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Houston, TX    National Institute of Justice 
crimestat@nedlevine.com  U. S. Department of Justice 

      810 7th St, NW  
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Chapter 1: 

Introduction to CrimeStat IV 
 

CrimeStat7 is a spatial statistics package that can analyze crime incident location data.  
Its purpose is to provide a variety of tools for the spatial analysis of crime incidents or other 
point locations. It is a stand-alone Windows program that can interface with most desktop 
geographic information systems (GIS). It is designed to operate with large crime incident data 
sets collected by metropolitan police departments.  However, it can be used for other types of 
applications involving point locations, such as the location of arrests, motor vehicle crashes, 
emergency medical service pickups, or facilities (e.g., police stations). 
 

Uses of Spatial Statistics in Crime Analysis 
 

Most GIS packages, such as MapInfo7, ArcGIS7, and Maptitude7, have very sophisticated 
data base operations (Pitney Bowes, 2012; ESRI, 2012a; Caliper, 2012). They have limited 
statistical methods, however, though this has been slowly changing over time as the programs 
have added various statistical functions. For most purposes, GIS can provide great utility for 
crime analysis, allowing the plotting of different incident locations and the ability to select 
subsets of the data (e.g., incidents by precinct, incidents by time of day). Most crime analysts 
visually inspect incident maps and, based on their experience, draw conclusions about shifts over 
time, >hot spots= and other patterns suggested by the data. 
 

There are times, however, when a more quantitative approach is needed.  For example, 
an analyst wishing to examine patterns of streets robberies over time will need indices which 
document how the robberies may have shifted. For a neighborhood showing an apparent sudden 
increase in auto thefts, there needs to be a quantitative standard to define the >typical= level of 
auto thefts.  In assigning police cars to patrol particular major arteries, the center of minimum 
travel needs to be identified in order to maximize response time to calls for service. For research, 
as well, quantification is important. In examining correlates of burglaries, for example, a 
researcher needs to determine the exposure level, namely how many residences or commercial 
buildings exist in a community in order to establish a level of burglary risk. Or a precinct station 
may want to target areas for which there is a high concentration of incidents occurring within a 
short time (>hot spots=). While some of these analyses can be conducted with GIS queries, 
quantification can allow a more precise identification and the ability to compare different types 
of incidents. In short, there are many uses for quantitative analysis for which a statistical 
program becomes important.   
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The CrimeStat IV Spatial Statistics Program 
 

CrimeStat is a program designed to provide statistical summaries and models of crime 
incident data. The program provides crime analysts and researchers with a wide range of spatial 
statistical procedures that can be linked to a GIS.  The procedures vary from the simple to some 
very sophisticated >cutting edge= routines. The reasoning is that different audiences vary in their 
needs and requirements. The program should be of benefit to different organizations. For many 
crime analysts, simple descriptions of the spatial distribution will be sufficient with the aim 
being practical intervention over a short time period. For these persons, many of the techniques 
provided in CrimeStat will be unnecessary. 
 

For other analysts, statistical tools can supplement a much larger GIS effort, such as the 
sophisticated crime analysis system built by the Baltimore County Police Department (BCPD, 
2012). For other researchers, even more demanding techniques may be needed to detect the 
underlying spatial structure as a means for formulating a temporal-spatial theory. A pattern in 
and of itself has little meaning unless it is linked to some framework. The ability to quantify 
relationships with a large amount of data can address problems that previously were avoided and 
can be a first step in developing an explanatory framework or interventionist strategy. CrimeStat 
attempts to address both types of needs by providing statistics in a >toolbox= framework. We 
recognize that today=s exotic statistical techniques may become tomorrow=s practical diagnostics 
and want the program to be useful for many years. 
 

Input and Output 
 

CrimeStat is a full-featured Windows program using a graphical interface with database 
and expanded statistical functions. It can read files in various formats - dBase7, which is a 
common file format in desktop GIS programs, Excel (both ‘xls’ and ‘xlsx’ formats), ArcGIS 
Shape (shp) files, MapInfo data (dat) files, and files conforming to the ODBC standard, such as 
Lotus 1-2-3, and Microsoft Access (Microsoft, 2010). In addition, many other GIS packages, 
such as Maptitude7 can read >dbf=, >shp=, >bna= or >mif= files. 
 

Output includes both displayed tables, which can be printed as text or copied to a word 
processing program, and graphical output. CrimeStat can write graphical objects to the ArcGis7, 
MapInfo7, Maptitude GIS programs, Surfer7 10, ArcGIS Spatial Analyst8 programs, and to those 
that can read Ascii grid files (e.g., Vertical Mapper7; Rockware, 2012; Golden Software, 2012; 
ESRI, 2012b).   
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Statistical Routines 
 
CrimeStat IV includes statistics routines for both statistical description and modeling.  

These are divided into six general statistical categories with more than 80 individual routines: 
 

Data Setup 
 
Primary file 

Input file with X/Y coordinates 
Define coordinate system 
Define data units 
 

Secondary file 
Input second file with X/Y coordinates as baseline 
Define coordinate system 
Define data units 
 

Reference file 
Create reference grid 
Use existing reference grid 

 
Type of distance measurement 

Use direct distance 
Use indirect distance 
Use network distance 

 

Spatial Description 
 

Spatial distribution 
Mean center 
Standard distance deviation 
Standard deviational ellipse 
Median center 
Center of minimum distance 
Directional mean and variance 
Convex Hull 
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 Spatial Autocorrelation 
Moran=s “I” spatial autocorrelation index 
Geary=s “C” spatial autocorrelation index 
Adjusted Geary’s “C” spatial autocorrelation index 
Getis-Ord Global “G” spatial autocorrelation index with simulation of credible 

intervals 
Moran Correlogram with simulation of credible intervals 
Geary Correlogram with simulation of credible intervals 
Getis-Ord Correlogram with simulation of credible intervals 

 
Distance analysis I 

Nearest neighbor analysis 
Ripley=s “K” statistic 
Assign primary points to secondary points 
 
 Distance Analysis II 
Within primary file distance matrix 
Between primary file and secondary file distance matrix 
Between primary file and grid distance matrix 
Between secondary file and grid distance matrix 

 

Hot Spot Analysis 
 

Hot spot analysis I 
Mode 
Fuzzy mode 
Nearest neighbor hierarchical clustering with simulation of credible intervals 
Risk-adjusted nearest neighbor hierarchical clustering with simulation of credible 

intervals 
 
 Hot spot analysis II 
Spatial and temporal analysis of crime routine (STAC) with simulation of credible 

intervals 
K-mean clustering 
 
 Hot spot analysis of Zones 
Anselin=s local Moran test with simulation of credible intervals 
Getis-Ord local “G” test with simulation of credible intervals 
Zonal nearest neighbor hierarchical clustering with simulation of credible 

intervals 
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Risk-adjusted zonal nearest neighbor hierarchical clustering with simulation of 
credible intervals 

 
Spatial Modeling I 

 
Interpolation I 

Single variable kernel density interpolation 
Dual variable kernel density interpolation 

 
   Interpolation II 
  Head-Bang analysis 
  Interpolated Head-Bang analysis 
 

Space-time analysis 
Knox index 
Mantel index 
Correlated walk model for analysis and prediction 

 
   Journey-to-crime analysis 

Calibrate Journey-to-crime function 
Journey-to-crime estimation 
Draw crime trips 
 

   Bayesian Journey-to-crime analysis 
  Diagnostics for Journey-to-crime methods 
  Estimate likely origin of a serial offender 
    

Spatial Modeling II 
 
   Regression I 
  MLE OLS and Poisson regression models 
  MCMC Poisson and Logit regression models 
  MCMC Poisson and Logit exposure regression models 
  MCMC spatial Poisson and Logit regression models 
  MCMC spatial Poisson and Logit exposure regression models 
   
   Regression II 
  Using OLS regression models to make predictions 
  Using Poisson spatial regression models to make predictions 
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   Discrete Choice I 
  Create dataset for conditional logit model 
  Estimate multinomial logit model 
  Estimate conditional logit model 
 
   Discrete Choice II 
  Using multinomial logit model to make predictions 
  Using conditional logit model to make predictions 
 
   Time Series Forecasting 
  Time Series Data 
  Extrapolative Time Series Forecasting 
  Classical Decomposition: Seasonality 
  The Detection Problem 
 

Crime Travel Demand 
 

Trip Generation 
Skewness diagnostics 
Calibrate model 
Make prediction 
Balance predicted origins & destinations 
 

Trip Distribution 
Calculate observed origin-destination trips 
Calibrate impedance function 
Calibrate origin-destination model 
Apply predicted origin-destination model 
Compare observed and predicted origin-destination trip lengths 
 

Mode Split 
Calculate mode split for trips 

 
Network Assignment 

Check for one-way streets 
Create a transit network from primary file 
Network assignment of trips to travel network 

 
Many of these routines allow variations yielding an even larger number of statistics to be 

calculated. Two features of the program should be noted.  First, and foremost, CrimeStat is a 
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program that specializes in the analysis of point locations. Over the years, many statistical tools 
have been developed for analyzing point locations. Many of these have either not been 
implemented as computer programs or were collected together as part of a specialized statistical 
system. They have been typically unavailable to crime analysts and the major statistical packages 
(e.g., SAS7, SPSSJ, Systat7) do not include these routines. Consequently, we have collected those 
that are most appropriate for crime analysis and detection and organized them into a single 
package with a common graphical interface. They represent a wide variety of tools that can be 
used for crime analysis. CrimeStat can also analyze zonal data by treating them as >pseudo= 
points.  For example, the centroid of a census tract can be treated as a point and a value 
associated with the tract (e.g., its population) can be treated as an Intensity value (see chapter 3). 

 
Second, CrimeStat includes a variety of modeling tools for analyzing multivariate 

relationships. These include spatial regression routines for analyzing skewed distributions along 
with spatial autocorrelation, discrete choice modeling routines for modeling unique decisions, 
time series forecasting routines for analyzing sudden changes in the level of incidents in a zone, 
and a crime travel demand module for analyzing crime patterns over an entire metropolitan area. 
 

Program Requirements 
 

Required Hardware and Operating System 
 

CrimeStat IV was developed for the Windows 7 and Windows 8 operating systems, 
though it will also work with the Windows 2000, or Windows XP operating systems; it is not 
hardware dependent so that any processor that can run Windows 7 or Windows 8 will suffice. 
Some of the routines can also run on Windows XP and earlier Windows operating systems. 
However, the program was not designed around nor fully tested for those operating systems. It is 
highly recommended that the program be run on a more current version of Windows.  
 

While it can run on a relatively slow computer (e.g., 250 MHz clock speed) with limited 
RAM (e.g., 64 MB), it will run much better on a 2.6 GHz computer (or faster) with more than 2 
GB of RAM.  In general, the faster the processor used and the more RAM, the quicker the 
program will run. The program is very intensive with respect to calculations. Some of the 
statistics produce very large matrices (e.g., the trip distribution routines in the Crime Travel 
Demand module).  Depending on the size of the data files that will be processed, there may be 
hundreds of millions of calculations on any one run.  It is critical, therefore, that the computer 
be fast and have sufficient amounts of RAM.  

 
Available RAM Limits the Size of Files 

 
For most of the simple statistics, a reasonably fast computer will be adequate.  However, 
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the Markov Chain Monte Carlo (MCMC) regression routines, the discrete choice module, the 
temporal modeling module, and several of the trip distribution routines will push the limits of 
most computer systems. For example, the 32 bit Windows operating system has a maximum 
addressable limit of 4 GB (i.e., 4 billion bytes) of RAM (actual and virtual). With a trip 
distribution matrix, there are M x N cells where M is the number of rows (origins) and N is the 
number of columns (destinations). With 8 bytes (64 bits) being assigned to a number in a cell 
(including the decimal and decimal places), practically the maximum matrix that could be loaded 
into memory would be about 22,000 x 22,000. One would never be able to use this amount since 
a lot of RAM will be taken up by the program and operating system. Nevertheless, using the 
calculation, the storage space required to save such a matrix will limit the size of the database, 
aside from taking a very long time to be calculated. In short, the size of the files that can be 
processed will depend on the particular routines being run.  

 
With a 64 bit operating system (e.g., Windows 7 or Windows 8), the theoretical 

maximum for addressable memory is 192 GB. Again, with 8 bytes per cell, the available RAM 
would allow a maximum square matrix of about 154,000 x 154,000 cells. Clearly, for large data 
sets, a 64 bit Windows operating system is preferable.  
 

Multi-threading 
 

CrimeStat is a multi-threaded application written to take advantage of multiple processors 
if the hardware and operating system support multiple processors. The program is designed to be 
multi-threading which means that it will take advantage of multiple processors (called ‘cores’) 
using Windows 8, Windows 7, and Windows Vista operating systems. These operating systems 
will support up to 64 core processors while Windows Server 2008 R2 supports up to 256 
processors. Earlier versions of Windows (e.g., Windows 2000) supported two core processors. 
Thus, if there are two processors and Windows 7 is the operating system, CrimeStat will 
calculate routines in about half the time. If there are four processors and Windows Server 2008 is 
the operating system, CrimeStat will calculate routines in about a quarter of the time.  The 
multiples are not exact since processing time must be allocated for input of data and output of 
tables. Also, some of the routines (the Markov Chain Monte Carlo regression models, the 
temporal modeling module) are sequential so that the advantages of multi-threading will not play 
much of a part. 
 

For small data sets, this feature is not important as most runs will be very quick.  
However, for large data sets (e.g., 3000 cases or larger), the speed of calculations become 
important. For example, on a 1.6 GHz single-processor Pentium M7 computer with 1 GB of 
RAM running Windows XP Professional, it took about 4 minutes to complete a nearest neighbor 
analysis on 14,853 cases involving the calculating of distance from every point to every other 
point and identifying the 100 nearest neighbors. On a 2.4 GHz dual-processor Intel7 CoreTM 2 
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computer with 4 GB of RAM running a 64-bit Windows 7, it took about 50 seconds to complete 
the same task. On a 2.4 GHz quad-processor Intel7 CoreTM i7-2760QM processor with 16 GB of 
RAM and running a 64-bit Windows 7, the task took 16 seconds, more than three times faster 
than the ‘Core 2’ processor and 60 times faster than the ‘Pentium’ processor. The larger the file 
that is being processed, the more critical becomes the calculating efficiency of the computer.   
 

If a police department is expecting to run large data sets, it would benefit them to 
purchase fast multiple-processor computers with lots of RAM and fast hard disks to speed 
calculating times. The evolution of new processors is moving in this direction anyway so that 
multi-processor computers have become the norm.  
 

Required Software 
 

CrimeStat needs a Windows environment to operate.  The program was designed for a 
Windows 7 operating system so it is better optimized for that system.  In particular, Windows 7 
and Windows 8 have two features that allows CrimeStat to run more efficiently.  First, they are 
multi-threading operating systems and can utilize multiple processors, as mentioned above. 
Second, they address memory in a more efficient way, as a large flat block. The 64 bit version of 
Windows 7 or Windows 8 in particular, will handle larger data blocks (called words) than the 
older 32 bit versions of Windows 7 and earlier operating systems.  
 

CrimeStat is a stand-alone program. Hence, it does not require any other program other 
than a Windows operating system. However, to be maximally useful, there should be an 
accompanying GIS program. While point data can be obtained from a non-GIS system (e.g., 
census files include lat/lon coordinates for the centroid of census units), the use of the GIS to 
assign the coordinates is almost necessary.  Further, many of the outputs of CrimeStat are for 
GIS programs. For example, to view an ellipse of a hot spot or to view a three dimensional 
interpolation produced by CrimeStat will require an appropriate GIS package. 
 

Installing the Program 
 

CrimeStat comes compressed in a zipped file called CrimeStat.zip. To install the 
program, it is necessary to have a compression program that recognizes the >zip= format: 
 

1. Create a directory using Windows Explorer and copy the file to that directory. 
 

2. Double click on the file name in Explorer.  When the name CrimeStat.zip is 
visible in the dialog box name field, double click the name with the left mouse 
button and point the extraction to the directory that you defined. CrimeStat will be 
installed in that directory. 
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3. The program help menu can also access the manual if the chapters of the manual 

are kept in the same directory as the program. 
 
Adding an Item to the Start Menu 

 
To add CrimeStat to the start menu: 

 
1. Click on the Start button in Windows followed by Settings then Taskbar.  Click 

on Start Menu Programs followed by Add.   
 
 

2. In the dialog box, click on Browse, point to the directory where CrimeStat resides, 
and click on its name followed by Open. When the name CrimeStat is in the 
dialog box name field, click on the Next button.   

 
3. Double-click on the folder to which CrimeStat is to be assigned.  

 
4. Finally, type a name for CrimeStat (e.g., CrimeStat) followed by Finish. 

 
Adding an Icon to the Desktop 

 
To add CrimeStat to the desktop:  

 
1. Double-click on My Computer.   

 
2. Double-click on the drive in which CrimeStat resides followed by the directory 

that it is in (it may be several levels down).   
 

3. Click once on the name CrimeStat with the left button and then hold down the 
right mouse button.  

 
4. While holding the right mouse button, scroll to Create Shortcut.   

 
5. The name Shortcut to CrimeStat will be placed at the end of the list of files.   

 
6. Highlight the name by clicking on it once.  Hold the left mouse button down and 

drag this name on to the desktop.   
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7. You can rename it CrimeStat by clicking on its icon with the right mouse button 
followed by Rename.    

 
8. Alternatively, you can use Windows Explorer to create a shortcut and then drag 

the shortcut to the desktop. 
 

Installing the Sample Data Sets 
 

There are eight sample data sets that can be used to run the program, also in >zip= format 
plus notes defining the variables. Since the data are simulated, they should not be used for real 
applications.1 They are provided to allow a user to become familiar with the program quickly. 
Many of these data sets have Read Me files that explain their data structure.  However, 
ultimately, the value of the program must be tested on real data, rather than simulated data.   
 

1. General Sample Data.zip.  The data are simulated incident points from 
Baltimore City and Baltimore County in Maryland. 

 
A. Incident.dbf - A simulated data set of 1061 incidents (e.g., robberies) in 

Baltimore County and the City of Baltimore 
 

B. Baltpop.dbf - The 1990 population, area and population density of 1349 
block groups in Baltimore County and the City of Baltimore 

 
2. Jtc Sample Data.zip.  There are three files of simulated data for use with the 

Journey-to-crime routine (Chapter 13).  The data should be stored in the same 
directory: 

 
A. JtcTest1.dbf - A simulated data set of 2000 robberies in Baltimore County 

that can be used for calibrating a travel demand function.  Each record 
has a crime location and a residence location of the offender.  

 
B. JtcTest2.dbf - A simulated data set of 2500 burglaries in Baltimore County 

that can be used for calibrating a travel demand function.  Each record 
has a crime location and a residence location of the offender. 

                         
1 The data were simulated by a random number generator following the distribution of several types of crime 

incidents. Because the data were selected by a random generator, the points do not necessarily fall on 
streets or even stay within the boundaries of the jurisdiction. Their purpose is to provide a simple data set 
so users can become familiar with the program and should not be used for actual research. 
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C. Serial1.dbf - A simulated data set of the location of seven incidents 
committed by a single serial offender.  To become familiar with the 
journey to crime routine, they can be treated as either robberies or 
burglaries. 

 
3. Bayesian Jtc Sample Data.zip.  There are six files of simulated data for use 

with the Bayesian Journey-to-crime routine (Chapter 14). The data should be 
stored in the same directory: 
 
A. Bayesian_calibration_file.dbf – A simulated data set of 963 crimes 

committed by 88 serial offenders.  Each record has an offender ID, the 
UCR code, and the crime location and residence location of the offender. 
 

B. Observed_OD_Distribution.dbf – A simulated matrix of crime trips from 
533 origin zones in Baltimore County (MD) and the City of Baltimore 
(MD) to 325 destination zones in Baltimore County.  Each record 
includes the location of the origin zone, the location of the destination 
zone, and the number of crime ‘trips’ for each combination. 

 
C. Jtcfull.txt – A journey-to-crime calibration file that can be used to estimate 

the travel distance of offenders from each origin zone to each destination 
zone. 

 
D. S14A.dbf – the crime locations of an offender who committed 14 offences 

before being caught.  Each record includes the UCR code and the crime 
location and residence location of the offender. 

 
E. TS15A.dbf – the crime locations of an offender who committed 15 

offences before being caught.  Each record includes the UCR code, the 
date, the time, and the crime location and residence location of the 
offender. 
 

F. Test_Bayesian_Jtc_routine.param – a CrimeStat parameters file for 
loading these data into CrimeStat to run the routine.   

 
4. Correlated Walk Analysis Sample Data.zip.  These are three files of simulated 

data for use with the Correlated Walk Analysis routine (Chapter 12): 
 

A. PredictableOffender1.dbf - A simulated data set for an algorithmic 
offender who committed 13 incidents. 
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B. PredictableOffender2.dbf -A simulated data set for an algorithmic 
offender who committed 12 incidents. 

 
C. RealOffender1.dbf - A data set for a real offender who committed 12 

incidents - 10 larceny thefts, 1 robbery and 1 burglary. 
 

D. RealOffender2.dbf - A data set for a real offender who committed 15 
incidents - 10 larceny thefts, 2 assaults, 2 burglaries and 1 robbery. 

 
5. Crime Travel Demand Sample Data.zip.  There are 13 files of data, CrimeStat 

parameter files, and a spreadsheet file for modeling travel behavior in Baltimore 
County, Md.  They are examples used in the crime travel demand module 
(Chapters 25-32): 

 
A. Crime Travel Demand read me.pdf - a file that explains the three data sets 

and their fields and describes the eight parameter files. 
 

B. BCOrigins.dbf - a data set on 532 origin zones in both Baltimore County 
and the City of Baltimore from the late 1990s.  There are data on crimes 
originating from each zone and demographic, economic and land use 
variables associated with those zones. 

 
C. BCDestinations.dbf - a data set of 325 destination zones in Baltimore 

County only.  There are data on crimes occurring in each zone and 
demographic, economic and land use variables associated with those 
zones. 

 
D. ObservedODTrips.dbf - the actual trip distribution indicating the number 

of trips from each origin zone to each destination zone. 
 

E. Trip generation origin model.param - Runs trip generation model using 
the Poisson regression for the origin zones affecting Baltimore County. 

 
F. Trip generation destination model.param B Runs trip generation model for 

Baltimore County destinations. 
 

G. Make predicted origins.param B Applies modeled coefficients for the 
origin model to the same data set from which it was modeled.  Then the 
routine adds in external trips. 
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H. Balance Origins and Destinations.param B Balances the number of trips 
by origin and by destination.  In the example, the number of predicted 
destinations are held constant. 

 
I. Calibrate Origin-Destination Model Coefficients.param B Using the 

predicted origins and predicted destinations from the trip generation stage, 
estimates coefficients for distributing trips from origin zones to destination 
zones. 

 
J. Apply Origin-Destination Model.param  B Inputs the predicted origins 

and predicted destinations from the trip generation stage as well as the 
modeled coefficients from H above.  Outputs predicted trips for each 
origin-destination zone combination. For the graphic display, outputs top 
200 trips. 

 
K. Compare Observed and Predicted Trip Lengths.param B Inputs observed 

(actual) and predicted trip distribution and compares them by trip lengths.  
Calculates coincidence ratio and then compares the top 200 
origin-destination links. 
 

L. Mode Split Model.param B Inputs predicted origins, predicted 
destinations, and predicted trips along with estimates of the mode split 
function (see Excel spreadsheet below). Splits trips by origin-destination 
pair into specific travel modes. The output is both a table of 
origin-destination trips by mode as well as five ArcGis shape files 
representing zone-to-zone trips by mode. 

 
M. Mode split impedance defaults.xls - An Excel spreadsheet for estimating 

the coefficients of the mode split stage.  This should be used in 
establishing the parameters for the mode split routine. 

 
6. Mode Split Impedance Defaults.xls. A spreadsheet for estimating the parameters 

of the mode split impedance function (Chapter 30). 
 

7. Discrete Choice Modeling Sample Data.zip.  There are two files for running 
the multinomial logit model (Chapters 21 and 22): 
 
A. HoustonWeaponUse.dbf - A data set of weapon use during robberies in 

Houston ,TX. Each record contains an offender ID, a randomly assigned 
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crime location, the type of weapon used during the robbery (WEAPON) 
and 11 predictive variables. See the attachment to Chapter 22 for details. 
 

B. Run MNL model of Houston robberies.param – A CrimeStat parameters 
file for loading the multinomial logit model from these data. 

 
C. TheHagueBurglars.dbf – A file of 548 cleared burglaries from The Hague, 

Netherlands. The file contains information on the characteristics of the 
burglars and neighborhood identifiers.  This will be combined with the 
data set on neighborhoods in The Hague. 

 
D. TheHagueNeighborhoods.dbf – a file of 89 neighborhoods in The Hague 

for the years 1996-2001.The data set is for use an alternatives files in 
creating a data set for the conditional logit model.  This will be combined 
with the data set on burglars in The Hague. 

 
E. TheHagueNeighborhoodsXBurglars.dbf – this file is the result of matching 

the file TheHagueBurglars.dbf with TheHagueNeighborhoods.dbf using 
the ‘Create dataset for conditional discrete choice model’ routine under 
Discrete Choice I module.  It is used to validate the results of combing 
TheHagueBurglars.dbf with TheHagueNeighborhoods.dbf files. 

 
8. Time Series Forecasting Sample Data.zip.  There are two files for running the 

exponential smoothing and prediction routines (Chapters 23 and 24): 
 
A. Weekly crimes by Tract.dbf – A data set of weekly robberies by 140 

census tracts in Pittsburgh, PA, between 1990 and 1999. 
 
B. Monthly crimes by Tract.dbf – A data set of monthly robberies by 140 

census tracts in Pittsburgh, PA, between 1990 and 1999. 
 
Again, to repeat, many of these data are simulated.  Though they are based on actual 

cases, the X and Y coordinates have been randomly assigned so that the real locations of the 
crime location or the offender’s residence are hidden.  They should be used only to learn how to 
run individual routines. 
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To install any of these sample data files, it is necessary to have a compression program 
that recognizes the >zip= format: 
 

1. Create a data directory using Windows Explorer and copy the files to that 
directory. 
 

2. In Windows Explorer, double-click on its name and then follow the instructions. 
 

Step-by-Step Instructions 

 
This manual will go through the program step-by-step to address how it can be used by a 

crime mapping/analysis unit within a police department. Chapter 2 provides a quick guide for all 
the data definition and program routines and Chapter 3 provides detailed instructions on setting 
up data to run with CrimeStat.  The statistical routines are described in parts II, III, IV, V, and 
VI.  Part II presents a number of statistics for spatial description. Part III presents hot spot 
analysis techniques for both points and zones.  Part IV presents a number of statistics for spatial 
modeling (called Spatial Modeling I) while part V presents multivariate tools for spatial 
modeling (called Spatial Modeling II).  Finally, part VI presents a crime travel demand module.  
The different statistics are presented and detailed examples of each technique are shown. 
 

Options 
 

There is an option tab that allows the saving and loading of program parameters and the 
setting of colors for each of main headings: Data setup, Spatial description, Hot Spot Analysis, 
Spatial modeling I, Spatial Modeling II, and Crime Travel Demand.  One can also output 
simulated data during the simulation runs; this will be explained in the appropriate section. 

 

Short Applications 
 

The manual also includes a number of applications conducted by other researchers and 
analysts. These are presented as one page sidebars at the end of each of the chapters. Most of 
these are from criminal justice. But, applications from other fields have also been included.  
The aim is to show the diversity of applications that researchers and analysts have used with the 
various routines in CrimeStat.   
 

Online Help 
 
 In addition, there is on-line help for the program.  There is a Help button that can be 
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pushed to access all the help items. In addition, the program has context-sensitive help.  On any 
page or routine, clicking on the Help button at the bottom of the screen will pop up an 
appropriate help item. The on-line help can also access the program manual. For this to be 
available, be sure to store the chapters of the manual in the same directory as the program. 
 
 Accessing the Help Menu in Windows  
 

CrimeStat IV works with the Windows Vista, Windows 7, Windows Server 2008 R2, and 
Windows 8 operating systems. However, these operating systems do not include the help menu 
file that was available in previous versions of Windows (WinHlp32.exe) and clicking on the 
CrimeStat help button may not work. If you have this problem, Microsoft has developed a 
special file that allows help menus to be viewed. It will be necessary to obtain the file and install 
it. The URL is found at: 
 
 http://support.microsoft.com/kb/917607 
 
 Select the file that is appropriate for your operating system and follow the instructions on 
the page. Additional diagnostic information is also provided on the page. 

  

http://support.microsoft.com/kb/917607
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Chapter 2: 

Quickguide to CrimeStat IV 

 

Introduction 
 

The following are brief instructions for the use of CrimeStat7IV and parallels the online 
help menus in the program.  Because there are a large number of routines in CrimeStat, this 
quickguide is very long.  Detailed instructions on individual routines should be obtained from 
Chapters 3-32 in the documentation.   

 
CrimeStat has five basic groupings in 27 program tabs and one option tab.  Each tab lists 

routines, options and parameters: 
 

Data setup 
 

1. Primary File 
2. Secondary File        
3. Reference File 
4. Measurement Parameters 
 

Spatial description 
 

5. Spatial Distribution 
6. Spatial Autocorrelation 
7. Distance Analysis I 
8. Distance Analysis II 

 
Hot spot analysis 
 

9. Hot Spot Analysis I 
10. Hot Spot Analysis II 
11. Hot Spot Analysis of Zones 

 
Spatial modeling I 
 

12. Interpolation I 
13. Interpolation II 
14. Space-time Analysis 
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15. Journey-to-crime 
16. Bayesian Journey-to-crime 

 
Spatial modeling II 
 

17. Regression I 
18. Regression II 
19. Discrete Choice I 
20. Discrete Choice II 
21. Time Series Forecasting 

 
Crime Travel Demand 
 

22. Project Directory 
23. Trip Generation 
24. Trip Distribution 
25. Mode Split 
26. Network Assignment 
27. File Worksheet 

 
Options 
 

28. Saving parameters, colors and options 
 

Throughout this chapter, figures 2.1-2.28 show the 28 tab screens with examples of data 
input and routine selection.  

 

I. Data Setup 
 

The data setup section involves defining the data set and variables for a primary file 
(required) and a secondary file (optional), identifying a reference grid (required for several 
routines), and defining measurement parameters (required for several routines).   
 

Primary File 
 

A primary file is required for CrimeStat.  It is a point file with X and Y coordinates.  
For example, the primary file could be the location of street robberies, each of which have an  
 



Figure 2.1:

Primary File Setup
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associated X and Y coordinates.  Also, there can be associated weights or intensities, though 
these are optional.  Also, there can be time references, though these are optional.  For example, 
if the points are the locations of police stations, then the intensity variable could be the number of 
calls for service at each police station while the weighting variable could be service zones.  More 
than one file can be selected.  The time references are used in the space-time analysis routines 
are defined in terms of hours, days, weeks, months, or years. 
 
 Select Files 
 

Select the primary file. CrimeStat reads dbase ‘dbf’, ArcGIS point ‘shp’ and ASCII files. 
Select the type of file to be selected. Use the browse button to search for a particular file name. If 
the file type is ASCII, select the type of data separator (comma, semicolon, space, tab) and the 
number of columns. Note that there is a utility that will convert an Excel ‘xls’ or ‘xlsx’ to a ‘dbf’ 
file on the Options tab. 
 
 Variables 
  

Define the file that contains the X and Y coordinates. If there are weights or intensities 
being used, define the file that contains these variables. Certain statistics (e.g., spatial 
autocorrelation, local Moran) require intensity values and most other statistics can use intensity 
values. Most other statistics can use weights. It is possible to have both an intensity variable and a 
weighting variable, though the user should be cautious in doing this to avoid 'double weighting'.  
If a time variable is used, it must be an integer or real number (e.g., 1, 36892).  Do not use 
formatted dates (e.g., 01/01/2001, October 1, 2001).  Convert these to real numbers before using 
the space-time analysis routines. 
 
 Columns 
 

Select the variables for the X and Y coordinates respectively (e.g., Lon, Lat, Xcoord, 
Ycoord.) If weights or intensities are being used, select the appropriate variable names. If a time 
variable is used, select the appropriate variable name. 
 
 Missing Values 
 

Identify whether there are any missing values.  By default, CrimeStat will ignore records 
with blank values in any of the eligible fields or records with non-numeric values (e.g., 
alphanumeric characters, , *).   Blanks will always be excluded unless the user selects <none>.  
There are 8 possible options: 
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1. <blank> fields are automatically excluded.  This is the default 
2. <none> indicates that no records will be excluded.  If there is a blank field, 

CrimeStat will treat it as a 0 
3. 0 is excluded 
4. –1 is excluded 
5. 0 and –1 indicates that both 0 and -1 will be excluded 
6. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be excluded 
7. Any other numerical value can be treated as a missing value by typing it (e.g., 99) 
8. Multiple numerical values can be treated as missing values by typing them, 

separating each by commas (e.g., 0, -1, 99, 9999, -99) 
 
 Directional 
 

If the file contains directional coordinates (angles), define the file name and variable name 
(column) that contains the directional measurements.  If directional coordinates are being used, 
there can be an optional distance variable for the measurement.  Define the file name and 
variable name (column) that contains the distance variable. 
 
 Time Units 
 

Define the units for the time variable and are defined in terms of hours, days, weeks, 
months, or years.  Time is only used for the primary file.  The default value is days. Note, only 
integer or real numbers can be used (e.g., 1, 36892).  Do not use formatted dates (e.g., 
01/01/2001, October 1, 2001).  Convert these to real or integer numbers before using the 
space-time analysis routines. 
 
 Type of Coordinate System and Data Units 
 

Select the type of coordinate system. If the coordinates are longitudes and latitudes, then a 
spherical system is being used and data units will automatically be decimal degrees. If the 
coordinate system is projected (e.g., State Plane, Universal Transverse Mercator – UTM), then 
data units could be feet (e.g., State Plane), meters (e.g., UTM.), miles, kilometers, or nautical 
miles.  If the coordinate system is directional, then the coordinates are angles and the data units 
box will be blanked out.  For directions, an additional distance variable can be used.  This 
measures the distance of the incident from an origin location; the units are undefined. 
 

Note: if a projected coordinate system is used, but the coordinate system is defined as 
longitude/latitude (spherical), an error message will appear that says "Found invalid data at row 1 
of the primary data set!".  Change the coordinate system to Projected (Euclidean). 
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Secondary File 
 

A secondary data file is optional.  It is also a point file with X and Y coordinates.  It is 
usually used in comparison with the primary file. There can be weights or intensities variables 
associated, though these are optional.  For example, if the primary file is the location of motor 
vehicle thefts, the secondary file could be the centroid of census block groups that have the 
population of the block group as the intensity (or weight) variable.  In this case, one could 
compare the distribution of motor vehicle thefts with the distribution of population in, for 
example, the Ripley's "K" routine or the dual kernel density estimation routine.  More than one 
file can be selected. Time units are not used in the secondary file. 
 
 Select Files 
 

Select the secondary file. CrimeStat reads dbase ‘dbf’, ArcGIS point ‘shp’ and ASCII 
files.  If the file type is ASCII, select the type of data separator (comma, semicolon, space, tab) 
and the number of columns. Note that there is a utility that will convert an Excel ‘xls’ or ‘xlsx’ to 
a ‘dbf’ file on the Options tab.  
 
 Variables 
 

Define the file that contains the X and Y coordinates. If weights or intensities are being 
used, define the file that contains these variables. Certain statistics (e.g., spatial autocorrelation, 
local Moran) require intensity values and most other statistics can use intensity values.  Most 
other statistics can use weights. It is possible to have both an intensity variable and a weighting 
variable, though the user should be cautious in doing this to avoid 'double weighting'.  Time 
units are not used in the secondary file. 
 
 Columns 
 

Select the variables for the X and Y coordinates respectively (e.g., Lon, Lat, Xcoord, 
Ycoord.)  If there are weights or intensities being used, select the appropriate variable names.  
Time units are not used in the secondary file. 
  
 Missing Values 
 

Identify whether there are any missing values.  By default, CrimeStat will ignore records 
with blank values in any of the eligible fields or records with non-numeric values  
 

 



Figure 2.2:

Secondary File Setup
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(e.g., *, alphanumeric characters , *).   Blanks will always be excluded unless the user selects 
<none>.  There are 8 possible options: 
 

1. <blank> fields are automatically excluded.  This is the default 
2. <none>  indicates that no records will be excluded.  If there is a blank field, 

CrimeStat will treat it as a 0 
3. 0 is excluded 
4. –1 is excluded 
5. 0 and –1 indicates that both 0 and -1 will be excluded 
6. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be excluded 
7. Any other numerical value can be treated as a missing value by typing it (e.g., 99) 
8. Multiple numerical values can be treated as missing values by typing them, 

separating each by commas (e.g., 0, -1, 99, 9999, -99) 
 
 Type of Coordinate System and Data Units 
 

The secondary file must have the same coordinate system and data units as the primary 
file.  This selection will be blanked out, indicating that the secondary file carries the same 
definition as the primary file.  Directional coordinates (angles) are not allowed for the secondary 
file nor are time variables. 
 

Reference File 
 

For referencing the study area, there is a reference grid, a reference origin, and an area.  
The reference file is used in the risk-adjusted nearest neighbor hierarchical clustering routine, 
journey-to-crime estimation and in the single and dual variable kernel density estimation routines.  
The file can be an external file that is input or can be generated by CrimeStat.  It is usually, 
though not always, a grid which is overlaid on the study area.  The reference origin is used in the 
directional mean routine. The file can be an external file that is input or can be generated by 
CrimeStat.  The area is that of the study region.   
 
 Create Reference Grid 
 

If allowing CrimeStat to generate a true grid, click on 'generated' and then input the lower 
left and upper right X and Y coordinates of a rectangle placed over the study area.  Cells can be 
defined either by cell size, in the same coordinates and data units as the primary file, or by the 
number of columns in the grid (the default).  In addition, a reference origin can be defined for 
the directional mean routine.  The reference grid can be saved and re-used. Click on 'Save' and 
enter a file name.  To use an already saved file, click on 'Load' and the file name. 



Figure 2.3:

Reference File Setup
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The coordinates are saved in the registry, but can be re-saved in any directory.  With the 
Load screen open, click on 'Save to file' and then enter a directory and a file name.  The default 
file extension is 'ref.   
 
 External Reference File 
 

If an external file that stores the coordinates of each grid cell is to be used, select the name 
of the reference file. CrimeStat reads dbase ‘dbf’, ArcGIS point ‘shp’ and ASCII files.  Select 
the type of file to be selected. Use the browse button to search for the file.  If the file type is 
ASCII, select the type of data separator (comma, semicolon, space, tab) and the number of 
columns. A reference file that is read into CrimeStat need not be a true grid (a matrix with k 
columns and l rows.)  However, a reference file that is read in can only be output to Surfer for 
Windows since the other output formats – ArcGIS, MapInfo, , ArcGIS Spatial Analyst, and ASCII 
grid require the reference file to be a true grid.   
 
 Reference Origin 
 

A reference origin can be defined for the directional mean routine.  The reference origin 
can be assigned to:  
 

1. Use the lower-left corner defined by the minimum X and Y values. This is the 
default 

2. Use the upper-right corner defined by the maximum X and Y values 
3. Use a different origin point.  With the later, the user must define the origin 

 

Measurement Parameters 
 

The measurement parameters page defines the measurement units of the coverage and the 
type of distance measurement to be used. There are three components that are defined: 
 
 Area 
 

First, define the geographical area of the study area in area units (square miles, square 
nautical miles, square feet, square kilometers, square meters.)  Irrespective of the data units that 
are defined for the primary file, CrimeStat can convert to various area measurement units. These 
units are used in the nearest neighbor, Ripley's "K", nearest neighbor hierarchical clustering, 
risk-adjusted nearest neighbor hierarchical clustering, Stac, and K-means clustering routines.   

 
 



Figure 2.4:

Measurement Parameters Setup
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If no area units are defined, then CrimeStat will define a rectangle by the minimum and 
maximum X and Y coordinates. 
 
 Length of Street Network 
 

Second, define the total length of the street network within the study area or an 
appropriate comparison network (e.g., freeway system) in distance units (miles, nautical miles, 
feet, kilometers, or meters).  The length of the street network is used in the linear nearest 
neighbor routine.  Irrespective of the data units that are defined for the primary file, CrimeStat 
can convert to distance measurement units. The distance units should be in the same metric as the 
area units (e.g., miles and square miles/meters and square meters.) 
 
 Type of Distance Measurement 
 

Third, define how distances are to be calculated.  There are three choices: 
 

1. Direct distance 
2. Indirect (Manhattan) distance 
3. Network distance 

 
 Direct 
 

If direct distances are used, each distance is calculated as the shortest distance between 
two points.  If the coordinates are spherical (i.e., latitude, longitude), then the shortest direct 
distance is a 'Great Circle' arc on a sphere.  If the coordinates are projected, then the shortest 
direct distance is a straight line on a Euclidean plane.   

 
 Indirect 

 
If indirect distances are used, each distance is calculated as the shortest distance between 

two points on a grid, that is with distance being constrained to the horizontal or vertical directions 
(i.e., not diagonal.) This is sometimes called 'Manhattan' metric.  If the coordinates are spherical 
(i.e., latitude, longitude), then the shortest indirect distance is a modified right angle on a 
spherical right triangle.  If the coordinates are projected, then the shortest indirect distance is the 
right angle of a right triangle on a two-dimensional plane 
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 Network distance 
 
If network distances are used, each distance is calculated as the shortest path between two 

points using the network.  Alternatives to distance can be used including speed, travel time, or 
travel cost.  Click on ‘Network parameters’ and identify a network file.   
 
 Type of network 
 

Network files can bi-directional (e.g., a TIGER file) or single directional (e.g., a 
transportation modeling file).  In a bi-directional file, travel can be in either direction.  In a 
single directional file, travel is only in one direction.  Specify the type of network to be used. 
 
 Network input file 
 

The network file can either be a shape file (line, polyline, or polylineZ file) or another file, 
either a dBase IV ‘dbf’, ArcGIS ‘shp’ or ASCII file . The default is a shape file. If the file is a 
shape file, the routine will know the locations of the nodes.  For a dBase IV or other file, the X 
and Y coordinate variables of the end nodes must be defined. These are called the “From” node 
and the “End” node.  An optional weight variable is allowed for all types of file0073. The 
routine identifies nodes and segments and finds the shortest path.   If there are one-way streets 
in a bi-directional file, the flag fields for the “From” and “To” nodes should be defined. 

 
 Network weight field 
 

Normally, each segment in the network is not weighted.  In this case, the routine 
calculates the shortest distance between two points using the distance of each segment.  
However, each segment can be weighted by travel time, speed or travel costs.  If travel time is 
used for weighting the segment, the routine calculates the shortest time for any route between two 
points.  If speed is used for weighting the segment, the routine converts this into travel time by 
dividing the distance by the speed.  Finally, if travel cost is used for weighting the segment, the 
routine calculates the route with the smallest total travel cost.  Specify the weighting field to be 
used and be sure to indicate the measurement units (distance, speed, travel time, or travel cost) at 
the bottom of the page.  If there is no weighting field assigned, then the routine will calculate 
using distance. 
 
 From one-way flag and To one-way flag 
 

One-way segments can be identified in a bi-directional file by a ‘flag’ field (it is not 
necessary in a single directional file).  The ‘flag’ is a field for the end nodes of the segment with 
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values of ‘0’ and ‘1’.  A ‘0’ indicates that travel can pass through that node in either direction 
whereas a ‘1’ indicates that travel can only pass from the other node of the same segment (i.e., 
travel cannot occur from another segment that is connected to the node).  The default assumption 
is for travel to be allowed through each node (i.e., there is a ‘0’ assumed for each node). For each 
one-way street, specify the flags for each end node.  A ‘0’ allows travel from any connecting 
segments whereas a ‘1’ only allows travel from the other node of the same segment. Flag fields 
that are blank are assumed to allow travel to pass in either direction. 
 
 FromNode ID and ToNode ID 
 

If the network is single directional, there are individual segments for each direction. 
Two-way streets have two segments, one for each direction.  On the other hand, one-way streets 
have only one segment.   The FromNode ID and the ToNode ID identify from which end of the 
segment travel should occur.  If no FromNode ID and ToNode ID is defined, the routine will 
chose the first segment of a pair that it finds, whether travel is in the right or wrong direction.  
To identify correctly travel direction, define the FromNode and ToNode ID fields. 
 
 Network coordinate system 

 
The type of coordinate system for the network is assumed to be the same as for the 

primary file. 
 
 Segment measurement unit 

 
By default, the shortest path is in terms of distance.  However, each segment can be 

weighted by travel time, travel speed, or travel cost.   
 
1. For travel time, the units are minutes, hours, or unspecified cost units.    
2. For speed, the units are miles per hour and kilometers per hour.  In the case of 

speed as a weighting variable, it is automatically converted into travel time by 
dividing the distance of the segment by the speed, keeping units constant.   

3. For travel cost, the units are undefined and the routine identifies routes by those 
with the smallest total cost. 

 
  



 
2.15 

II. Spatial Description 
 

The spatial description section calculates spatial description, spatial autocorrelation, 
distance analysis, and hot spot statistics.  The distance analysis and hot spot analysis statistics 
are on two separate tabs each. 

 
Spatial Distribution 
 

Spatial distribution provides statistics that describe the overall spatial distribution.  These 
are sometimes called centrographic, global, or first-order spatial statistics.  There are six routines 
for describing the spatial distribution.  An intensity variable and a weighting variable can be 
used for the first five routines, though it is not required.  An intensity variable is required for the 
two spatial autocorrelation routines; a weighting variable can also be used for the spatial 
autocorrelation indices.  All outputs can be saved as text files.  Some outputs can be saved as 
graphical objects for import into desktop GIS programs. 
 
 Mean Center and Standard Distance (Mcsd) 
 

The mean center and standard distance define the arithmetic mean location and the degree 
of dispersion of the distribution.  The Mcsd routine calculates 9 statistics:   

 
1. The sample size 
2. The minimum X and Y values 
3. The maximum X and Y values 
4. The X and Y coordinates of the mean center 
5. The standard deviation of the X and Y coordinates 
6. The X and Y coordinates of the geometric mean 
7. The X and Y coordinates of the harmonic mean 
8. The standard distance deviation, in meters, feet and miles.  This is the standard 

deviation of the distance of each point from the mean center. 
9. The circle area defined by the standard distance deviation, in square meters, square 

feet and square miles. 
 

The tabular output can be printed and the mean center (mean X, mean Y), the geometric 
mean, the harmonic mean, the standard deviations of the X and Y coordinates, and the standard 
distance deviation can be output as graphical objects to ArcGIS ‘shp’, MapInfo ‘mif’, and Google 
Earth ‘kml’ (for spherical coordinates only) formats.  A file name should be provided. 



Spatial Distribution Statistics
Figure 2.5:
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For MapInfo ‘mif’ format, the user has to define up to nine parameters including the name 
of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is 
placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected.  If the coordinate system is spherical 
(longitude/latitude), then the file can be saved as a Google Earth ‘kml’ output. 

 
The mean center is output as a point (MC<file name>.)  The geometric mean is output as 

a point (GM<file name>.)  The harmonic mean is output as a point (HM<file name>.) The 
standard deviation of both the X and Y coordinates is output as a rectangle (XYD<file name>.) 
The standard distance deviation is output as a circle (SDD<file name>.) 
 
 Standard Deviational Ellipse (Sde) 
  

The standard deviational ellipse defines both the dispersion and the direction (orientation) 
of that dispersion.  The Sde routine calculates 9 statistics: 
 

1. The sample size 
2. The clockwise angle of Y-axis rotation in degrees 
3. The ratio of the long to the short axis after rotation 
4. The standard deviation along the new X and Y axes in meters, feet and miles 
5. The X and Y axes lengths in meters, feet and miles  
6. The area of the ellipse defined by these axes in square meters, square feet and 

square miles 
7. The standard deviation along the X and Y axes in meters, feet and miles for a 2X 

standard deviational ellipse  
8. The X and Y axes lengths in meters, feet and miles for a 2X standard deviational 

ellipse 
9. The area of the 2X ellipse defined by these axes in square meters, square feet and 

square miles. 
 

The tabular output can be printed and the 1X and 2X standard deviational ellipses can be 
output as graphical objects to ArcGIS ‘shp’, MapInfo ‘mif’, various ASCII formats, or Google 
Earth ‘kml’ (if the coordinates are spherical) files.  A file name should be provided. For 
MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 
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The 1X standard deviational ellipse is output as an ellipse (SDE<file name>.)  The 2X 
standard deviational ellipse is output as an ellipse with axes that are twice as large as the 1X 
standard deviational ellipse (2SDE<file name>.) 

 
 Median Center (MdnCntr) 
 

The median center is the point at which the median of the X coordinates intersects the 
median of the Y coordinates.  The MdnCntr routine outputs 3 statistics: 
 

1. The sample size 
2. The median value of the X coordinate 
3. The median value of the Y coordinate 

 
The tabular output can be printed and the median center can be output as a graphical 

object to ArcGIS ‘shp’, MapInfo ‘mif’, various ASCII formats, or Google Earth ‘kml’ (if the 
coordinates are spherical) files.  A file name should be provided.  For MapInfo ‘mif’ format, 
the user has to define up to nine parameters including the name of the projection and the 
projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same directory 
as CrimeStat, then a list of common projections with their appropriate parameters is available to 
be selected.  The median center is output as a point (MndCntr<file name>.) 
 
 Center of Minimum Distance (Mcmd) 
  

The center of minimum distance defines the point at which the distance to all other points 
is at a minimum. Unfortunately, it is sometimes also called the ‘median center’, but not to be 
confused with median center that is the intersection of the median of X and the median of Y (see 
above). The Mcmd routine outputs 5 statistics: 
 

1. The sample size 
2. The mean of the X and Y coordinates 
3. The number of iterations required to identify a center of minimum distance 
4. The degree of error (tolerance) for stopping the iterations 
5. The X and Y coordinates which define the center of minimum distance 
 
The tabular output can be printed and the center of minimum distance can be output as a 

graphical object to ArcGIS ‘shp’, MapInfo ‘mif’, various ASCII formats, or Google Earth ‘kml’ 
(if the coordinates are spherical) files.  A file name should be provided.  For MapInfo ‘mif’ 
format, the user has to define up to nine parameters including the name of the projection and the 
projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same directory 
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as CrimeStat, then a list of common projections with their appropriate parameters is available to 
be selected. The center of minimum distance is output as a point (Mcmd<file name>). 
 
 Directional Mean and Variance (Dmean) 

 
The angular mean and variance are properties of angular measurements. The angular  

mean is an angle defined as a bearing from true North: 0 degrees.  The directional variance is a 
relative indicator varying from 0 (no variance) to 1 (maximal variance.)   Both the angular mean 
and the directional variance can be calculated either through angular (directional) coordinates or 
through X and Y coordinates. 

 
 Output with directional coordinates 
 

If the primary file cases are directional coordinates (bearings/angles from 0 to 360 

degrees), the angular mean is calculated directly from the angles.   An optional distance variable 
can be included.  In this case, the directional mean routine will output five statistics: 
  

1. The sample size 
2. The unweighted mean angle 
3. The weighted mean angle 
4. The unweighted circular variance 
5. The weighted circular variance 

 
 Output with X and Y coordinates 
 

On the other hand, if the primary file incidents are defined in X and Y coordinates, the 
angles are defined relative to the reference origin (see Reference file) and the angular mean is 
converted into an equation.  In this case, the directional mean routine will output nine statistics: 
 

1. The sample size 
2. The unweighted mean angle 
3. The weighted mean angle 
4. The unweighted circular variance 
5. The weighted circular variance 
6. The mean distance 
7. The intersection of the mean angle and the mean distance (directional mean) 
8. The X and Y coordinates for the triangulated mean 
9. The X and Y coordinates for the weighted triangulated mean 
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The directional mean and triangulated mean can be saved as an ArcGIS ‘shp’, MapInfo 
‘mif’, various ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  A 
file name should be provided.  For MapInfo ‘mif’ format, the user has to define up to nine 
parameters including the name of the projection and the projection number.  If the MapInfo 
system file MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common 
projections with their appropriate parameters is available to be selected. 

 
The unweighted directional mean - the intersection of the mean angle and the mean 

distance is output with the prefix 'Dm' while the unweighted triangulated mean location is output 
with a 'Tm' prefix.  The weighted triangulated mean is output with a 'TmWt' prefix.  The 
tabular output can be printed.   
 
 Convex Hull (Chull) 

 
The convex hull draws a polygon around the outer points of the distribution.  It is useful 

for viewing the shape of the distribution.  The routine outputs three statistics: 
 

1. The sample size 
2. The number of points in the convex hull 
3. The X and Y coordinates for each of the points in the convex hull 

 
The convex hull can be saved as an ArcGIS ‘shp’, MapInfo ‘mif’, , various ASCII formats, 

or Google Earth ‘kml’ (if the coordinates are spherical) files with a ‘Chull’ prefix.  For MapInfo 
‘mif’ format, the user has to define up to nine parameters including the name of the projection and 
the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same 
directory as CrimeStat, then a list of common projections with their appropriate parameters is 
available to be selected.  The convex hull is output as a graphical object with no attributes 
associated with it (i.e., only a polygon that defines the convex hull). 
 

III. Spatial Autocorrelation 
 

Spatial Autocorrelation Indices  
 

Spatial autocorrelation indices identify whether point locations are spatially related, either 
clustered or dispersed.  These indices would typically be applied to zonal data where an attribute 
value can be assigned to each zone.  Six spatial autocorrelation indices are calculated.  All 
require an intensity variable in the Primary File. 

 



Spatial Autocorrelation Statistics
Figure 2.6:
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 Moran's "I"(MoranI) 
 

Moran's "I" statistic is the classic indicator of spatial autocorrelation.  It is an index of 
co-variation between different point locations and is similar to a product moment correlation 
coefficient, typically varying from –1 to +1 (though these are not absolute limits).  A positive 
value indicates that there is positive spatial autocorrelation, that in general zones are nearby other 
zones with similar values (either high or low) while a negative value indicates negative spatial 
autocorrelation, that in general zones are nearby other zones with different values (either high 
values next to zones with low values, or the opposite).  The “I” value is calculated with the 
intensity variable specified on the Primary File page. 
 
  Adjust for small distances 
 

If this box is checked, small distances are adjusted so that the maximum weighting is 1. 
This ensures that “I” won't become excessively large for points that are very close together. The 
default value is no adjustment. 
 

Moran’s “I” Output 
 

The Moran’s “I” routine calculates 6 statistics: 
 

1. The sample size 
2. Moran's "I" 
3. The spatially random (expected) "I" 
4. The standard error of "I" 
5. A significance test of "I" under the assumption of normality (Z-test) 
6. A significance test of "I" under the assumption of randomization (Z-test) 
 
Values of “I” greater than the expected I indicate clustering while values of “I” less than 

the expected I indicate dispersion.  The significance test indicates whether these differences are 
greater than what would be expected by chance.  The tabular output can be printed. 

 
 Geary's "C" (GearyC) 
 

Geary’s “C” statistic is an alternative indicator of spatial autocorrelation. It is an index of 
paired comparisons between different point locations and typically varies from 0 (similar values) 
to 2 (dissimilar values.)  Theoretically, a value of +1 indicates spatial independence, that the 
values of one zone are unrelated to the values of nearby zones. Values less than +1 indicate 
positive spatial autocorrelation (zones have values similar to their neighbors) while values greater 
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than +1 indicate negative spatial autocorrelation (zones have values different to their neighbors). 
The “C” value is calculated with the intensity variable specified on the Primary File page 
 
  Adjust for small distances 
 

If this box is checked, small distances are adjusted so that the maximum weighting is 1.     
This ensures that “C” won't become excessively large or excessively small for points that are 
close together. The default value is no adjustment. 

 
Geary “C” Output 

 
The Geary’s “C” routine calculates 8 statistics: 

 
1. The sample size 
2. Geary's "C"' 
3. Adjusted “C” (1-“C”) 
4. The spatial random (expected) "C" 
5. The standard error of "C" 
6. A significance test of "C" under the assumption of normality (Z-test) 
7. The one-tail probability level 
8. The two-tail probability level 
 
Values of “C” that are less than the expected “C” indicate clustering while values of “C” 

that are greater than the expected “C” indicate dispersion.  The significance test indicates 
whether these differences are greater than what would be expected by chance. The tabular output 
can be printed.   

 
The adjusted “C” converts the statistic so that it varies between +1 and -1 and is similar to 

a Moran’s “I”. A positive value of the adjusted “C” indicates positive spatial autocorrelation 
while a negative value indicates negative spatial autocorrelation. 
  
 Getis-Ord General G (Getis-OrdG) 

 
The Getis-Ord “G” statistic is an index of spatial autocorrelation for values of a variable 

that fall within a specified distance of each other (search distance).  When compared to an 
expected value of G under the assumption of no spatial association, the statistic has the advantage 
over other global spatial autocorrelation measures (Moran, Geary) in that it can distinguish 
between ‘hot spots’ and ‘cold spots’.  The “G” value is calculated with the intensity variable 
specified on the Primary File page and with respect to a specified search distance (user defined).   
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By itself, the G statistic is not very meaningful. The “G” value varies from 0 to 1 since it 
indicates the interaction of pairs of zones that are within the search distance relative to the 
interaction of all pairs of zones.  As the search distance increases, this statistic will automatically 
approach 1.0.  Consequently, G is compared to an expected value of G under the assumption of 
no significant spatial association.   

 
Further, under the assumption that G is normally distributed, a Z-test can be constructed 

that tests for the significance of the actual G.  A positive Z-value indicates spatial clustering of 
high values more than what would be expected under chance (hot spots) while a negative Z-value 
indicates spatial clustering of low values more than what would be expected under chance (cold 
spots). A “G” value around 0 typically indicates either no spatial autocorrelation at all or that the 
number of hot spots more or less balances the number of cold spots.  The statistic requires an 
intensity variable in the primary file. 

 
 Search distance 

The user must specify a search distance for the test and indicate the distance units (miles, 
nautical miles, feet, kilometers, or meters).  
 
 Getis-Ord “G” Output 

 
The Getis-Ord “G” routine calculates 8 statistics: 

 
1. The sample size 
2. Getis-Ord “G” 
3. The spatially random (expected) "G" 
4. The difference between “G” and the expected “G” 
5. The standard error of "G" 
6. A Z-test of "G" under the assumption of normality (Z-test) 
7. The one-tail probability level 
8. The two-tail probability level 

 
 Simulation of confidence intervals 
 

Since the Getis-Ord “G” statistic may not be normally distributed, the significance test is 
frequently inaccurate.  Instead, a permutation type Monte Carlo simulation can be run to 
estimate approximate confidence intervals around the “G” value.  Specify the number of 
simulations to be run (e.g., 100, 1000, 10000).  In addition to the above statistics, a simulation 
includes the following statistics: 
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9. The minimum “G” value 
10. The maximum “G” value 
11. The 0.5 percentile of “G” 
12. The 2.5 percentile of “G” 
13. The 5 percentile of “G” 
14. The 10 percentile of “G” 
15. The 90 percentile of “G” 
16. The 95 percentile of “G” 
17. The 97.5 percentile of “G” 
18. The 99.5 percentile of “G” 

 
The four pairs of percentiles (10 and 90; 5 and 95; 2.5 and 97.5; 0.5 and 99.5) create 

approximate 80%, 90%, 95% and 99% confidence intervals respectively. The tabular results can 
be printed or saved to a text file. 
 

Moran Correlogram 
 

The Moran Correlogram calculates the Moran’s “I” index for different distance 
intervals/bins (not adjusted for small distances). The “I” value typically varies between -1 and +1 
though these are not absolute limits. An “I” value of 0 indicates no spatial autocorrelation.  An 
“I” value greater than 0 indicates positive spatial autocorrelation (zones have values similar to 
their neighbors) while an “I” value less than 0 indicates negative spatial autocorrelation (zones 
have values different from their neighbors).   
 

The Moran Correlogram calculates these “I” values as a function of distance.  The user 
can select any number of distance intervals. The default is 10 distance intervals. The “I” value for 
each distance interval is calculated with the intensity variable specified on the Primary File page.  
 
 Adjust for small distances 
 

If the item is checked, small distances are adjusted so that the maximum weighting is 1.     
This ensures that the “I” values for individual distances won't become excessively large or 
excessively small for points that are close together. The default value is no adjustment. 
 
 Calculate for individual intervals 
 

By default, the Moran Correlogram routine calculates the “I” values for the cumulative 
distance from 0 to the end of the interval.  If the user checks the box to ‘Calculate for individual 
intervals’, then the “I” values for only those pairs of points that fall within the interval are 
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calculated.  This can be useful for checking the spatial autocorrelation for a specific interval or 
checking whether some distances don’t have sufficient numbers of points (in which case the “I” 
value will be unreliable). 
 
 Simulation of confidence intervals 

 
Since the Moran “I” statistic may not be normally distributed, the significance test is 

frequently inaccurate.  Instead, a permutation type Monte Carlo simulation can be run to 
estimate approximate confidence intervals around the “I” values for each distance interval.  
Specify the number of simulations to be run (e.g., 100, 1000, 10000).   

 
 Moran Correlogram Output 
 

The output includes: 
 

1. The sample size 
2. The maximum distance 
3. The bin (interval) number 
4. The midpoint of the distance bin 
5. The “I” value for the distance bin 
 

and if a simulation is run: 
 
6. The minimum “I” value for the distance bin 
7. The maximum “I” value for the distance bin 
8. The 0.5 percentile of “I” for the distance bin 
9. The 2.5 percentile of “I” for the distance bin 
10. The 97.5 percentile of “I” for the distance bin 
11. The 99.5 percentile of “I” for the distance bin 

 
The two pairs of percentiles (2.5 and 97.5; 0.5 and 99.5) create approximate 95% and 99% 

confidence interval of “I” for each distance bin. The minimum and maximum “I” values create an 
envelope. However, unless a large number of simulations are run, the actual “I” value for any bin 
may fall outside the envelope. The tabular results can be printed, saved to a text file or saved as a 
‘dbf’ file (MoranCorr<file name> with the file name being provided by the user. 
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 Graphing the “I” values by distance 
 

A graph is produced that shows the “I” value on the Y-axis by the distance bin on the 
X-axis.  Click on the “Graph” button. If a simulation is run, the 2.5 and 97.5 percentiles of the 
simulated “I” values are also shown on the graph. The graph displays the reduction in spatial 
autocorrelation with distance.  The graph is useful for selecting the type of kernel in the Single- 
and Dual-kernel interpolation routines when the primary variable is weighted.  For a 
presentation quality graph, however, the output file should be brought into Excel or another 
graphics program in order to display the change in “I” values and label the axes properly. 

 
Geary Correlogram 

 
The Geary Correlogram calculates the Geary “C” index for different distance 

intervals/bins (not adjusted for small distances). The “C” value typically varies between 0 and 2 
though these are not absolute limits. A “C” value of 1 indicates no spatial autocorrelation.  A 
value of “C” less than 1 indicates positive spatial autocorrelation (zones have values similar to 
their neighbors) while a value of “C” greater than 1 indicates negative spatial autocorrelation 
(zones have values different from their neighbors). The user can select any number of distance 
intervals.  The default is 10 distance intervals. The “C” value for each distance interval is 
calculated with the intensity variable specified on the Primary File page.   

 
 Adjust for small distances 
 

If the item is checked, small distances are adjusted so that the maximum weighting is 1     
This ensures that the “C” values for individual distances won't become excessively large or 
excessively small for points that are close together. The default value is no adjustment. 
 
 Calculate for individual intervals 
 

By default, the Geary Correlogram routine calculates the “C” values for the cumulative 
distance from 0 to the end of the interval.  If the user checks the box to ‘Calculate for individual 
intervals’, then the “C” values for only those pairs of points that fall within the interval are 
calculated.  This can be useful for checking whether points separated by particular distances are 
clustered or whether there are unreliable “C” values for particular distance intervals. 
 
 Simulation of confidence intervals 
 

Since the Geary “C” statistic may not be normally distributed, the significance test is 
frequently inaccurate.  Instead, a permutation type Monte Carlo simulation can be run to 
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estimate approximate confidence intervals around the “C” values for each distance interval.  
Specify the number of simulations to be run (e.g., 100, 1000, 10000).  
 
 Geary Correlogram Output 
 

The output includes: 
 

1. The sample size 
2. The maximum distance 
3. The bin (interval) number 
4. The midpoint of the distance bin 
5. The “C” value for the distance bin 
6. The Adjusted “C” value for the distance bin 
 

and if a simulation is run: 
 

7. The minimum “C” value for the distance bin 
8. The maximum “C” value for the distance bin 
9. The 0.5 percentile of “C” for the distance bin 
10. The 2.5 percentile of “C” for the distance bin 
11. The 97.5 percentile of “C” for the distance bin 
12. The 99.5 percentile of “C” for the distance bin. 

 
The two pairs of percentiles (2.5 and 97.5; 0.5 and 99.5) create an approximate 95% and 

99% confidence interval. The minimum and maximum “C” values create an envelope. However, 
unless a large number of simulations are run, the actual “C” value for any bin may fall outside the 
envelope.  The tabular results can be printed, saved to a text file or saved as a ‘dbf’ file 
(GearyCorr<file name> with the file name being provided by the user. 
 
 Graphing the “C” values by distance 
 

A graph can be shown with the “C” value on the Y-axis by the distance bin on the X-axis. 
Click on the “Graph” button.  If a simulation is run, the 2.5 and 97.5 percentiles of the simulated 
“C” values are also shown on the graph. The graph displays the reduction in spatial 
autocorrelation with distance.  The graph is useful for selecting the type of kernel in the single- 
and dual-kernel interpolation routines when the primary variable is weighted. For a presentation 
quality graph, however, the output file should be brought into Excel or another graphics program 
in order to display the change in “C” values and label the axes properly.  
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Getis-Ord Correlogram 
 

 The Getis-Ord Correlogram calculates the Getis-Ord “G” index for different distance 
intervals/bins. The user can select any number of distance intervals.  The default is 10 distance 
intervals.  The statistic requires an intensity variable in the primary file. 
 
 Simulation of confidence intervals 
 

Since the Getis-Ord “G” statistic may not be normally distributed, the significance test is 
frequently inaccurate.  Instead, a permutation type Monte Carlo simulation can be run to 
estimate approximate confidence intervals around the “G” values for each distance interval.  
Specify the number of simulations to be run (e.g., 100, 1000, 10000).   
 
 Getis-Ord Correlogram Output 
 

The output includes: 
 

1. The sample size 
2. The maximum distance 
3. The bin (interval) number 
4. The midpoint of the distance bin 
5. The “G” value for the distance bin 
6. The expected “G” value for the distance bin  
 

and if a simulation is run: 
 
7. The minimum “G” value for the distance bin 
8. The maximum “G” value for the distance bin 
9. The 0.5 percentile of “G” for the distance bin 
10. The 2.5 percentile of “G” for the distance bin 
11. The 97.5 percentile of “G” for the distance bin 
12. The 99.5 percentile of “G” for the distance bin 

 
The two pairs of percentiles (2.5 and 97.5; 0.5 and 99.5) create an approximate 95% and 

99% confidence interval. The minimum and maximum “G” values create an envelope.  
However, unless a large number of simulations are run, the actual “G” value for any bin may fall 
outside the envelope. The tabular results can be printed, saved to a text file or saved as a ‘dbf’ file 
(Getis-OrdCorr<file name> with the file name being provided by the user. 
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 Graphing the “G” values by distance 
 

A graph can be shown that shows the “G” and Expected “G” values on the Y-axis by the 
distance bin on the X-axis. Click on the “Graph” button.  If a simulation is run, the 2.5 and 97.5 
percentiles of the simulated “G” values are also shown on the graph along with the “G”; the 
Expected “G” is not shown in this case.  The graph displays the reduction in spatial 
autocorrelation with distance.  Note that the “G” and expected “G” approach 1.0 as the search 
distance increases, that is as the pairs included within the search distance approximate the number 
of pairs in the entire data set. The graph is useful for selecting the type of kernel in the single- and 
dual-kernel interpolation routines when the primary variable is weighted.  For a presentation 
quality graph, however, the output file should be brought into Excel or another graphics program 
in order to display the change in “G” values and label the axes properly. 

 
Distance Analysis I 
 

Distance analysis provides statistics about the distances between point locations.  It is 
useful for identifying the degree of clustering of points.  It is sometimes called second-order 
analysis. The distance routines are divided into two pages: Distance Analysis I and Distance 
Analysis II. On the first page, there are four routines for describing properties of the distances.   
 
 Nearest Neighbor Analysis (Nna) 

 
The nearest neighbor index provides an approximation about whether points are more 

clustered or dispersed than would be expected on the basis of chance.  It compares the average 
distance of the nearest other point (nearest neighbor) with a spatially random expected distance by 
dividing the empirical average nearest neighbor distance by the expected random distance (the 
nearest neighbor index.)  The nearest neighbor routine requires that the geographical area be 
entered on the Measurement Parameters page and that direct distances be used. The NNA routine 
calculates 10 statistics:  
 

1. The sample size 
2. The mean nearest neighbor distance in meters, feet and miles 
3. The standard deviation of the nearest neighbor distance in meters, feet and miles 
4. The minimum distance in meters, feet and miles 
5. The maximum distance in meters, feet and miles 
6. The mean random distance (for both the maximum bounding rectangle and the 

user input area, if provided 
7. The mean dispersed distance in meters, feet and miles (for both the maximum 

bounding rectangle and the user input area, if provided) 



Distance Analysis I Statistics
Figure 2.7:
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8. The nearest neighbor index (for both the maximum bounding rectangle and the 
user input area, if provided) 

9. The standard error of the nearest neighbor index (for both the maximum bounding 
rectangle and the user input area, if provided) 

10. A significance test of the nearest neighbor index (Z-test) 
11. The p-values associated with a one tail and two tail significance test 
 
The tabular results can be printed, saved to a text file or saved as a ‘dbf’ file. For the latter, 

specify a file name in the “Save result to” in the dialogue box. 
 

 K-order nearest neighbors 
 

The K-nearest neighbor index compares the average distance to the Kth nearest other point 
with a spatially random expected distance.  The user can specify the number of K-nearest 
neighbors to be calculated, if more than one is to be calculated. CrimeStat will calculate 3 
statistics for each order specified:  
 

1. The mean nearest neighbor distance in meters for the order 
2. The expected nearest neighbor distance in meters for the order 
3. The nearest neighbor index for the order 
 
The NNA routine will use the user-defined area unless none is provided in which case it 

will use the maximum bounding rectangle. The tabular results can be printed, saved to a text file 
or output as a ‘dbf’ file.  For the latter, specify a file name in the “Save result to” dialogue box. 

  
 Edge correction of nearest neighbors 
 

The nearest neighbor analysis does not adjust for underestimation for incidents near the 
boundary of the study area. It is possible that there are nearest neighbors outside the boundary that 
are closer than the measured nearest neighbor. The nearest neighbor analysis has three edge 
correction options:  
 

1. No adjustment – this is the default;  
2. Adjustment that assumes the study area is a rectangle; and  
3. Adjustment that assumes the study area is a circle.  The rectangular and circular 

edge corrections adjust the nearest neighbor distances of points near the border. If 
a point is closer to the border (of either a rectangle or a circle) than to the measured 
nearest neighbor distance, then the distance to the border is taken as the adjusted 
nearest neighbor distance.  
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 Linear Nearest Neighbor Analysis 
 

The linear nearest neighbor index provides an approximation about whether points are 
more clustered or dispersed along road segments than would be expected on the basis of chance.  
It is used with indirect (Manhattan) distances and requires the input of the total length of a road 
network on the measurement parameters page (see Measurement Parameters.)  That is, if indirect 
distances are checked on the measurement parameters page, then the linear nearest neighbor will 
be calculated.  The linear nearest neighbor index is the ratio of the empirical average linear 
nearest neighbor distance to the expected linear random distance. The NNA routine outputs 10 
statistics for the linear nearest neighbor index: 
 

1. The sample size; 
2. The mean linear nearest neighbor distance in meters, feet and miles 
3. The minimum distance between points along a grid network 
4. The maximum distance between points along a grid network 
5. The mean random linear distance 
6. The linear nearest neighbor index 
7. The standard deviation of the linear nearest neighbor distance in meters, feet and 

miles 
8. The standard error of the linear nearest neighbor index 
9. A t-test of the difference between the empirical and expected linear nearest 

neighbor distance 
10. The p-values associated with a one tail and two tail significance test 

 
 Linear K-order nearest neighbors 

 
NNA can calculate K-nearest linear neighbors and compare this distance the average 

linear distance to the Kth nearest other point with a spatially random expected distance.  The user 
can specify the number of K-nearest linear neighbors to be calculated, if more than one are to be 
calculated. CrimeStat will calculate 3 statistics for each order specified:  
 

1. The mean linear nearest neighbor distance in meters for the order 
2. The expected linear nearest neighbor distance in meters for the order 
3. The linear nearest neighbor index for the order 
 

  Edge correction of linear nearest neighbors 
 

The nearest neighbor analysis does not adjust for underestimation for incidents near the 
boundary of the study area.  It is possible that there are nearest neighbors outside the boundary 
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that are closer than the measured nearest neighbor.  The nearest neighbor analysis has three edge 
correction options: 1) No adjustment – this is the default; 2) Adjustment that assumes the study 
area is a rectangle; and 3) Adjustment that assumes the study area is a circle.  The rectangular 
and circular edge corrections adjust the nearest neighbor distances of points near the border. If a 
point is closer to the border (of either a rectangle or a circle) than to the measured nearest 
neighbor distance, then the distance to the border is taken as the adjusted nearest neighbor 
distance. 
 
 Ripley's "K" Statistic (RipleyK) 
 

Ripley's "K" statistic compares the number of points within any distance to an expected 
number for a spatially random distribution.  The empirical count is transformed into a square 
root function, called L (see documentation for more details).  The RipleyK routine calculates 6 
statistics: 
 

1. The sample size 
2. The maximum distance in meters, feet and miles 
3. 100 distance bins 
4. The distance for each bin 
5. The transformed statistic, L(t), for each distance bin 
6. The expected random L under complete spatial randomness, L(csr) 

 
The tabular results can be printed, saved to a text file, or saved as a ‘dbf’ file. For the 

latter, specify a file name in the “Save result to” in the dialogue box.  
 
 Simulating confidence intervals 
 

A Monte Carlo simulation can be run to evaluate an approximate confidence interval 
around the L statistic. The user specifies the number of simulation runs and the L statistic is 
calculated for randomly assigned data.  The random output is sorted and percentiles are 
calculated.  Values of L that are greater than any particular percentile indicate more 
concentration while values of L less than any particular percentile indicate more dispersion. L is 
calculated for each of 100 distance intervals (bins.)  Eight percentiles are identified for these 
statistics:  

 
1. The minimum for the spatially random L value 
2. The maximum for the spatially random L value 
3. The 0.5 percentile for the spatially random L value 
4. The 2.5 percentile for the spatially random L value 
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5. The 95 percentile for the spatially random L value 
6. The 97.5 percentile for the spatially random L value 
7. The 99 percentile for the spatially random L value 
8. The 99.5 percentile for the spatially random L value 

 
Confidence intervals can be estimated from these percentiles.  The two most commonly 

used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).  The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab. 
 
 Edge correction of Ripley's K statistic 
 

The default setting for the Ripley's "K" statistic does not adjust for underestimation for 
incidents near the boundary of the study area.  However, it is possible that there are points 
outside the study area boundary that are closer than the search radius of the circle used to 
enumerate the "K" statistic. The Ripley's "K" statistic has three edge correction options: 1) No 
adjustment – this is the default; 2) Adjustment that assumes the study area is a rectangle; and 3) 
Adjustment that assumes the study area is a circle.  The rectangular and circular edge corrections 
adjust the Ripley's "K" statistic for points near the border. If the distance of a point to the border 
(of either a rectangle or a circle) is smaller than to the radius of the circle used to enumerate the 
"K" statistics, then the point is weighted inversely proportional to the area of the search radius 
that is within the border. 

  
  Output Intermediate Results 
 

There is a box labeled “Output intermediate results”.  If checked, a separate dbf file will 
be output that lists the intermediate calculations.  The file will be called 
“RipleyTempOutput.dbf”.  There are five output fields: 
 

1. The point number (POINT), starting at 0 (for the first point) and proceeding to N–1 
(for the Nth point) 

2. The search radius in meters (SEARCHRADI) 
3. The count of the number of other points that are within the search radius 

(COUNT) 
4. The weight assigned (WEIGHT) 
5. The count times the weight (CTIMESW) 

 
 Assign Primary Points to Secondary Points 
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This routine will assign each primary point to a secondary point and then will sum by the 
number of primary points assigned to each secondary point.  It is useful for adding up the 
number of primary points that are close to each secondary point.  For example, in the crime 
travel demand module, this routine can assign incidents to zones as the module uses zonal totals.  
The result is a count of primary points associated with each secondary point.  It is also possible 
to sum different variables sequentially.  For example, in the crime travel demand module, both 
the number of crimes originating in each zone and the number of crimes occurring in each zone 
are needed.  This can be accomplished in two runs.  First, sum the incidents defined by the 
origin coordinates to each zone (secondary file).  Second, sum the incidents defined by the 
destination coordinates to each zone (also secondary file).  The result would be two columns, 
one showing the number of origins in each secondary file zone and the second showing the 
number of destinations in each secondary file zone. 
 

There are two methods for assigning the primary points to the secondary. 
 
 Nearest neighbor assignment 
 

This routine assigns each primary point to the secondary point to which it is closest.  If 
there are two or more secondary points that are exactly equal, the assignment goes to the first one 
on the list. 
 Point-in-polygon assignment 
 

This routine assigns each primary point to the secondary point for which it falls within its 
polygon (zone).  A zone (polygon) shape file must be provided and the routine checks which 
secondary zone each primary point falls within. 
 
 Zone file for point-in-polygon assignment 
 

If point-in-polygon assignment is used, a zonal file must be provided.  This is a polygon 
file that defines the zones to which the primary points are assigned. The zone file should be the 
same as the secondary file (see Secondary file).  For each point in the primary file, the routine 
identifies which polygon (zone) it belongs to and then sums the number of points per polygon. 
 
 Name of assigned variable 
 

Whether nearest neighbor or point-in-polygon assignment is used, specify the name of the 
summed variable.  The default name is FREQ.   
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 Use weighting file 
 

The primary file records can be weighted by another file.  This would be useful for 
correcting the totals from the primary file.  For example, if the primary file were robbery 
incidents from an arrest record, the sum of this variable (i.e. the total number of robberies) may 
produce a biased distribution over the secondary file zones because the primary file was not a 
random sample of all incidents (e.g., if it came from an arrest record where the distribution of 
robbery arrests is not the same as the distribution of all robbery incidents).   
 

The secondary file or another file can be used to adjust the summed total.  The weighting 
variable should have a field that identifies the ratio of the true to the measured count for each 
zone.  A value of 1 indicates that the summed value for a zone is equal to the true value; hence 
no adjustment is needed.  A value greater than 1 indicates that the summed value needs to be 
adjusted upward to equal the true value.  A value less than 1 indicates that the summed value 
needs to be adjusted downward to equal the true value. 
 

If another file is to be used for weighting, indicate whether it is the secondary file or, if 
another file, the name of the other file. 
 
 Name of assigned weighted variable 

For a weighted sum, specify the name of the variable.  The default will be ADJFREQ.   
 
 Save result to 
 

For both routines, the output is a ‘dbf’ file. Define the file name.  Note: be careful about 
using the same name as the secondary file as the saved file will have the new variable.  It is best 
to give it a new name. 
 

A new variable will be added to this file that gives the number of primary points in each 
secondary file zone and, if weighting is used, a secondary variable will be added which has the 
adjusted frequency. 
 
 
 Output intermediate results 
 

If the label “Output intermediate results” is checked, a separate dbf file will be output that 
lists the intermediate calculations.  The file will be called “RipleyTempOutput.dbf”.  There are 
five output fields: 
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1. The point number (POINT), starting at 0 (for the first point) and proceeding to N–1 
(for the Nth point) 

2. The search radius in meters (SEARCHRADI) 
3. The count of the number of other points that are within the search radius 

(COUNT) 
4. The weight assigned (WEIGHT) 
5. The count times the weight (CTIMESW) 

 

Distance Analysis II 
 

On the second Distance Analysis page, there are four routines that calculate distance 
matrices: 
 
 Distance Matrices 
 

1. From each primary point to every other primary point 
2. From each primary point to each secondary point 
3. From each primary point to the centroid of each reference file grid cell.  This 

requires a reference file to be defined or used. 
4. From each secondary point to the centroid of each reference file grid cell.  This 

requires a reference file to be defined or used 
 

CrimeStat can calculate distances between points for a single file or distances between 
points for two different files. These matrices are useful for examining the frequency of different 
distances or for providing distances for another program. Because the output files are usually very 
large, only text output is allowed. This can then be read into a database or large statistical 
program for processing. Keep in mind that there may be storage problems for large matrices. 
 
 Within File Point-to-Point (Matrix) 

 
This routine outputs the distance between each point in the primary file to every other 

point in a specified distance unit (miles, nautical miles, feet, kilometers, or meters).  The Matrix 
output can be saved to a text file.  

 
 From Primary File Points to Secondary File Points (IMatrix) 
 

This routine outputs the distance between each point in the primary file to each point in 
the secondary file in a specified distance unit (miles, nautical miles, feet, kilometers, or meters). 
The IMatrix output can be saved to a text file. 



Distance Analysis II Statistics
Figure 2.8:
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From Primary File Points to Grid (PGMatrix) 
 

This routine outputs the distance between each point in the primary file to the centroid of 
each cell in the reference grid.  A reference has to be defined or provided on the Reference file 
page.  Again, the distance units must be specified (miles, nautical miles, feet, kilometers, or 
meters).  The output can be saved to a text file.  
 
 From Secondary File Points to Grid (SGMatrix) 
 

This routine outputs the distance between each point in the secondary file to the centroid 
of each cell in the reference grid.  A reference has to be defined or provided on the Reference 
file page.  Again, the distance units must be specified (miles, nautical miles, feet, kilometers, or 
meters).  The output can be saved to a text file. 
 

III. Hot Spot Analysis 
 

Hot spot (or cluster) analysis identifies groups of incidents that are clustered together.  It 
is a method of second-order analysis that identifies the cluster membership of points.  There are 
a number of different hot spot analysis routines in CrimeStat.  They are organized on three 
program tabs: Hot Spot analysis I, Hot Spot analysis II, and Hot Spot Analysis of Zones. 
 
Hot Spot Analysis I 
 

Hot spot (or cluster) analysis identifies groups of incidents that are clustered together.  It 
is a method of second-order analysis that identifies the cluster membership of points.  On the 
Hot Spot Analysis I page, there are four statistics that can be used to identify hot spots: 1) the 
mode; 2) the fuzzy mode; 3) Nearest neighbor hierarchical spatial clustering; and 4) Risk-adjusted 
nearest neighbor hierarchical spatial clustering.  
 
 Mode 

 
The mode calculates the frequency of incidents for each unique location, defined by an X 

and Y coordinate. It will output a list of all unique locations and their X and Y coordinates and 
the number of incidents occurring at each, ranked in decreasing order from most frequent to least 
frequent.  It will also list their rank order from 1 to the last unique location.  The data can be 
output to a 'dbf' file. For the latter, specify a file name in the “Save result to” in the dialogue box. 
 
 



Hot Spot Analysis I
Figure 2.9:
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 Fuzzy Mode 
 

The fuzzy mode calculates the frequency of incidents for each unique location within a 
small, user-specified distance. The user must specify the search radius and the units for the radius 
(miles, nautical miles, feet, kilometers, or meters).  Distances should be small (e.g., less than 
0.25 miles).  The routine will identify each unique location, defined by its X and Y coordinates, 
and will calculate the number of incidents that fall within the search radius.  It will output a list 
of all unique locations and their X and Y coordinates and the number of incidents occurring at 
each, ranked in decreasing order from most frequent to least frequent.  It will also list their rank 
order from 1 to the last unique location. The data can be output to a 'dbf' file.   
 
 Nearest Neighbor Hierarchical Spatial Clustering (Nnh) 
 

The nearest neighbor hierarchical spatial clustering routine is a constant-distance 
clustering routine that groups points together on the basis of spatial proximity.  The user defines 
a threshold distance and the minimum number of points that are required for each cluster, and an 
output size for displaying the clusters with ellipses.  The routine identifies first-order clusters, 
representing groups of points that are closer together than the threshold distance and in which 
there is at least the minimum number of points specified by the user. Clustering is hierarchical in 
that the first-order clusters are treated as separate points to be clustered into second-order clusters, 
and the second-order clusters are treated as separate points to be clustered into third-order 
clusters, and so on.  Higher-order clusters will be identified only if the distances between their 
centers are closer than the new threshold distance.  
 
 Threshold distance 
 

The threshold distance is the search radius around a pair of points.  For each pair of 
points, the routine determines whether they are closer together than the search radius. There are 
two ways to determine a threshold distance:  
 

Random nearest neighbor distance 
 

First, the search distance is chosen by the random nearest neighbor distance.  The default 
value is 0.1 (i.e., fewer than 10% of the pairs could be expected to be as close or closer by 
chance.)  Pairs of points that are closer together than the threshold distance are grouped together 
whereas pairs of points that are greater than the threshold distance are ignored.  The smaller the 
threshold distance, the smaller the significance level that is selected and the fewer pairs will be 
selected.  On the other hand, choosing a larger threshold distance (and, consequently, a higher 
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significance level) will usually lead to more pairs being selected.  However, the more pairs that 
are selected, the greater the likelihood that clusters could be chance groupings. 
 

The slide bar is used to adjust the significance level. Move the slide bar to the left to 
choose a smaller threshold distance and to the right to choose a larger threshold distance. 
 

Fixed distance 
 

Second, a fixed distance can be selected.  The default is 1 mile.  In this case, the search 
radius uses the fixed distance and the slide bar is inoperative. 
 
 Minimum number of points 
 

The minimum number of points required for each cluster allows the user to specify a 
minimum number of points for each cluster. The default is 10 points. Third, the output size for the 
clusters can be adjusted by the second slide bar.  These are the number of standard deviations 
defined by the ellipse, from one standard deviation (the default value) to three standard 
deviations.  Typically, one standard deviation will cover about 65% of the cases whereas three 
standard deviations will cover more than 99% of the cases. 
 

The tabular results can be printed, saved to a text file, or output as a ‘dbf’ file.  The 
graphical results can be output as either ellipses or as convex hulls (or both) to ArcGIS ‘shp’, 
MapInfo ‘mif’, various ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) 
files.  Separate file names must be selected for the ellipse output and for the convex hull output. 
For MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 
 
 Tabular output 
 

The routine outputs six results for each cluster that is calculated: 
 
1. The hierarchical order and the cluster number 
2. The mean center of the cluster (Mean X and Mean Y) 
3. The standard deviational ellipse of the cluster (the rotation and the lengths of the X 

and Y axes) 
4. The number of points in the cluster 
5. The area of the cluster 
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6. The density of the cluster (points divided by area) 
 
 Ellipse output 
 

The results can be output graphically as an ellipse to ArcGIS ‘shp’, MapInfo ‘mif’, various 
ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  A file name 
should be provided. For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 

 
 First and higher-order ellipses will be output as separate objects.  The prefix will be 

‘NNH1’ for the first-order ellipses, ‘NNH2’ for the second-order ellipses, and ‘NNH3’ for the 
third-order ellipses.  Higher-order ellipses will only index the number. 
 
 Output size for ellipses 
 

The cluster output size can be adjusted by the lower slide bar.  This specifies the number 
of ellipse standard deviations to be calculated for each cluster: one standard deviation (1X - the 
default value), one and a half standard deviations (1.5X), or two standard deviations (2X).  The 
default value is one standard deviation.  Typically, one standard deviation will cover more than 
half the cases whereas two standard deviations will cover more than 99% of the cases, though the 
exact percentage will depend on the distribution.  Slide the bar to select the number of standard 
deviations for the ellipses.  The output file is saved as Nnh<number><file name> with the file 
name being provided by the user.  The number is the order of the clustering (i.e., 1, 2…). 
 

