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Abstract

Latent prints of friction ridge impressions have long been useful in identification, and the methodology of
examining latent prints, known as ACE-V (analysis, comparison, evaluation and verification), has been well-
documented. The need to quantify confidences within ACE-V has been articulated in several recent influential
reports to strengthen the science of friction ridge analysis. This research addresses the evaluation of three
quantitative measures: rarity of features, confidence of opinion and a probabilistic measure of similarity.
The first of these, useful in the analysis phase of ACE-V, is to determine the rarity of observed features.
Rarity is difficult to compute due to the large number of variables and high data requirements. The proposed
solution uses probabilistic graphical models to represent spatial distributions of fingerprints represented at
level 2 detail (minutiae). First, the minutia coordinate system is transformed into standard position based
on a point of high curvature, viz., core point; statistical regression (based on a Gaussian process formulation
and a training set of latent prints) is used to estimate the core point. A directed probabilistic graphical
model is constructed using inter-minutia dependencies and minutia confidences. The resulting model is
used to determine the probability of random correspondence of the evidence in a database of n prints. The
method is validated using statistical goodness-of-fit tests and illustrated using: (i) a simple configuration of
minutiae, (ii) randomly selected latent fingerprints in a database, and (iii) a well-known case of erroneous
identification. The second quantitative measure addressed is that of determining confidence of opinion–
which is relevant to the evaluation phase of ACE-V. The proposed computation determines a likelihood
ratio as a product of rarity and the probability of similarity under the identification hypothesis. The third
area concerns measuring similarity probabilistically, in a manner analogous to cognition. A Markov random
field is used to jointly model the minutiae in both the evidence and the known. The algorithms developed
are based on statistical machine learning using several publicly available fingerprint data sets for parameter
learning and testing. The developed methods can be of potential use in examiner training, presentation of
opinion and validating examination procedures.
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Chapter 1

Executive Summary

Latent prints of friction ridge impressions have long been useful in identification. The methodology of
examining latent prints, known as ACE-V (analysis, comparison, evaluation and verification), has been well-
documented. Yet, the need to characterize uncertainty in latent print examination methodology has been
articulated in several recent influential reports to strengthen the science of friction ridge analysis and its use
in the criminal justice system. Although the evaluated probabilities are likely to point to near uniqueness
of features and near certainty of individualization they will help validate existing procedures. This research
addresses the evaluation of quantitative measures within the ACE-V process relating to “uniqueness” of
features, and “individualization” as an opinion.

The quantitative measures developed pertain to two different stages within the ACE-V process. In the
analysis phase the rarity of a given configuration of minutiae is important. In the comparison and evaluation
phases, the examiner expresses his/her opinion based on consideration of both similarity and rarity. The
following computational problems are explored: (i) how to model the probability distributions of fingerprint
minutiae, (ii) how to determine the probability of finding a given configuration of minutiae in a database of
n prints, and (iii) how to utilize these probability measures, together with probability of similarity between
latent print and known, in associating a probability with an opinion.

The methods developed use machine learning approaches to several subproblems. The first problem
considered is that of establishing a reference point for the spatial distribution of minutiae. A method based
on regression is used to predict the core point of a latent print, where the input is an orientation map that
captures information about ridge flow and target variables are the location and orientation of the core point.
The particular method of regression employed is based on Gaussian processes which has the advantage of
predicting a distribution for the core point rather than a point estimate. The proposed method is evaluated on
a test set of latent prints and seen to provide better results than previously known non-statistical approaches
used in automatic fingerprint identification systems (AFIS). The method is useful even when a core point is
absent in the actual print, e.g., due to a small latent print or the friction ridge pattern has no core point.

To deal with complex distributions of minutiae, we use probabilistic graphical models which take advan-
tage of some independencies while not ignoring strong dependencies. The resulting model is validated in
several ways: statistical tests as well as with several intuitive examples. Using chi-squared goodness-of-fit
tests, the resulting model is seen to be more accurate than a model which assumes complete minutiae in-
dependence. Using the model the probability of finding an input configuration of minutiae in a database
n prints can be determined. The method is illustrated with several examples including simple synthetic
images, latent prints from a standard database and a latent print from a well-known case.

The likelihood ratio (LR) measure has been proposed as method to express the strength of opinion in
several forensic domains. It is defined as the ratio between the joint probability that the evidence and known
come from the same source, and the joint probability that the two come from two different sources. The LR
has also been proposed as being suitable for comparing a latent print with a known. LR evaluation depends
on the underlying probability distributions of features in both the evidence (latent print) and the known. In
the friction ridge domain these distributions are difficult to compute since the input images may be partial,
the features such as minutiae are uncertain, the spatial distributions of features are difficult to determine,
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and the number of features are large making the computation intractable. We propose a tractable method
for determining LRs using an approximation involving rarity as well as the distribution of similarity. Once
the LR is determined it can be readily converted into a probability of identification/exclusion.

There are several methods for measuring similarity between a latent print and a known, including scores
produced by AFIS. However there is little cognitive justification. A probabilistic measure of similarity is
proposed. It models the joint distribution of both the evidence and the known using a Markov random field.
The method is seen to perform better than classical fingerprint similarity measures based on geometrical
configurations such as pairs and polygons of minutiae.

Several algorithms were developed in this research. They are all based on principles of machine learning
and probabilistic graphical models, taking into account the computational intractability of dealing with a
large number of variables. Several publicly available fingerprint data sets were used for learning parameters
and testing.

The methods developed can be of potential use in examiner training, e.g., in the selection of features
to be compared, presentation of opinion, e.g., opinion can be accompanied by a probability, and validating
examination procedures, e.g., justification for arguments of uniqueness and individualization. The work was
disseminated at several pattern recognition and forensics meetings. Several publications resulted from the
work. It also supported two doctoral students both of whom developed doctoral dissertations on this topic.
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Chapter 2

Research narrative

2.1 Introduction

Latent prints of friction ridges have been used in criminal investigations and forensic identification for over a
century. The methodology used by the latent print examiner has been well-documented, e.g., the Scientific
Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST) has prepared a document
entitled Friction Ridge Examination Methodology for Latent Print Examiners [56], which is periodically
updated. Human factors in latent print examination using a systems approach is described in a recent
National Institute of Standards and Technology (NIST) report [24].

The need for quantitative measures to characterize confidence in the opinion resulting from latent print
examination has been articulated in several recent influential reports, particularly the NRC 2009 report [44]
and the NIST Human Factors report [24]. The latter points out that the probabilities involved may point
to near uniqueness of features and consequent certainty of individualization. This research addresses how to
evaluate such probabilities so that the opinion of the examiner can be justified.

Latent print examiners agree that when a latent print found in a crime scene is compared to a known
(inked or live scan) print, rarity of the observed configuration of features plays an important role. Determining
rarity is experiential rather than quantitative. Evaluation of rarity is difficult since: (i) we are dealing with
joint distributions of many variables (minutiae) and (ii) the data sets needed to determine those distributions
are very large. Similarity between a pair of prints (evidence and known) is also a cognitive function of the
examiner.

This research addresses: (i) how to model probability distributions of features, (ii) how they can be used
to determine the rarity of evidence (as measured by the probability of random correspondence in a database
of given size), (iii) how to make such evaluations computationally tractable, (iv) how rarity can be combined
with similarity (between the evidence and a known) to determine the confidence of a conclusion, and (v)
how to obtain a probabilistic measure of similarity. The methods used are based on machine learning [8]
and probabilistic graphical models [35].

2.1.1 Current Practice

Despite being crucial evidence in individual identification, latent fingerprints comparison is not a trivial task
due to their poor quality. Generally, latent fingerprints have a small surface and are distorted, smudgy,
blurred or may contain artifacts. All these lead to high number of unreliable extracted features and make
it hard for automatic systems to perform well. For this reason, a lights-out identification process, i.e.,
without human intervention, is not yet possible for latent fingerprints and a lot of human effort is required
when searching a latent mark with an automatic fingerprint identification system (AFIS). Therefore, latent
fingerprints are processed manually, which can be time consuming and requires prioritization of examination
requests in order to avoid delayed results in high profile cases. Errors in identification from manual processing
typically are a result of the limited amount of time available to the human examiner, in order for the results
to have relevance in the case. A mix between fully automated and fully manual is a semi-automated (“Semi
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2.1. INTRODUCTION CHAPTER 2. RESEARCH NARRATIVE

(a) (b) (c) (d)

Figure 2.1: Types of Fingerprint images used in this research: (a) rolled (NIST SD14), (b) rolled (NIST SD27), (c)
plain (live-scan) (FVC2002), and (d) latent (NIST SD27).

Lights-Out” [20]) approach, in which the latent print features are encoded manually by a human examiner
and then compared automatically against rolled or plain known prints stored in the database. A list of 10
to 20 candidates with the highest matching scores is returned, and human intervention is needed again. The
fingerprint examiner will then analyze high scoring prints in the candidate list and compare them manually
to the query.

Friction ridge prints are classified in two large groups: impressions and latent prints [3]. Impressions are
acquired from a cooperative subject usually by scanning the inked impression on paper or directly from the
fingers with a live-scan device. It can be roughly categorized into rolled impressions and plain impressions
or “flats”. Rolled impressions are obtained by carefully rolling the finger from one side to the other. Plain
impressions are those in which the finger is pressed down with a moderate pressure but not rolled. Rolled
impressions have a lager area including as much information as possible. Plain impressions cover fewer
features but are less distorted and have clearer ridges. The other kind of prints known as latent prints are
generally left at crime scenes. Latent prints are unintentional reproductions of the arrangement of ridges
on the skin made by the transfer of materials (such as amino acids, proteins, polypeptides, and salts) to a
surface [24]. They are not subject to retake and tend to be of considerably lower quality and information
content. Examples of fingerprint images are shown in Figure 2.1.

Methodology of ACE-V

The SWGFAST methodology document delineates (1) the principles by which examinations are conducted,
(2) features to be used for friction ridge examination and (3) a method which specifies steps to be followed–
which includes conclusions that may result from an examination. These are further expanded as follows:

1. Fundamental principles for friction ridge examinations by a latent print examiner are:

(a) The morphology of friction ridge skin is unique.

(b) The arrangement of friction ridges is permanent barring trauma to the basal layer of the epidermis.

(c) An impression of the unique details of friction ridge skin can be transferred during contact with
a surface.

(d) An impression that contains sufficient quality and quantity of friction ridge detail can be individ-
ualized to, or excluded from, a source.

(e) Sufficiency is the examiner’s determination that adequate unique details of the friction skin source
area are revealed in the impression.

2. Features: There are three levels of detail and a miscellaneous category of “other” features as follows:

(a) Level One Detail consists of overall ridge flow and general morphology (e.g., presence of incipient
ridges, overall size). They can be used for pattern interpretation and to determine anatomical
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source (i.e., finger, palm, foot, toe) and orientation. They cannot be used alone to individualize.
They can be used to exclude under certain circumstances.

(b) Level Two Detail describes ridge path, principally ridge path deviation such as ridge ending,
bifurcation and dot. It also includes absence of ridge path deviation, e.g., continuous ridge, and
ridge path morphology, e.g., size and shape. They can be used in conjunction with level one detail
to either individualize or exclude.

(c) Level Three Detail describes the structure of individual ridges, specifically the shape of a ridge
and relative pore position. They can also include other specific friction skin morphology (i.e.,
secondary creases, ridge breaks, etc.)They can be used in conjunction with level one and level two
detail to either individualize or exclude.

(d) Other features associated with friction ridge skin (e.g., creases, scars, warts, paper cuts, blisters).
They may be permanent or temporary, may exist as level one, two and three detail, and may be
used in conjunction with friction ridge detail to individualize or exclude.

3. The ACE-V Method:

The steps involved in processing latent prints is described by the ACE-V process. It involves the
recurring application of the following four steps: Analysis, Comparison, Evaluation and Verification.

(a) Analysis is the assessment of a friction ridge impression to determine suitability for comparison.
Factors considered include the following: Quality (clarity) and Quantity of level one, two and three
detail and the anatomical source. Factors influencing quality include: residue/matrix, deposition,
surface/substrate, environment, development medium, preservation method, and condition of the
friction skin.

(b) Comparison is the direct or side-by-side observation of friction ridge detail to determine whether
the detail in two impressions is in agreement based upon similarity, sequence and spatial relation-
ship. Features are extracted in the comparison phase.

(c) Evaluation is the formulation of a conclusion based upon analysis and comparison of friction ridge
impressions. Conclusions which can be reached are described in an updated SWGFAST document
entitled Standards for Conclusions [57]. They are as follows:

i. Individualization (Identification): The standard for individualization is agreement of sufficient
friction ridge details in sequence. Conditions that shall be satisfied: (i) determined by a
competent examiner, and applied to a common area in both impressions, and (ii) based on
quantity and quality of the friction ridge details, and (iii) absent any discrepancy, and (iv)
reproducible conclusion. Basic principles: (i) there is no scientific basis for requiring that a
predetermined number of corresponding friction ridge details be present in two impressions in
order to effect individualization, (ii) individualization is supported by the theories of biological
uniqueness and permanence, probability modeling, and empirical data gained through more
than one hundred years of operational experience.

ii. Exclusion: The standard for exclusion is disagreement of friction ridge details. Conditions
that must be satisfied are: (i) determined by a competent examiner, and (ii) applied to all
comparable anatomical areas, and (iii) presence of a discrepancy, and (iv) based on sufficient
quantity and quality of the friction ridge details, and (v) reproducible conclusion. Basic
principles are: (i) the presence of one discrepancy is sufficient to exclude, (ii) distortion is
not a discrepancy and is not a basis for exclusion, (iii) exclusion is supported by the theories
of biological uniqueness and permanence, probability modeling, and empirical data gained
through more than one hundred years of operational experience.

iii. Inconclusive: The standard for an inconclusive finding is the absence of sufficient friction
ridge details to effect a conclusion of individualization or exclusion. Conditions that must be
satisfied: (i) determined by a competent examiner, and (ii) based on quantity and quality of
the friction ridge details, and (iii) insufficient agreement or disagreement in the friction ridge
details, and (iv) reproducible conclusion.
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(d) Verification: is the independent examination by another qualified examiner resulting in the same
conclusion. All individualizations (identifications) must be verified. Exclusion or inconclusive
results may be verified.

2.1.2 Statement of the problem

This effort is to help quantify several elements mentioned in the SWGFAST document Friction Ridge Ex-
amination Methodology for Latent Print Examiners and thereby assist the examiner in testimony. In the
Fundamental principles section of the document there is mention of “uniqueness” in 1(a), 1(b) and 1(e).
Second, in the same section there is mention of “individualization” in 1(d). Third, in the section on Method,
there is mention of “similarity” in 3(b) in the phrase “agreement based upon similarity, sequence and spatial
relationship”.

There have been several influential reports that call for quantifying the terms “unique”, “individualiza-
tion” and ”similarity”. For instance, the NRC 2009 report Strengthening the Forensic Sciences: A Path
Forward asks for “studies [that] would accumulate data.... to validate the ACE-V process and to attach con-
fidence limits to individualization determinations”[44]. This essentially calls for restating individualization
in probabilistic terms. The report also asks for studies on intra- and inter-variability of fingerprints which
involves studies on similarity.

The more recent NIST report on Latent Prints Examination and Human Factors: Improving the Practice
through a Systems Approach [24] discusses the probabilistic approach and states: “As the discriminating
power of the latent print features used to make an identification increases, so does the probability that
the matching individual is the source.” This means that as the features have been accurately ascertained,
compared and found to be nearly the same, the probability of identification approaches one in the limiting
case.

This research addresses the probabilistic modeling of latent print features that can be useful within the
processing steps of ACE-V. Only fingerprints characterized by level-two detail are considered since: (i) they
are the principal features used for identification/exclusion, and (ii) the methods developed can be eventually
extended to other levels of detail and features. The models are used to make the following types of inference:

• At the end of the analysis phase, the examiner determines the value of the print for further comparison.
The rarity of the features observed is critical to making this decision. If the examiner determines that
the features are common enough to be repeated in multiple areas of friction ridge skin, then that
print would not be of value for identification purposes. Since the determination of rarity is largely
experience-based we address how to evaluate rarity.

