = D(d(x, z), α)G(x)N(z, α).

Here the factorD(d(x, z), α) accounts for the distance decay behavior of the offender. The term
d(x, z) is the distance between the pointsx andz. The mathematical framework does not force any
particular choice of the distance metric on us, however since our software uses latitude and longi-
tude internally to represent points, we use a spherical distance metric. Similarly, the mathematical
framework does not force any particular form for the distance decay term. Our software uses a
Rayleigh distribution; this was chosen because this is the distribution of distances that results from
a bivariate normal distribution, and bivariate normal distributions appear naturally as the limit of
random walks. Thus, we use the factor

D(d, α) =
πd

2α2
exp

(

−πd2

4α2

)

.

The factorG(x) is present because some crimes can only occur at certain pre-defined locations,
such as liquor store robberies or bank robberies. Even if the crime type is not limited to certain
locations, it is still more likely to occur in some regions than others, like street robberies. This fac-
tor lets us account for these variations. It represents the local target attractiveness of a location, so
that areas whereG(x) are considered to be more likely locations of an offense that regions where
G(x) is small. Rather than try to determine somea priori form for G(x) based on criminological
models, we instead simply assume that past behavior is a reasonable predictor of future behav-
ior. In particular, to calculateG(x), we start with a list of historical crimesc1, c2, . . . , cN . We
then construct the local target attractiveness function using a kernel density parameter estimation
technique by calculating

G(x) =

N
∑

i=1

K(x − ci | λ)
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where the bandwidthλ is twice the mean nearest neighbor distance between historical crime sites.
This is essentially the same as one of the methods used to generate crime hot spots.

The last factor,N(z, α) is a normalization factor, which ensures thatP actually represents a
probability distribution. It is determined by our choice ofD andG, and has the form

N(z, α) =
1

∫∫

D(d(y, z), α)G(y)dy(1)dy(2)
.

This completes the specification of our mathematical framework, and shows us how we can
estimate the location of the anchor point of an offender using as data:

• The locations of the crime series,

• The locations of historically similar crimes, to generate our estimate forG(x),

• A list of solved historical crimes, with both the locations of the offense site and the corre-
sponding anchor point, to generate our estimate ofπ(α), and

• Census data, along with any available demographic information about the offender, this lets
us estimateH(z).

This mathematical approach meets our five essential goals:

1. The framework is mathematically rigorous;

2. There are explicit connections between assumptions on offender behavior and the compo-
nents of the mathematical model;

3. The framework takes into account local geographic features; in particular it accounts for

(a) Geographic features that influence the selection of a crime site, and

(b) Geographic features that influence the potential anchor points of offenders;

4. The framework is based exclusively on data that is local to the jurisdiction(s) where the
offenses occur; and

5. The framework returns a prioritized search area for law enforcement officers.

Once the mathematical development was complete, we needed to turn these ideas into a prac-
tical tool that could be useful to law enforcement. To that end, we have developed software that
implements these mathematical algorithms. The software was built in two parts:

• A program called Profiler that performs all of the mathematical analysis, and

• A program called ProfilerGUI with which the user interacts.

An analyst who wishes to use our algorithm need only download the software package and run
ProfilerGUI. That program provides a convenient user interface that allows the user to enter all of
the data necessary for the analysis in a simple form; it then calls the Profiler program to actually
perform the analysis. When finished, it provides the user with a map of the proposed search area
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in .kml format; is also provides the analyst with a map of the target attractiveness functionG(x),
as well as a map of the local population densityH(z).

Because the software was built in two components, others who wish to incorporate the mathe-
matical analysis tools of Profiler are able to do so.

This project has resulted in two main implications for policy and practice. First by providing
a new tool for the geographic profiling problem to police agencies, we hope to directly improve
the clearance rate for series crimes.We presented our first functional prototype software package
at the NIJ Conference in June 2009. The program is now being used by both the Los Angeles
Police Department and the Baltimore County Police Department, both of whom are examining the
effectiveness and usefulness of the tool.

It should be noted however, that we have not yet made a study of the effectiveness of the tool
or of the mathematical algorithms that it contains.

On the other hand, by making our mathematics, algorithms and code widely and publicly avail-
able, we also hope that we can provide valuable insights to other researchers.
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Chapter 2

Introduction

2.1 Statement of the problem

The purpose of our project was to develop and implement improved mathematical methods for
the geographic profiling problem. Geographic profiling is a technique to used to make predictions
about the location of a serial offender’s anchor point or home base, based on the known locations
of that offender’s offenses. Prior to this work, three main software suites existed for geographic
profiling. They are CrimeStat- developed by Ned Levine, Dragnet- developed by David Canter,
and Rigel- developed by Kim Rossmo. These three software suites share a common mathematical
heritage, and use mathematically related methods to determine their estimates of the offender’s
anchor point.

In our work, we developed an fundamentally new mathematical framework for the geographic
profiling problem. Our framework meets our five essential goals:

1. The framework is mathematically rigorous;

2. There are explicit connections between assumptions on offender behavior and the compo-
nents of the mathematical model;

3. The framework takes into account local geographic features; in particular it accounts for

(a) Geographic features that influence the selection of a crime site, and

(b) Geographic features that influence the potential anchor points of offenders;

4. The framework is based exclusively on data that is local to the jurisdiction(s) where the
offenses occur; and

5. The framework returns a prioritized search area for law enforcement officers.

Ensuring that the mathematical algorithms are rigorous and making explicit the connections
between the assumptions on offender behavior and components of the model helps in the analysis
of the model. In particular, it gives researchers another tool to evaluate a model; one issue with
the current generation of software suites for geographic profiling is that there is little agreement
between the principals on how to compare the effectiveness of these differing approaches.
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It is important that the mathematics explicitly allows for the influence of the local geography
and demography. It is well known that there are relationships between the physical environment
and crime rates; see for example Brantingham and Brantingham [8]. It is essential that a good
mathematical framework possess the ability to incorporate this information into the model. That
said, it is equally important that the model uses only data that is available to the appropriate law
enforcement agency. Even if we were somehow able to create the perfect algorithm that always
correctly predicts an offender’s anchor point, that algorithm would still be worthless if it required
data unavailable to law enforcement.

Finally, we recognize that simple point estimates of offender anchor points are not very valuable
to practicing law enforcement officers. Rather, to be useful to practitioners, the algorithm must
produce prioritized search areas.

There is clearly a need for improvement in geographic profiling. Indeed, the National Institute
of Justice’s Mapping Analysis and Public Safety web site1 says

“Though there have been anecdotal successes with geographic profiling, there have
also been several instances where geographic profiling has either been wrong on pre-
dicting where the offender lives/works or has been inappropriate as a model. Thus
far, none of the geographic profiling software packages have been subject to rigorous,
independent or comparative tests to evaluate their accuracy, reliability, validity, utility,
or appropriateness for various situations.”

Some of the issues that face existing algorithms may be due to their common mathematical
heritage. Indeed, it may be the case that the limiting feature of these existing algorithms actually
lies in the mathematics upon which they are based. Clearly, no approach to geographic profiling
can be more accurate than their underlying algorithm will let them be.

In our work we have developed a fundamentally new and rigorous mathematical technique that
estimates the location of an offender’s anchor point.

Our approach is to start with the assumption that an offender has a single stable anchor point.
We then assume that the offender chooses crime locations according to a probability density func-
tion with two factors: first is a distance decay from the offender’s anchor point, while the second
is a local target attractiveness.

We make noa priori mathematical restrictions on the choice and form of the distance decay
component. The mathematics allows for the use of the Euclidean, Manhattan, or any other distance
metric; the form of the distance decay function can have any of the common mathematical forms-
normal, negative exponential, or experimentally determined.

The local target density is determined by direct calculation from historical data. For example,
if an analyst is examining a series of late night street robberies, then the algorithm requires a
representative sample of historical late night street robberies. From this information, we estimate
the likelihood that this particular crime occurs at any given location. This mathematical analysis
proceeds under the assumption that the historical information is a reasonable predictor of current
crime rates.

Given both the distance decay functional form, and the local target density, we obtain a family
of probability density functions, one for each potential anchor point for the offender. We could then
use maximum likelihood methods to estimate the anchor point of the offender [14]. However, this

1http://www.ojp.usdoj.gov/nij/maps/gp.htm , accessed August 2009
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approach only provides a point estimate for the location of the offender’s anchor point. Instead, we
apply Bayesian techniques to estimate the probability distribution for the offender’s anchor point,
and so provide a map of the regions that are more or less likely to contain the offender’s anchor
point.

We have created and developed the mathematics necessary for this analysis, and implemented
the resulting algorithms in software. The tool we have developed has now been released, and is
being tested by both the Baltimore County Police Department and the Los Angeles Police Depart-
ment.

2.2 Literature

To begin our review of the current state of geographic profiling, let us agree to adopt some common
notation. A pointx will have two componentsx = (x(1), x(2)). These can be latitude and longitude,
or distances from a fixed pair of perpendicular reference axes. We presume that we are working
with a series ofn linked crimes, and the crime sites under consideration are labeledx1,x2, . . . ,xn.
We use the symbolz to denote the offender’s anchor point. The anchor point can be the offender’s
home, place of work, or some other location of importance to the offender.

An important first question in geographic profiling is how to measure the distance between
points. One common method is to use the usual notion of distance, called the Euclidean distance.
In this case, the distanced(x,y) between two pointsx andy is given byd2(x,y) where

d2(x,y) =
√

[x(1) − y(1)]2 + [x(2) − y(2)]2

Another approach is to use the Manhattan distance; in this case the distance betweenx andy is
given byd1(x,y) where

d1(x,y) = |x(1) − y(1)| + |x(2) − y(2)|
There are other choices that can be used as well; for example the total street distance following the
local road network, or the total time to make the trip while following the local road network.

One important difference to note between these distances is that the Euclidean distance gives
the same results regardless of the choice of the coordinate axes; in particular, rotating a pair of
points around a third does not change the distance between the pair. This result does not hold for
the Manhattan distance, and so the coordinate axes need to be chosen with care when using the
Manhattan distance.

Following Snook, Zito, Bennell and Taylor [52], we classify algorithms for geographic profil-
ing into two general categories- spatial distribution strategies and probability distance strategies.

Spatial distribution strategies. The simplest of the spatial distribution strategies is to estimate
the offenders anchor pointz by the centroidζcentroid of the crime series [27]. The centroid, also
known as the center of mass is defined to be

ζcentroid =
1

n

n
∑

i=1

xi.

Another approach is to estimate the anchor pointz by the center of minimum distanceζcmd.
This is chosen to be the value ofy for which the sum of the distances from the point to the crime
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sites

D(y) =
n
∑

i=1

d(xi,y)

is a minimum. Here different choices of the distance functiond lead to different choices for the
center of minimum distance. Unlike the centroid, there is no simple formula that gives the value
of ζcmd; however, there are a number of efficient algorithms that can approximate it to any desired
accuracy.

Another method used to estimate the anchor point is the circle method of Canter and Larkin
[12]. They make a distinction between two types of offenders; marauders and commuters. A
marauder is assumed to move from a home base, commit a crime, and then return, where the base
acts as a focal point for the crime series. In this case, the offender’s home range and criminal
range overlap. A commuter, on the other hand, first moves from a home base to another area, then
commits the crime. As a consequence, the focal point for the crime series is different from the
home base, and the offender’s home range and criminal range do not overlap

Their circle hypothesis is the following. Given a series of linked crimes committed by a ma-
rauder, draw a circle whose diameter are the two crimes locations that are the farthest apart. Then
all of the crimes in the series would be in the resulting circle, and the offender’s home base would
also lie in the circle so drawn.

There is evidence for the validity of the circle hypothesis. In their original paper, Canter and
Larkin [12] examined a collection of 45 male sexual assaults in Britain. In 41 of the 45 cases the
circle correctly encompassed all of the crime sites and in 39 of the 45 cases the circle correctly
contained a base for the offender. Kocsis and Irwin [22] examined 24 rape series, 22 arson series,
and 27 burglary series in Australia. The circle contained all of the crimes for 79% of the rape
series, 82% of the arson series, and 70% of the burglary series, while the circle correctly contained
the home base of the offender for 71% of the rape cases, 82% of the arson cases, and 48% of
the burglary cases. This last result suggests that the marauder hypotheses may not necessarily be
appropriate for burglary.

These results were amplified by Meany [35], who showed that burglars were more likely to
act as commuters than non-burglars, while arsonists and sex offenders were more likely to act as
marauders than non-arsonists / non-sex offenders. Similarly, Kocsis, Cooksey, Irwin and Allen
[21] found in their study of 58 burglaries that occurred in rural Australian towns, that the circle
theory was less effective. Laukkanen and Santtila [25] examined 76 commercial robbery series,
and found only 30 (=39%) that satisfied the circle hypothesis. Note however, that many of these
series were very short; 62 of the 76 series analyzed contained either two or three crimes.

Probability distribution strategiesIn contrast to the spatial distribution strategies are the prob-
ability distance strategies. These methods are currently employed in the major computer programs
for geographic profiling (CrimeStat, Dragnet, and Rigel). All have the common idea of construct-
ing a hit score by summing the values of some decay function of the distances between a general
point and the elements of the crime series. Mathematically, they all begin by first making a choice
of distance metricd; they then select a decay functionf and construct a hit score functionS(y) by
computing

S(y) =
n
∑

i=1

f(d(xi,y)) = f(d(x1,y)) + · · ·+ f(d(xn,y)). (2.1)

Regions with a high hit score are considered to be more likely to contain the offender’s anchor
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point than regions with a low hit score. In practice, the hit scoreS(y) is not evaluated everywhere,
but simply on some rectangular array of pointsyjk = (y

(1)
j , y

(2)
k ) for j ∈ {1, 2, . . . J} andk ∈

{1, 2, . . . , K}, giving us the array of valuesSjk = S(yjk).
In effect, these approaches center a tent function on each of the crime sites; the hit score is

then found by summing the results. The differences between the different methods are solely in
the choice of the tent function.

Rossmo’s method, as described in [41, Chapter 10] chooses the Manhattan distance function
for d and the decay function

f(d) =











k

dh
if d < B,

kBg−h

(2B − d)g
if d ≥ B.

We remark that Rossmo also considers the possibility of forming hit scores by multiplication; see
[41, p. 200]

The method described by Canter, Coffey, Huntley and Missen in [11] is to use a Euclidean
distance, and to choose either a decay function in the form

f(d) = e−βd

or functions with a buffer and plateau, with the form

f(d) =











0 if d < A,

B if A ≤ d < B,

Ce−βd if d ≥ B.

The CrimeStat program described in [29] uses Euclidean or spherical distance and gives the
user a number of choices for the decay function, including

• Linear:f(d) = A + Bd,

• Negative exponential:f(d) = Ae−βd,

• Normal:f(d) = A(2πS2)−1/2 exp [−(d − d̄)2/2S2],

• Lognormal:f(d) = A(2πd2S2)−1/2 exp [−(ln d − d̄)2/2S2], and

• Truncated negative exponential:f(d) = Bd if d < C andf(d) = Ae−βd if d ≥ C.

CrimeStat also allows the user to use empirical data to create a different decay function matching
a set of provided data as well as the use of indirect distances.

Though each of these approaches are distinct, they share the same underlying mathematical
structure; they vary only in the choice of decay function and the choice of distance metric.

Bayesian methodsWe remark that the latest version (3.2) of CrimeStat contains a new Bayesian
Journey to Crime Module that integrates information on the origin location of other offenders who
committed crimes in the same location with the distance decay estimates [30]. In this approach,
the geographic region under consideration is subdivided into subregionsRi; then the matrixCij
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is formed, which counts the number of crimes that occur in region Ri committed by an offender
with anchor point inRj. This is then used as the prior distribution for the Bayesian analysis. In
particular if a series of crimes is concentrated in regionRi, then by examining the matrixCij,
regionsRj for whichCij is large are considered to be more likely to contain the offender’s anchor
point than regions whereCij is small. Levine and Block [31]have tested this method with data
from Baltimore County and from Chicago.

Controversies. There is some question as to whether or not computer GIS systems imple-
menting the existing algorithms are as effective as simply providing humans with some simple
heuristics;c.f. the discussion in Snook, Canter, and Bennell [48], Snook, Taylor and Bennell [49],
Rossmo [43] and Snook, Taylor and Bennell [51]; see also the discussion in Snook, Taylor and
Bennell [50], Rossmo and Filer [44], Bennell, Snook and Taylor [4] and Rossmo, Filey and Sesley
[45]; see also the paper of Bennell, Snook, Taylor, Corey, and Keyton [5].

There have also been significant disagreements in the literature as to what is the best method-
ology to evaluate the currently existing geographic profiling software. See the original report
prepared for NIJ by Rich and Shively [40], the critique of Rossmo [42], and the response of Levine
[28].

Distance Decay. An important first question for all geographic profiling methods is to deter-
mine the appropriate metric for measuring distance; we have already seen that different existing
methods choose different metrics for measuring distance. Wiles and Costello [58] point out that
British cities lack the typical rectangular gird pattern of streets common to American cities, and
that it was generally difficult to identify the most likely route between two locations. As a con-
sequence, they felt that in their study it was better to use Euclidean distance as opposed to the
Manhattan distance or actual travel times or distances.