Restrictions on the number of clusters can be placed by defining a minimum number of 
points that are required. The default is 10. If there are too few points allowed, then there will be 
many very small clusters. By increasing the number of required points, the number of clusters will 
be reduced. 

 
 Convex hull cluster output 
 
The clusters can also be output as convex hulls to ArcGIS ‘shp’, MapInfo ‘mif’, various 

ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  Specify a file 
name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. 
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The name will be output with a ‘CNNH1’ prefix for the first-order clusters, a ‘CNNH2’ 
prefix for the second-order clusters, and a ‘CNNH3’ prefix for the third-order clusters.  
Higher-order clusters will index only the number. 

 
 

 Simulating confidence intervals 
 
A Monte Carlo simulation can be run to estimate the approximate confidence intervals 

around first-order Nnh clusters; second- and higher-order clusters are not simulated since their 
structure depends on first-order clusters.  The user specifies the number of simulation runs and 
the Nnh clustering is calculated for randomly assigned data.  The random output is sorted and 
percentiles are calculated. The output includes the number of first-order clusters, the area, the 
number of points, and the density. Twelve percentiles are identified for these statistics:  

 
1. The minimum for the spatially random Nnh simulations 
2. The maximum for the spatially random Nnh simulations 
3. The 0.5 percentile for the spatially random Nnh simulations 
4. The 1 percentile for the spatially random Nnh simulations 
5. The 2.5 percentile for the spatially random Nnh simulations 
6. The 5 percentile for the spatially random Nnh simulations 
7. The 10 percentile for the spatially random Nnh simulations 
8. The 90 percentile for the spatially random Nnh simulations 
9. The 95 percentile for the spatially random Nnh simulations 
10. The 97.5 percentile for the spatially random Nnh simulations 
11. The 99 percentile for the spatially random Nnh simulations 
12. The 99.5 percentile for the spatially random Nnh simulations 

 
Confidence intervals can be estimated from these percentiles.  The two most commonly 

used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).   The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab. 

 
 Risk-Adjusted Nearest Neighbor Hierarchical Spatial Clustering (Rnnh) 
 

The risk-adjusted nearest neighbor hierarchical spatial clustering routine groups points 
together on the basis of spatial proximity, but the grouping is adjusted according to the 
distribution of a baseline variable.  The routine requires both a primary file (e.g., robberies) and 
a secondary file (e.g., population).  For the secondary variable, if an intensity or weight variable 
is to be used, it should be specified. 
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The user selects a threshold probability for grouping a pair of points together by chance 
and the minimum number of points that are required for each cluster, and an output size for 
displaying the clusters with ellipses.  In addition, a kernel density model for the secondary 
variable must be specified. The threshold distance is determined by the threshold probability and 
the grid cell density produced by the kernel density estimate of the secondary variable.  Thus, in 
areas with high density of the secondary variable, the threshold distance is smaller than in areas 
with low density of the secondary variable. 
 

The routine identifies first-order clusters, representing groups of points that are closer 
together than the threshold distance and in which there is at least the minimum number of points 
specified by the user. Clustering is hierarchical in that the first-order clusters are treated as 
separate points to be clustered into second-order clusters, and the second-order clusters are treated 
as separate points to be clustered into third-order clusters, and so on.  Higher-order clusters will 
be identified only if the distance between their centers are closer than the new threshold distance.  

 
The tabular results can be printed, saved to a text file, or output as a ‘dbf’ file.  The 

graphical results can be output as either ellipses or as convex hulls (or both) to ArcGIS ‘shp’, 
MapInfo ‘mif’, various ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) 
files.  Separate file names must be selected for the ellipse output and for the convex hull output. 
For MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 
 
 Threshold distance 
 

The threshold distance is the confidence interval around a random expected distance for a 
pair of points (called credible interval).  However, unlike the Nnh routine where the threshold 
distance is constant throughout the study area, the threshold distance for the Rnnh routine is 
adjusted inversely proportional to the distribution of the secondary (baseline) variable.  In areas 
with a high density of the secondary variable, the threshold distance will be small whereas in 
areas with a low density of the secondary variable, the threshold distance will be large.  The 
default threshold probability is 0.1 (i.e., fewer than 10% of the pairs could be expected to be as 
close or closer by chance.)  Pairs of points that are closer together than the threshold distance are 
grouped together whereas pairs of points that are greater than the threshold distance are ignored.  
The smaller the significance level that is selected, the smaller will be the threshold distance with, 
usually, fewer pairs being selected.  On the other hand, choosing a higher significance level, the 
larger the threshold distance and, usually, the more pairs will be selected.  However, the higher 
the significance level chosen, the greater the likelihood that clusters could be chance groupings.  
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Move the slide bar to the left to choose a smaller threshold distance and to the right to choose a 
larger threshold distance. 

 
 Risk parameters 
 

A density estimate of the secondary variable must be calculated to adjust the threshold 
distance of the primary variable.  This is done through kernel density estimation.  The risk 
parameters tab defines this model.  The secondary variable is automatically assumed to be the 'at 
risk' (baseline) variable.  The user specifies a method of interpolation (normal, uniform, quartic, 
triangular, and negative exponential kernels) and the choice of bandwidth (fixed interval or 
adaptive interval).  If an adaptive interval is used, the minimum sample size for the band width 
(search radius) must be specified.  If a fixed interval is used, the size of the interval (radius) must 
be specified along with the measurement units (miles, nautical miles, feet, kilometers, or meters).  
Finally, the units of the output density must be specified (squared miles, squared nautical miles, 
squared feet, squared kilometers, squared meters). 
 

The routine overlays a 50 x 50 grid on the study area and calculates a kernel density 
estimate of the secondary variable.  The density is then re-scaled to equal the sample size of the 
primary variable.  For each grid cell, a cell-specific threshold distance is calculated for grouping 
a pair of points together by chance.  The threshold probability selected by the user is applied to 
this cell-specific threshold distance to produce a threshold distance that corresponds to the 
cell-specific confidence interval.  Pairs of points that are closer than the cell-specific threshold 
distance are selected for first-order clustering. 
  
   Use of intensity variable 
 

If an intensity variable has been used in the secondary file, the intensity box should be 
checked. 
 
 Minimum number of points 
 

The minimum number of points required for each cluster allows the user to specify a 
minimum number of points for each cluster. The default is 10 points. Third, the output size for the 
clusters can be adjusted by the second slide bar.  These are the number of standard deviations 
defined by the ellipse, from one standard deviation (the default value) to three standard 
deviations.  Typically, one standard deviation will cover about 65% of the cases whereas three 
standard deviations will cover more than 99% of the cases. 
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 Tabular output 
 

The routine outputs six results for each cluster that is calculated: 
 
1. The hierarchical order and the cluster number 
2. The mean center of the cluster (Mean X and Mean Y) 
3. The standard deviational ellipse of the cluster (the rotation and the lengths of the X 

and Y axes) 
4. The number of points in the cluster 
5. The area of the cluster 
6. The density of the cluster (points divided by area) 

 
 Ellipse output 
 

The results can be output graphically as an ellipse to ArcGIS ‘shp’, MapInfo ‘mif’, various 
ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  A file name 
should be provided. For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 

 
First- and higher-order ellipses will be output as separate objects.  The prefix will be 

‘RNNH1’ for the first-order ellipses, ‘RNNH2’ for the second-order ellipses, and ‘RNNH3’ for 
the third-order ellipses.  Higher-order ellipses will only index the number. 
 
 Output size for ellipses 
 

The cluster output size can be adjusted by the lower slide bar.  This specifies the number 
of ellipse standard deviations to be calculated for each cluster: one standard deviation (1X - the 
default value), one and a half standard deviations (1.5X), or two standard deviations (2X).  The 
default value is one standard deviation.  Typically, one standard deviation will cover more than 
half the cases whereas two standard deviations will cover more than 99% of the cases, though the 
exact percentage will depend on the distribution.  Slide the bar to select the number of standard 
deviations for the ellipses.  The output file is saved as Rnnh<number><file name> with the file 
name being provided by the user.  The number is the order of the clustering (i.e., 1, 2…). 
 

Restrictions on the number of clusters can be placed by defining a minimum number of 
points that are required.  The default is 10.  If there are too few points allowed, then there will 
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be many very small clusters.  By increasing the number of required points, the number of 
clusters will be reduced. 
 
 Convex hull cluster output 

 
The clusters can also be output as convex hulls to ArcGIS ‘shp’, MapInfo ‘mif’, various 

ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  Specify a file 
name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. 

 
First- and higher-order clusters will be output as separate objects.  The clusters will have 

a ‘CRNNH1’ prefix for the first-order clusters, a ‘CRNNH2’ prefix for the second-order clusters, 
and a ‘CRNNH3’ prefix for the third-order clusters.  Higher-order clusters will index only the 
number. 
 
 Simulating confidence intervals 
 

A Monte Carlo simulation can be run to estimate the approximate confidence intervals 
around first-order Rnnh clusters; second- and higher-order clusters are not simulated since their 
structure depends on first-order clusters. The user specifies the number of simulation runs and the 
Rnnh clustering is calculated for randomly assigned data.  The random output is sorted and 
percentiles are calculated. The output includes the number of first-order clusters, the area, the 
number of points, and the density.   

 
Twelve percentiles are identified for these statistics:  
 
1. The minimum for the spatially random Rnnh simulations 
2. The maximum for the spatially random Rnnh simulations 
3. The 0.5 percentile for the spatially random Rnnh simulations 
4. The 1 percentile for the spatially random Rnnh simulations 
5. The 2.5 percentile for the spatially random Rnnh simulations 
6. The 5 percentile for the spatially random Rnnh simulations 
7. The 10 percentile for the spatially random Rnnh simulations 
8. The 90 percentile for the spatially random Rnnh simulations 
9. The 95 percentile for the spatially random Rnnh simulations 
10. The 97.5 percentile for the spatially random Rnnh simulations 
11. The 99 percentile for the spatially random Rnnh simulations 
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12. The 99.5 percentile for the spatially random Rnnh simulations 
 

Confidence intervals can be estimated from these percentiles.  The two most commonly 
used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).  The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab. 
 
Hot Spot Analysis II 
 

On the Hot Spot Analysis II page, there are two statistics that can be used to identify hot 
spots: 1) STAC; and 2) K-means clustering. 
 
 Spatial and Temporal Analysis of Crime (STAC) 

 
The Spatial and Temporal Analysis of Crime (STAC) routine is a variable-distance 

clustering routine. It initially groups points together on the basis of a constant search radius, but 
then combines clusters that overlap. On the STAC Parameters tab, define a search radius, the 
minimum number of points that are required for each cluster, and an output size for displaying the 
clusters with ellipses.  
 

The tabular results can be printed, saved to a text file, or output as a ‘dbf’ file.  The 
graphical results can be output as either ellipses or as convex hulls (or both) to ArcGIS ‘shp’, 
MapInfo ‘mif’, various ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) 
files.  Separate file names must be selected for the ellipse output and for the convex hull output. 
For MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 
 
 STAC parameters 
 

The STAC parameters tab allows the selection of a search radius, the minimum number of 
points, the scan type, the boundary definition, the number of simulation runs, and the output size 
of the STAC ellipses. 
 
 Search radius 
 

The search radius is the distance within the STAC routine searches.  The default is 0.5 
miles.  A 20 x 20 grid is overlaid on the study area.  At each intersection of a row and a  



Hot Spot Analysis II
Figure 2.10:
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column, the routine counts all points that are closer than the search radius.  Overlapping circles 
are combined to form variable-size clusters. The smaller the search radius that is selected, the 
fewer points will be selected.  On the other hand, choosing a larger search area, the more points 
will be selected.  However, the larger the search area, the greater the likelihood that clusters 
could be chance groupings.  On the STAC Parameters tab, type the search radius into the box 
and specify the measurement units (miles, nautical miles, feet, kilometers, or meters). 
 
 Scan type 
 

The scan type is the type of grid overlaid on the study area.  There are two choices: 
rectangular (default) and triangular.  

 
 Boundary 
 

The study area boundaries can be defined from the data set or the reference grid. 
 
 Minimum number of points 
 

The minimum number of points required for each cluster allows the user to specify a 
minimum number of points for each cluster. The default is 5 points. If there are too few points 
allowed, then there will be many very small clusters.  By increasing the number of required 
points, the number of clusters will be reduced.  On the STAC Parameters tab, type the minimum 
number of points each cluster is required to have.   
 
 Tabular output 
  

The routine outputs eight results for each cluster that is calculated: 
  
1. The hierarchical order and the cluster number 
2. The mean center of the cluster (Mean X and Mean Y) 
3. The standard deviational ellipse of the cluster (the rotation and the lengths of the X 

and Y axes) 
4. The number of points in the cluster 
5. The area of the cluster 
6. The density of the cluster (cluster points divided by area) 
7. The number of points in the ellipse 
8. The density of the ellipse (ellipse points divided by area) 
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 Ellipse output 
 

The results can be output graphically as an ellipse to ArcGIS ‘shp’, MapInfo ‘mif’, various 
ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  For MapInfo ‘mif’ 
format, the user has to define up to nine parameters including the name of the projection and the 
projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same directory 
as CrimeStat, then a list of common projections with their appropriate parameters is available to 
be selected.  The ellipses will be output as combined objects.  The prefix will be ‘ST’. 
 
 Output size for ellipses 
 

The cluster output size can be adjusted by the lower slide bar This specifies the number of 
ellipse standard deviations to be calculated for each cluster: one standard deviation (1X - the 
default value), one and a half standard deviations (1.5X), or two standard deviations (2X).  The 
default value is one standard deviation.  Typically, one standard deviation will cover more than 
half the cases whereas two standard deviations will cover more than 99% of the cases, though the 
exact percentage will depend on the distribution. The output file is saved as St<file name> with 
the file name being provided by the user. On the STAC Parameters tab, slide the bar to select the 
number of standard deviations for the ellipses. 
 
 Convex hull cluster output 

 
The clusters can also be output as convex hulls to ArcGIS ‘shp’, MapInfo ‘mif’, various 

ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  Specify a file 
name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected.  The name will be output with a ‘CST’ prefix. 
 
 Simulating confidence intervals 
 

A Monte Carlo simulation can be run to estimate the approximate confidence intervals 
around the STAC clusters. The user specifies the number of simulation runs and the STAC 
clustering is calculated for randomly assigned data.  The random output is sorted and percentiles 
are calculated. The output includes the number of clusters, the area, the number of points, and the 
density.  Fifteen percentiles are identified for these statistics:  

 
1. The minimum for the spatially random STAC simulations 
2. The minimum for the spatially random STAC simulations 
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3. The minimum for the spatially random STAC simulations 
4. The minimum for the spatially random STAC simulations 
5. The maximum for the spatially random STAC simulations 
6. The 0.5 percentile for the spatially random STAC simulations 
7. The 1 percentile for the spatially random STAC simulations 
8. The 2.5 percentile for the spatially random STAC simulations 
9. The 5 percentile for the spatially random STAC simulations 
10. The 10 percentile for the spatially random STAC simulations 
11. The 90 percentile for the spatially random STAC simulation 
12. The 95 percentile for the spatially random STAC simulations 
13. The 97.5 percentile for the spatially random STAC simulations 
14. The 99 percentile for the spatially random STAC simulations 
15. The 99.5 percentile for the spatially random STAC simulations 

 
Confidence intervals can be estimated from these percentiles.  The two most commonly 

used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).  The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab.  
 
 K-Means Clustering (Kmeans) 
 

The K-means clustering routine is a procedure for partitioning all the points into K groups 
in which K is a number assigned by the user. The routine finds K seed locations in which points 
are assigned to the nearest cluster.  The default K is 5.   If K is small, the clusters will typically 
cover larger areas.   
 

The tabular results can be printed, saved to a text file, or output as a ‘dbf’ file.  The 
graphical results can be output as either ellipses or as convex hulls (or both) to ArcGIS ‘shp’, 
MapInfo ‘mif’, various ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) 
files.  Separate file names must be selected for the ellipse output and for the convex hull output. 
For MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 
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 Initial cluster locations 
 

The routine starts with an initial guess (seed) for the K locations and then conducts local 
optimization. The user can modify the location of the initial clusters in two ways, which are not 
mutually exclusive: 
 
 Separation 
 

1. The separation between the initial clusters can be increased or decreased.  There 
is a separation scale with pre-defined values from 1 to 10; the default is 4.  The 
user can type in any number, however (e.g., 15).  Increasing the number increases 
the separation between the initial cluster locations while decreasing the number 
decreases the separation.   

 
 Initial seed locations 

 
2. The user can define the initial seed locations and the number of clusters, K, with a 

secondary file.  The routine takes K from the number of points in the secondary 
file and takes the X/Y coordinates of the points as the initial seed locations.  

 
 Tabular output 
  

The routine outputs seven characteristics for each cluster that is calculated: 
  

1. The cluster ID 
2. The center of minimum distance of the cluster (Mean X and Mean Y) 
3. The standard deviational ellipse of the cluster (the rotation and the lengths of the X 

and Y axes) 
4. The area of the cluster 
5. The sum of squares in distances between the center of minimum distance of the 

cluster and each point that is part of the cluster 
6. The mean squared error of the distances between the center of minimum distance 

of the cluster and each point that is part of the cluster 
7. The number of points in the cluster 

 
 Ellipse output 
 

The results can be output graphically as an ellipse to ArcGIS ‘shp’, MapInfo ‘mif’, various 
ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  Specify a file 
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name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. The ellipses will be output as separate objects 
with a ‘KM’ prefix. 
 
 Output size for ellipses 
 

For both methods, the cluster output size can be adjusted with the lower slide bar.  This 
specifies the number of ellipse standard deviations to be calculated for each cluster: one standard 
deviation (1X - the default value), one and a half standard deviations (1.5X), or two standard 
deviations (2X).  The default value is one standard deviation.  Typically, one standard deviation 
will cover more than half the cases whereas two standard deviations will cover more than 99% of 
the cases, though the exact percentage will depend on the distribution.  Slide the bar to select the 
number of standard deviations for the ellipses.  The output file is saved as Km<file name> with 
the file name being provided by the user. 

 
 Convex hull cluster output 

 
The clusters can also be output as convex hulls to ArcGIS ‘shp’, MapInfo ‘mif’, various 

ASCII formats, or Google Earth ‘kml’ (if the coordinates are spherical) files.  Specify a file 
name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. The convex hulls will be output as separate 
objects with a ‘CKM’ prefix. 
  

Hot Spot Analysis of Zones 
 

The Hot Spot Analysis of Zones section includes clustering statistics for zonal data.  
These include 1) Anselin’s local Moran; 2) the Getis-Ord local “G”, and 3) the zonal nearest 
neighbor hierarchical clustering algorithm. 

 
Anselin's Local Moran (L-Moran) 

 
Anselin's Local Moran statistic applies the Moran's "I" statistic to individual points (or 

zones) to assess whether particular points/zones are spatially related to the nearby points (or 
zones).  The statistic requires an intensity variable in the primary file.  Unlike the global 
Moran's "I" statistic, the local Moran is applied to each individual zone.  The index points to  



Hot Spot Analysis of Zones
Figure 2.11:
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clustering or dispersion relative to the local neighborhood.  Zones with  high "I" values have an 
intensity value that is higher than their neighbors while zones with low "I" values have intensity 
values lower than their neighbors.  The output can be printed or output as a ‘dbf’ file. 
 
 ID field 
 

The user should indicate a field for the ID of each point (or zone). This ID will be saved 
with the output and can then be linked with the input file (Primary File) for mapping. 
 
 Theoretical variance 
 

If checked, the routine will calculate the theoretical variance of the “I” value for each zone 
(see documentation for details). 
 
 Adjust for small distances 
 

If checked, small distances are adjusted so that the maximum weighting is no higher than 
1.  This ensures that the local "I" won't become excessively large for points that are grouped 
together. The default setting is no adjustment. 
 
 Simulation of confidence intervals 
 

A Monte Carlo simulation can be run to estimate approximate confidence intervals around 
the “I” value for each zone. Note, a simulation may take time to run especially if the data set is 
large or if a large number of simulation runs are requested.  Specify the number of simulations to 
be run (e.g., 100, 1000, 10000).   
 
 Output 
 

The output is for each zone and includes: 
 

1. The sample size 
2. The ID for the zone 
3. The X coordinate for the zone 
4. The Y coordinate for the zone 
5. The “I” for the zone 
6. The expected “I” for the zone 

 
and if the theoretical variance is checked: 
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7. The theoretical variance of the “I” for the zone 
8. A Z-test of the “I” under the assumption of normality 

 
and if a simulation is run: 

 
9. The 0.5 percentile of “I” for the zone 
10. The 2.5 percentile of “I” for the zone 
11. The 97.5 percentile of “I” for the zone 
12. The 99.5 percentile of “I” for the zone 

 
The two pairs of percentiles (2.5 and 97.5; 0.5 and 99.5) create approximate 95% and 9% 

confidence interval of “I” for each zone.  The tabular results can be printed, saved to a text file 
or saved as a ‘dbf’ file (LMoranCorr<file name> with the file name being provided by the user. 
 

The ‘dbf’ output file can then be linked to the input ‘dbf’ file by using the ID field as a 
matching variable.  This would be done if the user wants to map the “I” variable, the Z-test, or 
those zones for which the “I” value is either higher than the 97.5 or 99.5 percentiles or lower than 
the 2.5 or 0.5 percentiles of the simulation results. 
 
 Getis-Ord Local “G” (L-Getis-Ord) 

 
The Getis-Ord “G” statistic is an index of spatial autocorrelation for values of a variable 

that fall within a specified distance of each other.  When compared to an expected value of G 
under the assumption of no spatial association, it has the advantage over other global spatial 
autocorrelation measures (Moran, Geary) in that it can distinguish between hot spots and cold 
spots.   The “G” value is calculated with the intensity variable specified on the Primary File 
page and with respect to a specified search distance (defined by the user).   

 
The Getis-Ord Local “G” statistic applies the Getis-Ord "G" statistic to individual zones to 

assess whether particular zones are spatially related to the nearby ones (‘neighbors’).  Unlike the 
global Getis-Ord “G”, the Getis-Ord Local “G” is applied to each individual zone.   

 
By itself, the G statistic for an individual zone is not very meaningful. The “G” value 

varies from 0 to 1 since it indicates the interaction of pairs of zones that are within the search 
distance relative to the interaction of all pairs of zones.  As the search distance increases, this 
statistic will automatically approach 1.0.  Consequently, G is compared to an expected value of 
G under the assumption of no significant spatial association.   
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Further, under the assumption that G is normally distributed, a Z-test can be constructed 
that tests for the significance of the actual G.   A positive Z-value indicates spatial clustering of 
high values more than what would be expected under chance (hot spots) while a negative Z-value 
indicates spatial clustering of low values more than what would be expected under chance (cold 
spots). A “G” value around 0 indicates no spatial autocorrelation.  

 
 ID field 
 

The user should indicate a field for the ID of each point (or zone). This ID will be saved 
with the output and can then be linked with the input file (Primary File) for mapping. 

 
 Search distance 
 

The user must specify a search distance for the test and indicate the distance units (miles, 
nautical miles, feet, kilometers, or meters). 
 
 Simulation of confidence intervals 
 

Since the Getis-Ord “G” statistic may not be normally distributed, the significance test is 
frequently inaccurate.  Instead, a permutation type Monte Carlo simulation can be run to 
estimate approximate confidence intervals around the “G” value.  Specify the number of 
simulations to be run (e.g., 100, 1000, 10000). 
 
 Output 
 

The output is for each zone and includes: 
 

1. The sample size 
2. The ID for the zone 
3. The X coordinate for the zone 
4. The Y coordinate for the zone 
5. The “G”  for the zone 
6. The expected “G” for the zone 
7. The standard deviation of “G” for the zone 
8. A Z-test of "G" under the assumption of normality for the zone 

 
and if a simulation is run: 

 
9. The 0.5 percentile of “G” for the zone 
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10. The 2.5 percentile of “G” for the zone 
11. The 97.5 percentile of “G” for the zone 
12. The 99.5 percentile of “G” for the zone 

 
The two pairs of percentiles (2.5 and 97.5; 0.5 and 99.5) create approximate 95% and 99% 

confidence interval of “G” for each zone. The tabular results can be printed, saved to a text file or 
saved as a ‘dbf’ file (LGetis-OrdCorr<file name> with the file name being provided by the user. 
 

The ‘dbf’ output file can then be linked to the input ‘dbf’ file by using the ID field as a 
matching variable.  This would be done if the user wants to map the “G” variable, the expected 
“G” or those zones for which the “G” value is either higher than the 97.5 or 99.5 percentiles or 
lower than the 2.5 or 0.5 percentiles of the simulation results.  

 
Zonal Nearest Neighbor Hierarchical Clustering (Znnh) 
 
The zonal nearest neighbor hierarchical spatial clustering routine applies the nearest 

neighbor hierarchical clustering algorithm.  The point-based Nnh is a constant-distance 
clustering routine that groups points together on the basis of spatial proximity.  A threshold 
distance is defined and the minimum number of points that are required for each cluster specified.  
The output can be displayed with ellipses or convex hulls. 

 
On the other hand, in the zonal Nnh (Znnh), the algorithm is adjusted to allow weighting 

of each zone, usually applied to a single point within the zone (e.g., a centroid).  Thus, if the 
‘point’ is a centroid of a zone, then the weighting is an attribute assigned to that centroid (e.g., 
population, employment, median household income). Clusters are groups of adjacent zones that 
have much higher weights than non-clustered zones.  

 
The routine requires a primary file (e.g., robberies) that is weighted with the weight or 

intensity variable (see Primary File). On the Znnh routine, the user defines a weighting variable, a 
threshold distance and the minimum number of zones that are required for each cluster, and an 
output size for displaying the clusters with ellipses or convex hulls.   

 
The routine identifies first-order clusters that represent groups of zones that are closer 

together than the threshold distance, that have the highest weights, and in which there is at least 
the minimum number of zones specified by the user (the minimum is 3 zones). Clustering is 
hierarchical in that the first-order clusters are treated as separate zones to be clustered into 
second-order clusters, and the second-order clusters are treated as separate zones to be clustered 
into third-order clusters, and so on.  Higher-order clusters will be identified only if the distances 
between their centers are closer than the new threshold distance.  
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  Weighting variable 
 
 Each zone must be weighted by a variable.  This can be either the intensity variable or 
the weight variable defined on the Primary File page (but not both).  The user specifies whether 
the intensity or the variable variable is to be used.  The default is Intensity. 
 
 Threshold distance 
 

The threshold distance is the search radius around a zone centroid.  For each pair of 
zones, the routine determines whether they are closer together than the search radius. There are 
two ways to determine a threshold distance:  
 

Random nearest neighbor distance 
 

First, the search distance is chosen by the random nearest neighbor distance.  The default 
value is 0.1 (i.e., fewer than 10% of the pairs could be expected to be as close or closer by 
chance.)  Pairs of zones that are closer together than the threshold distance are grouped together 
whereas pairs of zones that are greater than the threshold distance are ignored.  The smaller the 
threshold distance and the smaller the significance level that is selected, then the fewer numbers 
of paired zones will be selected.  On the other hand, choosing a larger threshold distance (and, 
consequently, a higher significance level) will usually lead to more pairs being selected.  
However, the more pairs that are selected, the greater the likelihood that clusters could be chance 
groupings. 
 

The slide bar is used to adjust the significance level.  Move the slide bar to the left to 
choose a smaller threshold distance and to the right to choose a larger threshold distance. 
 

Fixed distance 
 

Second, a fixed distance can be selected.  The default is 1 mile.  In this case, the search 
radius uses the fixed distance and the slide bar is inoperative. 
 
 Minimum number of zones 
 

The minimum number of zones required for each cluster allows the user to specify a 
minimum number of zones for each cluster. The default is 10 zones and the minimum is 3. Third, 
the output size for the clusters can be adjusted by the second slide bar.  These are the number of 
standard deviations defined by the ellipse, from one standard deviation (the default value) to three 
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standard deviations.  Typically, one standard deviation will cover about 65% of the cases 
whereas three standard deviations will cover more than 99% of the cases. 
 

The tabular results can be printed, saved to a text file, or output as a ‘dbf’ file.  The 
graphical results can be output as either ellipses or as convex hulls (or both) to ArcGIS ‘shp’, 
MapInfo ‘mif’, various ASCII formats, or Google Earth ‘kml’ (if the coordinate system is 
spherical) files.  Separate file names must be selected for the ellipse output and for the convex 
hull output. For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. 

 
 Simulating confidence intervals 
 

A Monte Carlo simulation can be run to estimate the approximate confidence intervals 
around first-order Nnh clusters; second- and higher-order clusters are not simulated since their 
structure depends on first-order clusters.  The user specifies the number of simulation runs and 
the Nnh clustering is calculated for randomly assigned data.  The random output is sorted and 
percentiles are calculated. The output includes the number of first-order clusters, the area, the 
number of zones, and the density.  
 

Confidence intervals can be estimated from these percentiles.  The two most commonly 
used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).   The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab. 

 
 Type of graphical output 
 

The type of graphical output is specified, either standard deviational ellipses or convex 
hulls around the zones identified in each cluster. If the output is to be ellipses, then the output size 
for the clusters can be adjusted by the second slide bar.  These are the number of standard 
deviations defined by the ellipse, from one standard deviation (the default value) to three standard 
deviations.  Typically, one standard deviation will cover about 50-60% of the zones (and a 
higher percentage of the total of the weighting variable) whereas three standard deviations will 
cover more than 99% of the zones.  On the other hand, if the output is to be convex hulls, the 
routine outputs a convex hull for each identified cluster.  
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 Ellipse output 
 

The results can be output graphically as an ellipse to ArcGIS ‘shp’, MapInfo ‘mif’, various 
ASCII formats, or Google Earth ‘kml’ (if the coordinate system is spherical) files.  A file name 
should be provided. For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 

 
 First and higher-order ellipses will be output as separate objects.  The prefix will be 

‘NNH1’ for the first-order ellipses, ‘NNH2’ for the second-order ellipses, and ‘NNH3’ for the 
third-order ellipses.  Higher-order ellipses will only index the number. 
 
 Output size for ellipses 
 

The cluster output size can be adjusted by the lower slide bar.  This specifies the number 
of ellipse standard deviations to be calculated for each cluster: one standard deviation (1X - the 
default value), one and a half standard deviations (1.5X), or two standard deviations (2X).  The 
default value is one standard deviation.  Typically, one standard deviation will cover more than 
half the zones in a cluster whereas two standard deviations will cover more than 99% of the zones 
in a cluster, though the exact percentage will depend on the distribution.  Slide the bar to select 
the number of standard deviations for the ellipses.  The output file is saved as 
Znnh<number><file name> with the file name being provided by the user.  The number is the 
order of the clustering (i.e., 1, 2…). 
 

Restrictions on the number of clusters can be placed by defining a minimum number of 
zones that are required.  The default is 10 and the minimum is 3.  If there are too few zones 
allowed, then there will be many very small clusters.  By increasing the number of required 
zones, the number of clusters will be reduced. 

 
 Convex hull cluster output 
 
The clusters can also be output as convex hulls to ArcGIS ‘shp’, MapInfo ‘mif’, various 

ASCII formats, or Google Earth ‘kml’ (if the coordinate system is spherical) files.  Specify a file 
name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. 
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The name will be output with a ‘CNNH1’ prefix for the first-order clusters, a ‘CNNH2’ 
prefix for the second-order clusters, and a ‘CNNH3’ prefix for the third-order clusters.  
Higher-order clusters will index only the number. 

 
Note that ellipses may extend beyond the zones that are clustered together and may also 

leave out zones that are part of the cluster.  Ellipses are abstractions and, while good for 
visualization, are not precise.  Convex hulls are more precise since they define only those zones 
that are part of the cluster. 

 
 Tabular output 
 

The routine outputs six results for each cluster that is calculated: 
 
1. The hierarchical order and the cluster number 
2. The mean center of the cluster (Mean X and Mean Y) 
3. The standard deviational ellipse of the cluster (the rotation and the lengths of the X 

and Y axes) 
4. The number of zones in the cluster 
5. The area of the cluster 
6. The density of the cluster (the total weight of the zones divided by area) 

 
and if a simulation is run: 
 

7. The minimum for the spatially random Znnh simulations: 
8. The maximum for the spatially random Znnh simulations 
9. The 0.5 percentile for the spatially random Znnh simulations 
10. The 1 percentile for the spatially random Znnh simulations 
11. The 2.5 percentile for the spatially random Znnh simulations 
12. The 5 percentile for the spatially random Znnh simulations 
13. The 10 percentile for the spatially random Znnh simulations 
14. The 90 percentile for the spatially random Znnh simulations 
15. The 95 percentile for the spatially random Znnh simulations 
16. The 97.5 percentile for the spatially random Znnh simulations 
17. The 99 percentile for the spatially random Znnh simulations 
18. The 99.5 percentile for the spatially random Znnh simulations 
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IV. Spatial Modeling I 
 

The first spatial modeling section conducts kernel density estimation, Head Bang 
statistics, space-time analysis, journey-to-crime calibration and estimation, and Bayesian 
journey-to-crime diagnostics and estimation.  The spatial modeling section is made up of five 
distinct tabs: Interpolation I, Interpolation II, Space-time analysis, Journey-to-crime estimation, 
and Bayesian Journey-to-crime estimation. 

 

Interpolation I 
 

The interpolation I tab allows estimates of point density using the kernel density 
smoothing method. There are two types of kernel density smoothing, one applied to a single 
distribution of points and the other that compares two different distributions.  Each type has 
variations on the method that can be selected.  Both types require a reference file that is overlaid 
on the study area (see Reference file.)  The kernels are placed over each point and the distance 
between each reference cell and each point are evaluated by the kernel function.  The individual 
kernel estimates for each cell are summed to produce an overall estimate of density for that cell.  
The intensity and weighting variables can be used in the kernel estimate.  The densities can be 
converted into probabilities. 
 
 Single Kernel Density Estimate (KernelDensity) 
 

The single kernel density routine estimates the density of points for a single distribution 
by overlaying a symmetrical surface over each point, evaluating the distance from the point to 
each reference cell by the kernel function, and summing the evaluations at each reference cell. 
 
 File to be interpolated 
 

The estimate can be applied to either the primary file (see Primary File) or a secondary file 
(see Secondary file.)  Select which file is to be interpolated.  The default is the Primary. 

 
Method of interpolation 

 
There are five types of kernel distributions that can be used to estimate point density: 

 
1. The normal kernel overlays a three-dimensional normal distribution over each 

point that then extends over the area defined by the reference file.  This is the 
default kernel function.  



Figure 2.12:

Interpolation I Statistics
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2. The uniform kernel overlays a uniform function over each point that only extends 
for a limited distance. 
 

3. The quartic kernel overlays a quartic function over each point that only extends 
for a limited distance. 
 

4. The triangular kernel overlays a three-dimensional triangle over each point that 
only extends for a limited distance. 
 

5. The negative exponential kernel overlays a three dimensional negative 
exponential function over each point that only extends for a limited distance 

 
The methods produce similar results though the normal is generally smoother for any 

given bandwidth. 
 
 Choice of bandwidth 
 

The kernels are applied to a limited search distance, called 'bandwidth'.  For the normal 
kernel, bandwidth is the standard deviation of the normal distribution.  For the uniform, quartic, 
triangular and negative exponential kernels, bandwidth is the radius of a circle defined by the 
surface.  For all types, larger bandwidth will produce smoother density estimates and both 
adaptive and fixed bandwidth intervals can be selected. 
 
  Adaptive bandwidth 
 

An adaptive bandwidth distance is identified by the minimum number of other points 
found within a circle drawn around a single point.  A circle is placed around each point, in turn, 
and the radius is increased until the minimum sample size is reached.  Thus, each point has a 
different bandwidth interval.  This is the default bandwidth setting.  The user can modify the 
minimum sample size.  The default is 100 points. 
 
  Fixed bandwidth 

 
A fixed bandwidth distance is a fixed interval for each point.  The user must define the 

interval and the distance units by which it is calculated (miles, nautical miles, feet, kilometers, or 
meters). 
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 Output (areal) units 
 

Specify the areal density units as points per square mile, per squared nautical miles, per 
square feet, per square kilometers, or per square meters.  The default is points per square mile. 
 
 Use intensity variable 
 

If an intensity variable is being interpolated, then this box should be checked.   
 
 Use weighting variable 
 

If a weighting variable is being used in the interpolation, then this box should be checked.  
 
 Calculate densities or probabilities 
 

The density estimate for each cell can be calculated in one of three ways: 
 

1. Absolute densities.  This is the number of points per grid cell and is scaled so 
that the sum of all grid cells equals the sample size. This is the default. 
 

2. Relative densities.  For each grid cell, this is the absolute density divided by the 
grid cell area and is expressed in the output units (e.g., points per square mile) 
 

3. Probabilities.  This is the proportion of all incidents that occur in the grid cell.  
The sum of all grid cells equals a probability of 1 

 
Select whether absolute densities, relative densities, or probabilities are to be output for 

each cell. The default is absolute densities. 
 
 Output 
 

The results can be output as a Surfer for Windows file (for both an external or generated 
reference file) or as an ArcGIS ‘shp’, MapInfo ‘mif’, ArcGIS Spatial Analyst 'asc', or ASCII grid 
'grd' file (only if the reference file is generated by CrimeStat).  For MapInfo ‘mif’ format, the 
user has to define up to nine parameters including the name of the projection and the projection 
number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same directory as 
CrimeStat, then a list of common projections with their appropriate parameters is available to be 
selected. 
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The output file is saved as K<file name> with the file name being provided by the user. 
 
 Dual Kernel Density Estimate (DualKernel) 
 

The dual kernel density routine compares two different distributions involving the primary 
and secondary files.  A 'first' file and 'second' file need to be defined. The comparison allows the 
ratio of the first file divided by the second file, the  logarithm of the ratio of the first file divided 
by the second file, the difference between the first file and second file (i.e., first file – second file), 
or the sum of the first file and the second file. 
 
 File to be interpolated 
 

Identify which file is to be the 'first file' (primary or secondary) and which is to be the 
'second file (primary or secondary.)  The default is Primary for the first file and Secondary for 
the second file. 
 
 Method of interpolation 
 

There are five types of kernel distributions that can be used to estimate point density: 
 
1. The normal kernel overlays a three-dimensional normal distribution over each 

point that then extends over the area defined by the reference file.  This is the 
default kernel function.  
 

2. The uniform kernel overlays a uniform function over each point that only extends 
for a limited distance.  
 

3. The quartic kernel overlays a quartic function over each point that only extends 
for a limited distance.  
 

4. The triangular kernel overlays a three-dimensional triangle over each point that 
only extends for a limited distance.  
 

5. The negative exponential kernel overlays a three dimensional negative 
exponential function over each point that only extends for a limited distance 

 
The methods produce similar results though the normal is generally smoother for any 

given bandwidth. 
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 Choice of bandwidth 
 

The kernels are applied to a limited search distance, called 'bandwidth'.  For the normal 
kernel, bandwidth is the standard deviation of the normal distribution.  For the uniform, quartic, 
triangular and negative exponential kernels, bandwidth is the radius of a circle defined by the 
surface.  For all types, larger bandwidth will produce smoother density estimates and both 
adaptive and fixed bandwidth intervals can be selected. 
 
 Adaptive bandwidth 
 

An adaptive bandwidth distance is identified by the minimum number of other points 
found within a circle drawn around a single point.  A circle is placed around each point, in turn, 
and the radius is increased until the minimum sample size is reached.  Thus, each point has a 
different bandwidth interval.  This is the default bandwidth setting.  The user can modify the 
minimum sample size.  The default is 100 points. 
 
  Fixed bandwidth 
 

A fixed bandwidth distance is a fixed interval for each point.  The user must define the 
interval and the distance units by which it is calculated (miles, nautical miles, feet, kilometers, or 
meters).  The default is one mile. 
 
  Variable bandwidth 
 

A variable bandwidth allows separate fixed intervals for both the first and second files.  
For each, the user must define the interval and the distance units by which it is calculated (miles, 
nautical miles, feet, kilometers, or meters). The default is one mile for both the first and second 
files. 
 
 Output (areal) units 
 

Specify the areal density units as points per square mile, per squared nautical miles, per 
square feet, per square kilometers, or per square meters.  The default is points per square mile. 

 
 Use intensity variable 
 

For the first and second files separately, check the appropriate box if an intensity variable 
is being interpolated. 
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 Use weighting variable 
 

For the first and second files separately, check the appropriate box if a weighting variable 
is being used in the interpolation. 
 
 Calculate densities or probabilities 
 

The density estimate for each cell can be calculated in one of six ways: 
 

1. Ratio of densities - this is the ratio of the density for the first file divided by the 
density of the second file 

2. Log ratio of densities - this is the natural logarithm of the ratio of the density for 
the first file divided by the density of the second file. 

3. Absolute difference in densities - this is the difference between the absolute 
density of the first file and the absolute density of the second file.  It is the net 
difference.  The densities of each file are scaled so that the sum of the grid cells 
equals the sample size. 

4. Relative difference in densities - this is the difference between the relative density 
of the first file and the relative density of the second file.  It is the relative 
difference.  The cell densities of each file are divided by the grid cell area to 
produce a measure of relative density in the specified output units (e.g., points per 
square mile).  The relative density of the second file is then subtracted from the 
relative density of the first file. 

5. Absolute sum of densities - this is the sum of the absolute density of the first file 
and the absolute density of the second file.  It is the net sum. The densities of 
each file are scaled so that the sum of the grid cells equals the sample size. 

6. Relative sum of densities - this is the sum of the relative density of the first file and 
the relative density of the second file.  It is the relative sumThe cell densities of 
each file are divided by the grid cell area to produce a measure of relative density 
in the specified output units (e.g., points per square mile).  The relative density of 
the second file is then added to the relative density of the first file. 

 
Select whether the ratio of densities, the log ratio of densities, the absolute difference in 

densities, the relative difference in densities, the absolute sum of densities, or the relative sum of 
densities are to be output for each cell. The default is the ratio of densities. 
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 Output 
 

The results can be output as a Surfer for Windows file (for both an external or generated 
reference file) or as an ArcGIS ‘shp’, MapInfo ‘mif’, ArcGIS Spatial Analyst 'asc', or ASCII grid 
'grd' file (only if the reference file is generated by CrimeStat).  For MapInfo ‘mif’ format, the 
user has to define up to nine parameters including the name of the projection and the projection 
number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same directory as 
CrimeStat, then a list of common projections with their appropriate parameters is available to be 
selected. 

 
The output file is saved as DK<file name> with the file name being provided by the user. 

 

Interpolation II 
 

The interpolation II tab allows the implementation of the Head Bang statistic for zonal 
data and its interpolation to a grid. 
 

Head Bang 
 
The Head Bang statistic is a weighted two-dimensional smoothing algorithm that is 

applied to zonal data. It is useful for eliminating extreme values in a distribution and adjusting the 
values of zones to be similar to their neighbors.  The statistic requires an intensity variable in the 
primary file.  The value of the intensity variable for each zone is compared to its neighbors with 
the number of neighbors defined by the user.  The intensity values of the neighbors are 
rank-ordered and then divided into two equal-sized groups, high and low.  The median of the 
high group of neighbors and the median of the low group of neighbors are calculated.  The 
intensity value of the zone is then compared to these two medians. If it falls between the two 
medians, then the zone keeps its intensity value.  If its value is higher than the high median, then 
the zone takes the high median as its value unless it has a weighting which is greater than its 
neighbors.  If its value is lower than the low median, then the zone takes the low median as its 
value unless it has a weighting which is greater than its neighbors. 
 
 Type of Variable to be Smoothed 
 

The user must specify whether the variable to be smoothed is a rate variable, a volume 
variable, or two variables that are to be combined into a rate. 
 
 
 



Figure 2.13:

Interpolation II Statistics
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 Rate variable 
 

If the variable to be smoothed is a rate variable, the variable that is smoothed must be 
defined in the Z(Intensity) field on the Primary File.  Also, a weight variable should be chosen 
and should be defined in the Weight field on the Primary File. 

  
 ID field 

The ID field that identifies zones must be defined.  
 

 Baseline unit for rate 
 
The rate is an index of one variable relative to another variable, the baseline.  Specify the 

unit that the rate is expressed by powers of 10.  The range is from 1 (absolute rate) to 1 per 
1,000,000.  The default is 1 per 100 (or percentages). 

 
 Use weight variable 

  
The rate can (and probably should) be weighted by an additional weight variable specified 

on the Primary File page. Check the ‘Use weight variable’ box to weight the rate.  Otherwise, 
the weight is 1. A typical weight variable would be the population size of the zone. 
 
 Number of neighbors 
 

The user must also specify the number of neighbors to be used for the comparison.  The 
number of neighbors can run from 4 through 40.  The default is 6. If the number of neighbors 
selected is even, the routine divides the data set into two equal-sized groups.  If the number of 
neighbors selected is odd, then the middle zone is used in calculating both the low median and the 
high median. 
 
 Volume variable 
  

If the variable to be smoothed is a volume variable, the variable that is smoothed must be 
defined in the Z(Intensity) field on the Primary File.   

 
 ID field 

 
The ID field that identifies zones must be defined.  
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 Number of neighbors 
 

The user must also specify the number of neighbors to be used for the comparison.  The 
number of neighbors can run from 4 through 40.  The default is 6. If the number of neighbors 
selected is even, the routine divides the data set into two equal-sized groups.  If the number of 
neighbors selected is odd, then the middle zone is used in calculating both the low median and the 
high median. 
 
 Create rate 
 

Unlike the rate and volume calculations, the user must specify which two variables (fields) 
must be related to create a rate.  One of these is to be defined in the numerator of the rate box 
and one in the denominator of the rate box.  For example, if the data include number of 
robberies as one field in the data set and population as another field, then the number of robberies 
would identified as the numerator of the rate while population would be identified as the 
denominator of the rate.  Both variables should be volumes. 

 
Also, a weight variable should be chosen and should be defined in the Weight field on the 

Primary File.  The weight is applied to the created rate after it is calculated.  A typical weight 
variable would be the population size of the zone. 

 
 ID field 

 
The ID field that identifies zones must be defined.  

 
 Baseline unit for rate 

 
The rate is an index of one variable relative to another variable, the baseline.  The result 

of the division of the numerator by the denominator will then be multiplied by the base unit of the 
baseline. Specify the unit that the rate is expressed by powers of 10.  The range is from 1 
(absolute rate) to 1,000,000 (resulting in an index of 1:1,000,000).  The default is 100 (resulting 
in an index of 1:100, or percentages). 
 
 Use weight variable 

  
The rate can (and probably should) be weighted by an additional weight variable specified 

on the Primary File page. Check the ‘Use weight variable’ box to weight the rate.  Otherwise, 
the weight is 1. A typical weight variable would be the population size of the zone. 
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 Number of neighbors 
 

The user must also specify the number of neighbors to be used for the comparison.  The 
number of neighbors can run from 4 through 40.  The default is 6. If the number of neighbors 
selected is even, the routine divides the data set into two equal-sized groups.  If the number of 
neighbors selected is odd, then the middle zone is used in calculating both the low median and the 
high median. 

 
 Output for each zone 
 

The output is for each zone and includes: 
 
1. The ID field 
2. The X coordinate 
3. The Y coordinate 
4. The smoothed intensity variable (Z_MEDIAN) 
5. The weight of the zone (WEIGHT).  The default is 1.0. 

 
 Select output file 
 

The tabular results can be printed, saved to a text file or saved as a ‘dbf’ file. For saving to 
a ‘dbf’ file, specify a file name in the “Save result to” in the dialogue box.  

 
1. If the routine is run on a volume, then the file is saved as VolHB<file name> with 

the file name being provided by the user.  
 

2. If the routine is run on a rate, then the file is saved as RateHB<file name> with the 
file name being provided by the user. 

 
3. If the routine is run with a rate being created from two variables in the file, then 

the file is saved as CRateHB< file name> with the file name being provided by the 
user. 

 
The ‘dbf’ file can then be linked to the input ‘dbf’ file by using the ID field as a matching 

variable.  This would be done if the user wants to map the smoothed variable. 
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Interpolated Head Bang (IHB) 
 
The Head Bang calculations can be interpolated to a grid.  If the user checks this box, 

then the routine will also interpolate the calculations to a grid using kernel density estimation.  
An output file from the Head Bang routine is required.  Also, a reference file is required to be 
defined on the Reference File page. 

 
Essentially, the routine takes a Head Bang output and interpolates it to a grid using a 

kernel density function.  The same results can be obtained by inputting the Head Bang output on 
the Primary File page and using the single kernel density routine on the Interpolations I page.  
However, there is no intensity variable in the Interpolated Head Bang because the intensity has 
already been incorporated in the Head Bang output. Also, there is no weighting of the Head Bang 
estimate. 

  
The user must then define the parameters of the interpolation. 
 

 Method of interpolation 
 

There are five types of kernel distributions that can be used to interpolate the Head Bang 
to the grid: 
 

1. The normal kernel overlays a three-dimensional normal distribution over each 
point that then extends over the area defined by the reference file.  This is the 
default kernel function.  
 

2. The uniform kernel overlays a uniform function over each point that only extends 
for a limited distance. 
 

3. The quartic kernel overlays a quartic function over each point that only extends 
for a limited distance. 
 

4. The triangular kernel overlays a three-dimensional triangle over each point that 
only extends for a limited distance 
 

5. The negative exponential kernel overlays a three dimensional negative 
exponential function over each point that only extends for a limited distance. 

The different kernel functions produce similar results though the normal is generally 
smoother for any given bandwidth. 
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 Choice of bandwidth 
 

The kernels are applied to a limited search distance, called 'bandwidth'.  For the normal 
kernel, bandwidth is the standard deviation of the normal distribution.  For the uniform, quartic, 
triangular and negative exponential kernels, bandwidth is the radius of a circle defined by the 
surface.  For all types, larger bandwidth will produce smoother density estimates and both 
adaptive and fixed bandwidth intervals can be selected. 
 
  Adaptive bandwidth 
 

An adaptive bandwidth distance is identified by the minimum number of other points 
found within a circle drawn around a single point.  A circle is placed around each point, in turn, 
and the radius is increased until the minimum sample size is reached.  Thus, each point has a 
different bandwidth interval.  This is the default bandwidth setting.  The user can modify the 
minimum sample size.  The default is 100 points. 
 
  Fixed bandwidth 
 

A fixed bandwidth distance is a fixed interval for each point.  The user must define the 
interval and the distance units by which it is calculated (miles, nautical miles, feet, kilometers, or 
meters). 
 
 Output (areal) units 
 

Specify the areal density units as points per square mile, per squared nautical miles, per 
square feet, per square kilometers, or per square meters.  The default is points per square mile. 
 
 Calculate densities or probabilities 
 

The density estimate for each cell can be calculated in one of three ways: 
 

1. Absolute densities.  This is the number of points per grid cell and is scaled so 
that the sum of all grid cells equals the sample size. This is the default. 
 

2. Relative densities.  For each grid cell, this is the absolute density divided by the 
grid cell area and is expressed in the output units (e.g., points per square mile) 

3. Probabilities.  This is the proportion of all incidents that occur in the grid cell.  
The sum of all grid cells equals a probability of 1 
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Select whether absolute densities, relative densities, or probabilities are to be output for 
each cell. The default is absolute densities. 
 
 Output 
 

The results can be output as an ArcGIS ‘shp’, MapInfo ‘mif’, ArcGIS Spatial Analyst 'asc', 
Surfer for Windows file (for both an external or generated reference file), or as or ASCII grid 'grd' 
file (only if the reference file is generated by CrimeStat).  For MapInfo ‘mif’ format, the user has 
to define up to nine parameters including the name of the projection and the projection number.  
If the MapInfo system file MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a 
list of common projections with their appropriate parameters is available to be selected. 

 
The output file is saved as IHB<file name> with the file name being provided by the user. 
 

Space-time Analysis 
 

The space-time analysis tab allows the analysis of the interaction between space and time.  
There are four routines.  First, there is the Knox index that shows the simple binomial 
relationship between events occurring in space and in time.  Second, there is the Mantel index 
that shows the correlation between closeness in space and closeness in time.  Third, there is a 
spatial-temporal moving average that calculates a mean center for a temporal span.  Fourth, there 
is a Correlated Walk Analysis that diagnoses the spatial and temporal sequencing of incidents 
committed by a serial offender. 
 

For each of these routines, time must be defined by an integer or real variable, and not by 
a formatted date.  For example, 3 days, 2.1 weeks, 4.3 months, or the number of days from 
January 1, 1900 (e.g., 37174) are all eligible time values.  'November 1, 2001', '07/30/01' or '19th 
October, 2001' are not eligible values.  Convert all formatted dates into a real number.  Time 
units must be consistent across all observations (i.e., all values are hours or days or weeks or 
months or years, but not two or more these units). If these conditions are violated, CrimeStat will 
calculate results, but they won't be correct. 
 

Knox Index 
 

The Knox index is an index showing the relationship between 'closeness in time' and 
'closeness in distance'.  Pairs of events are compared in distance and in time and are represented 
 
 

 



Figure 2.14:

Space-Time Analysis
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as a 2 x 2 table.  If there is a relationship, it would normally be positive, that is events that are 
close together in space (i.e., in distance) are also occurring in a short time span.  There are three 
methods for defining closeness in time or in distance: 
 

1. Mean.  That is, events that are closer together than the mean time interval or are 
closer together than the mean distance are defined as 'Close' whereas events that 
are father together than mean time interval or are farther together than the mean 
distance are defined as 'Not close'.  This is the default. 
 

2. Median. That is, events that are closer together than the median time interval or are 
closer together than the median distance are defined as 'Close' whereas events that 
are father together than median time interval  or are farther together than the 
median distance are defined as 'Not close'. 

 
3. User defined.  The user can specify any value for distinguishing 'Close' and 'Not 

close' for either time or distance. 
 

The output includes a 2 x 2 table of the distribution of pairs categorized as 'Close' or 'Not 
close' in time and in distance. Note, that since pairs of events are being compared, there are 
N*(N-1)/2 pairs in a data set where N is the number of events.  The output also includes a table 
of the expected of the distribution of pairs on the assumption that events in time are space are 
independent of each other.  Finally, the output includes a chi-square test of the differences 
between the observed and expected distributions. Note, that since pairs are being compared, 
independence of observations is not true and a usual p-value associated with the chi-square test 
cannot be properly calculated. 

  
 Simulating confidence intervals 
 

A Monte Carlo simulation can be run to estimate the approximate Type I error probability 
levels for the Knox index. The user specifies the number of simulation runs.  Data are randomly 
assigned and the chi-square value for the Knox index is calculated for each run.  The random 
output is sorted and percentiles are calculated. Twelve percentiles are identified for this index: 

 
1. The minimum for the spatially random Knox chi-square 
2. The maximum for the spatially random Knox chi-square 
3. The 0.5 percentile for the spatially random Knox chi-square 
4. The 1 percentiles for the spatially random Knox chi-square 
5. The 2.5 percentile for the spatially random Knox chi-square 
6. The 5 percentile for the spatially random Knox chi-square 
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7. The 10 percentile for the spatially random Knox chi-square 
8. The 90 percentile for the spatially random Knox chi-square 
9. The 95 percentile for the spatially random Knox chi-square 
10. The 97.5 percentile for the spatially random Knox chi-square 
11. The 99 percentile for the spatially random Knox chi-square 
12. The 99.5 percentile for the spatially random Knox chi-square 

 
Confidence intervals can be estimated from these percentiles.  The two most commonly 

used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).  The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab. 

 
 Mantel Index 
 

The Mantel index is the correlation between closeness in time and closeness in distance 
across pairs.  Each pair of events is compared for the time interval and the distance between 
them.  If there is a positive relationship between closeness in time and closeness in space 
(distance), then there should be a sizeable positive correlation between the two measures. Note, 
that since pairs of events are being compared, there are N*(N-1)/2 pairs in the data set where N is 
the number of events. 

 
 Simulating confidence intervals 
 

A Monte Carlo simulation can be run to estimate the approximate confidence intervals 
around the Mantel correlation. The user specifies the number of simulation runs and the Mantel 
index is calculated for randomly assigned data.  The random output is sorted and percentiles are 
calculated. Twelve percentiles are identified for this index: 

 
1. The minimum for the spatially random Mantel index 
2. The maximum for the spatially random Mantel index 
3. The 0.5 percentile for the spatially random Mantel index 
4. The 1 percentiles for the spatially random Mantel index 
5. The 2.5 percentile for the spatially random Mantel index 
6. The 5 percentile for the spatially random Mantel index 
7. The 10 percentile for the spatially random Mantel index 
8. The 90 percentile for the spatially random Mantel index 
9. The 95 percentile for the spatially random Mantel index 
10. The 97.5 percentile for the spatially random Mantel index 
11. The 99 percentile for the spatially random Mantel index 
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12. The 99.5 percentile for the spatially random Mantel index 
 

Confidence intervals can be estimated from these percentiles.  The two most commonly 
used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).  The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab.  
 
 Spatial-Temporal Moving Average 
 

This routine calculates the mean center as it changes over the sequence of the events.  
The routine sorts the incidents in the order in which they occur.  The user defines a span of 
sequential incidents; the default is five observations.  The routine places a window covering the 
span over the incidents and calculates the mean center (the mean X coordinate and the mean Y 
coordinate).  It then moves the window one observation. Approximations are made at the 
beginning and end observations for the sequence.  The result is a set of mean centers ordered 
from the first through last observations.  This statistic is useful for identifying whether the 
central location for a set of incidents (perhaps committed by a serial offender) has moved over 
time. 
 

There are four outputs for this routine: 
 

1. The sample size 
2. The number of observations making up the span 
3. The span number 
4. The X and Y coordinates for each span window. 
 
The tabular results are output as a dBase ‘dbf’ file. 0020A line showing the sequential 

output cal also be output as an ArcGIS ‘shp’, MapInfo ‘mif’ or ‘bna’ ASCII formats.  For 
MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected.  The object will be output with a “STMA” prefix. 
 
 Correlated Walk Analysis 
 

The Correlated Walk Analysis (CWA) analyzes the sequential movements of a serial 
offender and makes predictions about the time and location of the next event.  Sequential 
movements are analyzed in terms of three parameters: Time difference between events (e.g., the 
number of days between two consecutive events), Distance between events – the distance between 
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two consecutive events, and Bearing (direction) between events – the angular direction between 
two consecutive events in degrees (from 0 to 360). 
 

There are three CWA routines for analyzing sequential events: 
 
1. Correlogram (CWA-C) 
2. Regression diagnostics (CWA-D) 
3. Prediction (CWA-P) 

 
 Correlated Walk Analysis Correlogram (CWA-C) 

 
The correlogram presents the lagged correlations between events for time difference, 

distance, and bearing (direction).  The lags are the sequential comparisons.  A lag of 0 is the 
sequence compared with itself; by definition, the correlation is 1.0.  A lag of 1 is the sequence 
compared with the previous sequence.  A lag of 2 is the sequence compared with two previous 
sequences.  A lag of 3 is the sequence compared with three previous sequences, and so forth.  
In total, comparisons are made up to seven previous sequences (a lag of 7). 
 

Typically, for time difference, distance and location separately, the lag with the highest 
correlation is the strongest.  However, with each consecutive lag, the sample size decreases by 
one and a high correlation associated with a high lag comparison can be unreliable if the sample 
size is small.  Consequently, the adjusted correlogram discounts the correlations by the number 
of lags. 
 

The CWA correlogram is output as a dBase ‘dbf’ file.   
 
  Correlated Walk Analysis Regression Diagnostics (CWA-D) 

 
The regression diagnostics presents the regression statistics for different lag models.  The 

lag must be specified; the default is a lag of 1 (the sequential events compared with the previous 
events).  Three regression models are run for time difference, direction, and bearing.  The 
output includes statistics for: 

 
1. The sample size 
2. The distance and time units 
3. The lag of the model (from 1 to 7) 
4. The multiple R (correlation) between the lags 
5. The squared multiple R (i.e., R-squared) 
6. The standard error of estimate for the regression 
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7. The coefficient, standard error, t-value, and probability value (two-tail) for the 
constant. 

8. The coefficient, standard error, t-value, and probability value (two-tail) for the 
coefficient. 

9. The analysis of variance for the regression model, including the sum-of-squares 
and the mean-square error for the regression model and the residual (error), the 
F-test of the regression mean-square error divided by the residual mean-square 
error, and the probability level for the F-test. 

 
In general, the model with the lowest standard error of estimate (and, consequently, 

highest multiple R) is best.  However, with a small sample size, the model can be unreliable.  
Further, with each consecutive lag, the sample size decreases by one and a high multiple R 
associated with a high lag comparison can be unreliable if the sample size is small. 

 
 Correlated Walk Analysis Prediction (CWA-P) 
 

The prediction routine allows the prediction of a next event, in time, distance, and 
direction.  For each parameter – time difference, distance, and bearing, there are three models 
that can be used: 
 

1. The mean difference (i.e., use mean time difference, mean distance, mean bearing) 
 
2. The median difference (i.e., use median time difference, median distance, median 

bearing) 
 

3. The regression model (i.e., use the estimated regression coefficient and intercept) 
 
For each of these, a different lag comparison can be used, from 1 to 7.  The lag defines 

the sequence from which the prediction is made.  Thus, for a lag of 1, the interval from the 
next-to-last to the last event is used as a reference (i.e., between events N-1 and N); for a lag of 2, 
the interval from the third-to-last to the next-to-last event is used as a reference (i.e.,between 
events N-2 and N-1); and so forth.  The particular model selected is then added to the reference 
sequence.   

 
Example 1: with a lag of 1 and the use of the mean difference, the mean time difference is 

added to the time of the last event, the mean distance is added to the location of the last event, and 
the mean bearing is added to the location of the last event.   
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Example 2: with a lag of 2 and the use of the regression model, the predicted time 
difference is added to the time of the next-to-last event; the predicted distance is added to the 
location of the next-to-last event and the prediction bearing is added to the location of the last 
event.  Note: if the regression model is used, the lag for distance and bearing must be the same. 
 

Example 3: with a lag of 1 for time, a lag of 2 for distance and the use of the mean 
distance, and a lag of 3 for bearing and the use of the median bearing, the predicted time 
difference is added to the last event, the mean distance is added to the location of the next-to-last 
event, and the median bearing is added to the location of the third-from-last event. 

 
 Tabular output 
 

The tabular output includes: 
 

1. The method used for time, distance, and bearing 
2. The lag used for time, distance, and bearing 
3. The predicted time difference 
4. The predicted distance 
5. The predicted bearing 
6. The final predicted time 
7. The X-coordinate of the final predicted location 
8. The Y-coordinate of the final predicted location 

 
 Graphical output 
 

If the user specifies an output file name, there are five graphical objects that are output as 
an ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats: 

 
1. The sequence of incidents from the first to the last.  This object has a prefix of 

‘Events’ before the file name provided by the user. 
2. The predicted location of the next event.  This is the event after the last in the 

input sequence.  This object has a prefix of ‘Preddest’ before the file name. 
3. The predicted path between the last event in the sequence and the expected next 

event.  This object has a prefix of ‘Pw’ before the file name. 
4. The center of minimum distance for the sequence of events.  This is the single 

best measure of the likely origin location of the offender  
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5. The expected path between the center of minimum distance and the predicted 
location of the next event.  This is a guess about the likely origin and likely 
destination for a next event by the offender. 

 
For MapInfo ‘mif’ format, the user has to define up to nine parameters including the name 

of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is 
placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. 
 
Journey to Crime Estimation (Jtc) 
 

The journey to crime (Jtc) routine estimates the likelihood that a serial offender lives at 
any location within the study area.  Both a primary file and a reference file are required.  The 
locations of the serial crimes are defined in the primary file while all locations within the study 
area are identified in the reference file.  The Jtc routine can use two different travel distance 
functions: 1) An already-calibrated distance function; and 2) A mathematical formula.  Either 
direct or indirect (Manhattan) distances can be used though the default is direct (see Measurement 
parameters.) 
 
 Calibrate Journey to Crime Function 
 

This routine calibrates a journey to crime distance function for use in the estimation 
routine.  A file is input which has a set of incidents (records) that includes both the X and Y 
coordinates for the location of the offender's residence (origin) and the X and Y coordinates for 
the location of the incident that the offender committed (destination.)  The routine estimates a 
travel distance function (trip lengths) using a one-dimensional kernel density method.  For each 
record, the distance between the origin location and the destination location is calculated and is 
represented on a distance scale.  The maximum distance is calculated and divided into a number 
of intervals; the default is 100 equal sized intervals, but the user can modify this.  For each 
distance (point) calculated, a one-dimensional kernel is overlaid.  For each distance interval, the 
values of all kernels are summed to produce a smooth function of journey to crime distance.  
The results are saved to a file that can be used in the journey to crime estimation routine. 
 

Select data file for calibration 
 

Select the file that has the X and Y coordinates for the origin and destination locations. 
CrimeStat reads dbase ‘dbf’, ArcGIS point ‘shp’ and ASCII files.  Select the tab and specify the 
type of file to be selected. Use the browse button to search for the file. If the file type is ASCII, 
select the type of data separator (comma, semicolon, space, tab) and the number of columns. 



Journey-to-crime Analysis
Figure 2.15:
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 Variables 
  

Define the file which contains the X and Y coordinates for both the origin (residence) and 
destination (crime) locations 
 
 Columns 
 

Select the variables for the X and Y coordinates respectively for both the origin and 
destination locations (e.g., Lon, Lat, HomeX, HomeY, IncidentX, IncidentY.) Both locations 
must be defined for the routine to work. 
 
 Missing values 
 

Identify whether there are any missing values for these four fields (X and Y coordinates 
for both origin and destination locations).  By default, CrimeStat will ignore records with blank 
values in any of the eligible fields or records with non-numeric values (e.g., alphanumeric 
characters, , *).   Blanks will always be excluded unless the user selects <none>.  There are 8 
possible options: 
 

1. <blank> fields are automatically excluded.  This is the default 
2. <none> indicates that no records will be excluded.  If there is a blank field, 

CrimeStat will treat it as a 0 
3. 0 is excluded 
4. –1 is excluded 
5. 0 and –1 indicates that both 0 and -1 will be excluded 
6. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be excluded 
7. Any other numerical value can be treated as a missing value by typing it (e.g., 99) 
8. Multiple numerical values can be treated as missing values by typing them, 

separating each by commas (e.g., 0, -1, 99, 9999, -99) 
 
 Type of coordinate system and data units 
 

Select the type of coordinate system.  If the coordinates are in longitudes and latitudes, 
then a spherical system is being used and data units will automatically be decimal degrees.  If 
the coordinate system is projected (e.g., State Plane, Universal Transverse Mercator – UTM), then 
data units could be either in feet (e.g., State Plane) or meters (e.g., UTM.)  Directional 
coordinates are not allowed for this routine. 
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 Select kernel parameters 
 

There are five parameters that must be defined. 
 
 Method of interpolation 
 

There are five types of kernel distributions that can be used to estimate the distance decay 
density of the trip lengths: 

 
1. The normal kernel overlays a three-dimensional normal distribution over each 

point that then extends over the area defined by the reference file.  This is the 
default kernel function.  
 

2. The uniform kernel overlays a uniform function over each point that only extends 
for a limited distance. 
 

3. The quartic kernel overlays a quartic function over each point that only extends 
for a limited distance.  
 

4. The triangular kernel overlays a three-dimensional triangle over each point that 
only extends for a limited distance.  
 

5. The negative exponential kernel overlays a three dimensional negative 
exponential function over each point that only extends for a limited distance 

 
The methods produce similar results though the normal is generally smoother for any 

given bandwidth. 
 
 Choice of bandwidth 
 

The kernels are applied to a limited search distance, called 'bandwidth’.  For the normal 
kernel, bandwidth is the standard deviation of the normal distribution.  For the uniform, quartic, 
triangular and negative exponential kernels, bandwidth is the radius of a circle defined by the 
surface.  For all types, larger bandwidth will produce smoother density estimates and both 
adaptive and fixed bandwidth intervals can be selected. 
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 Fixed bandwidth 
 

A fixed bandwidth distance is a fixed interval for each point.  The user must define the 
interval, the interval size, and the distance units by which it is calculated (miles, nautical miles, 
feet, kilometers, or meters).  The default bandwidth setting is fixed with intervals of 0.25 miles 
each.  The interval size can be changed. 
 
 Adaptive bandwidth 
 

An adaptive bandwidth distance is identified by the minimum number of other points 
found within a symmetrical band drawn around a single point.  A symmetrical band is placed 
over each distance point, in turn, and the width is increased until the minimum sample size is 
reached.  Thus, each point has a different bandwidth size.  The user can modify the minimum 
sample size.  The default for the adaptive bandwidth is 100 points. 
 
 Specify interpolation bins 
 

The interpolation bins are defined in one of two ways: 
 
1. By the number of bins. The maximum distance calculated is divided by the number 

of specified bins.This is the default with 100 bins. The user can change the number 
of bins 
 

2. By the distance between bins.  The user can specify a bin width in miles, nautical 
miles, feet, kilometers, and meters 

 
   Output (areal) units 
 

Specify the areal density units as points per mile, nautical mile, foot, kilometer, or meter.  
The default is points per mile. 
 
   Calculate densities or probabilities 
 

The density estimate for each cell can be calculated in one of three ways: 
 

1. Absolute densities. This is the number of points per grid cell and is scaled so that 
the sum of all grid cells equals the sample size. This is the default. 
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2. Relative densities.  For each grid cell, this is the absolute density divided by the 
grid cell area and is expressed in the output units (e.g., points per square mile) 
 

3. Probabilities.  This is the proportion of all incidents that occur in the grid cell.  
The sum of all grid cells equals a probability of 1. 

 
Select whether absolute densities, relative densities, or probabilities are to be output for 

each cell.  The default is absolute densities. 
 
   Select output file 
 

The output must be saved to a file.  CrimeStat can save the calibration output to either a 
dbase 'dbf' or ASCII text 'txt' file. 

 
 Calibrate! 
 

Click on 'Calibrate!' to run the routine. The output is saved to the specified file upon 
clicking on 'Close'.  The output file is saved as JtcCalib<file name> with the file name being 
provided by the user. 

 
 Graph of journey to crime travel function 
 

Click on 'View graph' to see the journey crime travel distance function (journey to crime 
likelihood by distance.)   The screen view can be printed by clicking on 'Print'.  For a better 
quality graph, however, the output should be imported into a graphics package. 
 
 Journey to Crime Estimation (Jtc) 

 
The journey to crime (Jtc) routine estimates the likelihood that a serial offender lives at 

any location within the study area.  Both a primary file and a reference file are required.  The 
locations of the serial crimes are defined in the primary file while all locations within the study 
area are identified in the reference file.  The Jtc routine can use two different travel distance 
functions: 1) An already-calibrated distance function; and 2) A mathematical formula. 

 
 Use an already-calibrated distance function 

 
If a travel distance function has already been calibrated (see 'Calibrate journey to crime 

function'), the file can be directly input into the Jtc routine. 
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  Input 
 

The user selects the name of the already-calibrated travel distance function. CrimeStat 
reads dbase 'dbf'’, ArcGIS ‘shp’ and ASCII text files.  
 
  Output 

 
The Jtc routine calculates a relative likelihood estimate for each cell of the reference file.  

Higher values indicate higher relative likelihoods.  The results can be output as a Surfer for 
Windows file (for both an external or generated reference file) or as an ArcGIS ‘shp’, MapInfo 
‘mif’, ArcGIS Spatial Analyst 'asc', or ASCII grid 'grd' file (only if the reference file is generated 
by CrimeStat).  For MapInfo ‘mif’ format, the user has to define up to nine parameters including 
the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 

 
The output file is saved as Jtc<file name> with the file name being provided by the user. 

 
 Use a mathematical formula 
 

A mathematical formula can be used instead of a calibrated distance function.  To do 
this, it is necessary to specify the type of distribution.  There are five mathematical models that 
can be selected: 

 
1. Negative exponential 
2. Normal 
3. Lognormal 
4. Linear 
5. Truncated negative exponential 

 
The normal is the default.  For each mathematical model, two or three different 

parameters must be defined: 
1. For the negative exponential, the coefficient and exponent 
2. For the normal distribution, the mean distance, standard deviation and coefficient 
3. For the lognormal distribution, the mean distance, standard deviation and 

coefficient 
4. For the linear distribution, an intercept and slope 
5. For the truncated negative exponential, a peak distance, peak likelihood, intercept, 

and exponent 
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 Output 
 
The Jtc estimation routine calculates a relative likelihood estimate for each cell of the 

reference file.  Higher values indicate higher relative likelihoods.  The results can be output as a 
Surfer for Windows file (for both an external or generated reference file) or as an ArcGIS ‘shp’, 
MapInfo ‘mif’, ArcGIS Spatial Analyst 'asc', or ASCII grid 'grd' file (only if the reference file is 
generated by CrimeStat).  For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 

 
The output file is saved as Jtc<file name> with the file name being provided by the user. 
 

 Draw Crime Trips 
 

This routine is a utility for both the Journey to crime routine and the Trip Distribution 
routine (in the Crime Travel Demand module).  If given a file with origins and destinations, the 
routine will draw a line between the origin and destination for each record.  It is useful for 
examining the actual trip links made by an offender. 
 
 Select data file 
 

Select the file that has the X and Y coordinates for the origin and destination locations. 
CrimeStat reads dbase ‘dbf’, ArcGIS point ‘shp’ and ASCII files. Select the tab and specify the 
type of file to be selected. Use the browse button to search for the file.  If the file type is ASCII, 
select the type of data separator (comma, semicolon, space, tab) and the number of columns. 
 
 Variables 
  

Define the file which contains the X and Y coordinates for both the origin (residence) and 
destination (crime) locations 
 
 Columns 
 

Select the variables for the X and Y coordinates respectively for both the origin and 
destination locations (e.g., Lon, Lat, HomeX, HomeY, IncidentX, IncidentY.) Both locations 
must be defined for the routine to work. 
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 Type of coordinate system and data units 
 

Select the type of coordinate system.  If the coordinates are in longitudes and latitudes, 
then a spherical system is being used and data units will automatically be decimal degrees.  If 
the coordinate system is projected (e.g., State Plane, Universal Transverse Mercator – UTM), then 
data units could be either in feet (e.g., State Plane) or meters (e.g., UTM.)  Directional 
coordinates are not allowed for this routine. 

 
 Save output to 
 

The graphical results can be output as lines in ArcGIS ‘shp’, MapInfo ‘mif’ or various 
ASCII formats.  For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 
 

Bayesian Journey to Crime Estimation (Jtc) 
 

The Bayesian Journey-to-crime module (BJtc) is a tool for estimating the likely residence 
location of a serial offender.  It is an extension of the Journey-to-crime routine (Jtc) which uses a 
travel distance function to make guesses about the likely residence location.  The Bayesian 
Journey to crime routine estimates the likelihood that a serial offender lives at any location within 
the study area using two pieces of information: 1) the distribution of incidents committed by the 
offender; and 2) the distribution of origins by other offenders who committed crimes in the same 
location as the offender, based on an origin-destination matrix.  
 

A travel distance function is applied to the distribution of incidents to produce one 
estimate of the likely origin of the offender while an origin-destination matrix is used to produce 
another estimate of the likely origin of the offender based on the origins of other offenders who 
committed crimes in the same locations.  Both estimates can be combined in several ways to 
produce a joint estimate of the likely origin of the offender.  

 
There are two routines in the Bayesian Journey to Crime module:  
 
1. Diagnostics for comparing different journey-to-crime methods; and  
 
2. A routine for estimating the likely origin of a serial offender using a selected 

journey-to-crime method.   
 



Figure 2.16:

Bayesian Journey-to-crime Analysis
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The routines are applications of Bayes Theorem to Journey to Crime estimation. 
  
 Bayes Theorem 
 

Bayes Theorem is defined as: 
 

 | ∗ |
           (2.1) 

 
where P(B|A) is the probability of event B given event A (the conditional probability of B given 
A), P(B) is the simple probability of event B, P(A|B) is the probability of event A given event B 
(the conditional probability of A given B), and P(A) is the probability of event A.  

 
 Bayesian Inference 
 

In the statistical interpretation of Bayes Theorem, the probabilities are estimates of a 
random variable.  Let θ be a parameter of interest and let X be some data.  Thus, Bayes 
Theorem can be expressed as: 
 

 | ∗ |
           (2.2) 

 
where P(θ|X) is the posterior probability of θ given the data, X, and P(θ) is the probability that θ 
has a certain distribution and is often called the prior probability. P(X|θ) is the probability that the 
data would be obtained given that θ is true and is often called the likelihood function (i.e., it is the 
likelihood that the data will be obtained given the distribution of θ).  Finally, P(X) is the 
marginal probability of the data, the probability of obtaining the data under all possible scenarios; 
essentially, it is the data. 
 

The equation can be rephrased in logical terms: 
 

 The posterior  Likelihood of              Prior 
 probability that obtaining the data          probability 

θ is true given the given θ is true      *      of θ 
 data, X       =  ---------------------------------------------      (2.3) 
    Marginal probability of X 
 

In other words, this formulation allows an estimate of the probability of a particular 
parameter, θ, to be updated given new information.  Since θ is the prior probability of an event, 
given some new data, X, Bayes Theorem can be used to update the estimate of θ.  The prior 
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probability of θ can come from prior studies, an assumption of no difference between any of the 
conditions affecting θ, or an assumed mathematical distribution.  The likelihood function can 
also come from empirical studies or an assumed mathematical function.  Irrespective of how 
these are interpreted, the result is an estimate of the parameter, θ, given the evidence, X.  This is 
called the posterior probability (or posterior distribution). 
 
 Application of Bayesian inference to Journey to Crime Estimation 
 

Applying Bayesian inference to journey to crime estimation, there are three different 
estimates of where an offender lives: 
 

1. An estimate of the residence location of a single offender based on the location of 
the incidents that this person committed and an assumed travel distance function, 
P(Jtc). 
 

2. An estimate of the residence location of a single offender based on a general 
distribution of all offenders, irrespective of any particular destinations for 
incidents, P(O). Essentially, this is the distribution of origins irrespective of the 
destinations. 
 

3. An estimate of the residence location of a single offender based on the distribution 
of offenders given the distribution of incidents committed by the single offender, 
P(O|Jtc). 

 
The Bayesian formula can now be approximated by:  
 

 |
| ∗

          (2.4) 

 
where P(Jtc|O) is the probability that a particular serial offender lives at any one location given 
both an estimate of where the offender lives given a travel distance function and an estimate of 
where an offender lives given the distribution of origins by other offenders who committed crimes 
in the same locations.  The numerator expresses this relationship and is called the Bayesian 
product term.  Since obtaining the probability of the data under all scenarios is virtually 
impossible to estimate, the equation is an approximation, relating this product term to the 
distribution of all offenders, P(O). This is called Bayesian risk.  
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 The Bayesian Journey to Crime Estimation Module 
 

The Bayesian Journey-to-crime estimation module is made up of two routines, one for 
diagnosing which Journey-to-crime method is best and one for applying that method to a 
particular serial offender.  
 
 Data Preparation for Bayesian Journey to Crime Estimation 
 

There are three sets of data that are required and one optional data set. The three required 
ones are: 
 

1. The incidents committed by a single offender for which an estimate will be made 
of where that individual lives 
 

2. A journey-to-crime function that estimates the likelihood of an offender 
committing crimes at a certain distance (or travel time if a network is used) 
 

3. An origin-destination matrix 
 
The fourth, optional data set is a diagnostics file of multiple known serial offenders for 

which both their residence and crime locations are known. 
 

Both a primary file and a reference file are also required.  For the Bayesian Jtc 
Diagnostics routine, any point file can be used as the primary file.  For the Bayesian Jtc 
Estimation routine, the primary file should be the locations of the crimes committed by the single 
serial offender for whom the estimate is being obtained. The reference file also needs to be 
defined and should include all locations where crimes have been committed (see Reference File).   
 
 Serial offender data 
 

For each serial offender for whom an estimate will be made of where that person lives, the 
data set should include the location of the incidents committed by the offender. The data are set 
up as a series of records in which each record represents a single event.  On each data set, there 
are X and Y coordinates identifying the location of the incidents this person has committed.   

 
 Journey-to-crime travel function  
 

The Journey-to-crime function is an estimate of the likelihood of an offender traveling a 
certain distance.  Typically, it represents a frequency distribution of distances traveled, though it 
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could be a frequency distribution of travel times if a network was used to calibrate the function 
with the Journey to crime estimation routine (see Journey to crime estimation).  It can come 
from an a priori assumption about travel distances, prior research, or a calibration data set of 
offenders who have already been caught.  The “Calibrate journey-to-crime function” routine (on 
the Journey-to-crime page under Spatial modeling) can be used to estimate this function.   

 
The BJtc routine can use two different travel distance functions: 1) An already-calibrated 

distance function; and 2) A mathematical formula.  Either direct or indirect (Manhattan) 
distances can be used though the default is direct (see Measurement parameters.) 
    
 Origin-destination matrix 
 

The origin-destination matrix relates the number of offenders who commit crimes in one 
of N zones who live (originate) in one of M zones.  It can be created from the “Calculate 
observed origin-destination trips” routine (on the ‘Describe origin-destination trips’ page under 
the Trip distribution module of the Crime Travel Demand model). 
 
 Diagnostics file for Bayesian Jtc routine 
 

The aim of the diagnostics file is to provide information to the analyst about which of 
several parameters (to be described below) are best at guessing where an offender lives.  The 
assumption is that if a particular parameter was best with the K offenders in a diagnostics file in 
which the residence location was known, then the same parameter will also be best for a serial 
offender for whom the residence location is not known. 
 

How many serial offenders are needed to make up a diagnostics file?  There is no simple 
answer to this.  Clearly, the more, the better since the aim is to identify which parameter is most 
sensitive with a certain level of precision and accuracy. Certainly, a minimum of 10 would be 
necessary.  But, more would certainly be more accurate.  Further, the offender records used in 
the diagnostics file should be similar in other dimensions to the offender that is being tracked.  
However, this may be impractical.   

 
Once the data sets have been collected, they need to be placed in an appended file, with 

one serial offender on top of another.  Each record has to represent a single incident.  Further, 
the records have to be arranged sequentially with all the records for a single offender being 
grouped together. The routine automatically sorts the data by the offender ID.  But, to be sure 
that the result is consistent, the data should be prepared in this way. 
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Regarding the fields in each record, at the minimum there is a need for an ID field, and the 
X and Y coordinates of both the crime location and the residence location.  The ID field is any 
string variable.   

 
 Diagnostics for Journey to Crime Methods 

 
The following applies to the “diagnostics” routine only. 

 
 Data Input 
 

The user inputs the five required data sets and two optional data sets.   
 
1. Any primary file with an X and Y location. A suggestion is to use one of the files 

for the serial offender, but this is not essential 
2. A grid that will be overlaid on the study area.  Use the Reference File under Data 

setup to define the X and Y coordinates of the lower-left and upper-right corners of 
the grid as well as the number of columns 

3. A journey-to-crime function that estimates the likelihood of an offender 
committing crimes at a certain distance (or travel time if a network is used) 

4. An origin-destination matrix 
5. The diagnostics file of known serial offenders in which both their residence and 

crime locations are known 
6. (Optional) A data set that includes a filter variable (see below) 
7. (Optional) A data set that includes a second filter variable (see below) 

 
 Methods Tested 
 

The “diagnostics” routine compares seven methods for estimating the likely location of a 
serial offender: 
 

1. The Journey-to-crime distance method, P(Jtc). 
2. The general crime distribution based on the origin-destination matrix, P(O).  

Essentially, this is the distribution of origins irrespective of the destinations. 
3. The distribution of origins based only on the incidents committed by the serial 

offender, P(O|Jtc). 
4. The product of the Journey-to-crime estimate (1 above) and the distribution of 

origins based only on the incidents committed by the serial offender (3 above), 
P(Jtc)*P(O|Jtc).  This is the numerator of the Bayesian function, the product of 
the prior probability times the likelihood estimate. 
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5. The simple average of the Journey-to-crime estimate (1 above) and the distribution 
of origins based only on the distribution of incidents committed by the serial 
offender (3 above), P(Jtc) + P(O|Jtc).  This is an alternative to the product term (4 
above). 

6. The Bayesian risk estimate as indicated in the discussion above (method 4 above 
divided by method 2 above), P(Bayes risk). 

7. The center of minimum distance, Cmd.  Previous research has indicated that the 
center of minimum of distance produces the least error in minimizing the distance 
between where the method predicts the most likely location for the offender and 
where the offender actually lives. 

 
 Interpolated Grid 
 

With each serial offender, in turn, and with each method, the routine overlays a grid over 
the study area. The grid is defined by the Reference File parameters (see Data setup).  The 
routine then interpolates each input data set into a probability estimate for each grid cell with the 
sum of the cells equaling 1.0 (within three decimal places).  The manner in which the 
interpolation is done varies by the method: 

 
1. For the Journey-to-crime method, P(Jtc), the routine interpolates the selected distance 

function to each grid cell to produce a density estimate.  The density estimates are 
converted to probabilities so that the sum of the grid cells equals 1.0. 

 
2. For the general crime distribution method, P(O), the routine sums up the incidents by 

each origin zone from the origin-destination matrix and interpolates that using the 
normal distribution method of the single kernel density routine (see Kernel Density 
Interpolation). The density estimates are converted to probabilities so that the sum of 
the grid cells equals 1.0. 

 
3. For the distribution of origins based only on the incidents committed by the serial 

offender, from the origin-destination matrix the routine identifies the zone in which the 
incidents occur and reads only those origins associated with those destination zones. 
Multiple incidents committed in the same origin zone are counted multiple times.  The 
routine then uses the single kernel density routine to interpolate the distribution to the 
grid (see Kernel Density Interpolation).  The density estimates are converted to 
probabilities so that the sum of the grid cells equals 1.0. 

 
4. For the product of the Journey-to-crime estimate and the distribution of origins based 

only on the incidents committed by the serial offender, the routine multiples the 
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probability estimate obtained in 1 above by the probability estimate obtained in 3 
above.  The product density estimates are converted to probabilities so that the sum of 
the grid cells equals 1.0. 

 
5. For the simple average of the Journey-to-crime estimate and the distribution of origins 

based only on the incidents committed by the serial offender, the routine adds the 
probability estimate obtained in 1 above to the probability estimate obtained in 3 above 
and divides by two.  The average density estimates are converted to probabilities so 
that the sum of the grid cells equals 1.0. 

 
6. For the Bayesian risk estimate, the routine takes the product estimate (4 above) and 

divides it by the general crime distribution estimate (2 above).  The resulting density 
estimates are converted to probabilities so that the sum of the grid cells equals 1.0. 

 
7. Finally, for the center of minimum distance estimate, the routine calculates the center of 

minimum distance for each serial offender in the “diagnostics” file and calculates the 
distance between this statistic and the location where the offender is actually residing.  
This is used only for the distance error comparisons. 

 
Note in all of the probability estimates (excluding 7), the cells are converted to 

probabilities prior to any multiplication or division.  The results are then re-scaled so that the 
resulting grid is a probability (i.e., all cells sum to 1.0). 
 
  Additional Filtering 
 
 A filter is a probability matrix that is applied to the estimate but is not conditioned on the 
existing variables in the model.  For example, an opportunity matrix that was independent of the 
distribution of offences by a single serial offender or the origins of other offenders who 
committed crimes in the same locations could be applied as an alternative (equation 14.14): 
 

| ∝ 	 ∗ | ∗               (2.5) 
 
 In this case, P(A) is an independent matrix.  Another filter that could be applied is 
residential land use.  The vast majority of offenders are going to live in residential areas.  Thus, 
a residential land use filter estimates the probability of a residential land use for every cell, P(A), 
could be applied to screen out cells that are not residential, such as 
 

| ∝ 	 ∗ | ∗               (2.6) 
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 In this way, additional information can be integrated into the methodology to improve the 
accuracy and precision of the estimates.  Clearly, having additional variables be conditioned 
upon existing variables in the model would be ideal since that would fit the true Bayesian 
approach.  But, even if independent filters were brought in, the model could be improved.  
 