• In the comparison phase, the examiner observes similarities and differences of the configuration of
minutiae between the known and unknown impressions. Finally, in the evaluation phase, the examiner
assesses both the rarity of the features as well as their level of similarity to reach a conclusion. We
consider how to combine similarity and rarity in determining the likelihood ratio which in turn can be
used for making a conclusion.

In support of these objectives we address three computational problems:

1. Registering the latent print so that spatial distributions can be defined over minutiae.

2. Characterizing the probability distributions of minutiae by taking into account minutiae dependen-
cies; such studies have been done in the past for characterizing fingerprint individuality but minutia
independence is assumed. Use the models developed for determining the rarity of given fingerprints.

3. Develop methods whereby the probability of a fingerprint (represented by a configuration of minutiae)
can be combined with a probabilistic measure of similarity so that a probability of identification can
be determined.
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2.1.3 Literature review

We review the relevant literature in five areas: (i) the registration problem, (ii) fingerprint individuality
studies, (iii) modeling minutia distribution, (iv) computing identification probability from likelihood ratios,
and (v) similarity evaluation.

A. The Registration Problem

In order to compare a latent print with a known impression, it is necessary to align them properly so that
the location and spatial relationships of features (e.g., minutiae) are comparable. This problem is generally
referred to in the pattern recognition literature as the registration problem. A simple method of registration,
when the prints are complete, is to determine the core point on the fingerprint. A core point refers to
the center area of a fingerprint. In 1900 Henry [30] defines the core point as “the north most point of the
innermost ridge line”’. In practice, the core point corresponds to the center of the north most loop type
singularity. For fingerprints that do not contain loop or whorl singularities, the core is usually associated
with the point of maximum ridge line curvature[40].

Several algorithms have been proposed for core point detection. The most popular one, known as the
Poincare Index (PI), was developed by Kawagoe and Tojo [34], and it was subsequently adopted and enhanced
by others [7, 31]. The PI method is unable to detect the core point in most arch type fingerprints and
performance severely deteriorates if the image quality is poor.

Another method, based on a sine map, is realized by multi-resolution analysis [32]. Methods using Fourier
expansion[52], fingerprint structures [79], multi-scale analysis [39] and orientation consistency [11] have also
been proposed. All of these methods, which are inspired by computational vision, require that the fingerprint
is complete and that the core point is present somewhere in it. This assumption does not hold for latent
fingerprints, which are usually partial and do not contain core points. So there is no way to detect them by
any of the proposed computational vision approaches.

B. Fingerprint Individuality Studies

Relevant to modeling the distribution of minutiae are several classical studies on fingerprint individuality [67].
Dating to over a hundred years, the goal of these studies was to determine the degree to which fingerprints
are unique. Galton [27] computed the probability of a fingerprint as a product of three factors: factor A is
that the configuration is present/absent in each of 24 six-ridge square regions of the fingerprint, factor B is
that the region is one of sixteen pattern types and factor C is that the correct number of ridges would enter
and exit each region. The three factors are evaluated to have values (1/2)24, (1/16) and (1/256). Their
product gives the probability of any given fingerprint as 10−11. This model was considered to be a gross
underestimate of the variability of fingerprints and improved by Pearson [51] by replacing the (1/2) term by
(1/36) to reflect different minutia configurations, yielding a probability of 1.09 × 10−41. These evaluations
remained untested and subsequently replaced by methods such as those based on minutia types. Stoney
and Thornton [66, 65] proposed a set of desired features for a fingerprint model and attempted to meet
some conditions using their survey of minutiae and subsequent data analysis. Two limitations to Stoney
and Thornton were: the limited scope of the survey and lack of accommodation for prints in poor condition.
Champod and Margot [12] presented a statistical model that utilized computer-generated frequencies of
minutiae occurrence and minutia densities. A new variable was introduced as compound minutia length.
Known weaknesses of the model include: position of the print on the finger must be known, and not allowing
connective ambiguities. While efforts have been made in 10-print individuality studies, modeling of latent
friction ridge prints continues to be a difficult problem due to the small finger area and poor impression
quality.

C. Modeling Minutia Distribution

Several efforts have been made to characterize the distribution of fingerprint features. Since fingerprint
samples can be generated from these models they may be termed as generative. The generative model for
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level-one detail simply consists of the probabilities for each ridge flow pattern such as right loop (30%), left
loop (27%), double loop (7%), arch (13%), tented arch (5%) and whorl (19%) [63].

Modeling level-two detail is more important, since fingerprint identification is largely based on features at
that level, viz., minutiae. A minutia is represented by its location and direction. The direction is determined
by the ridge at the location. Automatic fingerprint matching algorithms use minutiae as the salient features
[80], since they are stable and are reliably extracted.

However a generative model becomes much more complex due to the large and variable number of
features involved. The simplest model assumes that minutiae locations and orientations are uniformly and
independently distributed [48]. An improved model assumes that although minutiae are independent of
each other minutiae orientation and location were dependent. Such a model is better than mixtures of
hyper-geometric and binomial distributions. A mixture model to account for the clustering tendency of
minutiae was proposed [84]. A Markov point process to model minutia location has been attempted [15]
with shortcomings, e.g., direction is not incorporated, being based on relative spatial relationships minutia
sets from different regions will have the same rarity, and pair potential cannot be expressed in closed form
making usability impractical.

There have also been efforts to model distributions beyond minutiae alone. Since latent print examiners
rely on minutiae as well as ridge information, ridges can be represented discretely as ridge points and the
model accounts for both minutiae and ridge points [68]. Extending to level-three detail, a model that
incorporates minutiae, ridge and pore features has been recently proposed[16].

Minutiae that are spatially close tend to have similar directions with each other [58]. Moreover, friction
ridges flow smoothly with very slow orientation change. The variance of the minutiae directions in different
regions are dependent on both their locations and location variance [65, 14]. These observations on the
dependency between minutiae need to be accounted for in eliciting reliable statistical models.

All existing models for level-two detail have the drawback of assuming independence of minutiae which
leads to inaccurate probability estimates. The research described here incorporates minutiae dependencies
as well as minutiae uncertainties.

D. Computing Likelihood Ratios

Forensic identification concerns whether observed evidence arose from a known source. The ACE-V method
specifies three opinions: identification, exclusion and inconclusive. In order to establish confidences with
opinions it is necessary to formulate a probabilistic model involving both the evidence and the known.

The generally accepted probabilistic approach is to determine the likelihood ratio (LR) [23, 1, 75] whose
numerator is the joint probability of the evidence and source under the null, or prosecution, hypothesis that
the evidence arises from the source and the denominator is the joint probability under the alternate, or
defense, hypothesis that the evidence does not arise from the object. The evidence is deemed to have arisen
from the source if LR > 1 and not from the source otherwise.

Determining the joint probability has high data requirements. For example, if we assume that the evidence
and known are both characterized by n binary features, the joint distribution requires 22n probabilities or
parameters. Even for small n this requires extremely large data sets for estimating parameters. In the case
of fingerprints we may be dealing with dozens of minutiae (n > 12) and each minutia is characterized by
three continuous values (rather than binary). Furthermore available friction ridge data sets are usually small
making the estimation of joint probability distributions infeasible.

One solution is to overcome the computational and data limitations of the joint distribution is to use the
distribution of distance (or similarity) between the latent print and known [45, 62]. However this involves a
severe approximation in going from a high-dimensional space to a one-dimensional space. We have proposed
the combination of rarity and similarity as a better approach [74].

E. Similarity Measures

A similarity measure, or its inverse which is distance, between two sets of features is commonly used in
AFIS. It is useful in characterizing the strength of a match. In the friction ridge domain the features
are representative characteristics of the fingerprint. Minutiae (level two detail) are the most widely used
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feature. The representation is a feature vector whose elements are the fingerprint minutiae. Each minutiae
is described by a number attributes, including its type, position and orientation in the fingerprint image.
Suppose X have N minutiae, they can be represented as two sets of minutiae, MX = {m1,m2, ...,mN},
where mi is a minutiae and contains several types of descriptions such like location, orientation and types.
Let Λ(m) denote the feature vector of minutiae Λ(m) = {lx, ly, θ, t}. A similarity measure s(X,Y ) can be
defined in various ways for different scenarios.

The degree of similarity in AFIS is measured by the capability of a fingerprint matcher to find true
correspondences between prints of the same finger while minimizing mismatches. Due to frequent non-
linear deformation in fingerprint images, directly ensuring global correspondence of minutiae is very difficult.
Correctly aligning two fingerprints requires considering distortion of fingerprint image [40]. Most minutiae-
based methods tend to first obtain local similarity and then perform global consolidation. Local minutiae
models can be structures of pairs [80], triplets, stars, a set of minutiae or other local structures [47, 82, 29]
(see Figure 2.14). It proximity score is usually based on the frequency count of number of corresponding
configurations against the total number of configurations available in the two prints. Due to the fact that
matching two different pairs of fingerprints could result in the same similarity score just because the portion
of matching minutiae amount are the same, neglecting the possibility of true difference (such as difference
in geometrical transformation) between the similarity over spatial structure, there is clearly a severe loss of
information. Evidence strength analysis based on such scores will be less reliable and accurate.

In AFIS the given fingerprint is compared against many candidates comprising a gallery (background),
and zero, one, or more potential candidate matches are reported back. State-of-the-art systems can perform
different types of searches: (i) Ten-print to ten-print: rolled or plain fingerprints of 10 fingers are searched
against the database. Due to the amount of information available, lights out and human intervention is
usually not needed. Feature extraction, matching and verification are done automatically. (ii) Latents to
ten-print: this is the most critical function of an AFIS, as it helps finding the author of a crime if their
fingerprints were previously registered in the AFIS. The low quality and reduced area of latent prints make
it harder for the AFIS than impression to impression searches. (iii) Latents to latents: useful to identify two
anonymous prints that have been left by the same person, even when the person has not been identified.
This is a really difficult task for an AFIS, as partial fingermarks do not always have information from the
same part of the finger.

According to the Fingerprint Vendor Technology Evaluation (FpVTE) [13] report, AFIS can achieve
a rank-one identification rate of more than 99.4% with a database of 10,000 fingerprint images. Here, a
rank-n identification rate measures the rate at which a correct match is present in the best n matches that
are returned by the matching system. In contrast to high accuracy levels for automated matching of plain
prints, the comparable rank-one identification rate for latent fingerprints is only 54%, according to a NIST
report using a database of more than 40 million [20]. NIST conducted a multi-phase project on Evaluation
of Latent Fingerprint Technologies (ELFT) to evaluate automatic latent feature extraction and matching
techniques. In Phase I, the most accurate system showed a rank-1 accuracy of 80% (100 latents against 10,
000 rolled prints). In Phase II, the rank-1 accuracy of the most accurate system was 97.2% (835 latents
against 100, 000 rolled prints). However, these accuracies cannot be directly compared since the Phase I and
Phase II evaluations used different databases where images of latents are of very good quality.

Recent studies on latent fingerprints [25, 33, 49] consist of the following steps: (i)align two sets of
minutiae; (ii) establish the correspondences between minutiae; and (iii) compute a similarity score. Improved
latent matching accuracy has been reported by using extended features [33] which are manually marked.
However, marking extended features (orientation field, ridge skeleton, etc.) in poor quality latents is very
time-consuming and might be only feasible in rare cases. [49] developed a latent fingerprints matching
algorithm that is solely based on minutiae using a descriptor-based Hough Transform and reported a rank-1
accuracy of 62.4%. Due to the poor quality, nonlinear deformation and unreliable extracted features of latent
fingerprints, the uncertainties in obtaining features and aligning them favor probabilistic models that assume
a distribution about the uncertainty of correspondence.
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2.1.4 Rationale for the research

There are several motivations for this research: (i) to develop practical tools useful to the latent print commu-
nity, (ii) provide a response to criticisms in the legal community regarding uniqueness and individualization,
and (iii) model cognitive processes in ACE-V relating to rarity and similarity.

Confidence measures can be used to support the ACE-V method of latent print examination [44, 24].
Specifically, we consider the modeling of distributions of minutia configurations so that useful inferences can
be made using the model. One of these is to evaluate the rarity of a given configuration which is used by
latent print examiners to focus attention on the most important parts of the print. A simple analogy of the
importance of rarity in identification arises win we are trying to match an individual based on height. An
average value of height is much less useful than an extreme value.

Another use of rarity is in the evaluation of a measure of the strength of evidence. The strength of
correspondence between the print found found on a crime scene (latent print) and the known, is useful to the
evaluation phase of ACE-V. When this confidence value is evaluated and found to be extremely large/small
it provides a justification for the argument of individualization/exclusion which has come under criticism[54].

Many cognitive functions are performed well by human beings. Vision itself is such a function where
the mammalian cortex has evolved over millions of years. Computational methods developed to understand
visual processes have been referred to as computational vision[42]. Such an effort for forensic examination
can be referred to as computational forensics [64]. The particular cognitive processes modeled here pertain
to rarity of friction ridge patterns and similarity between patterns.

2.2 Methods

The principal effort is to model probability distributions of features found in friction ridge impressions and
to use such models in answering probabilistic queries. One such query is the probability of a given input
configuration. Another is the probability of finding the configuration in a database of a given size. A task
of related interest is that of combining rarity information with the distribution of similarity between latent
prints and known so as to provide a measure of the strength of opinion.

Modeling complex probability distributions from data sets and making inferences from them is the subject
of modern methods of machine learning [8, 35]. Such methods become relevant to friction ridge analysis since
the computation becomes quickly intractable with the number of features found in friction ridge impressions.
So we take the machine learning approach to the tasks of image registration, modeling minutia distribution
and determining similarity.

In the supervised machine learning approach, labeled data sets are needed for determining parameters
and testing performance. The principal latent fingerprint dataset used in the experiments is the NIST Special
Database (SD) 27, which contains latent prints from crime scenes and their matching rolled fingerprint mates
(see Figure 2.1). Each fingerprint image is 800×768 pixels in size and has been scanned at 500 ppi. The 258
latent prints (with one duplicated) in SD27 were categorized by latent examiners into three quality levels:
good, bad, and ugly with 88, 85, and 85 images respectively. The minutiae in NIST SD27 were manually
marked by fingerprint examiners. Other NIST datasets were also used for parameter estimation, e.g., SD14
which contains 27, 000 pairs of rolled fingerprint images provided by FBI. They are scanned similar to SD27
at 500 ppi and in 8-bit gray scale with size 832 × 768. A live scan database, FVC 2002, was also used in
some experiments: it contains four different databases (DB1, DB2, DB3 and DB4), each with 110 different
fingers and 8 impressions of each finger yielding a total of 880 fingerprints.

In the following four sections we discuss methods developed for (i) registration, (ii) modeling distributions
of minutiae, (iii) determining rarity of a configuration, (iv) determining strength of opinion by combining
rarity and similarity, and (v) determining similarity.

2.2.1 Registration

The starting point in determining the spatial distribution of minutiae is to establish the origin of a coordinate
system. This problem is encountered in AFIS and in biometrics. It is typically taken to be the core point
of the fingerprint. Since every fingerprint does not possess a core point a high curvature region can be

14

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



2.2. METHODS CHAPTER 2. RESEARCH NARRATIVE

designated as the origin. Locating core points in latent fingerprints is difficult using a purely geometric
approach since they are often partial images with the high curvature point left outside the print. We take
the approach of regression, using an orientation map as input, to predict the location and orientation of the
core point.

Latent prints usually correspond to only a small portion of the complete fingerprint. Thus feature sets,
such as minutiae, extracted from the print contain only relative spatial relationships. Feature sets with the
same relative spatial relationship can lead to different rarity if they come from different areas of the finger.
To solve this problem, we first predict the center of the fingerprint, as defined by its core point, and then
align the fingerprint by translating the coordinates so that the center is located at the core point and rotate
the coordinates so that the core point orientation points north.