It is generally accepted that there is a real distance decay function, and that offenders are less
likely to commit crimes as the distance from the offense site to the anchor point increases. Snook
[47] studied serial burglars in Newfoundland. He found targets close to offender’s homes were far
more likely to be burgled than targets farther away. Snook also found that the travel distance was
found to have significant relationships with the offender’s age, method of transportation and the
value of the stolen property.

Warren, Reboussin, Hazelwood, Cummings, Gibbs and Trumbetta [56] analyzed a series of
565 rapes. They also found distance decay, and analyzed the relationships between crime scene
behavior and the distances traveled by the offender. Van Koppen and Jansen [24] studied 434
commercial robberies committed by 585 robbers in the Netherlands, and examined the relationship
between the distance traveled to the crime scene with characteristics of the offenders and offenses.
Fritzon [17] studied the relationships between the characteristics and motivations of arsonists with
the distance the arsonist traveled to set the fire. Finally, Lu [33] looked at distances traveled by
offenders after a crime. In particular, she studied auto thefts in Buffalo NY, and examined the
distance from the location of the theft to the location the vehicle was recovered.

Van Koppen, and De Keijser [23] took issue with the use of aggregate data to determine indi-
vidual distance decay functions; however Rengert, Piquero, and Jones [39] disagree with many of
their conclusions.

Finally, we mention López [32] who studied 20 residential burglars in the Kennemerland re-
gion. In this study, they normalized each of the distances that the burglars traveled to their crime
sites, and concluded that their data provided no evidence for the existence of a distance decay
function.
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Influence of geographic and demographic factors. Relationships between environmental fac-
tors and crimes have been studied extensively. White [57] examined relationships between felony
rates in Indianapolis and social and geographic factors sorted by census tracts. Brantingham and
Brantingham [7] examined burglaries in Tallahassee to study the spatial patterning of crime; they
found that burglary rates were higher in blocks that formed the boundary of a neighborhood than
blocks that were in the interior of a neighborhood. Brown [9] studied the relationship between
crime rates and various environmental factors in Chicago, while Wang and Minor [55] found rela-
tionships between geographic availability of employment and crime rates in Cleveland.

Bernasco and Nieuwbeerta [6] studied residential burglaries in The Hague, Netherlands. They
used a discrete spatial choice approach to ascertain the existence of a relationship between neigh-
borhood burglary rates and neighborhood characteristics, including ethnic heterogeneity and the
number of residential units in the neighborhood. Osborn and Tseloni [37] analyzed social and
demographic data from the British Crime survey, and found that some household characteristics
affect the likelihood of a number of property crimes. Similar results were found by Malczewski,
Poetz, and Iannuzzi [34] in their study of residential burglaries in London Ontario. Buettner and
Spengler [10] also showed that some local socio-economic factors were significant for both prop-
erty and violent crime. Groff and La Vigne [18] created a model that looked at local variables like
land use to predict areas with potentially desirable targets for burglary; they then empirically tested
their model.

Interestingly, Tseloni, Wittebrood, Farrell and Pease [53] compared geographic features that
influenced burglary rates across three different countries (Britain, the U.S., and the Netherlands).
Though the effect of some variables on crime rates appeared consistent across the different nations,
there were some variables that were significant in different nations, but in opposite directions.
For example, increased household affluence indicated higher burglary rates in Britain, while it
indicated lower burglary rates in the U.S.

2.3 Statement of hypothesis

The goal of our research was to develop a new mathematical approach to the geographic profiling
problem and to produce a tool that could be used as a practical aid to investigations.

As valuable as existing tools have been, they are based on the mathematical notion of hit
scores, and it is unclear how this technique might be extended to incorporate available geographic
information that may affect the selection of a crime site or the location of an offender’s anchor
point. Another issue is the fact that each of the existing approaches to the geographic profiling
problem is, at its core, a model of how offenders behave. However, it is unclear what each of these
approaches actually says about how offenders behave.

Our first goal then, was to develop a more robust mathematical framework for the geographic
profiling problem. We wanted to create a mathematical approach that allowed us to incorporate
available sources of geographic information affecting both crime site selection and anchor point
selection. We also wanted to make sure that our approach made explicit any assumptions about
offender behavior so that they could be examined, studied, critiqued, and improved.

The second goal of our project was to turn these new mathematical ideas into a practical tool.
Indeed, we wanted to be sure that the mathematical techniques that we developed were more than
just theoretical constructs, but something that will have a practical impact on law enforcement.
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In particular, we wanted to create a piece of software that canbe provided to police departments
for their use and evaluation. The source code for this software will be made available under an
appropriate open source license so that other researchers and tool developers can incorporate not
only the model but the code as well.

That said, we are not claiming that the approach we have created is necessarily better than
existing methods. So far, we have been able to develop the mathematical approach and implement
it in software; currently the technique is now being tested for effectiveness.

It is also important to note that the idea behind our research is to find a way to extract all of
the information about the geographic location of the offender’s anchor point from the information
in the crime series. However, this does not necessarily mean that the tool will be successful. As
one example, the crime series may not contain much geographic information about the offender,
as might be the case for a series of bank robberies that are widely dispersed and occur near ramps
to major interstates. It also may be the case that some of the underlying assumptions about the
offender may be incorrect- perhaps the offender does not have a single stable anchor point during
the series.
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Chapter 3

Methods

3.1 The mathematical model

We begin by looking for an appropriate model for offender behavior and start with the simplest
possible situation– where we know nothing about the offender. Thus, we assume that our of-
fender chooses potential locations to offend randomly according to some unknown probability
density functionP (x). For any geographic regionR, the probability that our offender will choose
a crime site inR can be found by adding up the values ofP in R, giving us the probability
∫∫

R
P (x) dx(1) dx(2).
At first glance, it may seem odd to use a probabilistic model to describe human behavior. In

fact, probabilistic models are commonly used to describe many kinds of apparently deterministic
phenomena. For example, classical models of the diffusion of heat or chemical concentration can
be derived probabilistically; they also see application in models of the stock market [1], [59], [60],
in models of population genetics [16], and in many other models [3].

More precisely, the probability density functionP represents our knowledge of the behavior
of the offender. We use a probability distribution, not because the offender’s decision has a ran-
dom component, although it may. Rather, we use a probability density because we lack complete
information about the offender. Indeed, consider the following thought experiment. If we want to
model the flip of a coin, we use probability and assume that each side of the coin is apt to occur
half the time. Now instead of flipping the coin, let us take the coin to a colleague and ask them
to choose a side. In this case the outcome is the deliberate result of a decision by an individual.
However without knowing more information about our colleague’s preferences, the best choice to
model the outcome of that experiment is still the use of a probability distribution.

Returning to our model of offender behavior, we begin with a question: upon what sorts of
variables should our probability density functionP depend? One of the fundamental assumptions
of geographic profiling is that the choice of an offender’s target locations is influenced by the
location of the offender’s anchor pointz. Therefore, we assume thatP depends uponz. Underlying
this approach are the requirements that the offender has a single anchor point and that it is stable
during the crime series.

A second important factor is the distance our offender is willing to travel to commit a crime.
Let α denote the average distance that our offender is willing to travel to offend. We allow for
the possibility that this value varies between offenders. Combining these, we assume that there is
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a probability density functionP (x | z, α) for the probability that an offender with a single stable
anchor pointz and average offense distanceα commits a crime at the locationx.

We assume that this model is local to the jurisdiction under consideration. In particular, we
explicitly allow for the possibility that different modelsP (x | z, α) may need to be chosen for
different jurisdictions.

The key mathematical point is that the unknown is now the entire distributionP (x | z, α), rather
than just the anchor pointz. On its face, it seems a step backwards, but in fact, it is not. Indeed,
let us suppose that theform of the distributionP is known, but that the values of the anchor point
z and average offense distanceα are unknown. Then the problem can be stated mathematically
as, given a samplex1,x2, . . . ,xn (the crime site locations) from the distributionP (x | z, α) with
parametersz andα to determine the best way to estimate the parameterz (the anchor point).

For the moment, let us set aside the question of what reasonable choices can be made for the
form of the distributionP (x | z, α), and focus on how we can estimate the anchor pointz from our
knowledge of the crime locationsx1, . . . ,xn.

It turns out that this is a well studied mathematical problem. One approach is to use the maxi-
mum likelihood estimator. To do so, one first forms the likelihood function:

L(y, a) =

n
∏

i=1

P (xi |y, a) = P (x1 |y, a) · · ·P (xn |y, a).

Then the maximum likelihood estimatesẑmle and α̂mle are the values ofy anda that makeL as
large as possible. Equivalently, one can maximize the log-likelihood function

λ(y, a) =
n
∑

i=1

lnP (xi |y, a) = ln P (x1 |y, a) + · · · + ln P (xn |y, a).

Though rigorous, this approach is unsuitable as simple point estimates for the offender’s anchor
point are not operationally useful. Instead, we continue our analysis by using Bayes’ Theorem.

3.1.1 Bayesian Analysis

To see how Bayesian methods can be applied to geographic profiling, we begin with the simplest
case where the offender has only committed one crime at the locationx. We would like to use
the information from this crime location to form an estimate for the probability distribution for the
anchor pointz. Bayes’ Theorem gives us the estimate

P (z, α |x) =
P (x | z, α)π(z, α)

P (x)
(3.1)

[13, 14]. HereP (z, α |x) is the posterior distribution, which gives the probability density that the
offender has anchor pointz and average offense distanceα, given that the offender has committed
a crime at the locationx.

The termP (x) is the marginal distribution. The important thing to note is that it is independent
of z andα, therefore it can be ignored provided we replace the equality in (3.1) with proportionality.

The termπ(z, α) is the prior distribution. It represents our knowledge of the probability density
that the offender has anchor pointz and average offense distanceα before we incorporate any
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information about the crime series. One approach to the prioris to assume that the anchor point
z is mathematically independent of the average offense distanceα. In this case, we can factor to
obtain

π(z, α) = H(z)π(α) (3.2)

whereH(z) is the prior probability density function for the distribution of anchor points before
any information from the crime series is included andπ(α) is the probability density function for
the prior distribution of the offender’s average offense distance, again before any information from
the crime series is included.

Combining these, we then obtain the expression

P (z, α |x) ∝ P (x | z, α)H(z)π(α).

Of course, we are interested in crime series, and we would like to estimate the probability
density for the anchor pointz given our knowledge of all of the crime locationsx1, . . . ,xn. To do
so, we proceed in a similar fashion; now Bayes’ Theorem implies

P (z, α |x1, . . . ,xn) =
P (x1, . . . ,xn | z, α)π(z, α)

P (x1, . . . ,xn)
.

HereP (z, α |x1, . . . ,xn) is again the posterior distribution, which gives the probability density
that the offender has anchor pointz and average offense distanceα, given that the offender has
committed a crime at each of the locationsx1, . . . ,xn. The marginalP (x1, . . . ,xn) remains inde-
pendent ofz andα, and can be ignored; the priorπ can be handled by (3.2). Then

P (z, α |x1, . . . ,xn) ∝ P (x1, . . . ,xn | z, α)H(z)π(α). (3.3)

The factorP (x1, . . . ,xn | z, α) on the right side is the joint probability that the offender com-
mitted crimes at all of the locationsx1, . . . ,xn given that they had anchor pointz and average
offense distanceα. The simplest assumption we can make is that all of the offense sites are math-
ematically independent; then we have the reduction

P (x1, . . . ,xn | z, α) = P (x1 | z, α) · · ·P (xn | z, α). (3.4)

Substituting this into (3.3) gives

P (z, α |x1, . . . ,xn) ∝ P (x1 | z, α) · · ·P (xn | z, α)H(z)π(α).

Finally, since we are only interested in the location of the anchor pointz, we take the condi-
tional distribution to obtain our fundamental mathematical result:

P (z |x1, . . . ,xn) ∝
∫ ∞

0

P (x1 | z, α) · · ·P (xn | z, α)H(z)π(α) dα. (3.5)

The expressionP (z |x1, . . . ,xn) gives us the probability density that the offender has anchor point
z given that they have committed crimes at the locationx1, . . . ,xn. Because we are calculating
probabilities, this immediately provides us a rigorous search area for the offender. Indeed regions
with larger values ofP (z |x1, . . . ,xn) by definition are more likely to contain the offender’s anchor
point than regions whereP (z |x1, . . . ,xn) is lower.
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This is a very general framework for the geographic profiling problem. There are many choices
for the model of offender behaviorP (x | z, α), and we will later examine a number of reasonable
choices. Though the preceding used a model for offender behavior with one parameterα other than
the anchor point, the mathematics continues to hold with elementary modifications if we either add
additional parameters or remove the parameterα.

In addition to an assumption as to the form ofP (x | z, α), we have made two other fundamental
assumptions. One is that the priorH(z) for z is independent of the priorπ(α) for α. This is a
reasonable first assumption, and it is what allows us the factorization in (3.2). Its significance is
that we are assuming that the average distance that the offender is willing to travel is independent
of the offender’s anchor point. This is probably most appropriate in urban areas and for regions
where offenders travel short distances to offend. On the other hand, the assumption may be less
valid for example, in a town surrounded by a less populated rural area. If potential offense locations
are concentrated in the town, then offenders with anchor points far from the town will likely have
a higher average offense distance than offenders with anchor points in town.

The remaining fundamental assumption is that the offender’s choice of crime sites are inde-
pendent; this is necessary for the factorization in (3.4). It can be replaced by other assumptions,
but would require a different model for the joint distribution than the simple expression in (3.4).
Though reasonable as a first assumption, there is evidence of deviation from independence in the
literature. For example Kocsis, Cooksey, Irwin and Allen [21] found in their analysis of 58 multi-
ple burglary cases in rural Australia that the crime sites tended to lie in narrow corridors emanating
from the offenders anchor point. Meaney [35] examined 83 burglary series, 23 sexual offense se-
ries, and 21 arson series; she found that the first offense occurred closer to the offender’s home than
the last offense, suggesting that there is a temporal component to offender’s site selection. On the
other hand, Laukkanen and Santtila [25] concluded that the distance a robber travels to offend did
not increase as the crime series progressed. We also mention Ratcliffe [38] who examined some of
the interrelation between temporal data and routine activity theory.

3.1.2 Simple Models for Offender Behavior

If our fundamental mathematical result is to have any practical or investigative value, we need to
be able to construct reasonable choices for our model of offender behavior. One simple model is to
assume that the offender chooses a target location based only on the Euclidean distance from the
offense location to the offender’s anchor point and that this distribution is (bivariate) normal. In
this case we obtain

P (x | z, α) =
1

4α2
exp

(

− π

4α2
|x − z|2

)

. (3.6)

If we make the prior assumptions that all offenders have the same average offense distanceα and
that all anchor points are equally likely, then

P (z |x1, . . . ,xn) =

(

1

4α2

)n

exp

(

− π

4α2

n
∑

i=1

|xi − z|2
)

.

We see that the posterior anchor point probability distribution is just a product of normal distribu-
tions, one centered at each crime site; compare this to sums used in the calculation of hit scores
(2.1). We also mention that in this model of offender behavior, the maximum likelihood estimate
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for the anchor point is simply the mean center of the crime sitelocations; this is also the mode of
the posterior anchor point probability distributionP (z |x1, . . . ,xn).

Another reasonable choice of a model for offender behavior is to assume that the offender
chooses a target location based only on the Euclidean distance from the offense location to the
offender’s anchor point, but that now the distribution is a (bivariate) negative exponential so that

P (x | z, α) =
2

πα2
exp

(

− 2

α
|x − z|

)

. (3.7)

Once again, if our prior assumptions are that all offenders have the same average offense distance
and that all anchor points are equally likely, then

P (z |x1, . . . ,xn) =

(

2

πα2

)n

exp

(

− 2

α

n
∑

i=1

|xi − z|
)

.

We see that this is just a product of negative exponentials centered at each crime site. Further, the
corresponding maximum likelihood estimate for the offender’s anchor point is simply the center
of minimum distance for the crime series locations. Finally, if we construct the functionS̃(z) =
ln P (z |x1, . . . ,xn), thenS̃ is a hit score in the same form as (2.1) with a linear decay functionf
and Euclidean distanced.

This preceding analysis was predicated on the assumption that all offenders have the same
average offense distanceα and that this was known in advance. Similarly, the existing hit score
methods all rely on decay functionsf with one or more parameters that also need to be determined
in advance. Unlike the hit score techniques however, our method does not require that we make
a choice for the parameterα in advance. For example, if we assume only that the offender has
a distance decay in the form (3.6) (or in the form (3.7)), withα unknown, then the maximum
likelihood technique will estimate both the anchor pointz and the average offense distanceα. Our
fundamental mathematical result (3.5) also does not require that the parameterα be determined
in advance, though it does require a prior estimateπ(α) for the distribution of average offense
distances.