   Defining up to two filters 
 
 The Bayesian Journey-to-crime routine allows the addition of up to two filters, called F1 
and F2.  If one filter variable is defined as a data set, then F1 will be applied to the probability 
components.  If two filter variables are defined as data sets, then both F1 and F2 will be applied 
simultaneously to the probability components. 
 
 Output of Routine 
 

For each offender in the “diagnostics” file, the routine calculates three different statistics 
for each of the methods: 
 

1. The estimated probability in the cell where the offender actually lives.  It does 
this by, first, identifying the grid cell in which the offender lives (i.e., the grid cell 
where the offender’s residence X and Y coordinate is found) and, second, by 
noting the probability associated with that grid cell.  The higher the probability, 
the better the estimate. 
 

2. The percentile of all grid cells in the entire grid that have to be searched to find 
the cell where the offender lives based on the probability estimate from 1, ranked 
from those with the highest probability to the lowest.  Obviously, this percentile 
will vary by how large a reference grid is used (e.g., with a very large reference 
grid, the percentile where the offender actually lives will be small whereas with a 
small reference grid, the percentile will be larger).  But, since the purpose is to 
compare methods, the actual percentage should be treated as a relative index.  
The result is sorted from low to high so that the smaller the percentile, the better.  
For example, a percentile of 1% indicates that the probability estimate for the cell 
where the offender lives is within the top 1% of all grid cells.  Conversely, a 
percentile of 30% indicates that the probability estimate for the cell where the 
offender lives in within the top 30% of all grid cell. 
 

3. The distance between the cell with the highest probability and the cell where the 
offender lives. The smaller the distance between the cell with the highest 
probability and the cell where the offender lives, the better. 
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 Output matrices 
 

The “diagnostics” routine outputs two separate matrices.  The probability estimates 
(numbers 1 and 2 above) are presented in a separate matrix from the distance estimates (number 3 
above).  The user can save the total output as a text file or can copy and paste each of the two 
output matrices into a spreadsheet separately.  We recommend the copying-and-pasting method 
into a spreadsheet as it will be difficult to line up differing column widths for the two matrices 
and summary tables at the bottom of each. 
 
 Summary statistics 
 

The “diagnostics” routine will also provide summary information at the bottom of each 
matrix.  For the probability matrix, these include: 

 
1. The mean (probability or percentile) 
2. The median (probability or percentile) 
3. The standard deviation (probability or percentile) 
4. The number of times the Jtc estimate produces the highest probability 
5. The number of times the O|Jtc estimate produces the highest probability 
6. The number of times the O estimate produces the highest probability 
7. The number of times the “product” term estimate produces the highest probability 
8. The number of times the Bayesian risk estimate produces the highest probability 
9. If filter variable F1 has been defined:  

A. The number of times the Jtc*F1 estimate produces the highest probability 
B. The number of times the O|Jtc*F1 estimate produces the highest probability 
C. The number of times the “Product”*F1 estimate produces the highest 

probability 
D. The number of times the Bayesian risk*F1 estimate produces the highest 

probability 
10. If both filter variable F1 and filter variable F2 have been defined: 

A. The number of times the Jtc*F1*F2 estimate produces the highest 
probability 

B. The number of times the O|Jtc*F1*F2 estimate produces the highest 
probability 

C. The number of times the “Product”*F1*F2 estimate produces the highest 
probability  

D. The number of times the Bayesian risk*F1*F2 estimate produces the 
highest probability 
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 For the distance matrix, these include: 
 

1. The mean distance 
2. The median distance 
3. The standard deviation distance 
4. The number of times the Jtc estimate produces the closest distance 
5. The number of times the O|Jtc estimate produces the closest distance 
6. The number of times the O estimate produces the closest distance 
7. The number of times the “product” term estimate produces the closest distance 
8. The number of times the Bayesian risk estimate produces the closest distance 
9. The number of times the center of minimum distance (CMD) produces the closest 

distance 
10. If filter variable F1 has been defined:  

A. The number of times the Jtc*F1 estimate produces the closest distance 
B. The number of times the O|Jtc*F1 estimate produces the closest distance 
C. The number of times the “Product”*F1 estimate produces the closest 

distance 
D. The number of times the Bayesian risk*F1 estimate produces the closest 

distance 
11. If both filter variable F1 and filter variable F2 have been defined: 

A. The number of times the Jtc*F1*F2 estimate produces the closest distance 
B. The number of times the O|Jtc*F1*F2 estimate produces the closest 

distance 
C. The number of times the “Product”*F1*F2 estimate produces the closest 

distance 
D. The number of times the Bayesian risk*F1*F2 estimate produces the 

closest distance 
 

These statistics, especially the summary statistics, should indicate which of the methods 
produces the best accuracy, defined in terms of highest probability (for the probability matrix) and 
closest distance (for the distance matrix), and efficiency, defined in terms of the smallest search 
area to locate the serial offender. 

 
 Estimate Likely Origin Location of a Serial Offender 
 

The following applies to the Bayesian Jtc “Estimate likely origin of a serial offender” 
routine.  Once the “diagnostic” routine has been run and a preferred method selected, the next 
routine allows the application of that method to a single serial offender. 
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 Data Input 
 

The user inputs the three required data sets and a reference file grid.  The two filter 
variables can also be applied, but are optional 

1. The incidents committed by a single offender that we’re interested in catching.  
This must be the primary file. 

2. A journey-to-crime function that estimates the likelihood of an offender 
committing crimes at a certain distance (or travel time if a network is used). 

3. An origin-destination matrix. 
4. The reference file also needs to be defined and should include all locations where 

crimes have been committed (see Reference File). 
5. (Optional) A data set that includes a filter variable (see above). 
6. (Optional) A data set that includes a second filter variable (see above). 

 
 Methods Tested 
 

The Bayesian Jtc “Estimate” routine interpolates the incidents committed by the serial 
offender to a grid, allowing the user to estimate where the offender is liable to live. There are 13 
different methods for estimating the likely location of a serial offender that can be used, 
depending on whether filter variables are used or not.  However, the user has to choose only one 
of these: 
 

1. The Journey-to-crime distance method, P(Jtc). 
 

2. The general crime distribution based on the origin-destination matrix, P(O).  
Essentially, this is the distribution of origins irrespective of the destinations. 
 

3. The distribution of origins based only on the incidents committed by the serial 
offender, P(O|Jtc). 

4. The product of the Journey-to-crime estimate (1 above) and the distribution of 
origins based only on the incidents committed by the serial offender (3 above), 
P(Jtc)*P(O|Jtc).  This is the numerator of the Bayesian function discussed above, 
the product of the prior probability times the likelihood estimate. 
 

5. The weighted average of the Journey-to-crime estimate (1 above) and the 
distribution of origins based only on the distribution of incidents committed by the 
serial offender (3 above), P(Jtc) + P(O|Jtc).  This is an alternative to the product 
term (4 above).  The user must select weights for each of the two estimates such 
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that the sum of the weights equal 1.0.  The default weights are 0.5 for each 
estimate. 
 

6. The Bayesian risk estimate as indicated above (method 4 above divided by method  
2 above), P(Bayes risk). 

7. If one filtering variable, F1, has been used: 
 

A. P(Jtc)*F1 
B. P(O|Jtc)*F1 
C. “Product”*F1 
D. Bayesian risk*F1 

 

8. If two filtering variables have been used: 
 

A. P(Jtc)*F1*F2 
B. P(O|Jtc)*F1*F2 
C. “Product”*F1*F2 
D. Bayesian risk*F1*F2 

 

  Interpolated Grid 
 

For the estimation method that is selected, the routine overlays a grid on the study area.  
The grid is defined by the reference file parameters (see Reference File).  The routine then 
interpolates the input data set (the primary file) into a probability estimate for each grid cell with 
the sum of the cells equaling 1.0 (within three decimal places).  The manner in which the 
interpolation is done varies by the method chosen: 
 

1. For the Journey to crime method, P(Jtc), the routine interpolates the selected 
distance function to each grid cell to produce a density estimate.  The density 
estimates are converted to probabilities so that the sum of the grid cells equals 1.0; 

2. For the general crime distribution method, P(O), the routine sums up the incidents 
by each origin zone and interpolates that using the normal distribution method of 
the single kernel density routine (see Kernel Density Interpolation). The density 
estimates are converted to probabilities so that the sum of the grid cells equals 1.0. 
 

3. For the distribution of origins based only on the incident committed by the serial 
offender, the routine identifies the zone in which the incident occurs and reads 
only those origins associated with those destination zones in the origin-destination 
matrix. Multiple incidents committed in the same origin zone are counted multiple 
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times.  The routine then uses the single kernel density routine to interpolate the 
distribution to the grid (see Kernel Density Interpolation).  The density estimates 
are converted to probabilities so that the sum of the grid cells equals 1.0. 
 

4. For the product of the Journey-to-crime estimate and the distribution of origins 
based only on the incidents committed by the serial offender, the routine multiples 
the probability estimate obtained in 1 above by the probability estimate obtained in 
3 above.  The product density estimates are converted to probabilities so that the 
sum of the grid cells equals 1.0. 
 

5. For the Bayesian risk estimate, the routine takes the product estimate (4 above) and 
divides it by the general crime distribution estimate (2 above).  The resulting 
densities are converted to probabilities so that the sum of the grid cells equals 1.0. 

 

6. If one or two filter variables are used, each filter variable is interpolated to the 
reference grid and then converted into probabilities.  The filter probability grid is 
then multiplied by the P(Jtc), P(O|Jtc), “Product” or Bayesian risk grids to produce 
a filtered grid. 

 
Note that in all estimates, the cells are converted to probabilities prior to any 

multiplication or division.  The results are then re-scaled so that the resulting grid is a probability 
(i.e., all cells sum to 1.0). 
 
 Output of Routine 
 

Once the method has been selected, the routine interpolates the data to the grid cell and 
outputs it as a ‘shp’, ‘mif/mid’, or Ascii file for display in a GIS program.  For MapInfo ‘mif’ 
format, the user has to define up to nine parameters including the name of the projection and the 
projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same directory 
as CrimeStat, then a list of common projections with their appropriate parameters is available to 
be selected. 

 
The tabular output shows the probability values for each cell in the matrix and also 

indicates which grid cell has the highest probability estimate.   
 
 Accumulator Matrix 
 

There is also an intermediate output, called the accumulator matrix, which the user can 
save.  This lists the number of origins identified in each origin zone for the specific pattern of 
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incidents committed by the offender, prior to the interpolation to grid cells.  That is, in reading 
the origin-destination file, the routine first identifies which zone each incident committed by the 
offender falls within.  Second, it reads the origin-destination matrix and identifies which origin 
zones are associated with incidents committed in the particular destination zones.  Finally, it 
sums up the number of origins by zone ID associated with the incident distribution of the 
offender.  This can be useful for examining the distribution of origins by zones prior to 
interpolating these to the grid. 
 

V. Spatial Modeling II 
 

The second spatial modeling section conducts regression modeling of a dependent 
variable, either binomial, unconstrained, or a count variable.  It also includes a module for 
modeling discrete (nominal) choices.  There are five sets of routines in the section: 1) 
Regression I for modeling multivariate predictors of a continuous or binary variable; 2) 
Regression II for making predictions on a new data set based on a regression model; 3) Discrete 
choice I for modeling discrete decisions; 4) Discrete choice II for making predictions on a new 
data set based on a discrete choice model; and 5) Temporal modeling for predicting  the 
expected number of counts of an incident variable by zones and for detecting when the actual 
number exceeds a threshold prediction. 
 
Regression Modeling I 
 

The aim of a regression model is to estimate a functional relationship between a dependent 
variable and one or more independent variables. In the current version, 18 possible regression 
models are available with several options for each of these:  
 
  MLE Normal (OLS) 
  MCMC Normal 
  MCMC Normal-CAR 
  MCMC Normal-SAR 
  MLE Poisson 
  MLE Poisson with linear dispersion correction (NB1) 
  MLE Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma-CAR 
  MCMC Poisson-Gamma-SAR 
  MCMC Poisson-Lognormal 
  MCMC Poisson-Lognormal-CAR 
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  MCMC Poisson-Lognormal-SAR 
  MLE Binomial Logit 
  MLE Binomial Probit 
  MCMC Binomial Logit 
  MCMC Binomial Logit-CAR 
  MCMC Binomial Logit-SAR 
       
 In addition, each of the 12 MCMC models can be run with an exposure (offset) variable 
used to define the population ‘at risk’ allowing a total of 30 possible regression models to be run. 
 

There are two pages in the module.  The Regression I page allows the testing of a model 
while the Regression II page allows a prediction to be made based on an already-estimated model. 
Also, since the Regression I module and Trip Generation module in the Crime Travel Demand 
Model duplicate regression functions, only one of these can be run at a time. 

 
Input Data set 

  
The data set for the regression module can be the Primary file or another file.  If it is the 

Primary file, then it must be a spatial data file with and X and Y coordinates defined on each 
record.  If it is another file, click on ‘Other’ and then identify the file. Only ‘dbf’ or ‘txt’ files are 
allowed.    

 
Dependent Variable 

 
To start loading the module, click on the ‘Calibrate model’ tab.  A list of variables from 

the Primary File is displayed.  There is a box for defining the dependent variable.  The user 
must choose one dependent variable. 
 

Independent Variables 
 

There is a box for defining the independent variables.  The user must choose one or more 
independent variables.  There is no limit to the number.  The variables are output in the same 
order as specified in the dialogue so a user should consider how these are to be displayed. 
 

Model decisions 
 

There are five decisions that must be made for each regression model. 
 
  



Figure 2.17:

Regression Modeling I
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Type of Dependent Variable 
 

The first model decision is the type of dependent variable: Skewed (Poisson), 
Normal/OLS, Binomial Probit, or Binomial Logit/Logistic.  The default is a Poisson.   
 

Type of Dispersion Estimate 
 

The second model decision is the type of dispersion estimate to be used.  The choices are 
Gamma, Poisson, Poisson with linear correction, and Lognormal.  The default is Gamma.  For 
the MLE and MCMC Normal (OLS) models, the dispersion is automatically normal.  For the 
binomial logit or binomial probit, the dispersion is automatically binomial. 
 

Type of Estimation Method 
 

The third model decision is the type of estimation method to be used: Maximum 
Likelihood (MLE) or Markov Chain Monte Carlo (MCMC).  The default is MLE.  
 

Spatial Autocorrelation Regression Model 
 
 If the user accepts an MCMC algorithm, then a fourth decision is whether to run a spatial 
autocorrelation estimate along with it (a Conditional Autoregressive function – CAR, or a 
Simultaneous Autoregressive function - SAR).  The MCMC Normal, MCMC Poisson-Gamma, 
MCMC Poisson-Lognormal, and MCMC Logit functions can be run with a spatial autocorrelation 
parameter. Note that the CAR model runs quite quickly whereas the SAR model runs very slowly.  
Unless the data set is small or a SAR model is absolutely essential, we recommend using a CAR 
function for the spatial regression models. 
 

Type of Test Procedure 
 

The fifth, and last model decision, is whether to run a fixed model or a backward 
elimination stepwise procedure (only with the MLE models).  A fixed model includes all 
selected independent variables in the regression whereas a backward elimination model starts 
with all selected variables in the model but proceeds to drop variables that fail the P-to-remove 
test, one at a time.  Any variable that has a significance level in excess of the P-to-remove value 
is dropped from the equation. 

 
Specify whether a fixed model (all selected independent variables are used in the 

regression) or a backward elimination stepwise model is used.  The default is a fixed model.  If 
a backward elimination stepwise model is selected, choose the P-to-remove value (default is .01). 
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MCMC Model Choices 
 

If the user chooses the MCMC algorithm, then eight additional decisions have to be made. 
 
 

Number of Iterations 
 
The first MCMC decision is the number of iterations. The default is 25,000. The number 

should be sufficient to produce reliable estimates of the parameters. Check the MC Error/Standard 
deviation ratio and the G-R statistic after the run to be sure most parameters are below 1.05 and 
1.20 respectively.  If not, increase the number of iterations and ‘burn in’ iterations. 

 
‘Burn in’ iterations 

 
The second MCMC decision is the number of initial iterations that will be dropped from 

the final distribution (the ‘burn in’ period).  The default is 5,000.  The number of ‘burn in’ 
iterations should be sufficient for the algorithm to reach an equilibrium state and produce reliable 
estimates of the parameters.  Check the MC Error/Standard deviation ratio and the G-R statistic 
after the run to be sure most parameters are below 1.05 and 1.20 respectively.  If not, increase 
the number of iterations and ‘burn in’ iterations. 

 
Block Sampling Threshold 

 
The third MCMC decision is whether to run all the records through the MCMC algorithm 

or whether to draw block samples.  The algorithm will be run on all records unless the number of 
records exceeds number specified in the block sampling threshold.  The default threshold is 6000 
records.  To run all the records through the MCMC algorithm, change this value to be greater 
than the number of records in the database.  Note that calculation time will increase substantially 
if all records in a large database are run through the algorithm. 
 

Average Block Size 
 

The fourth MCMC decision is the number of records to be drawn for each block sample if 
the total number of records is greater than the block sampling threshold.  The default is 400 
records per block sample.  Note that this is an average.  Actual samples will vary in size.  The 
output will display the expected sample size and the average sample size that was drawn. 
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Number of Samples Drawn 
 
The fifth MCMC decision is the number of samples to be drawn if the total number of 

records is greater than the block sampling threshold.  The default is 25 block samples.   
Typically, 20-30 block samples will achieve stable model results. 
 
 

Calculate Intercept 
 
The sixth MCMC decision is whether to run a model with or without an intercept 

(constant).  The default is with an intercept estimated.  To run the model without the intercept, 
uncheck the ‘Calculate intercept’ box. 
 

Calculate Exposure/Offset 
 
 The seventh MCMC decision is whether to run a risk model.  If the model is a risk or rate 
model, then an exposure (offset) variable needs to be defined.  The exposure (offset) choice is 
available for the MCMC Poisson-Gamma, MCMC Poisson-Lognormal, and MCMC Binomial 
Logit models plus their spatial autocorrelation options. It is not available for the MCMC Normal 
or MCMC Normal-CAR/SAR models.  Check the ‘Calculate exposure/offset’ box and identify 
the variable that will be used as the exposure variable.  The coefficient for this variable will 
automatically be 1.0. 
 

Advanced Options 
 

The eighth, and last, MCMC decision is the prior values used for the different parameters 
being estimated.  The MCMC algorithm requires an initial estimate for each parameter.  There 
is a dialogue of advanced options for the MCMC algorithm by which they can be changed. 
 

Initial Parameters Values 
 
For the beta coefficients (including the intercept), the default values are 0.  These are 

displayed as a blank screen for the Beta box.  However, other prior estimates of the beta 
coefficients can be substituted for the assumed 0 coefficients. To do this, all independent variable 
coefficients plus the intercept (if used) must be listed in the order in which they appear in the 
model and must be separated by commas.  Do not include the beta coefficients for the spatial 
autocorrelation term (if used) or the error (Taupsi) term. 
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Taupsi (error term) 
  

The output of the MCMC always includes an error term, called Taupsi (τψ).  This is an 
exponent of the error term, eτψ, which together is called the dispersion parameter.  The default 
value for Taupsi is 1.0.  The user can substitute an alternative value.   

 
Rho and Tauphi 

 
The spatial autocorrelation component is made up of three separate sub-components, 

called Rho, Tauphi, and Alpha and are additive.  Rho is roughly a global component that applies 
to the entire data set.  Tauphi is roughly a neighborhood component that applies to a sub-set of 
the data.  Alpha is essentially a localized effect.  The default initial values for Rho and Tauphi 
are 0.5 and 1 respectively.  The user can substitute alternative values for these parameters. 
 

Alpha 
 

Alpha is the exponent for the distance decay function in the spatial model.  Essentially, 
the distance decay function defines the weight to be applied to the values of nearby records. The 
weight can be defined by one of three mathematical functions.  First, the weight can be defined 
by a negative exponential function. 
 

Second, the weight can be defined by a restricted negative exponential with the negative 
exponential operating up to the specified search distance, whereupon the weight becomes 0 for 
greater distances. 

 
Third, the weight can be defined as a uniform value for all other observations within a 

specified search distance.  This is a contiguity (or adjacency) measure.  Essentially, all other 
observations have an equal weight within the search distance and 0 if they have a greater distance.  

 
For the negative exponential and restricted negative exponential functions, substitute the 

selected value for alpha in the alpha box and for the restricted negative exponential and uniform 
functions, specify the search distance and distance units.  The default is a negative exponential 
with an alpha of -1.0 in miles. 

 
Value for 0 distance between records 

 
The advanced options dialogue has a parameter for the minimum distance to be assumed 

between different records.  If two records have the same X and Y coordinates (which could 
happen if the records are individual events, for example), then the distance between these records 



 
2.118 

will be 0.  This could cause unusual calculations in estimating spatial effects.  Instead, it is 
more reliable to assume a slight difference in distance between all records.  The default is 0.005 
miles but the user can modify this (including substituting 0 for the minimal distance). 
 

Output 
 

The output depends on whether an MLE or an MCMC model has been run. 
 

 Maximum Likelihood (MLE) Model Output 
  

The MLE routines (Normal/OLS, Poisson, Poisson with linear correction, MLE 
Poisson-Gamma, Binomial Probit, and Binomial Logit/Logistic) produce a standard output that 
includes summary statistics and estimates for the individual coefficients.   
 

MLE Summary Statistics 
  

The summary statistics include: 
 

Information about the model 
 

1. The data file 
2. The dependent variable 
3. The number of records 
4. The residual degrees of freedom (N – number of parameters estimated) 
5. The type of regression model (Normal/OLS, Poisson, Poisson with linear 

correction, Poisson-Gamma, Binomial Logit, Binomial Probit) 
6. The method of estimation (MLE) 

 
Likelihood statistics 

 
7. Log-likelihood estimate, which is a negative number.  For a set number of 

independent variables, the more negative the log-likelihood the better. 
8. Log-likelihood per case.  This divides the log-likelihood by the sample size (N).  

This indicates the average contribution to the log-likelihood of each observation.  
The more negative, the better. 

9. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 
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10. AIC per case.  This divides the AIC statistic by the sample size (N).  This 
indicates the average contribution to the AIC of each observation.  The smaller, 
the better. 

11. Bayesian Information Criterion (BIC), sometimes known as the Schwartz Criterion 
(SC), adjusts the log-likelihood for the degrees of freedom.  The smaller the BIC, 
the better. 

12. BIC per case.  This divides the BIC/SC statistic by the sample size (N). This 
indicates the average contribution to the BIC/SC of each observation.  The 
smaller, the better. 

13. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

14. The probability value of the deviance based on a Chi-square test with N-K-1 
degrees of freedom where K is the number of independent variables. 

15. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data better. 

16. The probability value of the Pearson Chi-square based on a Chi-square test with 
N-K-1 degrees of freedom where K is the number of independent variables. 
 

Model error estimates 
 

17. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 
smaller MAD is better. 

18. Quartiles for the Mean Absolute Deviation.  For any one quartile, smaller is 
better. 

19. Mean Squared Predictive Error (MSPE).  For a set number of independent 
variables, a smaller MSPE is better. 

20. Quartiles for the Mean Squared Predictive Error.  For any one quartile, smaller is 
better. 

21. Squared multiple R (for Normal/OLS models only).  This is the percentage of the 
dependent variable accounted for by the independent variables.  

22. Adjusted squared multiple R (for Normal/OLS models only).  This is the squared 
multiple R adjusted for degrees of freedom.  

 
Dispersion tests 

 
23. Adjusted deviance. This is a measure of the difference between the observed and 

predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates 
over-dispersion. 
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24. Probability of adjusted deviance. This is the probability associated with the 
adjusted deviance test with 1 degree of freedom.  

25. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for 
degrees of freedom.  The smaller the Pearson Chi-square, the better. A value 
greater than 1 indicates over-dispersion. 

26. Probability of Adjusted Pearson Chi-square.  This is the probability associated 
with the Pearson Chi-square test with 1 degree of freedom. 

27. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  For example, in a pure Poisson distribution, the dispersion 
should be 1.0.  In practice, a ratio greater than 10 indicates that there is too much 
variation that is unaccounted for in the model.  Either add more variables or 
change the functional form of the model. 

28. Z-test for dispersion multiplier (Poisson models only).  This is a test for whether 
the dispersion parameter is significantly greater than that assumed by the Poisson 
model.  It is a test of over-dispersion. 

29. P-value for Z-test of dispersion parameter (Poisson models only).  This is the 
one-tail probability level associated with the Z-test. 

30. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 

 
MLE Individual Coefficient Statistics 

 
For the individual coefficients, the following are output: 

 
31. The coefficient.  This is the estimated value of the coefficient from the maximum 

likelihood estimate. 
32. Standard Error.  This is the estimated standard error from the maximum 

likelihood estimate. 
33. Pseudo-tolerance.  This is the tolerance value based on a linear prediction of the 

variable by the other independent variables.  See equation Up. 2.18. 
34. Z-value.  This is asymptotic Z-test that is defined based on the coefficient and 

standard error.  It is defined as Coefficient/Standard Error. 
35. p-value. This is the two-tail probability level associated with the Z-test. 

 
Markov Chain Monte Carlo (MCMC) Model Output 

 
The MCMC routines (Poisson-Gamma, Poisson-Gamma-CAR/SAR, Poisson-Lognormal, 

Poisson-Lognormal-CAR/SAR, Binomial Logit, Binomial Logit-CAR/SAR) produce a standard 
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output and an optional expanded output.  The standard output includes summary statistics and 
estimates for the individual coefficients.   
 

MCMC Summary Statistics 
  

The summary statistics include: 
 

Information about the model 
 

1. The dependent variable 
2. The number of records 
3. The sample number.  This is only output when the block sampling method is 

used. 
4. The number of cases for the sample.  This is only output when the block sampling 

method is used. 
5. Date and time for sample.  This is only output when the block sampling method is 

used 
6. The residual degrees of freedom (N – number of parameters estimated) 
7. The type of regression model (Normal, Normal-CAR/SAR, Poisson-Gamma, 

Poisson-Gamma-CAR/SAR, Poisson-Lognormal, Poisson-Lognormal-CAR/SAR, 
Binomial Logit, Binomial Logit-CAR/SAR) 

8. The method of estimation 
9. The number of iterations 
10. The ‘burn in’ period 
11. The block size is the expected number of records selected for each block sample.  

The actual number may vary. 
12. The number of samples drawn.  This is output when the block sampling method 

used. 
13. The average block size. This is output when the block sampling method used. 
14. The type of distance decay function used. This is output for models that use CAR 

or SAR spatial autocorrelation functions. 
15. Condition number for the distance matrix.  If the condition number is large, then 

the model may not have properly converged.  This is output for the 
Poisson-Gamma-CAR model only.   

16. Condition number for the inverse distance matrix.  If the condition number is 
large, then the model may not have properly converged.  This is output for the 
Poisson-Gamma-CAR/SAR or Poisson-Lognormal-CAR/SAR models only. 
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Likelihood statistics 
 

17. Log-likelihood estimate, which is a negative number.  For a set number of 
independent variables, the smaller the log-likelihood (i.e., the most negative) the 
better. 

18. Log-likelihood per case.  This divides the log-likelihood by the sample size (N).  
This indicates the average contribution to the log-likelihood of each observation.  
The more negative, the better. 

19. Deviance Information Criterion (DIC) for Poisson models only.  This adjusts the 
log-likelihood for the effective degrees of freedom. The smaller the DIC, the 
better. 

20. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

21. AIC per case.  This divides the AIC statistic by the sample size (N).  This 
indicates the average contribution to the AIC of each observation.  The smaller, 
the better. 

22. Bayesian Information Criterion (BIC), sometimes known as the Schwartz Criterion 
(SC), adjusts the log-likelihood for the degrees of freedom.  The smaller the BIC, 
the better.  

23. BIC per case.  This divides the BIC/SC statistic by the sample size (N). This 
indicates the average contribution to the BIC/SC of each observation.  The 
smaller, the better. 

24. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

25. The probability value of the deviance based on a Chi-square test with N-K-1 
degrees of freedom where K is the number of independent variables. 

26. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data well 

27. The probability value of the Pearson Chi-square based on a Chi-square test with 
N-K-1 degrees of freedom where K is the number of independent variables. 
 

Model error estimates 
 

28. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 
smaller MAD is better. 

29. Quartiles for the Mean Absolute Deviation.  For any one quartile, smaller is 
better. 

30. Mean Squared Predictive Error (MSPE).  For a set number of independent 
variables, a smaller MSPE is better. 
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31. Quartiles for the Mean Squared Predictive Error.  For any one quartile, smaller is 
better. 

 
Dispersion tests 

 
32. Adjusted deviance. This is a measure of the difference between the observed and 

predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates 
over-dispersion. 

33. The probability value of the adjusted deviance based on a Chi-square test with 1 
degree of freedom. 

34. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for 
degrees of freedom.  The smaller the Pearson Chi-square, the better. A value 
greater than 1 indicates over-dispersion. 

35. The probability value of the adjusted Pearson Chi-square based on a Chi-square 
test with 1 degree of freedom. 

36. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  In a pure Poisson distribution, the dispersion should be 1.0.  
In practice, a ratio greater than 10 indicates that there is too much variation that is 
unaccounted for in the model.  Either add more variables or change the functional 
form of the model. 

37. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 

 
MCMC Individual Coefficients Statistics 

 
For the individual coefficients, the following are output: 

 
38. The mean coefficient.  This is the mean parameter value for the N-k iterations 

where k is the ‘burn in’ samples that are discarded. With the MCMC block 
sampling method, this is the mean of the mean coefficients for all block samples. 

39. The standard deviation of the coefficient.  This is an estimate of the standard error 
of the parameter for the N-k iterations where k is the ‘burn in’ samples that are 
discarded.  With the MCMC block sampling method, this is the mean of the 
standard deviations for all block samples. 

40. t-value.  This is the t-value based on the mean coefficient and the standard 
deviation.  It is defined by Mean/Std. 

41. p-value.  This is the two-tail probability level associated with the t-test. 
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42. Adjusted standard deviation (Adj. Std). The block sampling method will produce 
substantial variation in the mean standard deviation, which is used to estimate the 
standard error.  Consequently, the standard error will be too large.  An 
approximation is made by multiplying the estimated standard deviation by  

 
 where  is the average sample size of the block samples and N is the number of 

records.  If no block samples are taken, then this statistic is not calculated. 
43. Adjusted t-value.  This is the t-value based on the mean coefficient and the 

adjusted standard deviation.  It is defined by Mean/Adj_Std.  If no block 
samples are taken, then this statistic is not calculated. 

44. Adjusted p-value.  This is the two-tail probability level associated with the 
adjusted t-value. If no block samples are taken, then this statistic is not calculated. 

45. MC error is a Monte Carlo simulation error.  It is a comparison of the means of m 
individual chains relative to the mean of the entire chain.  By itself, it has little 
meaning. 

46. MC error/Std is the MC error divided by the standard deviation.  If this ratio is 
less than .05, then it is a good indicator that the posterior distribution has 
converged. 

47. G-R stat is the Gelman-Rubin statistic which compares the variance of m 
individual chains relative to the variance of the entire chain.  If the G-R statistic is 
under 1.2, then the posterior distribution is commonly considered to have 
converged. 

48. Spatial autocorrelation term (Phi) for CAR/SAR models only.  This is the 
estimate of the fixed effect spatial autocorrelation effect.  It is made up of three 
components: a global component (Rho); a local component (Tauphi); and a local 
neighborhood component (Alpha, which is defined by the user). 

49. The log of the error in the model (Taupsi).  This is an estimate of the unexplained 
variance remaining.  Taupsi is the exponent of the dispersion multiplier, eτψ.  For 
any fixed number of independent variables, the smaller the Taupsi, the better. 

 
Expanded Output (MCMC only) 

 
If the expanded output box is selected, additional information on the percentiles from the 

MCMC sample are displayed.  If the block sampling method is used, the percentiles are the 
means of all block samples.  The percentiles are: 
 

50. 2.5th percentile 
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51. 5th percentile 
52. 10th percentile 
53. 25th percentile 
54. 50th percentile (median) 
55. 75TH percentile 
56. 90th percentile 
57. 95th percentile 
58. 97.5th percentile 

 
The percentiles can be used to construct confidence intervals around the mean estimates or 

to provide a non-parametric estimate of significance as an alternative to the estimated t-value in 
the standard output.  For example, the 2.5th and 97.5th percentiles provide approximate 95 
percent confidence intervals around the mean coefficient while the 0.5th and 99.5th percentiles 
provide approximate 99 percent confidence intervals. 
 

The percentiles will be output for all estimated parameters including the intercept, each 
individual predictor variable, the spatial effects variable (Phi), the estimated components of the 
spatial effects (Rho and Tauphi), and the overall error term (Taupsi). 
 

Output Phi Values (CAR/SAR models only) 
 

For CAR or SAR models only, the individual Phi values can be output.  This will occur if 
the sample size is smaller than the block sampling threshold.  Check the ‘Output Phi value if 
sample size smaller than block sampling threshold’ box. An ID variable must be identified and a 
DBF output file defined.  
 

Multicollinearity Among the Independent Variables in the Regression Model 
 

A major consideration in any regression  model is that the independent variables are 
statistically independent.  Non-independence is called Multicollinearity.  Non-independence 
means that there is overlap in prediction among two or more independent variables.  This can 
lead to uncertainty in interpreting coefficients as well as an unstable model that may not hold in 
the future.  Generally, it is a good idea to reduce Multicollinearity as much as possible.   

 
A tolerance test is given for each coefficient.  This is defined as 1 – the R-square of the 

independent variable predicted by the remaining independent variables in the equation using an 
Ordinary Least Squares model.  It is an indicator of how much the other independent variables in 
a model account for the variance of any particular independent variable.  Since the method uses 
the Ordinary Least Squares methods, it is an approximate (pseudo) test for the functions estimated 
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by maximum likelihood.  A message is displayed that indicates probable or possible 
Multicollinearity. If there is substantial Multicollinearity (indicated by low tolerance values), it is 
a good idea is to drop one of the multicolinear independent variables and re-run the model. 
However, each of the coefficients should be inspected carefully before accepting a final model. 
 

Graph of Residual Errors 
 
While the output page is open, clicking on the graph button will display a graph of the 

residual errors (on the Y axis) against the predicted values (on the X axis).  Only residual errors 
that vary between -200 and +200 are shown to allow most of the errors to be displayed. 
 

Save Output 
 

The predicted values and the residual errors can be output to a DBF file with a 
RegOut<root name> with the root name being provided by the user. The output includes all the 
variables in the input data set plus two new ones: 1) the predicted values of the dependent variable 
for each observation (with the field name PREDICTED); and 2) the residual error values, 
representing the difference between the actual /observed values for each observation and the 
predicted values (with the field name RESIDUAL).  The file can be imported into a spreadsheet 
or graphics program and the errors plotted against the predicted dependent variable. 
 

Save Estimated Coefficients 
 

The individual coefficients can be output to a DBF file with a RegCoeff <root name> with 
the root name being provided by the user. This file can be used in the ‘Make Prediction’ routine 
under Regression II. 

 
Diagnostic Tests 

 
The regression module has a set of diagnostic tests for evaluating the characteristics of the 

data and the most appropriate model to use.  There is a diagnostics box on the Regression I page.   
 

Diagnostics are provided on:  
 

1. The minimum and maximum values for the dependent and independent variables 
2. Skewness in the dependent variable 
3. Spatial autocorrelation in the dependent variable 
4. Estimated values for the distance decay parameter – alpha, for use in the CAR or 

SAR models 
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5. Multicolinarity among the independent variables 
 

Minimum and Maximum Values for the Variables 
 

First, the minimum and maximum values of both the dependent and independent variables 
are listed.  A user should look for ineligible values (e.g., -1) as well as variables that have a very 
high range.  The MLE routines are sensitive to variables with very large ranges. 
 

Skewness Tests 
 

Skewness in the dependent variable can distort a linear model by allowing high values to 
be underestimated while allowing low values to be overestimated and a Poisson-type model is 
preferred over the linear for highly skewed variables. 
 

The diagnostics utility tests for skewness using two different measures: 1) the “g” statistic, 
and 2) the ratio of the simple variance to the simple mean.  Either significant “g” scores or 
variance-to-mean ratios greater than about 2:1 should make the user cautious about using a linear 
model. If either measure indicates skewness, CrimeStat prints out a message indicating the 
dependent variable appears to be skewed and that a Poisson or Poisson-Gamma model should be 
used.  
 

Testing for Spatial Autocorrelation in the Dependent Variable 
 

The third type of test in the diagnostics utilities is the Moran’s “I” coefficient for spatial 
autocorrelation.  If the “I” is significant, CrimeStat outputs a message indicating that there is 
definite spatial autocorrelation in the dependent variable and that it needs to be accounted for, 
either by a proxy variable or by estimating a CAR or SAR model.   
 

Estimating the Value of Alpha for CAR or SAR Models 
 

The fourth type of diagnostic test is an estimate of a plausible value for the distance decay 
function, α, in CAR or SAR models.   Three values of alpha are given in different distance 
units, one associated with a weight of 0.9 ( a very steep distance decay), one associated with a 
weight of 0.75 (a moderate distance decay), and one associated with a weight of 0.5 (a shallow 
distance decay).  Users should run the Moran Correlogram and examine the graph of the drop off 
in spatial autocorrelation to assess what type of decay function most likely exists.  The user 
should choose an alpha value that best represents the distance decay and should define the 
distance units for it.   
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Multicollinearity Test 
 

The fifth type of diagnostic test is for Multicollinearity among the independent predictors. 
The pseudo-tolerance test is presented for each independent variable.  This is defined as 1-R2 for 
the other independent variables in the equation.  Each independent variable should have a high 
tolerance (0.90 or higher).  CrimeStat prints out an error message if tolerance is not high. 
 
Regression Modeling II 
 

The Regression II module allows the user to apply a model to another data set and make a 
prediction.  The ‘Make prediction’ routine allows the application of coefficients to a data set.  
There are two types of models that are fitted – linear and Poisson.  For both types of model, the 
coefficients file must include information on the intercept and each of the coefficients.  The user 
reads in the saved coefficient file and matches the variables to those in the new data set based on 
the order of the coefficients file.   
 

If the model had estimated a general spatial effect from a CAR or SAR model, then the 
general Phi will have been saved with the coefficient files.  If the model had estimated specific 
spatial effects from a CAR or SAR model, then the specific Phi values will have been saved in a 
separate Phi coefficients file.  In the latter case, the user must read in the Phi coefficients file 
along with the general coefficient file. 
 
 Data File 
 

The data set for the regression module can be the Primary file or another file.  If it is the 
Primary file, then it must have X and Y coordinates defined on each record.  If it is another file, 
click on ‘Other’ and then identify the file. Only ‘dbf’ or ‘txt’ files are allowed. 
 
 Saved Coefficients File 
 
 In order to make a prediction, a model must have already been calibrated and the 
coefficients saved in a coefficients file.  Point to the directory where the coefficients file has 
been saved and identify it. 
 
  Matching Independent Variables 
 
 The independent variables that were used in the calibrated coefficients file will be listing 
in the matching column.  Select corresponding variables from the input data file.  The items 
should be listed in the same order as in the matching column. 



Figure 2.18:

Regression Modeling II
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  Use Phi coefficients 
 
 If the saved coefficients file was from a model that was a spatial regression, the saved Phi 
coefficients can be also applied to the new data set.  The number of Phi coefficients must match 
the number of records in the input data file, however.  For example, this would be appropriate 
when a model is calibrated on zones which do not change over time.  Therefore, the Phi 
coefficients estimated for the zones in one time period could be applied to the same zones to make 
a prediction for a later time period. 
 
 Point to the directory where the Phi coefficients have been saved and identify the file. 
 
 Output 
 
 The screen output provides predictions of the value of the dependent variable in the same 
order as in the input data set. 
 
 Save Predicted Values 
 

The predicted values and the residual errors can be output to a DBF file with a 
RegMakePred<root name> with the root name being provided by the user.  A column called 
PREDICTED will be added that contains the predicted value of the dependent variable. 

 
Discrete Choice Modeling I 
 

The aim of the discrete choice I module is to estimate a functional relationship between a 
discrete (nominal) dependent variable and one or more independent variables.  It is a statistical 
method that is derived from utility theory, i.e. random utility maximization (RUM) theory.  A 
‘decision maker’ (e.g., an offender committing a crime) is faced with a set of alternatives, labeled 
1 through J, from which s/he has to select exactly one.   

 
The probability that an alternative will be chosen is a function of its observed and 

unobserved utility to the decision maker.  The observed utility is a function of known variables 
and can be expressed as a linear combination of the independent variables. The unobserved utility 
is the random error component of the model.  The estimated probability is the exponentiated 
observed utility of a specific alternative, J, divided by the sum of the exponentiated observed 
utilities of all available alternatives.   

 
There are two general forms of the discrete choice model, multinomial logit and 

conditional logit.  The multinomial logit model estimates the probability that a specific  



Figure 2.19:

Discrete Choice Modeling I
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alternative, 1 to J, as a function of characteristics of the decision makers, either personal 
characteristics (e.g., age, gender, ethnicity) or environmental characteristics (e.g., the median 
household income of the block in which the decision maker lives).  The probability that any one 
alternative is chosen is estimated as a function of these characteristics.  Per variable 
(characteristic), there is one parameter estimated for every alternative, one of which is the 
reference alternative in which the coefficients are automatically set to 0.  
 

The multinomial logit model is most appropriate when the outcome of the choice is 
expected to depend mostly on characteristics of the decision maker (and not on observed 
characteristics of the alternatives) and when there are only a limited number of alternatives 
available (e.g., 5 weapon choices).  The conditional logit model is a more general model and 
estimates the probability of a set of alternatives, 1 to J, as a function of characteristics of the 
alternatives themselves, possibly in interaction with characteristics of the decision maker.  The 
conditional logit model is most appropriate when the outcome of the choice is expected to depend 
mostly on the characteristics of the alternatives, and can handle a large number of alternatives.  
However, the analysis file becomes very large.  There is a single parameter estimated for every 
characteristic of the alternative. 

 
Although the multinomial and the conditional logit are based on a single underlying 

statistical model, their estimation requires different data structures.  In the multinomial logit 
model, the data contain a single record for every decision maker, and a single dependent 
(nominal) variable that indicates which alternative (1..J) was chosen. Thus, if there are N decision 
makers, there are N records and at least one varible indicates which alternative was chosen. The 
file structure is thus similar to that used in the regression module.  

 
In the conditional logit model, for each decision maker there is a record for every choice 

that this decision maker is faced. Thus, if there are N decision makers and J alternatives available 
to every decision maker, then the data set has N*J records, one for every alternative faced by the 
decision maker. In this case, the alternative that was selected has to be indicated by a dichotmous 
(dummy) variable (1 for chosen and 0 for not chosen). 

 
 Create Data set for Conditional Logit Model 

 
This routine is optional. It simplifies the task of creating a database for use in the 

conditional logit model.  It matches a case database with a alternatives data base, producing the 
cross join of both databases.  The case database is the database for the multinomial logit model. 
It will thus have the individual records of the decision makers – offenders, individuals, 
organizations.  It will include at least one variable indicating the alternative that the decision 
maker selected (e.g., type of crime committed, the type of weapon used, the location where the 
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crime was committed) as well as characteristics of the individuals or characteristics associated 
with the individuals (e.g., age, gender, ethnicity, median household income of the zone where the 
decision maker lives time of event, day of week of event).  

 
The alternatives database, on the other hand, lists the individual alternatives that were 

available (e.g., all the locations where a crime could be committed, all the different types of 
weapons that were used by different offenders) as well as attributes associated with the 
alternatives themselves (e.g., median household income or number of employees working at the 
locations, or characteristics associated with each type of weapon).   

 
 The joined has one record per alternative for each case.  Thus, if there are N individuals 
faced with J choices, then the matching routine will create N*J records.  It should be noted that 
the matching assigns every characteristic associated with a choice to every case associated with a 
decision maker.  A field, called CHOSEN, is automatically added to every record.  This field 
has the value 1 for alternatives that were chosen and 0 for alternatives that were not chosen.  The 
Chosen field should thus sum to N (i.e., only one record per decision maker should have a 
selected alternative).  Also, as an option, and only if both the individuals and the alternatives 
have geographic coordinates, a second field called DISTANCE will be added that calculates the 
distance from each case record to each alternative record.  The user must specify which distance 
units are to be used (miles, kilometers, meters, feet, or nautical miles). 

 
For example, if both the case database and the alternatives database contain X and Y 

coordinates, then it is possible to calculate the distance between every decision maker and every 
choice. In most situations, locations at shorter distances are more likely to be chosen.  
 
 The routine cannot calculate other interactions associated with a specific alternative and 
particular decision maker, and such interactions must be added to the data outside CrimeStat. 
Interactions between variables in the data can be calculated. For example, to test whether 
increasing distance makes alternatives less attractive for juvenile offenders but not for adult 
offenders, an interaction DISTANCE x AGE can be calculated. Other interactions require 
additional information, for example if location choice is what is modeled, one may want to add a 
variable indicating, for each alternative location,  how many prior offences the offender  has 
committed before in that alternative location. In these cases the external file is constructed by the 
user, and the step “Create data set for conditional discrete choice model” is skipped.   

 
Input Case File 

  
The case data set for the Discrete Choice I module can be the Primary file or another file.  

If it is the Primary file, then it must have X and Y coordinates defined on each record.  If it is 
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another file, then there are no coordinates defined.  Click on ‘Other’ and then identify the file. 
Only ‘dbf’ or ‘txt’ files are allowed.  To avoid confusion, the user must verify that no 
variable/field in the input case file has the same name as any variable in the Input Alternatives 
File (see below).  
 
  Case ID 
 
 Select the Case ID. The Input Case File must have a Case ID, a variable that uniquely 
identifies cases in the Input Case File.  
 
  Choice variable 
 
 Select the Choice Variable. The Input Case File must contain a variable (field) that 
identifies alternative chosen by the decision maker.  For example, if the choice is about the type 
of weapon used, then the Choice Variable indicates whether it was a gun, a knife, strong arm, and 
so forth.  Or, if the choice is the census tract in which a crime was perpetrated, then the Choice 
Variable identifies the census tract where the incident occurred.  
 

Input Alternatives File 
 
The alternatives data set for the Discrete Choice I module can be the Primary file or 

another file. If it is the Primary file, then it is a spatial file and must have X and Y coordinates on 
each record.  If it is another file, then there are no coordinates defined.  Click on ‘Other’ and 
then identify the file.  Only ‘dbf’ or ‘txt’ files are allowed. To avoid confusion, the user must 
verify that no variable in the input alternative file has the same name as any variable in the Input 
Case File. 
 
  Alternatives ID 
 
 Select the Alternatives ID.  The Alternatives File must have an Alternative ID, a variable 
that uniquely identifies records in file. The coding of the Alternative ID variable must exactly 
match the coding of the Choice Variable in the Input Case File. Be careful about ID names.  If 
the ID names are the same, the name will appear twice in the file with the first use representing 
the case file and the second use representing the alternatives file.  The names reflect the link 
between each case ID and each alternatives ID.  It will be better to use different names to 
confusion. 
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 Calculate Distance between Cases to Alternatives 
 
 There is an optional box that allows the routine to calculate the distance from each case 
record to each alternative record.  If checked, the routine will calculate the distance.  This only 
applies if both the case file and the alternatives file are either the Primary file or Secondary. The 
user must specify the distance units to be used in the calculation (in miles, kilometers, feet, 
meters, or nautical miles).  The box is checked by default.  The saved filed will have a new 
field called DIST.  For example, if the X/Y coordinates for an offender’s home address are 
coded in the Input Case File while the coordinates for census tract are recorded in the Input 
Alternatives File, then the distances from the offender’s home to each alternative census tract will 
be calculated. 
 

Save Output 
 
The matched Input Case and Input Alternatives file is saved as a new file in ‘dbf’ format, 

that can subsequently be used to estimate a conditional (but not multinomial) logit model, as 
described below under ‘Estimating a conditional logit model’.  The user should define the name 
of the file and point to the directory where it is saved.  The output includes all fields from the 
case file and all fields from the choice file, and optionally a field DIST containing calculated 
distances.  There will be J records for each of the N cases.  There will be an automatically 
added field called CHOSEN that takes the value ‘1’ for the choice that was selected and ‘0’ for 
choices that were not selected.  

 
 Note that because the joined data base can be very large, before you start creating a data 
set for conditional discrete choice model, be careful to include in the alternatives and choice files 
only variables that you are likely to use in your analysis, and to format them to be as small as 
possible. 
 

Estimate Model 
 
 The Estimate Model routine will estimate a discrete choice model, either the multinomial 
logit or the conditional logit.   
 
 Estimating a Multinomial Logit Model 
 
 The multinomial logit model is used when there is one record per decision maker with a 
choice having been made by the decision maker.  The model estimates the effect of each 
independent variable on the probability of each distinct alternative.  The data are structured so 
that there is one record per decision maker with the choice variable indicating which alternative 
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was chosen. The data set is similar to that of the regression model in that there is one record per 
decision maker.  
 

The model then estimates the effects of the independent variables on the probability of 
each alternative.  By definition, one of the alternatives (by default the most frequently chosen 
alternative, otherwise to be chosen by the user) is the reference alternative to which the other 
alternatives are compared.  
 The multinomial logit model is always estimated with a constant. This type of model is 
appropriate when values of the predictor variables only vary across cases (decision-makers), not 
across alternatives.   
 
 Estimating a Conditional Logit Model 
 
 The conditional logit model, on the other hand, is used when the values of the predictor 
variables vary across alternatives. In that case, there is one record per alternative per decision 
maker.  That is, the decision maker is faced with J alternatives but chooses only one.  The 
database must indicate which of the J alternatives was selected and the model estimates the effect 
of each independent variable on choosing an alternative.  There is a record for every alternative 
faced by the decision maker.  The parameter estimates indicate the effects of the independent 
variables on the likelihood that the alternative is selected.  
 
 Typically, if there are N decision makers and J alternatives, then there will be normally N 
x J records.  It is possible for a particular decision maker to have fewer than J alternatives.  The 
model will still work.   
 

Data File 
 
The data set for the model can be either the Primary file or another file (the Secondary file 

is not available).  If the Primary file is used, the coordinate system and distance units are the 
same as were defined on the Primary file page.   
 

Select file for other discrete choice file 
 

 If the discrete choice file is another file than the Primary file, the user must browse and 
identify the file.  
 

Choice Variable 
 
A list of variables from the discrete choice file is displayed.  There is a box for defining 
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the choice variable.  The user must select one choice variable.  .  For the conditional logit 
model, on the other hand, the variable contains a set of 1’s (for selected alternatives) or 0’s (for 
alternatives that were not selected).  If the data set was constructed with the CrimeStat ‘Create 
data set for conditional discrete choice model’ routine, then the field CHOSEN should be used.  

 
Note that the field that is added for the choice variable (whether CHOSEN or another 

variable) is inspected for unique values.  If the data set is large, it may take awhile to filter 
through those values. Eventually, though, the variable will be added to the choice variable 
dialogue. 

 
Independent Variables 

 
There is a box for defining the independent variables.  The user must choose one or more 
independent variables.  There is no limit to the number. The variables are output in the same 
order as specified in the dialogue so a user should consider how these are to be displayed. The 
order in which the variables are entered does not affect the estimated parameters. 
 

Type of Discrete Choice Model 
 
 The type of discrete choice model to be estimated must be specified.  The choices are 
Multinomial (logit) or Conditional (logit).  The default model is the Conditional logit. NOTE: 
the file used for a Multinomial Logit model is different than the file used for a Conditional Logit 
model.  With the file used in the Multinomial Logit model, there is one record per case with the 
choice specified on the record.  With the file used in the Conditional Logit model, there is one 
record per alternative with J records per case (where J is the number of alternatives).  Be sure to 
use the correct file type.  The routine assumes that the data are consistent with the type of model 
chosen.  For a multinomial logit model, the routine will treat each record as a separate decision 
maker and will estimate a model for each choice less the reference choice.  For a conditional 
logit model, the routine will treat each record as one of J choices (where J is defined by the user – 
see below) and will estimate a single model for the decision. 
 
 The user needs to be very careful that the correct data set is used with the appropriate 
model because the routine can estimate its equations with either of these data sets.  That is, if the 
data set is appropriate for the multinomial logit model but the user specifies a conditional logit 
model, the routine will estimate a single equation treating multiples of J records as a single 
decision maker.  Similarly, if the data set is appropriate for a conditional logit model but the user 
specifies a multinomial logit model, the routine will treat each record as if it were a separate 
decision maker and will estimate one equation for each choice that it finds in the choice variable.  
The results in both these cases will be meaningless since the there is a mismatch between the data 
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set and the type of model selected. In short, the user should be aware of this. 
 
  Reference alternative (multinomial logit model only) 
 
 For the multinomial logit model, the user should specify which choice is to be used as the 
reference.  The constant and the coefficients for the reference choice will automatically be 0. 
The user should specify a particular choice from the list of available alternatives or select the most 
frequently used alternative as the reference choice.  Keep in mind that the coefficients will 
change depending on which alternative is selected as the reference choice since a comparison is 
always relative.  This will affect the interpretation of the coefficients though not the estimated 
probabilities. 
 
 For the conditional logit model, however, there is no reference choice.  Therefore, this 
field will be blanked out when the type of discrete choice model is conditional. 
 
  Case ID (conditional logit model only) 
 
 When a conditional logit model is estimated, each case contributes multiple records to the 
data file (as many as there are alternatives). In order for CrimeStat to know which records belong 
to the same case (decision maker), the user must specify a Case ID variable, i.e. a variable that 
uniquely identifies cases (decision makers). If the data set was created with the CrimeStat ‘Create 
Data set for Conditional Logit Model’ routine, the variable is the Case ID variable specified in 
that routine. 
 
 Output for the Discrete Choice Model 
 
 The output includes both summary statistics and individual variable coefficients estimates.  
The output will vary between the multinomial logit and conditional logit models. 
 

Discrete Choice Model Summary Statistics 
  

The summary statistics include: 
 

Information about the model 
 

1. Date and time 
2. The data file 
3. The dependent (choice) variable 
4. The number of records 
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5. The degrees of freedom  
6. The type of choice model (multinomial discrete or conditional discrete) 
7. Number of alternatives 
8. The method of estimation (MLE – maximum likelihood estimation, only in this 

version). 
 

Discrete choice model likelihood statistics 
 

9. Log-likelihood estimate, which is a negative number.  For a set number of 
independent variables, the smaller the log-likelihood (i.e., the most negative) the 
better. 

10. Log-likelihood per case.  Smaller (more negative) values are better. This is useful 
when comparing a similar model but with different numbers of records. 

11. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

12. AIC per case.  Smaller values are better. 
13. Bayesian Information Criterion (BIC), sometimes known as the Schwartz Criterion 

(SC), adjusts the log-likelihood for the degrees of freedom. The smaller the BIC, 
the better. 

14. BIC per case. Smaller values are better. 
15. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 

smaller MAD is better. 
16. Mean Squared Predictive Error (MSPE).  For a set number of independent 

variables, a smaller MSPE is better. 
 
Discrete Choice Individual Coefficients Statistics 

 
There is a different coefficient output for the multinomial logit model than for the 

conditional logit model.  The multinomial logit model will output constants and individual 
coefficients for each of J-1 alternatives (where J is the total number of alternatives). The constant 
and coefficients for the reference alternative are automatically defined as zero (0).  For example, 
if there are four alternatives, then three sets of equations will be output, one for each of the J-1 
(4-1=3) alternatives.   

 
The coefficients are always relative to the reference alternative.  Therefore, a positive 

coefficient indicates that the independent variable contributes more for that alternative than for 
the reference alternative while a negative coefficient indicates that the independent variable 
contributes less for that choice than for the reference choice.  The significance test of the 



 
2.140 

coefficient indicates whether the difference is statistically significant or not compared to the 
reference alternative.  Note that the multinomial logit model always has a constant. 

 
On the other hand, the conditional logit model will output a single set of individual 

coefficients with no constant.  There is no reference choice and the coefficients are relative to 
not choosing a particular alternative (i.e., having a value of 0 for CHOSEN). 

 
For the individual coefficients, the following are output for each independent variable: 

 
1. The coefficient. 
2. The standard error of the coefficient. 
3. t-value. 
4. p-value. This is the two-tail probability level associated with the t-test. 
5. Odds ratio.  This is the exponentiation of the coefficient (i.e., eβ).  It indicates 

the relative odds of that variable affecting the choice relative to the reference 
choice (multinomial logit model) or relative to 0 (conditional logit model). 

 
Average predicted probability 

 
 For the conditional logit model only, an additional table is output that indicates the 
average predicted probability of the model for those cases that were selected (i.e., in which 
CHOSEN=1), for those cases that were not selected (i.e., in which CHOSEN=0), and for all cases.  
The number of records associated with each category and the standard deviation are given. 

 
Multicollinearity Among Independent Variables in the Discrete Choice Model 
 
A major consideration in any regression model (including discrete choice) is that the 

independent variables are statistically independent. Non-independence is called Multicollinearity 
and means that there is overlap in prediction among two or more independent variables.  This 
can lead to uncertainty in interpreting coefficients as well as to an unstable model that may not 
hold in the future.  Generally, it is a good idea to reduce Multicollinearity as much as possible.   

 
A tolerance test is given for each coefficient.  This is defined as 1 – the R-square of the 

independent variable predicted by the remaining independent variables in the equation using an 
Ordinary Least Squares model.  It is an indicator of how much the remaining variables in a 
model account for the variance of any particular independent variable.  Since the method uses 
the Ordinary Least Squares (OLS) methods, it is an approximate (pseudo) test for the discrete 
choice routines.  OLS assumes normality and constant residual errors.  However, many 
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independent variables are not normally distributed (e.g., income, distance traveled, number of 
persons living in poverty).   

 
Consequently, the use of OLS to test for Multicollinearity is exact only when the 

independent variable being examined for tolerance is normally distributed; otherwise, it is an 
approximate test.  Nevertheless, it is useful indicator of multicollinearity.  If the tolerance is 
low, that definitely indicates that there is multicollinearity. On the other hand, a high tolerance 
level does not necessarily indicate that there is little multicollinearity. From the test, a guidance 
message is displayed that indicates probable or possible Multicollinearity. If there is substantial 
Multicollinearity (indicated by low tolerance values), it is a good idea is to drop one of the 
multicolinear independent variables and re-run the model.  
 

Save Output 
 
 The output from the discrete choice model can be saved.   
 
  Saved Multinomial Logit Output 
 
 For the multinomial logit model, the output is a ‘dbf’ file that includes all the input 
variables along with the estimated probability for each choice and the residual error for each 
choice (the observed choice, 1 or 0, minus the predicted probability).  The probability and 
residual error is presented for each of the J alternatives.  These are labeled with a ‘P_ ‘ for 
probability and ‘R_’ for residual error. The different alternatives are indicated by a subscript from 
0 (for the reference choice) through J-1 (for the other alternatives) in the same order in which they 
are listed in Reference Choice dialogue (excluding the reference choice itself).  For example, 
P_Choice0 is the estimated probability for choice 0 (the reference choice) while R_Choice3 is the 
estimated residual error for choice 3 (the third one listed in the list under Reference Choice 
excluding the reference choice itself). 
 
  Saved Conditional Logit Output 
 
 For the conditional logit model, the output is a ‘dbf’ file and includes all the input 
variables along with the estimated probability and the residual error for the case.  For each case 
ID, there will be only one record that was chosen.  Further, since the conditional logit model 
produces only one equation, there is only one probability and one residual error. The probability 
is labeled PREDPROB and the residual error is labeled RESID.  The residual error can be used 
to compare different models.  The MAD and MSPE statistics (discussed above) summarize the 
residual errors.  But, a user might want to plot the residuals against one of the independent 
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 Save Estimated Coefficients 
 
 The coefficients from either the multinomial logit or the conditional logit models can be 
saved for use with other data sets.  Specify a directory where the coefficients file is to be saved 
and provide a root name.  The saved coefficients file for the multinomial logit model will have a 
DCCoeffMNL prefix while the saved coefficients file for the conditional logit model will have a 
DCCoeffCNL prefix before the user defined root name. 
 
Discrete Choice Modeling II 
 
 The Discrete Choice II module allows the user to apply the estimated coefficients from a 
discrete choice model to another data set (or a subset of the same data set) and calculate predicted 
probabilities, for either the multinomial logit or the conditional logit model.  The ‘Make 
prediction’ routine allows the application of coefficients to a data set. The saved coefficients are 
applied to similar independent variables and to corresponding values of the choice variable to 
produce an estimated probability of an alternative. 
 
 Make Prediction 
 

There are two types of models that can be fitted – multinomial logit or conditional logit.  
For both types of model, the coefficients file must include information on each of the coefficients.  
In addition, the coefficients model for the multinomial must include the value of the constant.  
The user reads in the saved coefficient file and matches the variables to those in the new data set 
based on the order of the coefficients file.   
 
 Discrete Choice Data File 
 
 The new data set can be either the Primary file or another file.  If another file is being 
used, point to the directory where it is stored and identify it.  The structure of the file for which a 
prediction is made must be the same as that from which the model was initially calibrated.  That 
is, for a multinomial logit prediction, there must be a file with one record per decision maker and 
which includes and ID and each of the independent variables used in the prediction.  For a  
 
 
 
 

 
 



Figure 2.20:

Discrete Choice Modeling II
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conditional logit prediction, there must be a joined file with a record for every combination of 
case and alternative.   
 
 Discrete Choice Saved Coefficients File 
 
 In order to make a prediction, a model must have already been estimated and the 
coefficients saved in a coefficients file.  Point to the directory where the coefficients file has 
been saved and identify it. 
 
 Available Variables 
 
 The box labeled ‘Available variables’ will list all the fields on the input data set.  
 
 Independent Predictors 
 
 The independent variables that were used in the estimated coefficients file will be listed in 
the right column.  They will be in the same order as was estimated in the calibration file. 
 
 Matching variables 
 
 Select corresponding variables from the input data file for the middle column.  The items 
should be listed in the same order as in the ‘independent predictors’ column.  They should be 
similar variables in content but need not have the names as in the original data file. 
 
  Alternative Values (multinomial logit only) 
 
 The values of the choice variables from the input file will be displayed in the middle 
column. The order should match the values in the adjacent saved coefficients file column.  The 
‘Up’ and ‘Down’ buttons can be used to re-order the values to be sure they are matched exactly. 
 
  Saved coefficient values (multinomial logit model only) 
 
 The values of the saved coefficients file will be displayed in the right column. Additional 
values can be added with the “Add to” button and existing values can be removed with the 
“Remove” button.  It is essential that the values in the middle column match exactly their 
corresponding values in the right column. 
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  Reference alternative (multinomial logit only) 
 
 The reference alternative value is displayed. If it is not correct, type in the correct value to 
be used or, better yet, re-estimate the original model. This field will be blanked out for the 
conditional logit model since it is not appropriate. 
 Discrete Choice Prediction Output 
 
 The screen output provides predictions of the value of the dependent variable in the same 
order as in the input data set.  For the multinomial logit model, the predictions are labeled as 
CHOICE0 (for the reference choice), CHOICE1, CHOICE2, and so forth, in the same order as in 
the input data set. For each alternative, these predictions represent the probability that this 
alternative is chosen, given the values of the predictor variables.  
 
 For the conditional logit model, the prediction is applied to each available alternative.  
The screen output presents the predictions in matrix format with the case ID listed on the vertical 
axis and the choices listed on the horizontal axis (labeled CHOICE0, CHOICE1, CHOICE2, and 
so forth, in the same order as in the input data set). 
 
 Save Predicted Values for Discrete Choice Prediction 
 

The predicted values and the residual errors can be output to a DBF file with a 
DCMakePredMNL<root name> for the multinomial logit and DCMakePredCNL<root name> for 
the conditional logit with the root name being provided by the user. The output files differ 
between the multinomial and conditional logit models.   

 
 Multinomial Logit Prediction Output 
 
For the multinomial logit prediction, there is probability produced for each of the J 

alternatives.  The probabilities are labeled P_CHOICE0 (for the reference choice), P_CHOICE1, 
P_CHOICE2, and so forth in the same order as in the Choice Values dialogue (with the exception 
of the reference choice which is always defined as P_CHOICE0). The probabilities will sum to 
1.0 for all alternatives (within rounding-off error). 

 
 Conditional Logit Prediction Output 
 
For the conditional logit prediction, there is a single probability output which is applied to 

the particular record.  Since the data for the conditional logit model has a single record for each 
choice faced by the decision maker, the probability applies to that choice. The probabilities will 
sum to 1.0 for all alternatives (within rounding-off error). The column is labeled PREDPROB. 
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Time Series Forecasting 
 

The Time Series Forecasting module is designed for the forecasting of crime or other 
counts by specific geographical areas (districts) and the detection of unusual levels of activity 
above-and-beyond the forecast. The methods are useful for tactical deployment of police 
resources but can be used by other fields where the monitoring of events by time is a regular part 
of their procedures. The module has a single interface page. It requires a user to specify an input 
file – either the Primary File or another file, identify variables in the file used for forecasting, 
select a seasonality adjustment, specify an exponential smoothing model, turn on the Trigg 
Tracking Signal, define Trigg parameter values, and save the output. 

 
Input File 
 
This is the file with the data for the Time Series Forecasting module.  The data set for the 

regression module can be the Primary file or another file.  If it is the Primary file, then it must 
have X and Y coordinates defined on each record.  If it is another file, click on ‘Other’ and then 
identify the file. Only ‘dbf’ or ‘txt’ files are allowed. 

 
Each record represents a unique combination of an area unit and a season number.  A 

minimum of three years worth of data is required. For example, if there are 20 districts and 
monthly counts of the number of events over three years, then there will be 720 records (20 
districts x 12 months x 3 years). 

  
Areal Unit 
 
The areal unit is the name or identifier for the district of the incident being forecasted.  

The name can be alphanumeric or numeric.  
 
Year 
 
The year is the calendar year such as 2012 of each data record.  This must be recorded. 

As mentioned above, there must be at least three years of data. This is a numeric variable. 
 
Season Number 
 
This is the season number.  A season is the unique temporal identifier.  With this 

module, only months or weeks are allowed.  Thus, the season number is 1 through 12 for months 
and 1 through 52 for weeks.  Note that there cannot be partial weeks.  Since a year has 365 or  

 



Figure 2.21:

Time Series Forecasting
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366 days, there are 1 or 2 extra days left over.  These must be assigned to either the first week of 
the next year or the last week of the current year. 

 
Event Count 
 
This is the count of the number of events for a given areal unit, year, and time period. 
 
Temporal Unit of Measure 
 
This field defines the type of season used, either week or month. 
 
Seasonality Adjustment 
 
The seasonality adjustment is the adjustment made for each time observation for seasonal 

patterns such as when, for example, crime is low in February and high in July relative to the time 
series trend line.  The routine uses either the data from the entire jurisdiction (e.g., the entire 
city) - jurisdiction-wide, and applies this to each district or it uses individual data from each 
district so that each gets its own unique seasonal pattern - district-specific.  

 
Smoothing Method 
 
The smoothing method provides a more reliable estimate of the expected number of events 

based on past trends.  The routine provides two alternative models, simple smoothing or Holt 
exponential smoothing.  Simple smoothing assumes that there is no trend and that future values 
will follow past values.  Holt smoothing adds a trend line into the expected number of future 
events. The models have smoothing parameters which CrimeStat automatically chooses by 
minimizing one-step-ahead forecast errors.  

 
Trigg Tracking Signal 
 
The Trigg Tracking Signal provides a test statistic for unusual activity in the number of 

events. If the absolute value of the signal exceeds a pre-specified threshold value, then there is a 
“signal trip” meaning that it is likely that there is an unusual change in events. The signal has 
three parameters with default values provided, alpha, beta and the threshold value.   

  
 Alpha and beta are parameters that vary between 0 and 1. An alpha of 0.9 makes the 

tracking signal very reactive to current data on the anticipation of changes in a time series 
pattern.  A value of beta of 0.15 smoothes the measure of spread used to standardize the Trigg 
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signal and retains some history. Cohen, Garman, and Gorr (2009) found that these are the best 
performing parameter values. However, the user can experiment.   

 
Alpha 

 
Alpha is a smoothing parameter that varies between 0 and 1.  An alpha of 0.9 (the default 

value) makes the tracking signal very reactive to current data on the anticipation of changes in a 
time series pattern. Note that “Alpha” is the same parameter as used in simple exponential 
smoothing for forecasting, but here is used to smooth the Trigg tracking signal instead of crime 
counts. Decreasing the parameter alpha below 0.9 will reduce the importance of more recent 
events. 
 

Beta 
 

Beta is a smoothing parameter that varies between 0 and 1. A value of beta of 0.15 (the 
default value) smooths the measure of spread used to standardize the Trigg signal and retains a 
good amount of history while allowing estimates to drift and follow changing spread in the data. 
Increasing beta above 0.15 will smooth the data more and will reduce the Trigg more towards the 
mean.  

 
Threshold 

 
The threshold is the value of the Trigg Tracking Signal that indicates whether the expected 

number of events will be greater than what is normally expected (“business-as-usual”).  The 
default threshold of 1.5 is somewhat liberal in the sense that it will signal more periods of unusual 
activity.  However, most police organizations would rather respond to more expected events 
even if the increased activity does not materialize (i.e., are false positives) than not respond and 
have events blow up. To use more conservative values, try 1.75 or 2.0 to get fewer signal trips. 
 
 Output 
 

There are three types of output – full, one-step ahead, and the optimized smoothing 
parameters. The first two outputs produce the following calculated values: 
 

1. DE_SEASON is the number of events per period (EVENTCOUNT) divided by the 
seasonal factor for the current observation’s season (December) and, thus, is a 
de-seasonalized count of events. To calculate the seasonal factor for each record divide 
EVENTCOUNT by DE_SEASON. 
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2. SMTH_LEVEL is the smoothed estimate for the current observation (e.g., December 
2012).  
 

3. When using the Holt smoothing method, there is one additional estimated parameter. 
SMTH_SLOPE is the change in estimated crime for each step ahead.  If, for example, 
you need the forecasts for February 2013 and your current time period is December 
2012, you add two times SMTH_SLOPE to SMTH_LEVEL because February 2013 is 
two steps ahead of December 2012.  

 
4. SQ_ERROR is the squared forecast error of the current observation from the forecast 

made for it from the previous period (e.g., November 2012 if the current period is 
December 2012). 
 

5. TRIGG is the value of the Trigg Tracking Signal for the current observation.  
 

6. SIGNALTRIP indicates whether the Trigg level was higher than the threshold.  If it 
was, this field will have a 1 to indicate that the Trigg value was greater than or equal to 
the threshold selected and the detected change is an increase, a -1 if the Trigg value is 
greater than or equal to the threshold but the detected change was a decrease, and a 0 
otherwise.  

 
7. FORECAST is the one-step-ahead forecast, for the next observation in time.  For 

example, if the the current period is December 2012, then one-step ahead forecast is 
for January 2013. For a January 2013 forecast and simple exponential smoothing it is 
SMTH_LEVEL for December 2012 multiplied by the seasonal factor for January 
2013. For January 2013 and Holt smoothing it is the sum of SMTH_LEVEL and 
SMTH_SLOPE times the seasonal factor for January 2013. 

 
Save Full Output 

 
 The full output includes all input fields plus the calculated values. If the user clicks the 
Save full output button and then clicks the Save full output button, a save output window opens. 
Select dBase ‘DBF’ for the Save output to field, browse to the folder of your choice, and type a 
file name. Both the input data and the one-step ahead forecast are output to the screen and to a 
‘dbf’ file. The file will be saved with a “TS_F” prefix before the defined file name. 
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Save Output for Next Time Period 
 
The next time period output includes only the calculated fields for both the screen and 

saved file. The word “next” refers to the forecast made for the next time period, while the Trigg 
tracking signal evaluates the current period. Again, in the dialog for saving the output file, type 
the .dbf extension in the chosen file name. The file is saved as a ‘dbf’ file with a “TS_C” (for 
‘current’) prefix. 

 
Save Optimized Smoothing Parameters 
 
The third type of output shows the results of the optimization process for exponential 

smoothing. This provides information on the parameters used to optimize the smoothing for each 
district.  Define the file name and it will be saved as an ASCII text file with a ‘txt’ extension.  
The output fields are: 

 
1. Optimum Alpha is the smoothing parameter value for level of a time series that 

minimizes the one-step-ahead forecast sum of squared errors. 
 

2. Optimum Gamma is the smoothing parameter value for time trend slope of a time 
series that minimizes the one-step-ahead forecast sum of squared errors. 
 

3. SSE is the resulting optimal sum of squared errors for the time series. 
 
It is valuable to review the optimal parameters to see which areas have stable versus 

dynamic time series. Note that for the Trigg calculation, we want a large alpha to detect large 
changes in the number of recent events. That is why the default value of alpha is 0.9.  However, 
for forecasting, we want a low alpha in order to smooth the data to produce a stable forecast. 

 

VI. Crime Travel Demand Modeling 
 

The crime travel demand module is a sequential model of crime travel by zone over a 
metropolitan area.  Crime incidents are allocated to zones, both by the location where the crime 
occurred (destinations) and the location where the offender started (origins).  A crime trip is 
defined as a crime event that originates at one location and ends at another location; the two 
locations can be the same.  For each zone, the number of crimes originating in the zone and the 
number of crimes ending (occurring) in that zone are enumerated.  Thus, the model is for count 
(or volumes), not rates. Other zonal data must be obtained to be used as predictor variables of the 
origin and destination counts. 
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The model is made up four sequential steps, each of which can involve smaller steps: 

 
1. Trip generation – separate models are developed for predicting the number of 

crimes originating or ending in each zone.  There are, therefore, two models.  
One is a model of the predicted number of crime trips that originate in each zone 
while the other is a model of the predicted number of crime trips that end in each 
zone.  The number of origin zones can be greater than the number of destination 
zones. 
 

2. Trip distribution – A model is developed for the number of crimes originating in 
each zone that go to each destination zone. The result is a prediction of the number 
of crimes originating in each zone that end in each zone (trip links). 
 

3. Mode split – A model is developed that splits the number of predicted trips from 
each origin zone to each destination zone by travel mode (e.g., walking, bicycle, 
driving, bus, train).  Thus, each zone-to-zone trip link is separated into different 
travel modes. 
 

4. Network assignment – A model is developed for the route taken for each crime trip 
link (whether for all modes or by separate modes).  Thus, the shortest path 
through a network is determined.  Different travel modes will have different 
routes since bus and train, in particular, must use a separate network. 

 

Crime Travel Demand Data Preparation 
 
In order to run the crime travel demand module, particular data must be obtained and 

prepared.  These involve: 
 
1. A zonal framework that will be used for the modeling.  In general, it is best to 

select the smallest zone size for which data can be obtained (e.g., block groups, 
census tracts, traffic analysis zones).  However, it is often difficult to obtain data 
for the smallest units (e.g., blocks, grid cells).  The larger the zone size, the more 
there will be intra-zonal trips and the greater the error in the model.  Thus, the 
user must balance the need for small zones with the availability of data. Since 
crimes can occur outside a study area, the number of origin zones can be (and 
probably should be) greater than the number of destination zones. However, each 
destination zone should be included within the origin zone collection.  Typically, 
there will be separate data sets for the origin zones and for the destination zones. 
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2. Data on crime origins and crime destinations are obtained (usually from arrest 
records) and are allocated to zones.  The incidents are then summed by zone to 
produce a count.  The “Assign primary points to secondary points” routine (under 
Distance analysis) can be used for this purpose.  Thus, each origin zone has a  
count of the number of crimes originating in that zone and each destination zone 
has separate counts of the number of crimes originating in that zone and the 
number of crimes occurring (ending) in that zone.  Crimes can be sub-divided 
into types (e.g., robbery, burglary, vehicle theft).   

 

3. Additional data for the zones are obtained.  These would include population (or 
households), sub-populations (e.g., age groups, race/ethnic groups), income levels, 
poverty levels, employment (retail and non-retail), land use, particular types of 
land use (e.g., drug locations, markets, parking lots), policing variables (e.g., 
personnel deployment, beat frequency), intervention variables (e.g., drug treatment 
centers), and other variables.  It’s important that all variables included must cover 
all zones for either the origin data set or the destination data set.  For example, if 
poverty is used a variable in the origin model, then all origin zones must have an 
enumeration of poverty.  Similarly, if retail employment is used as a variable in 
the destination model, then all destination zones must have an enumeration of 
retail employment. 
 

4. Data on dummy variables and special generators are also obtained.  Dummy 
variables would be a proxy for a condition that does or does not exist.  Zones that 
have the condition are assigned a ‘1’ whereas zones that do not have the condition 
are assigned a ‘0’.  For example, if a freeway cross a zone, then a freeway 
dummy variable would assign ‘1’ to that zone (and all others that the freeway 
crossed) whereas all other zones received a ‘0’ for this variable.  A special 
generator is a land use that attracts trips (e.g., a stadium, a railroad station).  All 
zones that have the special generator are assigned a value whereas all other zones 
receive a ‘0’; the value can either be a dummy variable (i.e., a ‘1’) or the actual 
count if that can be obtained (e.g., the number of patrons at a football stadium 
event). 

 

Project Directory 

 
The Crime Travel Demand module is a complex model that involves many different files.  

Because of this, we recommend that the separate steps in the model be stored in separate 
directories under a main project directory.  While the user can save any file to any directory  
 



Figure 2.22:

Crime Travel Demand Project Directory
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within the module, keeping the inputs and output files in separate directories can make it easier to 
identify files as well as examine files that have already been used at some later time. 
 
 Project Directory Utility 
 

The project directory utility allows the creation of a master directory for a project and four 
separate sub-directories under the master directory that correspond to the four modeling stages.   

 
The user puts in the name of a project in the dialogue box and points it to a particular drive 

and directory location (depending on the number of drives available to the user).  For example, a 
project directory might be called “Robberies 2003” or “Bank robberies 2005”.  The utility then 
creates this directory if it does not already exist and creates four sub-directories underneath the 
project directory: 

 
1. Trip generation 
2. Trip distribution 
3. Mode split 
4. Network assignment 

 
The user can then save the different output files into the appropriate directories.  Further, 

for each sequential step in the crime travel demand model, the user can easily find the output file 
from the previous step which would become input file for the next step.  
 

Trip Generation 
 

Trip generation involves the development of separate models for predicting the number of 
crimes originating in each zone and the number of crimes occurring (ending) in each zone.  
There are three steps to the trip generation: 

 
1. Calibrate model.  A step that calibrates the model against known data using 

regression techniques.  The result is a prediction of the number of trips either 
originating in a zone (the origin model) or the number of trips ending in a zone 
(the destination model). 
 

2. Make prediction.  A step that applies the calibrated model to a data set and also 
allows the addition of trips from outside the study area (external trips). 

 
 



Figure 2.23:

Trip Generation Modeling
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1. Balance predicted origins & destinations.  A step that ensures that the number 
of predicted origins equals the number of predicted destinations.  Since a trip 
involves an origin and a destination, it is essential that the number of origins equal 
the number of destinations. 

 
Calibrate Trip Generation Model 
 

This step involves calibrating a regression model against the zonal data.  Two separate 
models are developed, one for trip origins and one for trip destinations.  The dependent variable 
is the number of crimes originating in a zone (for the trip origin model) or the number of crimes 
ending in a zone (for the trip destination model).  The independent variables are zonal variables 
that may predict the number of origins or destinations. 

 
In the current version, 13 possible regression models are available with several options for 

each of these:  
 
  MLE Normal (OLS) 
  MCMC Normal 
  MCMC Normal-CAR 
  MCMC Normal-SAR 
  MLE Poisson 
  MLE Poisson with linear dispersion correction (NB1) 
  MLE Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma-CAR 
  MCMC Poisson-Gamma-SAR 
  MCMC Poisson-Lognormal 
  MCMC Poisson-Lognormal-CAR 
  MCMC Poisson-Lognormal-SAR 
   

Since the Regression I module and Trip Generation module duplicate most of the 
regression functions, only one of these can be run at a time. 
 

Input Data set 
  

The data set for the trip generation must be the Primary File data set.  The coordinate 
system and distance units are also the same.   
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Dependent Variable 
 

To start loading the module, click on the ‘Calibrate model’ tab.  A list of variables from 
the Primary File is displayed.  There is a box for defining the dependent variable. The user must 
choose one dependent variable. 
 

Independent Variables 

 
There is a box for defining the independent variables.  The user must choose one or more 

independent variables.  There is no limit to the number.  The variables are output in the same 
order as specified in the dialogue so a user should consider how these are to be displayed. 
 

Model decisions 
 

There are five decisions that must be made for each regression model. 
 

Type of Dependent Variable 
 

The first model decision is the type of dependent variable The first model decision is the 
type of dependent variable: Skewed (Poisson) or Normal (OLS).  The default is a Poisson.   
 

Type of Dispersion Estimate 
 

The second model decision is the type of dispersion estimate to be used.  The choices are 
Gamma, Poisson, Poisson with linear correction, Normal (automatically defined for the Normal 
model), or lognormal.  The default is Gamma.   

 
Type of Estimation Method 

 
The third model decision is the type of estimation method to be used: Maximum 

Likelihood (MLE) or Markov Chain Monte Carlo (MCMC).  The default is MLE.  
 

Spatial Autocorrelation Regression Model 
 

If the user accepts an MCMC algorithm, then a fourth decision is whether to run a spatial 
autocorrelation estimate along with it.  This can only be run if the dependent variable is Poisson 
and MCMC has been chosen as the type of estimation method. The spatial autocorrelation choices 
are Conditional Autoregressive (CAR) or Simultaneous Autoregression (SAR). 
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Type of Test Procedure 
 

The fifth, and last model decision, is whether to run a fixed model or a backward 
elimination stepwise procedure (only with an MLE model).  A fixed model includes all selected 
independent variables in the regression whereas a backward elimination model starts with all 
selected variables in the model but proceeds to drop variables that fail the P-to-remove test, one at 
a time.  Any variable that has a significance level in excess of the P-to-remove value is dropped 
from the equation. 

 
Specify whether a fixed model (all selected independent variables are used in the 

regression) or a backward elimination stepwise model is used.  The default is a fixed model.  If 
a backward elimination stepwise model is selected, choose the P-to-remove value (default is .01).   
 

MCMC Model Choices 
 

If the user chooses the MCMC algorithm, then eight additional decisions have to be made. 
 

Number of Iterations 
 
The first MCMC decision is the number of iterations to be run.  The default is 25,000.  

The number should be sufficient to produce reliable estimates of the parameters.  Check the MC 
Error/Standard deviation ratio and the G-R statistic after the run to be sure most parameters are 
below 1.05 and 1.20 respectively.  If not, increase the number of iterations and ‘burn in’ 
iterations. 

‘Burn in’ iterations 
 
The second MCMC decision is the number of initial iterations that will be dropped from 

the final distribution (the ‘burn in’ period).  The default is 5,000.  The number of ‘burn in’ 
iterations should be sufficient for the algorithm to reach an equilibrium state and produce reliable 
estimates of the parameters.  Check the MC Error/Standard deviation ratio and the G-R statistic 
after the run to be sure most parameters are below 1.05 and 1.20 respectively.  If not, increase 
the number of iterations and ‘burn in’ iterations. 

 
Block Sampling Threshold 

 
The third MCMC decision is whether to run all the records through the MCMC algorithm 

or whether to draw block samples.  The algorithm will be run on all records unless the number of 
records exceeds the block sampling threshold.  The default threshold is 6000 records. To run all 
the records through the MCMC algorithm, change this value to be greater than the number of 
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records in the database.  Note that calculation time will increase substantially if all records in a 
large database are run through the algorithm. 
 

Average Block Size 
 

The fourth MCMC decision is the number of records to be drawn for each block sample if 
the total number of records is greater than the block sampling threshold.  The default is 400 
records per block sample.  Note that this is an average.  Actual samples will vary in size.  The 
output will display the expected sample size and the average sample size that was drawn. 

 
Number of Samples Drawn 

 
The fifth MCMC decision is the number of samples to be drawn if the total number of 

records is greater than the block sampling threshold. The default is 25 block samples. Typically, 
20-30 block samples will achieve stable model results. 
 

Calculate Intercept 
 
The sixth MCMC decision is whether to run a model with or without an intercept 

(constant).  The default is with an intercept estimated.  To run the model without the intercept, 
uncheck the ‘Calculate intercept’ box. 
 

Calculate Exposure/Offset 
 

The seventh MCMC decision is whether to run a risk model.  If the model is a risk or rate 
model, then an exposure (offset) variable needs to be defined.   Check the ‘Calculate 
exposure/offset’ box and identify the variable that will be used as the exposure variable.  The 
coefficient for this variable will automatically be 1.0. 
 

Advanced Options 
 

The eighth MCMC decision is the prior values used for the different parameters being 
estimated.  The MCMC algorithm requires an initial estimate for each parameter.  There is a 
dialogue of advanced options for the MCMC algorithm by which they can be changed. 
 

Initial Parameters Values 
 
For the beta coefficients (including the intercept), the default values are 0.  These are 

displayed as a blank screen for the Beta box.  However, other prior estimates of the beta 
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coefficients can be substituted for the assumed 0 coefficients. To do this, all independent variable 
coefficients plus the intercept (if used) must be listed in the order in which they appear in the 
model and must be separated by commas.  Do not include the beta coefficients for the spatial 
autocorrelation term (if used) or the error (Taupsi) term. 

 
Taupsi (error term) 

  
The output of the MCMC always includes an error term, called Taupsi (τψ).  This is an 

exponent of the error term, eτψ, which together is called the dispersion parameter.  The default 
value for Taupsi is 1.0.  The user can substitute an alternative value.   

 
Rho and Tauphi 

 
The spatial autocorrelation component is made up of three separate sub-components, 

called Rho, Tauphi, and Alpha and are additive.  Rho is roughly a global component that applies 
to the entire data set. Tauphi is roughly a neighborhood component that applies to a sub-set of the 
data.  Alpha is essentially a localized effect.  The default initial values for Rho and Tauphi are 
0.5 and 1 respectively.  The user can substitute alternative values for these parameters. 
 

Alpha 
 

Alpha is the exponent for the distance decay function in the spatial model.  Essentially, 
the distance decay function defines the weight to be applied to the values of nearby records. The 
weight can be defined by one of three mathematical functions.  First, the weight can be defined 
by a negative exponential function. 
 

Second, the weight can be defined by a restricted negative exponential with the negative 
exponential operating up to the specified search distance, whereupon the weight becomes 0 for 
greater distances. 

 
Third, the weight can be defined as a uniform value for all other observations within a 

specified search distance.  This is a contiguity (or adjacency) measure.  Essentially, all other 
observations have an equal weight within the search distance and 0 if they are greater than the 
search distance.  
 

For the negative exponential and restricted negative exponential functions, substitute the 
selected value for alpha in the alpha box and for the restricted negative exponential and uniform 
functions, specify the search distance and distance units.  The default is a negative exponential 
with an alpha of -1.0 in miles. 
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Value for 0 distance between records 
 

The advanced options dialogue has a parameter for the minimum distance to be assumed 
between different records.  If two records have the same X and Y coordinates (which could 
happen if the records are individual events, for example), then the distance between these records 
will be 0.  This could cause unusual calculations in estimating spatial effects.  Instead, it is 
more reliable to assume a slight difference in distance between all records.  The default is 0.005 
miles but the user can modify this (including substituting 0 for the minimal distance). 
 

Output 
 

The output depends on whether an MLE or an MCMC model has been run. 
  

Maximum Likelihood (MLE) Model Output 
  

The MLE routines (Normal/OLS, Poisson, Poisson with linear correction, MLE 
Poisson-Gamma, Binomial Probit, MLE Binomial Logit) produce a standard output that includes 
summary statistics and estimates for the individual coefficients.   
 

MLE Summary Statistics 
  

The summary statistics include: 
 

Information about the model 
 

1. The dependent variable 
2. The number of records 
3. The degrees of freedom (N – number of parameters estimated) 
4. The type of regression model (Normal/OLS, Poisson, Poisson with linear 

correction, Poisson-Gamma, Binomial Probit, Binomial Logit) 
5. The method of estimation (MLE) 

 
Likelihood statistics 

 
6. Log-likelihood estimate, which is a negative number.  For a set number of 

independent variables, the more negative the log-likelihood the better. 
7. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 

freedom.  The smaller the AIC, the better. 
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8. Bayesian Information Criterion (BIC), sometimes known as the Schwartz Criterion 
(SC), adjusts the log-likelihood for the degrees of freedom.  The smaller the BIC, 
the better. 

9. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

10. The probability value of the deviance based on a Chi-square with k-1 degrees of 
freedom. 

11. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data well. 
 

Model error estimates 
 

12. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 
smaller MAD is better. 

13. Quartiles for the Mean Absolute Deviation.  For any one quartile, smaller is 
better. 

14. Mean Squared Predictive Error (MSPE).  For a set number of independent 
variables, a smaller MSPE is better. 

15. Quartiles for the Mean Squared Predictive Error.  For any one quartile, smaller is 
better. 

16. Squared multiple R (for linear model only).  This is the percentage of the 
dependent variable accounted for by the independent variables.  

17. Adjusted squared multiple R (for linear model only).  This is the squared multiple 
R adjusted for degrees of freedom. 

 
Over-dispersion tests 

 
18. Adjusted deviance.  This is a measure of the difference between the observed and 

predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates 
over-dispersion. 

19. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for 
degrees of freedom.  The smaller the Pearson Chi-square, the better. A value 
greater than 1 indicates over-dispersion. 

20. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  For example, in a pure Poisson distribution, the dispersion 
should be 1.0.  In practice, a ratio greater than 10 indicates that there is too much 



 
2.164 

variation that is unaccounted for in the model.  Either add more variables or 
change the functional form of the model 

21. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 

 
MLE Individual Coefficient Statistics 

 
For the individual coefficients, the following are output: 
 

22. The coefficient.  This is the estimated value of the coefficient from the maximum 
likelihood estimate. 

23. Standard Error.  This is the estimated standard error from the maximum 
likelihood estimate. 

24. Pseudo-tolerance.  This is the tolerance value based on a linear prediction of the 
variable by the other independent variables.  See equation Up. 2.18. 

25. Z-value.  This is asymptotic Z-test that is defined based on the coefficient and 
standard error.  It is defined as Coefficient/Standard Error. 

26. p-value.  This is the two-tail probability level associated with the Z-test. 
 

Markov Chain Monte Carlo (MCMC) Model Output 
 

The MCMC routines (Poisson-Gamma, Poisson-Gamma-CAR/SAR, Poisson-Lognormal, 
Poisson-Lognormal-CAR/SAR, Binomial Logit, Binomial Logit-CAR/SAR) produce a standard 
output and an optional expanded output.  The standard output includes summary statistics and 
estimates for the individual coefficients.   
 

MCMC Summary Statistics 
  

The summary statistics include: 
 

Information about the model 
 

1. The dependent variable 
2. The number of records 
3. The sample number.  This is only output when the block sampling method is 

used. 
4. The number of cases for the sample.  This is only output when the block sampling 

method is used. 
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5. Date and time for sample.  This is only output when the block sampling method is 
used 

6. The degrees of freedom (N – number of parameters estimated) 
7. The type of regression model (Poisson-Gamma, Poisson-Gamma-CAR/SAR, 

Poisson-Lognormal, Poisson-Lognormal-CAR/SAR, Binomial Logit, Binomial 
Logit-CAR/SAR) 

8. The method of estimation 
9. The number of iterations 
10. The ‘burn in’ period 
11. The distance decay function used. This is output for CAR/SAR models only. 
12. The block size is the expected number of records selected for each block sample.  

The actual number may vary. 
13. The number of samples drawn, output when the block sampling method used. 
14. The average block size. This is output when the block sampling method used. 
15. The type of distance decay function. This is output for CAR/SAR models only. 
16. Condition number for the distance matrix.  If the condition number is large, then 

the model may not have properly converged. This is output for CAR/SAR models 
only. 

17. Condition number for the inverse distance matrix.  If the condition number is 
large, then the model may not have properly converged.  This is output for 
CAR/SAR models only. 

 
Likelihood statistics 

 
18. Log-likelihood estimate, which is a negative number.  For a set number of 

independent variables, the smaller the log-likelihood (i.e., the most negative) the 
better. 

19. Deviance Information Criterion (DIC) adjusts the log-likelihood for the effective 
degrees of freedom. The smaller the DIC, the better. 

20. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

21. Bayesian Information Criterion (BIC), sometimes known as the Schwartz Criterion 
(SC), adjusts the log-likelihood for the degrees of freedom.  The smaller the BIC, 
the better. 

22. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

23. The probability value of the deviance based on a Chi-square with k-1 degrees of 
freedom. 
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24. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data well. 
 

Model error estimates 
 

25. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 
smaller MAD is better. 

26. Quartiles for the Mean Absolute Deviation. For any one quartile, smaller is better. 
27. Mean Squared Predictive Error (MSPE).  For a set number of independent 

variables, a smaller MSPE is better. 
28. Quartiles for the Mean Squared Predictive Error. For any one quartile, smaller is 

better. 
Over-dispersion tests 

 
29. Adjusted deviance.  This is a measure of the difference between the observed and 

predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates 
over-dispersion. 

30. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for 
degrees of freedom.  The smaller the Pearson Chi-square, the better. A value 
greater than 1 indicates over-dispersion. 

31. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  In a pure Poisson distribution, the dispersion should be 1.0.  
In practice, a ratio greater than 10 indicates that there is too much variation that is 
unaccounted for in the model.  Either add more variables or change the functional 
form of the model. 

32. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 

 
MCMC Individual Coefficients Statistics 

 
For the individual coefficients, the following are output: 

 
33. The mean coefficient.  This is the mean parameter value for the N-k iterations 

where k is the ‘burn in’ samples that are discarded. With the MCMC block 
sampling method, this is the mean of the mean coefficients for all block samples. 

34. The standard deviation of the coefficient.  This is an estimate of the standard error 
of the parameter for the N-k iterations where k is the ‘burn in’ samples that are 
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discarded.  With the MCMC block sampling method, this is the mean of the 
standard deviations for all block samples. 

35. t-value.  This is the t-value based on the mean coefficient and the standard 
deviation.  It is defined by Mean/Std. 

36. p-value.  This is the two-tail probability level associated with the t-test. 
37. Adjusted standard deviation (Adj. Std). The block sampling method will produce 

substantial variation in the mean standard deviation, which is used to estimate the 
standard error.  Consequently, the standard error will be too large.  An 

approximation is made by multiplying the estimated standard deviation by 
N

n


where 


n  is the average sample size of the block samples and N is the number of 
records.  If no block samples are taken, then this statistic is not calculated. 

38. Adjusted t-value.  This is the t-value based on the mean coefficient and the 
adjusted standard deviation.  It is defined by Mean/Adj_Std.  If no block 
samples are taken, then this statistic is not calculated. 

39. Adjusted p-value.  This is the two-tail probability level associated with the 
adjusted t-value. If no block samples are taken, then this statistic is not calculated. 

40. MC error is a Monte Carlo simulation error.  It is a comparison of the means of m 
individual chains relative to the mean of the entire chain.  By itself, it has little 
meaning. 

41. MC error/Std is the MC error divided by the standard deviation.  If this ratio is 
less than .05, then it is a good indicator that the posterior distribution has 
converged. 

42. G-R stat is the Gelman-Rubin statistic which compares the variance of m 
individual chains relative to the variance of the entire chain.  If the G-R statistic is 
under 1.2, then the posterior distribution is commonly considered to have 
converged. 

43. Spatial autocorrelation term (Phi) for Poisson-Gamma-CAR models only.  This is 
the estimate of the fixed effect spatial autocorrelation effect.  It is made up of 
three components: a global component (Rho); a local component (Tauphi); and a 
local neighborhood component (Alpha, which is defined by the user). 

  
Expanded Output (MCMC only) 

 
If the expanded output box is selected, additional information on the percentiles from the 

MCMC sample are displayed.  If the block sampling method is used, the percentiles are the 
means of all block samples.  The percentiles are: 
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44. 2.5th percentile 
45. 5th percentile 
46. 10th percentile 
47. 25th percentile 
48. 50th percentile (median) 
49. 75TH percentile 
50. 90th percentile 
51. 95th percentile 
52. 97.5th percentile 

 
The percentiles can be used to construct confidence intervals around the mean estimates or 

to provide a non-parametric estimate of significance as an alternative to the estimated t-value in 
the standard output.  For example, the 2.5th and 97.5th percentiles provide approximate 95 
percent confidence intervals around the mean coefficient while the 0.5th and 99.5th percentiles 
provide approximate 99 percent confidence intervals. 
 

The percentiles will be output for all estimated parameters including the intercept, each 
individual predictor variable, the spatial effects variable (Phi), the estimated components of the 
spatial effects (Rho and Tauphi), and the overall error term (Taupsi). 
 

Output Phi Values (CAR/SAR models only) 
 

For CAR or SAR models only, the individual Phi values can be output.  This will occur if 
the sample size is smaller than the block sampling threshold.  Check the ‘Output Phi value if 
sample size smaller than block sampling threshold’ box. An ID variable must be identified and a 
DBF output file defined.  

 
Multicollinearity Among the Independent Variables 

 
A major consideration in any regression model is that the independent variables are 

statistically independent.  Non-independence is called Multicollinearity.  Non-independence 
means that there is overlap in prediction among two or more independent variables.  This can 
lead to uncertainty in interpreting coefficients as well as an unstable model that may not hold in 
the future.  Generally, it is a good idea to reduce Multicollinearity as much as possible.  A 
tolerance test is given for each coefficient.  This is defined as 1 – the R-square of the 
independent variable predicted by the remaining independent variables in the equation using an 
Ordinary Least Squares model.  It is an indicator of how much the other independent variables in 
the equation account for the variance of any particular independent variable.  Since the method 
uses the Ordinary Least Squares methods, it is an approximate (pseudo) test for the Poisson 
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regression routines.  A message is displayed that indicates probable or possible 
Multicollinearity. A good idea is to drop one of the multicolinear independent variables and 
re-run the model. However, each of the coefficients should be inspected carefully before 
accepting a final model. 
 

Graph of Residual Errors 
 

While the output page is open, clicking on the graph button will display a graph of the 
residual errors (on the Y axis) against the predicted values (on the X axis).  Only residual errors 
that vary between -200 and +200 are shown to allow most of the errors to be displayed. 

 
Save Output 

 
The predicted values and the residual errors can be output to a DBF file with a 

TripGenOut<root name> with the root name being provided by the user. The output includes all 
the variables in the input data set plus two new ones: 1) the predicted values of the dependent 
variable for each observation (with the field name PREDICTED); and 2) the residual error values, 
representing the difference between the actual /observed values for each observation and the 
predicted values (with the field name RESIDUAL).  The file can be imported into a spreadsheet 
or graphics program and the errors plotted against the predicted dependent variable. 

 
Save Estimated Coefficients 

 
The individual coefficients can be output to a DBF file with a TripGenCoeff<root name> 

with the root name being provided by the user.  This file can be used in the ‘Make Prediction’ 
routine of the Trip Generation module. 
 

Diagnostic Tests 
 

The regression module has a set of diagnostic tests for evaluating the characteristics of the 
data and the most appropriate model to use.  There is a diagnostics box on the ‘Calibrate model’ 
page.   
 

Diagnostics are provided on:  
 

1. The minimum and maximum values for the dependent and independent variables 
2. Skewness in the dependent variable 
3. Spatial autocorrelation in the dependent variable 
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4. Estimated values for the distance decay parameter – alpha, for use in CAR/SAR 
models 

5. Multicolinarity among the independent variables 
 

Minimum and Maximum Values for the Variables 
 

First, the minimum and maximum values of both the dependent and independent variables 
are listed.  A user should look for ineligible values (e.g., -1) as well as variables that have a very 
high range.  The MLE routines are sensitive to variables with very large ranges. 
 

Skewness Tests 
 

Skewness in the dependent variable can distort a linear model by allowing high values to 
be underestimated while allowing low values to be overestimated and a Poisson-type model is 
preferred over the linear for highly skewed variables. 
 

The diagnostics utility tests for skewness using two different measures: 1) the “g” statistic, 
and 2) the ratio of the simple variance to the simple mean. Either significant “g” scores or 
variance-to-mean ratios greater than about 2:1 should make the user cautious about using a linear 
model.  If either measure indicates skewness, CrimeStat prints out a message indicating the 
dependent variable appears to be skewed and that a Poisson-based model should be used.  
 

Testing for Spatial Autocorrelation in the Dependent Variable 
 

The third type of test in the diagnostics utilities is the Moran’s “I” coefficient for spatial 
autocorrelation.  If the “I” is significant, CrimeStat outputs a message indicating that there is 
definite spatial autocorrelation in the dependent variable and that it needs to be accounted for, 
either by a proxy variable or by estimating a CAR or SAR model.   
 

Estimating the Value of Alpha for CAR or SAR Models 
 

The fourth type of diagnostic test is an estimate of a plausible value for the distance decay 
function, α, in CAR or SAR models.   Three values of alpha are given in different distance 
units, one associated with a weight of 0.9 ( a very steep distance decay), one associated with a 
weight of 0.75 (a moderate distance decay), and one associated with a weight of 0.5 (a shallow 
distance decay).  Users should run the Moran Correlogram and examine the graph of the drop off 
in spatial autocorrelation to assess what type of decay function most likely exists.  The user 
should choose an alpha value that best represents the distance decay and should define the 
distance units for it.   
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Multicollinearity Test 
 

The fifth type of diagnostic test is for Multicollinearity among the independent predictors. 
The tolerance test is presented for each independent variable.  This is defined as 1-R2 for the 
other independent variables in the equation.  Each independent variable should have a high 
tolerance (0.90 or higher).  CrimeStat prints out an error message if tolerance is not high. 

 
Make Trip Generation Prediction 

 
This routine applies an already-calibrated regression model to a data set. This would be 

useful for several reasons: 1) if external trips are to be added to the model (which is normally 
preferred); 2) if the model is applied to another data set; and 3) if variations on the coefficients are 
being tested with the same data set.  The model will need to be calibrated first  (see Calibrate 
trip generation model) and the coefficients saved as a parameters file.  The coefficient parameter 
file is then re-loaded and applied to the data. 

 
Data Input File 

 
The data file is input as either the primary or secondary file.  Specify whether the data 

file is the primary or secondary file.  
 
Type of Model 

 
Specify whether the model is for origins or destinations.  This will be printed out on the 

output header. 
 

Trip Generation Parameters (coefficients) File 
 

This is the saved coefficient parameter file.  It is DBF with a TRIPGENCOEFF prefix.  
Load the file by clicking on the Browse button and finding the file.  Once loaded, the variable 
names of the saved coefficients are displayed in the “Matching parameters” box. 

 
Independent Variables 

 
Select independent variables from the list of variables in the data file.  Up to 15 variables 

can be selected. 
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Matching Parameters 
 

The selected independent variables need to be matched to the saved variables in the trip 
generation parameters file in the same order.  Add the appropriate variables one by one in the 
order in which they are listed in the matching parameters box.  It is essential that the order by the 
same otherwise the coefficients will be applied to the wrong variables. 

 
If the model had estimated a general spatial effect from a CAR or SAR model, then the 

general Phi will have been saved with the coefficient files.  If the model had estimated specific 
spatial effects from a CAR or SAR model, then the specific Phi values will have been saved in a 
separate Phi coefficients file.  In the latter case, the user must read in the Phi coefficients file 
along with the general coefficient file. 
 

Missing Values 
 

Specify any missing value codes for the variables.  Blank records will automatically be 
considered as missing.  If any of the selected dependent or independent variables have missing 
values, those records will be excluded from the analysis. 
 

Add External Trips 
 

External trips are trips that start outside the modeled study area.  Because they are crimes 
that originate outside the study area, they were not included in the zones used for the origin 
model.  Therefore, they have to be independently estimated and added to the origin zone total to 
make the number of origins equal to the number of destinations.  Click on the “Add external 
trips” button to enable this feature. 
 

Number of external trips 
  

Add the number of external trips to the box.  This number will be added as an extra 
origin zone (the External zone). 

 
Origin ID 

 
Specify the origin ID variable in the data file.  The external trips will be added as an 

extra origin zone, called the “External” zone.  Note: all destination ID’s should be in the origin 
zone file and must have the same names.  This is necessary for subsequent modeling stages. 
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Type of Regression Model 
 

Specify the type of regression model to be used. The default is a Poisson regression and 
the other alternative is a Linear (Ordinary Least Squares) regression. 
 

Save Predicted Values  
 

The output is saved as a ‘dbf’ file under a different file name with a 
TripGenMakePred<root name> with the root name being provided by the user. The output 
includes all the variables in the input data set plus the predicted values of the dependent variable 
for each observation (with the name PREDICTED.  In addition, if external trips were added, 
then there is a new record with the name EXTERNAL listed in the Origin ID column.  This 
record lists the added trips in the PREDICTED column and zeros (0) for all other numeric fields. 

 
Output 

 
The tabular output includes summary information about file and lists the predicted values 

for each input zone. 
 

Balance Origins and Destinations 
 

Since, by definition, a ‘trip’ has an origin and a destination, the number of predicted 
origins must equal the number of predicted destinations.  Because of slight differences in the 
data sets of the origin model and the destination model, it is possible that the total number of 
predicted origins (including any external trips – see Make trip generation prediction) may not 
equal the total number of predicted destinations.  This step, therefore, is essential guarantee that 
this condition will be true.  The routine adjusts either the number of predicted origins or the 
number of predicted destinations so that the condition holds.  The trip distribution routines will 
not work unless the number of predicted origins equals the number of predicted destinations 
(within a very small rounding-off error). 
 
 Predicted origin file 
 

Specify the name of the predicted origin file by clicking on the Browse button and 
locating the file. 
 
 Origin variable 
 

Specify the name of the variable for the predicted origins (e.g., PREDICTED). 
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 Predicted destination file 
 

Specify the name of the predicted destination file by clicking on the Browse button and 
locating the file. 

 
 Destination variable 
 

Specify the name of the variable for the predicted origins (e.g., PREDICTED). 
 

 Balancing method 
 

Specify whether origins or destinations are to be held constant.  The default is ‘Hold 
destinations constant’. 

 
 Save predicted origin/destination file 
 

The output is saved as a ‘dbf’ file under a different file name.  The output includes all the 
variables in the input data set plus the adjusted values of the predicted values of the dependent 
variable for each observation. If destinations are held constant, the adjusted variable name for the 
predicted trips is ADJORIGIN.  If origins are held constant, the adjusted variable name for the 
predicted trips is ADJDEST.  

 
 Output 
 

The tabular output includes file summary information plus information about the number 
of origins and destinations before and after balancing.  In addition, the predicted values of the 
dependent variable are displayed. 
 

Trip Distribution 
 

Trip distribution involves the estimation of the number of trips that travel from each origin 
zone (including the ‘external’ zone) to each destination zone.  The estimation is based on a 
gravity-type model.  The determining variables are the number of predicted origins, the number 
of predicted destinations, the impedance (or cost) of travel between the origin zone, coefficients 
for the origins and destinations, and exponents of the origins and destinations.   

 
The user inputs the number of predicted origins and predicted destinations and specifies an 

impedance model (which can be mathematical or calibrated from an existing data set). In addition,  
 



Trip Distribution Modeling
Figure 2.24:
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the user specifies exponents for the origin and destination values.  The model iteratively 
estimates the coefficients. In addition, the routine can calculate the actual (observed) trip 
distribution with an existing data set that lists individual origin and destination locations.  
Finally, a comparison between the observed distribution and that predicted by the model can be 
made. 

 
Describe Origin-Destination trips 

 
An empirical description of the actual trip distribution matrix can be made if there is a 

data set that includes individual origin and destination locations.  The user defines the origin 
location and the destination location for each record and a set of zones from which to compare the 
individual origins and destinations.  The routine matches up each origin location with the nearest 
zone, each destination location with the nearest zone, and calculates the number of trips from each 
origin zone to each destination zone. This is an observed distribution of trips by zone. 
 
 Calculate Observed Origin-Destination trips 
 

Check if an empirical origin-destination trip distribution is to be calculated. 
 

 Origin file 
 

The origin file is a list of origin zones with a single point representing the zone (e.g., the 
centroid).  There can be more origin zones than destination zones, but all destination zones must 
be included among the origin zone list.  The origin file must be input as either the primary or 
secondary file.  Specify whether the data file is the primary or secondary file. 

 
 Origin ID 
 

Specify the origin ID variable in the data file (e.g., CensusTract, Block, TAZ).  Note: all 
destination ID’s should be in the origin zone file and must have the same names. 
 
 Destination file 
 

The destination file is a list of destination zones with a single point representing the zone 
(e.g., the centroid).  It must be input as either the primary or secondary file.  Specify whether 
the data file is the primary or secondary file. 
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 Destination ID 

 
Specify the destination ID variable in the data file (e.g., CensusTract, Block, TAZ). Note: 

the ID’s used for the destination file zones must be the same as in the origin file. 
 

 Select data file 
 

The data set must have individual origin and destination locations.  Each record must 
have the X/Y coordinates of an origin location and the X/Y coordinates of a destination location.  
For example, an arrest file might list individual incidents with each incident having a crime 
location (the destination) and a residence or arrest location (the origin). Select the file that has the 
X and Y coordinates for the origin and destination locations. CrimeStat reads dbase 'dbf'’, ArcGIS 
‘shp’ and ASCII text files. Select the tab and specify the type of file to be selected. Use the 
browse button to search for the file.  If the file type is ASCII, select the type of data separator 
(comma, semicolon, space, tab) and the number of columns. 
 
 Variables 
 

Define the file which contains the X and Y coordinates for both the origin (residence) and 
destination (crime) locations. 

 
 Columns 
 

Select the variables for the X and Y coordinates respectively for both the origin and 
destination locations (e.g., Lon, Lat, HomeX, HomeY, IncidentX, IncidentY.) Both locations 
must be defined for the routine to work. 
 
 Missing values 
 

Identify whether there are missing values for these four fields (X and Y coordinates for 
both origin and destination locations). By default, CrimeStat will ignore records with blank values 
in any eligible field or records with non-numeric values (e.g., alphanumeric characters, , *).  
Blanks will always be excluded unless the user selects <none>.  There are 8 possible options: 
 

1. <blank> fields are automatically excluded.  This is the default 
2. <none> indicates that no records will be excluded.  If there is a blank field, 

CrimeStat will treat it as a 0 
3. 0 is excluded 
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4. –1 is excluded 
5. 0 and –1 indicates that both 0 and -1 will be excluded 
6. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be excluded 
7. Any other numerical value can be treated as a missing value by typing it (e.g., 99) 
8. Multiple numerical values can be treated as missing values by typing them, 

separating each by commas (e.g., 0, -1, 99, 9999, -99). 
 
 Type of coordinate system and data units 
 

The coordinate system and data units are listed for information.  If the coordinates are in 
longitudes and latitudes, then a spherical system is being used and data units will automatically be 
decimal degrees.  If the coordinate system is projected (e.g., State Plane, Universal Transverse 
Mercator – UTM), then data units could be either in feet (e.g., State Plane) or meters (e.g., UTM.)  

 
 Table output 
 

The entire origin-destination matrix is output as a table to the screen including summary 
file information and: 

 
1. The origin zone (ORIGIN) 
2. The destination zone (DEST) 
3. The number of observed trips (FREQ) 

 
 Save observed origin-destination trips 
 

If specified, the full origin-destination output is saved as a ‘dbf’ file named by the user.  
 

 File output 
 

The file output includes: 
 

1. The origin zone (ORIGIN) 
2. The destination zone (DEST) 
3. The X coordinate for the origin zone (ORIGINX) 
4. The Y coordinate for the origin zone (ORIGINY) 
5. The X coordinate for the destination zone (DESTX) 
6. The Y coordinate for the destination zone (DESTY) 
7. The number of trips (FREQ) 
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Note: each record is a unique origin-destination combination and there are M x N records 
where M is the number of origin zones (including the external zone) and N is the number of 
destination zones. 

 
 Save links 
 

The top observed origin-destination trip links can be saved as separate line objects for use 
in a GIS.  Specify the output file format (ArcGIS ‘shp’, MapInfo ‘mif’ or ASCII) and the file 
name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. 
 
 Save top links 
 

Because the output file is very large (number of origin zones x number of destination 
zones), the user can select a sub-set of zone combinations with the most observed trips.  
Indicating the top K links will narrow the number down to the most important ones. The default is 
the top 100 origin-destination combinations.  Each output object is a line from the origin zone to 
the destination zone with an ODT prefix.  The prefix is placed before the output file name.  The 
line graphical output for each object includes: 

 
1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (ODT) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of observed trips for that combination (FREQ) 
10. The distance between the origin zone and the destination zone. 

 
 Save points 
 

Intra-zonal trips (trips in which the origin and destination are the same zone) can be output 
as separate point objects as an ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats. For 
MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
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the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 

 
Again, the top K points are output (default=100).  Each output object is a point 

representing an intra-zonal trip with an ODTPOINTS prefix.  The prefix is placed before the 
output file name.  The point graphical output for each object includes: 
 

1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (POINTSODT) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of observed trips for that combination (FREQ) 

 
 Calibrate Impedance Function 
 

This function allows the calibration of an approximate travel impedance function based on 
actual trip distributions.  It is used to describe the travel distance of an actual sample (the 
calibration sample).  A file is input which has a set of incidents (records) that includes both the 
X and Y coordinates for the location of the offender's residence (origin) and the X and Y 
coordinates for the location of the incident that the offender committed (destination.)  The 
routine estimates a travel distance function using a one-dimensional kernel density method.  For 
each record, the distance between the origin location and the destination location is calculated and 
is represented on a distance scale.  The maximum distance is calculated and divided into a 
number of intervals; the default is 100 equal sized intervals, but the user can modify this.  For 
each distance (point) calculated, a one-dimensional kernel is overlaid.  For each distance 
interval, the values of all kernels are summed to produce a smooth function of travel impedance.  
The results are saved to a file that can be used origin-destination model.  Note, however, that this 
is an empirical distribution and represents the combination of origins, destinations, and costs.  It 
is not necessarily a good description of the impedance (cost) function by itself.  Many of the 
mathematical functions produce a better fit than the empirical impedance function. 
 
 Select data file for calibration 
 

Select the file that has the X and Y coordinates for the origin and destination locations. 
CrimeStat reads dbase 'dbf'’, ArcGIS ‘shp’ and ASCII files.  Select the tab and select the type of 
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file to be selected. Use the browse button to search for the file.  If the file type is ASCII, select 
the type of data separator (comma, semicolon, space, tab) and the number of columns. 

 
 Variables 
 

Define the file which contains the X and Y coordinates for both the origin (residence) and 
destination (crime) locations 
 
 Columns 

 
Select the variables for the X and Y coordinates respectively for both the origin and 

destination locations (e.g., Lon, Lat, HomeX, HomeY, IncidentX, IncidentY.) Both locations 
must be defined for the routine to work.  

 
 Missing values 
 

Identify whether there are any missing values for these four fields (X and Y coordinates 
for both origin and destination locations).  By default, CrimeStat will ignore records with blank 
values in any of the eligible fields or records with non-numeric values (e.g., alphanumeric 
characters, , *).   Blanks will always be excluded unless the user selects <none>.  There are 8 
possible options: 

 
1. <blank> fields are automatically excluded.  This is the default 
2. <none> indicates that no records will be excluded.  If there is a blank field, 

CrimeStat will treat it as a 0 
3. 0 is excluded 
4. –1 is excluded 
5. 0 and –1 indicates that both 0 and -1 will be excluded 
6. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be excluded 
7. Any other numerical value can be treated as a missing value by typing it (e.g., 99) 
8. Multiple numerical values can be treated as missing values by typing them, 

separating each by commas (e.g., 0, -1, 99, 9999, -99) 
 

 Type of coordinate system and data units 
 

Select the type of coordinate system.  If the coordinates are in longitudes and latitudes, 
then a spherical system is being used and data units will automatically be decimal degrees.  If 
the coordinate system is projected (e.g., State Plane, Universal Transverse Mercator – UTM), then 
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data units could be either in feet (e.g., State Plane) or meters (e.g., UTM.)  Directional 
coordinates are not allowed for this routine. 
 
  Select kernel parameters 
 

There are five parameters that must be defined. 
 
 Method of interpolation 
 

There are five types of kernel distributions that can be used to estimate point density: 
 

1. The normal kernel overlays a three-dimensional normal distribution over each 
point that then extends over the area defined by the reference file.  This is the 
default kernel function.  
 

2. The uniform kernel overlays a uniform function over each point that only extends 
for a limited distance. 
 

3. The quartic kernel overlays a quartic function over each point that only extends 
for a limited distance.  
 

4. The triangular kernel overlays a three-dimensional triangle over each point that 
only extends for a limited distance.  

5. The negative exponential kernel overlays a three dimensional negative 
exponential function over each point that only extends for a limited distance 

 
The methods produce similar results though the normal is generally smoother for any 

given bandwidth. 
 
 Choice of bandwidth 
 

The kernels are applied to a limited search distance, called 'bandwidth’.  For the normal 
kernel, bandwidth is the standard deviation of the normal distribution.  For the uniform, quartic, 
triangular and negative exponential kernels, bandwidth is the radius of a circle defined by the 
surface.  For all types, larger bandwidth will produce smoother density estimates and both 
adaptive and fixed bandwidth intervals can be selected. 
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 Fixed bandwidth 
 

A fixed bandwidth distance is a fixed interval for each point.  The user must define the 
interval, the interval size, and the distance units by which it is calculated (miles, nautical miles, 
feet, kilometers, or meters).  The default bandwidth setting is fixed with intervals of 0.25 miles 
each.  The interval size can be changed. 

 
 Adaptive bandwidth 
 

An adaptive bandwidth distance is identified by the minimum number of other points 
found within a symmetrical band drawn around a single point.  A symmetrical band is placed 
over each distance point, in turn, and the width is increased until the minimum sample size is 
reached.  Thus, each point has a different bandwidth size.  The user can modify the minimum 
sample size.  The default for the adaptive bandwidth is 100 points. 
 
 Specify interpolation bins 
 

The interpolation bins are defined in one of two ways: 
 
1. By the number of bins. The maximum distance calculated is divided by the number 

of specified bins. The default is 100 bins. The user can change the number of bins. 
 

2. By the distance between bins.  The user can specify a bin width in miles, nautical 
miles, feet, kilometers, and meters. 

 
 Output (areal) units 
 

Specify the areal density units as points per mile, nautical mile, foot, kilometer, or meter.  
The default is points per mile. 

 
 Calculate densities or probabilities 
 

The density estimate for each cell can be calculated in one of three ways: 
 

1. Absolute densities.  This is the number of points per grid cell and is scaled so 
that the sum of all grid cells equals the sample size.  

2. Relative densities.  For each grid cell, this is the absolute density divided by the 
grid cell area and is expressed in the areal output units (e.g., points per square 
mile) 
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3. Probabilities.  This is the proportion of all incidents that occur in the grid cell.  
The sum of all grid cells equals a probability of 1.  Unlike the Jtc calibration 
routine, this is the default.  In most cases, a user would want a proportional 
(probability) distribution as the relative differences in impedance for different 
costs are what is of interest. 

 
Select whether absolute densities, relative densities, or probabilities are to be output for 

each cell.  The default is probabilities. 
 
 Select output file 
 

The output must be saved to a file. CrimeStat can save the calibration output to either a 
dbase 'dbf' or ASCII text 'txt' file. 

 
 Calibrate! 
 

Click on 'Calibrate!' to run the routine. The output is saved to the specified file upon 
clicking on 'Close'. 
 
 Graphing the travel impedance function 
 

Click on 'View graph' to see the travel impedance function. The screen view can be 
printed by clicking on 'Print'.  For a better quality graph, however, the output should be imported 
into a graphics package. 
  
 Setup Origin-Destination Model 
 

The page is for the setup of the origin-destination model.  All the relevant files, models 
and exponents are input on the page. 
 
 Predicted origin file 
 

The predicted origin file is a file that lists the origin zones with a single point representing 
the zone (e.g., the centroid) and also includes the predicted number of crimes by origin zone.  
The file must be input as either the primary or secondary file.  Specify whether the data file is 
the primary or secondary file. 
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 Origin variable 
 

Specify the name of the variable for the predicted origins (e.g., PREDICTED, 
ADJORIGINS).  

 
 Origin ID 
 

Specify the origin ID variable in the data file (e.g., CensusTract, Block, TAZ ).  Note: all 
destination IDs should be in the origin zone file and must have the same names. 

 
 Predicted destination file 
 

The predicted destination file is a list of destination zones with a single point representing 
the zone (e.g., the centroid) and also includes the predicted number of crimes by destination zone.  
It must be input as either the primary or secondary file.  Specify whether the data file is the 
primary or secondary file. 

 
 Destination variable 
 

Specify the name of the variable for the predicted destination (e.g., PREDICTED, 
ADJDEST). 
  Destination ID 
 

Specify the destination ID variable in the data file (e.g., CensusTract, Block, TAZ). Note: 
the ID’s used for the destination file zones must be the same as in the origin file. 
 Exponents 
 

The exponents are power terms for the predicted origins and destinations and indicate the 
relative strength of those variables. For example, compared to an exponent of 1.0 (the default), an 
exponent greater than 1.0 will strengthen that variable (origins or destinations) while an exponent 
less than 1.0 will weaken that variable.  They can be considered ‘fine tuning’ adjustments. 
 
 Origins 
 

Specify the exponent for the predicted origins.  The default is 1.0. 
 
 Destinations 
 

Specify the exponent for the predicted origins.  The default is 1.0. 
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 Impedance function 
 

The trip distribution routine can use two different travel distance functions: 1) An 
already-calibrated distance function; and 2) A mathematical formula.  The default is a 
mathematical formula. 

 
 Use an already-calibrated distance function 

 
If a travel distance function has already been calibrated (see 'Calibrate impedance 

function' under trip distribution), the file can be directly input into the routine. The user selects the 
name of the already-calibrated travel distance function. CrimeStat reads dbase 'dbf'’, ArcGIS 
‘shp’ and ASCII files. 

 
 Use a mathematical formula 
 

A mathematical formula can be used instead of a calibrated distance function.  To do 
this, it is necessary to specify the type of distribution.  There are five mathematical models that 
can be selected: 

 
1. Negative exponential  
2. Normal 
3. Lognormal 
4. Linear 
5. Truncated negative exponential 

 
The lognormal is the default.  For each mathematical model, two or three different 

parameters must be defined:  
 

1. For the negative exponential, the coefficient and exponent 
2. For the normal distribution, the mean distance, standard deviation and coefficient 
3. For lognormal distribution, the mean distance, standard deviation and coefficient 
4. For the linear distribution, an intercept and slope 
5. For the truncated negative exponential, a peak distance, peak likelihood, intercept, 

and exponent.   
 
 Measurement unit 
 

The routine can calculate impedance in four ways, by: 
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1. Distance (miles, nautical miles, feet, kilometers, or meters) 
2. Travel time (minutes, hours) 
3. Speed (miles per hour, kilometers per hour) 
4. General travel costs (unspecified units). 

 
These must be setup under Network distance on the Measurement Parameters page. 

Specify the appropriate units.  In the Network Parameters dialogue, specify the measurement 
units.  The default is distance in miles. 
 
 Assumed impedance for external zones 
 

For trips originating outside the study area (external trips), specify the amount and the 
units that will be assumed for these trips.  The default is 25 miles. 
 
 Assumed impedance for intra-zonal trips 
 

For trips originating and ending in the same zone (intra-zonal trips), specify the amount 
and the units that will be assumed for these trips.  The default is 0.25 miles. 
 
 Minimum number of trips per cell 
 

The parameter allows a minimum number of predicted trips for each origin-destination 
combination (cell).  It will return a zero (0) if the predicted number is less than the minimum.  
This can be adjusted to avoid many cells with very small numbers of predicted trips. Care must be 
taken, though, as this can alter the overall distribution.  The default minimum is 0.05 trips per 
cell. 
 
 Model constraints 
 

In calibrating a model, the routine must constrain either the origins or the destinations 
(single constraint) or constrain both the origins and the destinations (double constraint).  In the 
latter case, it is an iterative solution.  The default is to constrain destinations as it is assumed that 
the destinations totals (the number of crimes occurring in each zone) are probably more correct 
than the number of crimes originating in each zone. .  Specify the type of constraint for the 
model. 
 Constrain origins 
 

If constrain origins is selected, the total number of trips from each origin zone will be held 
constant. 
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 Constrain destinations 
 

If constrain destinations is selected, the total number of trips from each destination zone 
will be held constant.   
 
 Constrain both origins and destinations 
 

If constrain both origins and destinations is selected, the routine iteratively works out a 
balance between the number of origins and the number of destinations. 
 
 Origin-Destination Model 
 

The trip distribution (origin-destination) model is implemented in two steps.  First, the 
coefficients are calculated according to the exponents and impedance functions specified on the 
setup page.  Second, the coefficients and exponents are applied to the predicted origins and 
destinations resulting in a predicted trip distribution.  Because these two steps are iterative, they 
cannot be run simultaneously.   

 
 Calibrate origin-destination model 
 

Check the ‘Calibrate origin-destination model’ box to run the calibration model.  
 
 Save modeled coefficients (parameters) 
 

The modeled coefficients are saved as a ‘dbf’ file.  Specify a file name. 
 
 Apply predicted origin-destination model 
 

Check the ‘Apply predicted origin-destination model’ box to run the trip distribution 
prediction.   

 
 Modeled coefficients file 
 

Load the modeled coefficients file saved in the ‘Calibrate origin-destination model’ stage. 
 
 
 
 
 



 
2.189 

 Assumed coordinates for external zone 
 

In order to model trips from the ‘external’ zone (trips from outside the study area), specify 
coordinates for this zone.  These coordinates will be used in drawing lines from the predicted 
origins to the predicted destinations.  There are four choices: 
 

1. Mean center (the mean X and mean Y of all origin file points are taken). This is 
the default. 

2. Lower-left corner (the minimum X and minimum Y values of all origin file points 
are taken). 

3. Upper-right corner (the maximum X and maximum Y values of all origin file 
points are taken). 

4. Use coordinates (user-defined coordinates).  Indicate the X and Y coordinates 
that are to be used. 

 
 Table output 
 

The table output includes summary file information and (with default names): 
 

1. The origin zone (ORIGIN) 
2. The destination zone (DEST) 
3. The number of predicted trips (PREDTRIPS) 

 
 Save predicted origin-destination trips 
 

Define the output file.  The output is saved as a ‘dbf’ file with the file name specified by 
the user.  

 
 File output 
 

The file output includes (with default names): 
 

1. The origin zone (ORIGIN) 
2. The destination zone (DEST) 
3. The X coordinate for the origin zone (ORIGINX) 
4. The Y coordinate for the origin zone (ORIGINY) 
5. The X coordinate for the destination zone (DESTX) 
6. The Y coordinate for the destination zone (DESTY) 
7. The number of predicted trips (PREDTRIPS) 
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Note: each record is a unique origin-destination combination and there are M x N records 
where M is the number of origin zones (including the external zone) and N is the number of 
destination zones. 

 
 Save links 
 

The top predicted origin-destination trip links can be saved as separate line objects for use 
in a GIS.  Specify the output file format (ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats) 
and the file name. For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 
 
 Save top links 
 

Because the output file is very large (number of origin zones x number of destination 
zones), the user can select a sub-set of zone combinations with the most predicted trips. Indicating 
the top K links will narrow the number down to the most important ones.  The default is the top 
100 origin-destination combinations.  Each output object is a line from the origin zone to the 
destination zone with an ODT prefix.  The prefix is placed before the output file name.  The 
graphical output includes (with default names): 

 
1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (ODT) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of predicted trips for that combination (PREDTRIPS) 
10. The distance between the origin zone and the destination zone. 

 
 Save points 
 

Intra-zonal trips (trips in which the origin and destination are the same zone) can be output 
as separate point objects as an ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats.  For 
MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
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the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 

 
Again, the top K points are output (default=100).  Each output object is a point 

representing an intra-zonal trip with an ODTPOINTS prefix.  The prefix is placed before the 
output file name.  The graphical output for each includes (with default names): 
 

1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (POINTSODT) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of predicted trips for that combination (PREDTRIPS) 

 
 Compare Observed & Predicted Origin-Destination Trip Lengths 

 
The predicted trip distribution model can be compared with the observed (actual) trip 

distribution.  Since there are many cells for this comparison (M origins x N destinations), a 
comparison is usually conducted for the trip length distributions.  Each origin-destination link 
(whether the observed distribution or that predicted by the model) is converted into a trip length.  
The maximum distance between an origin and a destination is then divided into K bins (intervals), 
where K can be defined by the user; the default is 25.  The two distributions are compared with 
two statistics: 1) the coincidence ratio (essentially a positive correlation index that varies between 
0 and 1 with 0 representing little coincidence and 1 representing perfect coincidence) and 2) the 
Komolgorov-Smirnov two-sample test (a test of the difference between the cumulative 
proportions of the observed and predicted distributions). There is also a graph that compares the 
two distributions. 
 
 Observed trip file 
 

Select the observed trip distribution file by clicking on the Browse button. 
 
 Observed number of origin-destination trips 
 

Specify the variable for the observed number of trips.  The default name is FREQ. 
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 Orig_ID 
 

Specify the ID name for the origin zone.  The default name is ORIGIN. Note: the origin 
ID’s should be the same as in the predicted file in order to compare the top links. 
 
 Orig_X  
 

Specify the name for the X coordinate of the origin zone.  The default name is 
ORIGINX. 
 
 Orig_Y 
 

Specify the name for the Y coordinate of the origin zone.  The default name is 
ORIGINY. 
 
 Dest_ID 
 

Specify the ID name for the destination zone. The default name is DEST. Note: the 
destination ID’s should be the same as in the predicted file in order to compare the top links. 
 
 
 Dest_X 
 

Specify the name for the X coordinate of the destination zone. The default name is 
DESTX. 
 
 Dest_Y 
 

Specify the name for the Y coordinate of the destination zone. The default name is 
DESTY. 
 
 Predicted trip file 
 

Select the predicted trip distribution file by clicking on the Browse button and finding the 
file. 
 
 Predicted number of origin-destination trips 
 

Specify the variable for the predicted number of trips. The default name is PREDTRIPS 
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 Orig_ID 
 

Specify the ID name for the origin zone. The default name is ORIGIN. Note: the origin 
ID’s should be the same as in the observed file in order to compare the top links. 

 
 Orig_X  
 

Specify the name for the X coordinate of the origin zone. The default name is ORIGINX. 
 
 Orig_Y 
 

Specify the name for the Y coordinate of the origin zone.  The default name is 
ORIGINY. 
 
 Dest_ID 
 

Specify the ID name for the destination zone.  The default name is DEST. Note: the 
destination ID’s should be the same as in the observed file in order to compare the top links. 
 
 Dest_X 
 

Specify the name for the X coordinate of the destination zone.  The default name is 
DESTX. 
 
 Dest_Y 
 

Specify the name for the Y coordinate of the destination zone.  The default name is 
DESTY. 
 
 Select bins 
 

Specify how the bins (intervals) will be defined.  There are two choices. One is to select 
a fixed number of bins.  The other is to select a constant interval. 
 
 Fixed number 
 

This sets a fixed number of bins.  An interval is defined by the maximum distance 
between zone divided by the number of bins.  The default number of bins is 25.  Specify the 
number of bins. 
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 Constant interval 
 
This defines an interval of a specific size.  If selected, the units must also be chosen.  

The default is 0.25 miles.  Other distance units are nautical miles, feet, kilometers, and meters.  
Specify the interval size. 
 
 Save comparison 
  

The output is saved as a ‘dbf’ file with the file name specified by the user.  
 

 Table output 
 
The table output includes summary information and: 
 
1. The number of trips in the observed origin-destination file 
2. The number of trips in the predicted origin-destination file 
3. The number of intra-zonal trips in the observed origin-destination file 
4. The number of intra-zonal trips in the predicted origin-destination file 
5. The number of inter-zonal trips in the observed origin-destination file 
6. The number of inter-zonal trips in the predicted origin-destination file 
7. The average observed trip length 
8. The average predicted trip length 
9. The median observed trip length 
10. The median predicted trip length 
11. The Coincidence Ratio (an indicator of congruence varying from 0 to 1) 
12. The D value for the Komolgorov-Smirnov two-sample test 
13. The critical D value for the Komolgorov-Smirnov two-sample test 
14. The p-value associated with the D value of Komolgorov-Smirnov two-sample test 

relative to the critical D value. 
 
and for each bin: 
 

15. The bin number 
16. The bin distance 
17. The observed proportion 
18. The predicted proportion 
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 File output 
 

The saved file includes (with default names):  
 

1. The bin number (BIN) 
2. The bin distance (BINDIST) 
3. The observed proportion (OBSERVPROP) 
4. The predicted proportion (PREDPROP) 

 
 Graph of observed and predicted trip lengths 
 

While the output page is open, clicking on the graph button will display a graph of the 
observed and predicted trip length proportions on the Y-axis by the trip length distance on the 
X-axis. 
 
 Compare Top Links 
 

As an alternative to a comparison of trip lengths for the observed and predicted 
distributions, the top links can be compared with a pseudo-Chi square test.   Since the top links 
have the most trips, the Chi square distribution can be used for comparison.  However, because 
the rest of the distribution is not being used, significance tests are invalid. 
 

The statistic compares the number of trips for the top links in the observed distribution 
with the number of trips for the same links in the predicted model.  The routine calulates a Chi 
square value.   
 

The statistic is useful for comparing different models.  The lower the Chi square value, 
the better the fit between the predicted model and the observed for the top links. The aim is to 
find the model that gives the lowest possible Chi square value.   
 

Note: in order to use this routine, the origin and destination ID’s must be the same for 
both the observed and predicted trip files.   
 

Click the box and specify the number of links to be compared.  The default value is 100.   
The output includes: 

 
1. The number of links that are compared  
 

and for each trip pair in order of the number of trips: 
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2. The zone ID of the origin zone (FromZone) 
3. The zone ID of the destination zone (ToZone) 
4. The observed (actual) number of trips 
5. The predicted number of trips. 

 
At the bottom of the page is a Chi-square test of the difference between the observed and 

predicted number of trips for the top links.  Since not all trips have been included in this 
distribution, no significance test is conducted.  The aim should be to find the model with the 
lowest Chi-square value. 
 
 Optimizing the Fit Between the Observed and Predicted Links 
  

Ideally, the best model would fulfill three comparison tests.  First, the number of 
intra-zonal tests (and, by implication, the number of inter-zonal trips) in the predicted trip 
distribution would be identical to the number of intra-zonal trips in the observed distribution.  
Second, the overall model would have a high coincidence ratio and a non-significant 
Komolgorov-Smirnov test for the trip length comparison.  Third, the Chi square value for the top 
links would be the lowest possible.  In practice, an optimal model may have to balance these 
three criteria, producing a good match in the number of intra-zonal trips, a reasonably low Chi 
square value for the top links, and a reasonably high coincidence ratio for the trip length 
comparison.  There may not be a single, optimal model. 
 

Mode Split 

 
Mode split involves separating the predicted trips by link (i.e., the trips from any one 

origin zone, A, to any one destination zone, B) into distinct travel modes (e.g., walk, bicycle, 
drive, bus, train).  The basis of the separation is an aggregate relative impedance function.  This 
is, essentially, the ‘cost’ of traveling by any one mode relative to all modes, whether cost is 
defined in terms of distance, travel time, or generalized costs.  The model can be determined by 
either an empirically-derived impedance function or a mathematical function.  The 
empirically-derived impedance function would come from a calibration data set whereas the 
mathematical function is selected on the basis of either previous experience or other studies.  
The separate impedance functions can be constrained to a network in order to prevent trips from 
being allocated that are nearly impossible (e.g., train trips where there are no train lines and bus 
trips where there are no bus routes).   
 
  



Figure 2.25:

Mode Split Modeling
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The steps of the routine are as follows.  First, the user inputs a file of predicted trips (i.e., 
the number of predicted trips from every origin zone to every destination zone).  Second, the 
user defines which travel modes are to be modeled.  Up to five separate modes are allowed.   

 
Third, the user sets up an impedance model for each travel mode.  Any of the impedance 

models can be constrained to a particular network (e.g., bus mode constrained to a bus network; 
train mode constrained to a train network).  This would normally be desired even for modes 
where travel in any direction is possible (e.g., walk, bicycle, drive modes).  Fourth, and finally, 
after all impedance models have been defined, the routine is run and splits the predicted trips into 
the defined modes on the basis of the relative impedance of each mode to all impedances. 
 

Setup for Mode Split Model 
 
This page defines the predicted trip file and the output file.  It also allows a definition of 

where external trips are assumed to come from. 
 
 Predicted origin file 
 

The predicted origin file is a file that lists the origin zones with a single point representing 
the zone (e.g., the centroid) and also includes the predicted number of crimes by origin zone.  
The file must be input as either the primary or secondary file.  Specify whether the data file is 
the primary or secondary file. 

 
 Origin variable 
 

Specify the name of the variable for the predicted origins (e.g., PREDICTED, 
ADJORIGINS). 
 
 Origin ID 
 

Specify the origin ID variable in the data file (e.g., CensusTract, Block, TAZ).  Note: all 
destination ID’s should be in the origin zone file and must have the same names. 

 
 Predicted destination file 
 

The predicted destination file is a list of destination zones with a single point representing 
the zone (e.g., the centroid) and also includes the predicted number of crimes by destination zone.  
It must be input as either the primary or secondary file.  Specify whether the data file is the 
primary or secondary file. 
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 Destination variable 
 
 Specify the name of the variable for the predicted destination (e.g., PREDICTED, 
ADJDEST). 

 
 Destination ID 
 

Specify the destination ID variable in the data file (e.g., CensusTract, Block, TAZ). Note: 
the ID’s used for the destination file zones must be the same as in the origin file. 

 
 Predicted origin-destination trip file 

 
The predicted origin-destination trip file lists the predicted number of trips from every 

origin zone to every destination zone.  On the mode split setup page, select the predicted trip file 
(i.e., the predicted origin-destination trip file by clicking on the ‘Browse’ button. 
 

 Predicted trips 
 
Specify the variable for the predicted number of trips.  The default name is PREDTRIPS 

 
 Assumed impedance for external zone 
 

In order to model trips from the ‘external zone’ (trips from outside the study area), specify 
an impedance to be assumed.  The default is 25 miles. 
 
 Assumed coordinates for external zone 

 
In order to model trips from the ‘external’ zone (trips from outside the study area), specify 

coordinates for this zone.  These coordinates will be used in drawing lines from the predicted 
origins to the predicted destinations.  There are four choices: 
 

1. Mean center (the mean X and mean Y of all origin file points are taken).  This is 
the default. 

2. Lower-left corner (the minimum X and minimum Y values of all origin file points 
are taken). 

3. Upper-right corner (the maximum X and maximum Y values of all origin file 
points are taken). 

4. Use coordinates (user-defined coordinates).  Indicate the X and Y coordinates 
that are to be used. 
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 Run Mode Split 
 
Check the “Mode split” box to enable the routine.  It will run when the “Compute” 

button is clicked. 
 

 Mode Split Output 
 

There are three types of output for the mode split routine.   
 
1. The zone-to-zone trip file for each mode separately can be output as a dbf file.   
2. The most frequent inter-zonal (i.e., trips between different zones) trips for each 

mode separately can be output as polylines.   
3. The most frequent intra-zonal (i.e., trips within the same zone) trips for each mode 

separately can be output as points.   
 

Output file name (save result) 
 

Define the output file name by clicking on ‘Save result’.  The output will be saved as a 
‘dbf’ file with the file name specified by the user.  For each mode, the prefix ‘TMode’ will be 
prefaced before the file.  For example, if the name provided by the user is “robberies.dbf” and if 
there are three travel modes modeled, then there will be three output files (TMode1robberies.dbf; 
TMode2robberies.dbf; TMode3robberies.dbf). 

 
 File output 
 

The file output includes: 
 

1. The origin zone (ORIGIN) 
2. The destination zone (DEST) 
3. The X coordinate for the origin zone (ORIGINX) 
4. The Y coordinate for the origin zone (ORIGINY) 
5. The X coordinate for the destination zone (DESTX) 
6. The Y coordinate for the destination zone (DESTY) 
7. The number of predicted trips (PREDTRIPS) 

 
Note: each record is a unique origin-destination combination and there are M x N records 

where M is the number of origin zones (including the external zone) and N is the number of 
destination zones. 
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 Save links 
 

The top predicted origin-destination trip links can be saved as separate line objects for use 
in a GIS.  Specify the output file format (ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats) 
and the file name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common projections 
with their appropriate parameters is available to be selected. 

 
For each mode, the prefix ‘TripMode’ will be prefaced before the file.  For example, if 

the name provided by the user is “robberies” and if there are three travel modes modeled, then 
there will be three graphical output files (TripMode1robberies.shp/mif; 
TripMode2robberies.shp/mif; TripMode3robberies.shp/mif). 

 
 Save top links 
 

Because the output file is very large (number of origin zones x number of destination 
zones), the user can select a sub-set of zone combinations with the most predicted trips. Indicating 
the top K links will narrow the number down to the most important ones.  The default is the top 
100 origin-destination combinations.  Each output object is a line from the origin zone to the 
destination zone with a TripMode prefix where ‘’ is the mode number.  The prefix is placed 
before the output file name.  The graphical output includes: 

 
1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (ODT) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of predicted trips for that combination (PREDTRIPS) 
10. The distance between the origin zone and the destination zone. 
 

 Save points 
 

Intra-zonal trips (trips in which the origin and destination are the same zone) can be output 
as separate point objects as an ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats.  For 
MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
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projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 

 
Again, the top K points are output (default=100).  Each output object is a point 

representing an intra-zonal trip with a TripModePoints prefix where ‘’ is the mode number.  The 
prefix is placed before the output file name. For example, if the name provided by the user is 
“robberies” and if there are three travel modes modeled, then there will be three graphical output 
files (TripModePoints1robberies.shp/mif; TripModePoints2robberies.shp/mif; 
TripModePoints3robberies.shp/mif). 

 
The graphical output for each includes: 

 
1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (POINTSODT) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of predicted trips for that combination (PREDTRIPS) 
 

  Calibrate Mode Split: I-III 
 

For each mode (up to five), the impedance parameters have to be set.  There are three 
pages for this: 

 
1. “Calibrate mode split: I” covers modes 1 and 2.   
2. “Calibrate mode split: II’ covers modes 3 and 4.   
3. “Calibrate mode split: III” covers mode 5.   
 

For each mode, the user should indicate whether the mode is to be used, the name to be used for 
the mode, whether a default impedance will be calculated directly or if it should be constrained to 
a network, and the specific impedance model used.  If any mode is not used, then it will not be 
part of the calculations.  Use only those modes that are relevant, but, also, be sure not to leave 
out any important ones. 
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The following instructions apply to each of the five modes. 
 
 Mode  
  

Check the box if the mode is to be used. 
 
 Label 
 

Put in a label for the mode.  Default names are provided (walk, bicycle, drive, bus, train), 
but the user is not required to use those.  
 
 Impedance constraint 
 

The impedance will be calculated either directly or is constrained to a network.  The 
default impedance is defined with the type of distance measurement specified on the 
Measurement Parameters page (under Data setup).  On the other hand, if the impedance is to be 
constrained to a network, then the network has to be defined.   
 
 Default 
 

The default impedance is that specified on the Measurement parameters page. If direct 
distance is the default distance (on the measurement parameters page), then all impedances are 
calculated as a direct distance.  If indirect distance is the default, then all impedances are 
calculated as indirect (Manhattan) distance.  If network distance is the default, then all 
impedances are calculated using the specified network and its parameters; travel impedance will 
automatically be constrained to the network under this condition. 
 
 Constrain to network 
 

An impedance calculation should be constrained to a network where there are limited 
choices.  For example, a bus trip requires a bus route; if a particular zone is not near an existing 
bus route, then a direct distance calculation will be misleading since it will probably 
underestimate true distance.  Similarly, for a train trip, there needs to be an existing train route.  
Even for walking, bicycling and driving trips, an existing network might produce a more realistic 
travel impedance than simply assuming a direct travel path.  If the impedance calculation is to be 
constrained to a network, then the network must be defined.  
 

Check the ‘Constrain to network’ box and click on the ‘Parameters’ button.  The network 
file can be either a shape line or polyline file (the default) or another file, either dBase IV  ‘dbf’ 
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or ASCII.   If the file is a shape file, the routine will know the locations of the nodes.  All the 
user needs to do is identify a weighting variable, if used.   
 

For a dBase IV or other file, the X and Y coordinate variables of the end nodes must be 
defined. These are called the “From” node and the “End” node, though there is no particular 
order.  An optional weight variable is allowed for both a shape or dbf file. The routine identifies 
nodes and segments and finds the shortest path.  By default, the shortest path is in terms of 
distance though each segment can be weighted by travel time, travel speed, or generalized cost; in 
the latter case, the units are minutes, hours, or unspecified cost units.  

 
Note: using network distance for distance calculations can be a very slow process (i.e., 

taking many hours or even up to several days for calculating a large matrix). 
 

 Minimum absolute impedance 
 
If the mode is constrained to a network, an additional constraint is needed to ensure 

realistic allocations of trips.  This is the minimum absolute impedance between zones. The 
default is 2 miles.  For any zone pair (an origin zone and a destination zone) that is closer 
together (in distance, time interval, or cost) than the minimum specified, no trips will be allocated 
to that mode.  This constraint is to prevent unrealistic trips being assigned to intra-zonal trips or 
trips between nearby zones.  CrimeStat uses three impedances for a constrained network: 1) the 
impedance from the origin zone to the nearest node on the network (e.g., nearest rail station); b) 
the impedance along the network to the node nearest to the destination; and c:) the impedance 
from that node to the destination zone.  Since most impedance functions for a mode constrained 
to a network will have the highest likelihood some distance from the origin, it’s possible that the 
mode would be assigned to, essentially, very short trips (e.g., the distance from an origin zone to a 
rail network and then back again might be modeled as a high likelihood of a train trip even though 
such a trip is very unlikely).   

 
For each mode that is constrained to a network, specify the minimum absolute impedance.  

The units will be the same as that specified by the measurement units. The default is 2 miles.  If 
the units are distance, then trips will only be allocated to those zone pairs that are equal to or 
greater in distance than the minimum specified.  If the units are travel time or speed, then trips 
will only be allocated to those zone pairs that are farther apart than the distance that would be 
traveled in that time at 30 miles per hour.  If the units are cost, then the routine calculates the 
average cost per mile along the network and only allocates trips to those zone pairs that are farther 
apart than the distance that would be traveled at that average cost.  
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 Impedance function 
 
The model split routine can use two different travel distance functions: 1) An 

already-calibrated distance function; and 2) A mathematical formula.  The default is a 
mathematical formula. 

 
 Use an already-calibrated distance function 

 
If a travel distance function for the specific mode has already been calibrated (see 

'Calibrate impedance function' under trip distribution), the file can be directly input into the 
routine.  That routine can be used to calibrate a function if there are data on origins and 
destinations for individual travel modes. 
 

The user selects the name of the already-calibrated travel distance function.  CrimeStat 
reads dbase 'dbf', ArcGIS ‘shp’, and ASCII files. 
 
 Use a mathematical formula 
 

A mathematical formula can be used instead of a calibrated distance function.  To do 
this, it is necessary to specify the type of distribution.  There are five mathematical models that 
can be selected: 

 
1. Negative exponential – the default 
2. Normal distribution 
3. Lognormal distribution 
4. Linear distribution 
5. Truncated negative exponential 

 
For each mathematical model, two or three different parameters must be defined: 

 
1. For the negative exponential, the coefficient and exponent.  This is the default 

and default values are provided. 
2. For the normal distribution, the mean distance, standard deviation and coefficient. 
3. For lognormal distribution, the mean distance, standard deviation and coefficient. 
4. For the linear distribution, an intercept and slope. 
5. For the truncated negative exponential, a peak distance, peak likelihood, intercept, 

and exponent.    
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 Segment measurement unit 
 

The routine can calculate impedance in four ways, by: 
 

1. Distance (miles, nautical miles, feet, kilometers, or meters) 
2. Travel time (minutes, hours) 
3. Speed (miles per hour, kilometers per hour) 
4. General travel costs (unspecified units). 

 
Specify the appropriate units.  The default is distance in miles. 

 

Network Assignment 
 

Network assignment involves assigning predicted trips (either all trips or by separate 
travel modes) to a particular route on a network.  That is, for every origin-destination trip link, a 
particular route is found along a network (roadway, transit).  The routine does this using a 
shortest path algorithm.  The user must provide the network with its parameters.  The routine 
allows the definition of one-way streets in order to produce a more realistic representation.  In 
the current version, the assignment routine works on one predicted trip file at a time. 
 
 Predicted Origin-Destination file 
 

The predicted origin-destination trip file is a file that lists the predicted number of trips 
from every origin zone to every destination zone.  Select the predicted trip file (i.e., the predicted 
origin-destination trip file) by clicking on the ‘Browse’ button.  
 
 Origin ID 
 

Specify the origin zone ID variable in the data file.  The default name is ORIGIN.  
 

 Origin_X 
 

Specify the name of the variable for the X coordinate of the origin zone.  The default 
name is ORIGINX. 
 

 
 
 
 



Figure 2.26:

Network Assignment Modeling
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 Origin_Y 
 

Specify the name of the variable for the Y coordinate of the origin zone.  The default 
name is ORIGINY. 
 
 Destination ID 
 

Specify the destination zone ID variable in the data file.  The default name is DEST. 
 

 Destination_X 
 

Specify the name of the variable for the X coordinate of the destination zone.  The 
default name is DESTX. 
 
 Destination_Y 
 

Specify the name of the variable for the Y coordinate of the destination zone.  The 
default name is DESTY. 
 
 Predicted trips 

 
Specify the variable for the predicted number of trips.  The default name is PREDTRIPS 

 
 Network Used 
 

The network assignment routine requires a network from which the shortest path from 
every origin zone to every destination zone can be computed.  To run this routine, check the 
‘Network assignment’ box at the top of the page. 

 
The user must specify the network that is to be used.  There are two choices.   
 
1. If a network was defined on the Measurement parameters page (Data setup), that 

network can be used to calculate the shortest path.   
2. Whether a network has been defined on the Measurement parameters page or not, 

an alternative network can be selected.  This will take priority if a network has 
been defined on both pages. 
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 Network on measurement parameters page 
 

Check the ‘Network on Measurement parameters page’ box to use that network.  All the 
parameters will have been defined for that setup (see Measurement parameters page).   
 
 Alternative network 
  

If an alternative network is to be used, it must be defined.  Check the ‘Alternative 
network’ box and click on the ‘Parameters’ button.   
 

Note: if a network is also used on the Measurement Parameters page, then it must be 
defined there as well.  CrimeStat will check whether that file exists; if it does not, the routine 
will stop and an error message will be issued.  Therefore, if an alternative network is used, the 
user should probably change the distance measurement on the Measurement Parameters page to 
direct or indirect distance. 
 
 Type of network 
 

Network files can bi-directional (e.g., a TIGER file) or single directional (e.g., a 
transportation modeling file).  In a bi-directional file, travel can be in either direction.  In a 
single directional file, travel is only in one direction.  Specify the type of network to be used. 

 
 Network input file 
 

The network file can either be a shape file (line, polyline, or polylineZ file) or another file, 
either dBase IV ‘dbf’ or ASCII.  The default is a shape file. If the file is a shape file, the routine 
will know the locations of the nodes.  For a dBase IV or other file, the X and Y coordinate 
variables of the end nodes must be defined. These are called the “From” node and the “End” 
node.  An optional weight variable is allowed for both a shape or dbf file. The routine identifies 
nodes and segments and finds the shortest path.   If there are one-way streets in a bi-directional 
file, the flag fields for the “From” and “To” nodes should be defined. 

 
 Network weight field 
 

Normally, each segment in the network is not weighted.  In this case, the routine 
calculates the shortest distance between two points using the distance of each segment.  
However, each segment can be weighted by travel time, speed or travel costs.  If travel time is 
used for weighting the segment, the routine calculates the shortest time for any route between two 
points.  If speed is used for weighting the segment, the routine converts this into travel time by 
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dividing the distance by the speed.  Finally, if travel cost is used for weighting the segment, the 
routine calculates the route with the smallest total travel cost.  Specify the weighting field to be 
used and be sure to indicate the measurement units (distance, speed, travel time, or travel cost) at 
the bottom of the page.  If there is no weighting field assigned, then the routine will calculate the 
path using distance. 
 
 From one-way flag and To one-way flag 
 

One-way segments can be identified in a bi-directional file by a ‘flag’ field (it is not 
necessary in a single directional file).  The ‘flag’ is a field for the end nodes of the segment with 
values of ‘0’ and ‘1’.  A ‘0’ indicates that travel can pass through that node in either direction 
whereas a ‘1’ indicates that travel can only pass from the other node of the same segment (i.e., 
travel cannot occur from another segment that is connected to the node).  The default assumption 
is for travel to be allowed through each node (i.e., there is a ‘0’ assumed for each node).  There 
is a ‘From one-way flag’ field and a ‘To one-way flag’ field.  For each one-way street, specify 
the flags for each end node.  A ‘0’ allows travel from any connecting segments whereas a ‘1’ 
only allows travel from the other node of the same segment. Flag fields that are blank are 
assumed to allow travel to pass in either direction. 
 
 FromNode ID and ToNode ID 
 

If the network is single directional, there are individual segments for each direction. 
Typically, two-way streets have two segments, one for each direction.  On the other hand, 
one-way streets have only one segment.   The FromNode ID and the ToNode ID identify from 
which end of the segment travel should occur.  If no FromNode ID and ToNode ID is defined, 
the routine will chose the first segment of a pair that it finds, whether travel is in the right or 
wrong direction.  To identify correctly travel direction, define the FromNode and ToNode ID 
fields. 
 
 Network coordinate system 

 
The type of coordinate system for the network file is the same as for the primary file. 
 

 Segment measurement unit 
 
By default, the shortest path is in terms of distance.  However, each segment can be 

weighted by travel time, travel speed, or travel cost.   
 
1. For travel time, the units are minutes, hours, or unspecified cost units.    
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2. For speed, the units are miles per hour and kilometers per hour.  In the case of 
speed as a weighting variable, it is automatically converted into travel time by 
dividing the distance of the segment by the speed, keeping units constant.   

3. For travel cost, the units need to be defined in terms of cost per unit distance (e.g., 
per mile, per kilometer).  The routine will then identify routes by those with the 
smallest total cost. 
 

 Network Utilities 
 
There are two network utilities that can be used.   

 
 Check for one-way streets 
 

First, there is a routine that will identify one-way streets if the network is single 
directional. In a single directional file, one-way streets do not have a reciprocal pair (i.e., a 
segment traveling in the opposite direction).  This is indicated by a reciprocal pair of ID’s for the 
“From” and “To” nodes. If checked, the routine identifies those segments that do not have 
reciprocal node ID’s.  The network is saved with a new field called “Oneway”.  One-way 
segments are assigned a value of ‘1’ value and two-way segments are assigned a value of ‘0’.  
The output is saved as an ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats.  For MapInfo 
‘mif’ format, the user has to define up to nine parameters including the name of the projection and 
the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in the same 
directory as CrimeStat, then a list of common projections with their appropriate parameters is 
available to be selected. 

 
 Create a transit network from primary file 

 
Second, there is a routine that will create a network from the primary file.  This is useful 

for creating a transit network from a collection of bus stops (bus network) or rail stations (rail 
network).  If checked, the routine will read the primary file and will draw lines from one point to 
another in the order in which the points appear in the primary file. Note, it is essential to order the 
points in the same order in which the network should be drawn (otherwise, an illogical network 
will be obtained).  It is easy to do this in a spreadsheet program. 

 
 Transit Line ID 

 
The routine can handle multiple lines, for example different rail lines or bus routes (e.g., 

Line A, Line B, Route 1, Route 2). In the primary file, the points must be grouped by lines, 
however, and must be classified by an ID field.  Within each group, the points must be arranged 
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in order of occurrence; the routine will draw a lines from one point to another in that order. In the 
Transit Line ID field, indicate which variable is the classification variable. 

 
The output is saved as an ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats.  For 

MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 

 
 Network Output 
 

There are three types of output for the network assignment routine.  First, the most 
frequent inter-zonal (i.e., trips between different zones) routes can be output as polylines.  
Second, the most frequent intra-zonal (i.e., trips within the same zone) routines can be output as 
points.  Third, the entire network can be output in terms of the total number of trips that occur on 
each segment (network load). 
 
 Save routes 
 

The shortest routes can be saved as separate polyline objects for use in a GIS.  Specify 
the output file format (ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats) and the file name. 
For MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 

 
 Save top routes 
 

Because the output file is very large (number of origin zones x number of destination 
zones), the user can select a zone-to-zone route with the most predicted trips.  The default is the 
top 100 origin-destination combinations.  Each output object is a line from the origin zone to the 
destination zone with a Route prefix.  The prefix is placed before the output file name.  The 
graphical output includes: 

 
1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (ROUTE) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
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6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of trips on that particular route (FREQ) 
10. The distance between the origin zone and the destination zone (DIST). 

 
 Save points 
 

Intra-zonal trips (trips in which the origin and destination are the same zone) can be output 
as separate point objects as an ArcGIS ‘shp’, MapInfo ‘mif’ or various ASCII formats.  For 
MapInfo ‘mif’ format, the user has to define up to nine parameters including the name of the 
projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ is placed in 
the same directory as CrimeStat, then a list of common projections with their appropriate 
parameters is available to be selected. 

 
Again, the top K points are output (default=100). Each output object is a point 

representing an intra-zonal trip with a RoutePoints.  The prefix is placed before the output file 
name.  

 
The graphical output for each includes: 

 
1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (ROUTEPoints) 
3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of trips on that particular route (FREQ) 
10. The distance between the origin zone and the destination zone (DIST). 

 
  Save network load 
 

It is also possible to save the total network load as an ArcGIS ‘shp’, MapInfo ‘mif’ or 
ASCII file.  This is the total number of trips on each segment of the network.  The routine takes 
every origin zone to destination zone combination and sums the number of trips that occur on 
each segment of the network.  For MapInfo ‘mif’ format, the user has to define up to nine 
parameters including the name of the projection and the projection number.  If the MapInfo 
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system file MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common 
projections with their appropriate parameters is available to be selected. 
 

Click on the “Save output network” box and specify a file name for the output. 
 

Crime Travel Demand Case Studies 
 

Chapters 31 and 32 present two case studies on crime travel demand, one by Richard 
Block and one by Dan Helms.  
 

File Worksheet 

 
The file worksheet allows the saving of names for the files in the crime travel demand 

module.  Because there are a large number of files used (many used in multiple routines), saving 
the names will make it easier to keep track of the files.  The file worksheet is not required for use 
in the crime travel demand module.  But we do recommend using it remember the names of files 
in a particular travel demand model.  There are five worksheets for keeping track of the different 
routines. 
 
 File Worksheet 1 
 

This worksheet keeps track of the files used in the trip generation step.  These include: 
 
 Trip generation 
 
 Calibrate model 
 Make prediction 
 Balance origins with destinations 
 
 File Worksheet 2 
 

This worksheet keeps track of some used in the trip distribution step, in particular the 
observed trip distribution and trip distribution model setup.  These include: 
 
 Trip distribution 
 
 Describe origin-destination trips 
 Setup origin-destination model 

 



Figure 2.27:

Crime Travel Demand File Worksheet
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 File Worksheet 3 
 

This worksheet also keeps track files used in the trip distribution step, in particular the trip 
distribution model and the comparison between the observed and predicted trip length 
distributions.  These include: 
 
 Origin-destination model 
 Compare observed and predicted origin-destination trip lengths 
 
 File Worksheet 4 
 

This worksheet keeps track of the files used in the mode split step, including the mode 
split setup and modes 1-3.  These include: 
 
 Mode split 
 
 Setup for mode split 
 Modes modeled 
 Modes 1-3 
 
 File Worksheet 5 
 

This worksheet keeps track of the remaining files used in the mode split step (modes 4-5) 
as well as network assignment routine.  These include: 
 
 Mode split (continued) 
 
 Modes modeled 
 Modes 4-5 
 
 Network assignment 
 

VII. Options 

  
The Options page includes six features that can improve the usability of CrimeStat.  
 
1. Colors for tabs. The user can select one of tens of thousands of colors for each of 

the major tabs. The Options tab remains black. 
 



CrimeStat Options
Figure 2.28:
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2. There is a utility for saving the Primary file to Google Earth ‘kml’ files if the 
coordinate system is spherical (longitude and latitude).  Google Earth only 
accepts universal, spherical coordinates so that this option is not available if the 
data are projected.  Many of the routines in CrimeStat can save objects as ‘kml’ if 
the coordinate system is spherical.  This utility allows the primary file to be also 
converted for display in Google Earth. 
 

3. There is a utility for converting Excel ‘xls’ and ‘xlsx’ files to ‘dbf’.  Excel is a 
very common format for data storage. However, CrimeStat was designed around 
‘dbf’ files.  The utility allows Excel spreadsheets to be quickly converted to ‘dbf’. 
Note that only single sheet (page) Excel files can be converted (not multi-sheet 
files).   

 
A. Click on the utility and then find the file to be converted.  
 
B. Define the output name 
 
C. Click ‘O.K.’ and the file will be converted to a ‘dbf’ file. 
 

4. The user can specify a directory for dumping simulation files (the default is none).  
 
5. The user can save CrimeStat parameters in a parameter ‘param’ file.  Only top 

level parameters can be saved, however.  The parameters selected on dialogues 
that open (e.g., Advanced options) cannot be saved. 

 
6. The user can load a CrimeStat parameter file.  Again, Only top level parameters 

can be loaded. 
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Chapter 3: 

Entering Data into CrimeStat IV 
 

Organization of Program into Tabs 
 

The graphical user interface of CrimeStat is a tabbed form (Figure 3.1). These are divided 
into six general statistical categories plus an options tab with more than 80 individual routines: 

 

Data Setup 
 
Primary file 

Input file with X/Y coordinates 
Define coordinate system 
Define data units 
 

Secondary file 
Input second file with X/Y coordinates as baseline 
Define coordinate system 
Define data units 
 

Reference file 
Create reference grid 
Use existing reference grid 

 
Type of distance measurement 

Use direct distance 
Use indirect distance 
Use network distance 

 

Spatial Description 
 

Spatial distribution 
Mean center 
Standard distance deviation 
Standard deviational ellipse 
Median center 
 



Figure 3.1:

CrimeStat User Interface
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Center of minimum distance 
Directional mean and variance 
Convex Hull 
 
 Spatial Autocorrelation 
Moran=s “I” spatial autocorrelation index 
Geary=s “C” spatial autocorrelation index 
Adjusted Geary’s “C” spatial autocorrelation index 
Getis-Ord Global “G” spatial autocorrelation index with simulation of credible 

intervals 
Moran Correlogram with simulation of credible intervals 
Geary Correlogram with simulation of credible intervals 
Getis-Ord Correlogram with simulation of credible intervals 

 
Distance analysis I 

Nearest neighbor analysis 
Ripley=s “K” statistic 
Assign primary points to secondary points 
 
 Distance Analysis II 
Within primary file distance matrix 
Between primary file and secondary file distance matrix 
Between primary file and grid distance matrix 
Between secondary file and grid distance matrix 

 
Hot Spot Analysis 

 
Hot spot analysis I 

Mode 
Fuzzy mode 
Nearest neighbor hierarchical clustering with simulation of credible intervals 
Risk-adjusted nearest neighbor hierarchical clustering with simulation of credible 

intervals 
 
 Hot spot analysis II 
Spatial and temporal analysis of crime routine (STAC) with simulation of credible 

intervals 
K-mean clustering 
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 Hot spot analysis of Zones 
Anselin=s local Moran test with simulation of credible intervals 
Getis-Ord local “G” test with simulation of credible intervals 
Zonal nearest neighbor hierarchical clustering with simulation of credible 

intervals 
Risk-adjusted zonal nearest neighbor hierarchical clustering with simulation of 

credible intervals 
 

Spatial Modeling I 
 

Interpolation I 
Single variable kernel density interpolation 
Dual variable kernel density interpolation 

 
   Interpolation II 
  Head-Bang analysis 
  Interpolated Head-Bang analysis 
 

Space-time analysis 
Knox index 
Mantel index 
Correlated walk model for analysis and prediction 

 
   Journey-to-crime analysis 

Calibrate Journey-to-crime function 
Journey-to-crime estimation 
Draw crime trips 
 

   Bayesian Journey-to-crime analysis 
  Diagnostics for Journey-to-crime methods 
  Estimate likely origin of a serial offender 
    

Spatial Modeling II 
 
   Regression I 
  MLE Normal (OLS) and Poisson regression models 
  MCMC Normal, Poisson, and Logit regression models 
  MCMC Normal, Poisson, and Logit exposure regression models 
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  MCMC spatial Normal, Poisson, and Logit regression models 
  MCMC spatial Poisson and Logit exposure regression models 
   
   Regression II 
  Using OLS regression models to make predictions 
  Using Poisson spatial regression models to make predictions 
 
   Discrete Choice I 
  Create dataset for conditional logit model 
  Estimate multinomial logit model 
  Estimate conditional logit model 
 
   Discrete Choice II 
  Using multinomial logit model to make predictions 
  Using conditional logit model to make predictions 
 
   Time Series Forecasting 
  Exponential smoothing 
  Exponential smoothing forecast 
  Trigg Tracking Mechanism 
 

Crime Travel Demand 
 

Trip Generation 
Skewness diagnostics 
Calibrate model 
Make prediction 
Balance predicted origins & destinations 
 

Trip Distribution 
Calculate observed origin-destination trips 
Calibrate impedance function 
Calibrate origin-destination model 
Apply predicted origin-destination model 
Compare observed and predicted origin-destination trip lengths 
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Mode Split 
Calculate mode split for trips 

 
Network Assignment 

Check for one-way streets 
Create a transit network from primary file 
Network assignment of trips to travel network 

 

Required Data 
 

CrimeStat can input data in one of three formats - ASCII, dbase III/IV >dbf= and, ArcGIS7 
point shape files >shp=,.  The default is ‘dbf’.  It is essential that the files have X and Y 
coordinates as part of their structure.  The program assumes that the assigned X and Y 
coordinates are correct.   
 
 The default is ‘dbf.  This is an older format but is well structured for numerical analysis.  
With ASCII formats, the columns have to be defined (see below).  Finally, only point shape files 
can be read by CrimeStat.1  
 

If you read an ArcGIS7 point shape file, the incident=s X and Y coordinates are 
automatically added as the first fields in the primary file by CrimeStat. CrimeStat also can read 
in a secondary file which also must have X and Y coordinates included as separate fields.  For 
several of the modules (regression, discrete choice, time series forecasting), a non-spatial file 
(without coordinates) can be read, but in general most routines require coordinates. 
 
 Excel to dbf Conversion Utility 
 
 Since Excel is a very common file format, CrimeStat has a utility for converting Excel 
‘xls’ and ‘xlsx’ files into ‘dbf’ files.  The utility is located on the options page.  Click on the 
button ‘Convert Excel file to DBF’ and then locate the Excel file.  Then, choose a name for the 
output file and click on ‘O.K.’.  A copy of the file will be made in ‘dbf’ format, which is the 
standard format for CrimeStat.  
 
 There are a couple of issues for which users should be aware.   
 

1. First, the utility only will work with single sheet Excel files.  Any file that has 
more than one sheet will not be converted. 

                         
1 CrimeStat cannot read polygon shape files nor multi-point shape files. 
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2. Second, the utility interprets the first row as the field names.  For every label it 
sees, it will identify that column as a field or variable.  If there are any columns 
that have blanks in the first row, then that column will not be converted. 
 

3. Third, the utility interprets the variable it finds in the first non-blank record as the 
type of variable (numeric or alphanumeric).  Be sure that all columns are 
consistent in the type of variable. 

 
4. Fourth, there are limits to the number of columns that can be converted (256) and 

the width of each column (20 characters).  Error messages will be displayed if the 
Excel file exceeds these limits. 

 
5. Fifth, and finally, users should clean datasets thoroughly before trying to convert 

them to dbf files.  Eliminate unnecessary fields and fields with many blank 
records (the results will be unreliable if a high percentage of the records have 
blank values). Be careful about fields that will be converted to unreadable 
characters.  Many software packages introduce formatting characters into fields.  
When these are converted, they produce strange characters and are unreadable.  If 
this happens, delete the field before converting. 

 
In short, as with any statistical package, a clean dataset is essential for providing useful 

information as well as allowing CrimeStat to work properly with the data.  
 

Coordinates  
 

CrimeStat analyzes point data, defined geographically by X and Y coordinates.  These 
X/Y coordinates represent a single location where either an incident occurred (e.g., a burglary) or 
where a person, building or other object can be represented as a single point.  A point will have 
X and Y coordinates in a spherical or Cartesian system.  In a spherical coordinate system, each 
point can be defined by longitude (for X) and latitude (for Y).  In a projected coordinate system, 
such as State Plane or UTM, each X and Y is defined by feet or meters from an arbitrary 
reference origin.  CrimeStat can handle both spherical and projected points.  For some uses, 
coordinates can be polar, that is defined as angles from an arbitrary reference vector, usually 
direct north.2  One of the routines in the program calculates the angular mean and variance of a 
collection of angles.  
                         
2  The spherical >lat/lon= system is, of course, one type of polar coordinate system.  But, it is a polar 

coordinate system with particular restrictions.  Latitudes are angles up to 900, north or south of the Equator.  
Longitudes are angles from 00 to 1800, east and west of the Greenwich Meridian.  In the usual polar 
coordinate system, angles can vary from 00 to 3600. 
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Point data can be obtained from a number of sources.  The most frequent would be the 
various incident data bases stored by a police department, which could include calls for service, 
crime reports, or closed cases.  Other sources of incident data can include secondary data from 
other agencies (e.g., hospital records, emergency medical service records, locations of 
businesses) or even sampled data (Levine & Wachs, 1986a; 1986b).  There are also point data 
from media sources such as radio and televisions, and potentially from Internet sources. 
 

To read projected coordinates into CrimeStat, the user does not need to define the 
particular projection (other than to indicate that the coordinates are projected).  ArcGIS7 will 
output the objects in the projected units so that they can be read directly into that program or into 
ArcGIS7.  However, to output calculated objects to MapInfo7 requires the definition of a specific 
projection used (see endnote i) or the use of the Universal Translator in MapInfo7 (see Dick 
Block attachment at the end of the chapter).   
 

Intensities and Weights 
 

For some uses, points can have intensity values or weights.  These are optional inputs in 
CrimeStat.   An intensity is a value assigned to a point location aside from the X/Y coordinates.  
It is another variable, typically denoted as a Z-value.  For example, if the point location is the 
location of a police station, then the intensity could be the number of calls for service over a 
month at that station.  Or, for census geography, if the point is the centroid of a census tract, then 
the intensity could be the population of that census tract.  In other words, an intensity is a 
variable assigned to a particular location. 
 

Some of the routines in CrimeStat require an intensity value (e.g., the spatial 
autocorrelation indices) and others can utilize a point location with an intensity value assigned 
(e.g., kernel density interpolation).  If no intensity value is assigned, the routines which require it 
cannot be run while the routines which can utilize it will assume that the intensity is 1 (i.e., that 
all points have equal intensity). 
 

A weight occurs when different point locations are to receive differential statistical 
treatment.  For example, if a police department has designated different areas for service, for 
example >urban= and >rural=, a value can be assigned for each of these areas (e.g., >1' for urban and 
>2' for rural).   Many of the routines in CrimeStat will use the weights in the calculations.  
Weights would be useful if different zones are to be evaluated on the basis of another variable.   

                                                                               
Longitudes are angles from 00 to 1800, east and west of the Greenwich Meridian.  In the usual polar 
coordinate system, angles can vary from 00 to 3600. 
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For example, suppose a police department has divided its service area into urban and 
rural.  In the rural part, there are twice as many patrol officers assigned per capita than in the 
urban areas; the higher population densities in the urban areas are assumed to compensate for the 
longer travel distances in the rural areas.  Let us assume that all crimes occurring in the rural 
areas receive a weight of 2 while those in the urban area receive a weight of 1.  The police 
department wants to estimate the density of household burglaries relative to the population using 
the dual kernel density function (see Chapter 10).  But, to reflect the differential assignment of 
police officers, the analysts use the service area as a weight.  The result would be a per capita 
estimate of burglary density (i.e., burglaries per person), but weighted by the service area.  It 
would provide an estimate of burglary risk adjusted for differential service in rural and urban 
areas.  In most cases, there will no weights, in which case, all points are assumed to have an 
equal weight of >1'.  
 

It is possible to have both intensities and weights, although this would be rare.  For 
example, if the X and Y coordinates are the centroids of census tracts, a third variable -  the total 
population of each census tract could be an intensity.  There could also be an weighting based on 
service area.  In calculating the Moran=s “I” spatial autocorrelation index, the total population is 
used as an intensity while the service area is used as a weight.   In this case, CrimeStat calculates 
a weighted Moran=s I spatial autocorrelation. 
 

But the use of both an intensity variable and a weight would be less common.  For most 
of the statistics, a variable could be used as either a weight or intensity, and the results will be 
the same.  However, be careful in assigning the same variable as both intensity and a weight.  In 
such instances, cases may end up being weighted twice, which will produce distorted results.3 

 
Time Measures 

 
CrimeStat includes several routines for analyzing spatial characteristics in relation to 

time.  Many serial crime incidents occur in a short period of time.  For example, a group of car 
thieves may steal cars from a neighborhood over a very short period of time, for example a few 
days.  Thus, there is often an interaction between a concentrated spatial pattern of events 

                         
3  An alternative way to thinking about intensities and weights is to treat both as two different weights - 

weight #1 and weight #2.  For example, weight #1 could be the population in a surrounding zone while 
weight #2 could be the employment in that same zone.  Thus, incidents (e.g., burglaries) could be weighted 
both by the surrounding population and the surrounding employment.  The analogy with double weights is 
not quite correct since several of the statistics (Moran=s I, Geary=s C and Local Moran) use only intensity, 
but not a weight.    The distinction between intensities and weights is historical, relating to the manner in 
which the statistics have been derived. 
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occurring in a short time period.  Because of this, police departments routinely collect 
information on the time of the event, the day and time. 
 

There are three routines which analyze spatial concentration in relation to time: the Knox 
index, the Mantel index, and a correlated walk model.  But for using any of these routines, the 
user has to define time in a consistent manner.  Both the primary and secondary files can allow a 
time variable.  However, these have to be defined in a consistent manner for all records in a file.  
There are five time periods that are allowed: 
 

Hour 
Day (default) 
Week 
Month 
Year 

 
The default is >day=.  That is, the program will assume that any time variable is in days, 

either an arbitrary number of days (e.g., days from January 1st) or the number of days from 
January 1, 1900, which is the default time reference for most computer systems.  If the time unit 
is not in days, the user needs to indicate the appropriate unit. 
 
 There is also an entire module for analyzing temporal changes by zone and detecting 
emerging incidents (Spatial Modeling II).  For these routines, the temporal and geographical 
identifiers are coded into the structure of the data set and do not have to be separately defined.  
See Chapters 23 and 24 for details. 
 

Missing Value Codes 
 

Unfortunately, data is frequently messy.  In most police departments, the crime incident 
data base is being continually updated, daily and, perhaps, hourly.  At any one time, many of the 
records will not have been geocoded or will have been incompletely geocoded.   
 

Blank records 
 

CrimeStat allows the inclusion of codes for missing values, that is, values of eligible 
fields that are not complete or are not correct.  These codes are applied to the fields defined on 
the primary or secondary data sets (X, Y, weight, intensity).  Automatically, CrimeStat will 
exclude records with blank fields or with fields having any non-numeric value (e.g., 
alphanumeric characters, #, *) for the eligible fields.  The statistics will be calculated only on 
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those records which have eligible numerical values.  Fields for other variables in the data base 
that are not defined in the primary and secondary data sets will be ignored. 