Since ridge flow directions reveal intrinsic features of ridge topologies, they have a critical impact on
the core point. A fingerprint field orientation map is defined as a collection of two-dimensional direction
fields. It represents the directions of ridge flows in a regularly spaced grid. The gradients of gray intensity
of enhanced fingerprints are estimated to obtain reliable ridge orientation [31].

The input fingerprint image is divided into blocks of size W ×W where W is the size in pixels , e.g.,
W = 10. Then compute the gradients Gx and Gy, the gradient magnitudes in the x and y directions, at
each pixel in each block. Finally, estimate the local orientation of each block using:

θo =
1
2
tan−1

( ∑W
i=1

∑W
j=12Gx(i, j)Gy(i, j)∑W

i=1

∑W
j=1(G2

x(i, j)−G2
y(i, j))

)
. (2.1)

An example orientation map is given in Figure 2.2. In an image who field of view includes objects other that
the latent print, extraneous regions are manually erased.

(a) (b)

Figure 2.2: Example to illustrate determining the core point of a finger print using regression: (a) fingerprint image

and (b) orientation map (32 × 32 vector of gradient values) used as the input variable. The corresponding target

variable is the core point which is this case has values s = (253, 221), and θ = 85.

Determining Origin of Coordinate System

In order to specify the spatial location of minutiae, a coordinate system has to be specified. The origin of
the coordinate system can be specified by its location and orientation. We are given an input friction ridge
image that may only be partial because it is a latent print. The approach taken is to predict the core point,
or a high curvature point within the image.

Regression is a machine learning task [8], where training data is used to learn a predictive model. In this
problem the independent variable consists of the fingerprint field orientation map and the target variable

15

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



2.2. METHODS CHAPTER 2. RESEARCH NARRATIVE

is the core point. Since it is a predictive model it is immaterial whether there is a core point within the
observed image.

There are several possible approaches to regression, e.g., linear regression, neural networks. The particular
regression method we employ is based on Gaussian processes (GPs). GPs dispense with the parametric model
and instead define a probability distribution over functions directly. It provides more flexibility and is a better
predictor than other approaches. The GP model also has the advantage that instead of a point estimate,
the prediction is in the form of a distribution as in a fully Bayesian approach[53]. We now give some details
of the GP formulation which is also described in [71].

Let the training set D consist of N fingerprints, D = {(gi, yi)|i = 1, . . . , N}, where gi is an orientation
map with core point yi. The regression model with Gaussian noise is given by yi = f(gi) + ε where f(gi) is
the value of the process or function at gi and ε is a random noise variable whose value is chosen independent
for each observation. Assuming a noise process with Gaussian distribution p(yi|f(gi)) = N (f(gi), σ2), where
σ2 is the variance of noise, the likelihood function is given by

p(y|f) = N (f , σ2I) (2.2)

where y = (y1, ..yN )> is the observed (learning) set of core points and f = (f(g1), ..f(gN ))> contains the
corresponding orientation maps gi, i = 1, .., N .

From the definition of a GP, its prior is given by a Gaussian whose mean is zero and covariance is defined
by a covariance function k(g,g′) so that f(g) ∼ GP(0, k(g,g′)). A GP with Gaussian kernel is used to
specify the covariance between pairs of variables. k(g,g′) = exp(−||g − g′||2/2).

Core Point Distribution

For an input orientation map g∗ the predictive distribution of core point y∗ can be evaluated by conditioning
the joint Gaussian prior distribution on the observation (G,y), where G = (g1, . . . ,gN )>. The predictive
distribution is given by

p(y∗|g∗, G,y) = N (m(y∗), cov(y∗)) (2.3)

where m(y∗) = k(g∗, G)[K + σ2I]−1y,

cov(y∗) = k(g∗,g∗) + σ2 − k(g∗, G)>[K + σ2I]−1k(G,g∗),

k(g∗, G) = (k(g∗,g1), .., k(g∗,gN ))> and K is the Gram matrix with elements k(gi,gj).

Point Estimate of Core Point

Rather than work with the distribution of the core point we can work with the maximum a posteriori
probability (MAP) solution. Since g∗ may represent the orientation map in one of several possible locations
we maximize among all m possible translations and rotations over the set {g∗i |i = 1, . . . ,m}. Using Eq.
(2.3), we obtain the predictive distributions p(y∗|g∗i , G,y) for all g∗i . The core point ŷ∗ should maximize
p(y∗|g∗i , G,y) with respect to g∗i . Thus the core point is given by

ŷ∗ = k(g∗MAX , G)[K + σ2I]−1y (2.4)

where g∗MAX , the orientation map corresponding to the most probable core point, is given by

g∗MAX = argmax
g∗

p(m(y∗)|g∗, G,y) (2.5)

The point estimate is used in evaluating the performance of the GP method in Section 2.2.1 and in the
coordinate transformation process described in Section 2.2.1.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Core point prediction using GP regression for two latent prints (from NIST27): a) image g90 which

contains a latent print within a rectangle, (b) computed orientation map containing the predicted core point (cross)

and true core point (circle), (c) ten-print where the true core point is visible, and (d-f) image g69 with corresponding

images. Note that in the second case the predicted core point lies outside of the latent print.
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Table 2.1: Performance of core point prediction: accuracy of standard (Poincare Index (PI)) method and
MAP estimate of proposed (Gaussian Process (GP)) method. Results show dramatic improvement with
low-quality images.

Image Category
(NIST27)

Standard Method
(PI)

Proposed Method
(GP)

Good 91% 93%

Bad 68% 87%

Ugly 47% 73%

Overall 69% 85%

Performance of GP Regression

The GP model was trained on the NIST 4 database of fingerprint images [81] and tested on the NIST 27 set
[28] 1. Ridge orientation maps were extracted from the fingerprint images using the gradient-based approach
defined by Eq. 2.1. The images were first divided into equal-sized blocks of N × N pixels, where N is
the average width of a pair of ridge and valley. The value of N is 8 in NIST 4 and varies in NIST 27.
The gradient vectors were calculated by taking the partial derivatives of image intensity at each pixel in
Cartesian coordinates. Ridge orientation is perpendicular to the dominant gradient angle in the local block.
The training set consisted of orientation maps whose corresponding core points were manually marked.

The learnt GP model was applied to latent prints of varying quality: 258 prints in NIST 27 labeled as good
(88), bad (85) and ugly (85). Results of core point prediction for two latent fingerprints are shown in Figure
2.3. For each pixel in the smoothed orientation field the PI at pixel (i,j) is defined with respect to a digital
curve which consists of a sequence of pixels that are on or within a distance of one pixel from the curve. It
takes the form PI(i, j) = 1

2π

∑Nψ−1
k=0 ∆(k) where ∆(k) are orientation differences between neighboring pixels

on the curve with Nψ pixels. Assign the corresponding pixel a label 1 if its PI = 1/2. For each labeled
connected component, if its area is larger than 7, a core point is detected at the centroid of the connected
component. Further details of the PI algorithm can be found in [31].

Performance of the GP point estimate was compared to that provided by the baseline Poincare Index
(PI) method [7] which is based on purely local topological considerations. To evaluate performance of
both methods, test latent prints were extracted from the image database with extraneous regions manually
erased. The true core point of each latent print was determined from its matching 10-print in the database.
Prediction accuracy was determined by comparing the location and direction distances between predicted
and true core points with the threshold parameters set at Ts = 16 pixels, and Tθ = π/6.

Prediction accuracies of the PI method and the MAP estimate of the GP approach are given in Table
2.1. The good set has 88 images that mostly contain core points. Both bad and ugly sets contain 85 images
of small size that usually do not include core points. For good prints, the two approaches are close. For the
bad and ugly prints there is a distinct difference between the methods with GP predicting core points even
when it is absent in the latent prints. The GP method also results in higher overall performance.

Since the overall error rate of the point estimate is still as high as 15%, the use of a distribution in further
analysis is preferable. A disadvantage of GP core point prediction is its O(N3) complexity, where N is the
number of finger prints in the training set; due to an inversion of the N × N covariance matrix. However,
more efficient GP implementations are available [60, 59].

Co-ordinate transformation

After the core point is determined, with a point estimate, the Cartesian coordinate system is transformed
such that the origin is the core point and the core point orientation points to π/2 (Fig. 2.4). Given a

1NIST 4 contains 8-bit gray scale images of randomly selected fingerprints. Each print has 512 × 512 pixels. The entire
database contains fingerprints taken from 2000 different fingers with 2 impressions of the same finger. The database is evenly
distributed over each of the five classifications with 400 fingerprint pairs from each class. NIST 27 contains latent fingerprints
from crime scenes and their matching rolled fingerprint mates. There are 258 latent cases separated into three quality categories
of good, bad, and ugly.
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(a) (b)

Figure 2.4: Fingerprint coordinate transformation based on core point: (a) original fingerprint image with minutiae

(represented by circles) and core point (dot and arrow), and (b) fingerprint image after translation and rotation of

the core point to the center.

minutia (s, θ) and predicted core point (s∗, θ∗), where s = (sx, sy) represents location and θ the direction,
the transformed minutia (s′, θ′) is given by

s′x = sx − s∗x − sin(θ − θ∗) ‖s− s∗‖

s′y = sy − s∗y − cos(θ − θ∗) ‖s− s∗‖

θ′ = θ − θ∗ + π/2

2.2.2 Modeling Distribution of Minutiae

Next is the task of modeling the joint distribution of minutiae. Each minutia is represented as x = (s, θ)
where s = (sx, sy) is its location and θ its direction.

We begin with a model for the distribution of individual minutiae p(x) and then consider modeling
the joint distribution of a set of minutiae X = {x1, . . . ,xN} where we do not wish to assume minutiae
independence.

Marginal distribution of minutiae

An obvious and effective model for minutiae location is to choose a mixture of Gaussians [84, 69]. For
minutiae orientation, which is an angular distribution, the circular normal or von Mises distribution [8, 41]
is useful.

The distribution of minutiae location is shown in Fig. 2.5(a); the minutiae data are from 2,000 fingerprints
in the NIST4 database. This multimodal distribution is naturally modeled as a mixture of k Gaussians (Fig.
2.5(b)) with k = 3. Minutiae orientation θ is modeled by the von Mises distribution as shown in Fig. 2.5(c).
A simple Bayesian network to represent the marginal distribution of individual points as a mixture model is
shown in Figure 2.5 (d).
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(a) (b) (c) (d)

Figure 2.5: Gaussian mixture model of location and orientation: (a) Distribution of spatial location s = (x1, x2)

is modeled by a mixture of three bivariate Gaussians whose contours of constant density are shown (b) 3D plot of

mixture model for location, (c) von Mises distributions of orientation θ for each of the three components, where the

green curve corresponds to the upper cluster, blue the lower left cluster and red the lower right cluster, and (d)

graphical model of mixture where zn are latent variables corresponding to mixture components and parameters are

as in Eq. 2.8. [Best viewed in color]

Joint distribution of minutiae

It is unsatisfactory to model the joint distribution of minutiae as a product of their marginal distributions
particularly when significant dependences exist. In the case of fingerprints, studies indicate that minutiae
direction is related to its own location as well as the location of neighboring minutiae [58, 65, 14]. These
known dependences can be readily incorporated into a causal Bayesian network. Conditional dependences
of minutiae can be incorporated by linearizing them by defining a unique sequence of points. Linearization
is used in agglomerative clustering of N points where a point is assigned to a cluster whose mean is nearest;
where nearest can be defined in terms of distance to the mean (centroid), closest or furthest point of the
cluster[19].

The sequence starts with the point x1 whose location is closest to the center (core point). Each remaining
point xn is the spatially closest to the centroid defined by the arithmetic mean of the location coordinates
of all the previous points x1, . . .xn−1. Given this sequence, the fingerprint can be represented by a minutiae
sequence X = (x1, . . . ,xN ). The sequence is robust to the variance of the minutiae because the next minutia
is decided by the all the previous minutiae. Given the observation that spatially closer minutiae are more
strongly related, we only model the dependence between xn and its nearest minutiae among {x1, . . . ,xn−1}.
Although not all dependences are taken into account, this is a good trade-off between model accuracy and
computational complexity. Figure 2.6(a) presents an example where x5 is determined because its distance
to the centroid of {x1, . . . ,x4} is minimal. Figure 2.6(b) shows the minutiae sequence and the minutiae
dependency (arrows) for the same configuration of minutiae.

A directed probabilistic graphical model, also known as a Bayesian network, can be used to represent
correlations between minutiae2. Examples of such relationships are: minutia orientation is dependent on
near minutiae (both location and orientation), minutia location is conditionally dependent on the location of
neighboring minutiae given their directions. A graphical model for the minutiae set in Figure 2.6 is given in
Figure 2.7, where nodes sn and θn represent the locations and directions of minutia xn. For each conditional
distribution, a directed link is added from nodes corresponding to the variables on which the distribution is

2It should be noted that a Bayesian network does not necessarily imply a full Bayesian approach involving prior and
posterior distributions of parameters. The main implication is the explicit characterization of conditional probabilities in the
distributions[8, 35].
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(a) (b)

Figure 2.6: Sequential ordering of minutiae: (a) given minutiae {x1,x2,x3,x4} with centroid c, the next minutia

x5 is selected by comparing the remaining minutia distances to c, thereby providing a sequencing, (b) dependency

between the sorted minutiae is represented by arrows.

Figure 2.7: Directed probabilistic graphical model to represent the joint distribution of minutiae. This model

corresponds to example in Figure 2.6(b). Minutiae locations are represented by nodes labeled sn and corresponding

orientations are represented by nodes labeled θn. This joint distribution can be written directly from the model as

p(s1)p(θ1|s1)p(s2)p(θ2|s1, s2, θ1)p(s3)p(θ3|s1, s3, θ1)......

conditioned. A general expression for the joint distribution of any minutiae set X is

p(X) = p(s1)p(θ1|s1)
N∏
n=2

p(sn)p(θn|sn, sψ(n), θψ(n))

= p(s1, θ1)
N∏
n=2

p(sn)p(θn|sn, sψ(n), θψ(n)) (2.6)

where sψ(n) and θψ(n) are the location and direction of minutiae xi which have the minimal spatial distance
to minutia xn, and ψ(n) = argmin

i∈[1,n−1]

‖xn − xi‖. To compute the joint probability p(X), three distributions

are needed: p(s), distribution of minutia location, p(s, θ), the distribution of minutia location and direction,
p(θn|sn, sψ(n), θψ(n)), the conditional distribution of minutiae direction given its location, and the location
and direction of the nearest minutiae. Each of these are addressed next.

Minutia location. Since minutiae tend to form clusters [58] a mixture of Gaussians, with K1 components,
is used:

p(s) =
K1∑
k1=1

πk1N (s|µk1 ,Σk1). (2.7)

Minutiae location and direction. Since minutiae in different regions are associated with different region-
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specific directions, a mixture of joint Gaussian and von-Mises distributions with K2 components is used:

p(s, θ) =
K2∑
k2=1

πk2N (s|µk2 ,Σk2)V(θ|νk2 , κk2). (2.8)

While we can get p(s) by marginalizing p(s, θ) for each continuous value of s, it is time consuming and
unnecessary and thus Eq 2.7 is used.

Conditional minutia direction. Minutiae direction, given its location and the the nearest minutiae among
x1 to xn−1, is a mixture of von-Mises densities with K3 components:

p(θn|sn, sψ(n), θψ(n)) =
K3∑
k3=1

πk3V(θn|νk3 , κk3). (2.9)

where πkiare non-negative component weights that sum to one, N (s|µk,Σk) is the bivariate Gaussian
probability density function of minutiae with mean µk and covariance matrix Σk, and V(θ|νk, κk) is the
von-Mises probability density function of minutiae orientation with mean angle νk and precision (inverse
variance) κk3 [8]

V(θ|νk, κk) =
1

2πI0(κk)
exp[κkcos(θ − νk)]. (2.10)

The number of components Ki in each of the mixture distributions can be determined using the Bayes
information criterion (BIC). Other parameters are determined using the EM algorithm (see Appendix (1)).