3.1.3 More Realistic Models for Offender Behavior

These simple models for offender behavior show that our framework recaptures many existing
geographic profiling techniques; however, this new method is more general and allows us a simple
way to incorporate geographic features into the model. Indeed, let us suppose that offender target
selection depends on more than just the distance from the anchor point to the crime site locations,
but that it depends on some features in the local geography. One way to account for this is to
suppose that the offense probability density is proportional to both a distance decay term and to a
function that measures the attractiveness of a particular target location. Doing so, we obtain the
following expression

P (x | z, α) = D(d(x, z), α)G(x)N(z, α). (3.8)

Here the factorD models the effect of distance decay using the distance metricd(x, z). For
example, we can specify a normal decay, so that

D(d, α) =
1

4α2
exp

(

− π

4α2
d2
)

.
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We could also specify a negative exponential decay, so

D(d, α) =
2

πα2
exp

(

− 2

α
d

)

,

but of course there are many other reasonable possibilities.
One of the consequences of this approach to distance decay is that it assumes uniformity of

travel direction with respect to the given distance metric; in this way it simplifies actual travel
behavior. It may be the case that certain directions are preferred by the offender; for example when
searching for potential targets, the offender may prefer to move closer to an urban area than farther
away. A new approach to the modeling this distance decay effect is the kinetic random walk model
of [36].

The factorG(x) is used to account for the local geographic features that influence the selection
of a crime site. High values forG(x) indicate thatx is a likely target for typical offenders; low
values indicatex is a less likely target.

The remaining factorN is a normalization required to ensure thatP is a probability distribution.
Its value is completely determined by the choices ofD andG and has the form

N(z, α) =
1

∫∫

D(d(y, z), α)G(y)dy(1)dy(2)
. (3.9)

Returning to the influence of geography on target selection, one simple example ofG(x) is to
account for jurisdictional boundaries. Suppose that all known crimes in the series must occur in
a regionJ . The offender can commit crimes outsideJ ; but these are presumed unknown to the
analyst; the offender’s anchor point may also reside outside the regionJ . We can account for this
with the simple model

G(x) =

{

1 if x ∈ J,

0 if x /∈ J.

In practice, the regionJ corresponds to one or more jurisdictions sharing information about the
offender’s crime series.

The incorporation of this very simple geographic information has some surprising conse-
quences. In particular, the algorithm is able to distinguish between areas where no crimes in
the series have occurred (insideJ) from areas where there is no information as to whether or not
a crime in the series may have occurred (outsideJ). For example, suppose that the elements of a
hypothetical crime series are all near the southern boundary of a jurisdictionJ . Then the algorithm
will return a search area skewed to the south of the crime series because the algorithm “knows”
that no known crimes take place north of the series, but that there may be crimes to the south of
the series that are unknown to the analyst; thus the offender is more likely to live south of the
series than to the north. As a consequence, this model does not suffer from the convex hull effect
described by Levine [28].

This simple approach to geographic information affecting the selection of the target is primarily
illustrative; clearly a better model can be chosen. To do so, one approach would be to use available
geographic and demographic data and the correlations between crime rates and these variables that
have already been published to construct an appropriate choice forG(x). However, this approach
has a number of issues. First, is the fact that different crime types have different etiologies; in

21

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



particular their relationship to the local geographic and demographic backcloth depends strongly
on the particular type of crime. This would limit the method to only those crimes where this
relationship has been well studied. Moreover, even for well studied crimes, there are regional
differences. Indeed, [53] noted that increased household affluence indicated higher burglary rates
in Britain, and indicated lower burglary rates in the U.S.

The primary issue here is that this approach posits a method to explain crime rates by looking
for explanatory variables. However, from the perspective of geographic profiling, it is unnecessary
to explain; instead we can simply acknowledge these differences, and work on measuring the
resulting differences. Rather than look at the local geographic variables, we can use historical data
to model the geographic target attractiveness.

In particular, let us assume that historical crime rates are reasonable predictors of the likelihood
that a particular region will be the site of an offense. Then, given a crime series that we wish to
analyze, we require a representative list of historically committed crimes of the same type. Clearly,
this process requires the presence of a skilled analyst to determine which historical crimes are of
the same type as the series under consideration. As an example, when looking at a series of
street robberies, it is likely that the geographic distribution of street robbery rates are different for
daylight robberies as opposed to late night robberies. This approach then inserts the crime analyst
and their relevant real world experience directly into the modeling process and the algorithm. This
approach also lets us handle different crime types within the same mathematical framework, as
different crime types will have different historical patterns. Of course, the local analyst will need
to have access to the necessary data.

Once we have the historical data, we need to estimate the target density functionG(x). Perhaps
the simplest method is kernel density parameter estimation. To use this method, let us suppose that
we have a representative list of the crimes of a given type and that they have occurred at the
pointsc1, c2, . . . , cN . Choose a kernel density functionK(y | λ) with bandwidthλ. There are a
number of reasonable choices for the kernel density functionK, including normal or truncated
quartic. It turns out that the mathematical properties of this method do not depend strongly on the
mathematical form of the kernel, but that they do depend on the bandwidth of the kernel [46]. The
bandwidthλ of a given kernel is related to the width of the function; as an example the bandwidth
of a normal curve is the variance of that normal; when using a truncated quartic, the bandwidth is
the size of the interval for which the quartic is nonzero.

We then construct the local target attractiveness function by calculating

G(x) =

N
∑

i=1

K(x − ci | λ) (3.10)

for a reasonable choice of bandwidthλ, say the mean nearest neighbor distance between historical
crime sites. This is essentially the same as one of the methods used to generate crime hot spots
described in [15]. Similar techniques are used in mathematical biology to estimate the home range
of an animal species based on observations on individuals in the environment [61].

Once we have selected a model for offender behaviorP (x | z), we also need to make a choice
for the prior probability density for offender anchor pointsH(z) and the prior distribution of the
offender’s average offense distanceπ(α) before we can use our fundamental result (3.5).

The prior probability density for offender anchor pointsH(z) represents our knowledge of the
offender’s anchor point before we use any of the information from the crime series itself. There
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are a number of mathematically and criminologically reasonable choices for this prior distribution.
The simplest choice would be to assume all potential anchor points are equally likely; we can do
this by simply choosingH(z) = 1.

Before we examine more sophisticated priors, we return to the question of what is an anchor
point. If we assume that the anchor point is the offender’s home, or more generally that the dis-
tribution of anchor points follows local population density, then we can use demographic data to
generate an estimate for the prior. In this case, we we can chooseH(z) so that it is proportional to
local population density. U.S. Census data gives population counts at the block level together with
the land area of the block. We can use this data and kernel density parameter estimation technique
to generateH(z) by calculating

H(z) =

Nblocks
∑

i=1

= piK(z − qi |
√

Ai)

where each block has populationpi, centerqi and for each block we have chosen a different
bandwidth equal to the side length of a square with the same areaAi as the block. We mention that
U.S. Census population data at the block level is also available sorted by age, sex, and race/ethnic
group. Thus, if demographic information is available about the offender, then this information can
be incorporated when the prior distribution of anchor pointsH(z) is calculated.

Our framework does not require that the anchor point be the offender’s home or that the dis-
tribution of anchor points follows local population density. Another reasonable approach to calcu-
lating H(z) would be to begin with the anchor points of previous offenders who have committed
similar crimes. Then the same kernel density process used to generateG(x) in (3.10) can be used
to generateH(z). These historical anchor points can be determined on an offender-by-offender
basis; they can be homes, places of work or even the offender’s favorite bar. Recall however that
one of our assumptions is that each offender has a unique stable anchor point.

The last element needed to implement our fundamental mathematical result is some estimate of
the prior distributionπ(α) of the average distance to crime. Estimates of these types of distance to
crime distributions are commonly performed by choosing a common statistical function and using
best fit estimates; see [29, Chapter 10] for an example of the process. However, our framework
does not require a particular parametrized form for the prior distributionπ(α); we can instead
directly use appropriate empirical data in the construction. Further, there is no requirement that
the same choice ofπ(α) needs to be made for different crime types. Again, an analyst can choose
which historical data to use when generatingπ(α).

Prototype software that implements this framework has been developed and released to for
public use and evaluation. Empirical tests are being arranged to evaluate the accuracy and precision
of this approach.

3.1.4 Future Offense Prediction

The focus of our attention so far has been on the traditional geographic profiling problem of esti-
mating the location of the offender’s anchor point by using the geographic information contained
in the crime series. However, this is not the only question of interest to law enforcement. Indeed,
another question of nearly equal importance is to estimate the location of the serial offender’s next
target.
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This question can be posed in the following mathematical form. Given a series of crimes at
the locationsx1,x2, . . . ,xn committed by a single serial offender, estimate the probability density
P (xnext |x1,x2, . . . ,xn), thatxnext will be the location of the next offense. The Bayesian approach
to this problem is to calculate the posterior predictive distribution

P (xnext |x1,x2, . . . ,xn) =

∫∫∫

P (xnext | z, α)P (z, α |x1,x2, . . . ,xn) dz(1) dz(2) dα.

Once again, we can use (3.3) and (3.4) to simplify, and so obtain the expression

P (xnext |x1,x2, . . . ,xn) ∝
∫∫∫

P (xnext | z, α)P (x1 | z, α)P (x2 | z, α) . . .

P (xn | z, α)H(z)π(α) dz(1) dz(2) dα

This approach makes the same independence assumptions about offender behavior as our funda-
mental result (3.5).

3.2 Implementing the mathematical model

Our fundamental result was (3.5) which said that if we assume that the an offender has anchor point
z and average offense distanceα commits a crime at the locationx according to the probability
densityP (x | z, α), then the probability density that the offender has anchor pointz given that they
have committed crimes atx1,x2, . . . ,xn satisfies

P (z |x1, . . . ,xn) ∝
∫ ∞

0

P (x1 | z, α) · · ·P (xn | z, α)H(z)π(α) dα.

HereH(z) is a prior estimate for the distribution of offender anchor points, andπ(α) is a prior
estimate for the distribution of average offense distances.

We then considered how the functionP (x | z) might be constructed and presented the option
(3.8)

P (x | z, α) = D(d(x, z), α)G(x)N(z, α).

HereD is the distance decay function,G accounts for local geographic features that affect target
selection, andN is a required normalization term.

Before we could turn the mathematical framework described in the previous section into a
functioning tool, we need to

• Make choices for the distance decay function

• Estimate the prior distribution of average offense distance

• Determine how to represent the geographic data in a form amenable to computation, and

• Determine how to evaluate the normalization functionN(z, α).

In this section we discuss the mathematical details involved in these issues.
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3.2.1 Measuring distance

The first step in our implementation is to select a common framework for handling place and
distance. The mathematical model described so far is not dependent on any particular choice
for a distance metric or on how places are labeled. However, as we move towards questions of
implementation, we must select a way to identify real geographic locations with their mathematical
representations and to select a method to calculate the distance between these places.

To locate places, we will solely use the latitude and longitude of the location, and the software
tool will use exclusively latitude and longitude in decimal degrees. As our reference we will use
the same reference as the U.S. Census Bureau Summary File 1 data (NAD-83).

Now suppose thatx = (x1, x2) andy = (y1, y2) are a pair of points, but nowx1 andy1 are
the longitudes andx2 andy2 are the latitudes of our points. To calculate the distance between
these points, we will use the corresponding great-circle distance; in the software tool this will be
calculated using the haversine formula

d(x,y) = 2 sin−1

√

sin2

(

x2 − y2

2

)

+ cos x2 cos y2 sin2

(

x1 − y1

2

)

.

Notice that the result ofd is an angle; this is the central angle between the two rays from the center
of the earth to the two points on the surface. It can be converted to approximate distance in miles
by ensuring thatd is measured in radians and then multiplying by the radius of the earth in miles.

The advantage of this approach is that this gives a good approximation to the straight-line linear
distance and it is something that can be quickly and easily calculated from the known latitude and
longitude of the point. On the other hand, this is still just an approximation to the linear distance;
it does not account for a number features including differences in relative elevation and the fact
that the earth is better approximated by a ellipsoid rather than a sphere. As discussed earlier, there
are a number of reasonable choices of distance metric that could be made and the mathematical
framework presented here can use any of them. On the other hand, a particular choice needs to be
made for the software prototype, and this choice will be used in both the software as well as the
mathematical examples that follow.

3.2.2 The distance decay

There are a number of reasonable choices that can be made for the distance decay functionD. In
our implementation, we assume that the distance decay functionD follows a bivariate normal dis-
tribution. In the (current) absence of a consensus for one form of the distance decay function over
another, we selected the bivariate normal because it is commonly used to describe two-dimensional
diffusion processes that result from random walks.

Thus, we suppose that the offender’s distance decay effect follows a bivariate normal distribu-
tion with meanz (the offender’s anchor point) and covariance matrixσ2I, so that

D(x | z, σ) =
1

2πσ2
exp

(

−|x − z|2
2σ2

)

.

The offender’s travel distance isr = |x − z|; it has the density function

f(r | σ) = 2πrD(x | z, σ) =
r

σ2
exp

(

− r2

2σ2

)

.
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Figure 3.1: A graph of the two-dimensional distance decay distribution D(x | z, α) wherez is
located at the origin andα = 1.

Rather than useσ as the parameter, we would like to useα, the mean distance traveled by the
offender. Now the average offense distance is given by

Er =

∫ ∞

0

rf(r | σ) dr =

∫ ∞

0

r2

σ2
exp

(

− r2

2σ2

)

dr.

Integrating by parts, we find that

Er =

∫ ∞

0

exp

(

− r2

2σ2

)

dr =

√

π

2
σ

so we concludeα =
√

π
2
σ. Thus, the two-dimensional distribution of offense distances as a

function of the average offense distanceα is

D(x | z, α) =
1

4α2
exp

(

− π

4α2
|x − z|2

)

. (3.11)

A graph of this function forα = 1 is given in Figure 3.1; thex and y coordinates represent
geographic points, while the corresponding height is the probability density that that location is
selected.

We can also examine the probability density for the distances traveled; as a function ofα it has
the density

f(r |α) = 2πrD(x | z, α) =
πr

2α2
exp

(

−πr2

4α2

)

(3.12)
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Figure 3.2: A graph of the one-dimensional distance decay distributionf(r |α) for α = 1.

where againr = |x−z| is the travel distance. This is a Rayleigh distribution inr, and it is graphed
in Figure 3.2

It is important to be aware of the differences between the two-dimensional distribution given by
D(x | z, α) and the corresponding one-dimensional distribution of distancesf(r |α). First, though
the two-dimensional distribution is (two-dimensional) normal, it is not the case that the distance
distribution is normal; in fact the distances follow a Rayleigh distribution. More generally, consider
the two dimensional distance decay distributionD(x | z, α), and for simplicity assume that we can
write it in the formD(r |α) wherer = |x − z| is the distance between the offense sitex and the
anchor pointz. Then the distribution of the distancesf is given by the one-dimensional distribution
f(r) = 2πrD(r |α). Indeed,f(r) is simply the the probability density that one of the sites at a
distancer would be chosen namelyD(r |α), multiplied by the number of sites at a distancer
namely2πr, which is the circumference of a circle of radiusr.

One place where these differences are particularly important is in the discussion of offender
buffer zones. A buffer zone is an area near the offender’s anchor point where they are less likely to
offend due toe.g. fears that they would be recognized. Clearly the two-dimensional normal form
for D shown in Figure 3.1 does not indicate the presence of a buffer zone; in fact it shows that
the offender would prefer to offend at locations closer to their anchor point than locations farther
away. Examining the distribution of distances in Figure 3.2 however, we see that the offender is
less likely to offend in locations very near to their anchor point. This is not being caused by the
existence of a buffer zone. Rather, though the offender is more likely to choose a location closer
to their anchor point than farther away (Figure 3.1), the size of the region at a distancer from the
anchor point decreases asr does.

More generally, we notice that the one-dimensional distributionf(r |α) satisfiesf(r |α) → 0
asr → 0 regardless of the form ofD providedD remains finite.

27

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



ε0 r1 r2 r3

r∗1 r∗2 r∗3 r∗N

rN

Figure 3.3: Creating distance bins

3.2.3 Estimating the prior distribution of average offense distances

We need to construct an estimate forπ(α), which is the prior estimate for the distribution of
average offense distances. It is fundamental to note that this is the distribution of the average
offense distancesacross offenders. In particular, though this is related to the distribution of offense
distances across offenses (obtained for example by examining crime statistics) the distribution
here is across people. We explicitly allow for the possibility that this prior estimate may vary by
region and offense type; however this prior is estimated before we include information from the
geographic locations of the offense sites.

To perform this estimation, let us first assume that we know that the distribution of distances
from home to offense sites across known offenses is given by the functionA(r). Practically, we
are unlikely to know the exact form of the distributionA(r), but we can estimate it from crime
statistics. Indeed, let us suppose that we have a sample ofS solved crimes, and that the distances
from each offense site to the corresponding offender anchor point is given by{ρ1, ρ2, . . . , ρS}.