 
Other missing value codes 

 
In addition to blank and non-numeric values, CrimeStat can exclude any other value that 

has been used for a missing values code (e.g., 0, -1, 99).  That is, if the program encounters a 
field with a missing value code, it will exclude that record from the calculations.  Next to the X, 
Y, weight, and intensity fields on both the primary and secondary files is a missing values code 
box.  The default has been set to blank.  That is, if CrimeStat finds no information in a field, it 
will ignore that record.  However, there are eight options that can be selected: 
 

1. <blank> fields are automatically excluded.  This is the default; 
2. <none> indicates that no records will be excluded.  If there is a blank field, 

CrimeStat will treat it as a 0; 
3. 0 is excluded; 
4. -1 is excluded; 
5. 0 and -1 indicates that both 0 and -1 will be excluded; 
6. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be excluded; 
7. Any other numerical value can be treated as a missing value by typing it (e.g., 99); 

and 
8. Multiple numerical values can be treated as missing values by typing them, 

separating each by commas (e.g., 0, -1, 99, 9999, -99). 
 

It is important for users to understand their data sets prior to using CrimeStat.  If the data 
are >clean=, that is all X/Y fields are populated with correct values as are all weight/intensity 
fields (if used), then the program will have no problems running routines.  On the other hand, in 
large administrative data bases, such as in most police departments, there will be many records 
that are incomplete or have missing values codes (e.g., 0).  Unless CrimeStat is told what are the 
missing value codes, with the exception of blank or non-numeric values it will include them in 
the calculations.  For example, some data base programs put a 0 for an X or Y field which has 
not been geocoded.  CrimeStat does not know that the 0 is a missing value and will use it in 
calculations since 0 is a perfectly good number.  It is important that users either clean their data 
thoroughly or define the missing value codes completely for the primary and secondary files. 
 

Primary File 
 

The Primary File is required to run the program and provides the coordinates of points of 
incidents.  On the primary file tab, first click on Select Files.  A dialog box appears that allows 
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the selection of three file formats for the primary file (Figure 3.2).  For each of the file formats, 
the user must define two characteristics - the type of file (ASCII, >.dbf=, or >.shp=) and the name of 
the file.  There is a browse window that allows the user to find the file.  
 

In developing this program, we have targeted it towards users of ArcGIS7, MapInfo7 and 
other GIS programs (e.g., Maptitude7).  These GIS programs either store their attribute data in 
dBase III/IV/V format in a file with a >dbf= extension (e.g., precinct1.dbf) or can read and write 
directly >dbf= files.  Many other GIS programs, however, also can read >dbf= files.  For ArcGIS7 
and MapInfo7, the X and Y coordinates which define crime incident points are not directly part 
of the >dbf= file, but instead exist on the geographic file. 

 
Input File Formats 

 
  Dbf 
 
 In CrimeStat, the default file format is‘dbf’.  These are files that have rows as records and 
columns as fields/variables.  There is a limit of 256 fields.  Since CrimeStat works with numeric 
data, user should minimize or even eliminate alphanumeric fields since these can take up a lot of 
space on the hard disk.  The one exception is the need for an ID field for many of the routines.  
 

Another consideration is the size of each field.  Some programs create ‘dbf’ files with 64 
or more decimal places. These files end up being very large and take a long time to process.  The 
additional precision with 64 decimals is completely non-essential.  A user would be advised to 
reduce the number of decimal places.  Usually, no more than 12-15 decimals places are sufficient 
for a high degree of calculation accuracy.  
 

Shp 
 

In ArcGIS7 the coordinates are stored on the >shp= file, not the >dbf= file.  CrimeStat can 
read directly a >shp= file so the >dbf= file is not required to have the X and Y coordinates.   

 
ASCII  

 
For an ASCII file, however, three additional characteristics must be defined.  The first is 

the type of character used to separate (delimit) variables in the file.  There are four possibilities:4 

                         
4  Note that in an ASCII file, a tab looks like it is separated by spaces.  However, the underlying ASCII code 

is different and CrimeStat will treat these characteristics differently.  That is, if the separator is a tab but the 
user indicates that it is a space, CrimeStat will not properly read the data. 



Figure 3.2:

File Format Selection
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Space (one or more, the default) 
Comma delimited 
Semicolon 
Tab 
 
The second characteristic is the number of rows which have labels on them (Header 

Rows).  Some ASCII files will have rows that label the names of the variables.  The user should 
indicate the number if this is the case otherwise CrimeStat will produce an error code.  The 
default is 0, that is, the program assumes that there are no headers unless instructed otherwise.  
To change this, the user should insert the cursor in the appropriate cell, backspace to erase the 
default number and type in the correct number.  

 
The third characteristic of an ASCII file that must be defined is the number of variables 

(columns or fields) in the file.  With spherical or projected coordinates, there will be at least two 
variables (the X and Y coordinate) and there may be more if other variables are included in the 
file.   However, with directional coordinates (see below), there may be only one.  CrimeStat 
assumes that the number of columns in the ASCII file is two unless instructed otherwise.  The 
user should insert the cursor in the appropriate cell, backspace to erase the default number and 
type in the correct number.  After defining the file type and name, the user should click on OK. 

 
Identifying Variables 

 
After defining a file and its format, either ‘dbf’, ‘shp’ or ASCII, it is necessary to identify 

the variables.  Two variables are required and two are optional. The required variables are the X 
and Y coordinates.  The user should indicate the file name that contains the coordinates by 
clicking on the drop down menu and highlighting the correct name.  After having identified 
which file contains the X and Y coordinates, it is necessary to identify the variable name.  Click 
on the drop down menu under Column and highlight the name of the variable for the X and Y 
coordinates respectively.5  Figure 3.3 shows a correct defining of file and variable names for the 
primary file. 

 
Multiple files can be entered on the primary file tab.  However, only one can be utilized 

at a time.  In theory, one can have separate files containing the X and Y coordinates, though in 
practice this will rarely occur.    
 
  

                         
5  Hint: If you type the first letter of the name (e.g., >L= for longitude), then the program will find the first 

name that begins with that letter).  Typing the letter again will find the second name, and so forth. 



Figure 3.3:

Primary File Definition
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Weight Variable 
 

Sometimes, a point location is weighted.  As mentioned above, weights are used when 
points represents areas and the areas are statistically treated differently.  For most of the 
statistics, CrimeStat can weight the statistics during the calculation (e.g., the weighted mean 
center, the weighted nearest neighbor index). 
 

By default, CrimeStat assigns a weight of 1 to each point.  If the user does not define a 
weight variable, then the program assumes that each point has equal weight (i.e., 1).  On the 
other hand, if there are weights, then the weight variable should be defined on the primary file 
screen and its name listed. 
 

Intensity Variable 
 

Similarly, a point location can have an intensity assigned to it.  Most of the statistics in 
CrimeStat can use an intensity variable and some statistics require it (Moran=s I, Geary=s C and 
Local Moran).  If no intensity is defined, CrimeStat will not calculate statistics requiring an 
intensity variable and, in statistics where an intensity is optional (e.g., interpolation), will assume 
a default intensity of 1.  On the other hand, if there is an intensity variable, then this should be 
defined on the primary file screen and its variable name identified. 

 
In general, be very careful about using both an intensity variable and a weighting 

variable.  Use both only when there are separate weights and intensities.  Most of the routines 
can use both intensities and weighting and may, consequently, double-weight cases.  Figure 3.4 
shows a primary file screen with an intensity variable defined. 
 

Time Variable 
 

Finally, a time variable can be defined for use in the special Space-time analysis tools 
under Spatial modeling.  CrimeStat allows five different time references: 
 

Hours 
Days 
Weeks 
Months 
Years 

 
The default is >days= but the user can choose one of four other time periods.  However, the 

program assumes that all records are consistently defined (i.e., all records use the same time  



Figure 3.4:

Primary File with Intensity Variable Defined
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unit).  For example, if some records are in days but others are in hours, the program will not 
know that there is an inconsistency and will treat each record as if it was the same time unit. It is 
important, therefore, to ensure that all records are consistent in the way that time is defined. 
Figure 3.5 illustrates the defining of a time variable on the primary file page. 

 
Note that the time series forecasting module (under Spatial Modeling II) requires that 

time be coded into the structure of the data rather than defined as a separate variable.  See 
Chapters 23 and 24 for details. 
 

Coordinate System 
 

In addition to the primary file name and variable assignment, it is necessary to identify 
the type of coordinate system used and the units of measurement.  CrimeStat recognizes three 
coordinate systems: 

 
Spherical coordinates (longitude and latitude) 

 
This is a universal coordinate system that measures location by angles from reference 

points on Earth. The units are longitude (X coordinate) and latitude (Y coordinate). 
 

Projected coordinates 
 

Projected coordinates are arbitrary coordinates based on a particular projection of the 
earth to a flat plane.  They have an arbitrary origin (the place where X=0 and Y=0) and are 
almost always defined in units of feet or meters (see endnote ii). 
 

CrimeStat can work with either spherical or projected coordinates.  On the primary file 
tab, the user indicates which coordinate system is being used.  If the coordinate system is 
spherical, then units are automatically assumed to be latitude and longitude in decimal degrees.  
If the coordinate system is projected, then it is necessary to specify whether the measurement 
units are feet or meters. 
 

Directional coordinates 
 

For some uses, a polar coordinate system can be used.  Point locations are defined by 
angles from an arbitrary reference line, usually true north and vary between 00 and 3600 in a 
clockwise rotation.  All locations are measured as an angular deviation from the reference point 
and with distance being measured from a central location. CrimeStat has the ability to read in  



Figure 3.5:

Time Variable Definition
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angles for use in calculating the angular mean and variance.  In addition, if directional 
coordinates are used, an optional distance variable for each measurement can be used.   
 

If the file contains directional coordinates (angles), define the file name and variable 
name (column) that contains the directional measurements.  If used, define the file name and 
variable name (column) that contains the distance variable.  Figure 3.6 shows the primary file 
definition using directions.    
 

Secondary File 
 

CrimeStat also allows for the inputting of a secondary file.  For example, the primary file 
could be locations where motor vehicles were stolen while the secondary file could be the 
location where stolen vehicles were recovered.  Alternatively, the primary file could be burglary 
locations while the secondary file could be police stations.   

 
CrimeStat can construct two different types of indices with a secondary file.  First, it can 

calculate the distance from every primary file point to every secondary file point.  For example, 
this might be useful in assessing where to place police cars in order to minimize travel distance 
in response to calls for service.   

 
Second, CrimeStat can utilize both primary and secondary files in estimating a three-

dimensional density surface (see Chapter 10).  For example, if the primary file are residential 
burglaries and the secondary file contains the centroids of census block groups with the 
population within each block group assigned as an intensity variable, then CrimeStat can 
estimate the density of burglaries relative to the density of population (i.e., burglary risk). 
 

The secondary file can also be >.dbf=, >.shp= or ASCII.  As with a primary file, there must 
be an X and Y variable defined, but it must be in the same coordinate system and data units as 
the primary file. The secondary file can also have weights and intensities assigned, but not a time 
variable..  Figure 3.7 shows the inputting of an ASCII file for the secondary data set while Figure 
3.8 shows a correct definition of the secondary file. 
 

Reference File 
 

Several of the routines in CrimeStat generalize the point data to all locations in the study 
area, in particular the one-variable and two-variable density interpolation routines (Chapter 10),  
the risk-adjusted nearest neighbor hierarchical clustering routine (Chapter 7), the zonal risk-
adjusted nearest neighbor hierarchical clustering routine (Chapter 9), the journey-to-crime 
 



Figure 3.6:

File Definition with Angles (Directions)



Figure 3.7:

Ascii File Selection of Secondary File



Figure 3.8:

Secondary File Definition
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estimation routine (Chapter 13) and the Bayesian journey-to-crime estimation routine (Chapter 
14).  The generalization uses a reference file placed over the study area.  The STAC program 
also uses a reference file for searching (Chapter 8).   

 
Typically, the reference file is a rectangular grid file (true grid), that is a rectangle with 

cells defined by columns and rows; each grid cell is a rectangle and column-row combinations 
are used.  It is possible to use a non-rectangular grid file under special circumstances (e.g., a grid 
with water, mountains or other jurisdictions removed), but a rectangular grid would be used in 
most cases. CrimeStat can create a grid file directly or can read in an external grid file.  Figure 
3.9 shows a grid placed over both the County of Baltimore and the City of Baltimore. 
 

Creating a Reference Grid 
 

 CrimeStat can also create a true grid.  There are two steps: 
 

1. The user selects Create Grid from the Reference File tab and inputs the X and Y 
coordinates of the lower-left and upper-right coordinates of the grid.  These 
coordinates must be the same as for the primary file.    

 
Thus, if the primary file uses spherical (lat/lon) coordinates, then the grid file coordinates 

must also us lat/lon. Conversely, if the primary file coordinates are projected, then the grid file 
coordinates must also be projected with the same measurement units (feet or meters).  The lower-
left and upper-right coordinates are those from a grid which covers the geographical area.  A user 
should identify these with a GIS program or from a properly indexed map. 

 
2. The user selects whether the grid is to be created by cell spacing or by the number 

of columns.   
 

With By cell spacing, the size of the cell is defined by its horizontal width, in the same 
units as the measurement units of the primary file.  This would be used to maintain a certain size 
of spacing for a cell.  For example, if the coordinate system is spherical and the lower-left 
coordinates are -76.90 and 39.20 degrees and the upper-right coordinates are -76.32 and 39.73 
degrees (a grid which overlaps Baltimore City and Baltimore County), then the horizontal 
distance - the difference in the two longitudes (0.58 degrees) must be divided into appropriate 
sized intervals.  At this latitude, the difference in longitudes is 34.02 miles.  If a user wanted cell 
spacing of 0.01 degrees, then this would be entered and CrimeStat will calculate 59 columns 
(cells) in the horizontal direction, one for each interval of 0.01 and one for the fractional 
remainder.  If the coordinate system is projected, then similar calculations would be made using 
the projected units (feet or meters).   



Figure 3 9:Figure 3.9:
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Probably an easier way to specify the grid is to indicate the number of columns.  By 
checking By number of columns, the user defines the number of columns to be calculated.  
CrimeStat will automatically calculate the cell spacing needed and will calculate the required 
number of rows.  For example, using the same coordinates as above, if a user wanted half mile 
squares for the cells, then they would need approximately 68 cells in the horizontal direction 
since 34.02 miles divided by 0.5 mile squares equals about 68 cells.  Figure 3.10 shows a 
correctly defined reference file where CrimeStat creates the reference grid with the number of 
columns being defined; in the example, 100 columns are requested. 

 
Saving a Reference File 

 
The user can save the lower-left and upper-right coordinates of a defined reference grid 

and the number of columns.  Type Save <filename>.  The coordinates and column sizes will be 
saved in the system registry.  To load an already defined reference file, type Load and then check 
the appropriate filename, followed by clicking on >Load=. 
 

In addition, the user can save the reference parameters to an external file.  To do this, it 
has to be already saved in the system registry.  Type Load and then check the appropriate 
filename, followed by clicking on >Save to File@.  Define the directory and file name and click 
>Save=.  The file will be saved with an >ref= extension (e.g., BaltimoreCounty.ref). 

 
External Grid File 

 
Many GIS programs can create uniform grids that cover a geographical area.  As with the 

primary and secondary files, these need to be converted to either >.dbf=, ASCII, or >.shp= format.  
To use an existing grid file created in a GIS or another program, the user clicks on From File on 
the Reference File tab and selects the file.   
 

There are three characteristics that should be identified for an existing grid file: 
 

1. The name of the file.  The user selects the file from a dialog box similar to the 
primary file. 

 
2. If the existing reference file is a true grid, the True Grid box should be checked.  
 
3. If the reference file is a true grid, the number of columns should be entered.  

CrimeStat will automatically count the number of records in the file and place it 
in the Cells box.  When the number of columns is entered, CrimeStat will 
automatically calculate the number of rows.  



Figure 3.10:

Create Reference Grid Setup
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Figure 3.11 shows a correctly defined reference file using an existing grid file.  One must 
be careful in using a file which is not a grid.  CrimeStat can output the results of the interpolation 
routines in several GIS formats - Surfer for Windows, ArcGIS Spatial Analyst7, ArcGIS7, 
MapInfo7 and several Ascii formats.  Of these, only the output to Surfer for Windows7 will allow 
the reference to be a shape other than a true grid.  For the interpolation outputs of ArcGIS Spatial 
Analyst7, ArcGIS7, MapInfo7 and the Ascii formats, the reference file must be a true grid.  
 

Use of Reference File 
 

A reference grid can be very useful.  First, a number of the routines use it for either 
interpolation (single and dual kernel routines; nearest neighbor hierarchical clustering routine; 
journey-to-crime; Bayesian journey-to-crime) or keying a search radius (STAC).  Second, a grid 
produced by CrimeStat can be used as a separate layer in a GIS program in order to reference 
other data that is displayed, aside from statistical calculations.  Historically, many map uses are 
referenced to a grid in order to produce a systematic inventory (e.g., parcel maps; tax assessor 
maps; U.S. Geological Survey 7.5" >quad= maps).  In short, it is a routine with multiple purposes. 
 

Measurement Parameters 
 

The final properties that complete data definition are the measurement parameters.  On 
the Measurement Parameters tab, the user defines the geographical area and the length of street 
network for the study area, and indicates whether direct, indirect or network distance is to be 
used for calculations.  Figure 3.12 shows the measurement parameters tab page. 
 

Area of Study Region 
 

In calculating distances between points for two of the statistics - the nearest neighbor 
index (Nna) and the Ripley >K= index (RipleyK), and for using the nearest neighbor hierarchical 
clustering (Nnh) routine, the STAC routine, or the zonal nearest neighbor hierarchical clustering 
(Znnh) routine, the area for which the points fall within needs to be defined (the study area).  The 
user indicates the area of the geographical coverage and the measurement units that distances are 
calculated (feet, meters, miles, nautical miles, kilometers).  Unlike the data units for the 
coordinate system, which must be consistent, CrimeStat can calculate distances in any of these 
units.  In some cases, analysis will be conducted on a subset of the study area, rather than the 
entire area.  For each analysis, the user should identify the area of the subset for which distance 
statistics are to be calculated. 
 
 
 



Figure 3.11:

Reference File Definition With An External File



Figure 3.12:

Measurement Parameters Page



 
3.31 

Length of Street Network 
 
In addition, the linear nearest neighbor statistic uses the total length of the street network 

as a baseline for comparison (see Chapter 6).  If this statistic is to be used, the total length of the 
street network should be defined.  Most GIS programs can sum the total length of the street 
network.  Again, if subsets of the study are used, the user should indicate the appropriate length 
of street network for the subset so that the comparison is appropriate. 

 
Type of Distance Measurement 

 
Direct distance 

 
CrimeStat can calculate distance in three different ways: direct, indirect, and network 

distances.  Direct distance is the shortest distance between two points.  On a flat plane with a 
projected coordinate system, the shortest distance between two points is a straight line.  
However, with a spherical coordinate system, the shortest distance between two points is a Great 
Circle line.  Depending on the coordinate system used, CrimeStat will calculate Great Circle 
distances using spherical geometry for spherical coordinates and Euclidean distances for 
projected coordinates.  The drawings in Figure 3.13 illustrate direct distance with a projected and 
spherical coordinate system.  The shortest distance between point A and point B is either a 
straight line (projected) or a Great Circle (spherical).  For details see McDonnell, 1979 (chapter 
1) or Snyder, 1987 (pp. 29-33).  

 
Indirect distance 

 
Indirect distance is an approximation to travel on a rectangular road network. This is 

frequently called Manhattan distance, referring to the grid-like structure of Manhattan. Many 
cities, but certainly not all, lay out their streets in grids.  The degree to which this is true varies.  
Older cities will not usually have grid structures whereas newer cities tend to use grid layouts 
more.  Of course, no real city is a perfect grid, though some come close (e.g., Salt Lake City).  
Distance measured over a street network is always longer than a direct line or arc.  In a perfect 
grid, travel can only occur in a horizontal or vertical direction so that the distance traveled is the 
sum of the horizontal and vertical street lengths that have been traversed (i.e., one cannot cut 
diagonally across a block).  Distance is measured as the sum of horizontal and vertical distances 
traveled between two points. 
 

Indirect distance approximates actual travel in a city where streets are arranged in grid 
pattern.  In this case, indirect distance would be a more appropriate distance measurement than  
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direct distance.  Also, there is a linear nearest neighbor index that measures the distribution of 
point locations in relation to the street network rather than the geographical area and uses 
indirect distance.  This will be discussed in Chapter 6.  In this case, the use of indirect distance 
would be preferable than direct distance (see endnote iii).6 
 

Network distance 
 

Network distance is travel on an actual network.  The network can be roads, a transit 
system, rail lines, or even bicycle paths.  Travel is constrained to the network which usually will 
make it longer than direct distance measurement.  However, the advantage is that travel is 
measured along the available routes rather than as an abstract >straight line= or >grid=.  Another 
advantage of network distance is that the network can be weighted by travel time, travel speed or 
travel cost.  Thus, it is possible to measure approximate travel time or travel cost through the 
network and not just distance.  It is generally recognized that travel time is a more realistic 
dimension than distance since it will vary by time of day.  For example, it generally takes a lot 
longer to travel any distance in an urban area during the peak evening >rush hours= (4-7 PM) than 
at, say, 3 AM in the morning.  Distance is always invariant whereas travel time varies.  

 
An even more realistic dimension is travel cost.  Trips over a metropolitan area are 

governed by a number of variables aside from travel time - vehicle operating costs, parking costs 
and, even, likely risks (e.g., likelihood of being caught).  For an offender who is traveling, those 
other cost factors may be as important as the actual time it takes in determining whether to make 
a crime trip. In Chapter 29, there is a discussion of travel costs in the context of travel decisions. 
 

                         
6  With a projected coordinate system, indirect distances can be measured by perpendicular horizontal or 

vertical lines on a flat plane because all direct paths between two points have equal distances.  For example 
in Figure 3.13, whether the distance is measured from point A north to the Y-coordinate of point B and then 
eastward until point B is reached or, alternatively, from point A eastward to the X-coordinate of point B, 
then northward until point B is reached, the distances will be the same.  One of the advantages of a 
Manhattan geometry is that travel distances that are pointed towards the final direction) are equal. 

 
With a spherical coordinate system, however, Manhattan distances are not equal with different routes.  
Because the distance between two points at the same latitude decreases with increasing latitude (north or 
south) from the equator, the path between two points will differ on the route with Manhattan rules.  In 
Figure 3.13, for example, it is a longer distance to travel from point A eastward to the longitude of point B, 
before traveling north to point B than to travel northward from point A to the same latitude as point B 
before traveling eastward to point B.  Consequently, CrimeStat modifies the Manhattan rules for a spherical 
coordinate system by calculating both routes between two points and averaging them.  This is called a 
Modified Spherical Manhattan Distance. 
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There are two major disadvantages in using network distance, however.  First, there are 
errors in networks.  For example, a network may not have incorporated all new roads or 
converted roads. Thus, the network algorithm will not choose a particular route when, in fact, it 
actually exists and people use it.  It is critical that networks be updated to ensure accuracy.  See 
Chapter 26 for a discussion of network errors and the need to thoroughly clean them.  
 

Second, it can take a long time to calculate distance along a network. The shortest path 
algorithm that is used must explore many alternative routines, a time consuming process.   For 
simple statistics, this is not liable to be a problem.  But, for some of the more complicated matrix 
operations (e.g., the distance from every point to every other point), calculation time increases 
exponentially with the number of cases.  For any complex calculation, it becomes impractical to 
have to wait a long time just for a little extra precision. In short, it may not be worth the trouble.   
 

Distance Calculations 
 
Distances in CrimeStat are calculated with the following formulas: 

 
Direct, Projected Coordinate System 

 
Distance is measured as the hypotenuse of a right triangle in Euclidean geometry: 
 

            (3.1) 

 
 
 
where dAB is the distance between two points, A and B, XA and XB are the X-coordinates for 
points A and B in a projected coordinate system, YA and YB are the Y-coordinates for points A 
and B in a projected coordinate system. 
 

Direct, Spherical Coordinate System 
 
 Distance is measured as the Great Circle distance between two points.  All latitudes (φ) 
and longitudes (λ) are first converted into radians using: 
 

 	 	            (3.2) 

 

 	 	            (3.3) 
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 Then, the distance between the two points is determined from: 
 

 2        (3.4) 

 
with all angles being defined in radians where dAB is the distance between two points, A and B, 
φA and φB are the latitudes of points A and B, and λA and λB are the longitudes of points A and B 
(Snyder, 1987, p. 30, 5-3a). 
 

Indirect, Projected Coordinate System 
 

Distance is measured as the sides of a right triangle using Euclidean geometry.  For each 
segment: 

 
 | | | |           (3.5) 
 
where dAB is the distance between two points, A and B, XA and XB are the X-coordinates for 
points A and B in a projected coordinate system, and YA and YB are the Y-coordinates for points 
A and B in a projected coordinate system.  Note the absolute value of the difference is taken for 
each term.  Then, the total distance is the sum of the distance of individual segments. 
 

Indirect, Spherical Coordinate System 
 

Distance is measured by the average of summed Great Circle distances of two routes, one 
in the east-west direction followed by a north-south direction and the other in the north-south 
direction followed by an east-west direction: 

 

              (3.6) 

 
where dAB is the distance between two points, A and B, d1AB is the distance from the two points 
traversing initially from an east-west direction and then from a north-south direction, and d2AB is 
the distance from the two point traversing initially from a north-south direction and then from an 
east-west direction.  Because of the curvature of the earth, the two distances - d1AB and d2AB, will 
not be the same.  The average of the two is taken as indirect, spherical distance. 
 

Network Distance 
 

Network distance is calculated with a shortest path algorithm. Chapters 26 and 30 provide 
more information on networks and how distance is calculated on them.  A short summary will be 
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given here.  In general, distance is calculated by a shortest path algorithm.  In a shortest path for 
a single trip (from a single origin to a single destination), the route with the lowest overall 
impedance is selected.  Impedance can be defined in terms of distance, travel time, speed, or 
generalized cost. 
 

There are a number of shortest path algorithms that have been developed (Sedgewick, 
2002).  They differ in terms of whether they are breadth-first (i.e., search all possibilities) or 
depth-first (i.e., go straight to the target) algorithms and whether they examine a one-to-many 
relationship (i.e., from a single origin node to many nodes) or a many-to-many relationship (all 
pairs from each node to every other node). 
 

The algorithm that is most commonly used for shortest path analysis of moderate-sized 
data sets (up to a million cases) is called A*, which is pronounced AA-star@ (Nilsson, 1980; Stout, 
2000; Rabin 2000a, 2000b; Sedgewick, 2002).  It is a one-to-many algorithm but is an 
improvement over another commonly-used algorithm called Dijkstra (Dijkstra, 1959). Therefore, 
I will start first by describing the Dijkstra algorithm before explaining the A* algorithm. 
 

Dijkstra algorithm 
 

The Dijkstra algorithm is a one-to-many search strategy in which a shortest path from a 
single node to all other nodes is calculated.  The routine is a breadth-first algorithm in that it 
searches all possible paths, but it builds the path one segment at a time.  Starting from an origin 
location (node), it identifies the node that is nearest to it and which has not already been 
identified on the shortest path.  After each node has been identified to be on the shortest path, it 
is removed from the search possibilities.  The algorithm proceeds until the shortest path to all 
nodes has been determined.   
 

The algorithm can also be structured to find the shortest path between a particular origin 
node and a particular destination node.  In this case, it will quit once the destination node has 
been identified on the shortest path.   The algorithm can also be structured to find the shortest 
path from each origin node to each destination node.  It does this one path at a time (e.g., it finds 
the shortest path from node A to all other nodes; then it finds the shortest path from node B to all 
other nodes; and so forth). 

 
A* Algorithm 

 
The biggest problem with the Dijkstra algorithm is that it searches the path to every 

single node.  If the purpose were to find the shortest path from a single node to all other nodes, 
then this would produce the best solution.  However, with a matrix of distances from one set of 
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points to another set of points (an origin-destination matrix), we really want to know the distance 
between a pair of nodes (one origin and one destination).  Consequently, the Dikjstra algorithm 
is very, very slow compared to what we need.  It would be a lot quicker if we could find the 
distance from each origin-destination pair one at a time, but quit the algorithm as soon as that 
distance has been determined. 
 

This is where the A* algorithm comes in.  A* was developed within the artificial 
intelligence research area as a means for developing a heuristic rule for solving a problem 
(Nilsson, 1980).  In this case, the heuristic rule is the remaining distance from a solved node to 
the final destination.  That is, at every step in the Dijkstra routine, an estimate is made of the 
remaining distance from each possible choice to the final destination.  The node that is chosen 
for the shortest path is that which has the least total combined distance from the previously 
determined node to the final goal.  Thus, for any step, if di1 is the distance to a node, , which has 
not already been put on the shortest path and di2 is an estimate of the distance from that node to 
the final destination, the estimated total distance for that node is: 
 
               (3.7) 

 
Of all the nodes that could be chosen, the node,	 , which has the shortest total distance is 

selected next for the shortest path.  There are two caveats to this statement.  First, the node, , 
cannot have already been selected for the shortest path; this is just re-stating the rules by which 
we search for nodes that have not yet been put on the shortest path list.  Second, the estimate of 
the remaining distance to the final destination must be less than or equal to the actual distance to 
the final destination.  In other words, the estimated distance, di2, cannot be an overestimate 
(Nilsson, 1980). However, the closer the estimated distance is to the real distance, the more 
efficient will be the search.   
 

How then do we determine a reasonable estimate for di2?  The answer is a straight line 
from the possible node to the final destination since the shortest distance between two points is a 
straight line (or, on a sphere, a Great Circle distance since the shortest distance between two 
points is an arc).  If we simply calculate the straight-line from the node that we are exploring to 
the final node, then the heuristic will work. The effect of this simplifying heuristic is to cut down 
substantially on the number of nodes that have to be searched.  As with the Dijkstra algorithm, 
A* can be applied to multiple origins. It does it one origin-destination combination at a time.  
 

As mentioned, Chapters 26 and 30 discuss in more detail networks and how shortest path 
is calculated in them. 
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Saving Parameters 
 

All data setup parameters can be saved.  In the Options tab, there is a >Save parameters= 
button.  The parameter file must be saved with a >param= extension.  To re-load a saved 
parameters file, use the >Load parameters= button. 

 
Statistical Routines and Output 
 

Statistical routines are selected from five groupings of statistics: 
 
4. Spatial Description 
5. Hot Spot Analysis 
6. Spatial Modeling I 
7. Spatial Modeling II 
8. Crime Travel Demand  

 
The user selects the routines and inputs any parameters, if required.  Clicking on the 

‘Compute’ button will run all the routines that have been selected.  Since CrimeStat is multi-
threaded, different routines run in separate threads and may finish at different times.  When a 
routine is finished, a ‘Finished’ message will be displayed at the bottom of the screen.   
 

Virtually all the routines output to either GIS packages or to standard >dbf= files which 
can be read by spreadsheet, data base, and graphics programs.  While each output table can be 
printed as an Ascii file to a printer, it is recommended that the user output the results in >dbf= and 
read it into a program that has better output capabilities.  For example, the nearest neighbor and 
Ripley=s K routines output columns can be saved as standard >dbf= files which can be read by 
spreadsheet programs such as Excel7 or Lotus 1-2-37.  The spreadsheet data, in turn, can be 
imported into most graphics programs, such as PowerPoint7 or Freelance Graphics7, for creating 
better quality graphics.  For >cut-and-paste= operations, user can copy portions of the output 
tables and paste them into word processing programs.  One should see CrimeStat as a collection 
of specialized statistical routines that can produce output for other programs, rather than as a full-
blown package.   
 

A Tutorial with a Sample Data Set 
 

Let us run through the data setup and running of several routines with one of the sample 
data sets that were provided (SampleData.zip).  Unzipping this file reveals two files called 
Incident.dbf and BaltPop.dbf.  The incident file is a collection of incident locations that have 
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been randomly simulated while the other file includes the 1990 population of census block 
groups in the Baltimore region.7 Both files have locations coded in spherical (longitude-latitude) 
coordinates.  The X/Y coordinates for the incident file is the location where the incident (crime) 
occurred.  The X/Y coordinates for the block groups is the centroid location. 
 

1. Start the CrimeStat program by either double-clicking on the CrimeStat icon on 
the desktop (if installed) or else opening Windows Explorer and locating the 
directory where CrimeStat is stored and double-clicking on the file called 
crimestat.exe. 

 
2. Once the program splash page closes, the user will be looking at the Data Setup 

page with the Primary File page open. 
 

3. Click on >Select Files= followed by >Browse=.  Locate the file called Incident.dbf 
and click on >Open= followed by >OK=. 

 
4. The file name will now be listed for the X, Y, Z (intensity), Weight, and Time 

fields.  This variable, however, only has three fields - ID, Lon, Lat, indicating an 
record number, the longitude and latitude of the incident location. 

 
5. Identify the appropriate fields under the Column heading by clicking on the cell 

and scrolling down to the appropriate name.  For the X variable, the relevant 
name is Lon and for the Y variable, the relevant name is Lat (i.e., that is the 
names used for coordinates in this file.  However, the variables will not always be 
simply named). For this example, there are no intensity, weight or time variables. 

 
6. Under Type of Coordinate System, be sure that >Longitude/latitude (spherical)= is 

checked since this data set use spherical coordinates. 
 

7. Because the coordinate system is spherical, the data units are automatically 
decimal degrees.  If they were projected, one would have to choose the particular 
units - feet, meters, miles, kilometers, or nautical miles.  This finishes the setup 
for the primary file.  

 
8. Next, Click on the Secondary File tab.   

 
 
                         
7  Note: the incident locations have had random coordinates assigned so this file should not be used for 

research.   
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9. Again, click on select files, locate and open the BaltPop.dbf file. This is a file of 
census block groups.  You are going to treat each block group as a >pseudo-point=, 
that is, as a single point which represents the block group.  That point is the 
centroid of the block group.  The population will be treated as residing exactly at 
that point.8 

 
10. Once loaded, this file has six variables: Blockgroup, lon, lat, area, density, and 

Totpop. 
 

11. Define the particular variables.  For this file, the X variable is Lon and the Y 
variable is Lat.  Also, define a Z (intensity) variable with Totpop.  Note, that you 
could also assign this name to the Weight variable.  Whether the population 
variable is assigned to the Intensity or Weight variable does not matter to the 
calculation.  However, do not assign this name to both the intensity and the 
weight (i.e., only use one).  This finishes the setup for the secondary variable. 

 
12. Click on the Reference File tab. For these data, you will define a rectangle that 

covers the study area by identifying the X and Y coordinates for the lower-left 
corner of the rectangle and the upper-right corner of the rectangles.  The 
following coordinates will work (Table 3.1): 

 
Table 3.1: 

Coordinates for Corners of Sample Data Set 
 
          X     Y 
   Lower-left corner  -76.91  39.19 
 
   Upper-right corner  -76.32  39.72 
 
 

                         
8 The population does not live at the centroid, of course, unless the block group is a single building.  But by 

treating the block group as a pseudo-point, we can analyze the population (or any other characteristic of the 
block group). 
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13. You will also need to tell the program how many columns you want it to 
calculate.  The default value of 100 is fine.  If you want it finer, type in a larger 
number.  If you want it cruder, type in a smaller number.  This finishes the 
Reference File setup. 

 
14. Clock on the Measurement Parameters tab.  There are three parameters that have 

to be defined.   
 

A. For many routines, an area estimate is needed.  For this sample set, 684 
square miles works.   

 
B. For the linear nearest neighbor statistic only, the program needs the total 

length of the street network.  In this data, the total street length of the 
Tiger Files for Baltimore City and Baltimore County is 4868.9 miles.   

 
C. Finally, the type of distance measurement has to be defined, direct or 

indirect.  For this example, use direct measurement. 
 

15. The data setup is now finished. If you want to re-use this data setup, click on the 
Options page and >Save parameters=.  Define a file name and be sure to give it a 
>param= extension (e.g., SampleData.param).  The next time you want to run this 
data set, all you=ll need to do is click on the Options page, click on >Load 
parameters=, and click on the name of the parameters file that you saved. 

 
16. You are now ready to run some statistics.  For this example, you will run only 

four statistics. 
 

17. First, click on the Spatial Description page and then click on the Spatial 
Distribution tab.  

 
A. Check the Mean center and standard distance (Mcsd) box. Then, click on 

the >Save result to= button and identify which GIS program you are writing 
to (ArcGIS7 >shp=; several Ascii formats; MapInfo7 >MIF) and give it a 
name (e.g., SampleData). 

 
B. Also, check the Standard deviational ellipse (Sde) box and, similarly, 

choose a file output with a name.  You can use the same name (e.g., 
SampleData).  CrimeStat will assign a unique prefix to each graphical 
object. 
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18. Second, click on the Hot Spot Analysis tab followed by the >Hot Spot= Analysis I 
sub-heading.  Then, check the Nearest Neighbor Hierarchical Clustering (Nnh) 
box.   For this example, keep the default search radius, minimum points per 
cluster, and number of standard deviations for the ellipses.  Also, click on >Save 
ellipses to=, select a GIS file output, and give it a name.  Again, you can use the 
same name as with the other statistics. 

 
19. Third, click on the Spatial Modeling I page and then the ‘Interpolation I’ tab.  

Check the dual kernel density interpolation box. This routine will interpolate the 
incident distribution (primary file) relative to the population distribution 
(secondary file). For this example, keep the default kernel parameters (these are 
explained in more detail in Chapter 10).  Because the secondary variable is 
weighted by population (defined as the ‘Intensity’ variable) be sure to check the 
‘Use intensity’ variable box towards the bottom of the page.  This ensures that the 
dual kernel routine will interpolate the population variable that you assigned when 
you set up the secondary file. 

 
20. You are now ready to run the statistics.  Click on the >Compute= button.  The 

routine will run until all four routines that you selected are finished; the time will 
depend on the speed of your computer.   

 
21. Each of the outputs is displayed on a separate results tab.  You can print any of 

these results by clicking on >Save to text file= (one at a time). 
 

22. You can also display the graphical objects created by the routine in your GIS. 
Click on >Close= to close the results window.  Then, bring up your GIS and find 
the objects created by this run.  There will be a number of graphical objects 
associated with the mean center routine (having prefixes of Mc, Xyd, Sdd, Gm, 
and Hm; see Chapter 4 for details).  There will be two graphical objects 
associated with the nearest neighbor clustering routine (with prefixes of Nnh1 and 
Nnh2).  Finally, there will be a grid object created by the dual kernel routine with 
a Dk prefix.  You can load these objects into a GIS and display them along with 
the data file.  For the dual kernel grid, you will need to graph the variable called 
AZ@ to see the pattern.   

 
23. For example, Figure 3.14 shows an ArcGIS7 map of 1996 vehicle thefts in 

Baltimore City and Baltimore County along with the standard deviational ellipse 
of the vehicle thefts, calculated with CrimeStat.  CrimeStat outputs the ellipse as a 
shape file, which is then brought directly into ArcGIS7.  A similar output could 
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have been done for MapInfo7.  Most of the statistics in CrimeStat have similar 
visual representations that can be displayed in a GIS program. 

 
24. When you are finished with CrimeStat, click on >Quit= to exit the program. 

 
This finishes the quick tutorial.  CrimeStat is very easy to set up and to run. In the next 

chapters, the focus will be on the statistics in the program starting with the analysis of spatial 
distributions. 



Figure 3 14:Figure 3 14:Figure 3.14:Figure 3.14:
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Endnotes 

                         
i. Some MapInfo users in Europe have found difficulty in directly reading MIF/MID files from CrimeStat and 

converting them to the particular national coordinate system (e.g., British National Grid, French National 
Geographic Institute).  For example, in the United Kingdom, Pete Jones of the North Wales Police 
Department has developed a way around this problem.   He writes 

 
ATo save the result as a MapInfo (.mif) format the following is required: 

 
MIF Options  
Name of Projection: Earth Projection  
Projection Number: 8  
Datum Number 79  

 
Before importing the .mif table into MapInfo you need to edit it. Open the .mif file with a text editor.  You 
need to change the following line:  

 
CoordSys Earth Projection 8, 79  

 
Change it to:  
 

CoordSys Earth Projection 8, 79, 7, -2, 49, 0.9996012717, 400000, -100000  
 

Now save the .mif file. You can now import the file into MapInfo.@ 
 

In France, J. Marc Zaninetti of the University of Orléans figured out how to import graphical objects into 
MapInfo using the French coordinate system.  He writes 

 
AFirst convert with MapInfo your map to the international European Latitude/Longitude ED87 projection 
system. 

 
Second, produce the X and Y coordinates and export the data table in Dbase. 

 
Third, with CrimeStat II, modify the Save Output parameter in order to change the origin of the projection.  
By default, the MIF Options are the following: 

 
Name of projection: Earth projection  
Projection number:  1 (Latitude longitude)  
Datum number: 33 (international GRS80 origin 0EE, 0EN)  
 

The European norm ED87 has the Datum number 108, so you have to change only this parameter. The new 
options are the following :  

 
Name of projection: Earth projection  
Projection number: 1 (Latitude longitude)  
Datum number: 108 (European data ED87). 
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Finally, you can now import the MIF output tables directly into your MapInfo maps.@ 

 

iv. Because the Earth is curved, any two dimensional representation produces distortion.  The spherical 
latitude/longitude system (called >lat/lon= for short) is a universal coordinate system.  It is universal because 
it utilizes the spherical nature of the Earth and each location has a unique set of coordinates.  Most other 
coordinate systems are projected because they are portrayed on a two-dimensional flat plane.  Strictly 
speaking, spherical coordinates - longitudes and latitudes, are not X and Y coordinates since the world is 
round.  However, by convention, they are often referred to as X and Y coordinates, particularly if a small 
section of the Earth is projected on a flat plane (a computer screen or a printed map). 

 
Projections differ in how they >flatten= or project a sphere onto a two dimensional plane. Typically, there 
are four properties of maps which cannot all be maintained in any two dimensional representation: 

 
Shape - maintaining correct shape of a land body 

 
Area - if the space represented on a map covers the same area throughout the map, it is called an 
equal-area map. The proportionality is maintained. 

 
Distance - the distance between two points is in constant scale (i.e., the scale does not change) 

 
Direction - the direction from a point towards another point is true. 

 
Any projection creates one or more types of distortion and particular projections are chosen in order to have 
accuracy in one or two of these properties.  Different projections portray different types of information.  
Most projections assume that the Earth is a sphere, a situation that is not completely true. The Earth's 
diameter at the equator is slightly greater than the distance between the poles (Snyder, 1987).  The 
circumference of the Earth between the Poles is about 24,860 miles on a meridian; the circumference at the 
Equator is about 75 miles more. 

 
There is an infinite number of projections.  However, only a couple dozen have been used in practice 
(Greenhood, 1964; Snyder, 1987; Snyder & Voxland, 1989).  They are based on projections of the sphere 
onto a cylinder, cone or flat plane.  In the United States, several common coordinate systems are used.  
Theoretically, the projection and the coordinate system can be distinguished (i.e., a particular projection 
could use one of several coordinate systems, e.g. meters or feet).  However, in practice, particular 
projections use common coordinates.  Among the most common in use in the United States are: 

 
A. Mercator - The Mercator is an early projection, and one of the most famous, which is used for 

world maps.  The projection is done on a cylinder, which is vertically centered on a meridian, but 
touching a parallel.  The globe is projected on the cylinder as if light is emanating from the center 
of the globe while the Earth turns.  The meridians cut the equator at equal intervals.  However, 
they maintain parallel lines, unlike the globe where they converge at the poles.   The longitudes 
are stretched with increasing latitude (in both north and south directions) up until the 80th parallel. 
The effect is that shape is approximately correct and direction is true.  Distance, however, is 
distorted.  For example, on a Mercator map, Greenland appears as big as the United States, which 
it is not.  Distances can be measured in any units for a Mercator though usually they are measured 
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in miles or kilometers. 

 
B. Transverse Mercator - If the Mercator is rotated 900 so that the cylinder is centered on a parallel, 

rather than a meridian, it is called a Transverse Mercator.  The cylinder is projected as being 
horizontal but is touching a meridian.  The Transverse Mercator is divided into narrow north-south 
zones in order to reduce distortion.  The meridian that the cylinder is touching is called the Central 
Meridian of the zone.  Distances are accurate within a limited distance from the central meridian.  
Thus, the boundaries of zones are selected in order to maintain reasonable distance accuracy.  In 
the U.S., many states use the Transverse Mercator as the basis for their state plane coordinate 
system including Arizona, Hawaii, Illinois, and New York. 

 
C. Universal Transverse Mercator (UTM) - In 1936, the International Union of Geodesy and 

Geophysics established a standard use of the Transverse Mercator, called the Universal 
Transverse Mercator (or UTM). In order to reduce distortion, the globe is divided into 60 zones, 6 
degrees of longitude wide.  For latitude, each zone is divided further into strips of 8 degrees 
latitude, from 84o  N to 80o S.  Within each band, there is a central meridian which, in theory, 
would be geodetically true.  But, to reduce distortion across the area covered by each zone, scale 
along the central meridian is reduced to 0.9996.  This produces two parallel lines of zero distortion 
approximately 180 km away from the central meridian.  Scale at the boundary of the zone is 
approximately 1.0003 at U.S. latitudes.  Coordinates are expressed in meters.  By convention, the 
origin is the lower left corner of the zone.  From the origin, Eastings are displacements eastward 
and from the origin, Northings are displacements northward.  The central meridian is given an 
Easting of 500,000 meters.  The Northing for the equator varies depends on the hemisphere. For 
the northern hemisphere, the equator has a Northing of 0 meters.  For the southern hemisphere, the 
Equator has a Northing of 10,000,000 meters.  The UTM system was adopted by the U.S. Army in 
1947 and has been adopted by many national and international mapping agencies.  Distances are 
always measured in meters in UTM. 

 
D. Oblique Mercator - There are a number of cylindrical projections which are neither centered on a 

meridian (as in the Mercator) or on a parallel (as in the Transverse Mercator).  These are called 
Oblique Mercator projections because the cylinder is centered on a line which is oblique to 
parallels or meridians.  In the U.S., the Hotine Oblique Mercator is used for Alaska. 

 
E. Lambert Conformal Conic - The Lambert Conformal Conic is a projection made on a cone, rather 

than a cylinder.  Lambert's conformal projection centers the cone over a central location (usually 
the North Pole) and the cone 'cuts' through the globe at parallels chosen to be standards. Within 
those standards, shapes are true and meridians are straight.  Outside those standards, parallels are 
spaced at increasing intervals the further north or south they go to reduce distance distortion.  The 
projection is the basis of many state plane coordinate systems, including California, Connecticut, 
Maryland, Michigan, and Virginia.  

 
F. Alber=s Equal-Area - Another projection on a cone is the Albers Equal-Area except that parallels 

are spaced at decreasing intervals the further north or south they are placed from the standard 
parallels.  The map is an equal-area projection and scale is true in the east-west direction. 

 
G. State Plane Coordinates - Every state in the United States has an official coordinate system, called 
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the State Plane Coordinate System.  Each state is divided into one or more zones and a particular 
projection is used for each zone.  With the exception of Alaska, which uses the Hotine Oblique 
Mercator for one of its eight zones, all state plane coordinate systems use either the Transverse 
Mercator or the Lambert Conformal Conic.  Each state's shape determines which projection is 
chosen to represent that state.  Typically, states extending in a north-south direction use 
Transverse Mercator projections while states extending in an east-west direction use Lambert 
Conformal Conic projections.  But, there are exceptions, such as California which uses the 
Lambert.  Projections are chosen to minimize distortion over the state.  Several states use both 
projections (Florida, New York) and Alaska uses all three.  Distances are measured in feet. 

 
See Snyder (1987) and Snyder and Voxland (1989) for more details on these and other projections 
including the mathematical transformations used in the various projections.  Other good references are 
Maling (1973), Robinson, Sale, Morrison and Muehrcke (1984) and the Committee on Map Projections 
(1986). 

iii. With a projected coordinate system, indirect distances can be measured by perpendicular horizontal or 
vertical lines on a flat plane because all direct paths between two points have equal distances.  For example 
in Figure 3.13, whether the distance is measured from point A north to the Y-coordinate of point B and then 
eastward until point B is reached or, alternatively, from point A eastward to the X-coordinate of point B, 
then northward until point B is reached, the distances will be the same.  One of the advantages of a 
Manhattan geometry is that travel distances that are direct (i.e., that are pointed towards the final direction) 
are equal. 

 
With a spherical coordinate system, however, Manhattan distances are not equal with different routes.  
Because the distance between two points at the same latitude decreases with increasing latitude (north or 
south) from the equator, the path between two points will differ on the route with Manhattan rules.  In 
Figure 3.13, for example, it is a longer distance to travel from point A eastward to the longitude of point B, 
before traveling north to point B than to travel northward from point A to the same latitude as point B 
before traveling eastward to point B.  Consequently, CrimeStat modifies the Manhattan rules for a spherical 
coordinate system by calculating both routes between two points and averaging them.  This is called a 
Modified Spherical Manhattan Distance. 
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 MapInfo7 point ‘dat’ files can be inputted to CrimeStat as primary or secondary files.  
However, x and y coordinates need to be added to the file.  If the point data are in  latitude/longitude, 
this is easily done with a free extension, Table Geography, available through the Directions Magazine 
website as part of the KGM utilities at: 
http://www.directionsmag.com/tools/Default.asp?a=file&ID=11 .   Add this extension to your MapInfo 
toolbox.  Click on the tool.  You will first be asked for a table to add coordinates. The program 
automatically adds columns for longitude and latitude.  
 

If you are using another projection, you will need to add and update columns to your file.  To 
do this, add columns for x and y coordinates to your table (Table–>Maintenance–>Table Structure–
>Add Field)  in an appropriate numeric format for your projection.  As shown in left figure, update 
these new columns with the coordinates (Table–>update column).  Choose the data file and column 
that you want to update.  Next, click assist and then functions.  Choose centroidx to update the 
horizontal field and centroidy to update the vertical field.  Within CrimeStat, identify the file type as 
MapInfo ‘dat’. 

  
 For some CrimeStat require a reference file.  These are identified by the lower-left and upper-
right coordinates of a rectangle.  To derive these coordinates, make the top map (cosmetic) layer 
editable.  Draw a rectangle identifying the study area.  Select the rectangle.  Convert it to a region 
(objects- convert to region). Double click on the rectangle, and the appropriate coordinates and area 
of the rectangle will appear. 
  

Several CrimeStat routines output geographic features that can be added as a layer in MapInfo. 
To output these graphics, first designate an output file. If you are working in longitude/latitude, choose 
a MapInfo ‘mif ‘file as output.  In MapInfo, import the mif file (Table–>Import), and open the file as a 
layer in your map.  For any other projection, output to an ESRI shape file and use the Universal 
Translator tool (right figure) to import your file (Tools--->Universal Translator).  Choose ESRI shape 
and the file that you designated in CrimeStat.  Next, choose the  appropriate projection.    Identify the 
destination format–chose MapInfo tab and, finally, identify  the directory  for storage of the file.  The 
table can then be opened as a layer on your map.  CrimeStat graphic output is brought into MapInfo as 
regions and has all the functionality of a regions layer.  Figure 7.6 includes STAC and single kernel 
density output.       
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4.1 

Chapter 4: 

Centrographic Statistics 
 

In this chapter, the spatial distribution of crime incidents will be discussed.  The statistics 
that are used in describing the spatial distribution of crime incidents will be explained and will be 
illustrated with examples from CrimeStat7 III.   For the examples, crime incident data from 
Baltimore County and Baltimore City will be used.  Figure 4.1 shows the user interface for the 
spatial distribution statistics in CrimeStat.  For each of these, the statistics will first be presented 
followed by examples of their use in crime analysis. 
 

Centrographic Statistics 
 

The most basic type of descriptors for the spatial distribution of crime incidents are 
centrographic statistics.  These are indices which estimate basic parameters about the 
distribution (Lefever, 1926; Furfey, 1927; Bachi, 1957; Neft, 1962, Hultquist, Brown and 
Holmes, 1971; Ebdon, 1988).  They include: 

 
1. Mean center 
2. Median center 
3. Center of minimum distance  
4. Standard deviation of X and Y coordinates 
5. Standard distance deviation 
6. Standard deviational ellipse 

 
They are called centrographic in that they are two dimensional correlates to the basic 

statistical moments of a single-variable distribution - mean, standard deviation, skewness, and 
kurtosis (see Bachi, 1957).   They have been applied to crime analysis by Stephenson (1980) and 
by Langworthy and Jefferis (1998).  Because two dimensions add complexity not seen in one 
dimension, these statistical moments have been modified to be appropriate.  Figure 4.2 shows 
how the centrographic statistics are selected in CrimeStat. 
 

Mean Center 
 

The simplest descriptor of a distribution is the mean center.  This is merely the mean of 
the X and Y coordinates.  It is sometimes called a center of gravity in that it represents the point 
in a distribution where all other points are balanced if they existed on a plane and the mean 
center was a fulcrum (Ebdon, 1988; Burt and Barber, 1996). 

 



Spatial Distribution Screen
Figure 4.1:



Selecting Centrographic Statistics
Figure 4.2:



4.4 

For a single variable, the mean is the point at which the sum of all differences between 
the mean and all other points is zero.  Unfortunately, for two variables, such as the location of 
crime incidents, the mean center is not necessarily the point at which the sum of all distances to 
all other points is minimized.  That property is attributed to the center of minimum distance (see 
below).  However, the mean center can be thought of as a point where both the sum of all 
differences between the mean X coordinate and all other X coordinates is zero and the sum of all 
differences between the mean Y coordinate and all other Y coordinates is zero. 
 

The formula for the mean center is: 
 

 ∑ Xi
N

N
i 1               (4.1) 

 
  

 ∑ Yi
N

N
i 1                   (4.2) 

 
where Xi and Yi are the coordinates of individual locations and N is the total number of points. 
To take a simple example, the mean center for burglaries in Baltimore County has spherical 
coordinates of longitude -76.608482, latitude 39.348368 and for robberies longitude -76.620838, 
latitude 39.334816.  Figure 4.3 illustrates these two mean centers. 
 
Weighted Mean Center 
 

A weighted mean center is produced by weighting each coordinate by another variable, 
Wi.  For example, if the coordinates are the centroids of census tracts, then the weight could be 
the population within the census tract.  The weights have to be a positive number greater than or 
equal to 1.  The numerator is the sum of the product of the variable and the weight while the 
denominator is the sum of weights, 

 

 ∑ WiXi
N
i 1
∑ Wi
N
i 1

                   (4.3)  

 

 
∑ WiYi
N
i 1
∑ Wi
N
i 1

                       (4.4) 

 
where Wi is the weight of observation  and Xi and Yi are as defined in equations 4.1 and 4.2. 
 

The advantage of a weighted mean center is that points associated with areas can have the 
characteristics of the areas included.  For example, if the coordinates are the centroids of census  
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Figure 4.3: Burglary and Robbery in Baltimore County

Comparison of Mean Centers
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tracts, then the weight of each centroid could be the population within the census tract.  This will 
produce a different center of gravity than the unweighted center of all census tracts.   

 
CrimeStat allows the mean to be weighted by either the weighting variable or by the 

intensity variable.  Users should be careful, however, not to weight the mean with both the 
weighting and intensity variable unless there is an explicit distinction being made between 
weights and intensities. 
 
 To take an example, in the six jurisdictions making up the metropolitan Baltimore area 
(Baltimore City, and Baltimore, Carroll, Harford, Howard and Anne Arundel counties), the mean 
center of all census block groups is longitude -76.619121, latitude 39.304344.  This would be an 
unweighted mean center of the block groups.  On the other hand, the mean center of the 1990 
population for the Baltimore metropolitan area had coordinates of longitude -76.625186 and 
latitude 39.304186, a position slightly southwest of the unweighted mean center.  Weighting the 
block groups by median household income produces a mean center which is still more 
southwest.  Figure 4.4 illustrates these three mean centers. 
 

Weighted mean centers can be useful because they describe spatial differentiation in the 
metropolitan area and factors that may correlate with crime distributions.  Another example is 
the weighted mean centers of different ethnic groups in the Baltimore metropolitan area (figure 
4.5).  The mean center of the White population is almost identical to the unweighted mean 
center.  On the other hand, the mean center of the African-American/Black population is 
southwest of this and the mean center of the Hispanic/Latino population is considerably south of 
that for the White population.  In other words, different ethnic groups tend to live in different 
parts of the Baltimore metropolitan area.  Whether this has any impact on crime distributions is 
an empirical question.   

 
When the Mcsd box is checked, CrimeStat will run the routine. CrimeStat has a status bar 

that indicates how much of the routine has been run (Figure 4.6).1 The results of these statistics 
are shown in the Mcsd output table (figure 4.7).  

 
 
 
 
 
 
                         
1  Hint.  There are 40 bars indicated in the status bar while a routine is running.  For long runs, users can 

estimate the calculation time by timing how long it takes for two bars to be displayed and then multiply by 
20. 
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Figure 4.4: Center of Baltimore Metropolitan Population

Mean Center of Block Groups Weighted By Selected Variables
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Figure 4.5: Center of Baltimore Metropolitan Population

Mean Center of Block Groups Weighted By Selected Variables



CrimeStat Calculating a Routine
Figure 4.6:



Mean Center and Standard Distance Deviation Output
Figure 4.7:
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Figure 4.8: Non-Uniqueness of a Median Center

Lines Splitting Incident Locations Into Two Halves
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Median Center 
 
The median center is the intersection between the median of the X coordinate and the 

median of the Y coordinate.  The concept is simple.  However, it is not strictly a median.  For a 
single variable, such as median household income, the median is that point at which 50% of the 
cases fall below and 50% fall above.  On a two dimensional plane, however, there is not a single 
median because the location of a median is defined by the way that the axes are drawn.   

 
For example, in figure 4.8, there are eight incident points shown.  Four lines have been 

drawn which divide these eight points into two groups of four each.  However, the four lines do 
not identify an exact location for a median.  Instead, there is an area of non-uniqueness in which 
any part of it could be considered the >median center=.  This violates one of the basic properties of 
a statistic is that it be a unique value. 
 

Nevertheless, as long as the axes are not rotated, the median center can be a useful 
statistic.  The CrimeStat routine outputs three statistics: 
 

1. The sample size 
2. The median of X 
3. The median of Y 

 
The tabular output can be printed and the median center can be output as a graphical 

object to ArcGIS >shp=, MapInfo >mif=, Google Earth ‘kml, or various Ascii files.   A root name 
should be provided.  The median center is output as a point (MdnCntr<root name>). 

 

Center of Minimum Distance 
 

Another centrographic statistic is the center of minimum distance.  Unfortunately, this 
statistic is sometimes also called the median center, which can make it confusing since the above 
statistic has the same name.  Nevertheless, unlike the median center above, the center of 
minimum distance is a unique statistic in that it defines the point at which the sum of the distance 
to all other points is the smallest (Burt and Barber, 1996).  It is defined as: 

 
 	 	 
 	 	 ∑           (4.5) 
 
where dic is the distance between a single point, i, and C, the center of minimum distance (with 
an X and Y coordinate).  Unfortunately, there is not a formula that can calculate this location.  
 



Center of Minimum Distance Output
Figure 4.9:



4.14 

Instead, an iterative algorithm is used that approximates this location (Kuhn and Kuenne, 
1962; Burt and Barber, 1996; see endnote ).  Depending on whether the coordinates are 
spherical or projected, CrimeStat will calculate distance as either Great Circle (spherical) or 
Euclidean (projected), as discussed in the previous chapter.  The results are shown in the Mcmd 
output table (figure 4.9).  

 
 The importance of the center of minimum distance is that it is a location where distance 
to all the defining incidents is the smallest.  Since CrimeStat only measures distances as either 
direct or indirect, actual travel time is not being calculated.  But in many jurisdictions, the 
minimum distance to all points is a good approximation to the point where travel distances are 
minimized.  For example, in a police precinct, a patrol car could be stationed at the center of 
minimum distance to allow it to respond quickly to calls for service. 
 

For example, figure 4.10 maps the center of minimum distance for 1996 auto thefts in 
both Baltimore City and Baltimore County and compares this to both the mean center and the 
median center statistic. As seen, both the center of minimum distance and the median center are 
south of the mean center, indicating that there are slightly more incidents in the southern part of 
the metropolitan area than in the northern part.  However, the difference in these three statistics 
is very small, especially the median center and the center of minimum distance. 
 

Standard Deviations of the X and Y Coordinates 
 

In addition to the mean center and center of minimum distance, CrimeStat will calculate 
various measures of spatial distribution, which describe the dispersion, orientation, and shape of 
the distribution of a variable (Hammond & McCullogh 1978; Ebdon 1988).  The simplest of 
these is the raw standard deviations of the X and Y coordinates, respectively.  The formulas 
used are the standard ones found in most elementary statistics books: 

 

 	 ∑ x̄	
             (4.6) 

 

 	 ∑ ȳ	
             (4.7) 

 
where Xi and Yi are the X and Y coordinates for individual points,  and  are the means of X 
and Y respectively, and N is the total number of points.  Note that 1 is subtracted from the 
number of points to produce an unbiased estimate of the standard deviation. 
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Figure 4.10: 1996 Metropolitan Baltimore Auto Thefts

Mean Center and Center of Minimum Distance for 1996 Auto Thefts



 
4.16 

Figure 4.11 shows the standard deviation of the coordinates for auto thefts and represents 
this as a rectangle.  As seen, the distribution of auto thefts spreads more in an east-west direction 
than in a north-south direction. 

 
Standard Distance Deviation 
 

While the standard deviation of the X and Y coordinates provides some information 
about the dispersion of the incidents, there are two problems with it.  First, it does not provide a  
single summary statistic of the dispersion in the locations and is actually two separate statistics, 
the dispersion in X and the dispersion in Y.  Second, it provides measurement in the units of the 
coordinate system.  Thus, if spherical coordinates are being used, then the units will be decimal 
degrees. On the other hand, if projected coordinates are being used, then units will be in feet or 
meters or some other metric. 
 

A measure which overcomes these problems is the standard distance deviation (or 
standard distance, for short).  This is the standard deviation of the distance of each point from 
the mean center and is expressed in measurement units (feet, meters, miles).  It is the two-
dimensional equivalent of a standard deviation. 
 

The formula for it is: 
 

 ∑              (4.8) 

 
where diMC is the distance between each point, i, and the mean center and N is the total number 
of points.  Note that 2 is subtracted from the number of points to produce an unbiased estimate of 
standard distance since there are two constants from which this distance is measured (mean of X, 
mean of Y).2 
 
 The standard distance can be represented as a single vector rather than two vectors as 
with the standard deviation of the X and Y coordinates.  Figure 4.12 shows the mean center and 
standard distance deviation of both robberies and burglaries for 1996 in Baltimore County  

                         
2  With a weight for an observation, wi, the squared distance is weighted and the formula becomes: 
 

  
∑

∑
 

 
 where diMC is the distance from the point to the mean center.  Both summations are over all points, N. 
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Figure 4.11: 1996 Metropolitan Baltimore Auto Thefts

Mean Center and Standard Deviations of X and Y Coordinates
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Figure 4.12: 1996 Baltimore County Burglaries and Robberies
Comparison of Mean Centers and Standard Distance Deviations
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represented as circles.  It is clear that the spatial distributions of these two types of crime vary 
with robberies being slightly more concentrated. 

 
Standard Deviational Ellipse 
 

The standard distance deviation is a good single measure of the dispersion of the 
incidents around the mean center.  However, with two dimensions, distributions are frequently 
skewed in one direction or another (a condition called anisotropy).   

 
Instead, there is another statistic that gives dispersion in two dimensions, the standard 

deviational ellipse (or ellipse, for short; Ebdon, 1988; Cromley, 1992). The standard deviational 
ellipse is derived from the bivariate distribution (Furfey, 1927; Neft, 1962; Bachhi, 1957) and is 
defined by: 
 

 	 	            (4.9) 

 
 The two standard deviations, in the X and Y directions, are orthogonal to each other and 
define an ellipse.  Ebdon (1988) rotates the X and Y axis so that the sum of squares of distances 
between points and axes are minimized.  By convention, it is shown as an ellipse. 
 
 Aside from the mean X and mean Y, the formulas for these statistics are as follows (the 
observation subscript, , has been dropped from the summation sign): 
 

1. The Y-axis is rotated clockwise through an angle, θ, where 
 

 
∑ x̄	 ∑ ȳ	 ∑ x̄	 ∑ ȳ	 ∑ x̄	 ȳ	

∑ x̄	 ȳ	
   (4.10) 

 
where all summations are for i=1 to N (Ebdon, 1988). 
 

2. Two standard deviations are calculated, one along the transposed X-axis and one 
along the transposed Y-axis:  
 

 
∑ x̄	 ȳ	

         (4.11) 

 



 
4.20 

 
∑ x̄	 ȳ	

         (4.12) 

 
where  and  are the means of X and Y respectively,  is the angle (in radians), and N is the 
number of points.  Note, again, that 2 is subtracted from the number of points in both 
denominators to produce an unbiased estimate of the standard deviational ellipse since there are 
two constants from which the distance along each axis is measured ( , ; see endnote ). 
 

3. The X-axis and Y-axis of the ellipse are defined by:  
 

 2            (4.13) 
 
 2            (4.14) 
 

4. The area of the ellipse is: 
 

 	             (4.15) 
 

Figure 4.13 shows the output of the ellipse routine and figure 4.14 maps the standard 
deviational ellipse of auto thefts in Baltimore City and Baltimore County for 1996. 

 
Geometric Mean 

 
The mean center routine (Mcsd) includes two additional means.  First, there is the 

geometric mean, which is a mean associated with the mean of the logarithms.  It is defined as: 
 

	 	 	 	∏ ∑                 (4.16) 

 

 	 	 	 	∏ ∑                         (4.17) 

 
where Π is the product term of each point value, i (i.e., the values of X or Y are multiplied times 
each other), Wi is the weight used (default=1), and N is the sample size (Everitt, 2011).  The 
weights must be defined on the Primary File page, either in the Weights field or in the Intensity 
field (but not both together).   
 
 



Standard Deviational Ellipse Output
Figure 4.13:
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Figure 4.14: 1996 Metropolitan Baltimore Auto Thefts

Mean Center and Standard Deviational Ellipse
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 The equation can be evaluated by logarithms: 
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The geometric mean is the anti-log of the mean of the logarithms.  If weights are used, 
then the logarithm of each X or Y value is weighted and the sum of the weighted logarithms are 
divided by the sum of the weights.  If weights are not used, then the default weight is 1 and the 
sum of the weights will equal the sample size. The geometric mean is output as part of the Mcsd 
routine and has a >Gm= prefix before the user defined name. 
 

Uses 
 

The geometric mean is used when units are multiplied by each other (e.g., robberies 
increase by 5% one year, 3% the next, and 4% the next; Wikipedia, 2007a).  One cannot take the 
simple mean because there is a cumulative change in the units.  In most cases, this is not relevant 
to point (incident) locations since the coordinates of each incident are independent and are not 
multiplied by each other.  However, the geometric mean can be useful because it converts all X 
and Y coordinates into logarithms and, thus, has the effect of discounting extreme values.   
 

Harmonic Mean  
 
 The harmonic mean is a lso a mean which discounts extreme va lues, but is calculated 
differently.  It is defined as (Wikipedia, 2007b): 
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where Wi is the weight used (default=1), Xi and Yi are the X and Y values, and N is the sample 
size.  The weights have to be defined on the Primary File page, either in the Weights field or in 
the Intensity field (but not both together).   
  

The harmonic mean of X and Y is the inverse of the mean of the inverse of X and Y 
respectively (i.e., take the inverse; take the mean of the inverse; and invert the mean of the 
inverse).  If weights are used, then each X or Y value is weighted by its inverse while the 
numerator is the sum of the weights. If weights are not used, then the default weight is 1 and the 
sum of weights will equal the sample size.  The harmonic mean is output as part of the Mcsd 
routine and has a >Hm= prefix before the user-defined name. 

 
Uses 
 
Typically, harmonic means are used in calculating the average of rates, or quantities 

whose values are changing over time (Wikipedia, 2007b).  For example, in calculating the 
average speed over multiple segments of equal length (see chapter 30 on Network Assignment), 
the harmonic mean should be used, not the arithmetic mean.  If there are two adjacent road 
segments, each one mile in length and if a car travels over the first segment 20 miles per hour 
(mph) but over the second segment at 40 mph, the average speed is not 30 mph (the arithmetic 
mean), but 26.7 mph (the harmonic mean).  The car takes 3 minutes to travel the first segment 
(60 minutes per hour times 1 mile divided by 20 mph ) and 1.5 minutes to travel the second 
segment (60 minutes per hour times 1 mile divided by 40 mph).  Thus, the total time to travel the 
two miles is 4.5 minutes and the average speed is 26.7 mph. 
 

Again, for point (incident) locations, the harmonic mean would normally not be relevant 
since the coordinates of each of the incidents are independent.  However, since the harmonic 
mean is weighted more heavily by the smaller values, it can be useful to discount cases which 
have outlying coordinates. 

 
In other words, the harmonic mean of X and Y respectively is the inverse of the mean of 

the inverse of X and Y respectively (i.e., take the inverse; take the mean of the inverse; and 
invert the mean of the inverse).  If weights are used, then each X or Y value is weighted and the 
numerator is the sum of the weights. If weights are not used, then the sum of the weights will 
equal the sample size.  The harmonic mean is output as part of the Mcsd routine and has a >Hm= 
prefix before the user defined name. 

 
The geometric and harmonic means are discounted means that >hug= the center of the 

distribution. They differ from the mean center when there is a very skewed distribution.  
 



Figure 4.15:g
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To contrast the different means, figure 4.15 below shows five different means for 
Baltimore County motor vehicle thefts:   
 

1. Mean center; 
2. Center of minimum distance; 
3. Geometric mean;  
4. Harmonic mean; and 
5. Triangulated mean (discussed below) 

 
 In the example, the mean center, geometric mean, and harmonic mean fall very close to 
each other; however, they will not always be so. The center of minimum distance approximates 
the geographical center of the distribution.  The triangulated mean is defined by the angularity 
and distance from the lower-left and upper-right corners of the data set (see below). 
 

Centrographic descriptors can be very powerful tools for examining spatial patterns.  
They are a first step in any spatial analysis, but an important one.  The above example illustrates 
how they can be a basis for decision-making, even with small samples.  A couple of other 
examples can be illustrated. 
 

Average Density 
 

The average density is the number of incidents divided by the area.  It is a measure of 
the average number of events per unit of area; it is sometimes called the intensity.  If the area is 
defined on the measurement parameters page, the routine uses that value for area; otherwise, it 
takes the rectangular area defined by the minimum and maximum X and Y values (the bounding 
rectangle). 
 

Output Files 
 

Calculating the Statistics 
 

Once the statistics have been selected, the user clicks on Compute to run the routine.  The 
results are shown in a results table. 
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Tabular Output 
 

For each of these statistics, CrimeStat produces tabular output.  In CrimeStat, all tables 
are labeled by symbols, for example Mcsd for the mean center and standard distance deviation or 
Mcmd for the center of minimum distance.  All tables present the sample size. 
 

Graphical Objects 
 

The six centrographic statistics can be output as graphical objects. The mean center and 
center of minimum distance are output as single points.  The standard deviation of the X and Y 
coordinates is output as a rectangle.  The standard distance deviation is output as a circle and the 
standard deviational ellipse is output as an ellipse. 

CrimeStat currently supports graphical outputs to ArcGIS >shp=, MapInfo >mif=, Google 
Earth ‘kml, or various Ascii files.  Before running the calculation, the user should select the 
desired output files and specify a root name (e.g., Precinct1Burglaries).  Figure 4.16 shows a 
dialog box for outputting a shape file to ArcGIS.  For MapInfo output only, the user has to also 
indicate the name of the projection, the projection number and the datum number.  These can be 
found in the MapInfo users guide.  By default, CrimeStat will use the standard parameters for a 
spherical coordinate system (Earth projection, projection number 1, and datum number 33).  If a 
user requires a different coordinate system, the appropriate values should be typed into the space.  
Figure 4.17 shows the selection of the MapInfo coordinate parameters. 
 

If requested, the output files are saved in the specified directory under the specified (root) 
name.  For each statistic, CrimeStat will add prefix letters to the root name. 
 

MC<root> for the mean center 
MdnCntr<root> for the median center 
Mcmd<root> for center of minimum distance 
XYD<root> for the standard deviation of the X and Y coordinates 
SDD<root> for the standard distance deviation 
SDE<root> for the standard deviational ellipse. 

 
The >.shp= files can be read directly into ArcGIS as themes.  The ‘kml files can be read 

directly into Google Earth. The >.mif= files have to be imported into MapInfo.3 
  

                         
3  In MapInfo, the comm`and is Table Import <MapInfo Interchange file> though it is a lot easier to use the 

MapInfo Universal Translator. 



Outputting a Shape File to ArcView/ArcGIS
Figure 4.16:



MapInfo Output Options
Figure 4.17:
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Statistical Testing 
 
While the current version of CrimeStat does not conduct statistical tests that compare two 

distributions, it is possible to conduct such tests.  Appendix A presents a discussion of the 
statistical tests that can be used.  Instead, the discussion here will focus on using the outputs of 
the routines without formal testing. 
 

Decision-making Without Formal Tests 
 

Formal significance testing has the advantage of providing a consistent inference about 
whether the difference in two distributions is likely or unlikely to be due to chance.  Almost all 
formal tests compare the distribution of a statistic with that of a random distribution.  However, 
police departments frequently have to make decisions based on small samples, in which case the 
formal tests are less useful than they would with larger samples.  Still, the centrographic statistics 
calculated in CrimeStat can be useful and can help a police department make decision even in the 
absence of formal tests. 
 
Examples of Centrographic Statistics 
 

Example 1: June and July Auto Thefts in Precinct 11 
 

We want to illustrate the use of these statistics to make decisions with two examples.  
The first is a comparison of crimes in small geographical areas.  In most metropolitan areas, most 
analysts will concentrate on particular sub-areas of the jurisdiction, rather than on the jurisdiction 
itself.  In Baltimore County, for instance, analysis is done both for the jurisdiction as a whole as 
well as by individual precincts.   

 
Below in Figure 4.18 are the standard deviational ellipses for 1996 auto thefts for June 

and July in Precinct 11 of Baltimore County.  As can be seen, there was a spatial shift that 
occurred between June and July of that year, the result most probably of increased vacation 
travel to the Chesapeake Bay.  While the comparison is very simple, involving looking at the 
graphical object created by CrimeStat, such a month to month comparison can be useful for 
police departments because it points to a shift in incident patterns, allowing the police 
department to reorient their patrol units.  

 
  



Figure 4.18:
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Example 2: Serial Burglaries in Baltimore City and Baltimore County 
 
The second example illustrates a rash of burglaries that occurred on both sides of the 

border of Baltimore City and Baltimore County.  On one hand there were ten residential 
burglaries that occurred on the western edge of the City/County border within a short time period 
of each other and, on the other hand, there were 13 commercial burglaries that occurred in the 
central part of the metropolitan areas.  Both police departments suspected that these two sets 
were the work of a serial burglar (or group of burglars).  What they were not sure about was 
whether the two sets of burglaries were done by the same individuals or by different individuals. 
 

The number of incidents involved are too small for significance testing; only one of the 
parameters tested was significant and that could easily be due to chance.  However, the police do 
have to make a guess about the possible perpetrator even with limited information.  Let=s use 
CrimeStat to try and make a decision about the distributions.   
 

Figure 4.19 illustrates these distributions.  The thirteen commercial burglaries are shown 
as squares while the ten residential burglaries are shown as triangles.  Figure 4.20 plots the mean 
centers of the two distributions.  They are close to each other, but not identical.  An initial hunch  
 
would suggest that the robberies are committed by two perpetrators (or groups of perpetrators), 
but the mean centers are not different enough to truly confirm this expectation.  
 
 Similarly, Figure 4.21 plots the center of minimum distance.  Again, there is a difference 
in the distribution, but it is not great enough to truly rule out the single perpetrator theory.  Figure 
4.22 plots the raw standard deviations, expressed as a rectangle by CrimeStat.  The dispersion of 
incidents overlaps to a sizeable extent and the area defined by the rectangle is approximately the 
same.  In other words, the search area of the perpetrator or perpetrators is approximately the 
same.  This might argue for a single perpetrator, rather than two.   Figure 4.23 shows the 
standard distance deviation of the two sets of incidents.  Again, there is sizeable overlap and the 
search radiuses are approximately the same.  
 

Only with the standard deviational ellipse, however, is there a fundamental difference 
between the two distributions (figure 4.24).  The pattern of commercial robberies is falling along 
a northeast-southwest orientation while that for residential robberies along a northwest-southeast 
axis.  In other words, when the orientation of the incidents is examined, as defined by the 
standard deviational ellipse, there are two completely opposite patterns.  Unless this difference 
can be explained by an obvious factor (e.g., the distribution of commercial establishments), it is 
probable that the two sets of robberies were committed by two different perpetrators (or groups 
of perpetrators). 



Figure 4.19:



Figure 4.20:



Figure 4.21:



Figure 4.22:



Figure 4.23:



Figure 4.24:
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Directional Mean and Variance 
 

Centrographic statistics utilize the coordinates of a point, defined as an X and Y value on 
either a spherical or projected/Cartesian coordinate system.  There is another type of metric that 
can be used for identifying incident locations, namely a polar coordinate system.  A vector is a 
line with direction and length.  In this system, there is a reference vector (usually 00 due North) 
and all locations are defined by angular deviations from this reference vector.  By convention, 
angles are defined as deviations from 00, clockwise through 3600.  Note the measurement scale is 
a circle which returns back on itself (i.e. 00 is also  3600).    Point locations can be represented as 
vectors on a polar coordinate system.  
 

With such a system, ordinary statistics cannot be used.  For example, if there are five 
points which on the northern side of the polar coordinate system and are defined by their angular 
deviations as 00, 100, 150, 3450, and 3500 from the reference vector (moving clockwise from due 
North), the statistical mean will produce an erroneous estimate of 1440. This vector would be 
southeast and will lie in an opposite direction from the distribution of points.   

 
Instead, statistics have to be calculated by trigonometric functions.  The input for such a 

system is a set of vectors, defined as angular deviations from the reference vector and a distance 
vector.  Both the angle and the distance vector are defined with respect to an origin.  The routine 
can calculate angles directly or can convert all X and Y coordinates into angles with a bearing 
from an origin.  For reading angles directly, the input is a set of vectors, defined as angular 
deviations from the reference vector. CrimeStat calculates the mean direction and the circular 
variance of a series of points defined by their angles.  On the primary file screen, the user must 
select Direction (angles) as the coordinate system.   
 

If the angles are to be calculated from X/Y coordinates, the user must define an origin 
location.  On the reference file page, the user can select among three origin points: 
 

1. The lower-left corner of the data set (the minimum X and Y values).  This is the 
default setting. 

 
2. The upper-right corner of the data set (the maximum X and Y values); and 

 
3. A user-defined point. 

 
Users should be careful about choosing a particular location for an origin, either lower-

left, upper-right or user-defined.  If there is a point at that origin, CrimeStat will drop that case 
since any calculations for a point with zero distance are indeterminate.  Users should check that 
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there is no point at the desired origin.  If there is, then the origin should be adjusted slightly so 
that no point falls at that location (e.g., taking slightly smaller X and Y values for the lower-left 
corner or slightly larger X and Y values for the upper right corner). 
 

The routine converts all X and Y points into an angular deviation from true North relative 
to the specified origin and a distance from the origin.  The bearing is calculated with different 
formulae depending on the quadrant that the point falls within.   
 

First Quadrant 
 

With the lower-left corner as the origin, all angles are in the first quadrant.  The 
clockwise angle, θi, is calculated by: 

 
 

 arctan	           (4.24) 

 
where Xi is the X-value of the point, Yi is the Y-value of the point, XO is the X-value of the 
origin, and YO is the Y-value of the origin.   
 

The angle, θi, is in radians and can be converted to polar coordinate degrees using: 
 

           (4.25) 

 
Third Quadrant 

 
With the upper-right corner as the origin, all angles are in the third quadrant.  The 

clockwise angle, θi, is calculated by: 
 

 arctan	          (4.26) 

 
where the angle, θi, is again in radians.  Since there are 2π radians in a circle, π radians is 1800.  
Again, the angle in radians can be converted into degrees with formula 4.25 above. 
 

Second and Fourth Quadrants 
 

When the origin is user-defined, each point must be evaluated as to which quadrant it is 
in.  The second and fourth quadrants define the clockwise angle, θi, differently: 
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 Second quadrant 
 

 0.5 arctan	         (4.27) 

 
 Fourth quadrant 

 

 1.5 arctan	         (4.28) 

 
Once all X/Y coordinates are converted into angles, the mean angle is calculated. 

 
Mean Angle 

 
With either angular input or conversion from X/Y coordinates, the Mean Angle is the 

resultant of all individual vectors (i.e., points defined by their angles from the reference vector).  
It is an angle that summarizes the mean direction.  Graphically, a resultant is the sum of all 
vectors and can be shown by laying each vector end to end.  Statistically, it is defined as 
 

 	 ̅ arctan	
∑

∑
       (4.29) 

 
where the summation of sines and cosines is over the total number of points, i, defined by their 
angles, θi.   Each angle, θi, can be weighted by the length of the vector, di.  In an unweighted 
angle, di is assumed to be of equal length, 1. The absolute value of the ratio of the sum of the 
weighted sines to the sum of the weighted cosines is taken.  All angles are in radians.  In 
determining the mean angle, the quadrant of the resultant must be identified: 
 

1. If Σ(sinθi)>0 and Σ(cosθi)>0, then  can be used directly as the mean angle. 
 

2. If Σ(sinθi)>0 and Σ(cosθi)<0, then  is π/2 +θ. 
 
3. If Σ(sinθi)<0 and Σ(cos θi)<0, then  is π + θ. 
 
4. If Σ(sinθi)<0 and Σ(cos θi)>0, then  is 1.5π + θ. 

 
Formulas 4.26, 4.27, 4.28 and 4.29 above are then used to convert the directional mean 

back to an X/Y coordinate, depending on which quadrant it falls within. 
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Circular Variance 
 

The dispersion (or variance) of the angles are also defined by trigonometric functions.  
The unstandardized variance, R, is sometimes called the sample resultant length since it is the 
resultant of all vectors (angles): 

 

 ∑ ∑         (4.30) 

      
where di is the length of vector, i, with an angle (bearing) for the vector of  θi.  For the 
unweighted sample resultant, di is 1. 
 

Because R increases with sample size, it is standardized by dividing by N to produce a 
mean resultant length: 

 

              (4.31) 

 
where N is the number points (sample size).    
 

Finally, the average distance from the origin, D, is calculated and the circular variance is 
calculated by: 

 

 	 1        (4.32) 

 
This is the standardized variance which varies from 0 (no variability) to 1 (maximum 

variability).  The details of the derivations can be found in Burt and Barber (1996) and Gaile and 
Barber (1980).  
 

Mean Distance 
  

 The mean distance, , is calculated directly from the X and Y coordinates.  It is identified 
in relation to the defined origin. 
 

Directional Mean 
 

The directional mean is calculated as the intersection of the mean angle and the mean 
distance.  It is not a unique position since distance and angularity are independent dimensions.  
Thus, the directional mean calculated using the minimum X and minimum Y location as the 
reference origin (the >lower left corner=) will yield a different location from the directional mean 
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calculated using the maximum X and maximum Y location as the origin (the >upper right 
corner=).   There is a weighted and unweighted directional mean.  Though CrimeStat calculates 
the location, users should be aware of the non-uniqueness of the location.  The unweighted 
directional mean can be output with a >Dm= prefix.  The weighted directional mean is not output. 
 

Triangulated Mean 
 

The triangulated mean is defined as the intersection of the two vectors, one from the 
lower-left corner of the study area (the minimum X and Y values) and the other from the upper-
right corner of the study area (the maximum X and Y values).  It is calculated by estimating 
mean angles from each origin (lower left and upper right corners), translating these into 
equations, and finding the point at which these equations intersect (by setting the two functions 
equal to each other).  
 

Directional Mean Output 
 

The directional mean routine outputs nine statistics: 
 

1. The sample size;  
2. The unweighted mean angle; 
3. The weighted mean angle; 
4. The unweighted circular variance; 
5. The weighted circular variance; 
6. The mean distance; 
7. The intersection of the mean angle and the mean distance;  
8. The X and Y coordinates for the triangulated mean; and 
9. The X and Y coordinates for the weighted triangulated mean. 

 
The directional mean and triangulated mean can be saved as ArcGIS >shp=, MapInfo >mif=, 

Google Earth ‘kml, or various Ascii files.  The unweighted directional mean - the intersection of 
the mean angle and the mean distance, is output with the prefix >Dm= while the unweighted 
triangulated mean location is output with a >Tm= prefix.  The weighted triangulated mean is 
output with a >TmWt= prefix. See the example below. 

 
Figure 4.25 shows the unweighted triangular mean for 1996 Baltimore County robberies 

and compares it to the two directional means calculated using the lower-left corner (Dmean1) 
and the upper-right corner (Dmean2) respectively as origins.  As can be seen, the two directional 
means fall at different locations.  Lines have been drawn from each origin point to their  
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respective directional means and are extended until they intersect.  As seen, the triangulated 
mean falls at the location where the two vectors (i.e., mean angles) intersect.   
 

Because the triangulated mean is calculated with vector geometry, it will not necessarily 
capture the central tendency of a distribution.  Asymmetrical distributions can cause it to be 
placed in peripheral locations.  On the other hand, if the distribution is relatively balanced in 
each direction, it can capture the center of orientation perhaps better than other means, as figure 
4.25 shows.  Appendix A includes a discussion of how to formally test the mean direction 
between two different distributions. 

 
Convex Hull 
 

The convex hull is a boundary drawn around the distribution of points.  It is a relatively 
simple concept, at least on the surface. Intuitively, it represents a polygon that circumscribes all 
the points in the distribution such that no point lies outside of the polygon. 
 

The complexity comes because there are different ways to define a convex hull.  The 
most basic algorithm is the Graham scan (Graham, 1972).  Starting with one point known to be 
on the convex hull, typically the point with the lowest X coordinate, the algorithm sorts the 
remaining points in angular order around this in a counterclockwise manner. If the angle formed 
by the next point and the last edge is less than 180 degrees, then that point is added to the hull.  If 
the angle is greater than 180 degrees, then the chain of nodes starting from the last edge must be 
deleted.  The routine proceeds until the hull closes back on itself (de Berg, van Kreveld, 
Overmans, and Schwarzkopf, 2000). 
 

Many alternative algorithms have been proposed. Among these are the >gift wrap= (Chand 
and Kapur, 1970; Skiena, 1997), the Quick Hull, the ADivide and conquer@ (Preparata and Hong, 
1977), and the incremental (Kallay, 1984) algorithms. Even more complexity has been 
introduced by the mathematics of fractals where an almost infinite number of borders could be 
defined (Lam and De Cola, 1993).  In most implementations, though, a simplified algorithm is 
used to produce the convex hull. 
 
 CrimeStat implements the >gift wrap= algorithm.  Starting with the point with the lowest Y 
coordinate, A, it searches for another point, B, such that all other points lie to the left of the line  
AB.  It then finds another point, C, such that all remaining points lie to the left of the line BC.  It 
continues in this way until it reaches the original point A again. It is like >wrapping a gift= around 
the outside of the points. 
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The routine outputs three statistics: 
 

1. The sample size; 
2. The number of points in the convex hull 
3. The X and Y coordinates for each of the points in the convex hull 

 
The convex hull can be saved as ArcGIS >shp=, MapInfo >mif=, Google Earth ‘kml, or 

various Ascii files with a 'Chull' prefix. 
 
 Figure 4.26 shows the convex hull of Baltimore County robberies for 1996.  As seen, the 
hull occupies a relatively smaller part of Baltimore County.  Figure 4.27, on the other hand 
shows the convex hull of 1996 Baltimore County burglaries.  As seen, the convex hull of the 
burglaries cover a much larger area than for the robberies. 

 
Uses and Limitations of the Convex Hull 

 
A convex hull can be useful for displaying the geographical extent of a distribution.  

Simple comparisons, such as in Figures 4.26 and 4.27, can show whether one distribution has a 
greater extent than another.  Further, as we shall see, a convex hull can be useful for describing 
the geographical spread of a crime hot spot, essentially indicating where the crimes are 
distributed. 
 