Model Validation

The next step is to validate the probabilistic graphical model. In machine learning where the goal is predic-
tion, the usual method of validation of a model is to determine error rates on a test set. Here we are not
making a decision. Instead, validation implies evaluating a measure as to how well the model fits the data.
A standard goodness-of-fit measure is the Pearson chi-squared (χ2) test. The test determines whether ob-
served sample frequencies are consistent with expected frequencies specified in the null hypothesis. The test,
applied to binned data, requires a sufficient sample size in each bin in order for the chi-square approximation
to be valid [18].

Three different tests were conducted for each of the distributions in Eqs. 2.7, 2.8, and 2.9. For minutiae
location, the space was partitioned into 16 non-overlapping blocks. For minutiae location and orientation,
there were 16× 4 non-overlapping blocks.

For minutia dependency, the orientation space was divided into 9 non-overlapping blocks. The blocks
were combined with adjacent blocks until both observed and expected numbers of minutiae in the block were
greater than or equal to 5. The test statistic used was the chi-square random variable χ2 =

∑
i

(Oi−Ei)2
Ei

where Oi is the observed minutiae count for the ith block, and Ei is the expected minutiae count for the ith
block. The p-value, the probability of observing a sample statistic as extreme as the test statistic, associated
with each test statistic χ2 is then calculated based on the chi-square distribution and compared to the
significance level. For the NIST 4 dataset, we chose significance level equal to 0.01. The generative models
were trained using 4000 fingerprints. BIC yielded K1 = K2 = 3. For K3 there are 4096 different values for
different condition settings.

To test the three models, the numbers of fingerprints with p-values above (corresponding to accept the
model) and below (corresponding to reject the model) the significance level were computed. The results are
shown in Table 2.2.

Of the 4, 000 fingerprints, 3, 387 were accepted and 613 rejected for minutia location model, and 3, 216
were accepted and 784 rejected for minutia location and orientation model. To test the model for minutia
dependency, we first collected all the linked minutia pairs in the minutia sequences produced from 4, 000
fingerprints. Then these minutia pairs were separated by the binned locations of both minutiae (32×32) and
orientation of leading minutiae (4). Finally, the minutia dependency models were tested on corresponding
minutia pair sets. Of the 4, 096 dependency models, 3, 558 were accepted and 538 rejected. The results
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Table 2.2: Validation of Models: χ2 test of CPDs.
Distribution Data size Accept Reject

Location p(s) 4000 3387 613

Location & orientation p(s, θ) 4000 3216 784

Conditional orientation p(θn|sn, sψ(n), θψ(n)) 4096 3558 538

Figure 2.8: Graphical model for rarity. Specific nPRC is the conditional probability that a known x is found among

at least one of y1, ..,yn, where z is an indicator variable for a match.

imply that both generative models have a reasonable and accurate fit for fingerprints.

2.2.3 Rarity Evaluation

The probability that an input x coincides with one of n samples, within specified tolerance, is defined
as the specific nPRC [69]. Since it is conditional to the known input it can also be referred to as the
conditional nPRC. Specific nPRC is different from the probability of random correspondence (PRC), which
is the probability that a random pair of samples will have the same value. It is also different from nPRC
which is the probability that some pair of samples among n have the same value [72].

We make this idea precise using the graphical model of Figure 2.8, where x represents the input in
a feature space, and Y = {y1, ...,yn}, in plate notation, represents the set of n database entries. The
binary-valued indicator random variable z takes one of two values {z0, z1}. It has value z0 when at least
one database element yi has the value x, and z1 otherwise. The conditional probabilities can be written
as P (z0|x ∈ Y) = 1, P (z0|x /∈ Y) = 0, P (z1|x ∈ Y) = 0, P (z1|x /∈ Y) = 1. By marginalizing over Y, the
specific or conditional nPRC is given by

P (z = z0|x) =
∑
Y

P (z = z0|x,Y)P (Y) (2.11)

where P (Y) is the joint probability, or likelihood, of Y. Since the space of Y consists of all possible entries
in the database, which is huge, we use an alternative method of determining the conditional nPRC. Assume
that database entries are independent and identically distributed. Since the probability of x not matching
each element in the database is 1− P (x) we have

P (z = z0|x) = 1− (1− P (x))n (2.12)

If x is continuous with distribution p(x) the conditional nPRC is the probability of finding an element
among n within tolerance ε is

P (x,Y : ε, n) = 1− (1− pε(x))n (2.13)

where pε is the probability of x in the interval x± ε.
Minutia tolerance is defined as follows. Minutia pair xa = (sa, θa) and xb = (sb, θb) correspond if for

tolerance ε = [εs, εθ]
‖ sa − sb ‖≤ εs ∧ |θa − θb| ≤ εθ (2.14)

where ‖sa − sb‖ is the Euclidean distance between their locations. A match implies the existence of at least
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m̂ corresponding pairs for specified ε and m̂.
Since s and θ are continuous-valued, and tolerance is considered, the evaluation of specific nPRC involves

integrating over the relevant distributions. Also, since minutiae quality varies greatly in latent images,
it is useful to take into account minutia confidence in specific nPRC evaluation. We describe next these
evaluations with and without consideration of uncertainty in minutiae and core point.

Minutiae and core point with point estimates

Here we assume that the core point and minutiae have no associated uncertainty, i.e., they are point estimates.
For the core point the MAP estimate, as provided by the GP in Eq. 2.4, is used and for detected minutiae
the confidence values are ignored.

Let X be a fingerprint with N minutiae. Let X′ be another fingerprint with M minutiae. Let X̃ be the
set of m̂ minutiae common to both X and X′ where the matching minutiae are within ε of each other. The
distribution of the common points can be written from Eq 2.6 as

pε(X̃) = pε(s1, θ1)
m̂∏
n=2

pε(sn)pε(θn|sn, sψ(n), θψ(n)) (2.15)

where the three product terms are expanded as

pε(sn, θn) =
∫

|s−s′n|≤εs

∫
|θ−θ′n|≤εθ

p(s, θ)dsdθ,

pε(sn) =
∫

|s−s′n|≤εs

p(s)ds, and

pε(θn|sn, sψ(n), θψ(n)) =
∫

|θ−θ′n|≤εθ

p(θ|sn, sψ(n), θψ(n))dθ

The specific nPRC is computed using Eq. (2.13) by

pε(X, m̂, n) = 1− (1− pε(X, m̂))n (2.16)

where pε(X, m̂), the probability that m̂ pairs of minutiae correspond, is given by

pε(X, m̂) =
∑
m′∈M

p(m′)
(
m′

m̂

)
pε(X̃i) (2.17)

where M contains all possible numbers of minutiae in one fingerprint among n fingerprints, p(m′) is the
probability of a random fingerprint having m′ minutiae, minutiae set X̃i = (xi1,xi2, ...,xim̂) is the subset of
X and pε(X̃i) is the joint probability of minutiae set X̃i given by Eq. (2.15).

Minutiae uncertainty

Next we consider a model for uncertainty associated with minutiae. These arise from confidence values
assigned either by a human examiner or by an AFIS system.

Assume that confidence of minutia xn is given by (dsn , dθn), where dsn is location confidence and dθn
is direction confidence. Given minutiae xn = (sn, θn) and their confidences, the distributions of location s′

and direction θ′ can be modeled by Gaussian and von-Mises distributions

c(s′|sn, dsn) ∼ N (s′|sn, d−1
sn ) (2.18)

c(θ′|θn, dθn) ∼ V(θ′|θn, dθn) (2.19)
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where the precision (inverse variance) of location distribution dsn represents location confidence and the
concentration parameter of direction distribution dθn represents direction confidence.

Ranges for these values can be assigned based on image resolution, e.g., since ridges are ten pixels wide
in the NIST dataset, location confidence dsn is in the interval [0.01, 1] and orientation confidence dθn is in
the interval [1, 10], where a high confidence value implies a high quality minutia.

By application of the sum rule of uncertainty of minutiae, the conditional distributions involved in Eq.
(2.15) are given by

pε(sn, θn) =
∫
s′

∫
θ′

∫∫
|x−x′|≤ε

c(s′|sn, dsn)c(θ′|θn, dθn)p(s, θ)ds′dθ′dsdθ (2.20)

pε(sn) =
∫
s′

∫
|s−s′|≤εs

c(s′|sn, dsn)p(s)ds′ds (2.21)

pε(θn|sn, sψ(n), θψ(n)) =
∫
θ′

∫
|θ−θ′|≤εθ

c(θ′|θn, dθn)p(θ|sn, sψ(n), θψ(n))dθ′dθ (2.22)

Specific nPRCs can again be computed by Eq. (2.16) and Eq. (2.17). Since confidence distributions are
sharply peaked and the definite integral intervals are small, numerical integration can be used in probability
calculation.

The complexity of joint probability of a print with m̂ matching minutiae is O(m̂). The computational
cost of specific nPRC for a certain minutia set is O(Mm̂), where M is the maximum number of minutiae in
a fingerprint.

Core point uncertainty

Here we take the Bayesian approach where the core point does not have a fixed value but has a distribution
instead. Let y be the core point whose distribution is p(y) as given in Eq. 2.3. Thus the distribution of X̃,
which is the set of minutiae common to X and X′, is obtained by integrating out the core point parameter
as

pε(X̃) =
∫
pε(X̃|y)p(y)dy (2.23)

where pε(X̃|y) is given by Eq.2.15 and the minutia set are subjected to coordinate transformation specified
by core point y.

Examples of rarity evaluation

Evaluation of fingerprint rarity is demonstrated with three sets of examples: (i) a few simple minutia
configurations where we assume point estimates of core point and minutiae, (ii) the Madrid train bombing
case where we use a point estimate of the core point and minutiae with/without confidence values, and (iii)
latent prints from a standard data set where we use a fixed core point and an uncertain core point.

As in any machine learning scenario, the evaluation of rarity depends on the data set from which the
parameters are determined. The database should be representative enough. We used the largest publicly
available database for the learning phase, viz., NIST special database 4, which contains 2, 000 8-bit gray scale
fingerprint image pairs.

A. Simple minutia configurations Determining the rarity of configurations of few minutiae is useful to the
latent print examiner who needs to decide whether to proceed further. A minutia configuration involving
only three minutiae, with no uncertainty in either minutiae or core point, is shown in Figure 2.9. It has a high
specific nPRC of 0.012 in a database of 1, 000 entries. When the common minutia structure is perturbed,
by changing a few minutiae orientations, a much lower probability of finding a match is observed.
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(a) (b) (c)

Figure 2.9: Simple configurations of minutia and core points: (a) a common configuration with three minutiae m1,

m2 and m3 and core point c, (b) an uncommon configuration obtained by changing the orientations of m1 and m3

and (c) an uncommon configuration obtained by translating the three minutiae with respect to the core point. For

n = 1000, their specific nPRC values are: (a) 1.2× 10−2, (b) 7.97× 10−4 and (c) 2.3× 10−6 respectively.

(a) (b) (c) (d)

Figure 2.10: Brandon Mayfield case: prints used in rarity evaluation: (a) latent print LFP17 found at crime scene

with seven marked minutiae (initial annotation), (b) matching ten-print of Mayfield found in FBI database with 15

charted minutiae, (c) LFP17 re-annotated with the same 15 minutiae as in (b), and (d) ten-print of Daoud with ten

matching minutiae (from [78]). [Best Viewed in Color]

B. The Brandon Mayfield Case
The Brandon Mayfield case [78] provides a useful test scenario since both the latent print and minutiae

annotations of the image are available. Particulars of the case are relevant since they illustrate the value of
rarity evaluation.

In 2004 there was a terrorist bombing in the Madrid train system leading to the death of nearly 200
individuals and injury of 2,000 more people. A latent print was found on a plastic bag of detonators in a
nearby van. This was erroneously identified as corresponding to the inked ten-print of Brandon Mayfield,
an attorney in Oregon. The identification of Mayfield was effected through an AFIS search of the Federal
Bureau of Investigation (FBI) criminal files consisting of 470 million fingerprints.

The latent print, tagged as LFP17, was initially marked as having seven identifiable minutiae (Figure
2.10(a)). Upon observing the Mayfield ten-print (Fig. 2.10(b)), LFP17 was re-annotated as having 15
minutiae that correspond to the Mayfield ten-print (Figure 2.10(c)). Subsequently Spanish National Police
(SNP) identified the true perpetrator as an Algerian national, Ouhnane Daoud, whose ten-print is shown in
Fig. 2.10(d). Rarities of the minutiae sets in this problem, evaluated under two scenarios: full confidence of
minutiae and minutiae with uncertainty, are given in Table 2.3. In both cases a point estimate for the core
point was assumed.

Case 1: Point estimates of minutiae (Row 1 of Table 2.3): The probability of finding the seven minutiae
in the FBI database (specific nPRC with n = 4.7 × 108), is 0.78, which is a very high probability. For the
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Table 2.3: Brandon Mayfield case: Probability of randomly matching the latent print LFP17 with an item
in FBI database (specific nPRC with n = 4.7× 108).

Minutiae Uncertainty
Assumption

Seven Minutiae in Fig
2.10(a)

Fifteen Minutiae in Fig
2.10(c)

1. Point Estimates 0.78 1.2× 10−6

2. Uncertain Minutiae 0.93 7.8× 10−7

15 minutiae in the re-annotated print, the specific nPRC is 1.2× 10−6 which is much lower than with seven
minutiae, but in absolute terms it is about 1 in a million, which is quite high.

Case 2: Uncertain minutiae (Row 2 of Table 2.3) We manually assigned a confidence to each minutia
in each set as described in Section 2.2.3. For the seven minutiae set in Figure 2.10(a), confidences (ds, dθ)
were assigned clockwise starting from 1 o’clock, as follows : (0.1, 7), (0.6, 8), (0.2, 8), (0.7, 6), (0.9, 9), (0.6,
8), (0.9, 9). Specific nPRC evaluates to 0.93, which is a high probability. For the 15 minutiae set in Figure
2.10(c) the confidences for (ds, dθ) were: (0.3, 7), (0.1, 7), (0.6, 8), (0.2, 8), (0.6, 7), (0.8, 6), (0.9, 9), (0.9,
9), (0.6, 5), (0.5, 5), (0.6, 8), (0.8, 9), (0.9, 9), (0.7, 5), (0.6, 5). The specific nPRC is again close to 1 in a
million.

Consider now the effect of incorporating minutia uncertainties into the model. In both cases there is
a much higher probability of match with fewer minutiae (7) than with more minutiae (15). With only
seven minutiae, the probability of random correspondence increases to 0.93, a significant increase of 0.15.
With 15 minutiae, the specific nPRC is 7.8 × 10−7, which is a small decrease of 0.42 × 10−6. The relative
increase/decrease of specific nPRC with minutia uncertainty, particularly when many minutes are considered,
can be attributed to the configuration of minutiae– since the overall distribution is a mixture of the individual
distributions.

Consider next the rarity of the ten minutiae that are common between the re-annotated latent print
and the ten-print of Daoud shown in Fig. 2.10(d). The specific nPRC of the ten minutiae, assuming point
estimates, is 0.014, again a high probability. In general, configurations of ten minutiae are quite rare, e.g.,
when 200 ten minutiae sets were randomly chosen from fingerprints in the NIST4 dataset, which contains
4, 000 images, with n = 470 × 106, the average specific nPRC was 7.1 × 10−8; this average value is by
definition known as nPRC [72]. We conclude that while ten minutiae have significant discriminatory power
in general, the particular configuration of ten minutiae common to the latent print and the Daoud print were
those that are more common.

Evaluation of rarity in this case illustrates the potential use of such a measure in practice. The seven or
ten matching minutiae initially found in both the evidence and known are relatively common (equivalently,
they have low rarity). Thus a higher degree of match should be sought in subsequent examination before
issuing an opinion.