Choose a discretization sizeε > 0, then definerj = jε andr∗j = (j − 1
2
)ε, to subdivide the real

axis into a sequence of bins[rj−1, rj) each with centerr∗j ; see Figure 3.3. To estimate the value of
A in the center of bin[rj−1, rj), namelyA(r∗j ), we letaj be the number of distancesρs in this bin,

aj = #{s | rj−1 ≤ ρs < rj}. (3.13)

Then we have the relationship

A(r∗k)ε ≈
aj

S
(3.14)

where both sides of approximate the probability thatρ lies in the bin[rj−1, rj). Indeed, because
{ρ1, ρ2, . . . , ρS} is a sample of sizeS

Prob[rj−1 < ρ < rj] ≈
aj

S

while

Prob[rj−1 < ρ < rj] =

∫ rj

rj−1

A(ρ) dρ = A(r∗j )ε + O(ε2)

from the midpoint rule.
Returning to our estimate ofπ(α), we begin with the fundamental relationship

A(r) =

∫ ∞

0

f(r |α)π(α) dα (3.15)

which states that the number of offenses at the distancer can be found by by multiplying the
probability density that an offender with average distance to offendα chooses the offense distance
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r by the probability that an offender actually has the offense distanceα, and then integrating over
all possible values ofα. In particular, this accounts for two sources of variation- the variation in
offense distances selected by one offender, and the variation in average offense distances across
multiple offenders.

Consider the simple case where all offenders are considered to be identical; in this case there
is a particular average offense distanceα∗ shared by all offenders, and the prior distributionπ(α)
is simply the Dirac distributionδ(α − α∗). Becauseδ(α − α∗) = 0 for α 6= α∗ and because
∫∞
0

δ(α − α∗) dα = 1, we see that (3.15) reduces to

A(r) = f(r |α∗)

so that the behavior of any single offender can be estimated from the aggregated dataA(r) by
simply choosing the value ofα∗ that best fits the data.

Our approach is more general, and does not assume that all offender’s exhibit the same distance
decay behavior. As a consequence however, we still need to solve equation (3.15) for the unknown
prior π(α). To do so, we proceed by collocation.

In particular, we know that offenders do not travel infinite distances to offend, so we choose a
numberN so large thatA(r) ≈ 0 for r > εN ; then we want to chooseπ(α) so that

A(r∗j ) =

∫ ∞

0

f(r∗j |α)π(α) dα

for j = 1, 2, . . . , N . The assumptionA(r) ≈ 0 for r > εN , also lets us conclude thatπ(α) ≈ 0 for
α > εN . Indeed,A(r) is the measured number of crimes that occur at the distancer from home,
while π(r) is the density of offender’s whose average offense distance isr.

To evaluate the integrals, defineαk = kε, α∗
k = (k − 1

2
)ε, and apply the midpoint rule to the

integral
∫ ∞

0

f(r |α)π(α) dα ≈
∫ εN

0

f(r |α)π(α) dα

≈
N
∑

k=1

f(r |α∗
k)π(α∗

k)ε + O(ε2).

Thus, for eachj, k ∈ {1, 2, . . . , N}, we have

A(r∗j ) ≈ ε

N
∑

k=1

f(r∗j |α∗
k)π(α∗

k)

We can then use (3.14) whereaj is defined by (3.13) to conclude that

aj = Sε2
N
∑

k=1

f(r∗j |α∗
k)π(α∗

k). (3.16)

Now this equation holds regardless of the choice ofD andf , but the expression

f(r |α) =
πr

2α2
exp

(

−πr2

4α2

)
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from (3.12) lets us simplify this further giving us

aj = Sε2

N
∑

k=1

πr∗j
2(α∗

k)
2

exp

(

−π

4

(r∗j )
2

(α∗
k)

2

)

π(α∗
k)

= Sε2
N
∑

k=1

π

2

(j − 1
2
)ε

(k − 1
2
)2ε2

exp

(

−π

4

(j − 1
2
)2ε2

(k − 1
2
)2ε2

)

π(α∗
k)

=
πSε

2

N
∑

k=1

(j − 1
2
)

(k − 1
2
)2

exp

(

−π

4

(j − 1
2
)2

(k − 1
2
)2

)

π(α∗
k)

Thus, if we define the matrix

G = Gjk =
πSε

2

(j − 1
2
)

(k − 1
2
)2

exp

(

−π

4

(j − 1
2
)2

(k − 1
2
)2

)

and the vectors

a = (a1, a2, . . . , aN) (3.17)

π = (π(α∗
1), π(α∗

2), . . . , π(α∗
N)) (3.18)

then we obtain the discrete linear system

a = Gπ. (3.19)

Tikhonov regularization

The direct solution of (3.19) for the unknown priorπ is not practical. Indeed, because this results
from the collocation of a Fredholm integral equation of the first kind (3.15), we would expect that
the resulting linear system would be ill-posed-c.f. [19, §1.2] or [54, §1.1]. Using a computer
algebra system or otherwise, one can verify thatdet G ≈ 0; moreover by examining the singular
values ofG, we obtain the results in Figure 3.4, which are characteristic of an ill-posed problem

Attempting to solve this linear system using traditional techniques like the pseudo-inverse are
doomed to failure; see Figure 3.5 which illustrates what occurs when the attempt is made wherea

is calculated from a set of Baltimore County residential burglaries. Notice the the wide oscillations
through positive and negative values over twelve orders of magnitude.

To see the fundamental issue, expandG via its singular value decomposition

G = USV >

whereU andV are orthogonal matrices andS = diag(s1, s2, . . . , sN) is the matrix of singular
values [20,§5.4]. Then the pseudo-inverse solutionπ† to Gπ = a is

π† = V S−1U>a

so thatπ† satisfies

π† =

N
∑

i=1

u>
i a

si
vi (3.20)
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Figure 3.4: Singular values for the matrixG, whenN = 180 andε = 0.002.
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Figure 3.5: Attempt to solve (3.19) using the pseudo-inverse; the known dataa is calculated from
residential burglaries in Baltimore County, whileN = 180 andε = 0.002.
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Figure 3.6: The vectora calculated from residential burglaries in Baltimore County, whileN =
180 andε = 0.002.

where we representU andV in terms of their columns as

U = (u1,u2, . . . ,uN), V = (v1,v2, . . . ,vN).

From this and Figure 3.4 the problem is apparent- when the singular valuessi are very small,
their presence in the denominator results dramatically amplifies the component of the solution in
thevi direction, including any errors in those components. Indeed, if we examine the actual vector
a for the set of Baltimore County residential burglaries and graph the result, we obtain Figure 3.6.
We can clearly see the oscillations in the data and expect (correctly) that these are not significant,
but are rather the result of various random fluctuations. Unfortunately, the these insignificant
variations lead to nonzero values ofu>

i a, some of which are then dramatically amplified by small
singular values appearing in the denominator of (3.20). In some sense, the result in Figure 3.5 can
be thought of as an attempt to match not only the information from Figure 3.6, but also the random
noise.

One approach to this problem is to discard all singular values below a fixed threshold, but
examination of the graph of singular values Figure 3.4 shows that this problem contains no natural
cutoff threshold; rather the singular values decrease smoothly toO(10−15); and then continue to
decay more slowly.

Instead, we proceed via Tikhonov regularization. In particular we consider the regularized
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solutions

πreg(λ) =

N
∑

i=1

s2
i

s2
i + λ2

u>
i a

si
vi (3.21)

instead of the pseudo-inverse solution (3.20). Here the factors

φ(λ) =
s2

i

s2
i + λ2

,

called filter factors, are chosen so that ifφ ≈ 1 for si � λ, while φ ≈ 0 for si � λ; thus we are
keeping the larger singular values, but discounting the smaller singular values, usingλ as a cutoff.
This process yields a regularized solution for every choice of parameterλ; we now need to select
a method to choose it.

To chooseλ, we first note that the pseudo-inverse solutionπ† is the vectorπ that minimizes the
functional

L(π) = ‖Gπ − a‖2.

In the case whereG has full rank ora lies in the range ofG, this method returns a solution of
Gπ = a, while otherwise returning the value ofπ so thatGπ is as close as possible toa.

The Tikhonov regularized solution has a similar interpretation; the Tikhonov solutionπreg(λ)
with regularization parameterλ is the vectorπ that minimizes the functional

Lλ(π) = ‖Gπ − a‖2 + λ‖π‖2. (3.22)

As a consequence, we see that the Tikhonov regularized solution is chosen to balance out the error
obtained by fittingπ to the data (the term‖Gπ − a‖2) with an estimate of the size ofπ (the term
λ‖π‖2).

If one graphs the value oflog ‖Gπ − a‖ versuslog ‖π‖ one obtains a graph that has the gen-
eral shape of an ‘L’; we have plotted this curve in Figure 3.7 wherea is chosen from residential
burglaries in Baltimore County.

The underlying cause of the L shape is that whenλ is small, we are essentially obtaining
the pseudo-inverse solution, and we have seen already that this results in a function with wild
oscillations through many orders of magnitude, makingλ‖π‖2 large. In this case, we say that
the problem is undersmoothed. On the other hand, ifλ is large, the functionalLλ(π) penalizes
nonzero values ofπ, and thusπ is pushed towards zero; this results in choices ofπ that do not
fit the equation well, and so‖Gπ − a‖2 becomes large. In this case, we say that the problem is
oversmoothed.

One method used to chooseλ then is to find the point on the curve where the curvature is
greatest; i.e. the vertex of the ‘L’. This method is called the L-curve method, and it is the method
that is used in our program to determine the optimal value of the regularization parameterλ. This
method is described in detail in [19,§4.6] and [54,§7.4].

To explain how we have implemented the L-curve method in the code, we begin by calculating
the abscissa and ordinate of the L-curve, namelylog ‖Gπ − a‖ andlog ‖π‖. From the expression
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Figure 3.7: The L-curve, plotted using data for Baltimore County residential burglaries. Selected
points on the L-curve are labeled with the corresponding value ofλ. HereN = 180 andε = 0.002.
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of the regularized solution (3.21) we find that

Aπreg(λ) = A

N
∑

i=1

s2
i

s2
i + λ2

u>
i a

si
vi

=
N
∑

i=1

s2
i

s2
i + λ2

u>
i a

si

Avi

=

N
∑

i=1

s2
i

s2
i + λ2

u>
i a

si
siui

=
N
∑

i=1

s2
i

s2
i + λ2

u>
i aui

where we have used the properties of the singular value decompositionAvi = siui; [20, §5.4,
Theorem 1]. On the other hand, becauseU is orthogonal, we can write

a =
N
∑

i=1

(u>
i a)ui.

Combining these last two equations then, we see that

Gπreg(λ) − a = −
N
∑

i=1

(1 − φi(λ))u>
i aui

for the filter factorsφ(λ) =
s2

i

s2

i +λ2 .
From this, we find

‖Gπreg(λ) − a‖2 =
N
∑

i=1

(1 − φi(λ))2(u>
i a)2

and

‖πreg(λ)‖2 =
N
∑

i=1

φ2
i (λ)

s2
i

(u>
i a)2.

To simplify the calculations as we proceed, we introduce some new notation. We begin by
lettingα = λ2, and defining

R(α) = ‖Gπreg(λ) − a‖2 T (α) = ‖πreg(λ)‖2

X(α) = log R(α) Y (α) = log T (α)

Our goal is to find the point on the curve(X(α), Y (α))α>0 where the curvature is largest. Now

R(α) = ‖Gπreg(λ) − a‖2 =
N
∑

i=1

(1 − φi(λ))2(u>
i a)2

T (α) = ‖πreg(λ)‖2 =

N
∑

i=1

φ2
i (λ)

s2
i

(u>
i a)2
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so differentiating, we see that

R′(α) =

N
∑

i=1

−2(1 − φi(α))φ′
i(α)(u>

i a)2

T ′(α) =

N
∑

i=1

2
φ2

i (α)

s2
i

φ′
i(α)(u>

i a)2.

Now because

1 − φi(α) = 1 − s2
i

s2
i + α

=
α

s2
i + α

=
α

s2
i

s2
i

s2
i + α

=
α

s2
i

φi(α)

we see that we have the relationship

R′(α) = −αT ′(α). (3.23)

With these preliminaries concluded, we start by examining the curvatureκ of our curve

κ(α) =
X ′′Y ′ − X ′Y ′′

[(X ′)2 + (Y ′)2]3/2
.

Then using (3.23), we see that

X ′ =
R′

R
=

−αT ′

R
Y ′ =

T ′

T

X ′′ = −T ′

R
− αT ′′

R
+

αT ′R′

R2
Y ′′ =

T ′′T − (T ′)2

T 2

= −T ′

R
− αT ′′

R
− α2(T ′)2

R2

Substituting these into our expression for curvature, we obtain the expression

κ = −RT (αR + α2T ) + (RT )2/T ′

(R2 + α2T 2)3/2

which is the expression [54, 7.32]. This algorithm is implemented in our program, in the method
CTikhonov::LCurvature .

Now that we know how to calculate the curvature on the L-curve, we need to determine the
point on the L-curve where the curvature is at its maximum. Our approach to this problem is to use
the Golden section method. This is an elementary method used to solve constrained optimization
problems, and is described in detail in [2,§8.1]. Nominally, the problem of determining the value
of λ is not a constrained optimization problem, as any the curvature can be calculated for any
positiveλ. However, we incorporate two restrictions. Sinceλ is being used as a cutoff for the
singular values, there is no need to look for values ofλ larger than the largest singular values1.
On the other hand, extremely small values ofλ will result in significant numerical error due to the
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Figure 3.8: Tikhonov regularized solution estimate ofπ plotted using data from Baltimore County
residential burglaries. HereN = 180 andε = 0.002.

limited precision of the computer. Thus, for the smallest allowable value ofλ we use the larger of
either the smallest singular valuesN or 16δs1, whereδ is the minimum representable difference
between two numbers in the computer.

Once a choice forλ has been made, we need to find the Tikhonov regularized solution which is
the value ofπ that makes (3.22) as small as possible. Doing so for the Baltimore County residen-
tial burglary data, one obtains a graph like Figure 3.8 On its face, the graph appears reasonable;
certainly much more reasonable than the graph of the non-regularized solution, Figure 3.5. Ap-
pearances however are misleading, as a closer look at the solution will show. Indeed, if we plot
only the last 100 values ofπ, we obtain Figure 3.9. We immediately see the problem, as the graph
clearly shows that there are components ofπ that are negative. Recalling our definition of the
vectorπ from (3.18), we see that none of the components ofπ should be negative, as they are all
simply the values of a probability distribution.

To proceed then, we minimize the functionalLλ(π) not over all vectorsπ, but only over those
vectorsπ all of whose components are nonnegative. To perform this process, we first rewrite the
minimization of (3.22) in the slightly different form

Lλ(π) =

∥

∥

∥

∥

(

G
λI

)

π −
(

a

0

)
∥

∥

∥

∥

2

.

In this form, this is a standard last squares minimization problem with the linear inequality con-
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Figure 3.9: Entries 80-180 in the Tikhonov regularized solution estimate ofπ plotted using data
from Baltimore County residential burglaries. HereN = 180 andε = 0.002.
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Figure 3.10: Tikhonov regularized solution with nonnegative entries to estimateπ, plotted using
data from Baltimore County residential burglaries. HereN = 180 andε = 0.002.

straint that all of the components ofπ are nonnegative. One standard algorithm for solving such
minimization problems is provided in [26, Chp. 23]; this is the method that is implemented in the
code.

When we solve this, we obtain the results in Figure 3.10 We shall discuss the significance of
this graph (and others) from the point of view of what it tells us about offender behavior when we
present our discussion of findings in Section 4.1.

Lastly, we note that the definitionπ = (π(α∗
1), π(α∗

2), . . . , π(α∗
N)) from (3.18) tells us more

than the fact that the components ofπ must be nonnegative; it also tells us that the components
of π come from a probability distribution. In particular becauseπ is a probability distribution, we
know that

∫ ∞

0

π(α) dα = 1.

Now if we once again apply the midpoint approximation for the integral, we see that

1 =

∫ ∞

0

π(α) dα ≈ ε

N
∑

k=1

π(α∗
k) = ε

N
∑

k=1

πk. (3.24)

Even though this condition on the components ofπ is not explicitly imposed by the method that we
have implemented, we can check to see if it holds. Table 3.1 shows the resulting approximation to
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Solution method Estimate of
∫∞
0

π(α) dα

Pseudoinverse -5896180
Tikhonov regularization 0.970644
Nonnegative least squares without regularization 1.074468
Nonnegative least squares with Tikhonov regularization 0.973170

Table 3.1: Estimates of
∫∞
0

π(α) dα for various solution methods, calculated from Baltimore
County residential burglary data withN = 180 andε = 0.002

∫∞
0

π(α)dα generated by (3.24) for various solution methods. We see that in each case we do have
the appropriate rough approximation, save for the solution generated directly by the pseudoinverse,
which we have already seen to be wildly inaccurate (Figure 3.5). However, no error analysis has
yet been performed on these values. It is an interesting open question to see what better methods
might be to perform the estimate of the functionπ(α).