On the other hand, a convex hull is vulnerable to extreme values.  If one incident is 
isolated, the hull will of necessity be large.  The mean center, too, is influenced by extreme 
values but not to the same extent since it averages the location of all points.  The convex hull, on 
the other hand, is defined by the most extreme points.  A comparison of different crime types or 
the same crime type for different years using the convex hull may only show the variability of 
the extreme values, rather than any central property of the distribution. Therefore, caution must 
be used in interpreting the meaning of a hull. 
  



Figure 4.26:



Figure 4.27:
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Endnotes 

 
i. CrimeStat=s implementation of the Kuhn and Kuenne algorithm is as follows (from Burt 

and Barber, 1996, 112-113): 
 

1. Let t be the number of the iteration.  For the first iteration only (i.e., t=1) the 
weighted mean center is taken as the initial estimate of the median location, Xt 
and Yt. 

 
2. Calculate the distance from each point, i, to the current estimate of the median 

location, dict, where i is a single point and ct is the current estimate of the median 
location during iteration t. 

 
a. If the coordinates are spherical, then Great Circle distances are used. 

 
b. If the coordinates are projected, then Euclidean distances are used. 

 
3. Weight each case by a weight, Wi, and calculate: 
 
   

 
where e is the base of the natural logarithm(2.7183..). 

 
a. If no weights are defined in the primary file, Wi is assumed to be 1. 

 
b. If weights are defined in the primary file, Wi takes their values. 

 
Note that as the distance, dict, approaches 0, then  becomes 1. 

 
4. Calculate a new estimate of the center of minimum distance from: 
 

   
∑

∑
  for i=1…n  

 

   
∑

∑
  for i=1…n  

 
where Xi and Yi are the coordinates of point i (either lat/lon for spherical or feet 
or meters for projected). 
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Endnotes (continued) 
 

5. Check to see how much change has occurred since the last iteration 
 

Abs|Xt+1 - Xt | # 0.000001 
 

Abs|Yt+1 - Yt | # 0.000001 
 

a. If either the X or Y coordinates have changed by greater than 0.000001 
between iterations, substitute Xt+1 for Xt and Yt+1 for Yt and  repeat steps 
B through D. 

 
b. If both the change in X and the change in Y is less than or equal to 

0.000001, then the estimated Xt and Yt coordinates are taken as the center 
of median distance. 
 

ii. Formulas for the new axes provided by Ebdon (1988) and Cromley (1992) yield standard 
deviational ellipses that are too small, for two different reasons.  First, they produce 
transformed axes that are too small.  If the distribution of points is random and even in all 
directions, ideally the standard deviational ellipse should be equal to the standard 
distance deviation, since Sx = Sy.  The formula used here has this property.  Since the 
formula for the standard distance deviation is (equation 4.8): 

 

  
∑ x̄	 ȳ	

 

 
 If Sx = Sy , then  Σ(Xi - X)2 = Σ(Yi - Y)2 , therefore: 
 

  2
∑ x̄	

 
       
  Similarly, the formulas for the transformed axes are (4.9, 4.10):  
 

  2
∑ x̄	 θ ȳ	 θ

 

 

  2
∑ x̄	 θ ȳ	 θ
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Endnotes (continued) 
 
However, if Sx = Sy, then θ = 0, cos θ = 1, Sin θ = 0 and, therefore: 
 

  2
∑ x̄	

 
    

which is the same as for the standard distance deviation (SDD) under the same 
conditions.  The formulas used by Ebdon (1988) and Cromley (1992) produce axes which 
are √2 times too small. 

 
The second problem with the Ebdon and Cromley formulas is that they do not correct for 
degrees of freedom and, hence, produce too small a standard deviational ellipse.  Since 
there are two constants in each equation,   and , then there are only N-2 degrees of 
freedom.   The cumulative effect of using transformed axes that are too small and not 
correcting for degrees of freedom yields a much smaller ellipse than that used here.  
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Attachments 

 



Using Spatial Measures of Central Tendency with Network Analyst 
to Identify Routes Used by Motor Vehicle Thieves 

 
Philip R. Canter 

Baltimore County Police Department 
Towson, Maryland 

 
Motor vehicle thefts have been steadily declining countywide over the last 5 

years, but one police precinct in southwest Baltimore County was experiencing 
significant increases over several months. Cases were concentrated in several 
communities, but directed deployment and saturated patrols had minimal impact. In 
addition to increasing patrols in target communities, the precinct commander was 
interested in deploying police on roads possibly used by motor vehicle thieves. Police 
analysts had addresses for theft and recovery locations; it was a matter of using the 
existing highway network to connect the two locations.  

 
To avoid analyzing dozens of paired locations, analysts decided to set up a 

database using one location representing the origin of motor vehicle thefts for a 
particular community. The origin was computed using CrimeStat’s median center for 
motor vehicle theft locations reported for a particular community. The median 
center is the position of minimum average travel and is less affected by extreme 
locations compared to the arithmetic mean center. The database consisted of the 
median center paired with a recovery location. Using Network Analyst, a least-effort 
route was computed for cases reported by community. A count was assigned to each 
link along a roadway identified by Network Analyst. Analysts used the count to 
thematically weight links in ArcView. The precinct commander deployed resources 
along these routes with orders to stop suspicious vehicles. This operation resulted in 
27 arrests, and a reduction in motor vehicle thefts. 

 

 



Centrographic Analysis 
Man With A Gun Calls For Service 

Charlotte, N.C., 1989 
 

James L. LeBeau 
Administration of Justice 

Southern Illinois University – Carbondale 
 

 Hurricane Hugo arrived on Friday, September 22, 1989 in Charlotte, North 
Carolina.  That weekend experienced the highest counts of Man With A Gun calls for 
service for the year.  The locations of the calls during the Hugo Weekend are 
compared with the following New Year’s Eve weekend. 
 
 CrimeStat was used to compare the two weekends.  Compared to the New 
Year’s Eve weekend: 1) Hugo’s mean and median centers are more easterly; 2)  
Hugo’s ellipse is larger and more circular; and 3)  Hugo‘s  ellipse shifts more to the 
east and southeast.  The abrupt spatial change of Man With A Gun calls during a 
natural disaster might indicate more instances of defensive gun use for protection of 
property. 
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Chapter 5: 

Spatial Autocorrelation Statistics 
 
 This chapter discusses statistics for describing spatial autocorrelation that are applicable 
to zonal data.  A good grasp of basic statistics is a requirement for reading this chapter.  Figure 
5.1 shows the Spatial Autocorrelation page within the Spatial Description section. This includes 
global tests of spatial autocorrelation for zone data or point data in which an attribute can be 
associated with the coordinates.  The section includes six tests for global spatial autocorrelation: 
 

1. Moran=s AI@ statistic 
2. Geary=s AC@ statistic 
3. Getis-Ord AG@ statistic 
4. Moran Correlogram 
5. Geary Correlogram 
6. Getis-Ord Correlogram 

 
These indices would typically be applied to zonal data where an attribute value can be 

assigned to each zone.  Six spatial autocorrelation indices are calculated.  All require an intensity 
variable in the Primary File.  

 
The discussion in the chapter will concentrate on defining the indices and demonstrating 

how they can be used.  Specific instructions for running the routines are given at the end of the 
chapter while detailed information is provided in Chapter 2.      
 

Spatial Autocorrelation 
 

The concept of spatial autocorrelation is one of the most important in spatial statistics in 
that it implies a lack of spatial independence.  Classical statistics assumes that observations are 
independently chosen and are spatially unrelated to each other. The intuitive concept is that the 
location of an incident (e.g., a street robbery, a burglary) is unrelated to the location of any other 
incident.  The opposite condition - spatial autocorrelation, is a spatial arrangement of incidents 
such that the locations where incidents occur are related to each other; that is, they are not 
statistically independent of one another.  In other words, spatial autocorrelation is a spatial 
arrangement where spatial independence has been violated. 
 

When events or people or facilities are clustered together, we refer to this arrangement as 
positive spatial autocorrelation.  Conversely, an arrangement where people, events or facilities  
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are extremely dispersed is referred to as negative spatial autocorrelation; it is a rarer 
arrangement, but does exist (Levine, 1999). 

 
However, many, if not most, social phenomena are spatially autocorrelated.  In any large 

metropolitan area, most social characteristics and indicators, such as the number of persons, 
income levels, ethnicity, education, employment, and the location of facilities are not spatially 
independent, but tend to be concentrated. 
 

There are practical consequences.  Police and crime analysts know from experience that 
incidents frequently cluster together in what are called >hot spots=.  This non-random arrangement 
can allow police to target certain areas or zones where there are concentrations of crimes as well 
as prioritize areas by the intensity of incidents.  Many of the incidents are committed by the same 
individuals.  For example, if a particular neighborhood had a concentration of street robberies 
over a time period (e.g., a year), many of these robberies will have been committed by the same 
perpetrators.  Statistical dependence between events often has common causes. 
 

Statistically, however, non-spatial independence indicates that many statistical tools and 
inferences are inappropriate.  For example, the use of a correlation coefficient or Ordinary Least 
Squares regression (OLS) model to predict a consequence (e.g., correlates or predictors of 
burglaries) assumes observations are randomly selected.  If, however, the observations are 
spatially clustered, the estimates obtained from the correlation coefficient or OLS estimator will 
be biased and overly precise.  The coefficients will be biased because areas with a higher 
concentration of events will have a greater impact on the model estimate and precision will be 
overestimated because concentrated events tend to have fewer independent observations than are 
being assumed.  The spatial autocorrelation concept underlies almost all of CrimeStat’s spatial 
statistics tools.  

 
Indices of Spatial Autocorrelation  
 
 Assigning Point Data to Zones 
 
 If a user has information on the location of individual events (e.g., robberies), then it is 
better to utilize that information with the point statistics discussed in Chapter 4 and the hot spot 
tools that will be discussed in Chapters 7 and 8. The individual-level information will contain all 
the uniqueness of the events.   
 

However, sometimes it is not possible to analyze data at the individual level.  The user 
may need to aggregate the individual data points to spatial areas (zones) in order to compare the 
events to data that are only obtained for zones, such as census data, or to model environmental 
correlates of the data points or may find that individual data are not available (e.g., when a police 
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department releases information by police beats but not individual streets).   In this case, the 
individual data points are allocated to zones by, first, spatially assigning them to the zones in 
which they fall and, second, counting the number of points assigned to each zone.  A user can do 
this with a GIS program or with the “Assign Primary points to Secondary Points” routine that 
will be discussed in Chapter 6. 

 
In this case, the zone becomes the unit of analysis instead of the individual data points.  

All the incidents are assigned to a single geographical coordinate, typically the centroid of the 
zone, and the number of incidents in the zone (the count) becomes an attribute of the zone (e.g., 
number of robberies per zone; number of motor vehicle crashes per zone).    

 
It should be obvious that when individual data points are assigned to zones, information 

is lost.  Instead of capturing the unique locations of the individual events, all events that occur 
within a zone are assigned a single location.  Thus, the distance between zones is a singular value 
for all the points in those zones whereas there is much greater variability with the distances 
between individual events.    

 
 Further, zones have attributes which are properties of the zone, not of the individual 

events.  The attribute can be a count or a continuous variable for a distributional property of the 
zone (e.g., median household income; percentage of households below poverty level).2 
 
 Analysis then proceeds on the basis of the zonal information.  The results will be 
different than for an analysis of the individual event information since the spatial characteristics 
are measured by single points for each zone (e.g., the centroid) and the attribute information is 
measured by a property of the zone, not the individual events (e.g., the count of events in the 
zone; a characteristic of the zone such as income level). 
 
 In other words, the user must realize that an analysis of zonal data is quite different from 
an analysis of individual data and that the conclusions might be different.  Aggregating data to 
zones creates properties  that may be different than those of individual events and that the 
relationships between variables at the zonal level also might be different than at the individual 
level.  This is called an ecological relationship and there is a large literature on ecological 
inference and fallacies (see Freedman, 1999; Langbein & Lichtman, 1979). 
 
 Individual level data can also have attributes.  For example, Levine and Lee (2013) 
analyzed journey-to-crime distances for offenders in Manchester, England.  In this case, the 
attribute variable was the distance traveled and the statistics discussed in this chapter are 
                                                 
2  There is no fundamental difference between a count variable and a continuous interval or ratio variable 

since a real number can be converted into a count by multiplying by a power of 10 (e.g., 1.23 = 123 x 10-2).  
The statistics discussed in this chapter are applicable to either count or continuous data. 
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appropriate for analyzing that attribute data.  Other examples of individual level data with 
attributes would be the age of the offender, the number of prior convictions, or the number of 
years of formal education.  The key criterion is that the records must have an attribute which is 
either a count or an interval variable. 
 
 Spatial Autocorrelation Statistics for Attribute Data 
 
 There are a number of formal statistics that attempt to measure spatial autocorrelation at 
the zonal level or for individual level data with count or interval attributes.  These statistics 
include simple indices, such as the Moran=s I@, Geary=s C or the Getis-Ord “G” statistic, the 
application of these statistics to individual zones or records (discussed in Chapter 9), and 
multivariate indices such as the Markov Chain Monte Carlo spatial regression models (discussed 
in Chapter 19).   The simple indices attempt to identify whether spatial autocorrelation exists for 
a single variable while the more complicated indices attempt to estimate variability in spatial 
autocorrelation in a study area of the effect of spatial autocorrelation on a particular attribute 
variable. 
 

CrimeStat includes three global indices - Moran=s I statistic, Geary=s C statistic, and the 
Getis-Ord “G” statistic.  It also includes Correlograms that apply each of these indices to 
different distance intervals. Moran, Geary, and Getis-Ord are global in that they represent a 
summary value for all the data points.  In Chapter 9, we will present some local indicators of 
spatial autocorrelation that apply the Moran, Geary and Getis-Ord statistics to individual zones.  
But, for now, we are focused on describing the entire study area. 

 
Moran=s “I” Statistic 
 

Moran=s “I” statistic (Moran, 1950) is one of the oldest indicators of spatial 
autocorrelation.  It is applied to zones or points that have attribute variables associated with them 
(intensities).  For any continuous variable, Xi, a mean, , can be calculated and the deviation of 
any one observation from that mean, , can also be calculated.  The statistic then compares the 
value of the variable at any one location with the value at all other locations (Ebdon, 1988; 
Griffith, 1987; Anselin, 1992).  Formally, it is defined as: 

 

	
∑ ∑ X̄	 X̄	

∑ ∑ ∑ X̄	
                     (5.1) 

 
where N is the number of cases, Xi is the value of a variable at a particular location, i, Xj is the 
value of the same variable at another location (where i =/  j),  X is the mean of the variable and Wij 
is a weight applied to the comparison between location i and location j.   
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In Moran=s initial formulation, the weight variable, Wij, was a contiguity matrix.  If zone j 
is adjacent to zone i, the interaction receives a weight of 1.  Otherwise, the interaction receives a 
weight of 0.  Cliff and Ord (1973) generalized these definitions to include any type of weight.  In 
more current use, Wij, is a distance-based weight which is the inverse distance between locations 
i and j (1/dij).  CrimeStat uses this interpretation. Essentially, it is a weighted Moran=s I where the 
weight is an inverse distance. 

 
Note that in adopting a distance-based weight, there are advantages and disadvantages. 

Contiguity (or adjacency) is a property of a zone, not a point.  Thus, adjacency defines whether 
one zone is next to another zone whereas distance is the distance between single points that 
represent the zones (e.g., centroids). If two zones are, say, 0.25 miles apart, it is not known 
whether they are adjacent or not.  In other words, in adopting a distance-based weight, 
information about adjacencies is lost.  On the other hand, a distance-based weight is 
standardized.  If two zones are adjacent, it is not known how far apart they are separated.  
Adjacencies can be misleading since they don’t indicate the size of the adjacent zones whereas a 
specified distance is always constant.   

 
The weighted Moran=s I is similar to a correlation coefficient in that it compares the sum 

of the cross-products of values at different locations, two at a time, weighted by the inverse of 
the distance between the locations and with the variance of the variable.  Like a correlation 
coefficient, it typically varies between -1.0 and + 1.0.  However, this is not absolute as an 
example later in the chapter will show.  When nearby points have similar values, their cross-
product is high.  Conversely, when nearby points have dissimilar values, their cross-product is 
low.  Consequently, an AI@ value that is high indicates more spatial autocorrelation than an AI@ 
that is low.   

 
           However, unlike a correlation coefficient, the theoretical value of the index does not equal 
0 for lack of spatial dependence, but instead is negative but very close to 0: 
 
 	                      (5.2) 
 

Values of AI@ above the theoretical mean, E(I), indicate positive spatial autocorrelation 
while values of AI@ below the theoretical mean indicate negative spatial autocorrelation.   
 

Adjust for Small Distances 
 

CrimeStat calculates the weighted Moran=s I formula using equation 5.1.  However, there 
is one problem with this formula that can lead to unreliable results.  The distance weight between 
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two locations, Wij, is defined as the reciprocal of the distance between the two points, consistent 
with Moran’s original formulation: 

 
	 1                      (5.3) 

 
Unfortunately, as dij becomes small, then Wij becomes very large, approaching infinity as 

the distance between the points approaches 0.  If the two zones were next to each other, which 
would be true for two adjacent blocks for example, then the pair of observations would have a 
very high weight, sufficient to distort the AI@ value for the entire sample.  Further, there is a scale 
problem that alters the value of the weight.  If the zones are police precincts, for example, then 
the minimum distance between precincts will be a lot larger than the minimum distance between 
a smaller geographical unit, such as a block.  We need to take into account these scales. 
 

CrimeStat includes an adjustment for small distances so that the maximum weight can 
never be greater than 1.0.  The adjustment scales distances to one mile, which is a typical 
distance unit in the measurement of crime incidents.  When the small distance adjustment is 
turned on, the minimal distance is automatically scaled to be one mile.   The formula used is: 

	 	
	 	

                    (5.4) 

    
in the units are specified.  For example, if the distance units, dij, are calculated as feet, then: 
 
 	 5,280

5,280 	
 

 
where 5,280 is the number of feet in a mile.  This has the effect of insuring that the weight of a 
particular pair of point locations will not have an undue influence on the overall statistic.  The 
traditional measure of AI@ is the default condition in CrimeStat, but the user can turn on the small 
distance adjustment by clicking on the appropriate box. 
 

Testing the Significance of Moran=s “I” 
 

The empirical distribution can be compared with the theoretical distribution by dividing 
by an estimate of the theoretical standard deviation: 

 
	                      (5.5) 

 
where AI@ is the empirical value calculated from a sample, E(I) is the theoretical mean of a 
random distribution and SE(I) is the theoretical standard deviation of E(I).   
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There are several interpretations of the theoretical standard deviation that affect the 
particular statistic used for the denominator as well as the interpretation of the significance of the 
statistic (Anselin, 1992).  The most common assumption is that the standardized variable, Z(I), 
has a sampling distribution which follows a standard normal distribution, that is with a mean of 0 
and a variance of 1.  This is called the normality assumption.3  A second interpretation assumes 
that each observed value could have occurred at any location, that is the location of the values 
and their spatial arrangement is assumed to be unrelated.  This is called the randomization 
assumption and has a slightly different formula for the theoretical standard deviation of 5.13.4  
CrimeStat outputs the Z-values and p-values for both the normality and randomization 
assumptions.  
 

Example: Testing Houston Burglaries with Moran=s “I” 
 

To illustrate the use of Moran=s I with point locations, the data must have intensity values 
associated with each point.  Since most crime incidents are represented as a single point, they do 
not naturally have associated intensities.  It is necessary, therefore, to adapt crime data to fit the 
form required by Moran=s I.  One way to do this is assign crime incidents to geographical zones 
and count the number of incidents per zone.   
 

Figure 5.2 shows 2006 burglaries in the City of Houston by individual Traffic Analysis 
Zones (TAZ).  TAZ’s are groupings of census blocks but designed to equalize the number of 
trips to and from the zone in the base year.  They are typically very small in downtown Houston 
(typically a block in size) and much larger in the suburban parts of the City.  With a GIS 
program, 26,480 burglary locations were overlaid on top of a map of 1,179 TAZ’s and the 
number of burglaries within each TAZ were counted and then assigned to the TAZ as a variable 
(see the >Assign primary points to secondary points= routine in Chapter 6).5  The numbers varied 
from 0 burglaries (for 250 TAZ’s) up to 284 burglaries incidents (for 1 TAZ). The map shows 
the plot of the number of burglaries per TAZ. 

 
                                                 
3  The theoretical standard deviation of AI@ under the assumption of normality is (Ebdon, 1985): 
 

 
∑ ∑ ∑ ∑ ∑ ∑

∑ ∑
 

4  The formula for the theoretical standard deviation of AI@ under the randomization assumption is (Ebdon, 
1985): 

 
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑
	

 
5  The TAZ data were obtained from the Houston-Galveston Area Council, the Metropolitan Planning 

Organization for the Houston metro area. 
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Clearly, aggregating incident locations to zones, such as TAZ’s, eliminates some 
information since all incidents within a block are assigned to a single location (the centroid of the 
block).  The use of Moran=s I, however, requires the data to be in this format.  Using data in this 
form, Moran=s I was calculated using the small distance adjustment because many TAZ’s are 
very close together, especially in downtown Houston.   

 
Figure 5.3 shows the output of the “I” in CrimeStat.  AI@ was 0.251790, the theoretical 

value of AI@ as -0.000849, and the standard error of “I” as 0.002796.  The test of significance 
using the normality assumption gave a Z-value of 213.20, a highly significant value.  Below are 
the calculations for burglaries by TAZ: 

 

	 	 	
0.251795 0.000849

0.002796
213.20	 .0001  

 
 Comparing Moran’s “I” for Two Distributions 
 
 Figure 5.4 shows the distribution of households in the city  by TAZ. The calculations for 
the “I” of households are similar (not shown). It turns out that the “I” of households is 0.298117 
while the theoretical “I” and the standard error of “I” are the same as for burglaries (because of 
the same zonal geography).  One can compare an “I” value for one distribution with the “I” value 
for another distribution.  For example, a Z-test can then be made of whether the “I” value of 
burglaries is statistically different than that of households.  The calculations are shown below: 
 

	 	 	
0.251795 0.298117

0.002796
16.57	 .001  

 
where Iburg is the “I” value for burglaries, Ihh is the AI@ value for households, and SE(I) is the 
standard deviation of AI@ for households under the assumption of normality.  The Z-test of the 
difference is -16.57, a highly significant difference. The high Z-value suggests that burglaries are 
even more clustered than the clustering of households.  To put it another way, they are more 
clustered than would be expected based on the household distribution.  As mentioned, this is an 
approximate test since the joint distribution of AI@ for two empirical distributions of AI@ is not 
known. 
 

Geary=s C Statistic 
 

Geary=s C statistic is similar to Moran=s I (Geary, 1954).   In this case, however, the 
interaction is not the cross-product of the deviations from the mean, but the deviation in 
intensities of each observation’s location with one another.  It is defined as: 



Moran's I Statistic Output
Figure 5.3:
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∑

∑ ∑ ∑ X̄	
                   (5.6) 

 
 The values of “C” typically vary between 0 and 2, although 2 is not a strict upper limit 
(Griffith, 1987).  The theoretical value of “C” is 1; that is, if values of any one zone are spatially 
unrelated to any other zone, then the expected value of “C” would be 1.  Values less than 1 (i.e., 
between 0 and 1) typically indicate positive spatial autocorrelation while values greater than 1 
indicate negative spatial autocorrelation.  Thus, this index is inversely related to Moran=s “I”.   It 
will not provide identical inference because it emphasizes the differences in values between pairs 
of observations comparisons rather than the co- variation between the pairs (i.e., product of the 
deviations from the mean).  The Moran coefficient gives a more global indicator whereas the 
Geary coefficient is more sensitive to differences in small neighborhoods. 
 
 Adjusted “C” 
 

A more intuitive interpretation of “C” can be obtained by calculating an adjusted“C”: 
 

 	 1                     (5.7) 
 
 In this case, the adjusted “C” will be on the same scale as Moran’s “I”.  An adjusted “C” 
value that is positive indicates positive spatial autocorrelation while an adjusted “C” value that is 
negative indicates negative spatial autocorrelation. An adjusted “C” of 0 indicates no spatial 
autocorrelation and is also the expected adjusted “C”. CrimeStat calculates both the regular and 
adjusted “C” values. 
 

Adjust for Small Distances 
 

Like Moran=s “I”, the weights are defined as the inverse of the distance between the 
paired points: 

 

	 1                        (5.3) repeat 

 
However, the weights will tend to increase substantially as the distance between points 

decreases.  Consequently, a small distance adjustment is allowed that ensures no weight is 
greater than 1.0:   

 

	 	
	 	

                        (5.4) repeat 
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The adjustment scales the distances to one mile in the distance units specified on the 
Primary file page (miles, feet, kilometers, meters, or nautical miles).  This is the default 
condition although the user can calculate all weights as the reciprocal distance by turning off the 
small distance adjustment. 
 

Testing the Significance of Geary=s “C” 
 

The empirical “C” distribution can be compared with the theoretical distribution by 
dividing by an estimate of the theoretical standard deviation 
 

 	                           (5.8) 

 
where C is the empirical “C”, E(C) is the theoretical mean of a random distribution and SE(C) is 
the theoretical standard deviation of E(C).  The usual test is to assume that the sample Z follows 
a standard normal distribution with mean of 0 and variance of 1 (normality assumption), though 
it is possible to calculate the standard error under a randomization assumption (Ripley, 1981).6  
 
 Note that for testing, the regular “C” value should be used since an adjusted standard 
error of “C” is not easily calculated.  The adjusted “C” is useful for a quick intuitive appraisal as 
well as for the Geary Correlogram (see below). 
 

Example:  Testing Houston Burglaries with Geary=s “C” 
 

 Using the same data on burglaries in the City of Houston, figure 5.5 illustrates the output.  
The regular “C” value for burglaries was 0.625702 with a Z-value of -20.00 (p#.0001). The “C” 
value of burglaries is smaller than the theoretical “C” of 1.  Converting this measure an adjusted 
“C” gives 0.374298 and indicates positive spatial autocorrelation. That is, the index suggests that 
TAZ’s with a high number of burglaries are adjacent to TAZ’s also with a high number of 
burglaries.  Thus, Geary=s C confirms the evidence for positive spatial autocorrelation identified 
by Moran’s “I”.   
 
  
  

                                                 
6  The theoretical standard deviation for C under the normality assumption is (Ripley, 1981): 
 	

2 ∑ ∑ ∑ ∑ 1 4 ∑ ∑

2 1 ∑ ∑
	

 



Geary's C Statistic Output
Figure 5.5:
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Comparing this to the distribution of households in Houston, the C value of households is 
also below  the theoretical “C” of 1 and points to positive spatial autocorrelation (“C” = 
0.643120 with a Z-value of -19.07; p#.0001).  Since both the regular “C” for burglaries and for 
households are below 1 (hence, indicating positive spatial autocorrelation), let us test the 
difference between the two as indicated by a Z-test of the difference. 
 

	 	
0.625702 0.643120

0.018717
0.930598	 . .  

 
 In this case, there is no statistical difference between the distribution of burglaries and the 
distribution of households.  Though both distributions show evidence of positive spatial 
autocorrelation, the Geary test cannot show a difference between the two whereas the Moran’s 
“I” did show a difference. 
 
 Typically, Geary’s “C” will be consistent with Moran’s “I” though there are slight 
differences between the indices, as we see in this example. Because of the nature of the 
weighting, the Geary index is more sensitive to local clustering (second-order effects) than the 
Moran index, which is better seen as measuring first-order spatial autocorrelation.  This 
illustrates how these indices have to be used with care and cannot be generalized by themselves. 
Each of them emphasizes slightly different information regarding spatial autocorrelation, yet 
neither is sufficient by itself.  They should be used as part of a larger analysis of spatial 
patterning.7 
 

Getis-Ord AG@ Statistic 
 

The Getis-Ord AG@ statistic is also an index of global spatial autocorrelation but for 
values that fall within a specified distance of each other (Ord & Getis, 1995; Getis & Ord, 1992).  
When compared to an expected value of AG@ under the assumption of no spatial association, it 
has the advantage over other two global spatial autocorrelation measures in that it can distinguish 
between >hot spots= and >cold spots=, which neither Moran=s AI@ nor Geary=s AC@ can do.    
 

The AG@ statistic calculates the spatial interaction of the value of a particular variable in a 
zone with the values of that same variable in nearby zones, similar to Moran=s AI@ and Geary=s 
                                                 
7  Anselin (1992) points out that the results of the two indices are determined to a large extent by the type of 

weighting used.  In the original formulation, where adjacent weights of 1 and 0 were used, the two indices 
were linearly related, though moving in opposite directions (Griffith, 1987).  Thus, only adjacent zones had 
any impact on the index.  With inverse distance weights, however, zones farther removed can influence the 
overall index so it is possible to have a situation whereby adjacent zones have similar values (hence, are 
positively autocorrelated) whereas zones farther away could have dissimilar values (hence, are negatively 
autocorrelated). 
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AC@.  Thus, it is also a measure of spatial association or interaction. Unlike the other two 
measures, it only identifies positive spatial autocorrelation, that is, where zones have similar 
values to their neighbors.  It cannot detect negative spatial autocorrelation where zones have 
different values to their neighbors.  But, unlike the other two global measures, it can distinguish 
between positive spatial autocorrelation where zones with high values are near to other zones 
with high values (high positive spatial autocorrelation) from positive spatial autocorrelation 
which where zones with low values are near to other zones also with low values (low positive 
spatial autocorrelation).  Further, the AG@ value is calculated with respect to a specified search 
distance (defined by the user) rather than to an inverse distance, as with the Moran=s AI@ or 
Geary=s AC@.  

 
The formulation of the general AG@ statistic presented here is taken from Lee and Wong 

(2005).  It is defined as: 
 

	
∑ ∑

∑ ∑
                    (5.9) 

 
for a variable, X.  This formula indicates that the cross-product of the value of X at location Ai@ 
and at another zone Aj@ is weighted by a distance weight, wj(d) which is defined by either a >1' if 
the two zones are equal to or closer than a threshold distance, d, or A0" otherwise.  The cross-
product is summed for all other zones, j, over all zones, i.   Thus, the numerator is a sub-set of 
the denominator and can vary between 0 and 1.  If the distance selected is too small so that no 
other zones are closer than this distance, then the weight will be 0 for all cross-products of 
variable X.  Hence, the value of G(d) will be 0.  Similarly, if the distance selected is too large so 
that all other zones are closer than this distance, then the weight will be 1 for all cross-products 
of variable X.  Hence, the value of G(d) will be 1. 
 
 There are actually two “G” statistics.  The first one, G*, includes the interaction of a zone 
with itself; that is, zone Ai@ and zone Aj@ can be the same zone.  The second one, G, does not 
include the interaction of a zone with itself.  In CrimeStat, we only include the “G” statistic (i.e., 
there is no interaction of a zone with itself) because, first, the two measures produce almost 
identical results and, second, the interpretation of “G” is more straightforward than with G*.  
Essentially, with G, the statistic measures the interaction of a zone with nearby zones (a 
>neighborhood=).  See articles by Getis and Ord (1996) and by Khan, Qin and Noyce (2006) for a 
discussion of the use of G*. 
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Testing the Significance of “G” 
 

By itself, the “G” statistic is not very meaningful.  Since it can vary between 0 and 1, as 
the threshold distance increases, the statistic will always approach 1.0.  Consequently, “G” is 
compared to an expected value of “G” under no significant spatial association.  The expected 
“G” for a threshold distance, d, is defined as: 

 

	            (5.10) 

 
where W is the sum of weights for all pairs and N is the number of cases.  The sum of the 
weights is based on symmetrical counts of those zones within the threshold distance.  That is, if 
zone 2 is within the threshold distance of zone 1, then zone 2 contributes a weight of 1 to zone 1.  
However, zone 1 contributes a weight of 1 to zone 2 as well.  In other words, if two zones are 
within the threshold (search) distance, then they both contribute 2 to the total weight. 
 

Note that, since the expected value of “G” is a function of the sample size and the sum of 
weights which, in turn, is a function of the search distance, it will be the same for all variables of 
a single data set in which the same search distance is specified. However, as the search distance 
changes, so will the expected “G” change. 
 

Theoretically, the “G” statistic is assumed to have a normally distributed standard error.  
If this is the case (and we often do not know if it is), then the standard error of “G” can be 
calculated and a simple significance test based on the normal distributed be constructed.  The 
variance of G(d) is defined as: 

 
	                 (5.11) 

 
where 
 

 	            (5.12) 

 
and where: 
 
 ∑                    (5.13)

 ∑                    (5.14)

 ∑                    (5.15)

 ∑                    (5.16)	
 1 2 3                 (5.17) 
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0.5∑ ∑                  (5.18)  

∑ ∑ ∑           (5.19) 

3 3 3           (5.20) 
2 3         (5.21) 

2 3 6          (5.22) 
4 1 2 1 8         (5.23) 

           (5.24) 
 

where i is the zone being calculated, j is all other zones, and N is the sample size (Lee and Wong, 
2005).  Note that this formula is different than that written in other sources (e.g., see Lees, 2006) 
but is consistent with the formulation by Getis and Ord (1992).  

 
The standard error of G(d) is the square root of the variance of G.  Consequently, a Z-test 

can be constructed by: 
 

 . .                  (5.25) 

 

 
. .

                 (5.26) 

 
Relative to the expected value of G, a positive Z-value indicates spatial clustering of high 

values (high positive spatial autocorrelation or >hot spots=) while a negative Z-value indicates 
spatial clustering of low values (low positive spatial autocorrelation or >cold spots=).  A AG@ value 
around 0 typically indicates either no positive spatial autocorrelation, negative spatial 
autocorrelation (which the Getis-Ord cannot detect), or that the number of >hot spots= more or 
less balances the number of >cold spots=.   

 
Note that the value of this test will vary with the search distance selected.  One search 

distance may yield a significant spatial association for “G” whereas another may not.  In other 
words, the statistic is useful for identifying distances at which spatial autocorrelation exists.  

 
 
 
 
 
Also, and this is an important point, the expected value of “G” as calculated in equation 

5.10 is only meaningful if the variable is positive.  For variables with negative values, such as 
residual errors from a regression model, one cannot use equation 5.10 but, instead, must use a 
simulation to estimate confidence intervals. 
 

In practice, one should use a small search 
distance to identify local spatial autocorrelation.   
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Simulating Confidence Intervals for “G” 
 

One of the problems with this test is that “G” may not actually follow a normal standard 
error.  That is, if “G” was calculated for a specific distance, d, with random data, the distribution 
of the statistic may not be normally distributed. This would be especially true if the variable of 
interest is a skewed variable with some zones having very high values while the majority of 
zones having low values.   
 

Consequently, the user has an alternative for estimating the confidence intervals using a 
Monte Carlo simulation.  In this case, a permutation type simulation is run whereby the original 
values of the intensity variable, Z, are maintained but are randomly re-assigned for each 
simulation run (Anselin, 2008).  This will maintain the distribution of the variable Z but will 
estimate the value of “G” under random assignment of this variable.  The user can take the usual 
95% or 99% confidence intervals based on the simulation.   

 
 
 
 
 
 

 Example: Testing Simulated Data with the Getis-Ord AG@ 
 

To understand how the Getis-Ord AG@ works and how it compares to the other two global 
spatial autocorrelation measures - Moran=s AI@ and the adjusted Geary=s AC@, three simulated data 
sets were created.  In the first, a random pattern was created (Figure 5.6).   In the second, a data 
set of extreme positive spatial autocorrelation was created (Figure 5.7) and, in the third, a data 
set of extreme negative spatial autocorrelation was created (Figure 5.8); the latter is essentially a 
checkerboard pattern. 
 

Table 5.1 compares the three global spatial autocorrelation statistics on the three 
distributions.  For the Getis-Ord AG@, both the actual AG@ and the expected AG@ are shown.  A one 
mile search distance was used for the Getis-Ord AG@.   
  

  

Keep in mind that a simulation may take time to 
run especially if the data set is large or if a large 
number of simulation runs are requested. 



Figure 5.6:



Figure 5.7:



Figure 5.8:
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Table 5.1: 

 Global Spatial Autocorrelation Statistics for Simulated Data Sets 
 N = 100 Grid Cells 
 
        -------------Getis-Ord “G”------------ 
      Adjusted 

Pattern  Moran=s AI@ Geary=s AC@    Observed AG@  Expected AG@ 
          (1 mi search)  (1 mi search) 

 
Random   -0.007162 n.s. 0.965278n.s    0.151059n.s  0.159596 

 
Positive spatial 
autocorrelation  0.292008**** 0.700912****    0.241015****  0.159596 

 
Negative spatial 
autocorrelation -0.060071*** -0.049471*    0.140803n.s.  0.159596 
_____________________ 
n.s not significant 
* p#.05 
** p#.01 
*** p#.001 
**** p#.0001 

 
The random pattern is not significant for all three measures.  That is, neither the Moran 

AI@, the adjusted Geary@C@, nor the Getis-Ord AG@ is significantly different than the expected 
value under a random distribution.  This is what would be expected since the data were assigned 
randomly. 

 
For the extreme positive spatial autocorrelation pattern, on the other hand, all three 

measures show highly significant differences with a random distribution.  Moran=s AI@ is highly 
positive.  The adjusted Geary=s AC is above 1.0, indicating positive spatial autocorrelation and the 
Getis-Ord AG@ has a AG@ value that is significantly higher than the expected AG@ based on the 
theoretical standard error. The Getis-Ord AG@, therefore, indicates that the type of spatial 
autocorrelation is high positive.   

 
Finally, the extreme negative spatial autocorrelation pattern (Figure 5.8 above) shows 

different results for the three measures.  Moran=s AI@ shows negative spatial autocorrelation and is 
highly significant (p≤.001).  Geary=s AC also shows negative spatial autocorrelation but it is 
significant only at the p≤.05 level.  Finally, the Getis-Ord AG@ is slightly smaller than the 
expected AG@, which indicates low positive spatial autocorrelation, but it is not significant. 
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In other words, all three statistics can identify positive spatial correlation.  Of these, 
Moran=s AI@ is a more powerful test than either Geary=s AC@ or the Getis-Ord AG@.  By ‘power’ is 
meant the ability to correctly reject a false null hypothesis (or, in statistical language, to avoid a 
Type II error).  A data set for which Moran’s “I” is barely statistically significant might very well 
fail with Geary’s “C” or the Getis-Ord “G” since the Geary and Getis-Ord indices are not a 
powerful as the Moran index. 

 
However, only Moran=s AI@ and Geary=s AC@ are able to detect negative spatial 

autocorrelation.  On the other hand, only the Getis-Ord AG@ can distinguish between high 
positive and low positive spatial autocorrelation.  The Moran and Geary tests would show these 
conditions to be identical, as the example below shows. 
 

Example: Testing Houston Burglaries with the Getis-Ord AG@ 
 

Now, let us take the 26,480 burglaries in the City of Houston for 2006 aggregated to 
1,179 traffic analysis zones (figure 5.2 above).  To compare the Getis-Ord AG@ statistic with the 
Moran=s AI@ and the regular Geary=s AC@, the three spatial autocorrelation tests were run on this 
data set.  The Getis-Ord AG@ was tested with a search distance of 1 mile and 1000 simulation runs 
were made on the AG@.   Table 5.2 shows the three global spatial autocorrelation statistics for 
these data. 

 
The Moran and Geary tests show that the Houston burglaries have significant positive 

spatial autocorrelation (zones have values that are similar to their neighbors).  Moran=s AI@ is 
significantly higher than the expected AI@ and the adjusted Geary=s AC@ is also significantly higher 
than the adjusted expected AC@.  However, the Getis-Ord AG@ is lower than the expected AG value 
and is significant whether using the theoretical Z-test or the simulated confidence intervals 
(notice how the AG@ is lower than the 2.5 percentile).   This indicates that, in general, zones with 
low values are nearby other zones with low values.  In other words, there is low positive spatial 
autocorrelation, suggesting a number of >cold spots=.  

 
Uses and Limitations of the Getis-Ord AG@ 

 
The advantage of the AG@ statistic over the other two spatial autocorrelation measures is 

that it can distinguish between >hot spots= and >cold spots=.  With Moran=s AI@ or Geary=s AC@, an 
indicator of positive spatial autocorrelation means that zones have values similar to their 
neighbors.  However, the positive spatial autocorrelation could be caused by many zones with 
low values being concentrated, too.  In other words, one cannot tell from those two indices 
whether the concentration is a hot spot or a cold spot.  The Getis-Ord AG@ can do this. 
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Table 5.2: 

 Global Spatial Autocorrelation Statistics for City of Houston Burglaries: 2001 
 N = 1,179 Traffic Analysis Zones 

 
       Adjusted 

 Moran=s AI@ Geary=s AC@ Getis-Ord AG@  
     (1 mile search)  

Observed    0.251790  0.374298  0.007063  
Expected   -0.000849  0.000000  0.061753 
Observed –Expected  0.252639  0.374298 -0.054690 
Standard Error   0.002796  0.018717  0.007581 
Z-test    90.36  20.00 -7.21 
 p-value    ****   ****   ****  
Based on simulation: 
 2.5 percentile: n.a.  n.a.   0.048664 
 97.5 percentile: n.a.  n.a.   0.076445 

 _____________________ 
n.s not significant 
* p#.05 
** p#.01 
*** p#.001 

 **** p#.0001 
 
 
The main limitation of the Getis-Ord AG@ is that it cannot detect negative spatial 

autocorrelation, a condition that, while rare, does occur.  With the checkerboard pattern above 
(Figure 5.8), this test could not detect that there was negative spatial autocorrelation.  For this 
condition, Moran=s AI@ or Geary=s AC@ would be more appropriate tests. 

 

Moran Correlogram 
 

Moran=s “I”, Geary=s “C”, and the Getis-Ord “G” indices are summary tests of global 
autocorrelation.  That is, they summarize all the data with respect to spatial autocorrelation but 
do not distinguish different subsets.  For examining particular sub-sets of data that are spatially 
autocorrelated, such as ‘hot spots’, ‘cold spots’ or space-time clusters, a different approach is 
required.  Chapter 9 discusses the local Moran and local Getis-Ord statistics.  

 
An alternative approach is to calculate the spatial autocorrelation statistics by different 

distance intervals.  The Moran Correlogram calculates the AI@ value by different distance 
intervals (or bins).  When graphed, the plot indicates how concentrated or distributed is the 
spatial autocorrelation (Cliff and Haggett, 1988; Bailey and Gatrell, 1995).   Essentially, a series 
of concentric circles is overlaid on the points and the Moran=s I statistic is calculated for only 
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those points falling within each circle. The radius of the circle changes from a small circle to a 
very large one.  As the circle increases, the AI@ value approaches the global value. 
 

In CrimeStat, the user can specify how many distance intervals (i.e., circles) are to be 
calculated.  The default is 10, but the user can choose any other integer value.  The routine takes 
the maximum distance between points and divides it into the number of specified distance 
intervals, and then calculates the AI@ for those points falling within that radius. 
 

Adjust for Small Distances 
 

If the ‘Adjust for small distances’ box is checked, small distances are adjusted so that the 
maximum weighting is 1 (equation 5.4 above). This ensures that the AI@ values for individual 
distances will not become excessively large or excessively small for points that are close 
together. The default value is no adjustment. 

 
Simulation of Confidence Intervals 

 
A permutation Monte Carlo simulation can be run to estimate approximate confidence 

intervals around the "I" value.  Each simulation inputs random data and calculates the AI@ value. 
The distribution of the random AI@ values produce an approximate confidence interval for the 
actual (empirical) AI@.  To run the simulation, specify the number of simulations to be run (e.g., 
100, 1000, 10000).  The default is no simulations. The output percentiles are the 0.5th, 2.5th, 
97.5th and 99th.  Pairing the 2.5th with the 97.5th or the 0.5th with the 99.will create approximate 
95% or 99% confidence intervals. 
 
 Example: Moran Correlogram of Baltimore County Vehicle Theft and Population 
 
 For the three correlograms, we will use a different example than Houston burglaries.  
These are 1996 data on vehicle thefts from Baltimore County, MD.  Figure 5.9 shows the 
distribution of 1996 vehicle thefts by Traffic Analysis Zones (TAZ) while figure 5.10 shows the 
Moran Correlogram for these thefts.  Also shown in the graph are the maximum and minimum 
values from a Monte Carlo simulation of 1000 runs and the 2.5th and 97.5th percentiles to 
simulate approximate 95% confidence intervals (called ‘credible intervals’). 
 

As seen, the AI@ value at zero distance is about 0.60.  As the distance between zones 
increase (i.e., the search circle radius gets larger), the AI@ value drops off slowly until about 19 
miles whereupon it approaches the global AI@ value.  Further, the curve for the “I” values is 
always higher than the 97th percentile curve from the random simulation and indicating that 
vehicle thefts are more clustered than what would be expected on the basis of chance for all 
 



Figure 5.9:
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distance separations.  In other words, vehicle thefts appear to be highly clustered, much more so 
than would be expected by chance. 

 
Now, compare this distribution with that the 1996 population (Figure 5.11).  The 1996 

data were estimated by the Baltimore Metropolitan Council, the regional planning agency.  
Comparing this map with Figure 5.9, intuitively it can be seen that population is more dispersed 
than vehicle thefts.  Consequently, the Moran Correlogram shows much less spatial 
autocorrelation.  The “I” value for zero distance is 0.39, lower than the 0.60 for vehicle thefts.  
The graph then drops off very quickly and approaches the global “I” value at about 3 miles.  
Further, from about 2 miles on, the “I” value is not different than what might be expected by 
chance since the curve falls between the 2.5th percentile and the 97.5th percentile.  In other 
words, nearby TAZ’s tend to have similar population levels, but there is no relationship between 
the population of TAZ’s and those farther away. 
 
 Figure 5.13 compares the Moran Correlogram of vehicle theft with that of population by 
looking at only the positive “I” values.   As seen, vehicle theft has a much higher AI@ value for 
short distances than for population. The reason is most likely that a disproportionate number of 
vehicle thefts occur in commercial areas which, in turn, are more concentrated than the 
distribution of population.   
 

Uses and Limitations of the Moran Correlogram 
 
 In other words, the Moran Correlogram provides information about the scale of spatial 
autocorrelation, whether it is more concentrated (as with the vehicle theft example) or more 
diffuse (as with the population example).  This can be useful for gauging the extent to which 
>hot spots= are truly isolated concentrations of incidents or whether they are by-products of 
spatial clustering over a larger area.  In Chapter 7, we will examine a clustering algorithm that 
examines a hierarchy of clusters (e.g., first-order clusters that are within larger second-order 
clusters which, in turn, are within even larger third-order clusters).  The Moran Correlogram 
provides a quick snapshot of the extent of spatial autocorrelation as a function of scale. 
 
A second use for the Moran Correlogram is to estimate the type of kernel function that will be 
used for interpolation.  In Chapter 8, this methodology is explained in detail. But, the key 
decision is to select a mathematical function that will interpolate data from point locations to 
grid cells.  The shape of the Moran Correlogram and the spread is a good indicator of the type 
of mathematical function to use. 
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A third use for the Moran Correlogram is in identifying the degree of decline in spatial 
autocorrelation with distance (sometimes called distance decay) in choosing an appropriate 
parameter for spatial regression models.  Chapter 19 will discuss this methodology. 
 

On the other hand, like all global spatial autocorrelation statistics, the Correlogram will 
not indicate where there is clustering or dispersion, only that it exists.  For that, we will have to 
examine tools that focus on concentrated events (or the opposite, the lack of concentration). 

 

Geary Correlogram 
 

The Geary Correlogram is similar to the Moran Correlogram in that it calculates the 
Geary AC@ index for different distance intervals/bins. The user can select any number of distance 
intervals.  The default is 10 distance intervals. The size of each interval is determined by the 
maximum distance between zones and the number of intervals selected.  The output includes 
both the regular “C” and the adjusted “C”.  The graph presented on the results tab show the 
adjusted “C” since this is more intuitive and can be compared to the Moran Correlogram. 

 
Adjust for Small Distances 

 
If the ‘Adjust for small distances’ box is checked, small distances are adjusted so that 

the maximum weighting is 1 (see equation 5.4 above.)   This ensures that the AC@ values for 
individual distances won't become excessively large or excessively small for points that are 
close together. The default value is no adjustment. 

 
 Geary Correlogram Simulation of Confidence Intervals 

 
Since the Geary=s AC@ statistic may not be normally distributed, the significance test is 

frequently inaccurate. Instead, a permutation Monte Carlo simulation is run whereby the 
original values of the variable, Z, are maintained but are randomly re-assigned for each 
simulation run.  This will maintain the distribution of the variable Z but will estimate the value 
of AC@ under random assignment of this variable.  Specify the number of simulations to be run 
(e.g., 1000, 5000, 10000).  Note, a simulation may take time to run especially if the data set is 
large or if a large number of simulation runs are requested. 
 

Example: Geary Correlogram of Baltimore County Vehicle Thefts  
 

Using the same data set on the Baltimore County vehicle thefts as shown in Figure 5.9 
above, the Geary Correlogram was run with 100 intervals (bins).  The routine was also run with 
1000 simulations to estimate confidence intervals around the AC@ value. Because it is more 
intuitive visually, the adjusted “C” was used instead of the regular “C”.  



5.35 

Figure 5.14 illustrates the distance decay of the adjusted AC@ as a function of distance 
along with the simulated 95% confidence interval. The theoretical adjusted AC@ under random 
conditions is also shown.  As seen, the AC@ values are above 0 for all distances tested.  However, 
when compared with the 2.5th and 97.5th percentiles from the simulated rescaled AC@ for all 
intervals, the adjusted “C” values are not outside these percentiles for the very short distances 
but are from about 1.5 miles separation or greater.  In other words, the graph suggests that the 
distribution of “C” for nearby zones is not different than what would be expected by chance.  
Only with increasing distance is the distribution clearly more clustered than chance. 

 
This illustrates a subtle difference between the Geary and Moran indices.  The Geary is 

more sensitive to local variations while the Moran reacts more to global variations.  The Geary 
shows that there is positive spatial autocorrelation in vehicle theft for the immediate 
neighborhood around zones, but it is not much different than might be expected on chance.  
However, with increasing distance, positive spatial autocorrelation is shown.  This suggests a 
type of sub-regional clustering of vehicle thefts; local clustering is limited but the events tend to 
be concentrated in only part of Baltimore County.  As seen in Figure 5.9 above, the TAZ’s 
nearer the border with the City of Baltimore had much higher vehicle theft numbers than the 
rural parts of the County. 

 
The Geary Correlogram can also be used for comparison to other distributions, such as 

the comparison of vehicle theft with population as shown in Figure 5.13.  This example will not 
be repeated here for the Geary Correlogram, but it does show that vehicle theft has higher “C” 
values than population over most distances, similar to the Moran Correlogram. 
 

Uses and Limitations of the Geary Correlogram 
 
 Similar to the Moran and the Getis-Ord correlograms (see below), the Geary 
Correlogram is useful in order to determine the degree of spatial autocorrelation and how far 
away from each zone it typically extends.  Since it is an average over all zones, it is a general 
indicator of the spread of the spatial autocorrelation.  This can be useful for defining limits to 
search distances in other routines, such as the single kernel density interpolation routine where a 
fixed bandwidth would be defined to capture the majority of spatial autocorrelation.  Its biggest 
limitation is that it is not as powerful a test as the Moran Correlogram. 

 
Getis-Ord Correlogram 
 

The Getis-Ord Correlogram calculates the Getis-Ord AG@ index for different distance 
intervals/bins. The statistic requires an intensity variable in the primary file and calculates the 
Getis-Ord AG@ index for different distance intervals/bins. The user can select any number of  

 



Figure 5.14:Figure 5.14:

Adjusted "C" with 95% Confidence Intervals from 1000 Monte Carlo Simulations

Figure 5.14:

0.80

Geary Correlogram:
Baltimore County Vehicle Theft: 1996

Adjusted "C" with 95% Confidence Intervals from 1000 Monte Carlo Simulations

Figure 5.14:

C(97.5 percentile)

Vehicle theft

0.40

0.60 Vehicle theft

C(maximum)

C(minimum)

C(2.5 percentile)0.00

0.20

0 5 10 15 20 25 30G
ea

ry
's

 "
C

" C(97.5 percentile)

( )

-0.60

-0.40

-0.20

C(minimum)

C(2.5 percentile)

-0.80

Distance (miles)



5.37 

distance intervals. The default is 10 distance intervals. The size of each interval is determined 
by the maximum distance between zones and the number of intervals selected. 
 

Getis-Ord Correlogram Simulation of Confidence Intervals 
 

Since the Getis-Ord AG@ statistic may not be normally distributed, the significance test is 
frequently inaccurate.  Instead, a permutation Monte Carlo simulation is run whereby the 
original values of the intensity variable, Z, are maintained but are randomly re-assigned for each 
simulation run.  This will maintain the distribution of the variable Z but will estimate the value 
of “G” under random assignment of this variable.  The user should specify the number of 
simulations to be run (e.g., 100, 1000, 10000).  Note, a simulation may take time to run 
especially if the data set is large or if a large number of simulation runs are requested. 

 
If a simulation is run, percentiles for the 0.5th, 2.5th, 97.5th and 99th percentiles are 

provided.  Pairing the 2.5th with the 97.5th or the 0.5th with the 99.will create approximate 95% 
or 99% confidence intervals.  For the three correlograms, these statistics are provided for each 
of the distance bins.  
  

Example: Getis-Ord Correlogram of Baltimore County Vehicle Thefts 
 

Using the same data set on the Baltimore County vehicle thefts as in figure 5.9, the 
Getis-Ord Correlogram was run. The routine was run with 100 intervals and 1000 Monte Carlo 
simulations in order to simulate 95% confidence intervals around the AG@ value.  The output was 
then brought into Excel to produce a graph. Figure 5.15 illustrates the distance decay of the AG@, 
the expected AG@, and the 2.5 and 97.5 percentile AG@ values from the simulation. 
 

Note that the AG@ value increases with distance from close to 0 to close to 1 at the largest 
distance, around 33 miles.  The actual AG@ is higher than the expected AG@ for all distances until 
the maximum, indicating that there is consistent high positive spatial autocorrelation in the data 
set.  Since the Getis-Ord can distinguish a hot spot from a cold spot, the excess of AG@ over the 
expected AG@ indicates that there are somes zones with substantial numbers of vehicle thefts. 
Notice how the expected AG@ also falls above the 97.5 percentile suggesting that there are more 
>hot spots= than >cold spots=.  That is, if the zones were spatially re-arranged, then would not 
expect as much concentration as actually occurred. 
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Uses and Limitations of the Getis-Ord Correlogram 
 
 Similar to the Moran Correlogram and the Geary Correlogram, the Getis-Ord 
Correlogram is useful in order to determine the degree of spatial autocorrelation and how far 
away from each zone it typically extends.  Since it is an average over all zones, it is a general 
indicator of the spread of the spatial autocorrelation.  This can be useful for defining limits to 
search distances in other routines, such as the single kernel density interpolation routine or the 
MCMC spatial regression module (see Chapters 10 and 19).   
 
 Unlike the other two correlograms, however, it can distinguish hot spots from cold spots.  
In the example above, there are more hot spots than cold spots since the AG@ is greater than the 
expected AG@ for all distances. The biggest limitation for the Getis-Ord Correlogram is that it 
cannot detect negative spatial autocorrelation whereby zones have different values from their 
neighbors.  For that condition, which is rare, the other two correlograms should be used. 
 

Running the Spatial Autocorrelation Routines 
 
The six routines are defined on the Spatial Autocorrelation tab under spatial description.  

With the Moran and Geary routines, the user simply checks the box for each routine.  If distance 
is to be adjusted for small distances, the user must check the appropriate box.  For the Getis-Ord 
“G” routine, the user must specify a search distance and a unit of distance measurement (the 
default is 1 mile).  For the three correlograms, the user must specify the number of intervals and 
the number of simulations that are to be run, if any.   

 
The output for the six routines is somewhat similar.  For the three global indices, 

statistics are provided on the index (“I”, “C” or”G”) and the expected value. For the three 
correlograms, these statistics are provided for each of the distance bins.  If a simulation is run, 
percentiles for the 0.5th, 2.5th, 97.5th and 99th percentiles are provided.  Pairing the 2.5th with the 
97.5th or the 0.5th with the 99.will create approximate 95% or 99% confidence intervals.   

 

Guidelines for Examining Spatial Autocorrelation 
 
 To summarize, a number of indices for examining spatial autocorrelation have been 
presented.  These indices are used with data in which there is an attribute variable, a count or 
interval variable associated with specific locations.   Typically, the indices are used with data on 
zones since zonal information is published by many different agencies.  However, the indices 
could also be used with individual data if there are attributes associated with the individual 
records. 
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While there is no single way to utilize these indices, the following are suggestions for 
using them.  First, identify whether there is positive spatial autocorrelation using Moran’s “I” 
and Geary’s “C”.  Positive spatial autocorrelation indicates that zones are located near to other 
zones with similar values, either zones with high values on the variable being located near to 
zones also with high values or the opposite condition (low values nearby other low values). 

 
If both the Moran “I” and Geary “C” (either regular or adjusted values) are both 

significant, this is strong evidence that there is sizeable spatial autocorrelation in the data.  
Whether the spatial autocorrelation is due to global (regional) factors or local clustering cannot 
be easily determined from the indices.  On the other hand, if the Moran is significant, but the 
Geary is not, this could indicate that the clustering is a function of global concentration rather 
than local concentration since the Moran index is more sensitive to region-wide variation in the 
variable. 
 
 If there is negative spatial autocorrelation, which does occasionally happen, this 
indicates that zones with high values are located near to zones with low values, or the opposite. 
The user is advised to use one of the hot spot techniques described in Chapters 7, 8 and 9 to see 
if the hot spots can be isolated. 
 

Second, if there is positive spatial autocorrelation, identify the type using the Getis-Ord 
“G” statistic.   The Getis-Ord “G” is only applicable for positive spatial autocorrelation but can 
distinguish a predominance of high positive or low positive.  High positive means that there are 
more zones with high values located near to other zones also with high values whereas low 
positive means the opposite (low near to low).  The index is a type of average that weights the 
predominance of these types.  In practice, there will be both types but the index indicates which 
is stronger.  Since the Getis-Ord “G” requires a search distance, the user may have to run the 
Getis-Ord Correlogram first in order to identify a distance for which the positive spatial 
autocorrelation is most distinguishable from the theoretical random “G”. 
 

Third, examine the decline of the spatial autocorrelation with distance by using the three 
correlograms.  While the Moran and Geary correlograms can be used for both positive and 
negative spatial autocorrelation, the Getis-Ord correlogram can only be used with positive 
spatial autocorrelation.  The three correlograms will indicate how spatial autocorrelation varies 
by distance from each zone, on average.  They can provide useful information about whether the 
concentration is very large, such as concentrated in the center of a metropolitan area, in which 
case the spatial autocorrelation is primarily a function of global factors.  Alternatively, if the 
indices fall off very quickly, this suggests neighborhood (or local) effects rather than a 
dominant global pattern.  In practice, there will be both types of factors, but the correlograms 
can indicate which is most important. 
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As with the global indices, the correlograms can provide useful information about the 
rate of decline in spatial autocorrelation (distance decay) for the kernel density routines 
(Chapter 10), the journey-to-crime routine (Chapter 13), the spatial regression routines (Chapter 
19), or the trip distribution module of the Crime Travel Demand Model (Chapter 28). 

 
In other words, identifying whether there is spatial autocorrelation and, if so, the type is 

important with zonal data (or with individual records having attributes) in that it is a first step in 
understanding where and why that spatial autocorrelation occurs.  It is a necessary step in 
conducting hot spot analysis and in modeling the predictive factors that cause the spatial 
autocorrelation to occur. Chapter 9 examines hot spot identification routines appropriate for 
zonal data or individual data with attributes while Chapter 19 examines various regression tools 
for modeling the predictors of the spatial autocorrelation. 
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Global Moran’s I and Small Distance Adjustment: 
Spatial Pattern of Crime in Tokyo 

 
Takahito Shimada 

National Research Institute of Police Science 
National Police Agency, Chiba, Japan 

 
Crimestat calculates spatial autocorrelation indicators such as Moran’s I and 

Geary’s C. These indicators can be used to compare the spatial patterns among 
crime types.  Moran’s I is calculated based on the spatial weight matrix where the 
weight is the inverse of the distance between two points. There is a problem that 
could occur for incident locations in that the weight could become very large as the 
distance between points become closer. In Crimestat, the small distance adjustment  
is available to solve this problem. The adjustment produces a maximum weight of 1 
when the distance between points is 0. 

 
The number of reported crimes in Tokyo increased from 1996 to 2000 

although the city is generally very safe.  For this analysis, 68,400 cases reported in 
the eastern parts of Tokyo were aggregated by census tracts (N=350). Then 
Crimestat calculated Moran’s I for each crime type with and without the small 
distance adjustment.  

 
The “I” value for most crime types, including burglary, theft, purse snatching, 

showed significantly positive autocorrelation. The results with and without the 
small distance adjustment were generally very close.  The Pearson’s correlation 
between the original and adjusted Moran’s I is .98. Among 10 crime types, relatively 
strong spatial patterns were detected for car theft, sexual assaults, and residential 
burglary.   
                                  

Spatial Patterns of  
Residential Burglary: 
Moran’s I = 0.023. z=7.58 
 

 

Calculated Moran’s I by Crime Types 

 



Preliminary Statistical Tests for Hotspots: 
Examples from London, England 

 
Spencer Chainey 

Jill Dando Institute of Crime Science 
University College 
London, England 

 
Preliminary statistical tests for clustering and dispersion can provide insight 

into what types of patterns will be expected when the crime data is mapped.  Global 
tests can confirm whether there is statistical evidence of clusters (i.e. hotspots) in 
crime data which can be mapped, rather than mapping data as a first step and 
struggling to accurately identify hotspots when none actually exist. 
 

Using CrimeStat, four statistical tests were compared for robbery, residential 
burglary and vehicle crime data for the London Borough of Croydon, England.   For 
the incident data, the standard distance deviation and nearest neighbor index were 
used.  For crime incidents aggregated to Census block areas, Moran’s I and Geary’s 
C spatial autocorrelation indices were compared.  The crime data is for the period 
June 1999 – May 2000. 
 
Crime type Number 

of crime 
records 

Standard 
distance 

NN 
Index 

z-score 
(test 

statistic) 

Evidence of 
Clustering? 

Robbery 1132 3119.5 m 0.47 -34.2 Yes 

Residential 
burglary 

3104 3664.6 m 0.46 -57.5 Yes 

Vehicle crime 9314 3706.2 m 0.26 -137.0 Yes 

 
 

Crime type Moran’s I Geary’s C 
All crime 0.0067 1.14 
Robbery 0.0078 1.15 
Residential 
burglary 

0.014 0.99 

Vehicle crime 0.0082 1.08 
 

With the point statistics, all three crime types show evidence of clustering. 
Vehicle crime shows the more dispersed pattern suggesting that whilst hotspots do 
exist, they may be more spread out over the Croydon area than that of the other two 
crime types.  For the two spatial autocorrelation measures, there are differences in 
the sensitivities of the two tests.  For example, for robbery, there is evidence of 
global positive spatial autocorrelation (overall, Census blocks that are close together 
have similar values than those that are further apart).  On the other hand, the 
Geary coefficient suggests that, at a smaller neighbourhood level, areas with a high 
number of robberies are surrounded by areas with a low number of robberies.  
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Chapter 6: 

Distance Analysis I and II 
 
 In this chapter, the characteristics of the distances between points will be described.  The 
previous chapter provided tools for describing the general spatial distribution of crime incidents 
or first-order properties of the incident distribution (Bailey and Gattrell, 1995).  First-order 
properties are global because they represent the dominant pattern of distribution - where the 
points are centered, how far they spread out, and whether there is any orientation to the 
dispersion.  Second-order (or local) properties, on the other hand, refer to sub-regional or 
‘neighborhood’ patterns within the overall distribution.  If there are distinct ‘hot spots’ where 
many crime incidents cluster together, their distribution is spatially related to something unique 
in the sub-region or neighborhood, and less to the global distribution  Second-order 
characteristics indicate how particular environments concentrate crime incidents.  
 
 There are two distance analysis pages.  In Distance analysis I, various second-order 
statistics are provided, including: 
 

1. NN 
2. Linear NN 
3. Ripley 
4. Assign primary points to secondary points 

 
 In Distance analysis II, there are four routines for calculating and outputting distance 
matrices.  This chapter will discuss both sets of routines. 
 

Distance Analysis I 

 
 Figure 6.1 shows the Distance analysis I screen and the distance statistics on that page 
that are calculated by CrimeStat. 
 

Nearest Neighbor Index 
 
 One of the oldest distance statistics is the nearest neighbor index.  It is particularly useful 
because it is a simple tool to understand and to calculate.  It was developed by two botanists in  
 
 
 



Distance Analysis I Screen
Figure 6.1:
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the 1950s (Clark and Evans, 1954), primarily for field work, but it has been used in many 
different fields for a wide variety of problems (Cressie, 1991).  It has also become the basis of 
many other types of distance statistics, some of which are implemented in CrimeStat.   
 
 The nearest neighbor index compares the distances between nearest points and distances 
that would be expected on the basis of chance.  It is an index that is the ratio of two summary 
measures.  First, there is the nearest neighbor distance.  For each point (or incident location) in 
turn, , the distance to every other point, , is calculated and minimum selected (the nearest 
neighbor).  The nearest neighbors are then averaged over all points: 
    

 ∑ ∑                      (6.1) 

 
where Min(dij) is the distance between each point and its nearest neighbor and N is the number of 
points in the distribution.  Thus, in CrimeStat, the distance from a single point to every other 
point is calculated and the smallest distance (the minimum) is selected. Then, the next point is 
taken and the distance to all other points (including the first point measured) is calculated with 
the nearest being selected and added to the first minimum distance.  This process is repeated 
until all points have had their nearest neighbor selected.  The total sum of the minimum distances 
is then divided by N, the sample size, to produce an average minimum distance. 
 
 The second summary measure is the expected nearest neighbor distance if the distribution 
of points is completely spatially random.  This is the mean random distance (or the mean random 
nearest neighbor distance).  It is defined as: 
 

 0.5                       (6.2) 

 
where A is the area of the region and N is the number of incidents.   Since A is defined by the 
square of the unit of measurement (e.g., square mile, square meters, etc.), it yields a random 
distance measure in the same units (i.e., miles, meters, etc.).1  If defined on the measurement  

                                                 
1  There is also a mean random distance for a dispersed pattern, called the mean dispersed distance (Ebdon, 

1988).  It is defined as: 

  √

/
 

where N is the number of points and A is the area.  A nearest neighbor index can be set up comparing the 
observed mean neighbor distance with that expected for a dispersed pattern.  CrimeStat only provides the 
traditional nearest neighbor index, but it does output the mean dispersed distance. 
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parameters page by the user, CrimeStat will use the specified area in calculating the mean 
random distance.  If no area measurement is provided, CrimeStat will take the rectangle defined 
by the minimum and maximum X and Y points. 
 
 The nearest neighbor index is the ratio of the observed nearest neighbor distance to the 
mean random distance 
 

              (6.3) 

 
 Thus, the index compares the average distance from the closest neighbor to each point 
with a distance that would be expected on the basis of chance.  If the observed average distance 
is about the same as the mean random distance, then the ratio will be about 1.0.  On the other 
hand, if the observed average distance is smaller than the mean random distance, that is, points 
are actually closer together than would be expected on the basis of chance, then the nearest 
neighbor index will be less than 1.0.  This is evidence for clustering.  Conversely, if the observed 
average distance is greater than the mean random distance, then the index will be greater than 
1.0.  This would be evidence for dispersion, that points are more widely dispersed than would be 
expected on the basis of chance. 
 
 Testing the Significance of the Nearest Neighbor Index 
 
 Some differences from 1.0 in the nearest neighbor index would be expected by chance.  
Clark and Evans (1954) proposed a Z-test to indicate whether the observed average nearest 
neighbor distance was significantly different from the mean random distance (Hammond and 
McCullagh, 1978; Ripley, 1981).  The test is between the observed nearest neighbor distance and 
that expected from a random distribution and is given by: 
 

                       (6.4) 

 
where the standard error of the mean random distance is approximately given by: 
 

 ≅ .
                     (6.5) 

 
with A being the area of region and N the number of points.  There have been other suggested 
tests for the nearest neighbor distance as well as corrections for edge effects (see below).  
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 However, equations 6.4 and 6.5 are used most frequently to test the average nearest 
neighbor distance.  See Cressie (1991) for details of other tests. 
 

Calculating the Statistics 
 
 Once nearest neighbor analysis has been selected, the user clicks on Compute to run the 
routine.  The program outputs 11 statistics:  
 

1. The sample size 
2. The mean nearest neighbor distance 
3. The standard deviation of the nearest neighbor distance 
4. The minimum distance 
5. The maximum distance 
6. The mean random distance for both the bounding rectangle and the user input 

area, if provided 
7. The mean dispersed distance for both the bounding rectangle and the user input 

area, if provided 
8. The nearest neighbor index for both the bounding rectangle and the user input 

area, if provided 
9. The standard error of the nearest neighbor index for both the maximum bounding 

rectangle and the user input area, if provided 
10. A significance test of the nearest neighbor index (Z-test) 
11. The p-values associated with a one tail and two tail significance test. 

 
 In addition, the output can be saved to a ‘.dbf’ file, which can then be imported into 
spreadsheet or graphics programs. 
 

Example 1: The Nearest Neighbor Index for Baltimore County Street Robberies 
 
 In 1996, there were 1,181 street robberies in Baltimore County.  The area of the County 
is about 607 square miles and is specified on the measurement parameters page.  CrimeStat 
returns the statistics shown in Table 6.1 with the NNA routine.  The mean nearest neighbor 
distance was 0.116 miles while the mean nearest neighbor distance under randomness was 0.358.  
The nearest neighbor index (the ratio of the actual to the random nearest neighbor distance) is 
0.3236.  The Z-value of -44.4672 is highly significant.  In other words, the distribution of the 
nearest neighbors of street robberies in Baltimore County is significantly smaller than what 
would be expected randomness. 
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 It should be noted that the significance test for the nearest neighbor index is not a test for 
complete spatial randomness, for which it is sometimes mistaken.  It is only a test whether the 
average nearest neighbor distance is significantly different than what would be expected on the 
basis of chance.  In other words, it is a test of first-order nearest neighbor randomness.2  There 
are also second-order, third-order, and so forth distributions that may or may not be significantly 
different from their corresponding orders under complete spatial randomness.  A complete test 
would have to test for all those effects, what are called K-order effects. 
 

Table 6.1: 

Nearest Neighbor Statistics for 
1996 Street Robberies in Baltimore County 

(N=1181) 
 

 Mean nearest neighbor distance: 0.11598 mi 
 Mean random distance based  
   on user input area: 0.35837 mi 

 Nearest neighbor index: 0.3236       
 Standard error: 0.00545 mi 

 Test Statistic (Z): -44.4672 
 p-value (one tail) ≤.0001 
 p-value (two tail) ≤.0001 

 
 
Example 2: The Nearest Neighbor Index for Baltimore County Residential 
Burglaries 

 
 The nearest neighbor index and test can be very useful for understanding the degree of 
clustering of crime incidents in spite of its limitations.  For example, in Baltimore County, the 
distribution of 6051 residential burglaries in 1996 yields the following nearest neighbor statistics 
(Table 6.2). 
 
 The distribution of residential burglaries is also highly significant.  Now, suppose we 
want to compare the distribution of street robberies (table 6.1) with that of residential burglaries 

                                                 
2  Unfortunately, the term order when used in the context of nearest neighbor analysis has a slightly different 

meaning than when used as first-order compared to second-order statistics.  In the nearest neighbor 
context, order really means neighbor whereas in the type of statistics context, order means the scale of the 
statistics, global or local.  The use of the terms is historical 
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(table 6.2).  The significance test is not very useful for the comparison because the sample sizes 
are so large (1181 v. 6051); the much higher Z-value for residential burglaries indicates  
primarily that there was a larger sample size to test it.   
 

Table 6.2: 

Nearest Neighbor Statistics for 
1996 Residential Burglaries in Baltimore County 

(N=6051) 
 

 Mean nearest neighbor distance: 0.07134 mi 
 Mean random distance based  
   on user input area: 0.16761 mi 

 Nearest neighbor index: 0.4256 
 Standard error: 0.00113 mi 

 Test Statistic (Z): -85.4750 
 p-value (one tail) ≤.0001 
 p-value (two tail) ≤.0001 

 
 However, comparing the relative nearest neighbor indices can be meaningful, 
 

 	 	                     (6.6) 

    
where NNI(A) is the nearest neighbor index for one group (A) and NNI(B) is the nearest 
neighbor index for another group (B).  Thus, comparing street robberies with residential 
burglaries, we have: 
 

 
.

.
0.7603                   (6.7) 

 
 In other words, the distribution of street robberies relative to an expected random 
distribution appears to be more concentrated than that of burglaries.  There is not a simple 
significance test of this comparison since the standard error of the joint distributions is not 
known.3  But the relatively greater concentration of robberies suggests that they are more likely 
to have ‘hot spots’.   

                                                 
3  It could be tested with a Monte Carlo simulation. Two separate random samples of 1181 ‘robberies’ and 

6051 ‘burglaries’ would be drawn. The nearest neighbor distance for each sample would be calculated and 
the ratio of the two would be taken.  The simulation would be repeated many times (e.g., 1000) to yield an 
approximate 95% credible interval.  However, we have not implemented this simulation at this point. 
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 This index, of course, does not prove that there are ‘hot spots’, but only points us towards 
the higher concentration of robberies relative to burglaries.  In the previous chapter, it was shown 
that robberies had a smaller dispersion than burglaries.  Here, however, the analysis is taken a 
step further to suggest that robberies are more concentrated than burglaries. 
 
 Use of Network Distance 
 
 In calculating the nearest neighbor index, network distance can be used to calculate the 
distance between points (see chapter 3).  However, unless the data set is very small or you have a 
lot of patience, I highly recommend that you do not do this.  Network calculations are very slow 
and will take a long time to complete for a large file. 
 
K-Order Nearest Neighbor 
 
 As mentioned above, the nearest neighbor index is only an indicator of first-order spatial 
randomness.  It compares the average distance for the nearest neighbor to an expected random 
distance.  But what about calculating the second nearest neighbor, or the third nearest neighbor, 
or the 10th nearest neighbor?  CrimeStat can construct K-order nearest neighbor indices.  On the 
distance analysis page, the user specifies the number of nearest neighbor indices to be calculated.  
 
 The K-order nearest neighbor routine returns four columns: 
 

5. The order, starting from 1 
6. The mean nearest neighbor distance for each order (in meters) 
7. The expected nearest neighbor distance for each order (in meters) 
8. The nearest neighbor index for each order 

 
 For each order, CrimeStat calculates the Kth nearest neighbor distance for each 
observation and then takes the average.  The expected nearest neighbor distance for each order is 
calculated by: 
 

 !

!
                 (6.8) 

 
where K is the order and ! is the factorial operation (e.g., 4! = 4 x 3 x 2 x 1; Thompson, 1956).  
The Kth nearest neighbor index is the ratio of the observed Kth nearest neighbor distance to the 
Kth mean random distance.   There is not a good significance test for the Kth nearest neighbor  
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index due to the non-independence of the different orders, though there have been attempts (see 
examples in Getis and Boots, 1978; Aplin, 1983).  Consequently, CrimeStat does not provide a 
test of significance.   
 
 There are no restrictions on the number of nearest neighbors that can be calculated.  
However, since the average distance increases with higher-order nearest neighbors, the potential 
for bias from edge effects will also increase.  It is suggested that not more than 100 nearest 
neighbors be calculated.4 
 
 Nevertheless, the K-order nearest neighbor distance and index can be useful for 
understanding the overall spatial distributions.  Figure 6.2 compares the K-order nearest neighbor 
index for street robberies with that of residential burglaries.  The output was saved as a ‘.dbf’ and 
was then imported into a graphics program.  The graph shows the nearest neighbor indices for 
both robberies and burglaries up to the 50th order (i.e., the 50th nearest neighbor).  The nearest 
neighbor index is scaled from 0 (extreme clustering) up to 1 (extreme dispersion).  Since a 
nearest neighbor index of 1 is expected under randomness, the thin straight line at 1.0 indicates 
the expected K-order index.  As can be seen, both street robberies and residential burglaries are 
much more concentrated than K-order spatial randomness.  Further, robberies are more 
concentrated than even burglaries for each of the 50 nearest neighbors.  Thus, the graph 
reinforces the analysis above that robberies are more concentrated than burglaries, and both are 
more concentrated than a random distribution.  
 
 In other words, even though there is not a good significance test for the K-order nearest 
neighbor index, a graph of the K-order indices (or the K-order distances) can give a picture of 
how clustered the distribution is as well as allow comparisons in clustering between the different 
types of crimes (or the same crime at two different time periods). 
 
  Graphing the K-order Nearest Neighbor 
 
 On the output page, there is a quick graph function that displays a curve similar to figure 
6.2.  This is useful for quickly examining the trends.  However, a better graph is made by 
importing the ‘dbf’ file output into a spreadsheet or graphics program. 
 
 

                                                 
4  There is not a hard-and-fast rule about how many K-order nearest neighbor distances should be calculated.  

Cressie (1991, p. 613) showed that error increases with increasing order and the degree of divergence from 
an edge-corrected measure increases over time.  In a test case of 584 point locations, he showed that even 
after only 25 nearest neighbors, the uncorrected measure yields opposite conclusions about clustering from 
the corrected measures.  So, as a rough rule, orders no greater than 2.5% of the cases should be calculated. 
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 Edge Effects 
 
 It should be noted that there are potential edge effects that can bias the nearest neighbor 
index.  An incident occurring near the border of the study area may actually have its nearest 
neighbor on the other side of the border.  However, since there are usually no data on the 
distribution of incidents outside the study area, the program selects another point within the 
study area as the nearest neighbor of the border point.  Thus, there is the potential for 
exaggerating the nearest neighbor distance, that is, the observed nearest neighbor distance is 
probably greater than what it should be and, therefore, there is an overestimation of the nearest 
neighbor distance. In other words, the incidents are probably more clustered than what has been 
measured (see Cressie, 1991 for details).   In CrimeStat, the Kth-order nearest neighbor can be 
adjusted for boundary (edge) effects. 
 

Nearest Neighbor Edge Corrections 
 
 The default condition is no edge correction.  However, one way that the measured 
distance to the nearest neighbor can be corrected for possible edge effects is to assume for each 
observed point that there is another point just outside the border at the closest distance.  If the 
distance from a point to the border is shorter than to its measured nearest neighbor, then the 
nearer theoretical point is taken as a proxy for the nearest neighbor.  This correction has the 
effect of reducing the average neighbor distance.  Since it assumes that there is always another 
point at the border, it probably underestimates the true nearest neighbor distance.  The true value 
is probably somewhere in between the measured and the assumed nearest neighbor distance. 
 
 CrimeStat has two different edge corrections. Because CrimeStat is not a GIS package, it 
cannot locate the actual border of a study area.  One would need a topological GIS package in 
which the distance from each point to the nearest boundary is calculated.  Instead, there are two 
different geometric models that can be applied.  The first assumes that the study area is a 
rectangle while the second assumes that the study area is a circle.  Depending on the shape of the 
actual study area, one or either of these models may be appropriate. 
 

Rectangular study area 
 
 In the rectangular adjustment, the area of the study area, A, is first calculated, either from 
the user input on the measurement parameters tab or from the maximum bounding rectangle 
defined by the minimum and maximum X/Y values (see chapter 3).  If the user provides an 
estimate of the area, the rectangle is proportionately re-scaled so that the area of the rectangle 
equals A.   
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 Second, for each point, the distance to the nearest other point is calculated.  This is the 
observed nearest neighbor distance for point i. 
 
 Third, the minimum distance to the nearest edge of the rectangle is calculated and is 
compared to the observed nearest neighbor distance for point i.  If the observed nearest neighbor 
distance for point i is equal to or less than the distance to the nearest border, it is retained.  On 
the other hand, if the observed nearest neighbor distance for point i is greater than the distance to 
the nearest border, the distance to the border is used as a proxy for the nearest neighbor distance 
of point i. 
 

Circular study area 
 
 In the circular adjustment, first, the area of the study area is calculated, either from the 
user input on the measurement parameters tab (see chapter 3) or from the maximum bounding 
rectangle defined by the minimum and maximum X/Y values.  If the user has specified a study 
area on the measurement parameters page, then that value is taken for A and the radius of the 
circle is calculated by 
 
 R   =  SQRT [A / π ]                      (6.9) 
 
 If the user has not specified a study area on the measurement parameters page, then A is 
calculated from the minimum and maximum X and Y coordinates (the bounding rectangle) and 
the radius of the circle is calculated with equation 6.9. 
 
 Second, for each point, the distance to the nearest other point is calculated.  This is the 
observed nearest neighbor distance for point i.  Third, for each point, i, the distance from that 
point to the mean center is calculated, Ri.  Fourth, the minimum distance to the nearest edge of 
the circle is calculated using 
 
 RiC  =   R - Ri                   (6.10) 
 
 Fifth, for each point, i, the observed minimum distance is compared to the nearest edge of 
the circle, RiC.  If the observed nearest neighbor distance for point i is equal to or less than the 
distance to the nearest edge, it is retained.  On the other hand, if the observed nearest neighbor 
distance for point i is greater than the distance to the nearest edge, the distance to the border is 
used as a proxy for the true nearest neighbor distance of point i. 
 
 



 

6.13 

For either correction 
 
 The average nearest neighbor distance is calculated and compared to the theoretical 
average nearest neighbor distance under random conditions.  The indices and tests are as before 
(see chapter 4).  Figure 6.3 below shows a graph of the K-order nearest neighbor index for the 50 
nearest neighbors for 1996 motor vehicle thefts in police Precinct 11 of Baltimore County.  The 
uncorrected nearest neighbor indices are compared with those corrected by a rectangle and a 
circle.  As can be seen, both corrections are very similar to the uncorrected.  However, they both 
show greater concentrations than the uncorrected index.  The rectangular correction shows 
greater concentration than the circular because it is less compact (i.e., the average distance from 
the center of the geometric object to the border is slightly larger).  In general, the rectangle will 
lead to more correction than the circle since it substitutes a greater nearest neighbor distance, on 
average, for a point nearer the border than to its measured nearest neighbor. 
 
 The user has to decide whether either of these corrections is meaningful or not.  
Depending on the shape of the study area, either correction may or may not be appropriate.  If 
the study area is relatively rectangular, then the rectangular model may provide a good 
approximation.  Similarly, if the study area is compact (circular), then the circular model may 
provide a good approximation.  On the other hand, if the study area is of irregular shape, then 
either or both of these corrections may produce more distortion than the raw nearest neighbor 
index.  One has to use these corrections with judgment.   Also, in some cases, it may not make 
any sense to correct the measured nearest neighbor distances.  In Honolulu, for example, one 
would not correct the measured nearest neighbor distances because there are no incidents outside 
the island’s boundary. 
 

Linear Nearest Neighbor Index 
 
 The linear nearest neighbor index is a variation on the nearest neighbor routine, but one 
applied to a street network.  All distances along this network are assumed to travel along a grid, 
hence indirect distances are used.  Whereas the nearest neighbor routine calculates the distance 
between each point and its nearest neighbor using direct distances, the linear nearest neighbor 
routine uses indirect (‘Manhattan’) distances (see chapter 3).  Similarly, whereas the nearest 
neighbor routine calculates the expected distance between neighbors in a random distribution of 
N points using the geographical area of the study region, the linear nearest neighbor routine uses 
the total length of the street network. 
 
  



Figure 6.3:

Correction of Nearest Neighbor Indices
Motor Vehicle Thefts in Precinct 11
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 The theory of linear nearest neighbors comes from Hammond and McCullagh (1978).   
The observed linear nearest neighbor distance, Ld(NN), is calculated by CrimeStat as the average 
of indirect distances between each point and its nearest neighbor.  The expected linear nearest 
neighbor distance is given by: 
 

 0.5            (6.11) 

 
where L is the total length of street network and N is the sample size (Hammond and McCullagh, 
1978, 279).  Consequently, the linear nearest neighbor index is defined as: 
 

            (6.12) 

       
 Testing the Significance of the Linear Nearest Neighbor Index 
 
 Since the theoretical standard error for the random linear nearest neighbor distance is not 
known, the author has constructed an approximate standard deviation for the observed linear 
nearest neighbor distance: 
 

 ≅
∑ ∑

        (6.13) 

 
where Min(dij) is the nearest neighbor distance for point i and Ld(NN) is the average linear nearest 
neighbor distance.  This is the standard deviation of the linear nearest neighbor distances.  The 
standard error is calculated by: 
 

 
√

           (6.14) 

 
 An approximate significance test can be obtained by: 
 

            (6.15) 

 
where Ld(NN) is the average linear nearest neighbor distance, Ld(ran) is the expected linear nearest 
neighbor distance (equation 6.11), and is the approximate standard error of the linear 

nearest neighbor distance (equation 6.14).  Since the empirical standard deviation of the linear 
nearest neighbor is being used instead of a theoretical value, the test is a “t” rather than a Z-test. 
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 Calculating the Statistics 
 
 On the measurements parameters page, there are two parameters that are input, the 
geographical area of the study region and the length of street network.  At the bottom of the 
page, the user must select which type of distance measurement to use, direct, indirect or network.  
If the measurement type is direct or network, then the nearest neighbor routine returns the 
standard nearest neighbor analysis (sometimes called areal nearest neighbor).  On the other 
hand, if the measurement type is indirect, then the routine returns the linear nearest neighbor 
analysis.  To calculate the linear nearest neighbor index, therefore, distance measurement must 
be specified as indirect and the length of the street network must be defined. 
 
 Once nearest neighbor analysis has been selected, the user clicks on Compute to run the 
routine.  The Lnna routine outputs 10 statistics:  
 

1. The sample size 
2. The mean linear nearest neighbor distance  
3. The minimum linear distance between nearest neighbors  
4. The maximum linear distance between nearest neighbors 
5. The mean linear random distance  
6. The linear nearest neighbor index  
7. The standard deviation of the linear nearest neighbor distance  
8. The standard error of the linear nearest neighbor distance 
9. A significance test of the nearest neighbor index (t-test) 
10. The p-values associated with a one tail and two tail significance test. 

  
 Example 3: Auto Thefts Along Two Baltimore County Highways 
 
 The linear nearest neighbor index is useful for analyzing the distribution of crime 
incidents along particular streets.  For example, in Baltimore County, state highway 26 in the 
western part and state highway 150 in the eastern part have high concentrations of motor vehicle 
thefts (figure 6.4).  In 1996, there were 87 vehicle thefts on highway 26 and 47 on highway 150.  
A GIS can be used with the linear nearest neighbor index to indicate whether these incidents are 
greater than what would be expected on the basis of chance.   
 
 Table 6.3 presents the data. Using the GIS, we estimate that there are 3,333.54 miles of 
roadway segments; this number was estimated by adding up the total length of the street network 
in the GIS.  Of all the road segments in Baltimore County, there are 241.04 miles of major 
arterial roads of which state highway 26 has a total length of 10.42 miles and state highway 150 
has a total road length of 7.79 miles.   



Figure 6.4:
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Table 6.3: 

Comparison of 1996 Baltimore County Vehicle Thefts 
for Different Types of Roads 

(N = 3774 Incidents) 
 
 Length of Road Segments: 
 

Highway 26        10.42 mi 
Highway 150          7.79 mi 
All Major 
Arterials    241.04 mi 
All  
Roads    3333.54 mi 

    
Random Expected  
Distance  
Between Incidents:  0.44 miles 

 
 

Proportional To Network  Proportional to Same Road 
            “Relative 
          Average to itself” 
      “Relative Average Random   
      to random” Linear  Linear  Linear 
Where  Number Expected   Nearest Nearest Nearest 
Incidents of  Number Ratio of Neighbor Neighbor Neighbor 
Occurred Incidents if Random Frequency Distance Distance Index 
 
Highway 26    87  11.8  7.4  0.05 mi 0.06  0.96 
 
Highway 150    47    8.8  5.3  0.08 mi 0.08  0.94 
 
All major 
  highways 607  272.8  2.2  0.13 mi 0.20  0.64 
            (p≤.001) 
 
All roads 3,774  3,774.0 1.0  0.09 mi 0.44  0.21 
            (p≤.001) 
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 The analysis is done proportional to the road network (i.e., all roads) and proportional to 
the same road.  In 1996, there were 3,774 motor vehicle thefts in the county.  If these thefts were 
distributed randomly, then the random expected distance between incidents would be 0.44 miles 
(equation 6.11).  Using this estimate, Table 6.3 shows the number of incidents that would be 
expected on each of the two state highways if the distribution were random and the ratio of the 
actual number of motor vehicle thefts to the expected number.  As can be seen, the distribution 
of motor vehicle thefts is not random.  On all major highways, there are 2.2 times as many thefts 
as would be expected by a random spatial distribution.   
 