C. Latent prints from Standard Dataset
Next we consider the effect of core point uncertainty on the evaluation of rarity. Two latent prints from

the NIST 27 data set are shown in Figure 2.11: print b115 is from the bad quality set and print g73 is
from the good quality set. Latent print b115, contains N = 16 minutiae and g73 contains N = 39 minutiae.
Minutiae confidences were manually assigned by visual inspection; the values assigned for the 55 minutiae
are analogous to the smaller minutiae set of minutiae in the example of Section 2.2.3.

Specific nPRCs for the two prints, computed for varying numbers of matching minutiae pairs m̂, assuming
fingerprint database size n = 100, 000, are given in Table 2.4. The tolerance is set at εs = 10 pixels and
εθ = π/8. In each case the first column shows the specific nPRC with point estimates for the core point and
the second column shows the specific nPRC with core point uncertainty as determined by GP.

The cases show that specific nPRC depends on the given latent fingerprint. As the number of minutiae
to be matched, m̂, increases the probability of finding a random match decreases. When all the minutiae are
considered an extremely low value of specific nPRC is observed. Thus the values of specific nPRC provide
a measure for the strength of latent fingerprint evidence.

Whether to use for the core point, a point estimate or a distribution of it, in rarity evaluation is an
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(a) (b)

Figure 2.11: Two latent prints from NIST27: (a) b115 is from the bad dataset and (b) g73 is from the good dataset.

In each case the left image is the print and the right its aligned version with predicted core point. Corresponding

rarity values for n = 100, 000 are given in Table 2.4. Rarity values of (a) for different values of n and different numbers

of matching minutiae are plotted in Figure 2.12.

Table 2.4: Probability of finding a match in a database. Considering the two latent prints b115 (from
the bad set) and g73 (from the good set) in NIST27 (shown in Figure 2.11), the probability of finding a
corresponding print in a database of 100,000 prints is evaluated, using the following tolerances: minutia
location εs = 10 pixels and minutia direction εθ = π/8.

X = Latent Print b115 X = Latent Print g73

Specific nPRC = pε(X, m̂, n = 105) Specific nPRC = pε(X, m̂, n)
N = No.
of minu-
tiae in X

No.
matching
m̂

Core-point
is Point-
Estimated

Core-point
has a dis-
tribution

N = No.
of minu-
tiae in X

No.
matching
m̂

Core-point
is Point-
Estimated

Core-point
has a dis-
tribution

2 0.73 0.79 4 1 1
4 9.04× 10−6 1.81× 10−5 8 3.11× 10−14 1.50× 10−15

16 8 2.46× 10−19 4.54× 10−17 39 12 2.56× 10−25 1.07× 10−26

12 6.13× 10−31 6.05× 10−28 24 3.10× 10−52 9.93× 10−55

16 1.82× 10−46 2.93× 10−41 39 7.51× 10−79 6.16× 10−82
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Figure 2.12: Dependence of specific nPRC of latent print b115 on database size n parameterized by number of

corresponding minutiae m̂ = 4, 8, 12, 16 and n varying from 103 to 1014.

interesting question. It is analogous to the question of whether the maximum likelihood estimate is better
than a Bayesian estimate in general parameter estimation. The answer to that question is that when there
is uncertainty about the parameter, as when the sample size is limited, the Bayesian estimate is better.
Otherwise both give the same results. In the case of fingerprint comparison, if the core point is not visible,
we estimated it. As was seen in Table 2.1 the MAP estimate of the core point has a 15% error rate. Thus
it is better to use the distribution of the core point. Note that in the Brandon Mayfield case the core point
was visible in the latent print, thus a distribution was not needed.

It is also interesting to observe how rarity varies with database size. As can be seen in Figure 2.12 for
latent print b115, finding a match for four minutiae, or m̂ = 4 (blue curve), in a database of a million entries,
i.e., log n = 6, is guaranteed (specific nPRC=1). Whereas for matching twelve minutiae (green curve) a
trillion database entries (log n = 12) are needed for a random match.

2.2.4 Determining the Probability of Identification

Finally we discuss here as to how the rarity computation can be used in determining the probability of
identification/exclusion. It is based on formulating the likelihood ratio method which is gaining acceptance
in forensics in general and fingerprints in particular.

Let S = {si} be a set of sources. They correspond to, say, fingers. Let o be a random variable representing
an object drawn from a source si, e..g., impression of a known finger. Let e be a random variable representing
evidence drawn from a source sj , e.g., a crime scene impression. The task is to determine the probability of
whether o and e came from the same.

We can state two opposing hypotheses:
h0: o and e are from the same source (i = j); and
h1: o and e are from different sources (i 6= j), which are the identification and exclusion hypotheses of
forensics; some forensic statistics literature also refers to them as prosecution and defense hypotheses[1].

We can define two joint probability distributions P (o, e|h0)and P (o, e|h1) which specify as to how often
each instance of the object and evidence occur together when they belong to the same source or to different
sources. The relative strengths of evidence supporting the two hypotheses is quantified by the likelihood
ratio

LRJ = LR(o, e) =
P (o, e|h0)
P (o, e|h1)

. (2.24)

The corresponding log-likelihood ratio, LLR(o, e) = lnP (o, e|h0) − lnP (o, e|h1), has representational ad-
vantages: its sign is indicative of same or different source, it has a smaller range than LR, and additivity of
contributions of independent features3.

3In performing LLR additions, since LR values in the interval (1,∞) convert to positive LLRs and LR values in the interval
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It is useful to convert LRs into probabilities of identification and exclusion using a Bayesian formulation.
Let the prior probabilities of the hypotheses be P (h0) and P (h1) with P (h0)+P (h1) = 1. Defining the prior
odds asOprior = P (h0)

P (h1) , we can express the prior probability of the same source as P (h0) = Oprior/(1+Oprior).

The prior odds can be converted into posterior odds as Oposterior = P (h0|o,e)
P (h1|o,e) = Oprior × LR(o, e). Thus

we can write the posterior probability of the same source as P (h0|o, e) = Oposterior/(1 + Oposterior). The
particular case of equal priors is of interest in forensics, as opinion without prior bias. In this case we get a
simple form for the probability of identification as

P (h0|o, e) =
LR(o, e)

1 + LR(o, e)
=

exp(LLR(o, e))
1 + exp(LLR(o, e))

. (2.25)

The probability of exclusion is P (h1|o, e) = 1− P (h0|o, e) = 1/[1 + LR(o, e)] = 1/[1 + eLLR(o,e)].
Thus the key to determining the probability of identification is to determine LR defined by Eq. 2.24,

which in turn requires the distributions P (o, e|hi)(i = 0, 1), defined over all possible values of objects and
their evidential forms. If o and e are n-dimensional binary vectors with each feature taking K possible
values, then 2K2n parameters are needed to specify the joint distribution. Determining these distributions
is computationally and statistically infeasible. Computationally, kernel density estimation [2] and finite
mixture models [43] have been proposed, but they have limitations as well4. More important is the statistical
limitation of having a sufficient number of samples for so many parameters. Today, objects and evidence
can be represented by ever finer features due to higher camera resolution and automatic feature extraction
methods and their possible evidential forms is infinite.

Similarity Approximation

One method of simplification is to use a (dis)similarity function between object and evidence. The approach
is to define d(o, e) as a scalar distance between object and evidence and define another likelihood ratio as
follows

LRD = P (d(o,e)|h0)
P (d(o,e)|h1) . (2.26)

The number of parameters needed to evaluate LRD is constant, or O(1), and is independent of the number
of features n. Due to its simplicity, this method has been widely used in fingerprint identification [45], hand-
writing analysis [62], pharmaceutical tablet comparison [9], etc. The probability distributions of dissimilarity
using the Bozorth measure [80] (see Fig. 2.14) are given in Figure 2.13.

For certain feature spaces and distance measures, e.g., continuous features with Euclidean distance, this
approach is equivalent to a kernel method [55]. The scalar distance d is just the magnitude of the vector
difference d. However, because it maps two distributions of 2n variables each into two scalar distributions
there is severe loss of information (many pairs of o and e can have the same distance). A natural extension
is to use vector difference d, which quantifies the distribution of both the magnitude and the orientation
of the difference between o and e, giving a much fine-grained characterization of the difference between o
and e. While this likelihood ratio LRV D, provides the simplification of mapping two distributions of 2n
variables each into two distributions of n variables each, there is still a loss of information in the many to
one mappings.

Similarity and Rarity Approximation

If the object and evidence are continuous scalar random variables drawn from the same or different sources;
samples are normally distributed about its source mean with a known constant variance σ2; the source mean
is normally distributed with mean µ and variance τ2 with τ >> σ, and there are p object samples with mean

(0, 1) convert to negative LLRs, the precisions of LRs < 1 must be high, otherwise the ranges of positive and negative LLRs
will not be symmetric.

4Kernel density estimation is expensive in memory as it needs to store the entire training data set, and the cost of evaluating
the density grows linearly with size of data set. For mixture models, an important issue is to select the number of components,
also, the training algorithm such as EM may converge to a local optimum or the boundary of the parameter space [26]
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Figure 2.13: Distribution of Bozorth distance between fingerprints under the same (h0) and different (h1) hypotheses.

o, and q evidence samples with mean e with p = q, then the likelihood ratio can be approximated by

LR(o, e) = τ

σ
√

2/p
exp

{
− (o−e)2

4σ2/p

}
exp

{
(m−µ)2

2τ2

}
, (2.27)

where m = (o+ e)/2 is the mean of o and e. This result is due to Lindley[38].
Lindley’s result, which was defined for the univariate Gaussian case, can be generalized to vectors and

graphs[74]. We begin by rewriting Eq. (2.27) for the univariate Gaussian case as the product of two factors,
the first as the density of the difference (or dissimilarity) and the second as the reciprocal of the density of
mean of object and evidence (or rarity), as follows.

LR =
1√
2σ

exp{− (o−e)2
4σ2 }

1
τ exp{− (m−µ)2

2τ2 }

=
1√

2π
√

2σ
exp{− (o−e)2

2(
√

2σ)2
}

1√
2πτ

exp{− (m−µ)2

2τ2 }

= N (o−e|0,(
√

2σ)2)
N (m|µ,τ2)

= P (o− e|h0) ∗ 1
P (m) . (2.28)

We generalize Eq. 2.28 from the univariate case to more general definition of difference. LR is approxi-
mated as the product of two factors:

LRDR = P (d(o, e)|h0) ∗ 1
P (m(o,e)) , (2.29)

where d(o, e) is the difference between o and e, and m(o, e) is the mean of o and e. This approximation
performs much better than a likelihood ratio LRD that is based on distance (or equivalently, dissimilarity)
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alone [74].

Similarity Term in LR computation

The first product term in Eq. 2.29 can be expanded to explicitly include dependence on o and e as

P (d(o, e)|h0) =
∑

o,e P (d(o, e)|o, e, h0)P (o, e|h0). (2.30)

According to Eq. 2.30 the difference distribution can be determined from pairs of (object, evidence) sam-
ples, i.e., knowns and latent prints, from the same source. The dependence on the distribution of sources
(fingerprints) can be explicitly written as

P (o, e|h0) =
∑
S P (o, e|h0, si)P (si).

Rarity Term in LR computation

The second product term in Eq. 2.29 can be expanded as

P (m(o, e)) = P (h0)P (m(o, e)|h0) + P (h1)P (m(o, e)|h1).

It can be estimated from representative pairs of known and latents irrespective of whether they arise from
the same finger; to keep the distribution unbiased, the number of sample pairs sampled under h0 (same
finger) should almost equal the number of sample pairs that are drawn under h1 (different finger).

The weighted “mean” of the known and latent can be interpreted as the set of common features or matched
characteristics, as they are the nearest candidate to represent the true mean. Rarity is the reciprocal of the
probability (or in the continuous case, probability density function) of observing these common features in
a general population. For categorical discrete features or graphs, m(o, e) is the common features between
e and o. The difference between categorical features is regarded as another categorical variable, which can
be mapped to numbers for easy implementation, although those numbers do not indicate any ordering. So
both d(o, e) and m(o, e) have the same dimension.

Since rarity is the reciprocal of probability its definition follows from that of probability. We can formally
rarity in discrete and continuos spaces as follows.
Def. 1 (discrete) Given a probability space (Ω,F , P ), the rarity of a random event ξ ∈ F is defined by

R(ξ) =
1

P (ξ)
, (2.31)

where Ω is the sample space, F ⊆ 2Ω is the set of events, P is the probability measure, and P (ξ)(6= 0) is the
probability of the event ξ.
Def .2(continuous) Let x = (x1, ..., xn)T be a continuous n-dimensional random vector with the p.d.f. p(x)
defined on a domain S. Suppose for every assignment of x ∈ S, there is a confidence interval (x−ε/2,x+ε/2)
associated with x at a given confidence level 1 − α, where ε = (ε1, ..., εn)T , and α is a small positive value
less than 1. This interval (x − ε/2,x + ε/2) is a n-dimensional region whose volume is

∏n
i=1 εi. Then the

rarity of the event that x takes value x0 is given by

R(x = x0) =
1∫ x0+ε/2

x0−ε/2
p(x)dx

. (2.32)

Since the magnitude of ε is usually small, the density in the region (x0 − ε/2,x0 + ε/2) can be considered
as constant, therefore (2.32) can be approximated by

R(x = x0) =
1

p(x0)
∏n
i=1 εi

,∀x0 ∈ S. (2.33)

Experimental results using the rarity-similarity formulation in general forensics is discussed in [73].
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(a) (b) (c)

Figure 2.14: Determining fingerprint similarity using geometric structures: (a) minutiae pair (Bozorth), (b) a set of
k-minutiae (CBFS) and (c) a polygon (Champod).

Computational Considerations

The distributions of difference and mean each involve n variables. The complexity of computing the two
distributions exactly for non-Gaussian distributed data is still exponential with the number of features, with
the number of parameters required being 2Kn. However, we are dealing with two separate n-dimensional
distributions rather than a single 2n-dimensional distribution as in the case of the joint distribution method.
For determining the n-dimensional distributions, approximation techniques based on mixture models or
probabilistic graphical models, can be used. Finally, the explicit factorization into similarity and rarity
matches human intuition thereby having explanatory power which is essential in forensics.

2.2.5 A Probabilistic Measure of Similarity

The comparison phase of the ACE-V process is the side-by-side observation of friction ridge detail in two
prints to determine agreement in the detail. Unlike human observation, which is a complex process involving
comparison variety of perceived information, AFIS matchers generally use local minutiae structures [25] to
quickly find a coarse correspondences between two sets of minutiae and then consolidate the local match-
ing results at a global level. Based on local neighborhood structures properties invariant to rotation and
translation are defined.

Existing methods use predefined feature sets that represent N annotated minutiae in “agreement” with
each other. The structures can be pairs of minutiae [80], a set of k minutiae [17], stars, or other local structures
[21] (see Figure 2.14). In one such method based on polygons [46, 45], the goal is to find the most optimal
geometrical transformation that relates the two sets of minutiae without establishing local correspondence.
Similarity is determined as the Euclidean distance between feature vectors. There are several shortcomings:
not finding optimal correspondences while minimizing mismatches, dependency between minutiae points
depends on the defined structure, structure is fixed once the polygon is built, inconsistent geometric structures
for distorted fingerprints, and validation of discriminative power.

Cognitive Motivation

In the past few decades, psychologists have developed theories that unify similarity and recognition [5]. It
is assumed that the greater the similarity between a pair of stimuli, the more likely one will be confused
with the other in recognition. Thus, similarity is defined as a function of perceptual distributions. Many
probabilistic similarity models have been proposed [6, 4]. These models assume that the perceptual effect
of a stimulus is random and on any single trial it is a multivariate variable. Assuming that the percept
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is probabilistic fundamentally changes the predictions of these models. Similarity models differ according
to whether they assume the percept is deterministic or probabilistic and whether they assume that the
judgement process through which a response is selected is deterministic or probabilistic [4]. The judgement
process is deterministic if the same response is always made given the same information and it is probabilistic
if, for each information state, a response is selected randomly by sampling from some probability distribution.