3.2.4 The geographic triangulation

We now turn to the problem of representing the local geometry and geography. To do so, we start
by realizing that there are three geographic regions that interest us

1. The crime region. We assume all of the known crimes are contained in a single geographic
region, which we call the crime region. In particular, we assume that we have no information
about whether or not the offender has committed additional series crimes outside the crime
region. If an agency is investigating a crime series, and has no information about the series
from other jurisdictions, then the crime region is just the jurisdiction of the investigating
agency. If more than one agency is cooperating and sharing data, then the crime region will
be the region formed by all of the jurisdictions sharing data.

2. The home base region. The home base region needs to be chosen sufficiently large to
contain the anchor point of the offender; it must also contain the entire crime region. In our
program, the home base region will be one or more county sized regions as selected by the
program user.

3. The search box. This is the smallest rectangle that contains the crime region and the home
base region.

The coarse mesh

As our first step in the geographic analysis, we will cover the search box with a coarse triangular
mesh. Let the circumradius of the triangles in the coarse mesh beRcoarse= R. We assume that the
grid contains:

• m rows of triangles, withm odd, and

• n columns of triangles, withn even.
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Figure 3.11: Relationships between crime region, home base region, and the search box
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Figure 3.12: Coarse triangular mesh and the search box
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Figure 3.13: Dimensions of a typical triangle

To ensure that the coarse grid covers the search box, we place the top left corner of the search
box at the centroid of the triangle in the first row and first column, as seen in Figure 3.12. Then,
examining the size of each individual triangle, we see that to ensure that the search box remains
entirely within the triangulated mesh, we need

(n
2
− 1)R

√
3 ≥ W

(m − 1)(3R/2) ≥ H

As a consequence, we choose

m odd,m > 1 +
2H

3R
= 2 +

2H
3Rcoarse

,

n even,n > 2 +
2W

R
√

3
= 4 +

2W
Rcoarse

√
3
.

Area of a coarse mesh triangle In addition to the geometric dimensions of the coarse trian-
gle shown in Figure 3.13, we will also need the areaA of these triangles; for reference we simply
note that

A =
1

2

3R

2
R
√

3 =
3
√

3

4
R2.

Finding the orientation of the coarse mesh’s triangles Label each triangle in the mesh by a
pair of nonnegative integers(i, j), where this refers to the triangle in theith column and thej th row;
for consistency with our C++ code, we start these indices with zero, soi ∈ {0, 1, 2, . . . , n−1} and
j ∈ {0, 1, . . . , m − 1}. We count the columns starting from the left edge working right, and we
count the rows starting from the top and working downward.

Each triangle in the mesh has a side that is parallel to thex-axis. We say that the triangle points
downward if they-coordinate of the centroid is smaller that they-coordinate of the side that is
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parallel to thex-axis; otherwise we say that the triangle points upward. We call this the orientation
of the triangle.

Examining Figure 3.12, we see that

• i + j = even if and only if the triangle points downward;

• i + j = odd if and only if the triangle points upward.

Finding the centroids of the coarse mesh’s triangles Suppose that the coordinates(x0, y0) of
the top left corner of our search box are known. How can we find the coordinates of the centroids
of all of the triangles in the coarse mesh?

Consider a triangle in the mesh at position(a, b) with center(x, y). Then choose(α, β), and ask
what are the coordinates of the center of the triangle whose position in the mesh is(a+α, b+β) =
(i, j). If α + β is even, then both the triangle(a, b) and the triangle(a + α, b + β) both have the
same orientation, and so

coordinates of(a + α, b + β) are(x, y) + R
(

α
√

3
2

, β
(−3

2

)

)

,

because each triangle has widthR
√

3/2 and height3R/2 (see Figure 3.13) and because we count
rows going downward.

On the other hand, ifα + β is odd, thenα + β − 1 is even, and so

coordinates of(a + α, b + β − 1) are(x, y) + R
(

α
√

3
2

, (β − 1)
(−3

2

)

)

.

Then, ifa+b is even, the original triangle pointed downward and so our new triangle points upward
and hence

coordinates of(a + α, b + β) are(x, y) + R
(

α
√

3
2

, (β − 1)
(−3

2

)

)

+ (0,−2R).

On the other hand, ifa + b is odd, then the original triangle pointed upward and our new triangle
points downward; then

coordinates of(a + α, b + β) are(x, y) + R
(

α
√

3
2

, (β − 1)
(−3

2

)

)

+ (0,−R).

With these calculations in hand, we can use the fact that the top left corner of the mesh(x0, y0)
is the centroid of the triangle in position(0, 0); thus the triangle is position(i, j) has centroid

• (x0, y0) + R
(

i
√

3
2

, j
(−3

2

)

)

if i + j is odd, and

• (x0, y0) + R
(

i
√

3
2

, (j − 1)
(−3

2

)

− 1
)

if i + j is even.

These are the calculations that are used in our code, specifically in the constructorCTriangu
latedGeography::CTriangulatedGeography .
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Figure 3.14: Vectorsu, v, andw for a typical triangle in the coarse mesh
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Figure 3.15: Coordinates in the coarse mesh

Determining the coarse mesh triangle containing a point Given a point with known coordi-
nates(x, y), we would like to be able to determine the coordinates(i, j) of the coarse mesh triangle
that contains that point. To do so, define the vectorr = (x − x0, y − y0) and consider the vectors

u = R(0,−3
2
) v = R(3

√
3

4
,−3

4
) w = R(3

√
3

4
, 3

4
)

which are shown in Figure 3.14. Note that|u|2 = |v|2 = |w|2 = 9R2/4.
Calculate the projection ofr in the directions ofu, v, andw, so that

α =

⌊

r · u
|u|2

⌋

, β =

⌊

r · v
|v|2

⌋

, γ =

⌊

r · w
|w|2

⌋

where we have rounded each fraction to the largest integer lower than the given fraction. Then
examining Figure 3.15, we see that the triplet(α, β, γ) then gives us our location within the mesh,
and the coordinates(i, j) of the triangle are then found by simply calculating

i = β + γ j = α.

Determining the coarse mesh triangle near a point Suppose that a point(x0, y0) is known, and
we want to find all of the coarse mesh triangles within a distanceρ from (x0, y0). How we proceed
depends on the relationship betweenρ andR.
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Figure 3.16: Determining the coarse mesh triangles near a point; ρ < R.

Small distances In the case whereρ < R, we begin by drawing circles of radiusR centered
at the three vertices of the triangle. Because every point in the triangle is a convex combination of
the three vertices, it suffices to then take the convex hull of the resulting three circles; this is done
in figure 3.16.

Suppose that(x0, y0) is in the coarse mesh triangle with coordinates(i0, j0). If this triangle
is oriented upwards, then examining the figure, we see that all points within a distanceρ < R of
(x0, y0) lie in the triangles with coordinates:

• (i0 − 2, j0), (i0 − 2, j0 + 1)

• (i0 − 1, j0 − 1), (i0 − 1, j0), (i0 − 1, j0 + 1)

• (i0, j0 − 1), (i0, j0), (i0, j0 + 1)

• (i0 + 1, j0 − 1), (i0 + 1, j0), (i0 + 1, j0 + 1)

• (i0 + 2, j0), (i0 + 2, j0 + 1)

while if the triangle containing(x0, y0) is oriented downwards, then all points within a distance
ρ < R of (x0, y0) lie in the triangles with coordinates:

• (i0 − 2, j0 − 1), (i0 − 2, j0)

• (i0 − 1, j0 − 1), (i0 − 1, j0), (i0 − 1, j0 + 1)

• (i0, j0 − 1), (i0, j0), (i0, j0 + 1)

• (i0 + 1, j0 − 1), (i0 + 1, j0), (i0 + 1, j0 + 1)

• (i0 + 2, j0 − 1), (i0 + 2, j0)
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Figure 3.17: Distances in the coarse mesh

Large Distances To handle the situation whereρ ≥ R, let us consider the situation where

• (x0, y0) is in the triangle(i0, j0),

• (x, y) is in the triangle(i, j), and

• dist((x0, y0), (x, y)) ≤ ρ.

Define the numbers∆i = |i − i0|, ∆j = |j − j0|. Examining Figure 3.17, we can see that

(∆i − 2)
R
√

3

2
≤ |x − x0| ≤ (∆i + 2)

R
√

3

2
,

(∆j − 1)
3R

2
≤ |y − y0| ≤ (∆j + 1)

3R

2
.

Thus

(∆i − 2)
R
√

3

2
≤ |x − x0| ≤ dist((x0, y0), (x, y)) ≤ ρ

(∆j − 1)
3R

2
≤ |y − y0| ≤ dist((x0, y0), (x, y)) ≤ ρ

so that

∆i ≤ 2 +
2ρ√
3R

∆j ≤ 1 +
2ρ

3R
.

Thus, we set

∆i = 2 +

⌈

2ρ√
3R

⌉

∆j = 1 +

⌈

2ρ

3R

⌉
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Then, given the triangle(i0, j0), all of the triangles(i, j) that contain a point of distance no more
thanρ from triangle(i0, j0) satisfy

|i − i0| ≤ ∆i |j − j0| ≤ ∆j

Though fast to implement, this method is not sharp. For example, ifρ < R, then this method
returns all triangles with|i − i0| ≤ 3 and|j − j0| ≤ 2, which is a larger set than what we returned
above.

The fine mesh

Differing quantities of interest vary on very different distance scales. For example, the target
attractivenessG(x) from (3.10) may vary dramatically from one block to another. Other functions,
like the normalization functionN(x) from (3.9) vary much more slowly. If we were to try to
use a single mesh for all of our calculations, we would either lose accuracy because the mesh is
too coarse for the rapidly varying functions, or we would lose performance because we would be
calculating essentially the same slowly varying variables over and over.

Our solution is to use two different meshes, the coarse grid which we have already described,
and another finer mesh, which we will obtain by subdividing the coarse mesh triangles.

Triangular coordinates To construct our fine mesh, we subdivide each triangle from the coarse
mesh intoN2 subtriangles. We then need to determine the characteristics of each of these subtri-
angles from our knowledge of the characteristics of the original, coarse mesh triangle. To do so,
we start by introducing the usual set of triangular coordinates. To do so, label the vertices asv1,
v2, v3. Then a pointx in the triangle has triangular coordinates(α, β, γ) if and only if

x = αv1 + βv2 + γv3

whereα + β + γ = 1.
We then split the collection of subtriangles into those with the same orientation as the parent

triangle and those with the opposite orientation as the parent triangle. See Figures 3.18 and 3.20;
note that the orientation of the parent triangle is irrelevant though the parent triangle in these figures
is shown with an upward orientation for definiteness in the figure and the following discussion.

Subtriangles with the same orientation as the parent We begin by considering the subcollec-
tion of subtriangles with the same orientation as the parent. Examining Figure 3.18, we see that
there are

∑N
i=1 i = 1

2
N(N + 1) such subtriangles. We index each subtriangle by the triangular co-

ordinates of the bottom left corner of the subtriangle. For anyi, j, k satisfyingi+j+k = N , j ≥ 1
andi, k ≥ 0, the point(i/N, j/N, k/N) is the bottom left corner of a triangle in our subcollection.
This condition oni, j, k is equivalent to the requirements

• 0 ≤ i ≤ N − 1,

• 1 ≤ j ≤ N − i, and

• k = N − i − j
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Figure 3.18: Subdivided coarse triangle- subtriangles with the same orientation
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Figure 3.19: Calculating the centroid of a subtriangle
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(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

Figure 3.20: Subdivided coarse triangle- subtriangles with the opposite orientation

We also notice that the vector from the bottom left corner to the centroid of the subtriangle is, in
triangular coordinates, the vector( 1

3N
, −2

3N
, 1

3N
); this follows immediately from Figure 3.19. Thus,

the centroid of the triangle with bottom left corner(i/N, j/N, k/N) is ( i
N

, j
N

, k
N

) + ( 1
3N

, −2
3N

, 1
3N

).

Subtriangles with the opposite orientation as the parent Examining figure 3.20, we see that
there are

∑N−1
i=1 i = 1

2
(N − 1)N subtriangles whose orientation is opposite to that of the parent.

We index these subtriangles by the triangular coordinates of their bottom vertex. Then, for any
i, j, k satisfyingi + j + k = N , j, k ≥ 1, i ≥ 0, the point(i/N, j/N, k/N) is the bottom vertex of
a triangle in our subcollection. This condition oni, j, k is equivalent to the requirements

• 0 ≤ i ≤ N − 2,

• 1 ≤ j ≤ N − i − 1, and

• k = N − i − j.

We also notice that the vector from the bottom vertex to the centroid of the subtriangle is, in
triangular coordinates, the vector(−2

3N
, 1

3N
, 1

3N
); this follows immediately from Figure 3.21. Thus,

the centroid of the triangle with bottom vertex(i/N, j/N, k/N) is ( i
N

, j
N

, k
N

) + (−2
3N

, 1
3N

, 1
3N

).

Cartesian Coordinates Now that we have determined the triangular coordinates for the cen-
troids of all of the subtriangles, we need to determine their corresponding Cartesian coordinates. To
do so, we begin by finding Cartesian coordinates of the point with triangular coordinates(α, β, γ)
with α + β + γ = 1 for a parent triangle with centroid(x0, y0) and circumradiusR.

Examining Figure 3.22, we see clearly that the result will depend on the orientation of the
parent triangle. In the case where the parent triangle has an upward orientation (as was the de-
fault shown in Figures 3.18 and 3.20) we see that we have the following relationship between the
Cartesian and triangular coordinates of the vertices of the parent triangle

51

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



( i
N

, j
N

, k
N

) + ( 1
N

, 0, −1
N

)

( i
N

, j
N

, k
N

)

( i
N

, j
N

, k
N

) + ( 1
N

, −1
N

, 0)

( i
N

, j
N

, k
N

) + ( 2
3N

, −1
3N

, −1
3N

)

Figure 3.21: Calculating the centroid of a subtriangle
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√
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,−1
2
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√
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2
,−1

2
)

(0, 1, 0) = (x0, y0) + R(−
√

3
2

, 1
2
) (0, 0, 1) = (x0, y0) + R(

√
3

2
, 1

2
)
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Figure 3.22: Converting from triangular coordinates to Cartesian coordinates. Left: Parents with a
downward orientation. Right: Parents with an upward orientation
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Parent oriented upwards
Cartesian Coordinate Triangular Coordinate

(1, 0, 0) (x0, y0) + R(0, 1)

(0, 1, 0) (x0, y0) + R(−
√

3
2

,−1
2
)

(0, 0, 1) (x0, y0) + R(
√

3
2

,−1
2
)

As a consequence, the Cartesian coordinates for the point with triangular coordinates(α, β, γ) in
a parent triangle with upward orientation are

(α, β, γ) 7→ (x0, y0) + R(−
√

3
2

β +
√

3
2

γ, α − 1
2
β − 1

2
γ).

On the other hand, if the parent triangle has a downward orientation, then we have the following

Parent oriented downwards
Cartesian CoordinateTriangular Coordinate

(1, 0, 0) (x0, y0) + R(0,−1)

(0, 1, 0) (x0, y0) + R(−
√

3
2

, 1
2
)

(0, 0, 1) (x0, y0) + R(
√

3
2

, 1
2
)

As a consequence, the Cartesian coordinates for the point with triangular coordinates(α, β, γ) in
a parent triangle with downward orientation are

(α, β, γ) 7→ (x0, y0) + R(−
√

3
2

β +
√

3
2

γ,−α + 1
2
β + 1

2
γ).

3.2.5 Evaluating the probability densityP (z)

Our goal is to determine the probability densityP (z) that the offender’s anchor point is located at
the pointz. Of course, this function is defined for every value ofz. Rather than calculate this for
every value ofz however, we will only calculate it for the pointsz that are the centroid of a triangle
in our fine mesh.

3.2.6 The Normalization Function

The normalization functionN(z, α) defined by (3.9)

N(z, α) =

[
∫∫

R2

D(x | z, α)G(x) dx(1)dx(2)

]−1

. (3.25)

is effectively impossible to evaluate analytically, and very difficult to do so numerically. However,
it does possess some properties that will enable us to evaluate it more efficiently. As we will be
focusing in the integral rather than on its inverseN , we adopt the notation

I(z, α) =

∫∫

R2

D(x | z, α)G(x) dx(1)dx(2)

in what follows.
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The Tail

First, we notice thanks to the definition ofG(x) in (3.10), there is an absolute constantΓ so that

0 ≤ G(x) ≤ Γ

for all x ∈ R2. We also note that the graph off(r |α) has a single positive maximum after which
it decays rapidly; see Figure 3.2. In particular, we note that

max f(r |α) =
1

α

√

π

2e
≈ 0.760173

α
,

arg max f(r |α) = α

√

2

π
≈ 0.797885α.

To actually evaluateI(z, α), we begin by replacing the region of integration by the region
[|x − z| < R] for someR. The resulting error is

∣

∣

∣

∣

∫∫

R2

D(x | z, α)G(x)dx−
∫∫

[|x−z|<R]

D(x | z, α)G(x)dx

∣

∣

∣

∣

=

∫∫

[|x−z|≥R]

D(x | z, α)G(x)dx

≤ 2πΓ

∫ ∞

R

r

4α2
exp

(

−πr2

4α2

)

dr

≤ Γ exp

(

−πR2

4α2

)

The exact value ofI(z, α) is unknown, so we are unable to estimate the relative error; however if

G(x) ≈ λΓ for all x, then the integral is approximatelyλΓ; thus we use the factorexp
(

−πR2

4α2

)

as

a proxy for the relative error.
In particular, if we want out estimate for the relative error caused by neglecting the tail to satisfy

exp

(

−πR2

4α2

)

≤ 10−k

then
πR2

4α2
≥ k ln 10

so we choose

R ≥ 2

√

ln 10

π

√
kα ≈ 1.71223

√
kα.