 In fact, in 1996, of 28,551 road segments in Baltimore County, only 7791 (27%) had one 
or more motor vehicle thefts occur on them; most of these are major roads.  Further, on Highway 
26 there were 7.4 times as much and on Highway 150 there were 5.3 times as much as would be 
expected if the distribution was random.  Thus, relative to the entire network, these two 
highways had more than their share of auto thefts in 1996.   
 
 But what about the distribution of the incidents along each of these highways?  If there 
was a spatial pattern to the incidents, such as clustering on the western edge or in the center, then 
police could use that information to more efficiently deploy vehicles to respond quickly to 
events.  On the other hand, if the distribution along these highways were no different than a 
random distribution, then police vehicles must be positioned in the middle, since that would 
minimize the distance to all occurring incidents. 
 
 Unfortunately, the results appear to be close to a random distribution. CrimeStat 
calculated that for Highway 26, the average linear nearest neighbor distance was 0.05 miles 
which was close to the average random linear nearest neighbor distance (0.06 miles).  The ratio - 
the linear nearest neighbor index, is 0.96 with a t-value of -0.16, which is not significantly 
different from chance.   
 
 Similarly, for Highway 150, the average linear nearest neighbor distance was 0.079 miles 
which, again, was almost identical to the average random linear nearest neighbor distance (0.084 
miles); the nearest neighbor index was 0.94 and the t-value was -0.41 (not significant).  In short, 
even though there was a higher concentration of vehicle thefts on these two state highways than 
would be expected on the basis of chance, the distribution along each highway is not very 
different than what would be expected on the basis of chance.5 

                                                 
5  Because CrimeStat uses indirect distance for the linear nearest neighbor index (i.e. measurement only in an 

horizontal or vertical direction), there is a slight distortion that can occur if the incidents are distributed in a 
diagonal manner, such as with State Highways 26 and 150 in Figure 6.4.  The distortion is very small, 
however.  For example, with the incidents along State Highway 26, after rotating the incident points so that 
they fell approximately in a horizontal orientation, the observed average linear nearest neighbor distance 
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 On the other hand, the distribution of vehicle thefts along all major highways was not 
random in 1996 nor was the distribution of vehicle thefts along all roads.  For those two high 
volume highways, however, unfortunately, the distribution of auto thefts was random and the 
clustering that is evident on all highways and all roads is apparently occurring at other locations. 
Not every test shows clustering and an analyst should be able to recognize a distribution that is 
no different than random. 
 

Linear K-Order Nearest Neighbor 
 
 In CrimeStat, There is also a K-order linear nearest neighbor analysis, as with the areal 
nearest neighbors.  The user can specify how many additional nearest neighbors are to be 
calculated.  The linear K-order nearest neighbor routine returns four columns: 
 

1. The order, starting from 1 
2. The mean linear nearest neighbor distance for each order (in meters) 
3. The expected linear nearest neighbor distance for each order (in meters) 
4. The linear nearest neighbor index for each order 

 
 Since the expected linear nearest neighbor distance has not been worked out for orders  
higher than one, the calculation produced here is a rough approximation.  It applies equation 6.11 
only adjusting for the decreasing sample size, Nk, which occurs as degrees of freedom are lost for 
each successive order.  In this sense, the index is really the k-order linear nearest neighbor 
distance relative to the expected linear neighbor distance for the first order.  It is not a strict 
nearest neighbor index for orders above one. 
 
 Nevertheless, like the areal k-order nearest neighbor index, the k-order linear nearest 
neighbor index can provide insights into the distribution of the points, even if the first-order is 
random.  Figure 6.5 shows a graph of 50 linear nearest neighbors for 1996 residential burglaries 
and street robberies for Baltimore County.  As with the areal k-order nearest neighbors (see 
figure 6.3) both burglaries and robberies show evidence of clustering.  For both, the first nearest 
neighbors are closer together than a random distribution.  Similarly, over the 50 orders, street 

                                                                                                                                                             
decreased slightly from 0.05843 miles to 0.05061 miles and the linear nearest neighbor index became 
0.8354 (t=-.91; n.s.).  In other words, the effects of the diagonal distribution lengthened the estimate for the 
average linear nearest neighbor distance by about 41 feet compared to the actual distances between 
incidents.  For a very small sample, this could be a major source of error, but will be negligible for a lare 
sample.  However, if a more precise measure is required, then the user should rotate the distribution so that 
the incidents have a horizontal or vertical orientation as closely as possible. An alternative is to calculate 
the regular nearest neighbor distance but use a network for distance calculations (see chapter 3). 

 



Figure 6 5:

K-Order Linear Nearest Neighbor Indices
1996 Street Robberies and Residential Burglaries
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robberies are more clustered than burglaries.  However, measuring distance on a grid shows that 
for burglaries, there is only a small amount of clustering.  After the fourth order neighbor, the 
distribution for burglaries is more dispersed than a random distribution.  An interpretation of this 
is that there are small number of burglaries which are clustered, but the clusters are relatively 
dispersed.  Street robberies, on the other hand, are highly clustered, up to over 30 nearest 
neighbors. 
 
 The linear k-order nearest neighbor distribution gives a slightly different perspective on 
the distribution than the area.  For one thing, the index is slightly biased as the denominator - the 
K-order expected linear neighbor distance, is only approximated.  For another thing, the index 
measures distance as if the street follow a true grid, oriented in an east-west and north-south 
direction.  In this sense, it may be unrealistic for many places, especially if streets traverse in 
diagonal patterns; in these cases, the use of indirect distance measurement will produce greater 
distances than what actually occur on the network.  Still, the linear nearest neighbor index is an 
attempt to approximate travel along the street network.  To the extent that a particular 
jurisdiction’s street pattern falls in this manner, it can provide useful information. 

 
 Graphing the Linear K-order Nearest Neighbor 
 
 On the output page, there is a quick graph function that displays a curve similar to figure 
6.5 below.  This is useful for quickly examining the trends.   
 

Ripley’s K Statistic   
 
 Ripley’s K statistic is an index of non-randomness for different scale values (Ripley, 
1976; Ripley, 1981; Bailey and Gattrell, 1995; Venables and Ripley, 1997).  In this sense, it is a 
‘super-order’ nearest neighbor statistic, providing a test of randomness for every distance from 
the smallest up to some specified limit. It is sometimes called the reduced second moment 
measure, implying that it is designed to measure second-order trends (i.e., local clustering as 
opposed to a general pattern over the region).  However, it is also subject to first-order effects so 
that it is not strictly a second-order measure.  
 
 Consider a spatially random distribution of N points.  If circles of radius, ts, are drawn 
around each point, where s is the order of radii from the smallest to the largest, and the number 
of other points that are found within the circles are counted and then summed over all points 
(allowing for duplication), then the expected number of points under complete spatial 
randomness (csr) within that radius are: 
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           (6.16) 

 
where N is the sample size, A is the total study area, and  K(ts) is the area of a circle defined by 
radius, ts.  For example, if the cumulative area defined by a particular radius is one-fourth the 
total study area and if there is a spatially random distribution, on average approximately one-
fourth of the cases will fall within one or more circles. Notice that individual points can be 
counted in multiple circles but the total number of points counted (excluding duplicates) is 
proportional to the cumulative area of the circle relative to the total area. 
 
 On the other hand, if the total number of points found within the circles for a particular 
radius placed over each point, in turn, is greater than that found in equation 6.16, this points to 
clustering, that is points are, on average, closer than would be expected on the basis of chance for 
that radius.  Conversely, if the total number of points found within the circles for a particular 
radius placed over each point is, in turn, less than that found in equation 6.16, then this points to 
dispersion; that is points are, on average, farther apart than would be expected on the basis of 
chance for that radius.  By counting the total number within a particular radius and comparing it 
to the number expected on the basis of complete spatial randomness, the statistic is an indicator 
of non-randomness.  
 
 In this sense, the K statistic is similar to the nearest neighbor distance in that it provides 
information about the average distance between points.  However, it is more comprehensive than 
the nearest neighbor statistic for two reasons.  First, it applies to all orders cumulatively, not just 
a single order.  Second, it applies to all distances up to the limit of the study area because the 
count is conducted over successively increasing radii. 
 
 Under unconstrained conditions, K is defined as: 
 

 ∑ ∑           (6.17) 

 
where I(tij) is the number of other points, j,  found within distance, ts, summed over all points, i.  
That is, a circle of radius, ts, is placed over each point, i.  Then, the number of other points, j, 
within the circle is counted.  The circle is moved to the next i and the process is repeated.  Thus, 
the double summation points to the count of all j’s for each i, over all i’s. Note, the count does 
not include itself, only other points.  
 
 After this process is completed, the radius of the circle is increased, and the entire process 
is repeated.  Typically, the radii of circles are increased in small increments so that there are 100 
intervals by which the statistic can be counted.   
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 One can graph K(ts) against the distance, ts, to reveal whether there is any clustering at 
certain distances or any dispersion at others (if there is clustering at some scales, then there must 
be dispersion at others).  Such a plot is non-linear, however, typically increasing exponentially 
(Kaluzny, Vega, Cardoso, & Shelly, 1998).  Consequently, K(ts) is transformed into a square root 
function, L(ts), to make it more linear.  L(ts) is defined as: 
 

            (6.19) 

 
 That is, K(ts) is divided by π and then the square root is taken.  Then the distance interval 
(the particular radius), ts, is subtracted from this.6  In practice, only the L statistic is used even 
though the name of the statistic, K, is based on the K derivation.   
 
 Because the L(ts) is a measure of second-order clustering, it is usually analyzed for only a 
short distance.  In CrimeStat, the distance is set at one-third the side of a square defined by the 

area,√ , and 100 intervals (radii) are used. Figure 6.6 shows a graph of L(t) against distance for 

1996 robberies in Baltimore County.  As can be seen, L(t) increases up to a distance of about 3 
miles whereupon it decreases again.  A “pure” random distribution, known as complete spatial 
randomness (CSR), is shown as a horizontal line at L=0. 
 
 Comparison to a Spatially Random Distribution 
 
 To understand whether an observed K distribution is different from chance, one typically 
uses a random distribution.  Because the sampling distribution of L(ts) is not known, a simulation 
can be conducted by randomly assigning points to the study area.  Because any one simulation 
might produce a clustered or dispersed pattern strictly by chance, the simulation is repeated 
many times, typically 100 or more.  Then, for each random simulation, the L statistic is 
calculated for each distance interval.  Finally, after all simulations have been conducted, the 
highest and lowest L-values are taken for each distance interval.  This is called an envelope.  
Thus, by comparing the distribution of L to the random envelope, one can assess whether the 
particular observed pattern is likely to be different from chance.7   

                                                 
6  This form of the L(ts) is taken from Cressie (1991).  In Ripley’s original formulation, distance is not 

subtracted from the square root function (Ripley, 1976).  The advantage of the Cressie formulation is that a 
complete random distribution will be a straight line that is parallel to the X-axis. 

 
7  Note that, since there is not a formal test of significance, the comparison with an envelope produced from a 

number of simulations provides only approximate confidence about whether the distribution differs from 
chance or not. 



Figure 6.6:
"K" Statistic For 1996 Robberies
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L(t) = Sqrt[K(t)/pi] - t
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 In figure 6.6, the L envelope of random data is much less concentrated than that for 
robberies, indicating that it is highly unlikely the concentration of robberies was due to chance. 
 
 Specifying simulations 
 
 Because simulations can take a long time, particularly if the data sets are large, the 
default number of simulations is 0.  However, a user can conduct simulations by writing a 
positive number in the box (e.g., 10, 100, 300).  If simulations are selected, CrimeStat will 
conduct the number of simulations specified by the user and will calculate the upper and lower 
limits for each distance interval, as well as the 0.5th, 2.5th, 5th, 95th, 97.5th and 99th percentile 
intervals; these latter statistics only make sense if many simulation runs are conducted (e.g. 
1000).  Approximate 95% credible intervals can be estimated by taking the 2.5th and 97.5th 
percentiles while approximate 99% credible intervals can be estimated by taking the 0.5th and 
99.5th percentiles.8 
 
 The way CrimeStat conducts the simulation is as follows.  It takes the maximum 
bounding rectangle of the distribution, that is the rectangle formed by the maximum and 
minimum X and Y coordinates respectively and re-scales this (up or down) until the rectangle 
has an area equal to the study area (defined on the measurement parameters page).  It then 
assigns N points, where N is the same number of points as in the incident distribution, using a 
uniform random number generator to this rectangle and calculates the L statistic.  It then repeats 
the experiment for the number of specified simulations, and calculates the above statistics.   For 
example, with 1181 robberies for 1996, the Ripley’s K function calculates the empirical L 
statistics for 100 distance intervals and compares this to M simulations of 1181 points randomly 
distributed over a rectangle, where M is a user-defined number. 
 
 In practice, the simulation test also has biases associated with edges.  Unlike the 
theoretical L under uniform conditions of complete spatial randomness (i.e., stretching in all 
directions well beyond the study area) where L is a straight horizontal line, the simulated L also 
declines with increasing distance separation between points.  This is a function of the same type 
of edge bias.  
 
 Comparison to Baseline Populations 
 
 For most social distributions, such as crime incidents, randomness is not a very 

                                                 
8  With simulations, statisticians usually refer to their percentiles as credible intervals rather than confidence 

intervals, preferring to leave the latter term to formal statistical tests where the mathematical distribution of 
the standard error is known. 
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meaningful baseline.  Most social characteristics are non-random.  Consequently, to find that the 
amount of clustering that is occurring is greater than what would be expected on the basis of 
chance is not very useful for crime analysts.  However, it is possible to compare the distribution 
of L for crime incidents with the distribution of L for various baseline characteristics, for 
example, for the population distribution or the distribution of employment.  In almost all 
metropolitan areas, population is more concentrated towards the center than at the periphery; the 
drop-off in population density is very sharp as was shown in the last chapter.  All other things 
being equal, one would expect more incidents towards the metropolitan center than at the 
periphery.  Consequently, the average distance between incidents will be shorter in the center 
than farther out.  This is nothing more than a consequence of the distribution of people.  
However, to say something about concentrations of incidents above-and-beyond that expected by 
population requires us to examine the pattern of population as well as of crime incidents. 
 
 Use of Intensity or Weight Variable 
 
 CrimeStat allows the use of intensity and weighting variables in the calculation of the K 
statistic.  The user must define an intensity or a weight variable (or both in special 
circumstances) on the primary file page.  The K routine will then use the intensity (or weight) in 
the calculation of L.  In the current version, if there is an intensity, however, no simulation can 
be run.  The reason is that the sampling distribution of the intensity variable is unknown and it 
would be difficult to find a candidate distribution from which to draw samples.  In a future 
version, we may allow permutation-type simulations whereby the original intensity values are 
maintained but they are randomly re-assigned to the existing X/Y coordinates.  For now, though, 
there is no simulation when there is an intensity variable. 
 
 In Figure 6.6 above, there is an envelope produced from 100 random simulations as well 
as the L distribution from the 2000 population; the latter variable was obtained by taking the 
centroid of traffic analysis zones from the 2000 census and using population as the intensity 
variable. As can be seen, the amount of clustering for robberies is greater than both the random 
envelope as well as the distribution of population.  The robbery function is higher than the 
population function up to about 6 miles.  This indicates that robberies are more concentrated than 
what would be expected from the population distribution for a fairly large area.   
 
 In other words, robberies are more clustered than even what would be expected on the 
basis of the population distribution and this holds for distances up to about 6 miles, whereupon 
the distribution of robberies is indistinguishable from a random distribution.  For larger distance 
separations, the L function has little utility since it is usually used to understand localized spatial 
autocorrelation (Bailey and Gattrell, 1995). 
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 For comparison, figure 6.7 below shows the distribution of 1996 burglaries, again 
compared to a random envelope and the distribution of population.  Burglaries are more 
clustered than population, but less so than for robberies; the L value is higher for robberies than 
for burglaries for near distances but becomes more dispersed at about 3 miles; it is still more 
concentrated than a random distribution, however, as seen by the random envelope..  Thus, the 
distribution of L confirms the result that burglaries tend to be spread over a much larger 
geographical area in smaller clusters than street robberies, which tend to be more concentrated in 
large clusters.  In terms of looking for ‘hot spots’, one would expect to find more with robberies 
than with burglaries. 
  
 Edge Corrections for Ripley’s K 
 
 The L statistic is prone to edge effects just like the nearest neighbor statistic.  That is, for 
points located near the boundary of the study area, the number enumerated by any circle for 
those points will, all other things being equal, necessarily be less than points in the center of the 
study area because points outside the boundary are not counted.  Further, the greater the distance 
between points that are being tested (i.e., the greater the radius of the circle placed over each 
point), the greater the bias.  Thus, a plot of L against distance will show a declining curve as 
distance increases as figures 6.6 and 6.7 show. 
 
 There are various adjustments to the function to help correct the bias.  One is a ‘guard 
rail’ within the study area so that points outside the guard rail, but inside the study area can only 
be counted for points inside the guard rail, but cannot be used for enumerating other points 
within a circle placed over them (that is, they can only be j’s and not i’s, to use the language of 
equation 6.16).  Such an operation, however, requires manually constructing these guard rails 
and enumerating whether each point can be both an enumerator and a recipient or a recipient 
only.  For complex boundaries, such as are found in most police departments, this type of 
operation is extremely tedious and difficult.9  
 
  

                                                 
9  The ‘guard rail’ concept, while frequently used, is a poor methodology because it involves ignoring data 

near the boundary of a study area.  That is, points within the guard rail are only allowed to be selected by 
other points and not, in turn, be allowed to select others.  This has the effect of throwing out data that could 
be very important.  It is analogous to the old, but fortunately now discarded, practice of throwing out 
‘outliers’ in regression analysis because the outliers were somehow seen as ‘not typical’.  The guard rail 
concept is also poor policing practice since incidents occurring near a border may be very important to a 
police department and may require coordination with an adjacent jurisdiction.  In short, use mathematical 
adjustments for edge corrections or, failing that, leave the data as it is. 
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 Similarly, Ripley has proposed a simple weighting to account for the proportion of the 
circle placed over each point that is within the study area (Venables and Ripley, 1997).  Thus, 
equation 6.17 is re-written as: 
 

 ∑ ∑          (6.20) 

 
where Wij

-1 is the inverse of the proportion of the circumference of a circle of radius, ts, placed 
over each point that is within the total study area.  Thus, if a point is near the study area border, it 
will receive a greater weight because a smaller proportion of the circle placed over it will be 
within the study area. An alternative weighting scheme can be found in Marcon and Puech 
(2003). 
 
 In CrimeStat, two possible corrections are conducted.  One assumes that the study area is 
a rectangle while the other assumes that it is a circle. 
 

 Rectangular correction 
 
 In the rectangular correction for Ripley’s K, the search circle radius, Rj, is compared to 
the edge of an assumed rectangle with area, A, centered at the mean center.  First, the area to be 
analyzed is defined.  If the user has specified a study area on the measurement parameters page, 
then that value for A is taken.  The maximum bounding rectangle is taken (i.e., rectangle defined 
by the minimum and maximum X/Y values) and proportionately re-scaled so that the area of the 
rectangle is equal to A.  If the user does not specify an area on the measurement parameters page, 
then the bounding rectangle defined by the minimum and maximum X/Y values is taken for A. 
 
 Second, for each point, the minimum distance to the nearest edge of this rectangle is 
calculated in both the horizontal and vertical directions, dminRX and dminRY.  Third, each of the 
minimum distances is compared to the search circle radius, Rj: 
 

1. If  neither the minimum distance in the X-direction, dminRX, nor the minimum 
distance in the Y-direction, dminRY, are less than the search circle radius, Rj, then 
the circle falls entirely within the rectangle and E = 1; 
 

2. If either the minimum distance in the X-direction, dminRX, or the minimum 
distance in the Y-direction, dminRY, but NOT BOTH, are less than the search circle 
radius, Rj, then part of the search circle falls outside the rectangle and an 
adjustment is necessary.  An approximate adjustment is made that is inversely 
proportional to the area of the search circle within the rectangle.  The values of E 
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will vary between 1 and 2 since up to one-half of the search circle could fall 
outside the rectangle; 

 
3. If both the minimum distance in the X-direction, dminRX, and the minimum 

distance in the Y-direction, dminRY, are less than the search circle radius, Rj, then a 
greater adjustment is required since E could vary between 1 and 4 since up to 
three-fourth of the search circle could fall outside the rectangle. 

 
 The formulas used to calculate the rectangular weights are: 
   

Radius does not extend beyond the rectangle 
 

 1                   (6.21) 

   
Radius extends beyond one edge of the rectangle (but not two) 

  
 

                 (6.22) 

 
   

Radius extends beyond two edges of the rectangle 
 

 
.

             (6.23) 

 
 While intuitive, this weight, Wij

-1, is prone to cause upward ‘drift’ in the K function, so a 
log transformation is used: 
 
 W’

ij
-1 = ln(Wij

-1) + 1           (6.24) 
 
 This has the effect of tempering the drift somewhat. 
      

Circular correction 
 
 In the circular correction for Ripley’s K, the search circle radius, Rj, is compared to the 
edge of an assumed circle with area, A, centered at the mean center.  First, the area to be 
analyzed is defined.  If the user has specified a study area on the measurement parameters page, 
then that value for a is taken.  The radius of the circle, Rj, is calculated by equation 6.9 above.  If 
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the user has not specified a study area on the measurement parameters page, then A is calculated 
from the maximum bounding rectangle and the radius of the circle is calculated by equation 6.9 
above. 
 
 Second, for each point, the distance from that point to the mean center, Rj, is calculated.  
The nearest distance from the point to the circle’s edge is given by 
 
 RjC = R  - Rj                   (6.25) 
 
 
 Third, the search circle radius, Rj, is compared to the nearest edge of the circle, RiC, and 
the weight will vary from 1 (point and radius totally within the study area) to 2.3834 (point is 
located exactly on boundary of area circle).  The formulas for the circular correction are: 
 

            (6.26) 

 
 Wij

-1 = k = π / θ                  (6.27) 
 
where r is the radius of the search circle, R is the radius of the circular study area, and tc is the 
distance from the point to the center of the circular study area. 
 

For either correction 
 
 During the calculation of Ripley’s K, each point is multiplied by the weight and the K 
and L statistics are calculated as before.  The simulation of random point distributions is treated 
in an analogous way.  While intuitive, this weight, Wij

-1, is prone to cause upward ‘drift’ in the K 
function, so a log transformation is used: 
 

  W’
ij

-1 = ln(Wij
-1) + 1           (6.28) 

 
 This has the effect of tempering the drift somewhat.  Figure 6.8 below shows a Ripley’s 
K distribution for 1996 Baltimore County burglaries, with and without edge corrections.  As can 
be seen, the uncorrected L distribution decreases and falls below the theoretical random count 
(complete spatial randomness, L=0) after about 7 miles whereas neither the L distribution with 
the rectangular correction nor the L distribution with the circular distribution do so.  As 
expected, the rectangular distribution produces the most concentration. 
       
 



Figure 6.8:

"K" Statistic For 1996 Burglaries
With Different Types of Corrections

L(t) = Sqrt[K(t)/pi] - t

Figure 6.8:

Rectangular correction

Circular correction

No correction
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 Output Intermediate Results 
 
 There is a box labeled “Output intermediate results”.  If checked, a separate dbf file will 
be output that lists the intermediate calculations.  The file will be called 
“RipleyTempOutput.dbf”.  There are five output fields: 
 

1. The point number (POINT), starting at 0 (for the first point) and proceeding to N–
1 (for the Nth point) 

2. The search radius in meters (SEARCHRADI) 
3. The count of the number of other points that are within the search radius 

(COUNT) 
4. The weight assigned, calculated from equations 6.25 or 6.29 above (WEIGHT) 
5. The count times the weight (CTIMESW) 

 
 This output can be useful for examining the counts for specific points or for trying out 
alternative weighting schemes. 
 

Some Cautions in Using Ripley’s K 
 
 While Ripley’s K is a powerful tool for analyzing spatial autocorrelation (usually 
clustering, rather than dispersion), like any statistic it is prone to biases.  Edge biases have been 
discussed above, but there are others.  First, there is a sample size issue.  The routine calculates 
100 separate L(t) values, one for each distance bin. However, the precision of any one L(t) value 
is dependent on the sample size.  With a small sample, there is insufficient data to estimate 100 
independent values of L(t).  While the Monte Carlo simulation partly can account for that bias, it 
has to be realized that the precision of the interpretation is suspect.  For example, in comparing 
two similar distributions, say robberies and burglaries, unless the sample size is large differences 
for any one bin could easily be due to chance.  One would need a very different type of 
procedure to estimate the ‘standard error’ of two functions with a small sample.  But, I would 
suspect that there would be many bins for which they would be indistinguishable (shown as the 
two functions crisscrossing each other).   
 
 Users should be very cautious in drawing conclusions about differences in the L function 
with small samples.  Even with sample sizes greater than 100, the imprecision of any one L(t) 
value is considerable.  Until the sample sizes get into the hundreds, precision is an issue for 
specific L(t) values. 
 
 A second caution has to do with the scale of the interpretation.  Data sets with strong 
first-order properties (i.e., a high degree of central concentration of incidents) will exert bias on 
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Ripley’s K statistic.  Thus, any data set that is correlated with human populations will most likely 
have a very strong ‘central tendency’.  Thus, there will be a high degree of concentration in the L 
values for even near distances.  This was seen in the robbery and burglary data shown above. 
The K statistic was created to estimate second-order spatial autocorrelation, namely localized 
clustering.  However, if the first-order effect is so dominant, then it is hard to disentangle it from 
a second-order effect. In other words, it is often not clear whether the clustering that is observed 
in Ripley K is due to primary, first-order clustering or actual localized, second-order clustering.  
That is why it is generally wise to use the K statistic for short distance ranges and not for larger 
distance separations.  For larger distance separations, it is almost impossible to tell whether the 
effect is due to the large central concentration of the population or whether there are interactions 
between neighborhoods at a large scale.   
 
 There are different ways to handle to problem, none of which are perfect.  For example, 
one can estimate a first-order concentration effect and then apply Ripley’s K to the residuals. 
Alternatively, one can use a baseline population to calculate a rate and test for concentration only 
in the rates, not the volumes of incidents. In chapters 7 and 9, there will be a discussion of using 
a baseline population to control for first-order effects.  But, whether this is done or not, the user 
should be aware of the interaction between first-order and second-order (or localized) effects. 
 
 The third caution has to do with the shape of the boundaries in interpreting the K statistic.  
This is particularly true when an edge correction is applied.  Unless the study area was an actual 
rectangle, the correction may alter the interpretation compared to the uncorrected L.  There are 
some subtle differences between the two, however, so some care should be used.  The empirical 
L is obtained from the points within the study area, the geography of which is usually irregular.  
The random L, however, is calculated from a rectangle or a circle.  Thus, the differences in the 
shape comparisons may account for some variations. 
 
 The realism of the corrected function depends on the validity of the underlying 
assumptions.  If it is likely that there are points outside the study area, then a weighting may 
produce a more realistic interpretation of the L function.  On the other hand, if the density of the 
points outside the study area is lower (e.g., if the study area is a metropolitan area, then the area 
outside is more likely to be suburban or rural and of low population density), then the weighting 
will exaggerate the function relative to what it should be.  In the extreme case, if the study area is 
an island (e.g., Honolulu), then there are no points outside the study area and no weighting is 
justified.  Even when weighting would be justified, the actual boundary is probably not a 
rectangle or a square so that the geometric correction above may distort the L function, too.  In 
short, some understanding of the basis for weighting is necessary to produce a reasonable L 
function. 
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Assign Primary Points to Secondary Points 
 
 This routine will assign each primary point to a secondary point and then will sum by the 
number of primary points assigned to each secondary point. The routine is useful for 
summarizing data.  For example, if the primary file represents the number of robberies and the 
secondary file represents the centroids of census tracts, then the routine will assign all robberies 
to a census tract and will then sum the number of robberies in each census tract.  The result is a 
count of the number of primary points for each secondary point (zone).  Other examples might 
be to assign students to the nearest school or to assign patients to the nearest hospital.  There are 
many uses for summarizing data by another data reference.  In the Trip Generation module 
(under Crime Travel Demand - see Chapter 27), a model is developed for the number of crimes 
originating in each zone and a separate model for the number of crimes ending in each zone.  
The “Assign primary points to secondary points” routine is a good way to summarize the number 
of crimes by zones. 
 
 There are two methods for assigning the primary points to the secondary. 

 
 Nearest Neighbor Assignment 
 
 This routine assigns each primary point to the secondary point to which it is closest.  It 
goes through all the primary points and sums the number assigned to each secondary point.  
Thus, the logical operation is ‘nearest to’.  If there are two or more secondary points that are 
exactly equal, the assignment goes to the first one on the list. 
 
 Point-in-polygon Assignment 
 
 This routine assigns each primary point to the secondary point for which it falls within its 
polygon (zone).  The point-in-polygon assignment reads a zonal boundary file (in ArcGIS ‘shp’ 
file format) and determines which zone each primary point falls within.  In this case, the logical 
operation is ‘belongs to’.  A zone (polygon) shape file must be provided and the routine checks 
which secondary zone each primary point falls within. 
 
 Most GIS packages can do a point-in-polygon operation but few allow a nearest neighbor 
assignment.  In general, the two are similar though there will be differences due to the irregular 
shape of zone boundaries.  For example, figure 6.9 below shows an incident that is within Traffic 
Analysis Zone (TAZ) 0546, but is actually closer to the centroid of TAZ 0547.  The 
characteristics associated with this incident are more likely to be associated with the 
characteristics of the second zone than the zone to which it belongs.  The decision on which 
criteria to use in assigning the incident to a zone depends on how integral is the zone to which it  



Figure 6.9:
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belongs.  If the zones are bounded by major arterials, then travel behavior within the zone will be 
defined by those arterials; in this case, it would probably be prudent to use the point-in-polygon 
assignment.  On the other hand, if the zone boundaries are not a fundamental separation, then the 
nearest neighbor assignment would probably produce a better fit to the incident since the 
characteristics of the closer zone are liable to hold for the incident.  In short, the user must decide 
on which theoretical basis to assign points. 
 
  Zone file 
 
 If the point-in- polygon method is used, an ArcGIS zonal shape file must be defined 
under the routine.  This is a polygon file that defines the zones to which the primary points are 
assigned. The zonal shape file correspond to secondary file (see Secondary file), but will be the 
full shape file as opposed to the ‘dbf’ portion of the file.  For each point in the primary file, the 
routine identifies which polygon (zone) it belongs to and then sums the number of points per 
polygon.  
 
 On the other hand, if the nearest neighbor method is used, then only the secondary file 
need be defined. 
 
  Name of assigned variable 
 
 Specify the name of the summed variable.  The default name is FREQ.   
 
 Use Weighting File 
 
 The primary file records can be weighted by another file.  This would be useful for 
correcting the totals from the primary file.  For example, if the primary file were robbery 
incidents from an arrest record, the sum of this variable (i.e. the total number of robberies) may 
produce a biased distribution over the secondary file zones because the primary file was not a 
random sample of all incidents (e.g., if it came from an arrest record where the distribution of 
robbery arrests is not the same as the distribution of all robbery incidents).   
 
 The secondary file or another file can be used to adjust the summed total.  The weighting 
variable should have a field that identifies the ratio of the true to the measured count for each 
zone.  A value of 1 indicates that the summed value for a zone is equal to the true value; hence 
no adjustment is needed.  A value greater than 1 indicates that the summed value needs to be 
adjusted upward to equal the true value.  A value less than 1 indicates that the summed value 
needs to be adjusted downward to equal the true value. 
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 If another file is to be used for weighting, indicate whether it is the secondary file or, if 
another file, the name of the other file. 
 
  Name of assigned weighted variable 
 
 For a weighted sum, specify the name of the variable.  The default will be ADJFREQ.   
 
 Save Result 
 
 For both routines, the output is a 'dbf' file. Define the file name.  Note: be careful about 
using the same name as the secondary file as the saved file will have the new variable.  It is best 
to give it a new name. 
 
 A new variable will be added to this file that gives the number of primary points in each 
secondary file zone and, if weighting is used, a secondary variable will be added which has the 
adjusted frequency. 
 

Example: Assigning Robberies to Zones 
 
 To illustrate the routine, table 6.4 shows the results of summarizing 1,181 robberies that 
occurred in 1997 in 325 Baltimore County Traffic Analysis Zones.  The two methods are 
compared.  Only the first 30 assignments are shown.  In general, they give similar results. 
However, there are differences due to the method.  One is that the nearest neighbor method will 
assign points on the basis of proximity while the point-in-polygon method will not.  In the case 
of the Baltimore County robberies, some of these were assigned to a City of Baltimore TAZ 
because those TAZ’s were closer, rather than to a Baltimore County TAZ.  Another is that if a 
zone is very irregular, points may be assigned to it under the point-in-polygon method which 
may be quite far away. 
 
 Thus, the user has to decide which method makes the most sense.  If the purpose is to 
assign incidents to the zone which it is most likely to be related, for example, when developing a 
data set for zonal modeling (see Chapter 26), then the nearest neighbor method may produce a 
better representation.  The incidents are then assigned to a zone which has characteristics that 
probably will be related to the factors causing the incidents in the first place.  On the other hand, 
if the object is to assign incidents on the basis of membership (e.g., assigning crimes to police 
precincts), then the point-in-polygon method will be the most accurate. 
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   Table 6.4: 

Assigning Incidents to Zones 
1997 Robberies (N=1181) and Traffic Analysis Zones (M=325) 

 

TAZ Point-in-Polygon Nearest Neighbor
0401 0 0 
0402 0 0 
0403 1 1 
0404 0 0 
0405 0 0 
0406 0 0 
0407 0 0 
0408 0 0 
0409 0 0 
0410 0 0 
0411 0 0 
0412 0 0 
0413 0 0 
0414 1 1 
0415 0 0 
0416 0 0 
0417 0 0 
0418 0 0 
0419 0 0 
0420 0 0 
0421 0 0 
0422 0 1 
0423 0 0 
0424 1 0 
0425 3 0 
0426 2 2 
0427 3 2 
0428 0 0 
0429 5 5 
0430 0 0 
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Distance Analysis II 
 
 The remaining distance analysis routines are on the Distance Analysis II page.  Figure 
6.10 shows the page. 
 

Distance Matrices 
 
 CrimeStat has the capability for outputting distance matrices.  There are four types of 
matrices that can be output.   
 

1. First, the distance between every point in the primary file and every other point 
can be calculated in miles, nautical miles, feet, kilometers or meters.  This is 
called the Within File Point-to-Point matrix (Matrix).   

 
2. Second, if there is also a secondary file, CrimeStat can calculate the distance from 

every point in the primary file to every point in the secondary file, again in miles, 
nautical miles, feet, kilometers or meters.  This is called the From Primary File 
Points to Secondary File Points matrix (Imatrix). 

 
3. Third, if there is a reference file defined, the distance from each primary point to 

each grid cell can be computed.  This is called the From Primary File Points to 
Grid matrix (PGMatrix). 

 
4. Fourth, if there is also a secondary file and a reference file, the distance from each 

secondary point to each grid cell can be computed.  This is called the From 
Secondary File Points to Grid matrix (SGMatrix). 

 
 Each of these types of matrices can be displayed or saved to an Ascii text file for import 
into another program.  Each matrix defines incidents by the order in which they occur in the files 
(i.e., Record number 1 is listed as ‘1'; record number 2 is listed ‘2'; and so forth).  Only a subset 
of each matrix is displayed on the results tab.  However, there are horizontal and vertical slider 
bars that allow the user to scroll through the matrix.  The user should move the vertical slide bar 
first to an approximate proportion of the matrix and click the Go button.  The matrix will scroll 
through the rows of the matrix to a place which represents that proportion indicated in the slide 
bar.  The user can then scroll across the rows with the upper slide bar. 
 
 The matrices can be used for various purposes.  The within file point-to-point matrix can 
be used to examine distances between particular incidents.  The saved Ascii ‘.txt’ matrix can also  



Distance Analysis II Screen
Figure 6.10:
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be imported into a network program for estimating transportation routes. The primary-to-
secondary file matrix can be used in optimization routines, for example in trying to assess 
optimal allocation of police cars in order to minimize response time in a police district.  The 
distances to the grid cells can be used to compare the distances for different distributions to a 
central location (e.g., a police station).  There are many applications where distances are the 
primary unit of analysis.  However, the user will need other software to read the files. 
 
 Be careful in outputting distances, though, because the files will generally be very large. 
For example, a primary file of 1000 incidents when interpolated to 9000 grid cells (100 columns 
x 90 rows) will produce 9 million paired comparisons.  Such a file will take a lot of disk space.  
For that reason, we only allow output to an Ascii text file. 
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Attachments 

 
  



SARS and the Distribution of Passengers on an Airplane  
 

Marta A. Guerra 
Senior Staff Epidemiologist,  

Centers for Disease Control and Prevention 
Atlanta, GA 

 
Illness in passengers on board airplanes occurs rather frequently, and 

investigations are performed to assess whether transmission to other passengers has 
occurred. During 2002, several passengers with Severe Acute Respiratory Syndrome 
(SARS) traveled to the United States by airplane while they were infectious. Since 
transmission of SARS can be airborne, there is concern that it could spread during 
an airline flight. A survey was undertaken on a flight where a confirmed SARS case 
was on board. Serum samples of passengers were taken to evaluate if transmission 
of SARS had occurred during the flight, and whether transmission is related to 
sitting near the SARS case. 
 

The nearest neighbor index was used to compare the distances between the 
seats of passengers on this flight to distances expected on the basis of chance. A grid 
(7 m x 32 m) was superimposed on the airline seat configuration, and each seat was 
assigned an X, Y coordinate based on the width (x) and the length (y) of the airplane.  
In the diagram below, the seat location of the SARS index case is indicated by an X, 
and the passengers’ seat locations are shaded in black. 

 

 
 

Nearest Neighbor Statistics for Airline Flight with SARS Case 
 
 

The nearest neighbor index of passengers’ seats was 0.931 indicating that the 
distribution was random, not clustered. This preliminary analysis was important in 
order to establish that the seating arrangement of the passengers was random and 
independent, and that the passengers’ seats were not clustered around the SARS 
case. Therefore, if any passengers have positive serum samples for SARS, we would 
be able to evaluate their locations in relation to the SARS case and assess patterns 
of transmission. In this survey, however, there was no evidence of transmission 
since none of the passengers had positive serum samples for SARS. 



Nearest Neighbor Analysis 
Man With A Gun Calls 
Charlotte, N.C.:  1989 

 
James L. LeBeau 

Administration of Justice 
Southern Illinois University-Carbondale 

 
A comparison was made of Man with a Gun calls for the weekend in which 

Hurricane Hugo hit the North Carolina coast ( September 22 – 24) with the 
following New Year’s Eve weekend (December 29-31, 1989).  There were 146 Man 
with a Gun calls during the Hurricane Hugo weekend compared to 137 calls for New 
Year’s Eve.  
 

 The Nearest Neighbor Index in CrimeStat was used to compare the 
distributions.  From the onset, the Hurricane Hugo Man With a Gun locations are 
more dispersed than New Year’s Eve.  After the 5th nearest neighbor (Order 5) the 
differences become more pronounced 
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K-Function Analysis to Determine Clustering in the 
Police Confrontations Dataset in 

Buenos Aires Province, Argentina:  1999 
 

Gastón Pezzuchi, Crime Analyst 
Buenos Aires Province Police Force 

Buenos Aires, Argentina 
 

Sometimes crime analysts tend to produce beautiful hot spot maps without 
any formal evidence that clustering is indeed present in the data. One excellent and 
powerful tool that CrimeStat provides is the computation of the K function, which 
summarizes spatial dependence over a wide range of scales, and uses the 
information of all events. 

 
We computed the K function using 1999 police confrontations data (mostly 

shootings) within our study area1 and ran 100 Monte Carlo simulations in order to 
test for spatial randomness2 (see figure below); the K function showed clustering up 
to about 30 Km. Yet, spatial randomness is not a particularly meaningful hypothesis 
to test considering that the “population at risk” are highly clustered. Hence we used 
police deployment data as a base population and calculated the K function for that 
data set. As can seen, the amount of clustering for the confrontation dataset is much 
greater than both the random envelope as well as the distribution of police officers. 
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1 A years worth dataset of events occurring within a 9,500 km2 area around the Federal Capital (29 
counties). 
2 Remember that Pr( L(d) > Lmax) = Pr( L(d) < Lmin) = 1 / (m + 1) where m is the number of 
independent simulations, 
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Chapter 7: 

Hot Spot Analysis of Points: I 
 

In this and the next two chapters, we describe ten tools for identifying clusters of crime 
incidents.  Six of the tools apply to points while four apply to zones.  The discussion has been 
divided into three chapters primarily because of the length of the discussion.  This chapter 
discusses the concept of a hot spot and four hot spot techniques: the mode, fuzzy mode, nearest 
neighbor hierarchical clustering, and risk-adjusted nearest neighbor hierarchical clustering.  
Chapter 8 discusses STAC and the K-means algorithm.  Chapter 9 discusses Anselin=s Local 
Moran, the Getis-Ord Local “G”, the zonal nearest neighbor hierarchical clustering algorithm, 
and the risk-adjusted zonal nearest neighbor hierarchical methods.  However, the ten techniques 
should be seen as a continuum of approaches towards identifying hot spots. 
 
Hot Spots 
 

Typically called hot spots or hot spot areas, these are concentrations of incidents within a 
limited geographical area that appear over time (Braga & Weisburd, 2010).  Police have learned 
from experience that there are particular environments that attract crimes in larger-than-expected 
concentrations, so-called crime generators.  Sometimes these hot spot areas are defined by 
particular activities (e.g., drug trading; Weisburd & Green, 1995; Weisburd, Maher, & Sherman, 
1992; Sherman, Gartin & Buerger, 1989; Maltz, Gordon, & Friedman, 1989), other times by 
specific concentrations of land uses (e.g., skid row areas, bars, adult bookshops, itinerant hotels), 
and sometimes by interactions between activities and land uses, such as thefts at transit stations 
or bus stops (Block & Block, 1995; Levine, Wachs & Shirazi, 1986).  Whatever the reasons for 
the concentration, they are real and are known by most police departments.  
 

While there are some theoretical concerns about what links disparate crime incidents 
together into a cluster, nonetheless, the concept is very useful (Chainey, Thompson, & Uhlig, 
2008; Levine, 2008).  Police officers patrolling a precinct can focus their attention on particular 
environments because they know that crime incidents will continually reappear in these places.  
Crime prevention units can target their efforts knowing that they will achieve a positive effect in 
reducing crime with limited resources (Sherman & Weisburd, 1995).  In short, the concept is 
very useful.   
 

Nevertheless, the concept is a perceptual construct.  Hot spots do not exist in reality, but 
are areas where there is sufficient clustering of certain activities (in this case, crime) such that 
they get labeled such. There is not a border around these incidents, but a gradient where people 
draw an imaginary line to indicate the location at which the hot spot starts.  In reality, any 
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variable that is measured, such as the density of crime incidents, will be continuous over an area, 
being higher in some parts and lower in others.  Where a line is drawn in order to define a hot 
spot is somewhat arbitrary.  
 
Statistical Approaches to the Measurement of Hot Spots 
 
 Unfortunately, measuring a hot spot is also a complicated problem.  There are literally 
dozens of different statistical techniques designed to identify hot spots (Everitt, Landau and 
Leese, 2001).  Many, but not all, of the techniques are typically known under the general 
statistical label of cluster analysis.  These are statistical techniques aimed at grouping cases 
together into relatively coherent clusters.  All of the techniques depend on optimizing various 
statistical criteria, but the techniques differ among themselves in their methodology as well as in 
the criteria used for identification.  Because hot spots are perceptual constructs, any technique 
that is used must approximate how someone would perceive an area.  The techniques do this 
through various mathematical criteria. 
 

Types of Cluster Analysis (Hot Spot) Methods 
 

Several typologies of cluster analysis have been developed as cluster routines typically 
fall into several general categories (Everitt, 2011; Can and Megbolugbe, 1996): 
 

1. Point locations.  This is the most intuitive type of cluster involving the number of 
incidents occurring at different locations.  Locations with the most number of 
incidents are defined as hot spots.  CrimeStat includes two point location 
techniques: the Mode and Fuzzy Mode; 

 
2. Hierarchical techniques (Sneath, 1957; McQuitty, 1960; Sokal & Sneath, 1963; 

King, 1967; Sokal & Michener, 1958; Ward, 1963; Hartigan, 1975) are like an 
inverted tree diagram in which two or more incidents are first grouped on the 
basis of some criteria (e.g., nearest neighbor).  Then, the pairs are grouped into 
second-order clusters.  The second-order clusters are then grouped into third-order 
clusters, and this process is repeated until either all incidents fall into a single 
cluster or else the grouping criteria fail.  Thus, there is a hierarchy of clusters that 
can be displayed with a dendogram (an inverted tree diagram).   

 
Figure 7.1 shows an example of a hierarchical clustering where there are four 
orders (levels) of clustering; the visualization is non-spatial in order to show the 
linkages.  In this example, all individual incidents are grouped into first-order  
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clusters that, in turn, are grouped into second-order clusters that, in turn, are 
grouped into third-order clusters and which all converge into a single fourth-order 
cluster.  Many hierarchical techniques, however, do not group all incidents or all 
clusters into the next highest level. CrimeStat includes four hierarchical 
techniques: Nearest Neighbor Hierarchical Clustering (Nnh) routine and Risk-
adjusted Nearest Neighbor Hierarchical Clustering (Rnnh) routines in this chapter 
and Zonal Nearest Neighbor Hiearchical Clustering (Znnh) and Risk-adjusted 
Nearest Neighbor Zonal Hierarchical Clustering (RZnnh) routines in Chapter 9. 

 
3. Partitioning techniques, frequently called the K-means technique, partition the 

incidents into a specified number of groupings, usually defined by the user 
(Thorndike, 1953; MacQueen, 1967; Ball and Hall, 1970; Beale, 1969).  Thus, all 
points are assigned to one, and only one, group.  Figure 7.2 shows a partitioning 
technique where all points are assigned to clusters and are displayed as ellipses.  
CrimeStat includes one partitioning technique, a K-means partitioning technique; 
 

4. Scan statistics that apply a search circle uniformly throughout the study area, 
either to each point or to each node of a reference grid (Block & Block, 1999; 
Kulldorff, 1997; Block & Block, 1995; Block, 1994; Openshaw, Craft, Charlton, 
& Birch, 1988; Openshaw, Charlton, Wymer, & Craft, 1987. 

 
5. Density techniques identify clusters by searching for dense concentrations of 

incidents (Bailey & Gattrell, 1995; Silverman, 1986; Gitman & Levine, 1970; 
Weishart, 1969; Carmichael, George, & Julius, 1968; Cattell & Coulter, 1966).  
CrimeStat has two density search routines: a Single-kernel Density (K) method 
and a Dual-kernel Density Interpolation (Dk); this is discussed in chapter 10; 

 
6. Clumping techniques involve the partitioning of incidents into groups or clusters, 

but allow overlapping membership (Jones & Jackson, 1967; Needham, 1967; 
Jardine & Sibson, 1968; Cole & Wishart, 1970); 

 
7. Risk-based techniques identify clusters in relation to an underlying base >at risk= 

variable, such as population, employment, or active targets (Jefferis, 1998; 
Kulldorff and Nagarwalla, 1995).  CrimeStat includes three risk-based techniques 
- a Risk-adjusted Nearest Neighbor Hierarchical Clustering routine, discussed in 
this chapter; a Zonal Risk-adjusted Nearest Neighbor Hierarchical Clustering 
routines discussed in Chapter 9; and a Dual Kernel Density method, discussed in 
Chapter 10). 
 

 



Partitioning Clustering TechniqueFigure 7.2:
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8. Zonal clustering techniques identify contiguous zones that have either high levels 
or similar levels of an attribute variable or (Getis & Ord, 1996; Anselin, 1995).  
CrimeStat includes four zonal clustering methods: Anselin’s Local Moran; the 
Getis-Ord Local “G”; Zonal Nearest Neighbor Hierarchical Clustering; and Zonal 
Risk-adjusted Nearest Neighbor Hierarchical Clustering. 

 
9. Miscellaneous techniques are other methods that are less commonly used (Everitt, 

2011).   
 

Many of these methods are hybrids of these classes. For example, the Risk-adjusted 
Nearest Neighbor Hierarchical Clustering routine is primarily a risk-based technique but 
involves elements of clumping while STAC is primarily a partitioning method but with elements 
of hierarchical grouping. 
 

Optimization Criteria 
 

In addition to the different types of cluster analysis, there are different criteria that 
distinguish techniques applied to space (Everitt, 2011).  Among these are: 
 

1. The definition of a cluster - whether it is a discrete grouping or a continuous 
variable; whether points must belong to a cluster or whether they can be isolated; 
whether points can belong to multiple clusters. 

 
2. The choice of variables in addition to the X and Y coordinates - whether 

weighting or intensity values are used to define similarities. 
 

3. The measurement of similarity and distance - the type of geometry being used; 
whether clusters are defined by closeness or not; the types of similarity measures 
used. 

 
4. The number of clusters - whether there are a fixed or variable number of clusters; 

whether users can define the number or not. 
 

5. The geographical scale of the clusters - whether clusters are defined by small or 
larger areas; for hierarchical techniques, what level of abstraction is considered 
optimal. 

 
6. The initial selection of cluster locations (>seeds=) - whether they are 

mathematically or user defined; the specific rules used to define the initial seeds. 
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7. The optimization routines used to adjust the initial seeds into final locations - 
whether distance is being minimized or maximized; the specific algorithms used 
to readjust seed locations. 

 
8. The visual display of the clusters, once extracted - whether drawn by hand or by a 

geometrical object (e.g., an ellipse, a convex hull); the proportion of cases 
represented in the visualization. 

 
This is not the place to provide a comprehensive review of cluster techniques (see Everitt, 

2011 for such a review).  Nevertheless, it should be clear that with the several types of cluster 
analysis and with the many criteria that can be used for any particular technique provides a large 
number of different techniques that could be applied to an incident data base.  It should be 
realized that there is not a single solution to the identification of hot spots, but that different 
techniques will reveal different groupings and patterns among the groups.  A user must be aware 
of this variability and must choose techniques that can complement other types of analysis.  It 
would be very naive to expect that a single technique can reveal the existence of hot spots in a 
jurisdiction that are unequivocally clear.  In most cases, analysts are not sure why there are hot 
spots in the first place.  Until that is solved, it would be unreasonable to expect a mathematical or 
statistical routine to solve that problem.   

 
Cluster Routines in CrimeStat 
 

Figure 7.3 shows the Hot Spot Analysis I page.  Because of the variety of cluster 
techniques, CrimeStat includes ten techniques that cover the range of techniques that have been 
used: 
 

1. The Mode 
2. The Fuzzy Mode 
3. Nearest neighbor hierarchical clustering 
4. Risk-adjusted nearest neighbor hierarchical clustering 
5. The Spatial and Temporal Analysis of Crime (STAC) module 
6. K-means clustering 
7. Anselin=s Local Moran 
8. Getis-Ord Local “G” 
9. Zonal nearest neighbor hierarchical clustering 
10. Zonal risk-adjusted nearest neighbor hierarchical clustering 
 

 These are not the only techniques, of course, and analysts should use them as 
complements to other types of analysis.  Because of the number of routines, these routines have  
 



Hot Spot Analysis I Screen
Figure 7.3:
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been allocated to two different setup tabs in CrimeStat called Hot Spot= Analysis I and Hot Spot 
Analysis II.  However, they should be seen as one collection of similar techniques.  This chapter 
will discuss the first four of these and the next two chapters the remaining ones. 

 
Mode 
 

The mode is the most intuitive type of hot spot.  It is the location with the largest number 
of incidents.  The CrimeStat Mode routine calculates the frequency of incidents occurring at each 
unique location (a point with a unique X and Y coordinate), sorts the list, and outputs the results 
in rank order from the most frequent to the least frequent.   
 

Only locations that are represented in the primary file are identified.  The routine outputs 
a >dbf= file that includes four variables: 
 

1. The rank order of the location with 1 being the location with the most incidents, 2 
being the location with the next most incidents, 3 being the location with the third 
most incidents, and so forth until those locations that have only one incident each; 

 
2. The frequency of incidents at the location.  This is the number of incidents 

occurring at that location; 
 

3. The X coordinate of the location; and  
 

4. The Y coordinate of the location. 
 

To illustrate, Table 7.1 presents the formatted output for the ten most frequent locations 
for 14,853 motor vehicle thefts that occurred within the City of Baltimore or Baltimore County 
in 1996.1  Figure 7.4 maps the ten locations with the most vehicle thefts (two were tied for rank 
three and two were tied for rank nine).  The map displays the locations with a round symbol, the 
size of which is proportional the number of incidents.  Also, the number of incidents at the 
location is displayed.  These vary from a high of 43 vehicle thefts at location number 1 to a low 
of 15 vehicle thefts at location numbers 9 and 10.  In order to know what these locations 
represent, the user will have to overlay other GIS layers over the points.  In the example, of the 
ten locations, eight are at shopping centers, one is the parking lot of a train station, and one is the 
parking lot of a large organization. 

 

                         
1  The output in Table 7.1 has been formatted.  CrimeStat only outputs an Ascii file.   



Figure 7.4:
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Table 7.1: 

Mode Output for 
Most Frequent Locations for Motor Vehicle Thefts 

City of Baltimore and Baltimore County: 1990 
(ONLY 10 SHOWN) 

 
Mode: 
------- 

N = 14,853 
 

Rank Freq        X        Y 
------- ------ ------------- ------------ 
1      43     -76.7507      39.3115 
2      37     -76.4710      39.3741 
3      24     -76.4880      39.3372 
4      24     -76.6015      39.4042 
5      23     -76.7877      39.4046 
6      22     -76.6517      39.2927 
7      21     -76.7319      39.2880 
8      17     -76.5363      39.3060 
9      15     -76.7026      39.3560 
10      15     -76.5128      39.2927 
Etc.  

 
The mode is a very simple measure, but one that can be very useful.  In the example, it is 

clear that most vehicle thefts occur at institutional settings, where there are a collection of parked 
vehicles.  In the case of the shopping centers, the Baltimore County Police Department are aware 
of the number of vehicles stolen at these locations and work with the shopping center 
management offices to try to reduce the thefts.  It also turns out that shopping centers are the 
most frequent locations for stolen vehicle retrievals, so it works both ways. 
 
Fuzzy Mode 
 

The usefulness of the mode, however, is dependent on the degree of resolution for the 
geo-referencing of incidents. In the case of the Baltimore vehicle thefts, thefts locations were 
assigned a single point at the address.  Thus, all thefts occurring at any one shopping center are 
assigned the same X and Y coordinates.  However, there are situations when the assignment of a 
coordinate will not be a good indicator of the hot spot location.  For example, assigning the 
vehicle theft location to a particular stall in a parking lot will lead to few, if any, locations 
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coming up more than once.  In this case, the mode would not be a useful statistic at all.  Another 
example is assigning the vehicle theft location for the parking lot of a multi-building apartment 
complex to the address of the owner.  In this case, what is a highly concentrated set of vehicle 
thefts become dispersed because the owners live at different addresses within the complex. 
 

Consequently, CrimeStat includes a second point location hot spot routine called the 
Fuzzy Mode.  This allows the user to define a small search radius around each location to include 
events that occur around or near that location. For example, a user can put a 50 yard or 100 
meter search radius and the routine will calculate the number of incidents that occur at each 
location and within a 50 yard or 100 meter radius. 

 
The aim of the statistic is to allow the identification of locations where a number of 

incidents may occur, but where there may not be precision in measurement.2 For example, if 
several apartment complexes share a parking lot, any vehicle theft in the lot may be assigned to 
the address of the owner, rather than to the parking lot.  In this case, the measurement is 
imprecise.  Plotting the location of the vehicle thefts will make it appear that there are multiple 
locations, when, in fact, there is only approximately one.   
 

Another example would be the measurement of motor vehicle crashes that all occur at a 
single intersection.  If the measurement of the location is very precise, the crashes could be 
assigned to slightly different locations when, in fact, they occurred at more or less the same 
location.  In other words, the fuzzy mode allows a flexible classification of a location where the 
analyst can vary slightly the area around a location. 
 

The fuzzy mode output file is also a >dbf= file and, like the mode, also includes four 
output variables: 
 

1. The rank order of the location with 1 being the location with the most incidents, 2 
being the location with the next most incidents, 3 being the location with the third 
most incidents, and so forth until only those locations which have only one 
incident each; 
 

                         
2  In the statistical literature, this type of statistic is known as a spatial scan with a fixed circular window 

(Kulldorff, 1997; Kulldorff and Nagarwalla, 1995).  However, our emphasis here is on defining 
approximate point locations where there is either measurement error or very small locational differences. In 
this sense, the term >fuzzy= is more similar to the classification literature where imprecise boundaries exist 
and an incident can belong to two or more groups (Bezdek, 1981; McBratney and deGruijter, 1992; Xie and 
Beni, 1991). 
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2. The frequency of incidents at the location.  This is the number of incidents 
occurring at that location; 

 
3. The X coordinate of the location; and  

 
4. The Y coordinate of the location. 

 
Note that allowing a search radius around a location means that incidents are counted 

multiple times, one for each radius they fall within.  If used carefully, the fuzzy mode can allow 
the identification of high incident locations more precisely than the mode routine.  But, because 
of the multiple counting of incidents that occurs, the frequency of incidents at locations will 
change, compared to the mode, as well as possibly the hierarchy. 
 

To illustrate this, Figure 7.5 maps the top 13 locations for vehicle thefts identified by the 
fuzzy mode routine using a search radius of 300 feet (four were tied for number 2 and eight were 
tied for number 5).  The 13 locations are displayed by a single magenta triangle and are 
compared to the 10 locations identified by the mode (blue circle).  Notice that two of the 13 
locations are clustered at the same places as those identified by the mode, but the other two 
triangles are different locations.  Two of these locations have multiple fuzzy modes. The most 
southeastern triangle in Baltimore County actually includes three fuzzy modes while the one 
triangle within the City of Baltimore actually includes eight fuzzy modes. 
 

Figure 7.6 zooms in to display the eight clustered locations within the City of Baltimore, 
each of which has a fuzzy mode count of 29 vehicle thefts.  The eight fuzzy mode locations are 
actually eight parking lots within the Mondawin Shopping Mall.  Since the parking lots are 
within 300 feet of each other, each has a cumulative count of 29 vehicle thefts.  In other words, 
the fuzzy mode has identified a general location where there are multiple sub-locations in which 
vehicle thefts occur. 
 

Uses of the Fuzzy Mode 
 

The fuzzy mode routine can be useful because it allows the identification of small hot 
spot areas, rather than exact locations.  Any one location may not have a sufficient number of 
incidents that occur at that location, but because it is close to other locations that have incidents 
occurring, the cumulative count may actually be quite high.  Additional examples when it might 
be useful are in identifying multiple parking lots in parks or in identifying common parking areas 
for multi-unit buildings (e.g., large apartment complexes).   

 
 

 



Figure 7.5:



Figure 7.6:
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 The method would also be useful for identifying hot spots when exact coordinates are 
specified for each incident.  For example, in the parking lot example above, if each vehicle theft 
were identified by a stall number, as opposed to a single coordinate for the entire parking lot, few 
vehicle thefts would occur in exactly the same location.  Allowing a search radius around the 
coordinates (the fuzzy part of the frequency count) allow a number of events to be grouped 
together whereas exact locations might not identify that grouping. 

 
Limitations of the Fuzzy Mode 

 
On the other hand, the fuzzy mode does involve duplicate counts points that are close to 

each other will be counted multiple times. This can allow distortion.   By changing the search 
radius, the number of incidents counted for any one location changes as well as it=s order in the 
hierarchy.  For example, when a quarter mile search radius was used, all top locations occurred 
within a short distance of each other (not shown). In short, the user must be careful in using the 
fuzzy mode for analysis. 
 
Nearest Neighbor Hierarchical Clustering 
 

We now turn to methods that identify hot spot areas, as opposed to individual points that 
are clustered or are the center of a cluster.  The nearest neighbor hierarchical clustering (or Nnh 
for short) routine in CrimeStat identifies groups of incidents that are spatially close.  It is a 
hierarchical clustering routine that clusters points together on the basis of several criteria. The 
clustering is repeated until either all points are grouped into a single cluster or else the clustering 
criteria fail.  Hierarchical clustering methods are among the oldest cluster routines (Everitt, 
Landau and Leese, 2001; King, 1967; Systat, 2008).  Among the clustering criteria that have 
been used are the nearest neighbor method (Johnson, 1967; D'andrade. 1978), farthest neighbor, 
the centroid method (King, 1967), median clusters (Gowers, 1967), group averages (Sokal and 
Michener, 1958), and minimum error (Ward, 1967). 
 

The CrimeStat Nnh routine is a variation on this approach but has its own unique 
algorithm.  It uses a method that defines a threshold distance and compares the threshold to the 
distances for all pairs of points.  Only points that are closer to one or more other points than the 
threshold distance are selected for clustering.  In addition, the user can specify a minimum 
number of points to be included in a cluster.  Only points that fit both criteria - closer than the 
threshold and belonging to a group having the minimum number of points, are clustered at the 
first level (first-order clusters).   
 

The routine then conducts subsequent clustering to produce a hierarchy of clusters. The 
first-order clusters are themselves clustered into second-order clusters.  Again, only clusters that 
are spatially closer than a threshold distance (calculated anew for the second level) are included.  
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The second-order clusters, in turn, are clustered into third-order clusters, and this re-clustering 
process is continued until either all clusters converge into a single cluster or, more likely, the 
clustering criteria fails. 
 

Criterion 1: Threshold Distance 
 

The first criterion in identifying clusters is whether points are closer than a specified 
threshold distance.  There are two alternatives in selecting the threshold distance: 1) a random 
nearest neighbor distance (the default); or 2) a fixed distance. 
 

Random nearest neighbor distance 
 
 The default alternative is to use the expected random nearest neighbor distance for first-
order nearest neighbors. The user specifies a one-tailed confidence interval around the random 
expected nearest neighbor distance.  The t-value corresponding to this probability level, t, is 
selected from the Student=s t-distribution under the assumption that the degrees of freedom are at 
least 120.3  This selection is controlled by a slide bar under the routine (see Figure 7.3).  From 
chapter 6, the mean random distance was defined as: 

 

0.5                 repeat 6.2 

 
where A is the area of the region and N is the number of incidents and the standard error of the 
mean random distance is: 
 

 ≅ .                repeat 6.5 

 
where A is the area of the region and N is the sample size (number of incidents).  The confidence 
interval around that distance is defined as: 
 
 	 	 ∗          (7.1) 
 
where t is the t-value associated with a probability level in the Student=s t-distribution.   
  

The approximate lower limit of this confidence interval is: 
 

                         
3  This is the next highest degree of freedom in the Student=s t-table below infinity. 
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 	 	 	 	 	 ∗  
 

 ≅ 0.5 .            (7.2) 

 
and the upper limit of this confidence interval is: 
 
 	 	 	 	 	 ∗  
 

 ≅ 0.5 .            (7.3) 

 
The confidence interval defines a probability for the distance between any pair of points.  

For example, for a specific one-tailed probability, p, fewer than p% of the incidents would have 
nearest neighbor distances smaller than this selected limit if the distribution was spatially 
random.  If the data were spatially random and if the mean random distance is selected as the 
threshold criteria (the default position on the slide bar), approximately 50% of the pairs will be 
closer than this distance.  For randomly distributed data, if a p#.05 level is taken for t (two steps 
to the left of the default or the fifth in from the left), then only about 5% of the pairs would be 
closer than the threshold distance.  Similarly, if a p#.75 level is taken for t (one step to the right 
of the default or the fifth in from the right), then about 75% of the pairs would be closer than the 
threshold distance. 
 

In other words, the threshold distance is a probability level for selecting any two points (a 
pair) on the basis of a chance distribution.  The slide bar has 12 levels and is associated with a 
probability level for a t-distribution from a sample of 120 or larger.  From the left, the p-values 
are approximately (Table 7.2): 

 
Taking a broader conception of this, if there is a spatially random distribution, then for all 

distances between unique pairs of points, of which there are 
 

             (7.4) 
 
fewer than p% will be shorter than this threshold distance. 
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Table 7.2: 
 Approximate Probability Values Associated with Threshold Scale Bar 
 
     Scale Bar 
  Position  Probability  Description 
 
     1   0.00001  Far left point of slide bar 
  2   0.0001   Second from left 
  3   0.001   Third from left 
  4   0.01   Fourth from left 
  5   0.05   Fifth from left 
  6   0.1   Sixth from left 
  7   0.5   Sixth from right (default value) 
  8   0.75   Fifth from right 
  9   0.9   Fourth from righ 
  10   0.95   Third from righ 
  11   0.99   Second from righ 
  12   0.999   Far right point of slide bar 

 
This does not mean, however, that the probability of finding a cluster is equal to this 

probability.  It only indicates the probability of selecting two points (a pair) on the basis of a 
chance distribution.  If additional points are to be included in the cluster, then the probability of 
obtaining the cluster will be less.  Thus, the probability of selecting three points or four points or 
more points on the basis of chance will be much smaller. 
 
  Area must be defined correctly 
 

Note that it is very important that area be defined correctly for this routine to work. If the 
user defines the area on the measurement parameters page (see chapter 3), the Nnh routine uses 
that value to calculate the threshold distance.  If the user does not define the area on the 
measurement parameters page, the routine calculates the area from the minimum and maximum 
X/Y values (the bounding rectangle), which will usually be a larger area.  In either case, the 
routine will be able to calculate a threshold distance and run the routine.   
 

However, if the area units are defined incorrectly on the measurement parameters page, 
then the routine will certainly calculate the threshold distance wrongly.  For example, if data are 
in feet but the area on the measurement parameters page are defined in square miles, most likely 
the routine will not find any points that are farther apart the threshold distance since that distance 
is defined in miles.  In other words, it is essential that the area units be consistent with the data 
for the routine to properly work. 
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  Fixed distance 
 
The second alternative for selecting a threshold distance is to choose a fixed distance (in 

miles, nautical miles, feet, kilometers, or meters).  The user checks the AFixed distance@ box and 
selects a threshold distance.  The main advantage in this approach is that the search radius can be 
specified exactly.  This is useful for comparing the number of clusters for different distributions 
(e.g., the number of robbery hot spots compared to burglary hot spots using a search radius of 0.5 
miles).  The main disadvantage of this method is that the choice of a threshold is subjective.  The 
larger the distance that is selected, the greater the likelihood that clusters will be found by 
chance.  Of course, this can be tested using a Monte Carlo simulation (see below). 
 

Criterion 2: Minimum Number of Points 
 

 Whichever method is used for selecting a threshold distance, a second clustering criterion 
is the minimum number of points that are required for each cluster.  This criterion is used to 
reduce the number of very small clusters.  With large data sets, hundreds, if not thousands, of 
clusters can be found if only pairs of points are selected as being closer than a threshold distance.  
To minimize numerous very small clusters as well as reduce the likelihood that clusters could be 
found by chance, the user can set a minimum number restriction.  The default is 10.  This 
decision does not affect the selection of the clusters, only the number that are output.  By 
decreasing this number, more clusters are output; conversely, by increasing this number, fewer 
clusters are output. The routine will only include points in the final clustering that are part of 
clusters in which the minimum number is found. 
 

First-order Clustering 
 
Using these criteria, CrimeStat constructs a first-order clustering of the points (see 

endnote	 ).   For each first-order cluster, the center of minimum distance is output as the cluster 
center, which can be saved as a >.dbf= file. 
 

Second and Higher-order Clusters 
 

The first-order clusters are then tested for second-order clustering.  The procedure is 
similar to first-order clustering except that the cluster centers (the center of minimum distance 
for each) are now treated as >points= which themselves are clustered (see endnote ). The process 
is repeated until no further clustering can be conducted.  Either all sub-clusters converge into a 
single cluster, the threshold distance criterion fails, or there are fewer than four seeds in the 
higher-order cluster. 
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Visualizing the Cluster Output 
 

To identify the approximate cluster location, CrimeStat allows the cluster to be output as 
either as an ellipse, a convex hull, or both. 
 

Ellipse output 
 

A standard deviational ellipse is calculated for each cluster (see chapter 4 for the 
definition).  The user can choose between 1 standard deviation (the default), 1.5 standard 
deviations, or 2 standard deviations (indicated on the interface by 1X, 1.5X, and 2X).  Typically, 
one standard deviation will cover more than 50% of the cases, one and a half standard deviations 
will cover more than 90% of the cases, and two standard deviations will cover more than 99% of 
the cases, although the exact percentage will depend on the distribution.  The user specifies the 
number of standard deviations to save as ellipses in ArcGIS >.shp=, MapInfo >.mif=, Google Earth 
‘kml’ (if the data are in spherical coordinates), or various Ascii formats. 
 

Be careful as standard deviations can create an exaggerated view of the underlying 
cluster.  The ellipse, after all, is an abstraction from the points in the cluster that may be arranged 
in an irregular manner.  For example, for a regional view, a 1 standard deviational ellipse may 
not be very visible while for a small area, a 2 standard deviational ellipse may be too big.  The 
user has to balance the need to accurately display the cluster compared to making it easier for a 
viewer to understand its location. 

 
Convex hull output 

 
A convex hull is calculated for each cluster (see chapter 4 for definition).  The convex 

hull draws a polygon around the points in the cluster.  It is a literal definition of the cluster, as 
opposed to the ellipse which is an abstraction.   The convex hull can be saved in ArcGIS >.shp=, 
MapInfo >.mif=, Google Earth ‘kml’, or various Ascii formats. 

 
Ellipse or convex hulls? 

 
With the choice of an ellipse or a convex hull, the user can visualize clusters in two 

different ways.  There are advantages and disadvantages of each approach.  The convex hull has 
the advantage of being a polygon that corresponds exactly to the cluster.  For neighborhood level 
analysis, it is probably preferable to the ellipse, which is an abstraction.  On the other hand, any 
convex hull is based on a sample (e.g., this year=s robberies compared to last year=s robberies) 
and like any sample will vary from one instance to another.  It may not capture all the space 
associated with the hot spot.  The shape of a convex hull is often un-intuitive, following the 
outline of the incidents.  An ellipse, on the other hand, is more general and will usually be more 
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stable from year to year.  It usually looks better on a map or at least users seem to understand it 
better; it is a more familiar graphical object than an irregular polygon.  The biggest disadvantage 
to an ellipse is that it forces a certain shape on the data, whether there are incidents in every part 
of it or not.  So, in extreme cases, one finds ellipses that go outside of study area boundaries or 
extend into reservoirs or lakes or other features that are logically impossible to have incidents.  
At the same time, the ellipses may not include locations that are actually part of the hot spot.. 
 

In short, the user needs to balance the generality and visual familiarity of an ellipse with 
the limits of the actual hot spot.  Probably for a small scale, regional perspective, the ellipses are 
preferable since a viewer can quickly see where the hot spots are located.  For detailed 
neighborhood-level work, however, the convex hull is probably better since it shows where the 
incidents actually occurred. 

 
 Abstraction of incidents with second- and higher-order clusters 
 
One thing to note is that second- and higher-order clusters can be visually misleading.  

The second-order clusters may visually encompass points that were not clustered in the first-
order but they only are calculated using the centroids of the first-order clusters.  Thus, in a GIS, 
one could select all incidents that fall within the boundaries of the second-order cluster (whether 
defined by an ellipse or a convex hull) and the number will generally be more than the points that 
were accumulated from the first-order clusters. A user needs to be aware of this as second- and 
higher-order clusters are abstractions from first- and earlier-order clusters. 
 
 Guidelines for Selecting Parameters 
 

In the Nnh routine, the user has to define three parameters - the threshold distance, the 
minimum number of points, and the visual output of the hot spots. For a fixed threshold distance, 
the user has to choose a distance that is meaningful.  For crime incidents, probably the threshold 
distance should not be more than 0.5 miles and, preferably, smaller.   
 

If the random nearest neighbor distance is used as a threshold, the p-value is selected with 
a likelihood slider bar (see Figure 7.3).  This bar indicates a range of p-values from 0.00001 (i.e., 
the likelihood of obtaining a pair by chance is 0.001%) to 0.999 (i.e., the likelihood of obtaining 
a pair by chance is 99.9%).  The slider bar actually controls the value of t in equation 7.3, which 
varies from -3.719 to +3.090.  The smaller the t-value, the smaller the threshold distance.  With 
smaller threshold distances, fewer clusters are extracted and are typically smaller (although not 
always).  Thus, they are more likely to be not due to chance. 
 

If only pairs of points were being grouped, then the threshold distance would be critical.  
For example, with the default p#.5 value, then about half the pairs would be selected by chance 
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if the data were truly random.  However, since there are a minimum number of points that are 
specified, the likelihood of finding a cluster with the minimum number of points is much 
smaller.  The larger the minimum number selected, the smaller the likelihood of obtaining a 
cluster by chance. 

 
Therefore, one can think of the slide bar as a filter for grouping points.  One can make the 

filter smaller (moving the slide bar to the left) or larger (moving the slide bar to the right).  There 
will be some effect on the final number of clusters, but the likelihood of obtaining a cluster by 
chance will be generally low.  Statistically, there is more certainty with small threshold distances 
than with larger ones using this technique.  Thus, a user must trade off the number of clusters and 
the size of an area that defines a cluster with the likelihood that the result could be due to chance.  
 

This choice will depend on the needs of the user.  For interventions around particular 
locations, the use of a small threshold distance may actually be appropriate; some of the ellipses 
seen in Figure 7.7 below cover only a couple of street segments.  These define micro-
neighborhoods.  On the other hand, for a patrol route, for example, a cluster the size of several 
neighborhoods might be more appropriate.  A patrol car would need to cover a sizeable area and 
having a larger area to target might be more appropriate than a >micro= environment.  However, 
there will be less precision with a larger cluster size in this type of area. 
 

A second criterion is the minimum number of points that are required to define a cluster.  
If a cluster does not have this minimum number, CrimeStat will ignore the seed location.  
Without this criterion, the Nnh routine could identify clusters of two or three incidents each.  A 
hot spot of this size is usually not very useful.  Consequently, the user should increase the 
number to ensure that the identified cluster represents a meaningful number of cases.  The 
default value is 10, but the user can type in any other value. 
 

The user may have to experiment with several runs to get a solution that appears right.  
As a rule of thumb, start with the default settings.  If there appears to be too many clusters, 
tighten up the criteria by selecting a lower probability for grouping a pair by chance (i.e., shifting 
the threshold distance to the left) or by increasing the minimum number of points required to be 
defined as a cluster (e.g., from 10 to 20).  On the other hand, if there appears to be too few 
clusters, loosen the criteria by selecting a higher probability for grouping pairs by chance (i.e., 
shifting the threshold distance to the right) or decreasing the minimum number of points in a 
cluster (e.g., from 10 to 5).  Then, once an appropriate solution has been found, the user can fine 
tune the results by slight changes.   
 

In general, the minimum number of points criterion is more critical for the number of 
clusters than the threshold distance, though the latter can also influence the results. For example, 
with the 1996 Baltimore County robbery data set (N=1181 incidents), a minimum of 26 and a 
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maximum of 28 clusters were found by changing the threshold distance from the minimum p-
value (p#0.00001) to the maximum p-value (p#0.999).  On the other hand, changing the 
minimum number of points per clusters from 10 to 20 reduced the number of clusters found 
(with the default threshold distance) from 26 to 11.     

 
The third criterion is the visual display of the clusters.  The convex hull is literal; it will 

draw a polygon around the points in the cluster.  The ellipse, on the other hand, requires a 
decision by the user on the number of standard deviations to be displayed. The choices are one 
(the default), one and a half, and two standard deviations.  Typically, one standard deviation will 
cover more than 50% of the cases; one and a half standard deviations will cover more than 90% 
of the cases, while two standard deviations will cover more than 99% of the cases although the 
exact percentage will depend on the distribution.   

 
In general, I recommend using a 1.5 as the default as 1 standard deviation will be often be 

too small while 2 standard deviations can create an exaggerated view of the underlying cluster.  
The user has to balance the need to accurately display the cluster compared to making it easier 
for a viewer to understand its location. 
 

Nnh Output Files 
 

The Nnh routine has six outputs: First, for each cluster that is identified, the hierarchical 
order and the cluster number; Second, for each cluster that is calculated, the mean center of the 
cluster. Only 45 of the seed locations are displayed on the screen.  The user can scroll down or 
across by adjusting the horizontal and vertical slider bars and clicking on the Go button. This can 
be saved as a >.dbf= file; Third, the standard deviational ellipses of the clusters is shown, whether 
the graphical output is an ellipse or a convex hull.  The size of the ellipses is determined by the 
number of standard deviations to be calculated (see above); Fourth, the number of points in the 
cluster; Fifth, the area of the ellipse; and, Sixth, the density of the cluster (number of points 
divided by area).  
 

The ellipses and convex hulls can be saved in ArcGIS >.shp=, MapInfo >.mif=, Google 
Earth ‘kml’, or various Ascii formats.  Because there are also orders of clusters (i.e., first-order, 
second-order, etc.), there is a naming convention that distinguishes the order.   
 
  Naming conventions for ellipses 
 

For the ellipses, the convention is 
 

Nnh<O><username> 
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where O is the order number and username is a name provide by the user.  Thus, 
 

Nnh1robbery 
 
are the first-order clusters for a file called >robbery= and 
 

Nnh2NightBurglaries 
 
are the second-order clusters for a file called >NightBurglaries=.  Within files, clusters are named 
 

Nnh<O>Ell<N><username> 
 
whereO is the order number, N is the ellipse number and username is the user-defined name of 
the file.  Thus, 
 

Nnh1Ell10robbery 
 
is the tenth ellipse within the first-order clusters for the file >robbery= while  

Nnh2Ell1NightBurglaries 
 
is the first ellipse within the second-order clusters for the file >NightBurglaries=. 
 

For the convex hulls, the name will be output with a >CNNH1= prefix for the first-order 
clusters, a >CNNH2= prefix for the second-order clusters, and a >CNNH3= prefix for the 
third-order clusters.  Higher-order clusters will index only the number. 
 

In other words, names of files and features can get complicated.  The easiest way to 
understand this, therefore, is to import the file into one of the GIS packages and display it.   
 

Example 1: Nearest Neighbor Hierarchical Clustering of San Antonio Robberies 
 

The Nnh routine was applied to 1,116 robberies that occurred in 2003 in San Antonio, 
TX.  A default one-tailed probability level of .05 (or 5%) was selected for the threshold distance 
and each cluster was required to contain a minimum of 10 points (the default).   Using these 
criteria, CrimeStat returned 9 first-order clusters and one second-order cluster.  The 9 first-order 
clusters varied from 37 incidents for one cluster to 7 incidents for two clusters. Figure 7.7 shows 
the first-order clusters and the second-order cluster displayed as 1.5 standard deviational ellipses.   
 

Since the criteria for clustering is the lower limit of the mean random distance, the 
distances involved are very small, as can be seen.  Note, the standard deviational ellipse is  



Figure 7.7:
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defined by the points in the cluster but is an abstraction, rather a literal definition.  Thus, there is 
not a one-to-one match between the ellipse boundaries and the points included.  For example, the 
top cluster had 37 points yet the 1.5 standard deviational ellipse included only 36 of those points. 
 

Figure 7.8 shows the shows the same clusters as in Figure 7.7 but the clusters are 
displayed as convex hulls rather than ellipses.  As seen, the convex hulls are irregular in shape 
and more limited in geographical spread; they show only the incidents that are clusters. Notice 
how the one second-order cluster defined by the convex hull is much more constrained than the 
ellipse definition of it.   

 
Note also that the second-order cluster includes incidents that were not clustered in the 

first-order clusters.  Thus, the area included in the second-order cluster is much greater than the 
sum of the first-order clusters from which it was derived.  This may lead to a wider definition of 
a larger hot spot which may be real or not.  One has to keep in mind that the second- and higher-
order clusters are abstractions of the first-order clusters, and are not clusters by themselves. 

 
Figure 7.9 zooms and compares the seven central clusters in terms of the ellipses and the 

corresponding convex hulls. Notice how the convex hulls are much more compact.  Also, how 
the convex hulls ‘stick out’ beyond the ellipses for four of the clusters.  Again, this is because the 
ellipse is a mathematical abstraction whose central axes are defined by the points, whereas the 
convex hull is defined by a polygon that defines an outer boundary. 

 
From a policing viewpoint, a convex hull is probably more useful in that it shows where 

the hot spot incidents are actually located.  As mentioned above, the polygons created by the 
convex hulls are irregular and are, therefore, less familiar to most people.  Consequently, for 
presentations of crime patterns at a regional level or even neighborhood-level for non-specialists, 
the ellipses may convey better where the hot spots are located. 
 

Simulating Statistical Significance 
 

Testing the significance of clusters from the Nnh routine is complex.  Conceptually, 
using the random nearest neighbor distance for the threshold distance defines the probability that 
two points could be grouped together on the basis of chance.  The test is for the confidence 
interval around the first-order nearest neighbor distance for a random distribution.  If the 
probability level is p%, then approximately p% of all pairs of points would be found under a 
random distribution.  Under this situation, we would know whether the number of clusters (pairs) 
that were found were significantly greater than would be expected on the basis of chance. 
 

The problem is, however, that the routine is not just clustering pairs of points, but 
clustering as many points as possible that fall within the threshold distance since there is an 



Figure 7.8:
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additional requirement that there be a specified minimum number of points, with the minimum 
defined by the user.  The probability distribution for this situation is not known.  Consequently, 
there is a necessity to resort to a Monte Carlo simulation of randomness under the conditions of 
the Nnh test (Dwass, 1957; Barnard, 1963). 
 
 CrimeStat includes a Monte Carlo simulation routine that produces approximate 
confidence intervals (called credible intervals) for the first-order Nnh clusters that have been 
identified. Second- and higher-order clusters are not simulated since their structure depends on 
the first-order clusters.  Essentially, the routine assigns N cases randomly to a rectangle with the 
same area as the defined study area, A, and evaluates the number of clusters according to the 
defined parameters (i.e., threshold distance and minimum number of points).  It repeats this 
simulation K times where K is defined by the user (e.g., 100, 1,000, 10,000).  By running the 
simulation many times, the user can assess approximate credible intervals for the particular first-
order Nnh. 
 

The output includes five columns and twelve rows: 
 

Columns: 
 

1. The percentile, 
2. The number of first-order clusters found for that percentile, 
3. The area of the cluster for that percentile, 
4. The number of points in the cluster for that percentile, and 
5. The density of points (per unit area) for that percentile. 

 
Rows: 

 
1. The minimum (smallest) value obtained, 
2. 0.5th percentile, 
3. 1st percentile, 
4. 2.5th percentile, 
5. 5th percentile, 
6. 10th percentile, 
7. 90th percentile, 
8. 95th percentile, 
9. 97.5th percentile, 
10. 99th percentile, 
11. 99.5th percentile, and 
12. The maximum (largest) value obtained. 
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 The percentiles are calculated as follows.  First, over all simulation runs (e.g., 1000), the 
routine calculates the number of first-order clusters obtained for each run, sorts them in 
ascending order, and defines the percentiles for the list.  Thus, the minimum is the fewest 
number of clusters obtained over all runs, the 0.5 percentile is the lowest half of a percent for the 
number of clusters obtained over all runs, and so forth until the maximum number of clusters 
obtained over all runs.   The routine does not calculate second- or higher-order clusters since 
those are dependent on the first order clustering.  Second, within each run, the routine calculates 
the number of points per cluster, the area of each ellipse, and the density of each ellipse.  Then, it 
groups all clusters together, over all runs, and sorts them into a list.  The percentiles for 
individual clusters are then calculated.  Note that the points refer to the cluster whereas the area 
and density refer to the ellipses, which is a geometrical abstraction from the cluster.   

 
When a Monte Carlo simulation of 1000 iterations was run on the San Antonio robbery 

data, no clusters were found.  That is, given the criteria that were used for clustering (the default 
random nearest neighbor distance and a minimum of 10 incidents per cluster), it would be very 
unlikely to find any clusters on the basis of chance!   

 
To illustrate how a simulation which found random clusters looks, Table 7.3 presents an 

Nnh run that was conducted on a Baltimore County robbery data base (N=1181 incidents) using 
the default threshold distance (p#.5 for grouping a pair by chance) and a minimum number of 
points of at least five for each cluster.  Then, 1000 Monte Carlo runs were conducted with 
simulated data.  With the actual data, the Nnh routine identified 69 first-order clusters and 7 
second-order clusters.  Table 7.3 presents the parameters for the first ten first-order clusters.   
 

In examining a simulation, one has to select percentiles as choice points.  In this example, 
we use the 95th percentile.  That is, we are willing to accept a one-tailed Type I error of only 5% 
since we are only interested in finding a greater number of clusters than by chance. For the 
simulation, look at each column of the simulation results in turn.  Column 2 presents the number 
of clusters found in each simulation.  Over the 1000 runs, there was a minimum of one cluster 
found (for at least one simulation) and a maximum of 7 clusters found (for at least one 
simulation).  That is, running 1000 simulations of randomly assigned data only yielded between 
1 and 7 clusters using the parameters defined in the particular Nnh run.   The 95th percentile was 
3.  It is highly unlikely that the 69 first-order clusters that were identified would have been due to 
chance.  That is, we would have expected at most three of them to have been due to chance.  It 
appears that the robbery data is significantly clustered, though we have only tested significance 
through a random simulation.   

 
Of course, the routine is not going to identify which three clusters could have been 

selected on the basis of chance.  However, realistically the three clusters would be those with the 
lowest density, number of points per unit area (e.g., points per square mile; points per square  
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Table 7.3: 
Simulated Confidence Intervals for Nnh Routine 

Baltimore County Robberies: N=1181 
 
Nearest Neighbor Hierarchical Clustering: 
----------------------------------------- 

Sample size..........................:    1181 
Likelihood of grouping  pair of points by chance....:  0.50000 (50.000%) 
Z-value for confidence  interval..............................:  0.000 
Measurement type..............:    Direct 
Output units.......................:    Miles, Squared Miles, Points per Squared Miles 
Clusters found....................:    76 
Simulation runs.................:    1000 

 
Displaying ellipses starting from 1 (ONLY 10 SHOWN) 
 
Order Cluster Mean X Mean Y Rotation  X-Axis Y-Axis Area Points Density 
------- ---------   --------- ----------    -----------  ---------  --------     -------  ----  ------------- 
1   1  -76.44927     39.31455 77.09164 0.28303  0.09636  0.08568      40 66.828013 
1        2        -76.60219     39.40050    11.98132       0.11540      0.27452    0.09952      33  331.580616 
1          3        -76.44601     39.30490    16.66988       0.21907      0.16239    0.11176      25 23.684859 
1          4        -76.78123     39.36088    25.36983       0.27643      0.14530    0.12618      29 229.826284 
1          5        -76.73103     39.34319    67.71617       0.19445      0.16058    0.09810      29 295.628310 
1          6        -76.72945     39.28910    79.88383      0.16428      0.25957    0.13396     29 216.476166 
1          7        -76.51486     39.25986    87.32563     0.19148      0.29428    0.17703    27 152.520725 
1          8        -76.45374     39.32106    54.57635       0.15150      0.18261    0.08692      7    80.538112 
1          9        -76.75368     39.31132    89.56994       0.19748      0.22914    0.14216    22 154.753006 
1        10        -76.71641     39.29139    10.43857  0.15048      0.16879  0.07980    14 175.444372 
Etc. 