Models that assume a probabilistic percept can account for violations in some distance axioms[5]. Let
two vectors of some dimensions SA and SB represent two stimuli, the perceived similarity of SA to SB
is s(SA, SB). Suppose the dissimilarity and similarity are inversely related, the perceived dissimilarity is
measured by the psychological distance between the two d(SA, SB). Let δ(SA, SB) be the judged similarity
of SA to SB which is determined experimentally. These two similarities are related by a monotonic function
g in the following assumption,

δ(SA, SB) = g[d(SA, SB)]

If d is a metric function which satisfies following distance axioms:

• Constance self-dissimilarity:
d(SA, SA) = d(SB , SB)

This axiom is potentially testable because if judged dissimilarity is monotonically related to perceived
dissimilarity, it implies that δ(SA, SA) = δ(SB , SB) for all SA and SB . By reviewing empirical evidence
against this assumption [36], it is argued that stimuli having few features in common with other
objects in the stimulus domain, have a greater perceived self-similarity and so a smaller perceived
self-dissimilarity. There is absolute distinction between the similarity between two matched fingerprint
and two non-matched ones.

• Minimality:
d(SA, SA) < d(SA, SB)

Two different stimuli are always at least as dissimilar as either stimulus is to itself. This axiom is also
potentially testable because it implies δ(SA, SA) < δ(SA, SB) for all SA and SB .

• Symmetry:
d(SA, SB) = d(SB , SA)

This implies similarity is a symmetric relation and therefore δ(SA, SB) = δ(SB , SA). This property can
also be tested. The validity of this assumption may depend critically on the experimenter’s instructions.
For example, violations may be more likely if subjects are asked to judge the similarity of SA to SB
than if they are asked to judge the similarity of SB to SA.

• Triangle inequality:
d(SA, SC) ≤ d(SA, SB) + d(SB , SC)

This property cannot be tested experimentally. Empirical testing of the triangle inequality is problem-
atic when perceived and judged dissimilarity are only monotonically related. In this case the fact that
the perceived dissimilarities satisfy (or violate) the triangle inequality places no logical constraints on
the judged dissimilarities. Tversky and Gati proposed a substitute for the triangle inequality, called
corner inequality [77] and it is verified that this does not hold for probabilistic measures.

To sum up, a probabilistic similarity model can violate three distance axioms: non constant self-similarity,
asymmetry, violation of the corner inequality. Even if d satisfies distance axioms, δ may not or vice versa.
Existing fingerprint similarity models are all deterministic in representing perceived features and the decision
process. However, in reality the information that forms a percept varies over time, the uncertainties reside
in obtaining fingerprint itself favor similarity models that assume probabilistic percepts. Local interaction
or structure among minutiae should be maintained despite geometric transformation and distortion.
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(a) (b) (c)

Figure 2.15: Neighborhood of a minutiae set: (a) fingerprint image with 39 minutiae extracted, (b) example of
neighborhood r of a minutia, (c) the graph G(M, E) of neighboring minutiae constructed by edging each pair of
minutiae according the the neighborhood system defined by (2.34) in (b), where r = 60 pixels. The resulting graph
contains 118 edges.

Markov Random Field Representation

We propose a probabilistic measure, which calculates a probability based on the most optimal correspon-
dences between minutiae in two fingerprints, using a Markov Random Field (MRF) representation. MRFs
are PGMs but unlike Bayesian networks there is no directionality associated with edges between variable
nodes [8, 35].

In the proposed method, a mapping field that associates one set of minutiae to the other is defined for a
neighborhood system. We are looking for the most likely assignments of minutiae alignment via maximizing
the likelihood of associating the two sets of minutiae. Features are defined locally within the neighborhood to
capture spatially relationships such like local interaction or dependence among minutiae. The uncertainties
of fingerprints similarity are described by a generative model. Information of percepts are well encoded into
the potentials of MRF.

Probabilistic inference is then performed to achieve a consistent global optimization. Similarity between
two fingerprints is measured as the joint probability over the MRF. Distributions of the similarities given
the alternative hypotheses are used to model the uncertainty in fingerprint.

Consider a set of minutiaeM = {mi} extracted from a fingerprint image, a neighborhood system forM
is defined as N = {Ni|mi ∈M}, where Ni is the set of neighbor minutiae mi, defined as the set of minutiae
within a radius of r from mi.

Ni = {mj ∈M | dist(mi,mj)2 < r2, j 6= i} (2.34)

Where the dist(•, •) denotes the Euclidean Distance and ε takes an integer value. If there is no any minutiae
within in the radius, then assign the nearest minutiae of mi to be its neighborhood in order to guarantee
the connectivity among all the minutiae. Let graph G(M, E) denotes the N minutiae network for a given
fingerprint, a small r leads to a very densely connected graph while a large enough r will result in a fully
connected graph. Neither the case is our desired. A proper r should be chosen in order to capture local
relationship among local minutiae within a certain degree of complexity of the graph. The edges E in G
represent links between sets of neighboring minutiae pair E = {(mi,mj)|mj ∈ Ni}. An illustration of
constructing the graph given a set of minutiae is shown in Figure 2.15. The neighborhood Ni is a subset of
M and has the following properties:
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1. A minutiae is not a neighbor to itself: mi /∈ Ni.

2. the neighbor relationship is mutual:
mi ∈ Nj ⇐⇒ mj ∈ Ni.

The variables with a neighborhood system N satisfies the Markov properties:{
P (m) > 0,∀m ∈M
P (mi|mj ,mj ∈M\mi) = P (mi|ms,ms ∈ Ni)

(2.35)

The first constrain indicate the positivity condition and the second constrain implies the local relationship
within the neighborhood. It is equivalent to the requirement that the conditional probability P (mi|mj) for
each i and j depends only on {ms} for ms ∈ {mi} ∪Ni. M is an MRF with joint probability P (m1, ...,mn)
determined by its local conditional probabilities. Only the neighboring minutiae have direct interactions
with each other.

Before modeling a joint distribution of minutiae p(m1, ...,mn) in a fingerprint, we begin with modeling
distribution for single minutiae p(m) with its feature vector Λ(m). In [84, 70], generative models for minutiae
locations and orientations have been used for fingerprint individuality analysis. An effective choice for
minutiae location modeling is to use mixture of Gaussians and use von Mises distribution for minutiae
orientation. For relative distance between pair of minutiae, a obvious model is to choose a mixture of
Gammas.

A naive model is to assume minutiae independence and multiply marginal distributions together. How-
ever, such model does not account for highly correlated spacial features. In the model of Section 2.2.2,
minutiae dependence was modeled by a causal Bayesian network where conditional dependencies of minutiae
is defined by a unique sequence of points. MRFs can express a wider variety of spatial relationships. It has
been widely employed in computer vision takes given the power of modeling contextual dependence patterns
or and characterizing mutual influences/constrains among objects as image pixels and correlated features
[37, 83, 10, 50].

Given a neighborhood N , the joint distribution of minutiae obeys a Gibbs distribution [35] parameterized
by a set of clique potentials:

PG(m1, ...,mn) =
1
Z
P̃G(m1, ...,mn) (2.36)

where
P̃G(m1, ...,mn) =

∏
i∈M

Φi(mi)
∏
i∈M

∏
j∈Ni

Ψi,j(mi,mj) (2.37)

is the unnormalized distribution and Z =
∑
m1,...,mn

P̃G(m1, ...,mn) is the normalization constant called the
partition function, Φi and Ψi,j are single-node potentials and pairwise (edge) potentials.

Minutiae Correspondence

A correspondence relationship between two fingerprints is established before measuring similarity between
them. The process is to to align the two sets of minutiae via a most likely manner. Given a set of minutiae
MX = {mXi , i = 1, ..., NX} in the mark fingerprint, each minutiae is associated with another one from the
set MY = {mYs , s = 1, ..., NY } in a known print via an unique mapping f(mXi) : mXi → mYs .

Let set f = {f1, ..., fN} be the mapping for all the minutiae inM, where fi denotes f(mXi) for simplicity.
Each fn is a multinomial random variable taking NY values from MY which is the set for all possible
mappings. The overall configuration space of F is the Cartesian product MY ×MY · · · × MY = MNY

Y .
The correspondence process of minutiae sets is a mapping as shown in Figure 2.16.

The goal is to perform minutiae-based latent fingerprints comparison based on probabilistic approach.
We propose a probabilistic model, which calculates a probability for establishing an optimal correspondences
between two fingerprints.

Each fingerprint is represented by a set of minutiae. Each minutia is described by a number attributes,
including its position, orientation and type. The process of minutiae correspondence is defined via an set of
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Figure 2.16: Correspondence process of mapping from evidence M to known M̃′.

(a) (b) (c)

Figure 2.17: Feature disparity between two fingerprints: (a) eight finger-prints with extracted minutiae sets where
a particular minutia (index 9) is colored, (b) the same minutia in 8 different impressions are superimposed together,
and (c) 56 distances exist between all possible pairs.

unique mapping f(xi) : xi → yj , that associate each minutiae in a latent set X = {xi, i = 1, ..., NX} with
another one from the known set Y = {yj , j = 1, ..., NY }.

Let set f = {f1, ..., fN} be the mapping set for all the minutiae in X, where fi denotes f(xi) for simplicity.
Each fn is a multinomial random variable taking NY values from Y which contains the set for all the
possible mates. The mapping process over the entire minutiae set defines a set of random variables over
a neighborhood system N defined as follow: a neighborhood of fi is defined as the set of mapping w.r.t
the minutiae within a radius of r from xi, Ni = {fs ∈ f|dist(xi, xs)2 < r2, s 6= i}. The dist(·, ·) denotes
the Euclidean Distance and r is a empirical constant chosen in order to capture local relationship among
local minutiae within a certain degree of complexity of the graph. In our experiment, r is set to 75, which
is about 6-10 times of the ridge width. If there is no any minutiae within in the radius, then assign the
nearest minutiae of fi to be its neighborhood in order to guarantee the connectitivy among all variables. Let
graph G(f, E) denotes the mapping network for the latent set. The edges E represent links between sets of
neighboring pair E = {(fi, fs)|fs ∈ Ni}. An illustration of constructing the graph given a set of 39 minutiae
is shown in Figure 2.15.

Mapping Field (Prior)

Denote the probability that random variable fi takes the value yj to be P (fi) = P (fi = yj) and the joint
probability for the whole set P (f) = P (f1, ..., fn) that defined over the neighborhood system Ni satisfies the
Markov properties. Variables fi follows a multinomial distribution on NY states P (fi|µi) =

∏NY
j=1 µ

Ij(fi)
i ,

where µj is the model parameter and Ij(fi) is the indicator function for fi takes the value from the mapping
fi → yj .

We encode this individual node preferences as node potentials by defining feature functions with a set of
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Figure 2.19: Generative model for minutiae distortion: (a) corresponding minutiae sets from two fingerprint im-
pressions of same finger, (b) probability density of within-finger position difference, and (c) probability density of
within-finger angle difference.

weights ηi that measures the effort to paid for associating each minutiae in X with the other one in Y . Since
a Markov network structure in dose not generally reveal all of the structure in a Gibbs parameterization and
parameters are coupled in potentials, for clarity, we define node potential

φ(fi) =
e

P
j ηjIj(fi)∑
j′ e

ηj′
(2.38)

where µj = eηjP
j′ e

η
j′ to ensure the multinomial parameter constraint

∑NY
i=1 µj = 1. Similarly, we encode the

pairwise preferences as edge potentials.

ψ(fi, fs) =
e

P
is ηisIjt(fi,fs)∑
i′s′ e

ηi′s′
(2.39)

The variables with a neighborhood system N satisfies the Markov properties: P (f) > 0, ∀f ∈ f indicate
the positivity condition and P (fi|fk, fk ∈ f\fi) = P (fi|fs, fs ∈ Ni) implies the local relationship within the
neighborhood. It is equivalent to the requirement that the conditional probability P (fi|fk) for each i and s
depends only on {fs} for fs ∈ {fi}∪Ni. f is a multinomial Markov Random Fields with the joint probability
P (f1, ..., fn) determined by its local conditional probabilities.
P (f; η) =

exp{
∑
i∈X

∑
j∈Y

ηjIj(fi) +
∑

i∈X,s∈Ni

∑
j,t∈Y

ηisIjt(fi, fs)− C(η)} (2.40)

where Ijt(fi, fs) is indicator function for the pair fi → yj and fs → yt, C(η) is the log partition function. By
Hammersley-Clifford theorem[61] the mapping field (2.40) is equivalently a Gibbs distribution parameterized
by a set of clique potentials.

P (f) =
1
Z

∏
i∈X

φi(fi)
∏

i∈X,s∈Ni

ψi,s(fi, fs) (2.41)

where Z is the partition function. In this paper we restrict our attention to single and pairwise potentials.

Generative models for Minutiae distortion

To decide the values of weights ηi, we consider spatial distortion constraint over the graph, in that truly
corresponding minutiae tend to distributed closely. A minutiae shows up in different locations and orienta-

39

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



2.2. METHODS CHAPTER 2. RESEARCH NARRATIVE

tions in a fingerprint and its distorted ones due to some transformation and distortion. Assuming disparities
among these corresponding minutiae forms some noise distribution density, more effort need to be paid
when associating a minutiae to the one that is unlikely to occur within the noise tolerance. A generative
model of minutiae distortion is built to compute the probability of a possible match. The probability density
is based on the differences among distorted minutiae and distorted edges in a background database. Let
ξ(1)(Λi,Λfi) = {∆lx∆ly∆θ} denote the disparity vector between xi and f(xi). Let Ξis and Ξfi,fs denotes
the vector that contains length and angle for the edge between (xi, xs) and (f(xi), f(xs)) respectively, then
disparity vector for edge difference is ξ(2)(Ξis,Ξfi,fs) = {∆L,∆Θ}. These differences are nonnegative and
thus mixtures of gamma distribution is proposed

p(ξ(1)(Λi,Λfi)) =
∑
k

G(π(1)
k , α

(1)
k , β

(1)
k ) (2.42)

p(ξ(2)(Ξis,Ξfi,fs)) =
∑
k

G(π(2)
k , α

(2)
k , β

(2)
k ) (2.43)

where

G(ξ;πk, αk, βk) = πk
ξαk−1

Γ(αk)βαk
exp

{
− ξ

βk

}
k is number of mixtures and πk is the weight for each component. Γ(α) is Gamma function which exists for
all possible value of αk. αk and βk are estimated using EM method. (2.42) and (2.43) are generative model
for the feature difference between a pair of corresponding minutiae.

The distortion model is trained on a fusion of rolled and plain databases containing 200 fingers with 8
impressions each from FVC2002 and 7000 fingers with two images each from NIST SD14. Distances were
normalized w.r.t ridge width due to variation on different fingerprint image sizes. The average ridge width
of FVC2002 database is roughly 9 pixels and 12 pixels for NIST SD14 and NIST 27. Figure 2.19 shows plots
of probability density of difference between paired minutiae.

The parameters ηi, ηij in (2.40) are calculated as the log probabilities decided from evaluating mixtures
of gamma distributions at given distance. They are negative with small values that increase the effort need
to pay for a mapping when the prior of minutiae assignment P (fi) is low.

Observation Model (Likelihood)

P (f) can be considered as prior that represents any information carried in the association process of minutiae.
If we assume some observation d that encompasses the information of dissimilarity between the mark finger-
print X and known Y , given a particular set of minutiae association {fi}, di is considered as the normalized
distance between a given minutiae xi ∈ X and the candidate minutiae xs ∈ Y . Let Λi denote the feature
vector of location, orientation and type of minutiae mi and Ξ(xi, xs) denotes the vector that contains length
and angle for the edge between xi and xs. Assuming the features of mapped minutiae and observed minutiae
are related via a noise model. The noise is additive white Gaussian with unknown variances

φ(di|fi) = exp

−∑
κ1

(
Λ(κ1)
i − Λ(κ1)

fi√
2σ(κ1)

1

)2
 (2.44)

where the Gaussian noise covariance is estimated by maximizing the likelihood function p(d|f). Similarly,
observation model for the pairwise relationship is defined as

ψ(dis|fi, fs) = exp

−∑
κ2

(
Ξ(κ2)
is − Ξ(κ2)

fis√
2σ(κ2)

2

)2
 (2.45)

where κ1 and κ2 represents the types of feature attribute κ1 = {1, 2, 3, 4} represents the x, y location,
orientation and type for a single minutiae. κ2 = {1, 2} represents the length and angle of an edge between
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Figure 2.20: Pairwise MRF model with node and edge potentials.

two neighboring minutiae.