Reasonable values are
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Figure 3.23: Discretization of an integral

10−k Rcrit

10−1 1.71223α
10−2 2.42146α
10−3 2.96567α
10−4 3.42447α
10−5 3.82687α
10−6 4.19410α
10−7 4.53014α
10−8 4.84293α

The discretization

To evaluate the portion of the integral excluding the tail,i.e. the portion of the integral for which
|x − z| < R, we use the two-dimensional midpoint rule.

The two-dimensional midpoint rule For simplicity, we start by describing how to evaluate the
integral of an arbitrary functionf(x, y) over an equilateral triangle with centroid at the origin and
circumradiusR, as seen in figure 3.23

Let T be our equilateral triangle; then for any(x, y) ∈ T , there is a point(x0, y0) ∈ T so that
Taylor’s Theorem will let us write

f(x, y) = f(0, 0) +
∂f

∂x
(0, 0)x +

∂f

∂y
(0, 0)y

+
1

2

(

∂2f

∂x2
(x0, y0)x

2 + 2
∂2f

∂x∂y
(x0, y0)xy +

∂2f

∂y2
(x0, y0)y

2

)
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We now integrate both sides in(x, y) overT .
A simple symmetry argument shows that

∫∫

T

∂f

∂x
(0, 0)x dx dy = 0

On the other hand

∫∫

T

∂f

∂y
(0, 0)y dx dy = 2fy(0, 0)

∫ R

−R/2

∫ −
√

3

3
(y−R)

0

y dx dy

= 2fy(0, 0)

∫ R

−R/2

−
√

3

3
y(y − R) dy

= −2
√

3

3
fy(0, 0)

[

1

3
y3 − 1

2
Ry2

]R

−R/2

= −2
√

3

3
fy(0, 0)

[

1

3
R3 +

1

3

(

R

2

)3

− 1

2
RR2 +

1

2
R

(

R

2

)2
]R

−R/2

= −2
√

3

3
fy(0, 0)

[

1

3
+

1

24
− 1

2
+

1

8

]

R3 = 0.

Thus,
∫∫

T

f(x, y) dx dy = A(T )f(0, 0) + E

whereA(T ) is the area of triangleT , and the errorE satisfies

E =
1

2

∫∫

T

(

∂2f

∂x2
(x0, y0)x

2 + 2
∂2f

∂x∂y
(x0, y0)xy +

∂2f

∂y2
(x0, y0)y

2

)

so that

|E| ≤ 1

2
‖fxx‖∞

∫∫

T

x2 dx dy + ‖fxy‖∞
∫∫

T

|xy| dx dy +
1

2
‖fyy‖∞

∫∫

T

y2 dx dy

Now direct evaluation shows us that
∫∫

T

x2 dx dy =
3
√

3

8
R4

∫∫

T

y2 dx dy =
3
√

3

8
R4

∫∫

T

|xy| dx dy =
15

32
R4

and consequently

|E| ≤
(

15

16
+

3
√

3

4

)

∥

∥D2f
∥

∥

∞ R4
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We will then use the midpoint approximation

∫∫

T

f(x, y) dx dy =

(

3
√

3

4
R2

)

f(0, 0) + O(R4)

to evaluate our integral.

Application to the normalization function Now

I(z, α) =

∫∫

R2

D(x | z|, α)G(x) dx(1) dx(2) =

∫∫

R2

1

4α2
exp

(

− π

4α2
|x − z|2

)

G(x) dx(1) dx(2)

Let ∆ be a collection of equilateral triangles whose closures cover the plane and whose interiors
are disjoint. Then, we can rewrite the integral above as
∫∫

R2

D(x | z|, α)G(x) dx(1) dx(2) =
∑

T∈∆

∫∫

T

1

4α2
exp

(

− π

4α2
|x − z|2

)

G(x) dx(1) dx(2).

Using the midpoint method, we then obtain the approximation

∫∫

R2

D(x | z|, α)G(x) dx(1) dx(2) ≈ 3
√

3

16

1

α2

∑

T∈∆

R2
T exp

(

− π

4α2
|xT − z|2

)

G(xT )

whereRT is the circumradius andxT is the centroid of the triangleT .

Selecting the mesh

We begin by selecting a circumradius of the coarse mesh triangles,Rcoarse. Based on our analysis
of the tail, we see that relative error in replacing the integral overR2 with the integral over the
smaller region[|x − z| < 3α] is roughlye−9π/4 ≈ 0.000851. Thus, we shall drop from the mesh
∆ any triangleT for which |xT − z| > 3α

We also see that the relative error in replacing the integral overR2 with the integral over the
even smaller region[|x − z| < 2α] is roughlye−π ≈ 0.0432. Because this is not insignificant, we
will retain all of the triangles for which2α < |xT − z| ≤ 3α.

Finally, our analysis of the tail tells us that the vast majority of the contributions to our integral
come from the region|xT − z| ≤ 2α. For this reason, we subdivide all of the coarse triangles in
this region into their corresponding fine subtriangles before evaluating the integral.

This is the process that is used in the code to evaluateI(z, α).

Evaluating I(z, α) asz varies

Although we have outlined how we are able to evaluate the integralI(z, α), we do not want to do
so for every potential value ofz. As described in Section 3.2.5, we only need to evaluateP (z)
and henceI(z) for pointsz that are the centroids of triangles in the fine mesh. However, this turns
out to be impractical, as the computation time to evaluateI(z) even once is significant. Testing
has shown that this process, simplified as it was in the previous discussion, is still by far the most
computationally expensive portion of the algorithm.
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Rather than use this algorithm at the centroid of every fine triangle, we instead use this method
only to calculate the values ofI(z) on the vertices of the coarse triangles and interpolate into the
fine triangles within.

Suppose we are given a coarse triangleT and the values ofI at the vertices ofT ; and want to
use interpolation to approximate the values ofI in the interior ofT . Let c be the center andR the
circumradius of the coarse triangleT ; then the vectors fromc to the vertices ofT are

v1 = ±R 〈0, 1〉

v2 = ±R

〈√
3

2
,−1

2

〉

v3 = ±R

〈

−
√

3

2
,−1

2

〉

where the+ sign is chosen when the triangle is oriented upwards and the− sign when the triangle
is oriented downwards. The vertices ofT are then{c + vi}3

i=1.
We then examine the known values ofI on the vertices ofT , naming them

I1 = I1(α) = I(c + v1, α),

I2 = I2(α) = I(c + v2, α),

I3 = I3(α) = I(c + v3, α).

Now select a pointz ∈ T , and letx = z− c; then

x = t1v1 + t2v2 + t3v3

z = c + t1v1 + t2v2 + t3v3

where

ti =
1

3
+

2

3

x · vi

R2
.

Indeed

z = c + t1v1 + t2v2 + t3v3

= c + 1
3
(v1 + v2 + v3) + 2

3
1

R2 {(x · v1)v1 + (x · v2)v2 + (x · v3)v3}
= c + 2

3
1

R2 {(x · v1)v1 + (x · v2)v2 + (x · v3)v3}
= c + 2

3

{

〈0, x2〉 +
(√

3
2

x1 − 1
2
x2

)〈√
3

2
,−1

2

〉

+
(

−
√

3
2

x1 − 1
2
x2

)〈

−
√

3
2

,−1
2

〉}

= c + 2
3

{

〈0, x2〉 +
〈

3
2
x1,

1
2
x2

〉}

= c + x = z.

as required.
Thus, for any pointz ∈ T , we calculate the numbersti and use the linear approximation

I(z, α) ≈ t1I1 + t2I2 + t3I3.
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Evaluating I(z, α) asα varies

The approximation ofI(z, α) by linear interpolation within a coarse triangle does not always pro-
duce reasonable results; in fact the accuracy of the approximation deteriorates asα ↓ 0.

Recall thatα is the average distance the offender is willing to travel and that the dependence
onz of the integrand is through (3.11),

D(x | z, α) =
1

4α2
exp

(

−π

4

[ |x − z|
α

]2
)

.

Examining this, we see that ifz1 andz2 are far apart relative toα, then|x− z1|/α and|x− z2|/α
are very different, and soI(z1, α) andI(z2, α) are likely different.

Since the coarse triangles have circumradiusR = Rcoarse, if R � α, then the variation in the
integrand overT is small, and the interpolation should provide reasonable approximations; on the
other hand ifR � α, then the variation of the integrand overT is large, and we expect poor
approximations. This has been observed in numerical results.

To proceed, we write the integral as

I(z, α) =

∫∫

R2

D(x | z, α)G(x)dx(1)dx(2)

=
1

4α2

∫∫

R2

exp

(

−π

4

|x − z|2
α2

)

G(x)dx(1)dx(2)

Setξ = 1
2α

(x − z), thendξ = 1
4α2 dx so

I(z, α) =

∫∫

R2

exp(−π|ξ|2)G(z + 2αξ) dξ.

From this we can clearly see thatI(α) → G(z) asα ↓ 0.
Continuing our analysis, we can replaceG by its Taylor series; then

I(z, α) =

∫∫

R2

exp(−π|ξ|2)
{

G(z) + 2α DG(z) · ξ + 4α2ξ>D2G(z)ξ + O(α3)
}

dξ.

Note that the second term vanishes; indeed
∫∫

R2

exp(−π|ξ|2)DG(z) · ξ dξ =

∫ 2π

0

∫ ∞

0

e−πr2|DG(z)|r cos θ · r dr dθ = 0

whereθ is the angle measured from the directionDG(z)/|DG(z)|. Thus, we can write

I(z, α) ≈ G(z) + c2(z)α2 + O(α3)

for smallα.
With this in mind, we wish to approximateI(z, α) for α near 0 by interpolation. We suppose

that we already have approximations forI(z, α) for α = α1 < α2 < · · · < αN , but that the
accuracy of the approximations diminishes asα ↓ 0.
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We begin by choosingK so large that our approximations are reasonable atαk for k ≥ K. In
particular, we chooseK so large thatα∗

K ≥ 2R, that is

α∗
K = (K − 1

2
)ε ≥ 2R

so we want
K ≥ 1

2
+ 2(R/ε)

To proceed, we use the Hermite approximation

A(α) = ω0 + ω1(α − αK) + ω2(α − αK)2 + ω3α(α − αK)2

so that
A′(α) = ω1 + 2ω2(α − αK) + ω3(α − αK)2 + 2ω3α(α − αK).

The coefficientsω0, ω1, ω2 andω3 are chosen so that

A(0) = I(z, 0) A(αK) = I(z, αK)

A′(0) =
∂I

∂α
(z, 0) A′(αK) =

∂I

∂α
(z, αK)

From our Taylor series approximations nearα = 0, we concluded

I(z, 0) = G(z)
∂I

∂α
(z, 0) = 0.

The value ofI(z, αK) we have from our approximations, while we use

∂I

∂α
(z, αK) ≈ I(z, αK+1) − I(z, αK)

ε
.

Now

A(0) = ω0 − αKω1 + α2
Kω2 A(αK) = ω0

A′(0) = ω1 − 2αKω2 + α2
Kω3 A′(αK) = ω1

so we set

ω0 = I(z, αK)

ω1 = 1
ε
[I(z, αK+1) − I(z, αK)]

ω2 = 1
α2

K

[G(z) − ω0 + αKω1]

ω3 = 1
α2

K

[2αKω2 − ω1]

This is the method that is used in the code to evaluate the integralsI(z, α).
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3.3 Reprise of mathematical assumptions and computational
techniques

Assumption Comments Location

The offender chooses offense locations
according to a probability distribution
P (x | z, α) that depends only on the of-
fender’s anchor pointz and the average dis-
tanceα the offender is willing to travel to
offend.

This is fundamental to our approach, though
the mathematical framework allows for the
possibility that P depends on other vari-
ables.

page 17

The offender’s choices of crime sites are
mathematically independent of one another

This is a required mathematical simplifi-
cation for (3.4); without it one must also
model the nature and form of the effect of
the choice of one crime site has on the of-
fender’s selection of subsequent crime sites.

page 19

The offender’s distance decay function is in-
dependent of the offender’s anchor point

This is a required mathematical simplifica-
tion for (3.2); without it one must also model
the nature and form of the dependence of the
average offense distance on the location of
the offender’s anchor point.

page 19

The probability densityP has the form
P (x | z, α) = D(d(x, z), α)G(x)N(z, α)

Other reasonable forms for this probability
density exist and can be treated via these
mathematical techniques; this is the selec-
tion that was implemented in the software
prototype.

page 20

The offender’s two-dimensional distance
decay function is a normal distribution
D(x | z, α) = 1

4α2 exp
(

− π
4α2 |x − z|2

)

This is the choice made in the software pro-
totype. Other reasonable choices exist, like
the negative exponential.

pages 21,
26

The likelihood that a particular location will
be the location of a future offense can be
estimated from the locations of historical
crimes of the same type as the offense.

In the prototype software, the analyst needs
to select the historically similar crimes.

page 22

The distribution of anchor points follows lo-
cal population density for people with the
same age / sex / race or ethnic group of the
offender

The prototype software uses U.S. Census
data to perform the calculations.

page 23

The prior distribution of average offense dis-
tancesπ(α) can be calculated by using his-
torical data and solving (3.15)

This is difficult to solve in practice; see com-
putational techniques.

page 28

Table 3.2: Summary of mathematical assumptions in the model
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Technique Location
Equation (3.15) which is used to determine the estimate for the distribution of
average offense distances across offenders is solved by using collocation to convert
it to a linear system, which is then solved via Tikhnonv regularization.

Subsection
3.2.3

The continuous functions in the model are estimated by calculating their values on
a triangular grid that overlays the geographic region under consideration. The grid
is kept at two levels of detail, a coarse grid and a fine sub-grid.

Subsections
3.2.4 and 3.2.5

The integral defining the normalization functionN(z, α) is evaluated at each point
in the coarse grid using the midpoint method, where the precise mesh used is an
adaptive combination of elements from the coarse mesh and the fine mesh depend-
ing on the value ofα. These values are interpolated into the fine mesh via geometric
interpolation and Hermite approximation inα.

Subsection
3.2.6

Table 3.3: Summary of computational techniques in the software

3.4 The software

3.4.1 Overview

We have developed software that implements these mathematical algorithms. The software was
built in two parts:

• A program called Profiler that performs all of the mathematical analysis, and

• A program called ProfilerGUI with which the user interacts.

The software was developed in this fashion for a number of reasons. First and foremost, this
approach allows this scientific work to be kept separate from user interface issues. In particular,
because the scientific analysis is performed in a separate, stand-alone program, it is possible for
this tool to be incorporated into other software suites that have compatible open source licenses.
In addition, this approach lets us work separately on the user interface and the scientific analysis
tools.

To use the software, the user starts ProfilerGUI; a screen shot is contained in Figure 3.24.
The user interface then prompts the user to enter the required data for the program. When this is
complete, ProfilerGUI writes a plain text parameter file that contains all of the user’s selections.
ProfilerGUI then calls the program Profiler, and passes it the name of the parameter file it just
wrote. Profiler performs its analysis; as it returns information this is noted by ProfilerGUI and
reported to the user. It total, the program provides

• A map of the proposed search area, in .kml format,

• A map of the target attractiveness functionG(x), in .kml format, and

• A map of the population density of the search area that matches the provided demographic
information, again in .kml format.
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Figure 3.24: Screenshot of the Program
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Because the analysis process can take some time- a few hours istypical, the program also provides
the analyst with its partial results as the analysis continues.

The output maps are provided in .kml format; this is an open standard. Files in this format can
be rendered by a number of free programs, including

• Google Earth,

• ESRI’s ArcGIS Explorer, and

• NASA’s World Wind.

All of the maps in this report are screen shots taken from Google Earth.
In this section, we will describe first how the program is installed, including how to obtain all

of the required files. We will then provide step-by-step instructions on how the program is meant
to be used. Finally, we will take a brief look at the source code for the two software tools, and
explain how they have been designed and built.

3.4.2 Installing the software

The software tool comes packaged as a compressed .zip archive. Once downloaded, the user simply
needs to uncompress the archive to create a folder called Profiler; see Figure 3.25 as an example.

At this point, the tool is ready to run; just use the ProfilerGUI program provided in the root
directory. No other installation tasks need to be performed.

3.4.3 Using the software

Detailed instructions on the use of the program have been provided with the software in the form
of a .pdf sideshow that illustrates the use of the program on a series of convenience store robberies
in Baltimore County. In this report, we shall briefly summarize the process.