MAP Assignments of Correspondence

The problem of finding corresponding two sets of minutiae is to find the most likely consistent global as-
signments to all the variables of the MRF by maximizing a posterior estimation f∗ = argmax

f1,...,fn

PG(f|d), where

P (f|d) ∝ P (f,d) = P (f)P (d|f) by Baye’s rule. Combine prior (2.40) and observation potentials (2.44) (2.45)
and rearrange the single node and pairwise node terms for

P (f|d) =
1
Z

∏
i∈X

Φi(fi)
∏

i∈X,s∈Ni

Ψi,s(fi, fs) (2.46)

where Φi(fi) = φi(fi)φi(di|fi) is the single-node potential and Ψi,s(fi, fs) = ψi,s(fi, fs)ψi,s(dis|fi, fs) cor-
responds to the pairwise potential (edge potential). The pairwise MRF is illustrated in Figure 2.20. Our
problem is to find the assignments for the unobserved variables that is most probable given the observation.
To find the MAP configuration of each variables, we use the max-product algorithm of belief propagation
on the MRF.

To find the MAP configuration of each variables, max-product algorithm of loopy belief propagation is
used. The algorithm iteratively computes local beliefs of each mapping bi(fi) that could possibly assign one
of minutiae in Y and update probabilities via message passing.

Belief Propagation

Given the MRF G(V,E), each node sends out a message to each of its neighbors and receives a message from
each neighbor. Let xi and xj be two neighboring nodes in G. We denote mi,j(fj) the message that node fi
sends to node fj . At every iteration, the max-product update rules of messages is

mi,j(fj)← α arg max
fi

Φi(fi)Ψi,j(fi, fj)
∏

k∈Ni\j

mk,i(fi) (2.47)

where α is the normalization constant which does not really influence the final beliefs but affects the numer-
ical stability of the algorithm. The message mi,j(fj) is a vector of dimensionality of number of configura-
tions/states of the variables, or the length of the minutiae set NY , which each component being proportional
to how likely this node fi believes that node fj is being in corresponding to the state. On the right-hand-side,
we take product over all incoming messages of node fi except for the one coming from node fj . Then wrap
up with all the local information together and send it out to node fj . The belief at a node fi is proportional
to the product of all the messages coming to it and the local evidence at this node (Φi(fi)).

bi(fi) = αΦi(fi)
∏
j∈Ni

mj,i(fi) (2.48)
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The node belief is an approximation of the unnormalized marginal probability at this node p̃i(fi) =
∑

∀j∈M\i
P (f).

It is also a vector of dimensionality of number of states and must sum to 1 (
∑
fi
bi(fi) = 1) at each node.

We can also define the edge belief to be the pairwise nodes belief similarly

bij(fi, fj) = αΨij(fi, fj)Φi(fi)Φj(fj)
∏

k∈Ni\j

mk,i(fi)
∏

l∈Nj\i

ml,j(fj) (2.49)

This edge belief is an approximation of the unnormalized marginal probability at the tow node clique by
marginalizing the joint probability over every other node except i and j p̃i,j(fi, fj) =

∑
∀k∈M\{i,j}

P (f). It is

a square matrix of dimensionality of NY ×NY and must sum to 1 (
∑
fi,fj

bij(fi, fj) = 1) for every edge. On
every iteration, each edge carries a message containing information of how it thinks about the values of two
nodes on both ends.

The algorithm is initialized with all message vectors set to 1/N ′. The message update rule is then applied
iteratively in a synchronous schedule in which all node simultaneously sends their messages in parallel. The
algorithm converges to a fixed point regardless of initial assignments.

Figures 2.21 and 2.22 show the update of two node beliefs and the algorithm converges to a fixed point
after 12 iterations. At convergence, the belief for any node is the maximum posterior conditioned on the
observation bi(fi) = αmax

fi
P (fi|di) and the belief for any edge (fi, fs) is the maximum posterior bi,j(fi, fs) =

αmax
fi,fs

P (fi, fj |dij) that must agree with the node belief of fi and fs.

The minutiae correspondence is achieved as f∗ = argmax
fi

bi(fi) when the algorithm converges. It is

possible that multiple minutiae are matched to the same one. When such a conflict happens, only xm =
argmax

im
bim(fim) is considered to be matched successfully. Figure 2.23 shows three examples of minutiae

matching results.

Similarity Measure

The similarity score calculated by existing matching algorithms is a proximity measure of capability of the
matcher to find true correspondences, e.g. the fraction of number of matched minutiae over average number
of minutiae in the two fingerprints. These formula-based score is deterministic and information about
uncertainties in matching process could be lost due to frequent nonlinear deformation and in fingerprint
images, where exact match is not possible. We define a probabilistic measure as the joint probability over
the minutiae mapping set given the observation Pf(f1, ..., fn|d) (2.46). When optimal correspondence is
achieved, this probability reflects the likelihood that they are matched. Computing this joint probability
requires approximation of the partition function Z. We use the Bethe free energy approximation [35].

The method for calculating overall similarity between two fingerprints is based on an approximation of
the joint probability of P (f1, f2, ..., fn). We could assume that this joint probability can be viewed as the
probability of evidence, that is defined as a relationship between the mark and known as the similarity
measure in Eq. (2.2.5). This relationship can be modeled by the minutiae corresponding process f : X → Y ,
that leads for compute the joint probability given the observation Pf(f1, ..., fn|d) of all the variables in the
MRF as in Eq. (2.46). Computing this joint probability requires approximation of the partition function Z.
We use the Bethe free energy approximation.

The Kullback-Leibler distance (or mutual information) between the joint probability p(f) and the overall
belief b(f)

D(b(f)||p(f)) =
∑

f

b(f)ln
b(f)
p(f)

(2.50)

The Kullback-Leibler distance is non-negative and it is zero if and only if the two probability functions are
equal. Since p(f) is a Gibbs distribution p(f) = 1

Z e
−Ef, thus

D(b(f)||p(f)) =
∑

f

b(f)E(f) +
∑

f

b(f)lnb(f) + lnZ (2.51)
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(a)

(b)

Figure 2.21: An example of node belief update on a MRF: (a) latent print (SD27 good 013) with 14 minutiae marked
and ten print with 87 minutiae, and (b) the red nodes are matched in the MAP assignment.
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]
(a)

(b)

Figure 2.22: A second example of node belief update with MAP assignments.
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(a) (b) (c)

Figure 2.23: Correspondence between pairs of fingerprints– evidence on the left (minutiae in red) and known is on
the right when the pairs are from: (a) same finger with low distortion (b) same finger with high distortion, and (c)
different fingers. The joint probabilities and likelihood ratios for each pair using three methods are given in Table
2.6.

The Bethe free energy of the joint distribution given a belief

EBethe = −
∑
ij

∑
fi,fj

b(fi, fj)lnψ(fi, fj)φ(fi)φ(fj) +
∑
ij

∑
fi,fj

b(fi, fj)lnb(fi, fj). (2.52)

The beliefs represent the pseudo-marginals of the nodes taking a particular value. Then our approximation
of log partition function is −minbEBethe(b).

Correspondence Experiments

We conducted experiments on latent-to-ten print search on livescan dataset FVC 2002, FVC 2004, rolled
dataset NIST SD14 and latent data set NIST SD27. To evaluate the approach, we first compared each
latent fingerprint in SD27 against its rolled mate. For every latent, the corresponding minutiae set found
by our approach was compared with the ground-truth (provided with SD27 validated by professional latent
examiners). The result of this small-scale test is shown in Table2.2.5. The successful correspondence rate
(SCR) is calculated as the total number of correctly mated minutiae (NCM) divided by the number of
available minutiae (NM) in the latent for all 257 tests.

Good Bad Ugly All

No. of Available
minutiae (NM)

2776 1502 1025 5303

No. correctly mated
(CM)

2532 1322 711 4565

Successful Corre-
spondence Rate
(SCR)

91.2% 88.0% 69.4% 86.1%

Table 2.5: Rate of successful correspondence (SD27)

To make the latent-to-ten print search more realistic, as in [33, 49], we expanded the background database
by adding fingerprints from the NIST Special Database 14. The SD14 database contains 27,000 pairs of rolled
fingerprint images provided by FBI. They are all scanned in a similar way as SD27 at 500 ppi and in 8-bit
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gray scale with size of 832× 768. The latent fingerprint is matched against the combined gallery of 20, 257
rolled impressions with 20000 in SD14 and 257 in in SD27. 7000 pairs of fingerprints from SD14 are left out
for training the distortion model together with FVC2002 DB1 and DB2. We used the NIST MINDTCT to
extract minutiae automatically from NIST SD 14 rolled fingerprints and FVC 2002 plain fingerprints.

The results were evaluated for three fingerprint qualities since latent fingerprint image quality critically
affect the match performance. Also the number of minutiae is another indicator of fingerprint quality [33, 49].
In [49] latents in SD27 is classified into three groups: large (n ≥ 22), medium (13 < n < 21), and small
(n ≤ 13), containing 79, 96, an 83 prints, respectively. Experimental results are presented for all these
six quality groups. The baseline algorithm is a non-probabilistic matching algorithm used in [33] that also
defines a minutiae descriptor based on neighborhood and adopts a greedy strategy for global matching.

A cumulative match characteristic (CMC) is a method of showing measured accuracy performance of a
biometric system operating in the closed-set identification task. Templates are compared and ranked based
on their similarity. The CMC shows how often the individual’s template appears in the ranks (1, 5, 10,
100, etc.), based on the match rate. A CMC compares the rank (1, 5, 10, 100, etc.) versus identification
rate. CMCs for the SD27 latent prints shown in in Figure 2.24 for the proposed method and the baseline
method indicate that we are able to perform strong latent print comparison with large intraclass variations
and distortion.

Likelihood Ratio

To assess the value of the evidence, two generic questions need to be answered: (1) what is the probability
of getting this degree of similarity if the two come from the same source (prosecution hypothesis h0)?
(2) what is the probability of observing this degree of similarity if the two come from different sources
(defense hypothesis h1)? The answers to the two questions refer to the numerator and the denominator of
the likelihood ratio (LR). Computing the numerator requires evaluating all the possibilities of comparison
between the fingerprint and its distorted ones at the observed evidence (similarity). For the denominator of
the likelihood ratio, the evidence is positioned among the possibilities offered by fingerprints from different
sources.

We conducted experiments with different methods for calculating LRs for the comparison of two finger-
prints. The LR is computed in three different ways. One is according to (2.2.5) in which the probabilistic
similarity measure is used as approximation:

LRS =
p(P (f1, ..., fn)|h0)
p(P (f1, ..., fn)|h1)

(2.53)

The other is to consider the joint probability of the evidence and known approximately as the joint
probability over the distance of their common features:

LRJ =
p(d1, d2, ...dk|h0)
p(d1, d2, ...dk|h1)

(2.54)

where k is number of corresponding pairs of minutiae between two fingerprints and dk is the distance between
the pairs. These common features are modeled using a MRF. Potentials of the MRF are learned from our
generative model for distance. Another method for calculating LR is by adopting rarity into the equation:

LRJR =
p(d1, d2, ...dk|h0)
p(m1,m2, ...mk)

(2.55)

where m1,m2, ...mk are the average between the corresponding minutiae. Rarity is defined to be the in-
verse of the joint distributions of the matched features in the denominator of LRJR that measures how
typical/unusual the set of features is. Rarity is computed using a generative model for all minutiae. LRs for
the three pairs in Figure 2.23 are given in Table 2.6. An LR of 8.9× 10−5 implies that the evidence seen is
almost 13000 times more likely given the defense hypothesis than the prosecution hypothesis.

The methods were tested on the fingerprint databases of FVC2002 which contain four different databases
(DB1, DB2, DB3 and DB4) [40]. Each contains 110 different fingers and 8 impressions of each finger yielding
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Figure 2.24: Cumulative Match Characteristics (CMC) curves: (a) good, and (b) bad

Table 2.6: Joint probability and likelihood ratio for the three pairs of prints in Fig. 2.23
Same with low distortion
(Fig 2.23(a))

Same with high distor-
tion (Fig 2.23(b))

Different
(Fig 2.23(c))

P (f) 1.7× 10−28 7.3e× 10−65 1.9× 10−184

LRS 9.5904 1.0103 8.9× 10−5

LRJ 31.2352 15.2362 2.3× 10−7

LRJR 45.4822 14.2304 7.1× 10−8
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Figure 2.25: Distribution of joint probabilities P (f1, ..., fn) computed given test set of FVC2002 DB1

a total of 880 fingerprints. There are 3, 080 (110 × (8 × 7)/2) same finger pairs and we chose one print
from each finger to make 5, 995 (110 ∗ 109/2) different pairs. Half of the set was used as the training set
and the remaining for testing. The probabilistic method is compared to Champod’s radial triangulation
algorithm and two other fingerprint matching algorithms, Bozorth and coupled breath first search (CBFS)
(see Figure 2.14). The Bozorth algorithm constructs two intra-fingerprint minutiae pair table to capture
relative position and orientation of a pair of minutiae and a inter-fingerprint tables and then search these
tables for the longest path of linked compatible associations. CBFS converts a fingerprint represented by
local k-minutiae models to an adjacency graph and then searches for minutiae correspondence between two
fingerprints. For the Bozorth method, each intra-table construction involves O(n2) comparisons and the
inter-table match has more than O(n) comparisons. CBFS takes O(n) to build the local models and O(n2)
for coupled breadth-first search. The time complexity of above methods is no less than O(n3) when both
fingerprints to be compared have exactly n minutiae. The time complexity of above methods is no less
than O(n3) when both fingerprints to be compared have exactly n minutiae. The time complexity of the
loopy belief propagation algorithm is O(nd2I), where n is the number of variables, d is the maximum size of
neighborhoods of a variable and I is the number of iterations.

Discriminative Power Evaluation

In order to evaluate the discriminative power for the method we carried out 1:1 fingerprint verification. The
decision is based on whether the LR is larger than 1. For each pair of comparison, if the likelihood ratio is
greater than 1, then the the two samples belong to the same person and if the ratio is less than 1, they belong
to different persons. For LRS , the similarity measures are computed from Bozorth matcher (LR-S-Bozorth),
CBFS (LR-S-CBFS) and the probabilistic measure (LR-S-MRF). The two distributions of the numerator
and the denominator of the likelihood ratio are estimated parametrically using EM algorithm. Figure 2.25
shows distribution of joint probabilities P (f1, ..., fn) for minutiae correspondence computed for the test set
of FVC2002 DB1. For LRJ , we develop MRF for distances and compute overall joint probabilities based on
our distortion model (LR-J-MRF). For LRJR, The joint distribution in the denominator is represented by
another MRF and the potentials of which are estimated using a rarity model for any minutiae (LR-JR-MRF).

The discriminatory power for these methods are compared. Table 2.7 shows the percentage distributions
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Table 2.7: Percentage distributions of likelihood ratios (calculated for 1500 within-finger (same) comparisons
and 3, 000 between-finger (different) comparisons) for FVC2002 DB1. False positive (between-finger com-
parison giving a value of LR greater than 1) and false negative (within-finger comparison giving a value of
LR smaller than 1) rates and overall error rates are given.