Selecting the crime series

The first step is to select the crime series under analysis. The program requires a plain text file
that contains the locations of the crime series. Each line of this file contains the longitude and
latitude of one element of the crime series, separated by one or more spaces. Both longitude and
latitude are specified in decimal degrees, and need to be separated by one or more spaces. The file
name can be entered either by directly typing its name into the Crime Series box or by pressing the
corresponding Select File button to obtain a dialog box that allows the user to simply click on the
desired file.

Selecting the historical crime locations

Next, the analyst needs to provide a plain text file that contains the locations of a representative set
of crimes of the same type as the series under consideration. This file has the same structure as the
crime series file, save that each line now contains the longitude and latitude of a single historical
crime.
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Figure 3.25: Unpacking the software archive
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This is the information that the algorithm uses to generate its estimate forG(x). The crimes
used in the historical crime locations may be solved or unsolved, and need not be from series
crimes. Not every crime of the same type needs to be included, just enough to generate a repre-
sentative sample. As part of the analysis, the program will generate a map of the resulting target
attractivenessG(x); it is important that this map be checked for reasonableness.

In particular, the bandwidth used to generate the map of historical crimes is twice the mean
nearest neighbor distance between offenses. Thus, if too few historical crime sites are included,
then the mean nearest neighbor distance will be large, and so the graph will be very broad and
smooth- perhaps broader and smoother than the analyst feels is appropriate. As a consequence,
when deciding what historical crimes to use, the analyst needs to balance how well the historical
crimes match the series versus the need to have a representative sample that generates a reasonable
map of historical crimes.

It is also important to note that regions where the historical crime locations map is zero are
considered to be regions where there can be no known crimes in the series known to the analyst. A
consequence of this is that if an analyst is investigating a series that crosses multiple jurisdictions,
then the analyst needs to have the corresponding historical information for all of these jurisdictions.

Selecting the historical distances

To create the estimate of the prior distribution of offender average offense distances, the program
requires a plain text file that contains the locations of a representative set of solved crimes together
with the location of the offender’s home base. This file has the same structure as the crime series
file, save that each line now contains the longitude and latitude of a crime site together with the
longitude and latitude of the offender’s home base.

The solved crimes used to generate the historical distances do not need to be of exactly the same
type as the series under consideration. They only need to provide a reasonable basis to estimate
the distance decay function for offenders in the jurisdiction.

Selecting the search region

The search region is composed of one or more county-sized regions. The list of available county-
sized regions is taken from the U.S. Census. The analyst simply needs to select the state and
corresponding county sized region(s) from the available drop boxes. Up to four different regions
can be selected.

When selecting the search region, it is important to note that the algorithm will assume that the
offender is not located outside of the search region. In particular, the search area chosen at this
stage must be sufficiently large to encompass the anchor point of any potential offender. Failure to
do so will result in search areas that are strongly biased.

To perform its analysis, the program needs to possess the necessary U.S. Census data for the
selected regions. When a region is selected, the program will check to see if it has the necessary
data files. If it does not, then a message will be displayed, explaining the issue. The box tells the
user the name of the files that are needed, provides a link to the Census web site from which the
files can be downloaded, and indicates the locations where the downloaded data files need to be
stored. It is impractical to distribute all of the required data files directly with the program due
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to their large size. Indeed, if we were to include the necessary census data for all fifty states, the
result would be many hundreds of times the size of the program.

Selecting the offender information

If the age, sex, or race / ethnic group of the offender is known to the analyst, this information
can be included. When the program develops its prior estimate for the distribution of potential
offender anchor pointsH(z) before the information from the crime series is taken into account, it
uses population density data from the U.S. Census for this purpose. Because the Census provides
block level data subdivided by age, sex, and race /ethnic group, we can use that information when
developing this prior estimate. Entering the available data is done by simply choosing from the
appropriate drop boxes; the default assumption is that no demographic information is available
about the offender.

Program results

As we have already noted, the program produces a number of maps as its output, including a map
of the search area, a map of the target attractiveness function, a map of the population density,
and interim maps of the search area as the analysis proceeds. All of these results are stored in the
directory that the user specifies here, either by directly entering the name of the directory, or by
using the dialog box obtained by pressing the Select Directory button.

The analysis

Once all of the necessary data has been entered, the Start Analysis button will be enabled; once
pressed the program will begin its work. First the program will read the necessary data files and
initialize internal data structures; as this process occurs, the status bar will keep the user informed.
When the initialization is complete, the program will begin by working one subregion at a time and
calculating the probability that the offender’s anchor point lies in that subregion. The total number
of subregions searched is recorded as a fraction of the total number of subregions in the search
area, as well as the relative likelihood of the last searched subregion as a fraction of the maximum
likelihood so far encountered.

Now an exhaustive search of every possible subregion would significantly increase computation
time to no real benefit- given that the search area is the size of one or more counties, most of the
subregions are unlikely to contain the offender’s anchor point. Instead, the search proceeds by
spiraling out from the crime series, and continuing until it can make a complete circuit where the
the likelihood that any of the subregions in the circuit contains the offender’s anchor point is less
than 0.5% of the most likely subregion. The Estimated Progress bar tracks how close the program
has come to making a complete circuit where all of the subregion likelihoods have remained below
this threshold. If during this process the program encounters a subregion where the likelihood
is larger than this threshold, then it must begin a new circuit at this point and so the Estimated
Progress bar will drop back to 0%.
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Running time

The software prototype is computationally intensive, and the process can take quite some time
to complete. In Chapter 4, we apply the software prototype to a series of 6 convenience store
robberies in Baltimore County. When the prototype is run on a new Windows Vista system (Core
2 Duo T6400, 4 GB memory) for this series, the program needs roughly an hour and a half to
complete. The same series when analyzed on an older Windows XP system (Pentium D 805, 2GB
memory) has a run time of roughly two hours; older systems have even longer run times.

Despite the long run times for the software prototype, it is designed to be run while other ap-
plications also run on the system without using all of the computer’s resources. Thus, the machine
should not “freeze” or become unresponsive while the prototype is running, and other applications
can be used concurrently with the prototype.

3.4.4 Internal structure of the software

Profiler

Profiler is a program written entirely in C++ to implement our mathematical algorithms. It is a con-
sole based program that is usually run in concert with ProfilerGUI, but can also be run separately
as a stand-along program.

Using Profiler as a stand-alone program To run Profiler as a stand-alone program, it needs
to be run from the command line with the name of a plain text file that contains the parameters
necessary for the analysis; if no parameter is passed the program looks for the parameter file with
name./Parameters/Parameters.txt .

A typical parameter file looks like the following

Triangle Circumradius = 0.01
Crime Series Data File Name = ./Parameters/series.txt
Historical Data File Name = ./Parameters/history.txt
Historical Distances File Name = ./Parameters/historical_distances.txt
Number of regions = 2
State = MD
County Code = 005
State = MD
County Code = 510
Race / Ethnic group = Asian alone
Sex = Female
Minimum Age = 0
Maximum Age = Maximum
Results Directory = ./Results

An explanation of the individual parameters follows

• Triangle Circumradius : The geographic region under study is subdivided into a mesh of
equilateral triangles (the coarse mesh), and each of these triangles is then subdivided into a
number of subtriangles, resulting in the fine mesh. The size of the triangles in the coarse
mesh is the input variable Triangle Circumradius.
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Figure 3.26: Screenshot of Profiler running as a stand-alone program
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• Crime Series Data File Name: This is the name of a plain text file that contains the longi-
tude and latitude of each element of the crime series.

1. Each line of the file should contain the latitude and longitude of a single crime location.

2. The latitude and longitude should be separated by one or more blank spaces, with
longitude first, and latitude last.

3. The latitude and longitude should be specified in decimal degrees.

4. The file should contain no other data; in particular it should not end with a blank line.

• Historical Data File Name: This is the name of a plain text file that contains the longitude
and latitude of historical crimes of the same type as the series under study.

1. The historical data is used to generate a map of the relative likelihood that a particular
location is the site of a crime of the same type as the that series under study. The data
set should be sufficiently large for this purpose.

2. The historical data does not need to consist of solved crimes, nor does the historical
data need to consist of series crimes.

3. Each line of the file should contain the latitude and longitude of a single crime location.

4. The latitude and longitude should be separated by one or more blank spaces, with
longitude first, and latitude last.

5. The latitude and longitude should be specified in decimal degrees.

6. The file should contain no other data; in particular it should not end with a blank line.

• Historical Distances File Name: This is the name of a plain text file that contains the
longitude and latitude of both the locations of a crime and the home base of the offender.

1. The historical data is used to generate a graph of crime frequency versus distance.

2. The historical data should be from crimes similar to the series under consideration.

3. Each line should contain the data from a single historical crime, and should contain in
order the longitude and latitude of the crime site, then the longitude and latitude of the
home base of the offender.

4. The latitudes and longitudes should be separated from each other by one or more blank
spaces.

5. The latitudes and longitudes should be specified in decimal degrees.

6. The file should contain no other data; in particular it should not end with a blank line.

• Number of regions: This is the number of county-equivalent regions that are necessary to
contain both the all of the elements of the crime series as well as the largest possible search
area

• State: Two letter abbreviation for a state containing a county-sized region to be searched.
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• County Code: This is the corresponding three digit U.S. Census Bureau County Code1; this
does not include the associated two digit state code.

• Race / Ethnic group: This is the Race or Ethnic group of the offender; the classification
scheme is the same as that which is used by the U.S. Census Bureau in Summary File 12.

• SexThis is the sex of the offender.

• Minimum Age This is a lower estimate for the possible age of the offender. Not every choice
of age is valid; the value needs to be the lower bound for an age range for which the U.S.
Census records block level population data; see Summary File 1.

• Maximum Age This is a upper estimate for the possible age of the offender. Not every
choice of age is valid; the value needs to be the upper bound for an age range for which the
U.S. Census records block level population data.

• Results Directory: This is the name of the directory that the program will use to store its
results.

Compiling Profiler This program was compiled with gcc(3.4.5)/MinGW; it also requires the
Lapack++ libraries (2.5.1). It is important to use the a recent version of Lapack++. There is a
much older version (1.1a) of Lapack++ available at the NIST web site; it is not suitable.

Brief overview of the Profiler source code Profiler was developed using a strict object-oriented
approach; its functions were split into twelve distinct classes:

• Input and output classes

– CInput is used to handle all of the input to the program; it reads the parameter file, as
well as any auxiliary data files and performs all validation.

– COutput is used to generate all of the maps developed by the code in.kml format.

– CCensus is used to read data from U.S. Census data files.

• Auxiliary classes for data

– CBlock is an auxiliary class that encapsulates a U.S. census block.

– CPt is an auxiliary class that encapsulates a geographic point.

– CTriangle is an auxiliary class that represents a triangular geographic region.

• Classes for geography

– CTriangulatedGeography is the main class that handles the geography. The
geographic region under study is covered by two triangular meshes, a coarse mesh that
is used for functions that vary slowly and are difficult to compute- likeN(z, α), and
a much finer mesh for functions that vary much more rapidly- likeG(x) andH(z),
which can change dramatically from block to block.

1http://www.census.gov/datamap/fipslist/AllSt.txt
2http://www.census.gov/Press-Release/www/2001/sumfile1.html
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• Functions in the mathematical model

– CDistanceDecay is the class that contains the data for the distance decay function
D; it also contains the results for the prior distribution of offender average offense
distanceπ(α).

– CNormalizationFunction is the class that calculates the values of the normal-
ization functionN(z, α).

– CTargetDensity is the class that contains the values for the target density function
G(x).

– CPopulation is the class that contains the data forH(z).

– CTikhonov is the class that is used to perform the regularization process, it is an
auxiliary class forCDistanceDecay , and reports its results back to that class for
storage.

Now we briefly describe each class used by Profiler.

CBlock This class is a data structure to hold the elements of a U.S. Census Bureau block
that are relevant for the code. This data is all available in Summary File 1. In particular, the class
records

• The U.S. Census Bureau logical record number of the block,

• The land area of the block, in square meters,

• The latitude and longitude of the block (in degrees), and the

• Population of the block.

The population recorded inCBlock is not necessarily the total population of the block, but rather
the population for the combination of age, sex, and race / ethnic group under consideration.

CCensus This class that contains all of the census data for the county or counties that contain
the potential search area.

The Census Bureau Summary file 1 has block level population data for each county in the
country, sorted by age, sex, and race / ethnic group. For each state, we require three files:

• STgeo.uf1

• ST00005.uf1

• ST00006.uf1

where ST is replaced by the corresponding two letter state abbreviation. These files must be in-
cluded in the same directory as the program executable; they can be directly downloaded from the
U.S. Census site.

The demographic information- age, sex, and race/ethnic group follow the Census Bureau stan-
dard definitions and groupings.
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Internally, the class stores an array of blocks (typeCBlock ) which contain the location, land
area, and population (in the specified demographic) of each block.

This data is be used byCPopulation to construct the prior distribution for anchor points
H(z).

CDistanceDecay This class handles both the explicit form of the distance decay function as
well as the creation of the prior estimate for the distance decay function.

All distances are measured in decimal degrees. The motivation for this choice is the fact that
since the input latitude and longitude will be in degrees, it makes more sense to keep the same
units throughout.

The implementation of the distance between two points is actually handled by theCPt::
S2DistanceTo function, and work on the assumption that the Earth’s surface is spherical. In
particular, no correction factors for the ellipsoidal nature of Earth have (yet) been incorporated.

The primary mathematical quantities that this class needs to store are the arrays

• αk, the values ofα at which the priorπ is recorded,

• πk ≈ π(αk), the values of the prior estimate for the distance decay function, and

• ∆αk ≡ αk+1 − αk, the increments inα

To evaluate the later integrals, only the nonzero values ofπk are needed; hence the class stores the
values of the triples(αk, πk, ∆αk) for only the non-zero values ofπk.

This data structure also allows for the possibility of adaptive integration inα by adjusting the
step sizes∆αk, but right now all of these values are constant.

CInput This is the class used to set up and handle all of the input and output files for the
program. The constructor is passed the program’s arguments; it uses these to determine the location
of the parameter file, which it then opens. The constructor then reads the parameter file, and stores
all of the necessary results in class variables.

The class provides a family of functions that provide to access the parameters, which are stored
in class variables.

CNormalizationFunction This class handles all of the calculations necessary to evaluate
N(z, α).

It has one public member function, which is used to actually calculate the integral. It starts
with a valuez and an array{α1, α2, . . . , αK}, then returns the array of values

{N−1(z, α1), N
−1(z, α2), . . . , N

−1(z, αK)},

whereN−1(z, α) is defined by

N−1(z, α) =

∫∫

R2

D(d(x, z))G(x) dx(1) dx(2)

This is done by adaptive integration and uses the private functionCNormalizationFunc
tion::GetOneMeshValue The private function chooses a triangulation of the region of inte-
gration that depends on the values ofαi and then performs the integration.
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COutput This class is used to generate and write all of the output maps produced by the
analysis engine. To create an instance, you must specify the output type and the file name of
the output. Right now, only .kml output formats are supported. The constructor creates the file
with the provided name in the directory recorded in theCOutput::resultsDirectory . The
constructor also writes the required elements of the .kml header.

Function calls can then be made toCOutput::DrawPoint andCOutput::DrawGraph
so that data can be added to the output. Multiple maps can be overlaid in the same output file;
the altitude of each map is stored in the class variableCOutput::altitude , and this value is
increased by 50 each timeCOutput::DrawGraph is called.

The destructor∼COutput writes the KML footer and closes the file.

CPopulation This class stores the population data for the search region. This is used as a
proxy for an estimate of the prior distribution of offender anchor points.

Right now, this is calculated only from US Census data; in the future we would like to use other
data sets (e.g. distributions of other offenders) to generate this distribution. This can be done most
simply by overloading the constructor.

CPt This class forms a data structure for a two-dimensional point. Implemented operations
include the standard vector operations (addition, scalar multiplication), the (Euclidean) dot product
and Spherical distance (CPt::S2DistanceTo ).

CTargetDensity This class is used as a data structure to hold the target density function
G(x). In particular, this class calculates and stores the value ofG(x) at the centers of the fine
triangles in the mesh; these values can be retrieved viaCTargetDensity::getFineValue .

The class also calculates and stores the value ofG(x) for each coarse triangle. Rather than
simply calculate the value ofG(x) at the center point of the coarse triangle, it instead uses the
averages of the values ofG at all of the fine triangle contained within the coarse triangle. The
reason for this behavior is that the underlying functionG varies on a very fine scale. It makes
sense that to calculate the value ofG on the fine mesh, because that is the finest mesh in the
problem. When looking for the value ofG at for a coarse triangle, if we simply calculated the
value ofG at the center of the triangle, then we run the risk that a small change in the location
of the center of the coarse triangle can result in a large change in the value returned. Instead, we
return the average value to try to smooth our the results.

The values ofG(x) are calculated using a kernel density estimation process. In particular,
suppose that the historical crimes have been committed at the locationsc1, c2, . . . , cN . Consider
the truncated quartic kernel functionK(x|λ) with bandwidthλ

K(x|λ) =







3

πλ6
(|x|2 − λ2)2 if |x| ≤ λ

0 if |x| ≥ λ

The bandwidthλ is chosen to be twice the mean nearest neighbor distance between historical
crimes, and

G(x) ∝
N
∑

i=1

K(x − ci|λ).
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CTikhonov This class is used solely to compartmentalize the process of calculating the non-
negative Tikhonov regularized solution to a linear equation. It uses the mathematical algorithms
described in Section 3.2.3.