Likelihood LR-S-Bozorth LR-S-CBFS LR-S-MRF LR-J-MRF LR-JR-MRF
Ratio different same different same different same different same different same

≤ 10−6 78.24 0 69.04 0 77.47 0 82.1 0 86.89 0
10−6 − 10−5 5.32 0 16.24 0 8.63 0 6.11 0 5.21 0
10−5 − 10−4 6.11 0.02 2.38 0 3.42 0 4.25 0 2.65 0
10−4 − 10−3 2.35 0 2.97 0 2.21 0.01 2.33 0.04 1.25 0
10−3 − 10−2 1.94 0.25 3.21 0.49 1.52 0.31 1.39 0.1 0.69 0.02
10−2 − 10−1 2.28 0.38 2.45 0.15 2.38 0.33 1.05 0 0.33 0.02
10−1 − 100 1.35 0.25 1.49 0.02 1.8 0 0.51 0.03 0.65 0.04
100 − 101 0.67 0.02 1.24 0.14 1.64 0.3 0.49 0.01 0.92 0.39
101 − 102 1.28 1.24 0.89 2.21 0.23 0.12 0.27 0.05 0.36 0.55
102 − 103 0.41 10.2 0.04 0.78 0.34 2.35 0.81 4.21 0.31 0.52
103 − 104 0.03 15.21 0.04 4.8 0.13 0.56 0.17 6.37 0.24 1.46
104 − 105 0 46.85 0.01 56.24 0 62.19 0.21 52.52 0.27 23.22
105 − 106 0.01 25.57 0 35.21 0.02 33.55 0.3 32.11 0.23 66.55
≤ 106 0.01 0.01 0 0 0.01 0.18 0.01 4.56 0 7.23
False +/-
Rate

2.41 0.9 2.22 0.8 2.37 0.75 2.26 0.17 2.33 0.08

Error Rate 3.31 3.02 3.12 2.43 2.41

Table 2.8: Error rates for fingerprint identification on 4 datasets.
LR-S-
Bozorth

LR-S-CBFS LR-S-MRF LR-J-MRF LR-JR-
MRF

DB1 3.31% 3.02% 3.12% 2.43% 2.41%
DB2 3.56% 3.45% 3.32% 2.86% 2.80%
DB3 8.57% 9.43% 7.88% 6.75% 6.96%
DB4 4.74% 4.42% 4.21% 3.95% 3.58%

Overall 5.04% 5.07% 4.63% 3.99% 3.94%
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Figure 2.26: Tippett plots for LRs of four different data sets.

of LRs calculated for 1500 within-finger (same) comparisons and 3000 between-finger (different) comparisons
for FVC2002 DB1. Because of information lost in computing LRS , identification accuracy for likelihood ratios
computed using joint information of features are much better than similarity based method because it takes
into account the dependencies among features. Especially, false negatives have been dramatically decreased.
LRJR performs slightly better than LRJ . It is also observed that for within-finger comparison, the values of
likelihood ratio computed from LRJR are much larger than those computed from LRJ and for between-finger
comparisons, higher portion of LRs are smaller than 10−6 for LRJR than LRJ . This is because the joint
probability of a set of minutiae is usually smaller than the joint probability of a set of minutiae distance
in the between-finger data. The variance of the former distribution is larger. The error rates for all four
FVC2002 database are presented in Table 2.8. The results indicate our probabilistic measure based on MRF
model outperforms deterministic measures such as Bozorth for all databases. CBFS works slightly better for
DB1 and DB2. But for DB3, which is the most difficult and noisy among the four database in terms of image
quality, our model have nearly 1.5% improvement than CBFS and 0.7% improvement than Bozorth. Both
joint probability methods outperform the similarity-based methods. LRJ computed using rarity information
is slightly better except for the noisy data DB3.

The result for evidence uncertainty is assessed using Tippett plots which are based on the distributions of
LRs [76, 22] . The horizontal axis is graduated with increasing values of LRs while the vertical axis indicates
the estimated probability that the result of the experiment exceeds a given value of LR. The Tippett plot
includes two curves: the first one shows the evolution of the estimated LR when the hypothesis h0 is verified
and the second one shows the evolution of the estimated LR when the hypothesis h1 is verified. The Tippett

50

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



2.2. METHODS CHAPTER 2. RESEARCH NARRATIVE

Table 2.9: LR ranges and rate of misleading evidence in favor of prosecution (RMEP) and in favor of the
defense (RMED) for four different data sets in FVC2002. The Tippett plot is shown in Fig.2.26

Between Finger Within Finger
LRB min LRB max RMEP

(LRB > 1)
LRW min LRW max RMED

(LRW < 1)

MRF 6.63× 10−12 1.72× 103 1.65% 1.03× 10−6 1.50× 107 2.82%
DB1 Bozorth 2.18× 10−18 3.21× 103 3.80% 1.36e× 10−9 1.58× 106 1.81%

CBFS 1.19× 10−17 1.06× 104 1.50% 1.32× 10−8 4.21× 106 2.20%

MRF 2.24× 10−4 0.87× 101 0.35% 8.05× 10−4 3.34× 103 4.90%
DB2 Bozorth 2.99× 10−7 0.11× 101 0.25% 5.81× 10−5 1.29× 102 4.97%

CBFS 2.20× 10−11 0.41× 102 1.20% 2.58× 10−6 9.21× 102 3.85%

MRF 3.17× 10−14 1.02× 103 0.40% 4.88× 10−9 1.33× 107 6.10%
DB3 Bozorth 1.12× 10−8 0.31× 102 1.25% 1.98× 10−16 0.31× 102 6.55%

CBFS 2.01× 10−22 0.67× 102 0.20% 1.20× 10−14 8.93× 105 9.15%

MRF 2.90× 10−4 0.75× 101 0.15% 3.27× 10−4 3.44× 104 5.20%
DB4 Bozorth 1.94× 10−5 0.59× 101 0.60% 0.61× 10−2 0.64× 102 4.90%

CBFS 3.87× 10−9 0.94× 101 0.30% 3.90× 10−6 0.21× 103 7.60%

plots are constructed by resampling 2000 LRs computed for comparisons of fingerprints from the same source
and 2, 000 LRs for comparisons of fingerprints from different source. To compute LRs, same and different
pairs of fingerprints are randomly selected from the test set for two hypothesis respectively. The first set
of experiments were based on full fingerprint matching with all the minutiae points available for each. The
second set of experiments were based on testing similarity measure at different number of minutiae for both
prints.

Guidelines for human experts suggests that a minimum of 12 matched minutiae are required to make
a decision [40]. However, a minutiae-based AFIS cannot make a decision using an absolute value alone as
a human expert. Unlike human experts having the access to all the information that a fingerprint image
has, such as ridge flows, singular points and scars, etc., the minutiae-based automatic systems only have the
information from the minutiae representation of fingerprints.

The Tippett plot in Figure 2.26 shows of the distribution of computed LRs obtained under both hypothe-
ses. The x-axis represents the log10(LR). The inverse cumulative distribution of the LRs (1 − cdf(LR)) is
given on the y-axis. The Tippett plot then gives inverse cumulative distribution for both hypothesis. There
are two rates of misleading results defined as follows: RMED: rate of misleading evidence in favor of the
defense. The percentage of all LR ≥ 1 computed knowing h0 is true. RMEP: rate of misleading evidence
in favor of the prosecution. The percentage of all LR ≥ 1 computed knowing h1 is true. The results are
summarized in Table 2.9. From the Tippett plots, we see a small portion of the both RMEP and RMED,
that indicate a supportive strength of the evidence (accuracy of the system).

To compare the proposed probabilistic measure with Champod’s distance-based metric, different number
sof minutiae set were tested using fingerprint images from 400 individuals in the FVC2002 data set. Let
n be the number of minutiae used. For within finger variability, each image X is compared against the
other 7 images Y coming from the same finger. 1 minutia is randomly chosen from X and n − 1 nearest
minutiae are selected. Then n corresponding minutiae from Y are used for comparison. There are total
of 2,700 comparisons. For between finger variability, minutiae set from each image X is compared with
the ones in another fingerprint Y coming from 99 different fingers. n minutiae are randomly chosen from
X and Y respectively. n is tested in the following cases: 6,12,18,24. The results in 2.9 demonstrate great
improvement.

The ability of MRF for model spatial correlated feature allows us to establish minutiae corresponding
given to sets of fingerprint minutiae. We consider a mapping field that assigns each minutiae in one set to
one from the other. A probability is associated with each mapping field by a pairwise MRF that encodes the
node and edge information of corresponding minutiae. A Gaussian noise observation model that measures
the dissimilarity/disparity between the two sets is incorporated into the MRF. Prior knowledge about the
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Table 2.10: LR ranges and rate of misleading evidence in favor of prosecution (RMEP) and in favor of the
defense (RMED) for different number minutiae.

Between Finger Within Finger
LRB min LRB max RMEP

(LRB > 1)
LRW min LRW max RMED

(LRW < 1)

MRF 3.45× 10−14 5.01× 107 1.24% 7.22× 10−7 9.14× 107 1.21%
n=6 Champod 8.56× 10−17 4.14× 108 1.95% 6.21× 10−10 6.48× 109 2.24%

MRF 2.24× 10−4 0.87× 101 0.85% 8.05× 10−4 3.34× 103 0.82%
n=12 Champod 2.99× 10−7 0.11× 101 1.11% 5.81× 10−5 1.29× 102 1.24%

MRF 1.62× 10−12 0.72× 105 0.52% 9.18× 10−8 5.88× 106 0.81%
n=18 Champod 4.25× 10−11 2.12× 105 1.86% 0.28× 10−6 0.31× 107 0.72%

MRF 7.14× 10−9 6.23× 102 0.45% 1.49× 10−5 5.32× 108 0.74%
n=24 Champod 2.44× 10−13 2.81× 107 0.92% 4.15× 10−9 2.66× 109 0.45%

mapping field, incorporated using a Bayesian framework, is used to determine the most probable assignment
(MAP estimate) of the MRF. The posterior probability is inferred using message passing belief propagation.
Most probable assignments of minutiae are determined after iteratively updating local node beliefs, which is
an approximation of the marginal probability of every variable. Finally, the similarity of two fingerprints is
measured as the overall belief of all variables in the MRF. Distributions of the joint probabilities of MRFs,
given the alternative hypotheses, are used to calculate the LRs. Our experimental results indicate that we are
able to perform minutiae matching using MRF framework and our model provides reasonable probabilistic
measure for calculating a similarity between two fingerprints.

One important question about the method is the convergence of the loopy belief propagation. The
algorithm works well for genuine pairs but fails to converge when corresponding unrelated fingerprints. The
average convergence rate in our experiment is 92%.

2.3 Discussion of findings

The principal finding in this research are:

1. Probability distributions of friction ridge features can be modeled using probabilistic graphical models
(PGMs). Such models are useful and necessary to handle the complexity of the data. Both directed
(Bayesian networks) and undirected (Markov random fields) PGMs can be used.

2. A new solution to the fingerprint registration problem has been developed. The origin of the coordinate
system for an input print, which is either its core point or a high curvature point, can be determined
probabilistically using regression. Gaussian process regression, which provides a distribution as output,
was found to perform better (using the MAP estimate) than a point estimate provided by a geometry-
based method.

3. Rarity of configurations can be inferred from probability distributions. The probability of random
correspondence of an input print in a database of a given size can be determined. Minutia configurations
increase in rarity with number of minutia considered. When a large number of minutia (about a dozen
or more) are included the rarity s quite high pointing to their uniqueness.

4. Likelihood ratios (LRs) can be readily converted into a probability of identification. These probabilities
can be exceedingly small or large thereby providing support to a latent print examiner’s opinion of
individualization or exclusion. Since the true likelihood ratio based on all variables is difficult to
compute, similarity (or distance) based methods have been suggested before. We have showed that
combining rarity with probabilistic similarity is better than a distance only method.
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5. Similarity of fingerprints can be expressed probabilistically. It was demonstrated using a Markov
random field model of the features in two fingerprints.

2.4 Implications for policy and practice

Some implications of this research are: (i) development of practical tools useful to the latent print examiner,
(ii) provide a response to criticisms in the legal community regarding uniqueness and individualization, and
(iii) help quantify cognitive processes in ACE-V, particularly those relating to rarity of features and similarity
of features . These are further expanded as follows:

1. The method for modeling probability distributions of features can be useful in developing software tools
for training latent print examiners. One of these is to quantify the degree of uniqueness of features
selected by the examiner to be used in the comparison. Rarity can also be regarded as supplementary
information for an opinion. Rarity information can possibly help avoid errors, e.g., when the matching
features are common ones then the degree of match should be discounted.

2. When the confidences, i.e., probability of identification, are extremely small/high then it justifies the
argument of the latent print examiner that there is individualization/exclusion.

3. Characterization of rarity of features and similarity of prints is a step towards formalization of the
cognitive process of the human examiner. Such a formalization can help improve human procedures
and develop future automated procedures.

2.5 Implications for further research

1. The methods proposed are a first step towards complete modeling of probability distributions of friction
ridge patterns. We only considered modeling level-two detail. They can be combined with other levels
of detail and other features.

2. The distributions were determined using 4,000 NIST images. Larger and more representative distribu-
tions would make the models and predictions more accurate.

3. We have modeled the distribution of minutiae using probabilistic graphical models so that we can
exploit independencies and make the task manageable. But inference with probabilistic graphical
models itself become intractable. Thus approximate methods, e.g., sampling, may have to be used to
determine the probability of evidence.

4. This work focused on latents to ten print comparison where latent fingerprint are compared with rolled
fingerprints based only on minutiae (ridge ending and ridge bifurcation). Minutiae representation of
fingerprint or minutiae-based approach is the most commonly used method, primarily because: (i)
forensic examiners have successfully relied on minutiae to match fingerprints for more than a century,
(ii) minutiae-based representation is storage efficient, and (iii) expert testimony about suspect identity
based on mated minutiae is admissible in courts of law. Extension of comparison to other levels of
detail is needed.
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2.6 Dissemination

2.6.1 Publications

The following papers were published:

1. C. Su and S. N. Srihari, ”Latent Fingerprint Core Point Prediction Based on Gaussian Processes,”
Proceedings 20th International Conference on Pattern Recognition, Istanbul, Turkey, Aug 23-26, 2010,
pp. 1634-1637.

2. C. Su and S. N. Srihari. ”Latent Fingerprint Rarity Analysis in Madrid Bombing Case,” Proceedings
of International Workshop on Computational Forensics, Tokyo, Japan, Nov 11-12, 2010.

3. C. Su and S. N. Srihari, ”Evaluation of Rarity of Fingerprints in Forensics,” Proceedings of Neural
Information Processing Systems (NIPS), Vancouver, Canada, December 6-9, 2010. NIPS is a top-
rated computer science conference for probabilistic methods relating to images.

4. S. N. Srihari, ”Computational Forensics,” IEEE Spectrum, December 2010, has a brief summary on
the topic of this research. See
http://spectrum.ieee.org/computing/software/beyond-csi-the-rise-of-computational-forensics.

5. C. Su and S. N. Srihari, ”Generative Models and Probability Evaluation for Forensic Evidence,” in
Pattern Recognition, Machine Intelligence and Biometrics, P. Wang (ed.), Springer, 2011.

2.6.2 Presentations

The following presentations were made:

1. An oral presentation at the National Symposium on Indigent Defense in Washington DC on February
18, 2010

2. A poster presentation at the NIJ Conference in Arlington VA on June 14, 2010.

3. A poster presentation at the Neural Information Processing Systems Conference in Vancouver, BC,
Canada in December 2010.

4. Oral presentation at the NIJ Impression and Pattern Evidence Symposium in Tampa, FL on August
2, 2010. This presentation on the current state of the research was made to a well-attended segment
of the impression evidence community:

5. Oral presentation at the International Conference on Pattern Recognition (ICPR) in Istanbul on August
24, 2010.

2.6.3 Students

1. Chang Su completed his doctoral dissertation titled Machine Learning in Fingerprint Probability Eval-
uation in July 2011.

2. Yu Liu will be defending her doctoral dissertation on Fingerprint modeling using Markov Random
Fields in Spring 2013.
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Chapter 3

References

The references in the Program Narrative are given below.
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