CTriangle This is a data structure for a triangle with sides parallel to thex-axis. It retains
the center of the triangle, its circumradius, and its orientation, where the orientation determines if
the centroid is above or below the side parallel to thex-axis.

CTriangulatedGeography This is a data structure that contains all of the underlying ge-
ographic structure of the program. The class contains two primary data structures- a mesh of
coarse triangles and a mesh of fine triangles. Each of the triangles in the coarse mesh are of type
CTriangle , meaning that they are equilateral and have one side parallel to thex-axis. This
coarse grid covers the entire geographic region under consideration, including the crimes, the his-
torical crimes, and the region to be searched.

Each coarse triangle is subdivided into subtriangles, also of classCTriangle .
The coarse grid and the fine grid are entirely created by the constructor; the primary public

methods return various grids, sub-grids, and individual triangles.

ProfilerGUI

ProfilerGUI is a program written in C++ to provide a simple interface to allow an analyst to in-
teract with the Profiler program. ProfilerGUI requires the presence of the program Profiler in a
subdirectory of the same name. When ProfilerGUI runs, it takes the data provided by the user,
writes a parameter file, calls Profiler, and then interprets the results returned by Profiler.

Compiling ProfilerGUI This program was developed with the GPL version of Qt Creator 1.1.1,
based on Qt 4.5.1. It requires no additional libraries beyond those included in Qt Creator.

Brief overview of the ProfilerGUI source code This program is designed to take full advantage
of the signals and slots mechanisms provided by Qt. In particular, this allows us to create an event-
driven program where actions taken in the user interface (e.g. pressing a button or editing a box)
cause code to be executed.

The program contains only two classes-MainDlg andCStatus , and nearly all of the work
occurs inMainDlg . This is the class that handles the program’s primary dialog. It is responsible
for

• Displaying the dialog (and all sub-dialogs, including file/directory selection and help di-
alogs)

• Recording all of the entered data

• Starting the profiler (analysis) program

• Reading the data returned by the profiler program, and updating the user on the status of the
analysis.
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The classCStatus is simply a data structure containing five boolean variables where each
variable represents the status of one of the required data elements-

• The crime series,

• The history file,

• The historical distances file,

• The search region, and

• The results directory.

When true they indicate that the GUI program has the necessary data for that data element.
The public functionCStatus::Prepared returns true if all of the status variables are true;

otherwise it returns false. It is used to determine if the program is ready to allows the analysis
component to run.

Integrating Profiler and ProfilerGUI When complete, the software package contains

• ProfilerGUI.exe

• The file counties.txt, which is a modified version of a list of county codes provided by the
U.S. Census.

• Two .dll files from the Qt library:

– QtCore4.dll

– QtGui4.dll

• The analysis program (Profiler.exe) and its associated files in the Profiler subdirectory. In
particular, the subdirectory needs to contain

– Profiler.exe

– Three lapack++ library files:

∗ libblas32.dll

∗ liblapack32.dll

∗ liblapackpp-15.dll
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Chapter 4

Results

4.1 Discussion of findings

The purpose of our project was to develop a new mathematical approach for the geographic profil-
ing problem and to implement that new algorithm in software, and we have done so. To illustrate
how our model and tools work in practice, let us consider a series of convenience store robberies
that occurred in Baltimore County in May 2008.

Basic information about the crime series is provided in Table 4.1, and the crime locations are
mapped in Figure 4.1. Note that crimes 1, 4 and 6 all occurred at the same location marked as
Crime Site # 6 on the map. To give this information to our program, we simply provide it with a
plain text file containing the latitude and longitude of each crime site.

As we begin our analysis, we start with the elementary observation that not every location can
be the site of a convenience store robbery- after all not every location is the site of a convenience
store. Instead, experience tells us that convenience stores tend to be concentrated at or near major
intersections. Moreover, some convenience stores are more likely to be the site of a robbery than
others. To account for these geographic facts, our algorithm requires the locations of a representa-
tive sample of the locations of convenience store robberies throughout the jurisdiction. A simple
graph of the locations of convenience store robberies in Baltimore County is provided in Figure
4.2. Even though this figure does not include the locations of the major roadways, the target pattern
clearly shows where many of them lie.

Date Time
Location

Target
Latitude Longitude

March 8 12:30 pm -76.71350 39.29850 Speedy Mart
March 19 4:30 pm -76.74986 39.31342 Exxon
March 21 4:00 pm -76.76204 39.34100 Exxon
March 27 2:30 pm -76.71350 39.29850 Speedy Mart
April 15 4:00 pm -76.73719 39.31742 Citgo
April 28 5:00 pm -76.71350 39.29850 Speedy Mart

Table 4.1: A series of convenience store robberies in Baltimore County
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Figure 4.1: Convenience store robbery series in Baltimore County
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Figure 4.2: Convenience store robberies in Baltimore County
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Figure 4.3: Target attractiveness for convenience store robberies in Baltimore County

Another important geographic factor in the analysis of this series is the presence of the jurisdic-
tional boundary. Baltimore County and Baltimore City are separate jurisdictions, and the elements
of the crime series under consideration lie very close to this boundary. This particular series was
identified by Baltimore County, and though there are no known elements of the series in the city,
this cannot be ruled out.

Thus, we provide the program with another plain text file, this one containing the locations
of 449 convenience store robberies within the county. The program then calculates the resulting
target attractiveness functionG(x), and returns it to the analyst; this map is shown in Figure 4.3

Our goal is to obtain an estimate of the location of the offender’s anchor point; if we assume that
the anchor point is a residence, then we immediately know that there are locations where the anchor
point cannot be located. For example, looking at the crime series map (Figure 4.1), we see that east
of the crime series locations is a large park, near the crime sites is a large interstate overpass and a
commercial area including offices and a number of malls, and to the west is a wooded area. Since
none of these areas contain residences, none of these areas are likely to contains the offender’s
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Figure 4.4: Population density and proposed anchor point density near the crime series

residence. To handle this geographic information, our method uses local population density from
U.S. Census data as a proxy for anchor point density. In particular, our existing software is able to
read the raw data from the census and use a modified kernel density parameter estimation technique
to generate a map of potential anchor points; it is shown in Figure 4.4.

One advantage of using census data is that population data is available at the block level sorted
by age, sex, and race or ethnic group. Thus, if demographic information about the offender is
available, then it too can be incorporated into our analysis. For example, notice the differences in
the population density maps for different racial / ethnic groups shown in Figure 4.5.

Another fundamental factor of interest is the distance decay function of an offender. Our mathe-
matical method does not make ana priori choice of the offender’s distance decay function. Instead,
our method assumes that different offenders have different average offense distances. We provide
the program with the locations of both the offense site and the home of 751 solved robberies. The
program then performs the analysis described in Section 3.2.3, and generates the distribution of
average offense distances across offenders that is shown in Figure 3.10.
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(a) Asian (b) Black

(c) Hispanic (d) White

Figure 4.5: Population density for different race / ethnic groups
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Figure 4.6: Proposed search area

When our software prototype is run on this series, we obtain the search area in Figure 4.6
Notice that the calculated search area avoids parks and commercial areas, while at the same time
following the local road network. Note also that the regions considered most likely to contain the
offender’s residence do not lie in the region bounded by the crime sites, but rather lie towards the
center of the city; compare this with the comments about the convex hull effect made by Levine
[28].

The algorithm that generates the search area uses the local population density, so it knows
that there are more potential offenders nearer to the city center than farther away. In addition,
the algorithm is also aware of the jurisdictional boundaries; in particular it takes into account the
possibility that elements of the series may have been committed in the city but that these elements
are unknown to the analyst. Together, these facts suggest that the offender is more likely to live
closer to the city, and the calculated search area agrees.

The potential impact of demographic information about the offender is clearly illustrated in
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Figure 4.7 which show what the search area would be if we had information about the race or
ethnic group of the offender. It is clear to see that the search areas have significant differences.

4.2 Implications for policy and practice

Our primary motivation for this project is to improve the operational efficiency of law enforcement
agencies as they search for serial offenders by providing them with better and more sophisticated
tools. This we have done; the software we have developed in now freely available on our website
at http://pages.towson.edu/moleary/Profiler.html .

We presented our first functional prototype software package at the NIJ Conference in June
2009. The program is now being used by both the Los Angeles Police Department and the Balti-
more County Police Department, both of whom are examining the effectiveness and usefulness of
the tool.

It should be noted however, that we have not yet made a study of the effectiveness of the tool
or of the mathematical algorithms that it contains.

On the other hand, by making our mathematics, algorithms and code widely and publicly avail-
able, we also hope that we can provide valuable insights to other researchers. We also have written
a manuscript that describes the mathematical techniques that we have used; this is currently under
review at the Journal of Investigative Psychology and Offender Profiling.

4.3 Implications for further research

There are a number of important areas in which research in this area should be continued. First, the
effectiveness of the our tool needs to be measured. The first prototype version was just released in
June; it will take some time to collect the necessary data to see if this will result in any significant
improvement over the current generation of techniques for geographic profiling.

Second, we need to remove some of the limitations that currently exist in the software proto-
type. For example, Phil Canter of the Baltimore County Police Department has indicated that the
software prototype would be much more useful if the range of output file formats was increased.
In particular, he has asked us to develop the capability to return results in either a plain text format,
or even better in a Shapefile format so that the results can be better integrated into their existing
GIS infrastructure. Sean Malinowski, of the Los Angeles Police Department asked if it would
be possible to use geographical information that describes the distribution of known offenders in
place of Census data to generate the estimate of the prior distribution of offenders. We hope to
begin work on both of these suggestions soon so that we can get an improved tool into the hands
of these agencies.

The mathematical framework we have developed for the geographic profiling problem is quite
broad, and there are a number of reasonable forms for many of the distributions that are used in the
model. To name just one example, our software tool posits that the distance decay componentD
follows a bivariate normal distribution, but clearly this is not the only reasonable alternative. We
need to go back and start examining and evaluating different options for all of these distributions,
and comparing them and their effectiveness. The tools of model selection and multimodel inference
have yet to be applied to this problem, and may be able to generate some new insights.
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(a) Asian (b) Black

(c) Hispanic (d) White

Figure 4.7: Proposed search area for offender of different race / ethnic groups
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Finally, the mathematical model of offender behavior described inP (x | z, α) remains quite
simple. A new preprint by Mohler and Short [36] shows how they have developed an approach to
geographic profiling where the simple probabilistic models for the distance decay component of
offender behavior are replaced by the results of random walks. This is an innovative new idea that
deserves significant additional study.

86

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Bibliography

[1] Martin Baxter and Andrew Rennie,Financial calculus, Cambridge University Press, 1996.

[2] Mokhtar S. Bazaraa, Hanif D. Sherali, and C.M. Shetty,Nonlinear programming, John Wiley
and Sons, 2006.

[3] Edward J. Beltrami,Mathematical models in the social and biological sciences, Jones and
Bartlett Publishers, 1993.

[4] Craig Bennell, Brent Snook, and Paul Taylor,Geographic profiling- The debate continues,
Blue Line Magazine (2005), 34–36.

[5] Craig Bennell, Brent Snook, Paul Taylor, Shevaun Corey, and Julia Keyton,It’s no riddle,
choose the middle, Criminal Justice and Behavior34 (2007), no. 1, 119–132.

[6] Wim Bernasco and Paul Nieuwbeerta,How do residential burglars select target areas? A
new approach to the analysis of criminal location choice, British Journal of Criminology45
(2005), no. 3, 296–315.

[7] Patricia L. Brantingham and Paul J. Brantingham,Residential burglary and urban form, Ur-
ban Studies12 (1975), no. 3, 273–284.

[8] , Nodes, paths and edges: considerations on the complexity of crime and the physical
environment, Journal of Environmental Psychology13 (1993), 3–28.

[9] Marilyn A. Brown, Modelling the spatial distribution of suburban crime, Economic Geogra-
phy (1982), 247–261.

[10] Thiess Buettner and Hannes Spengler,Local determinants of crime: Distinguishing be-
tween resident and non-resident offenders, Darmstadt Discussion Papers in Economics 120,
Institut fr Volkswirtschaftslehre (Department of Economics), Technische Universitt Darm-
stadt (Darmstadt University of Technology), February 2003, Online athttp://ideas.
repec.org/p/tud/ddpiec/120.html .

[11] David Canter, Toby Coffey, Malcolm Huntley, and Christopher Missen,Predicting serial
killers’ home base using a decision support system., Journal of Quantitative Criminology16
(2000), no. 4, 457–478.

[12] David Canter and P. Larkin,The environmental range of serial rapists, Journal of Environ-
mental Psychology13 (1993), 63–69.

87

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

http://ideas.repec.org/p/tud/ddpiec/120.html
http://ideas.repec.org/p/tud/ddpiec/120.html


[13] Bradley P. Carlin and Thomas A. Louis,Bayes and empirical Bayes methods for data analy-
sis, 2nd ed., Chapman & Hall / CRC, 2000.

[14] George Casella and Roger L. Berger,Statistical inference, 2nd ed., Duxbury, 2002.

[15] Spencer Chainey,Methods and techniques for understanding crime hot spots, Mapping
Crime: Understanding Hot Spots, The National Institute of Justice, Washington DC, August
2005, pp. 15–34.

[16] Warren John Ewens,Mathematical population genetics, Springer Verlag, 2004.

[17] Katarina Fritzon,An examination of the relationship between distance travelled and moti-
vational aspects of firesetting behaviour, Journal of Environmental Psychology21 (2001),
no. 1, 45–60.

[18] Elizabeth Groff and Nancy G. La Vigne,Mapping an opportunity surface of residential bur-
glary, Journal of Research in Crime and Delinquency38 (2001), no. 3, 257–278.

[19] Per Christian Hansen,Rank-deficient and discrete ill-posed problems, SIAM, 1998.

[20] David Kincaid and Ward Cheney,Numerical analysis, second ed., Brooks Cole, 1996.

[21] Richard N. Kocsis, Ray W. Cooksey, Harvey J. Irwin, and Greg Allen,A further assessment
of circle theory for geographic psychological profiling, The Australian and New Zealand
Journal of Criminology35 (2002), no. 1, 43–62.

[22] Richard N. Kocsis and Harvey J. Irwin,An analysis of spatial patterns in serial rape, ar-
son, and burglary: The utility of the circle theory of environmental range for psychological
profiling, Psychiatry, Psychology and Law4 (1997), 195.

[23] Peter J. Van Koppen and Jan W. de Keijser,Desisting distance decay: On the aggregation of
individual crime trips, Criminology35 (1997), 505.

[24] Peter J. Van Koppen and Robert W. J. Jansen,The road to robbery. Travel patterns in com-
mercial robberies, British Journal of Criminology38 (1998), no. 2, 230–246.

[25] Manne Laukkanen and Pekka Santtila,Predicting the residential location of a serial com-
mercial robber, Forensic Science International157(2006), no. 1, 71–82.

[26] Charles L. Lawson and Richard J. Hanson,Solving least squares problems, SIAM, 1995.

[27] James L. LeBeau,The methods and measures of centrography and the spatial dynamics of
rape, Journal of Quantitative Criminology3 (1987), no. 2, 125–141.

[28] Ned Levine, The evaluation of geographic profiling software: Response to Kim
Rossmo’s critique of the NIJ methodology, Online at http://www.nedlevine.
com/ResponsetoKimRossmoCritiqueoftheGPEvaluationMethodology.
May82005.doc , (Accessed July 2009), 2005.

88

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

http://www.nedlevine.com/Response to Kim Rossmo Critique of the GP Evaluation Methodology.May 8 2005.doc
http://www.nedlevine.com/Response to Kim Rossmo Critique of the GP Evaluation Methodology.May 8 2005.doc
http://www.nedlevine.com/Response to Kim Rossmo Critique of the GP Evaluation Methodology.May 8 2005.doc


[29] , CrimeStat: A spatial statistics program for the analysis of crime incident loca-
tions (v. 3.2), Online at http://www.icpsr.umich.edu/crimestat , (Accessed
July 2009), 2009.

[30] , Update notes to version 3.2. CrimeStat: A spatial statistics program for the analysis
of crime incident locations, Online athttp://www.icpsr.umich.edu/crimestat ,
(Accessed July 2009), 2009.

[31] Ned Levine and Richard Block,Bayesian journey to crime estimation: An improvement in
geographic profiling methodology, Professional Geographer, to appear.
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List of Supplemental Material

• The software tool, as a .zip archive

• Instructions for the use of the software tool, as a .pdf slide show

• The source code for the Profiler program

• Browseable documentation for the source code of the Profiler program in web / html format

• Printable documentation for the source code of the Profiler program in .pdf format

• The source code for the ProfilerGUI program.

• Browseable documentation for the source code of the ProfilerGUI program in web / html
format

• Printable documentation for the source code of the ProfilerGUI program in .pdf format
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