 
Distribution of the number of clusters found in simulation (percentile): 
 

 Percentile Clusters  Area     Points  Density 
 --------------  -----------  -------  --------      --------------- 
 min             1           0.03845     5             15.615111 
      0.5             1           0.04922          6            16.608967 
            1.0             1           0.05603           6            17.162252 
            2.5             1           0.06901            6             18.570113 
            5.0             1           0.08243           6             19.468353 
           10.0            1           0.10045         6             21.256559 
           90.0            2           0.28706           7             61.173748 
           95.0            3           0.31074          7             73.463654 
           97.5            3           0.32442          7             87.550868 
           99.0            4           0.35279         8       115.460337 
           99.5            5           0.36489         8         122.625375 
           max            7           0.38424          9         156.056837 
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kilometer). Thus, the user could assume that the three clusters with the lowest density are less 
certain to be real than due to chance. 
 

Column 3 shows the areas of clusters that were found over the 1000 runs using the ellipse 
as a definition for the clusters.  For the individual clusters, the simulation showed a range from 
about 0.04 to 0.38.    The 95th percentile was 0.31.   In the actual Nnh, the area of clusters varied 
between 0.05 and 0.27, indicating that all first-order clusters were smaller than the smallest value 
found in the simulation.  In other words, the real clusters are more compact than random clusters 
even though the random clusters were subject to the same threshold distance as the real data.  
This is not always true, but, in this case, it is. 
 

Column 4 presents the number of points found per cluster in the simulation; these varied 
between 5 and 9 points per cluster.  The 95th percentile was 7.  With the actual data, the number 
of points varied between 5 and 40.  Thus, some of the clusters could have been due to chance, at 
least in terms of the number of points per cluster.  Analyzing the distribution (not shown), 27 of 
the 69 clusters had 7 or fewer points.  In other words, about 39% had only as many points as 
might be expected on the basis of a chance distribution.  Putting it another way, about 40% of the 
clusters had more points than would be expected on the basis of chance 95% of the time. 
 

Finally, column 5 presents the density of points found per cluster.  Since the output unit is 
squared miles, density is the number of points per square mile.  The simulation presents a range 
from 15.6 points per square mile to 156.1 points per square mile.  The 95th percentile was 73.4 
points per square mile. The actual Nnh, on the other hand, finds a range of densities from 27.1 
points per square mile to a very high number (11071821 points per square mile).  Again, there is 
overlap between the actual clusters and what might be expected on the basis of chance; 26 out of 
69 clusters have densities that are lower than the 95th percentile found in the simulation. Again, 
about 38% have densities are not different than would be expected on the basis of chance. 

 
It should be clear that testing the significance of a cluster analysis is complex.  In the 

example, some of the criteria chosen were definitely different than a chance distribution while 
other criteria were not very different.  However, which of these criteria should be used to 
evaluate the actual distribution?  We argue that it should be the number of incidents/points 
identified in the cluster, rather than the area or density by themselves since the area has to be 
defined by a polygon (ellipse or convex hull). The number of points is the relevant criterion since 
it is one of the criteria used for the clustering in the Nnh algorithm (the other being points that 
are closer than the threshold distance. 
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Uses of Hierarchical Clustering 
 

There are four uses for the nearest neighbor hierarchical clustering technique.  First, it 
can identify small geographical environments where there are concentrated incidents.  This can 
be useful for specific targeting, either by police deployment or community intervention. There 
are clearly micro-environments that generate crime incidents and the Nhh technique tends to 
identify these small environments because the lower limit of the mean random distance is used to 
group the clusters.  The user can, of course, control the size of the grouping area by loosening or 
tightening either the threshold distance or the minimum number of required points. Thus, the 
sizes of the clusters can be adjusted to fit particular groupings of points. 

 
Second, the technique can be applied to any entire data set, such as for Baltimore County 

and Baltimore City, and need not only be applied to smaller geographical areas, such as 
precincts.  This increases the ease of use for analysts and can facilitate comparisons between 
different areas without having to limit arbitrarily the data set. 

 
Third, the linkages between several small clusters can be seen through the second- and 

higher-order clusters.  Frequently, hot spots are located near other hot spots which, in turn, are 
located still near other hot spots.  

 
 In other words, the clustering of incidents, such as robberies, is hierarchical.  With the 
San Antonio robbery data, we found two levels of grouping (first-order and second-order).  With 
larger datasets, however, frequently third-order or, even, fourth-order hot spots can be found. 
Within these large areas, there are smaller hot spots and within some of those hot spots, there are 
even smaller ones.  In other words, there are different scales to the clustering of points - different 
geographical levels, if you will, and the hierarchical clustering technique can identify these 
levels.   
 

Typically, in cities as well as in small towns, there is a greater concentration towards the 
center of the settlement or city than at the periphery.  This concentration necessarily means there 
will be more incidents (of any sort) towards the center than toward the periphery.  The Nnh 
routine captures this logic very nicely because it seeks clusters systematically from the incident 
level upwards.  More first-order clusters are going to be found in the center than in the periphery 
and this is also going to be true for second- and higher-order clusters since they build 
systematically on the first-order clusters.  One can think of the first-order clusters as ‘building 
blocks’ for spatial autocorrelation.  Thus, theoretically, hierarchical clusters capture the 
organization of a human settlement, particularly a city, in a way that no other clustering 
technique does. 
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Fourth, each of the levels implies different policing strategies.  For the smallest level, 
officers can intervene effectively in small neighborhoods, as discussed above.  Second-order 
clusters, on the other hand, are more appropriate as patrol areas; these areas are larger than first-
order clusters, but include several first-order clusters within them.  If third- or higher-order 
clusters are identified, these are generally areas with very high concentrations of crime incidents 
over a fairly large section of the jurisdiction.  The areas start to approximate precinct sizes and 
need to be thought of in terms of an integrated management strategy - police deployment, crime 
prevention, community involvement, and long-range planning.  Thus, the hierarchical technique 
allows different security strategies to be adopted and provides a coherent way of approaching 
these communities and gives flexibility to the analyst in order to choose an appropriate level of 
analysis.  This depends, of course, on the need.  For patrol cars covering an area, such as is 
common in the United States, larger hot spot areas are more appropriate.   Police cars will drive 
around the area and will cover blocks and neighborhoods that don’t necessarily have high crime 
in order to demonstrate their presence as well as make their behavior less predictable.  For this 
use, second- or higher-order hot spots would be appropriate.  Also, some of the techniques 
discussed in Chapters 8 and 10 are also appropriate for larger area analysis.   

 
However, if the policing strategy involves working with businesses or even residents to 

develop, for example, a business- or neighborhood watch program, then the boundaries of the hot 
spot need to be defined fairly specifically, perhaps a block or two. Choosing a larger area may 
diffuse efforts and reduce the effectiveness of the intervention.  Even more precise boundary 
definition are needed for  public infrastructure improvements, such as improved lighting or 
closed circuit television systems (CCTV).  The public works departments that install these 
improvements need to know exactly where to put the lights or CCTV cameras.   

 
In other words, the analytical need is going to depend on the particular type of 

intervention or program that will be introduced and the hierarchical clusters provide a range of 
scales from which an appropriate one could be chosen. 

 
Limitation to Hierarchical Clustering 

 
There are also limitations to the technique, some technical and others theoretical.  First, 

the method only clusters incidents (points); a weighting or intensity variable will have no effect. 
In Chapter 9, we introduce a variant of the Nnh that allows weighting incidents and can be 
applied to zonal data.  The results are reasonable approximations to clusters of zones, but they 
lack the specificity of the incident data. 

 
 Second, the size of the grouping area is dependent on the sample size when the 
confidence interval around the mean random distance is used as the threshold distance criteria 
(see equation. 6.2).  For crime distributions that have many incidents (e.g., burglary), the 
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threshold distance will be a lot smaller than distributions that have fewer incidents (e.g., 
robbery).  In theory, a hot spot is dependent on an environment, not the number of incidents.  
Thus, that approach does not produce a consistent definition of a hot spot area.  Using a fixed 
distance for the threshold distance can partly overcome this.  However, the fixed distance needs 
to be tested for randomness using the Monte Carlo simulation. 
 
 Third, there is some arbitrariness in the technique due to the minimum points rule.  This 
implicitly requires the user to define a meaningful cluster size, whether the number of minimum 
points required is 5, 10, 15 or whatever.  To some extent, this is how patterns are defined by 
human beings; with one or two incidents in a small area, people do not perceive any pattern.  As 
soon as the number of incidents increases, say to 10 or more, people perceive the pattern.  This is 
not a statistical way for defining regularity, but it is a human way.  However, it can lead to 
arbitrariness since two different users may interpret the size of a hot spot differently.  Similarly, 
the selectivity of the p-value, vis-a-via the Student=s t-distribution, can allow variability between 
users.   
 
 In short, the technique produces a consistent result, but one subject to manipulation by 
users.  Hierarchical techniques are, of course, not the only clustering procedures to allow users to 
adjust the parameters; in fact, almost all the cluster techniques have this property.  But it is a 
statistical weakness in that it involves subjectivity and is not necessarily consistently applied 
across users. 
 
 Finally, there is no substantive theory or rationale behind the clusters.  They are empirical 
derivatives of a procedure.  Again, many clustering techniques are empirical groupings and also 
do not have any explanatory theory.4  If one is looking for a substantive hot spot defined by a 
unique constellation of land uses, activities, and targets, the technique does not provide any 
insight into why the clusters are occurring or why they could be related.  I will return to this 
point at the end of the next chapter, but it should be remembered that these are empirical 
groupings, not necessarily substantive ones. 
 
Risk-Adjusted Nearest Neighbor Hierarchical Clustering 
 

CrimeStat also includes a risk-adjusted nearest neighbor hierarchical clustering routine 
(Rnnh), which is a variation on the Nnh routine discussed above.  It combines the hierarchical 
clustering capabilities of the Nnh routine with kernel density interpolation technique that is 
discussed in Chapter 10. 

                         
4  A number of clustering techniques have a statistical theory behind them (e.g., Kulldorff, 1997), but not a 

substantive theory. While one can define consistent statistical criteria for identifying hot spots, this does not 
constitute an explanation for why the hot spots occurred.  For this, other information is necessary. 



7.37 

 The Nnh routine identifies clusters of points that are close together.  That is, it will 
identify groups of points that are closer together than a threshold distance and in which the 
minimum number of points is greater than a user-defined value.  Many of these clusters, 
however, are due to a high concentration of persons in the vicinity.  That is, because the 
population is not arranged randomly over a plane, but is, instead, highly concentrated in 
population centers, there is a higher likelihood of incidents happening (whatever they are) simply 
due to the higher population concentration.  In the above examples, many of the clusters for 
Baltimore burglaries or vehicle thefts were due primarily to a high concentration of households 
and vehicles in the center of the metropolitan area.  In fact, one would normally expect a higher 
concentration of incidents in the center since there are more persons residing in the center and, 
certainly, more persons being concentrated there during the daytime through employment, 
shopping, cultural attendance, and other urban activities. 
 

For many police purposes, the concentration of incidents is of sufficient interest in itself.  
Police have to intervene at high incidence locations irrespective of whether there is also a larger 
population at those locations.  The demands for policing and responding to community 
emergency needs is population sensitive since there are more demands where there are more 
persons.  From a service viewpoint, the concentration of incidents is what is important. 
 

But for other purposes, the concentration of incidents relative to the baseline population 
is of interest.  Crime prevention activities, for example, are aimed at reducing the number of 
crimes that occur for every area in which they are applied.  For these purposes, the rate of 
decrease in the number of crimes is the prime focus.  Similarly, after-school programs are aimed 
at neighborhoods where there is a high risk of crime, whether or not there is also a large 
population.  In other words, for many purposes, the risk of crime or other types of incidents is of 
paramount importance, rather than the volume (i.e., absolute amount) of crime by itself.  If the 
aim is to assess where there are high risk clusters, then the Nnh routine is not appropriate. 
 

CrimeStat includes a Risk-adjusted Nearest Neighbor Hierarchical Clustering routine (or 
Rnnh) that defines clusters of points that are closer than what would be expected on the basis of a 
baseline population.  It does this by dynamically adjusting the threshold distance in the Nnh 
routine according to the distribution of a second, baseline variable.  Unlike the Nnh routine 
where the threshold distance is constant throughout the study area (i.e., it is used to pair points 
irrespective of where they are within the area), the Rnnh routine adjusts the threshold distance 
according to what would be expected on the basis of the baseline variable.  It is a risk measure, 
rather than a volume measure. 
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Dynamic Adjustment of the Threshold Distance 
 

To understand how this works, think of a simple example. In a typical metropolitan area, 
there are more people living towards the center than in the periphery.  There are topographical 
and social factors that might modify this (e.g., an ocean, a mountain range, a lake), but in general 
population densities are much higher in the center than in the suburbs.  If a different baseline 
variable were selected than population, for example, employment, one would generally find even 
higher concentrations since central city employment tends to be very high relative to suburban 
employment.  Thus, if population or employment (or another variable that is correlated with 
population density) is taken as the baseline, then one would expect more people and, hence, more 
incidents occurring in the center rather than the periphery.  In other words, all other things being 
equal, there should be more robberies, more burglaries, more homicides, more vehicle thefts, and 
more of any other type of event in the center than in the periphery of an urban area.  This is just a 
by-product of urban societies. 
 

Using this idea to cluster incidents together, then, intuitively, the threshold distance must 
be adjusted for the varying population densities.  In the center, the threshold must be short since 
one would expect there to be more persons.  Conversely, in the periphery - the far suburbs, the 
threshold distance must be a lot longer since there are far fewer persons per unit of area.  In other 
words, dynamic adjustment of the threshold grouping distance means changing the distance 
inversely proportional to the population density of the location; in the center, a high density 
means a short threshold distance and in the periphery, a low density means a larger threshold 
distance. 
 

Kernel Adjustment of the Threshold Distance 
 

To implement this logic, CrimeStat overlays a standard grid and uses an interpolation 
algorithm, based on the kernel density method, to estimate the expected number of incidents per 
grid cell if the actual incident file was distributed according to the baseline variable.  Chapter 10 
discusses in detail the kernel density method and the reader should be familiar with the method 
before attempting to use the Rnnh routine. If not, the author highly recommends that Chapter 10  
be read before reading the rest of this section. 
 

Steps in the Rnnh Routine 
 

The Rnnh routine works as follows: 
 

1. Both primary and secondary files are required.  The primary file is the basic file 
of incidents (e.g., robberies) while the secondary file is the baseline variable (e.g., 
population of zones; all crimes as a baseline; or another baseline variable).  If the 
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baseline variable is identified by zones, the user must define both the X and Y 
coordinates as well as the variable assigned to the zone (e.g., population); the 
latter will typically be an intensity or weight variable (see Chapter 3). 

 
2. A grid is defined in the reference file tab of the data setup section (see Chapter 3).  

The Rnnh routine takes the lower-left and upper-right limits of the grid, but uses a 
standard number of columns (50). 

 
3. The area of the study is defined in the measurement parameters tab of the data 

setup section (see Chapter 3).  If no area is defined, the routine uses the area of 
the entire grid. 

 
4. The user checks the Risk-adjusted box under the Nnh routine.  The risk variable is 

estimated with the parameters defined in the Risk Parameters box.   These are the 
kernel parameters.  Without going into detail, the user must define: 
 
A. The method of interpolation, which is the type of kernel used: normal, 

uniform, quartic, triangular, or negative exponential.  The normal 
distribution is the default. 

 
B. The choice of bandwidth, whether a fixed or adaptive (variable) 

bandwidth is used.  For a fixed bandwidth, the user must define the size of 
the interval (e.g., 0.5, miles; 2 kilometers).  For an adaptive bandwidth, the 
user must define the minimum sample size to be included in the circle that 
defines the bandwidth.  The default is an adaptive bandwidth with a 
minimum sample size of 100 incidents. 

 
C. The output units, which are points per unit of area: squared miles, squared 

nautical miles, squared feet, squared kilometers, or squared meters.  The 
default is squared miles. 

 
D. Also, if an intensity or weight variable is used (e.g., the centroids of zones 

with population being an intensity variable), the intensity or weight box 
should be checked (be careful about checking both if there are both an 
intensity and a weight variable). 

 
Consult Chapter 10 for more detail about these parameters. 

 
5. Once the baseline variable (the secondary file) is interpolated to the grid using the 

above parameters, it is converted into absolute densities (points per grid cell) and 
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re-scaled to the same sample size as the primary incident file.  This has the effect 
of making the interpolation of the baseline variable the same sample size as the 
incident variable.  For example, if there are 1000 incidents in the primary file, the 
interpolation of the secondary file will be re-scaled so that all grid cells add to 
1000 points, irrespective of how many units the secondary variable actually 
represented.  This creates a distribution for the primary file (the incidents) that is 
proportional to the secondary file (the baseline variable) if the primary file had the 
same distribution as the secondary file.  It is then possible to compare the actual 
distribution of the incident variable with the expected distribution if it was similar 
to the baseline variable. 

 
6. Once the risk parameters have been defined, the selection of parameters is similar 

to the Nnh routine with one exception. 
 

A. The threshold probabilities are selected with the scale bar. The 
probabilities are identical to those in Table 7.2. 

 
B. However, for each grid cell, a unique threshold distance is defined using 

formulas similar to equations 7.1 and 7.2.  The difference is, however, that 
the formulas are applied to each grid cell with a unique distance for each 
grid cell (formulas 7.5-7.8): 

 

 	 	 	 	 	 	 0.5            (7.5) 

 
where Ai is the area of the grid cell and Ni is the estimated number of 
points from the kernel density interpolation.  Thus, each grid cell has its 
own unique expected number of points, Ni, its own unique area, Ai 
(though, in general, all grid cells will have approximately equal areas), 
and, consequently, its own unique threshold distance. 

 
 	 	 	 	 	 	 	 	 	 	   
 

 =0.5 .           (7.6) 

 
where the Mean Random Distance of Grid Cell i, Ai and Ni are as defined 
above, t is the t-value associated with a probability level in the Student=s t-
distribution (defined by the scale bar). 
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   The lower limit of this confidence interval is: 
    
 	 	 	 	 	 	 	 	 	 	 	 	  
 

 0.5 .              (7.7) 

 
   and the upper limit of this confidence interval is 
 
 	 	 	 	 	 	 	 	 	 	 	 	  
 

 0.5 .              (7.8) 

 
C. In addition, the user defines a minimum sample size for each cluster, as 

with the Nnh routine. 
 

6. The actual incident points are then identified by the grid cell that they fall within 
and the unique threshold distance (and confidence interval) for that grid cell.  For 
each pair of points that are compared for distance, there is, however, asymmetry 
since the threshold distance for each point may be different if they are in different 
grid cells.  That is, the unique threshold distance for point A will not necessarily 
be the same as that for point B.  The Rnnh routine, therefore, requires the distance 
between each pair of points to be the shorter of the two distances between the 
points. 

 
7. Once pairs of points are selected, the Rnnh routine proceeds in the same way as 

the Nnh routine. 
 

In other words, points are clustered together according to two criteria.  First, they must be 
closer than a threshold distance.  However, the threshold distance varies over the study area and 
is inversely proportional to the baseline variable.  Only points that are closer together than would 
be expected on the basis of the baseline variable are selected for grouping.  Second, clusters are 
required to have a minimum number of points with the minimum being defined by the user.  The 
result is clusters that are more concentrated than would be expected, not just from chance but, 
from the distribution of the baseline variable.  These are high risk clusters. 
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 Guidelines for Selecting Parameters 
 
 The guidelines for selecting parameters in the Rnnh routine are similar to the Nnh except 
the user must also model the baseline variable using a kernel density interpolation.   There are 
several guidelines that should be followed in developing the model. 
 

Area must be defined correctly 
 

First, it is essential that area be defined correctly for this routine to work. If the user 
defines the area on the measurement parameters page (see chapter 3), the Rnnh routine uses that 
value to calculate the area of each grid cell and, in turn, the grid-specific threshold distance.  If 
the user does not define the area on the measurement parameters page, the routine calculates the 
total area from the minimum and maximum X/Y values (the bounding rectangle) and uses that 
value to calculate the area of each grid cell and, in turn, the grid-specific threshold distance.  In 
either case, the routine will be able to calculate a threshold distance for each grid cell and run the 
routine.   

 
However, if the area units are defined incorrectly on the measurement parameters page, 

then the routine will certainly calculate the grid cell-specific threshold distances wrongly.  For 
example, if data are in feet but the area on the measurement parameters page are defined in 
square miles, most likely the routine will not find any points that are farther apart than any of the 
grid cell threshold distances since each distance will be defined in miles.  In other words, it is 
essential that the area units be consistent with the data for the routine to properly work. 
 
  Use kernel bandwidths that produce stable estimates 
 

Second, the bandwidth for the baseline variable must be defined in such a way as to 
produce a stable density estimate of the variable.  Be careful about choosing a very small 
bandwidth. This could have the effect of creating clusters at the edges of the study area or very 
large clusters in low population density areas.  For example, in low population density areas, 
there will probably be fewer persons or events than in more built-up areas.  This will have the 
effect on the Rnnh calculation of producing a very large matching distance.  Points that are quite 
far apart could be artificially grouped together, producing a very large cluster. Using a larger 
bandwidth will usually produce a more stable average. 
 
 The process is a little like tuning a shortwave radio, adjusting the dial until the signal is 
detected. We suggest that the user first develop a good density model for the baseline variable 
(see Chapter 10).  The user has to develop a trade-off between identify areas of high and low 
population concentration to produce an estimate that is statistical reliable (stable).  
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 One can think of two types of >fine tuning= that must occur.  One is the >background= 
variation that has to be tuned (the baseline >at risk= variable).  This is done through the kernel 
density interpolation.  If too narrow a bandwidth is selected, the density surface will have 
numerous undulations with small >peaks= and >valleys=; this could produce unreal and unstable 
risk estimates.  A grid cell with a very small density value could produce an extremely large 
threshold distance whereas a grid cell with a very low density could produce an extremely small 
threshold distance.  Conversely, if too large a bandwidth is selected, the density surface will not 
differentiate very well and each grid cell will have, more or less, the same threshold distance.  In 
this case, the Rnnh routine would yield a result not very different from the Nnh routine.   
 
 Another is the tuning of the clusters themselves through the threshold adjustment and 
minimum size criteria.  If a large threshold probability is selected, too many incidents may be 
grouped; conversely, if a small threshold probability is selected, the result may be too restrictive.  
Similarly, if a small minimum sample size for clusters is used, there could be too many clusters 
whereas the opposite will happen if a large minimum sample size is chosen (i.e., zero clusters).  
The user must experiment with both these types of adjustment to produce a sensible cluster 
solution that captures the areas of high risk, but no more.   
 
 Example 2: Simulated Rnnh Clustering 
 
 To illustrate the logic of the Rnnh routine, a simulated example is presented.  Two 
hundred points (incidents) were assigned to eight groups in the Baltimore metropolitan region 
(Figure 7.10).  The figure shows the points in relation to year 2000 population density.   Each 
group contained 25 individual points that were grouped exactly the same. However, three of the 
groups were placed in more dense areas of the region - one in central Baltimore, one in Towson 
to the north, and one is Reisterstown to the north east.  The other five groups were placed in less 
populated areas.  The Nnh and Rnnh routines were compared with these data.  One would expect 
the Nnh routine to cluster the 200 points into eight groups whereas the Rnnh routine should 
identify only five groups in the low density areas.  The reason for three of the groups not being 
clustered by the Rnnh is due to their higher population densities; all other things being equal, 
there should be more incidents in higher density areas than in lower density areas.  Figures 7.11 
and 7.12 show exactly this solution.   
 
 In other words, the Nnh routine clustered the points together irrespective of the 
distribution of the baseline population whereas the Rnnh routine clustered the points together 
relative to the baseline population (in this case, population).  The specific parameter used were 
the default threshold distance (random nearest neighbor distance), a minimum of 15 points per 
cluster, and, for the Rnnh parameters, a normal kernel with a fixed interval of 0.5 miles. 
 
  



Figure 7.10:



Figure 7.11:



Figure 7.12:
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 Rnnh Output Files 
 
 The output files are similar to the Nnh routine.  The Rnnh routine has three outputs. First, 
final seed locations of each cluster and the parameters of the selected standard deviational ellipse 
are calculated for each cluster. These can be output to a =.dbf= file or saved as a text (>.txt=) file.  
Only 45 of the seed locations are displayed on the screen.  The user can scroll down or across by 
adjusting the horizontal and vertical slider bars and clicking on the Go button. 
 
 Second, for each order that is calculated, CrimeStat calculates the mean center of the 
cluster.  This can be saved as a >.dbf= file.  Third, either standard deviational ellipses or convex 
hulls of the clusters can be saved in in ArcGIS >.shp=, MapInfo >.mif=, Google Earth ‘kml’ (if the 
coordinates are spherical), or various Ascii formats. Again, the convex hulls display polygons 
around the incidents whereas the ellipses are determined by the number of standard deviations to 
be calculated (see above).   For small geographical area a 1X standard deviational ellipse may be 
appropriate since a 1.5X or 2X standard deviational ellipse can create an exaggerated view of the 
underlying cluster.  On the other hand, for a regional view, a 1X standard deviational ellipse may 
not be very visible.  The user has to balance the need to accurately display the cluster compared 
to making it easier for a viewer to understand its location. 
 
 As with the Nnh second- and higher-order clusters, these may cover incidents that were 
not clustered in the first-order.  Thus, one has to be careful in interpreting second- and higher-
order clusters.  Essentially, these are abstractions made up of first-order clusters.  In the routine, 
the first-order clusters are the primary clusters while the higher-order ones are ways to group the 
first-order clusters. 
 
  Naming conventions for ellipses 

 
Because there are also orders of clusters (i.e., first-order, second-order, etc.), there is a 

naming convention that distinguishes the order.   
 

For the ellipses, the convention is 
 

Rnnh<O><username> 
 
where O is the order number and username is a name provide by the user.  Thus, 
 

Rnnh1robbery 
 
are the first-order clusters for a file called >robbery= and 
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Rnnh2burglary 
 
are the second-order clusters for a file called >burglary=.  Within files, clusters are named 
 

Rnnh<O>Ell<N><username> 
 
where O is the order number, N is the cluster number and username is the user-defined name of 
the file.  Thus, 
 

Rnnh1Ell10robbery 
 
is the tenth cluster within the first-order clusters for the file >robbery= while  
 

Rnnh2Ell1burglary 
 
is the first cluster within the second-order clusters for the file >burglary=. 
 

For the convex hulls, the cluster numbers are the same as the ellipses but the prefix name 
is output with a >CRNNH1= prefix for the first-order clusters, a >CRNNH2= prefix for the 
second-order clusters, and a >CRNNH3= prefix for the third-order clusters.  Higher-order clusters 
will index only the number.   
 

Example 3: Rnnh Clustering of Vehicle Thefts 
 

A second example is the clustering of 2003 San Antonio robberies relative to the 2000 
population of census block groups.  The test is for clusters of robberies that are more 
concentrated than would be expected on the basis of the population distribution.5  Using the 
default threshold probabilities, a minimum sample size per cluster of 10, but a normal kernel 
function with a 0.5 mile fixed bandwidth, the Rnnh routine identified five first-order and one 
second-order cluster (Figure 7.13); the incidents are not shown.   
 
 Compare this distribution with the results of the Nnh on the same data, using the same 
parameters (Figure 7.14).  The Nnh found 9 first-order clusters and one second-order cluster. To 
illustrate the differences in the baseline population, the ellipses of both the regular (Nnh) and 
risk-adjusted (Rnnh) clusters are overlaid on top of 2000 population density of census block 
groups.    The cluster locations where there are both high volume (Nnh) and high-risk (Rnnh) 
involve two areas of low population density (just north of downtown) and one area of high 

                         
5  It is not an exact risk test since we are comparing 2003 robberies with 2000 population.  It is an 

approximate risk test. 



Figure 7.13:



Figure 7.14:
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population density (just outside the downtown area); in this latter case, the number of robberies 
is so high that the area is both high volume and high risk. The fifth overlapping cluster is to the 
west of downtown and is an area of moderate population density. On the other hand, the four 
regular cluster locations that are only high volume (Nnh only) are in areas of low to moderate 
population density.  In other words, the Rnnh routine identified areas of high risk for robberies 
whereas the Nnh routine identified areas of high volume. 
 
 Simulating Statistical Significance 

 
 Because the sampling distribution of the clustering method is not known, the Rnnh 
routine allows Monte Carlo simulations to approximate confidence intervals, similar to the Nnh 
routine (Dwass, 1957; Barnard, 1963).  The output is identical to the Nnh routine.  Essentially, it 
produces credible intervals for the number of first-order clusters, the area of clusters, the number 
of points in each cluster, and the density of each cluster. Second- and higher-order clusters are 
not simulated since their structure depends on the first-order clusters. The user can see whether 
the first-order cluster structure is different than that which is produced by a random distribution. 
See the notes above under Nnh for more details.   
 
 Uses of the Technique 
 
 The risk-adjusted nearest neighbor hierarchical clustering routine has several uses.  First, 
like the high volume nearest neighbor hierarchical clustering (Nnh) routine, it allows a hierarchy 
of clusters to be identified, from first-order to second- or higher-order.  As we see repeatedly 
with population dynamics, spatial clusters are frequently clustered together.  One can think of 
them as small zones of concentrated events that are, in turn, close to other zones of concentrated 
events. 
 
 Second, unlike the Nnh, the Rnnh routine allows these clusters to be defined in terms of 
risk.  Thus, it controls for the predominance of the population at risk.  This is particularly 
important in epidemiological studies where the number of disease incidents is always related to 
the population at risk. The risk indicates a location where there are factors that are causing the 
disease to erupt.  But, in crime analysis, too, analyzing incidents in relation to the number of 
potential victims can indicate problem neighborhoods where additional factors are triggering the 
outbreak (e.g., particular land uses that encourage disorder such as bars or pawn shops; poor 
social cohestion).  Crime prevention efforts, in particular, often target neighborhoods of high risk 
and not just high volume of incidents. The Rnnh can be a valuable tool in the identification of 
such neighborhoods. 
 
 Third, the Rnnh routine goes beyond simply clustering events on the basis of proximity 
and frequency and applies a single variable that can account for the distribution.  In other words, 
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the baseline variable is the first step in developing a model for explaining the distribution of the 
incidents, in this case the baseline variable itself.  In addition to focusing policing efforts on high 
volume or high risk neighborhoods, there needs to be an effort to build a statistical model of the 
phenomenon itself, both for prediction as well as for theory development. 
 
 Limitations of the Technique 
 

However, as with all methods, there are some limitations of the technique that are partly 
shared with the Nnh routine.  First, the method only clusters incidents (points); a weighting or 
intensity variable will have no effect. In Chapter 9, we will introduce a zonal variant of the Rnnh 
that allows a risk measure to be applied to zonal data.  But, the Rnnh by itself is only applicable 
to individual point locations. 

 
Second, the size of the grouping area is dependent on the sample size if the confidence 

interval around the mean random distance is used as the threshold distance criteria.  However, 
since the threshold distance is adjusted dynamically, this has less effect than in the Nnh since it is 
now a relative comparison rather than an absolute distance.  
 

Third, there is arbitrariness in the technique due to the minimum points rule. Different 
users could define the minimum differently, which could lead to different conclusions about the 
location of high risk clusters.  Finally, unique to the Rnnh, the method requires both an incident 
file (the primary file) and a baseline file (the secondary file.   
 

Nevertheless, the Rnnh routine is a useful technique for identifying clusters that are more 
concentrated than would be expected on the basis of the population distribution.  
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Endnotes 
 

i. The particular steps are as follows: 
 

1. All distances between pairs of points are calculated, using either direct or indirect 
distance as defined on the measurements parameters page.  The matrix is assumed 
to be symmetrical, that is the distance between A and B is assumed to be identical 
to the distance between B and A. 
 

2. The mean expected random distance is calculated using formula 6.2 and the 
threshold distance (the confidence interval for the corresponding t) is calculated 
using formulas 7.2 and 7.3 depending on whether it is a lower or upper confidence 
interval.  The particular interval is selected by the user on the slide bar. 

 
3. All pairs that are separated by a distance smaller than the threshold distance are 

selected for clustering and placed in a reduced matrix.  Any incident point that 
does not have another point within the threshold distance is not clustered.  

 
4. In the reduced matrix, for each point the number of other points that are within the 

threshold distance are counted and are sorted in descending order. 
 
5. The incident point with the largest number of below threshold distances is 

selected for the initial seed of the first cluster. 
 
6. All other points that are within the threshold distance of the initial seed point are 

selected for the initial cluster 1 and temporarily removed from the reduced matrix. 
 
7. The process is repeated for the remaining points in the reduced matrix (i.e., an 

initial seed is selected, all points within the threshold distance of that seed are 
clustered, and all the points are temporarily removed). 

 
8. For each of the initial clusters that were identified, the center of minimum 

distance (CMD) is calculated to identify the cluster center. 
 
9. The clustering process is repeated but using the CMD for each cluster to define 

each cluster.  This process continues until no points change their cluster 
membership. 
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Endnotes (continued) 
 

10. Once all the points in the reduced matrix have been initially clustered, the total 
number of points within each initial cluster is counted.  If the number is equal to 
or greater than the minimum specified, then the cluster is kept.  If the number is 
less than the minimum specified, then the cluster is dropped.  

 
11. The final clusters are sorted in descending order of the number of points and the 

mean center of each is calculated to identify the cluster center. 
 
12. The second- and higher-order clusters use the CMD of the first-order clusters as 

‘points’ and follow the same algorithm. 
 

ii. The particular steps are as follows: 
 

1. Using the same p-values selected in the first-order, the mean random expected 
distance is calculated.  However, the sample size is the number of first-order 
clusters identified, not the original number of points.  Thus, the threshold distance 
is calculated by 
 
 	 	 	 ∗      (7.8) 
  
where dNN2(ran)  is random nearest neighbor distance among the first-order clusters 
(i.e., with M first-order clusters rather than N points) and SEd1(ran) is the standard 
error of the random nearest neighbor distance among the first-order clusters. 
Thus, there is a different threshold distance for the second-order clustering.  The 
t-value specified in the first-order clustering is maintained for second- and higher-
order clustering. 

 
2. All distances between first-order cluster centers are calculated and only those that 

are smaller than the second-order threshold distance are selected for second-order 
clustering. 

 
3. If there are no distances between first-order cluster centers that are smaller than 

the second-order threshold distance, then the clustering process ends. 
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Endnotes (continued) 
 

4. If there are distances between first-order cluster centers that are smaller than the 
second-order threshold distance, then the steps specified in endnote  above are 
repeated to produce second-order clusters.  A minimum of four first-order clusters 
is required to allow a second-order cluster and four previous-order clusters to 
allow a higher-order cluster. 

 
5. If there are second-order clusters, then this process is repeated to either extract 

third-order clusters or to end the clustering process if no distances between 
second-order cluster centers are smaller than the (new) third-order threshold 
distance or if there are fewer than four new seeds in the cluster. 

 
6. The process is repeated until no further clustering can be conducted, either all 

sub-clusters converge into a single cluster or the threshold distance criteria fails or 
there are fewer than four seeds in the higher-order cluster. 
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Attachments 
 
 

 



Visualizing Change in Drug Arrest Hot Spots 
Using Nearest Neighbor Hierarchical Clustering: 

Charlotte, N.C.  1997 – 98 
 

James L. LeBeau 
Administration of Justice 

Southern Illinois University at Carbondale 
 

Stephen Schnebly 
Criminology & Criminal Justice 
University of Missouri – St Louis 

 
 The CrimeStat Nearest Neighbor Hierarchical clustering routine and GIS 
were used for defining, comparing, analyzing, and visualizing changes in drug arrest 
clusters between 1997 and 1998.  Using a minimum cluster size of 25 arrests some of 
the emerging patterns or relationships include: 1) the overlapping of secondary 
clusters, but those emerging during 1998 were much larger, especially in the north 
because of new primary clusters; 2) many primary clusters during 1997 remaining 
static or increasing in area during 1998; and 3) the disappearing of some 1997 
primary clusters during 1998, with new clusters emerging close by implying 
displacement. 

 
 
 

N = 30

N = 29

N = 4

N = 3

1998

1997

Clusters
Primary Secondary

 Total
Arrests

4766

4802

Minimum
Cluster 
 Size 

Source:CMPD

25

j.l.l.01 
 



Using Nearest Neighbor Hierarchical Clustering to 
Identify High Crime Areas Along Commercial Corridors 

 
Philip R. Canter 

Baltimore County Police Department 
Towson, Maryland 

 
Robberies in Baltimore County had increased by 45% between 1990 and 199, and by 

1997, were the highest on record. In 1997, 73% of all reported robberies in Baltimore County 
were occurring in commercial areas. The department wanted to target commercial districts 
with intensive patrol and outreach programs. These high crime commercial districts were 
identified as Business Patrol Initiative (BPI) areas. A total of 40 police officers working two 8-
hour shifts were assigned to BPI areas. Robberies in the BPI areas declined by 26.7% during 
the first year of the program and another 13.8% one year following the BPI program. 

 
Police analysts used CrimeStat’s Nearest Neighbor Hierarchical clustering (Nnh) 

method to identify high crime areas along commercial corridors. The Nnh routine was very 
effective in identifying commercial areas having the highest concentration of crime. The 
clustering also demonstrated that commercial crime was not restricted to county borders; 
rather, crime crossed municipal boundaries into neighboring jurisdictions. A neighboring 
jurisdiction was shown the crime cluster map, leading to their decision to implement a 
similar BPI program.  
 
 

County Line 

Nearest Neighbor
Hierarchical Cluster

Business Patrol Initiative Area 



Arrest Locations as a Means for Directing Resources 
 

 Daniel Bibel 
Massachusetts State Police 

Crime Reporting Unit 
Framingham, Massachusetts 

 
The Massachusetts State Police is collecting incident addresses as part of its 

state-level implementation of the FBI’s National Incident Based Reporting System 
(NIBRS).  They intend to develop a regional and statewide crime mapping and 
analysis program.  As an example of the type of analysis that can be done with the 
enhanced NIBRS database, the State Police’s Crime Reporting Unit analyzed year 
2000 drug arrests for one city in the Commonwealth, focusing on arrests for 
possession of heroin and marijuana.  The arrest locations were plotted, with the size 
of points proportionate to the amount of drugs seized.  A nearest neighbor clustering 
analysis was done of the data.  It indicates that, while there is some small amount of 
overlap, the arrest locations for the two drug types are generally different. 
 

This type of analysis can be very useful for smaller police agencies that do not 
have the resources to conduct their own analysis of crime data.  It may also prove 
useful for crime problems with cross-jurisdictional boundaries. 
 
 



Use of CrimeStat in Crime Mapping in India: 
An Application for Chennai City Policing 

 
Jaishankar Karuppannan 

Department of Criminology & Criminal Justice 
Manonmaniam Sundaranar University 

Tamil Nadu, India 
 

The present study was done as an implementation of GIS technology in 
Chennai (Madras), India.  In the present study hotspot analysis was done with the 
help of CrimeStat. We converted the output to Arcview shape files. 

 
When hotspot analysis examined changes over a period of time, the change 

seemed to be significant. There exists not only a change in the location of the 
hotspots, but also in their areal extent. The numbers of hotspots also differ over 
time. The map shows hotspots for residential burglary for both day and night. The 
hot spots for daytime house break-ins are confined to a smaller area in the west of 
the city, whereas the hot spots for nighttime residential break-ins are seen in all 
parts of the city.  In particular, the Posh area of Anna Nagar is more prone to 
daytime burglaries. In this area, a higher proportion of couples work, which appears 
to make the homes in this neighborhood more open for burglaries.  

 
 

 



Identifying Duplications in Genomic Data 
Using the CrimeStat  Nearest Neighbor Hierarchical Spatial Clustering Routine 

Nathalie Pavy and Jean Bousquet 
Université Laval,G1K 7P4 Québec, QC, Canada, nathaliepavy@yahoo.fr 

Sequencing projects provide the foundation for studying the organization of whole genomes. 
Comparisons of genomic sequences from related species provide a new insight into genome 
evolution for instance by showing locally conserved chromosomic segments. Detecting such 
conservation is far from trivial. Indeed, chromosome rearrangements, duplications and gene losses 
may hide traces of ancestry. The Nearest Neighbor Hierarchical Clustering routine (NNH) was 
applied to analyze regions duplicated between Arabidopsis chromosomes 2 and 4. These are well 
known for sharing similar series of genes derived from segmental duplication. Based on sequence 
similarities, each gene located on chromosome 2 was associated to one or several similar genes 
located on chromosome 4. Coordinates used as input for the NNH routine were the gene ranks 
along the chromosomes. A total of 53 clusters made of at least 6 similar genes were recovered. The 
significance of this finding was assessed with 1000 Monte Carlo simulations; only three clusters 
would be expected by chance alone (P>0.01). The gene clusters identified with the NNH approach 
were consistent with known duplicated chromosomic regions. The clusters found by using the NNH 
approach were vizualised with the GIS software CartoMapTM. This graphical representation 
highlights in a visually comprehensive way the patterns of duplicated regions. The shape of the 
clusters and the relative positions of these reflect various evolutionary events that led to the 
structure of the present genome, as shown below (top-left): linear patterns indicate large segmental 
duplications with conserved gene order with or without inversion, and large dots indicate more 
condensed gene clusters. 

Clusters of at least six genes found on Arabidopsis chromosome 2 and duplicated on chromosome 4. 
Clusters found with the NNH routine and visualized with 
CartoMapTM [http://www.cartoworld.com/cartomap.htm] 

Clusters extracted from the Paralogon database 
[http://wolfe.gen.tcd.ie/athal/dup] 

 

 

Dot-Plot obtained by using DAGchainer 
[http://dagchainer.sourceforge.net/] [Haas et al., 2004, Bioinformatics 

20:3643-3646] 

  

 



Risk Adjusted Nearest Neighbor Hierarchical Clustering of Tuberculosis 
Cases in Harris County, Texas: 1995 to 1998 

 
 Matthew L. Stone, MPH 

Epidemiology and Program Evaluation Unit 
 University of California at San Francisco/California Department of Health Services 
 Sacramento, CA 
 
 Data was collected from an ongoing, population-based, active surveillance and 
molecular epidemiology study of tuberculosis cases reported to the City of Houston 
Tuberculosis Control Office from October 1995 to September 1998.  During this time, 1774 
cases of tuberculosis were reported and 1480 of those who participated in this study were 
successfully geocoded. 
 
 CrimeStat was used to make an initial survey of potential hot spot areas of 
tuberculosis cases where more focused TB control efforts could be implemented.  Given a 
.05 level of significance for grouping a pair of points by chance and a minimum of five cases 
per cluster, 24 first-order clusters and one second-order cluster were detected after 
adjusting for the underlying population.  Most first-order clusters were detected in the 
center of Harris County, including the metropolitan downtown area.  By adjusting for the 
underlying population, the clusters identify areas with higher than average TB incidence. 
Some of these clusters are homeless shelters as many homeless persons are particularly 
prone to TB.  
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Using Risk Adjusted Nearest Neighbor Hierarchical Clustering to 
Compare Actual and Media Hotspots of Homicide 

 
Derek J. Paulsen 

Department of Criminal Justice and Police Studies 
Eastern Kentucky University 

 
Crimestat offers an excellent method for determining risk adjusted hot spots 

of crime incidents within a jurisdiction.  Risk-adjusted nearest neighbor hierarchical 
spatial clustering (Rnnh) is a spatial clustering routine that groups points together 
based on both proximity to other points and the distribution of a baseline variable.  
In this example two different Rnnh analyses were conducted and compared for 
homicides in Houston, Texas. The first involves homicide incident locations adjusted 
for the population of each census tract, while the second involves incidents that were 
covered in the newspaper adjusted for the homicide rate of each census tract. The 
purpose of this analysis is to determine if there are differences in the spatial 
clustering of actual homicide incidents and those that are covered in the newspaper.   
 
 The preferences for the analysis were the same for both Rnnh analyses.  For 
the primary file (homicide incidents & incidents covered in the newspaper) the pair 
probability search radius was set at .01, with a minimum of 10 points per cluster.  
For the secondary file (population & homicide rate), a quartic kernel density 
interpolation was used with an adaptive bandwidth and a minimum sample size of 
100.  Importantly, the analysis showed that media hot spots and actual hot spots do 
not coincide. Media coverage showed homicides to be concentrated in different areas 
than they are actually concentrated. 
 
Actual Homicide Hot Spots vs. Media Coverage Hot Spots in Houston Texas 



Seizures of Tiger Parts and Derivatives in India during 2000 – 2012 
 

Sarah Stoner 
TRAFFIC International 

Kuala Lumpur, Malaysia 
 

India is home to over half of the world’s wild Tiger population and as a consequence records 
the greatest number of seizures globally. Since 2000, 336 seizures have been reported equating to an 
estimated 529 dead Tigers. Hotspot analysis of Tiger seizures has never been conducted in India and 
determining where clusters of activity exist is problematic. 
 

Using the Crimestat nearest neighbour hierarchical clustering routine (Nnh), five significant 
clusters of seizures were identified. ArcGIS was used to map both the seizures and one standard 
deviational ellipses and were overlaid on tiger distribution and Protected Area* layers.  Four of the 
ellipses were related to towns or cities which are also within close proximity of a Tiger reserve. 
Furthermore, transboundary trading of Tigers is prevalent but often securing agreement to combat 
trade at this level is challenging. Two clusters were also close to the borders of Nepal and Bangladesh. 
These findings will create leverage for law enforcement agencies to focus on the areas where seizures 
are most likely to occur to affect the greatest impact and will help create collaborative partnerships 
with neighbouring countries to tackle the issue at a regional level. 
 
*A clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to 
achieve the long-term conservation of nature with associated ecosystem services and cultural values. SOURCE: World 
Database Protected Area 
 
Figure 1: Tiger seizures in India (2000-2012, n=336 
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8.1 

Chapter 8: 

Hot Spot Analysis of Points: II 
 

 This chapter continues the discussion of hot spots.  Two additional routines are discussed: 
the STAC routine and the K-Means routine.  Figure 8.1 displays the Hot Spot Analysis II page. 
The first of these routines, the Spatial and Temporal Analysis of Crime (STAC), was developed 
by the Illinois Criminal Justice Information Authority and integrated into CrimeStat in version 2.  
The second routine - K-Means, is a partitioning technique.  We will start first with STAC. 
 
Spatial and Temporal Analysis of Crime (STAC) 

 
 The amount of information available in an automated pin map can be enormous. When 
geographic information systems were first introduced into policing, there were few ways to 
summarize the huge reservoir of mapped information that was suddenly available.  In 1989, 
police departments in Illinois asked the Illinois Criminal Justice Information Authority to 
develop a technique to identify Hot Spot Areas, the densest clusters of points on a map (Block, 
1994; Block & Block, 1999; Block & Block, 1995).  The result was STAC, the first crime hot 
spot program.1

 

  Through the years, bells and whistles have been added to STAC, but the 
algorithm has remained essentially the same.  STAC is a quick, visual, easy-to-use program for 
identifying Hot Spot Areas.  

 The STAC Hot Spot Area routine in CrimeStat searches for and identifies the densest 
clusters of incidents based on the scatter of points on the map.  The STAC Hot Spot Area routine 
creates areal units from point data and identifies the major concentrations of points for a given 
distribution. It then represents each dense area by either a standard deviational ellipse or a 
convex hull. 
 
 STAC is a scan-type clustering algorithm in which a circle is repeatedly laid over a grid 
and the number of events within the circle are counted (Openshaw, Charlton, Wymer and Craft, 
1987; Openshaw, Craft, Charlton, and Birch, 1988; Turnbull, Iwano, Burnett, Howe, and Clark, 
1990; Kulldorff, 1997).  It, thus, shares with those other scan routines the property of multiple 
tests, but it differs in that the overlapping clusters are combined into larger cluster until there are 
no longer any overlapping circles.  Thus, STAC clusters can be of differing sizes.   
  
                         
1  STAC is an abbreviation for Spatial and Temporal Analysis of Crime.  The temporal section of the program 

was superceded by several other programs and was not updated for the millennium.   Because many law 
enforcement users refer to STAC ellipses, we have retained that name.  



Hot Spot Analysis II Screen
Figure 8.1:



8.3 

The STAC Hot Spot Area routine in CrimeStat searches for and identifies the densest 
clusters of incidents based on the scatter of points on the map and then creates areal units from 
point data.  It does this by identifying major concentrations of points for a given distribution and 
represents each dense area by either a standard deviational ellipse or a convex hull, or both (see 
Chapter 4).  The boundaries of the ellipses or convex hulls can easily be displayed as mapped 
layers by standard GIS software.  
 
 STAC is not constrained by artificial or political boundaries, such as police beats or 
census tracts.  This is important, because clusters of events and places (such as drug markets, 
gang territories, high violence taverns, or graffiti) do not necessarily stop at the border of a police 
beat.2

 

  Also, shading over an entire area may make it seem that the whole neighborhood is high-
crime (or low-crime), even though the area may contain only one or two dense pockets of crime.  
Therefore, area-shaded maps could be misleading.  In contrast, STAC Hot Spot Areas are based 
on the actual clusters of events or places on the map. 

 STAC is designed to help the crime analyst summarize a vast amount of geographic 
information so that practical policy-related issues can be addressed, such as resource allocation, 
crime analysis, beat definition, tactical and investigation decisions, or development of 
intervention strategies.  An immediate concern of a law enforcement user of crime points on a 
GIS is the identification of areas that contain especially dense clusters of events. These pockets 
of crime demand police attention and can indicate different things for various crimes. For 
instance, a grouping of Criminal Damage to Property offenses could indicate gang activity.  If 
motor vehicle thefts consistently cluster in one section of town, it could point to the need to 
change patrol patterns and procedures. 
 
 To take an example, Figure 8.2 shows the location of the seven densest Hot Spot Areas of 
street robbery in 1999 in Chicago.  Four of the seven span the boundaries of police districts and 
two cover only a small part of a larger district.  In a shaded area map, these dense clusters of 
robbery might be not easily identifiable.  An area that is really dense might appear to be low-
crime because it is divided by an arbitrary boundary. Using a shaded areal map aggregating the 
data within each district would give a general idea of the distribution of crime over the entire 
map, but it would not tell exactly where the clusters of crime are located.   
 

For example, Figure 8.3 zooms in on Hot Spot Area 4 (the northernmost Hot Spot Area in 
Figure 8.2).  Hot Spot Area 4 covers parts of two districts (shown by a pink boundary line in 
Figure 8.2). There are also four beats (shown by blue boundary lines). The shaded map indicates 
                         

2  However, there may be inadequate or, even, a lack of data on the other side of a border so that a hot spot is 
not fully defined. 



STAC Hot Spots for 1999 Street RobberiesFigure 8.2:



STAC 1999 Street Robbery Hot Spot Area 4Figure 8.3:



8.6 

many incidents in beat 2311, but few in beats 2312, and 2313.3

 

   The incident distribution 
indicates that, while few incidents occurred overall in 2312 and 2313, most of the incidents that 
did occur were near to beat 2311.  Incidents in beat 2311 mainly occurred on its eastern 
boundary. Portions of the beat were relatively free from street robbery.  The Hot Spot Area 
identifies this clustering that spans beats and districts.  Hot Spot Areas that overlap beat and 
district boundaries might suggest that patrol officers in these neighboring areas should coordinate 
their efforts in combating crime. 

How STAC Identifies Hot Spot Areas 
 

The following procedures identify hot spots in STAC. The program implements a search 
algorithm, looking for Hot Spot Areas:   
 

1. STAC lays out a 20 x 20 grid structure (triangular or rectangular, defined by the 
user) on the plane defined by the area boundary (defined by the user on the 
Measurement Parameters page).   

 
2. At each intersection of grid lines, there is a node.  STAC places a circle on every 

node of the grid with a radius equal to 1.414 (the square root of 2) times the 
specified search radius. Thus, the circles overlap. 

 
3. STAC counts the number of points falling within each circle, and ranks the circles 

in descending order. Multiple events can be counted at the same location. 
 

4. STAC records all circles with at least two data points along with the number of 
points within each circle up to a maximum of 25 circles,. The X and Y 
coordinates of any node with at least two incidents within the search radius are 
recorded along with the number of data points found for each node. 

 
5. These circles are then ranked in descending order according to the number of 

points and the top 25 search areas are selected.  
 

6. If a point belongs to two different circles, the points within the circles are 
combined.  This process is repeated until there are no overlapping circles.  This 
routine avoids the problem of data points belonging to more than one cluster, and 
the additional problem of different cluster arrangements being possible with the 
same points.  The result is called Hot Clusters. 

                         
3  The first two digits of a beat number designate the District. 



8.7 

Using the data points in each Hot Cluster, the routine calculates the standard deviational 
ellipse or convex hull (see Chapter 4).  These are called Hot Spot Areas. Because the standard 
deviational ellipse is a statistical summary of the Hot Cluster points, it may not contain every 
Hot Cluster point.  It also may contain points that are not in the Hot Cluster.  On the other hand, 
the convex hulls will create a polygon around all points in the cluster. 
 
 The user can specify different search radii and re-run the routine.  Given the same area 
boundary, different search radii will often produce different numbers of Hot Clusters.  A search 
radius that is either too large or too small may fail to produce any.  Experience and 
experimentation are needed to determine the most useful search radii. 
 

Steps in Using STAC 
 

STAC is available on the Hot Spot Analysis II tab under Spatial Description (see Figure 
8.1).  A brief summary of the steps is as follows: 
 

1. STAC requires a primary file and a reference file (see Chapter 3).  Optionally, 
STAC will use coverage area (on the Measurement Parameters tab) for simulation 
runs.  Note: while STAC runs quite quickly, it runs more quickly with a Euclidean 
coordinate system such as UTM or State Plane.  
 

2. Define the reference file (see Chapter 3).  While CrimeStat does not include a 
data base manager or query system, a user can carry out analysis of different areas 
of a jurisdiction by using the boundaries of several reference areas.  For example, 
define all of Chicago as a reference area and define each of the twenty-five police 
districts as additional reference areas.   Hot Spot Areas can be identified for the 
city as a whole and for each district.  In other words, the same incident file may 
be used for analysis of different map areas by using multiple reference files. 

3. Define the search radius.  Generally, a two-stage analysis is best.  Start with a 
larger search radius and then analyze Hot Spot Areas with a smaller search radius. 
A search radius of more than one mile may not yield useful results in an area the 
size of Chicago (230 square miles). 

 
4. Set the output units to miles or kilometers.  

 
5. Specify the file output name for the ellipses or convex hulls.  
 
6. Click on the STAC parameters button. 

 The object of STAC is to identify hot spots and display them with ellipses or convex 
hulls. Its key function is visual.  Save the ellipses or hulls in the form most appropriate for the 
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system (e.g., ArcGIS, MapInfo).  Because the ellipses or convex hulls are generated as polygons, 
they can be used for selections, queries, or thematic maps in a GIS.  In addition to the ellipses 
and convex hulls, a table is output with all the information on density and location for each 
ellipse.  It can be saved to a ‘dbf’ file, which can then be read by any spreadsheet program.  The 
ellipses and convex hulls are numbered in the same order as the printed output. 
 

STAC Parameters  
 

The two most important parameters for running STAC are the boundary of the study area 
(reference area) and the search radius. A detailed discussion of the parameters follows.  Figure 
8.4 shows the STAC parameters screen.  
 

Search radius 
 

The search radius is the key setting in STAC.  In general, the larger the search radius, the 
more incidents that will be included in each Hot Cluster and the larger the ellipse that will be 
displayed.  Smaller search radii generally result in more ellipses of a smaller size.   
 
 A good strategy is to initially use a larger radius and then re-analyze areas that are ‘hot’ 
with a smaller radius.  In Chicago, we have found that a 0.5 mile radius is appropriate for the city 
as a whole and a 0.25 mile search radius for one of the 25 districts.   It will be necessary to 
experiment to determine an appropriate search radius. 
 

 Units 
 

Specify the units for the search radius.  The default is miles and the default search radius 
is 0.5 miles.   

 
Minimum points per cluster 

 
Specify the minimum number of points to be included in a Hot Cluster.  The limit for the 

minimum points in a Hot Cluster is two.  The usual choice is to use a minimum of 10. 
 

Boundary 
 

Select the reference file to be used for the analysis.  The user can choose the boundary 
from the data set (i.e., the minimum and maximum X/Y values) or from the reference boundary.   
 
  



STAC Parameters Setup
Figure 8.4:
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 In our opinion, the choice of the reference boundary is best.  If the data set is used to 
define the reference boundary, the rectangle defined by the minimum and maximum X and Y 
coordinates will be used.  
 

Scan type 
 

Select the scan type for the grid.  Choose Rectangular if the analysis area has a mostly 
grided street pattern.  Chose Triangular if the analysis area generally has an irregular street 
pattern. 
 

Graphical output files 
 

Select whether the graphical output will be displayed as standard deviational ellipse or as 
convex hulls, or both (see Chapter 4).  For ellipses, select the number of standard deviations for 
the ellipses. One (1X), 1.5X, and 2X standard deviational ellipses can be selected.  

 
 One standard deviational ellipse should be sufficient for most analysis.  While 1X 
standard deviational ellipses rarely overlap, 1.5X and 2X standard deviational ellipses often do.  
A larger ellipse will include more of the Hot Cluster points; a small ellipse will produce a more 
focused Hot Cluster identification. The user will have to work out a balance between defining a 
cluster precisely compared to making it so large as to be unclear. 
 

Simulation runs 
 

Specify whether any simulation runs are to be made. To test the significance of STAC 
clusters, it is necessary to run a Monte Carlo simulation (Dwass, 1957; Barnard, 1963).  
CrimeStat includes a Monte Carlo simulation routine that produces approximate confidence 
intervals (called credible intervals) for the particular STAC model that has been run. Essentially, 
the Monte Carlo simulation assigns N cases randomly to a rectangle with the same area as 
specified on the Measurement Parameters tab and evaluates the number of clusters according to 
the defined parameters (i.e., search radius).  The simulation routine repeats the random clustering 
K times, where K is defined by the user (e.g., 100, 1,000, 10,000).   

 
 By running the simulation many times, the user can assess credible intervals for the 
particular number of clusters and density of clusters.  The default is zero simulation runs..  If a 
simulation run is selected, the user should identify the area of the study region on the 
Measurement Parameters tab.  It is better to use the jurisdictional area rather than the reference 
area if the jurisdiction is irregularly shaped. For those jurisdictions, using the area defined by the 
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reference file coordinates (minimum X/Y and maximum X/Y) may result in identifying areas as 
hot spots that are not. 

 
 To compare the STAC output with the Monte Carlo simulation, there are two criteria that 
can be used – the number of clusters and cluster density (incidents per unit area).  However, 
these tend to have contrary trends which depend on the search circle.  Since STAC works by, 
first, counting incidents that fall within a search circle and, second, by aggregating overlapping 
search circles, a larger search circle will tend to show fewer, but higher density, clusters than 
would be expected on the basis of chance.  The difference between the density of incidents in 
STAC ellipses in a spatially random data set and the STAC ellipses in the actual data set is a test 
of the strength of the clustering detected by STAC.  Alternatively, a smaller search circle will 
tend to identify more clusters than would be expected on the basis of chance.   In general, for 
citywide planning purposes, use a larger search circle (e.g., 0.5 miles) while for neighborhood 
planning purposes, use a smaller search circle (e.g., 0.1 miles or 0.25 miles). 
 

Output 
 
Ellipses or convex hulls 

 
 The ellipses are output with a prefix of ‘St’ before the output file name while the convex 
hulls are output with a prefix of ‘Cst’before the output file name. ArcGIS ‘shp’ files can be 
opened as themes and can also be added as a MapInfo layer using the Universal Translator Tool.  
MapInfo Mif/Mid files must be imported using the command ‘Table Import’. Both MapInfo and 
ArcGIS files are polygons and can be used for queries and thematic mapping. Google Earth ‘kml’ 
file can be displayed in that program. 
 
  Printed Output 
 
 Table 8.1 shows the printed output.  Be sure to record the file name and the reference file 
(if any that is used).  The output includes:  
 

1. The first section of the output documents parameter settings and file size. Sample 
size indicates the number of points in the file specified in the setup. 
 

2. Measurement Type indicates the type of distance measurement, direct or Indirect 
(Manhattan).  

 
3. Scan Type indicates a rectangular or triangular grid specified in the setup. 
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Table 8.1: 
Printed Output for STAC 

1999 Street Robberies on Chicago’s Northeast Side 
 
Spatial and Temporal Analysis of Crime: 
---------------------------------------    
 
    Sample size ...........:  1181 
    Measurement type ......:  Direct 
    Scan type....... ......:  Rectangular 
    Input units .... ......:  Degrees 
    Output units ... ......:  Miles, Squared Miles, Points per Squared Miles 
    Standard Deviations ...:  1 
    Search radius..........:  804.672000 
    Boundary...............:  -76.83302,39.23274 to -76.38390,39.59103 
    Points inside boundary.:  1179 
    Simulation runs .......:  1000 
            Ellipse 
Cluster  Mean X   Mean Y    Rotation  X-Axis   Y-Axis  Area  Points  Density 
-------  -------  -------   --------  -------  -----   ----  ------  ------- 
 1    -76.44915  39.31484  89.41867  1.04768  0.25053 0.82460  106  128.546688 
 2    -76.73681  39.28658  69.91502  0.22142  0.88202 0.61354   63  102.682109 
 3    -76.57098  39.38499  37.10812  0.34793  0.82213 0.89863   61   67.880882 
 4    -76.77129  39.35987  11.26360  0.94336  0.26216 0.77695   61   78.511958 
 5    -76.51830  39.26019   8.37773  0.43717  0.25497 0.35017   43   22.796997 
 6    -76.60231  39.40086  14.84392  0.17969  0.29466 0.16634   36   16.423811 
 7    -76.73087  39.34246  41.07812  0.31007  0.25885 0.25215   35   38.806566 
 8    -76.75451  39.31110  74.78196  0.19154  0.31572 0.18998   24   26.326405 
 
 
    Distribution of the number of clusters found in simulation (percentile):     
    Percentile Clusters            Area       Points          Density 
    ---------- -------- --------------- ------------ ---------------- 
           min       12         0.01113            5         4.673554 
           0.5       13         0.02389            5         4.924993 
           1.0       13         0.03587            5         4.977644 
           2.5       14         0.05081            5         5.236646 
           5.0       14         0.06177            5         5.505124 
          95.0       19         1.24974           14        82.281060 
          97.5       19         1.39923           16       101.053102 
          99.0       20         1.58861           17       140.078387 
          99.5       20         1.67065           19       209.279368 
           max       20         2.08665           23       449.401912 
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4. Input Unit indicates the units of the coordinates specified in the setup, degrees (if 
latitude/longitude) or meters or feet (if projected).   
 

5. Output Units indicate the unit of density and length specified in the setup for the 
output and ellipses. Output Units are generally, miles or kilometers.  

 
6. Search Radius is the units specified in the setup.  In Figure 8.2 above, this is 

meters. 
 
7. Boundary identifies the coordinates of the lower left and upper right corner of the 

study area.   
 

8. Points inside the boundary count the number of points within the reference file.  
This may be fewer than the number of points in the total file when a smaller area 
is being used for analysis (see Table 8.1).  

 
9. Simulation Runs indicate the number of runs, if any specified in the setup. 

 
10. Finally, STAC printed output provides summary statistics for each Hot Spot Area: 

 
A. Cluster identification number for each ellipse.  This corresponds to their 

order in a table view in ArcGIS or the browser in MapInfo. 
 
B. Mean X and Mean Y - Coordinates of the mean center of the ellipse. 

 
C. Rotation- the degrees the ellipse is rotated (0 is horizontal; 90 is vertical). 

 
D. X-axis and Y-axis - the length (in the selected output units) of the x and y 

axis.  In the example, the length of the x axis of ellipse 1 is 1.04768 miles. 
 

E. Area - the area of the ellipse in square units.  Ellipses are ordered 
according to their size.  In the example, Ellipse 1 is 0.8246 square miles. 

 
F. Points - the number of points in the Hot Cluster.  In the example, there are 

61 points in cluster 3. 
 
G. Cluster Density - the number of points per square unit.   The largest cluster 

is not necessarily the densest.  In this output, cluster eight is the smallest, 
but its density is higher than two other clusters.  
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H. The distribution of the simulations (if specified).  
 

 Note that the number of actual clusters in the example (8) is smaller than the number that 
would be expected if the data were randomly distributed at the 95 percentile (19).  The reason for 
this is that STAC aggregates smaller clusters that are close to each other, that is where their 
search circles overlap.  Hence, with a large search circle, as in this output – 0.5 miles, will 
generally lead to fewer clusters than a Monte Carlo simulation.  On the other hand, the cluster 
density indicates that two of the clusters (1 and 2) have a higher density than the 95 percentile 
density.  These clusters are most likely real clusters, rather than random collections, and should 
be the focus of further analysis.   
 

The best way to print or save CrimeStat printed output is to place the cursor inside the 
output window and Select all, then copy and paste the selection into a word processing document 
in landscape mode.   Make sure to adequately annotate the file, especially the type of incidents, 
the reference boundary, and the name of the output file.  This can be very important for future 
reference. 

 
Example: A STAC Analysis of 1999 Chicago Street Robberies 

 
STAC Hot Spot Areas were calculated for all street (or sidewalk or alley) robberies 

occurring in Chicago in 1999 (n=13,009).4

 

  There were 13,007 within the search boundary.  The 
search radius was set for 750 meters (approximately 0.5 mile), and the ellipses were set to one 
standard deviation.  Ten was the minimum number of incidents per cluster.   

In Figure 8.2 (shown earlier), STAC detected seven ellipses. The areas of the seven 
ellipses ranged from 5 square kilometers to 0.7 square kilometers, and the number of incidents in 
an ellipse ranged from 760 to 153.   The smallest ellipse (number 7 in Figure 8.2) was the 
densest, 222 robberies per square kilometer.  Of the 13,007 street robberies, 2,375 were in a 
cluster. Therefore, 18 percent of all of Chicago’s street robberies in 1999 occurred in 6% of its 
233 square mile area. 
 

To map the results, the ellipse boundaries were imported into MapInfo as a mif/mid file 
and overlaid on a map of police districts.  The large blue rectangle in Figure 8.2 designates the 
search boundary (reference file).  O’Hare Airport was excluded because exact geo-coding is not 
possible for the few street robberies that occurred there.   At a city-wide scale, the map is 
interesting, but is mainly useful for confirming what is already known.  Ellipse 1, on the west 

                         
4  The Chicago Police Department made available the incidents in this analysis to Richard Block for the 

evaluation of the Chicago Alternative Police Strategy (CAPS). 
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side, has had a high level of violence for many years. Ellipses 2 and 6 are centered on areas 
where high rise public housing projects are gradually being abandoned.  Overall, these ellipses 
are not very useful for tactical purposes.  However, they point out that four Hot Spot Areas cross 
District boundaries, and that the large number of street robberies in these areas might be lost in 
separate district reports. 
 
 A Neighborhood STAC Analysis 
 

The presence of Ellipse 4 (the northernmost ellipse in Figure 8.2) might be unexpected to 
many Chicagoans.  The mid-Northside, near the Lake Michigan, is generally considered to be a 
relatively affluent and safe neighborhood.  However, the neighborhood around Ellipse 4 has had 
a high level of crime for many years.  It was an entertainment center in the Roaring Twenties, 
and several institutions of that era remain. Today it is an area with multiple, often conflicting, 
uses.  A more detailed analysis of the neighborhood with the help of STAC may point to specific 
areas that need increased patrol or prevention activities.    
 
 The second step of STAC analysis was to define a focused search boundary area around 
Ellipse 4.   This was done easily by creating a new map layer in MapInfo and drawing a 
rectangle around the desired study area.  Clicking on the study area gave the required CrimeStat 
reference boundary maximum and minimum coordinates.  Using this more focused boundary, 
STAC was run a second time with a 200 meter search radius and the same file of 13,009 cases.  
The search boundary (reference file) now contained 442 incidents.  STAC detected three ellipses 
that contained 231 incidents. The STAC ellipses were then imported into MapInfo and mapped 
(Figure 8.5).   
 

As the area covered by a map grows smaller, detailed information about crime patterns 
and the community can be added.  In this map, the STAC ellipses were overlaid on the locations 
of incidents (sized according to the number occurring at each location) and streets.5

 

  Much of the 
area is relatively crime-free.  The most frequent locations for street robbery do not coincide with 
main streets.   Street robbery incidents tend to cluster near rapid transit stations and the blocks 
immediately surrounding them. For example, Argyle Street, between Broadway and Sheridan, is 
the site of ‘New China Town’.  It is an area with a number of street robberies and is a destination 
area for ‘Northsiders’ who want an inexpensive Chinese or Vietnamese meal. 

                         

5  In general a designated main surface street occurs every mile on Chicago= s grid, and there are eight blocks 
to the mile.   In this map, Lawrence and Ashland are main Grid streets.  In this area, there are also several 
diagonal main streets that either follow the lake shore or old Indian trails. 
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There is a particularly risky area in the neighborhood of Broadway and Wilson adjacent 
to Truman Community College.   In a previous analysis of the Bronx, Fordham University was 
shown to be a similar attractor for robbery incidents.  Colleges supply good targets for street 
robbery.  Also, authority for security is split between the college and the city police. The area 
around Broadway and Wilson has been risky for many years.  Ninety years ago, it was the 
northern terminus of rapid transit, and the site of several very inexpensive hotels, two of which 
still existed.  Today the area has several pawn shops and currency exchanges.  There is an ATM 
located in the EL station.   In 1999, the area looked dangerous and dirty.  Finally, the area has 
many blind corners and alleys that could serve as sites for robbery; this is unusual for Chicago.    

 
The census block that includes the northwest corner of Broadway and Wilson ranked fifth 

among Chicago’s 21,000 census blocks in number of street robberies in 1999.6

 
   

Changes need to be made to reduce the risk of street robbery in this area.  Mapping 
identifies a problem with street robberies, but to investigate possible changes it is necessary to go 
beyond mapping.  Aside from changes in patrol practices, what physical changes might aid in 
crime reduction?  The campus has very little parking.  The administration assumes that students 
take public transportation, but many do not.   A secure parking garage that could serve both the 
elevated station and the school could be constructed (vacant land is available). In addition, 
increased police patrol in the area between the school and the el station could be implemented.  
 
 Advantages of STAC 
 
 STAC has a number of advantages as a clustering algorithm: 

 
1. The routine can analyze a very large number of cases quickly.  It is very fast using 

a Euclidean projection such as UTM or State Plane, but not quite as fast using 
spherical coordinates (latitude/longitude).  
 

2. The user can control the approximate size of the ellipses through the search 
radius, the minimum number of points per hot spot, and the study area.  These 
features allow for a brod search for Hot Spot Areas over an entire city and a 
second search concentrating on a smaller area and more focused Hot Spot Areas 
for local tactical use. 

 
 
                         
6  This example was originally conducted with CrimeStat II.  In subsequent years, many of these suggestions 

were implemented and the area is no longer a hot spot. 



STAC Hot Spots for Northeast Side Street RobberiesFigure 8.5:
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3. STAC and Nnh hierarchical clustering (discussed in Chapter 7) are 
complimentary.  The Nnh first derives small ellipses and then aggregates to larger 
ones.  The recommended STAC procedure is to first derive large area ellipses and 
then break these down into smaller areas for tactical analysis. There should be 
some convergence between the two approaches. 
 

4. The visual display of STAC ellipses or convex hulls is quite intuitive, especially 
for area-wide interventions (e.g., patrol beats) 
 

5. Hot spots need not be limited to a single kind of crime, place or even.  For 
example, ellipses of drug crime can be overlaid on those for burglary. Some 
causal factors are also analyzable with STAC ellipses.  For example, ellipses of 
street robbery can be compared to those for liquor licenses. 
 

6. STAC is a density search clustering method that adapts itself to the size of the 
clusters. Essentially, it looks for areas of common, high density. 
 

7. Unlike the Nnh routine, which has a constant threshold (search radius), STAC can 
create clusters of unequal size because overlapping clusters are combined until 
there is no overlap. 

 
Limitations of STAC 

 
There are also some limitations to using STAC: 

 
1. The distribution of incidents within clusters is not necessarily uniform.  The user 

should be careful not to assume that it is.  A mapped theme of the Mode routine 
(see Chapter 7) according to number of incidents or the single kernel density 
interpolation (see Chapter 10) overlaid with STAC ellipses are good ways to 
overcome this problem (see Figure 8.5 above and Figure 8.6 below). 
 

2. STAC tends to create larger clusters than the Nnh.  The reason is that it combines 
points from overlapping search circles. It is unable to identify smaller clusters that 
are part of a larger grouping (a hierarchy) and, instead, tends to choose the larger 
grouping.  The result is the density of events in STAC clusters are not as intense 
as in Nnh first-order clusters, but are more similar to Nnh second-order clusters 
(Chainey, Thompson & Uhlig, 2008; Levine, 2008).   

 
 
  



STAC Robbery Hot Spots and Kernel Density EstimationFigure 8.6:
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For example, with a 1996 Baltimore County burglary file of 6,051 incidents, the 
default settings for STAC (0.5 mile search radius and a minimum of 5 points per 
cluster) produced 8 clusters compared to 158 for the Nnh with its default settings 
(random nearest neighbor distance and a minimum of 10 points per cluster).  
Depending on the purpose of the clustering, this can be an advantage or a 
disadvantage.  STAC clusters can identify areas for patrol beats but are less able 
to identify very small areas where there is an intense concentration of events and 
which require geographically-specific interventions (e.g., improving street 
lighting, setting up block-wide security strategies). 
 

3. Small changes in the STAC study area boundary can result in quite different 
depictions of the ellipses, even with the same study area measurement.  Retaining 
the same reference file for repeated analyses alleviates this problem.  The analysis 
should also be documented for the analysis parameters. 
 

4. Because STAC aggregates overlapping search circles, it tends to miss identifying 
smaller clusters that are close to each other. This is particularly true when a larger 
search circle is used.  Thus, the method tends to increase Type II statistical errors 
(failing to reject a false null hypothesis).  The use of smaller search circles can 
minimize this problem.  While there are definite uses in a larger search circle, for 
example in identifying patrol areas or multi-neighborhood crime hot spots, the 
user needs to be aware of how the search circle can affect the number of clusters 
identified and the potential for missing clusters that are actually separate yet close 
to each other. 
 

5. STAC is based on the distribution of events.  Neither land use nor risk factors is 
accounted for.  It is up to the analyst to identify the characteristics that make a 
Hot Spot ‘hot’. 

 
Nevertheless, if used carefully, STAC is a useful tool for detecting clusters and can allow 

an analyst to experiment with varying search radii and reference boundaries. 
 

K-Means Partitioning Clustering 
 
 The K-Means clustering routine (Kmeans) is a partitioning procedure where the data are 
grouped into K groups defined by the user.  A specified number of seed locations, K, are defined 
by the user (Fisher, 1958; MacQueen, 1967; Aldenderfer and Blashfield, 1984; Systat, 2008).  
The routine tries to find the best positioning of the K centers and then assigns each point to the 
center that is nearest.  Like the nearest neighbor hierarchical (Nnh) routine, the Kmeans assigns 
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points to one, and only one, cluster.  However, unlike the Nnh procedure, all points are assigned 
to clusters.  Thus, there is no hierarchy to the assignment; that is there are no second- or higher-
order clusters.  It is part of a family of cluster methods called supervised clustering (Finley & 
Joachins, 2005; Eick, Zeidat & Zhao, 2004).  
 
 The technique is useful when a user want to control the grouping.  For example, if there 
are 10 police precincts in a jurisdiction, an analyst might want to identify the 10 most compact 
clusters, one for each precinct.  Alternatively, if a previous analysis has shown there were 24 
clusters, then an analyst could check whether the clusters have shifted over time by also asking 
for 24 clusters.  By definition, the technique is somewhat arbitrary since the user defines how 
many clusters are to be expected.  Whether a cluster should be considered a hot spot or not 
should depend on the extent to which a user wants to replicate hot spots.  

 
The theory of the K-Means procedure is relatively straightforward.  The implementation 

is more complicated.  K-Means represents an attempt to define an optimal number of K locations 
where the sum of the distance from every point to each of the K centers is minimized.  It is a 
variation of the old location theory paradigm of how to locate K facilities (e.g., police stations, 
hospitals, shopping centers) given the distribution of population (Haggett, Cliff, and Frey, 1977).  
That is, how does one identify supply facilities in relation to the location of demand?  In theory, 
solving this question is an empirical solution, what is frequently called global optimization.  One 
tries every combination of K objects where K is a subset of the total population of incidents (or 
people), N, and measures the distance from every incident point to every one of the K locations.  
The particular combination which gives the minimal sum of all distances (or all squared 
distances) is considered the best solution.  In practice, however, solving this is computationally 
almost impossible, particularly if N is large.  For example, with 6000 incidents grouped into 20 
partitions (clusters), one cannot solve this with any normal computer since there are: 

 

 6000!
20!5980!

= 1.456𝑥1057            (8.1) 

 
combinations.   No computer can solve that number and few spreadsheets can calculate the 
factorial of N greater than about 127.7

 

  In other words, it is almost impossible to solve 
computationally. 

 Practically, therefore, the different implementations of the K-Means routine make initial 
guesses about the K locations and then optimize the seating of this location in relation to the 

                         
7  The total number of ways for selecting K distinct combinations of N incidents, irrespective of order, is   

𝑁!
𝐾!(𝑁−𝐾)!

  (Burt and Barber, 1996, 155). 
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nearby points.  This is called local optimization.  Unfortunately, each K-Means routine has a 
different way to define the initial locations so that two K-Means procedures will usually not 
produce the same results even if K is identical (Everitt, 2011; Systat, 2008; Everitt, Landau & 
Leese, 2001). 
 

CrimeStat K-Means Routine 
 
 The K-Means routine in CrimeStat also makes an initial guess about the K locations and 
then optimizes the distribution locally.  The procedure that is adopted makes initial estimates 
about location of the K clusters (seeds), assigns all points to its nearest seed location, re-
calculates a center for each cluster which becomes a new seed, and then repeats the procedure all 
over again.  The procedure stops when there are very few changes to the cluster composition (see 
endnote 𝑖). 

 
 The default K-Means clustering routine follows an algorithm for grouping all point 
locations into one, and only one, of these K groups.  There are two general steps: 1) the 
identification of an initial guess (seed) for the location of the K clusters, and 2) local 
optimization which assigns each point to the nearest of the K clusters.  First, a grid is overlaid on 
the data set and the number of points falling within each grid cell is counted.  The grid cell with 
the most points is the initial first cluster and the centroid of the cell becomes the initial seed 
location.   
 
 The second initial cluster is the grid cell with the next most points that are separated by at 
least: 
 

 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑡 ∗ 0.5�𝐴
𝑁

            (8.2) 

 
where t is the Student’s t-value for the .01 significance level (2.358), A is the area of the region, 
and N is the sample size. Again, the centroid of the grid cell becomes the initial second seed 
location.   A third initial cluster is then selected which is the grid cell with the third most points 
and which is separated from the first two grid cells by at least the separation factor defined 
above.  This process is repeated until K initial seed locations are chosen. 
 

The algorithm then conducts local optimization.  It assigns each point to the nearest of the 
initial K seed locations to form an initial cluster.  For each of the initial clusters, the routine then 
calculates the center of minimum distance and re-assigns all points to the center of minimum 
distance to which it is closest. This becomes the second iteration of clusters with the center of 
minimum distance being the second seed location. 
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 The routine repeats this process (assigning each point to the nearest seed location, re-
calculating the center of minimum distance for each cluster to form a new seed location, and then 
re-assigning all points to the nearest new seed location) until no points change clusters. Finally, 
for each cluster, the routine outputs to the screen the statistics for a 1X standard deviational 
ellipse and can also output the results graphically as either standard deviational ellipses (1X, 
1.5X, or 2X) or as convex hulls. 
 
 Control over Initial Selection of Clusters 

 
Changing the separation between clusters 

 
One problem with this approach is that in highly concentrated distributions, such as with 

most crime incidents in a metropolitan area, the separation between clusters may not be 
sufficiently large to detect clusters farther away from the concentration; the algorithm will tend 
to sub-divide concentrated groupings of incidents into multiple clusters rather than seek clusters 
that are less concentrated and, usually, farther away.  To increase the flexibility of the routine, 
CrimeStat allows the user to modify the initial selection of clusters since this has a large effect 
on the final grouping (Everitt, 2011).   

 
There are two ways the initial selection of cluster centers can be modified.  First, the user 

can increase or decrease the separation factor.  Formula 8.2 is still used to separate each of the 
initial clusters, but the user can either select a t-value from 1 to 10 from the drop down menu or 
write in any number for the separation, including fractions, to increase or decrease the separation 
between the initial clusters. The default separation is set at 4.  The effect of this is to modify the 
grid cell sizes for the initial cluster so as to force larger or small distances between the clusters. 
 
 Figure 8.7 shows a simulation of eight clusters in Baltimore County, four of which have 
higher concentrations than the other two.  Figure 8.8 shows the results of running the K-Means 
clustering routine twice, both of which requested K=8 groupings.  However, in one of the 
partitions there was a separation of 4 (the default separation shown as dashed green ellipses) 
while the other partition had a separation of 18 (solid blue ellipses).  As seen, the partition with 
the larger separation captures the eight clusters better.  With the smaller separation (4), the 
routine subdivided the dense cluster in the west into three separate clusters while combining one 
of these with the grouping of points directly to the north.  Similarly, it combined two groupings 
in the northern part of the study area into a single cluster.  The effect of increasing the separation 
was to produce a better visual fit with the groupings of the points.   

 
 



Figure 8.7:



Figure 8.8:

Separation=4Separation=18
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One has to be careful tweaking the cluster structure, however.  For example, as we 
increased the separation beyond 18, the number of clusters actually decreased.  A separation of 
20 produced only 7 clusters while a separation of 30 produced only 3.  The algorithm could not 
solve for 8 clusters with such a large separation between them being required. 
 

 Selecting the initial seed locations  
 

A second way to control the initial selection of clusters is that the user can  define the 
actual locations for the initial cluster centers.  This approach was used by Friedman and Rubin 
(1967) and Ball and Hall (1970).  In CrimeStat, the user-defined locations are entered with the 
secondary file which lists the location of the initial clusters.  The routine uses the number of 
points in the secondary file as K and the X/Y coordinates of each point as the initial seed 
locations.  It then proceeds in the same way with local optimization.    

 
When eight points that were approximately in the middle of the eight clusters in Figure 

8.7 were input as the secondary file, the K-Means routine immediately identified the eight 
clusters (results not shown).  Again, depending on the purpose the user can test a particular 
clustering by requiring the routine to consider that model, at least for the initial seed location.  
The routine will conduct local optimization for the rest of the clustering, as in the above method. 

 
 K-Means Screen Output 
 
 The K-Means output has both screen and graphical output. The screen output includes the 
parameters for the 1X standard deviational ellipse of each cluster in the table. In addition, the 
routine can output graphically the clusters as standard deviational ellipses (1X, 1.5X, or 2X) or 
convex hulls.  The convex hull draws a polygon around all the points in a cluster (see Chapter 4).  
Hence it is a literal description of the extent of the cluster.  The ellipse, on the other hand, is an 
abstraction for a cluster and may be arranged in an irregular manner.  For a small area, a 1X 
standard deviational ellipse or a convex hull would be a good way to display the ellipses but may 
not be very visible with a regional view. The user has to balance the need to accurately display 
the cluster compared to making it easier for a viewer to understand its location. 
 
  Mean squared error 
 
 In addition, the output for each cluster lists two additional statistics: 

 

 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐶 = 𝑆𝑆𝐸𝐶 = ∑ [(𝑋𝑖𝐶 − 𝑋�𝐶)2 + (𝑌𝑖𝐶 − 𝑌�𝐶)2]𝑁𝐶
𝑖=1      (8.3) 
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 𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶 = 𝑀𝑆𝐸𝐶 = 𝑆𝑆𝐸𝐶
(𝑁𝐶−1)

        (8.4) 

 
where XiC is the X value of a point that belongs to cluster C, YiC is the Y value of a point that 
belongs to cluster C, MeanXC is the mean X value of cluster C (i.e., of only those points 
belonging to C), MeanYC is the mean Y value of cluster C, and NC is the number of points in 
cluster C.   
 
 There is also a total sum of squares and a total mean square error which is summed over 
all clusters: 
 
 𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = 𝑆𝑆 = ∑ 𝑆𝑆𝐸𝐶𝐾

𝐶=1           (8.5) 
 

 𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 = 𝑀𝑆𝐸 = 𝑆𝑆
(𝑁−𝐾−1)

         (8.6) 

 
where SSEC is the sum of squares for cluster C, N is the total sample size, and K is the number of 
clusters.  The sum of squares is the squared deviations of each cluster point from the center of 
minimum distance while the mean squared error is the average of the squared deviations for each 
cluster corrected for degrees of freedom. 
 
 The sum of squares (or sum of squared errors) is frequently used as a criterion for 
identifying ‘goodness of fit’ (Everitt, 2011; Everitt, Landau & Leese, 2001; Aldenderfer & 
Blashfield, 1984; Gersho & Gray, 1992).  In general, for a given number of clusters, K, partitions 
with a smaller sum of squares and, correspondingly, a smaller mean square error are better 
defined than partitions with a larger sum of squares and larger mean squared error.  Similarly, a 
K-Means solution that produces a smaller overall sum of squares is a tighter grouping than a 
grouping that produces a larger overall sum of squares.   
 
 But, there can be exceptions.  If there are points which are outliers, that is which do not 
obviously fall into one cluster or another, re-assigning them to one or another cluster can distort 
the sum of squares statistics.  Also, in highly concentrated distributions, such as with crime 
incidents, a smaller sum of squares criteria can be obtained by splitting the concentrations rather 
than clustering less central and less dense groups of incidents (such as in Figure 8.7). The result, 
while minimizing the sum of squared errors from the cluster centers, will be less desirable 
because the peripheral clusters are ignored.  Thus, these statistics are presented for the user’s 
information only.  In assigning points to clusters, CrimeStat still uses the distance to the nearest 
seed location, rather than a solution that minimizes the sum of squared distances. 
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 K-Means Graphical Output 
 

Finally, the K-Means clustering routine (Kmeans) can output clusters graphically as 
either ellipses or convex hulls, similar to the other clustering routines. For the ellipses, the user 
can choose between 1X, 1.5X, and 2X standard deviations.  The ellipses are output with the 
prefix ‘KM’ before the file name. It should be noted, however, that the ellipses are an abstraction 
of the cluster.  The clusters are not necessarily arranged in ellipses. They are for visualization 
purposes only. For the convex hull, the routine draws a polygon around the points in each 
cluster.  The graphical convex hulls are output with the prefix ‘CKM’ before the file name. 
 
  Naming convention for K-Means clusters 
 

The naming convention for the K-Means outputs is: 
 

Km<username>  [for the ellipse] 
Ckm<username>  [for the convex hull] 

 
where username is the name of the file provided by the user.  Within the file, each cluster is 
named 
 

KmEll<N><username> [for the ellipse] 
CkmHull<N><username> [for the convex hull] 

 
where N is the cluster number and username is the name of the file provided by the user.  For 
example,  
 

KmEll3robbery 
 
is the third ellipse for the file called ‘robbery’ and 
 

CkmHull12burglary 
 
is the 12th convex hull for the file called ‘burglary’. 
 

For the ellipses, a slide-bar allows ellipses to be defined for 1X, 1.5X, and 2X standard 
deviations and can be output in ArcGIS ‘.shp’, MapInfo ‘.mif’ or various Ascii formats.  The 
convex hulls, on the other hand, draw a polygon around the clustered points. 
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 Example:  K-Means Clustering of Baltimore County Street Robberies 
 
In CrimeStat, the user specifies the number of groups to sub-divide the data.  Using the 

1996 robbery incidents for Baltimore County, the data were partitioned into 10 groups with the 
K-Means routine (Figure 8.9).  As can be seen, the clusters tend to fall along the border with 
Baltimore City.  But there are three more dispersed clusters, one concentrated in the central 
eastern part of the county and two north of the border with the City.  Because these clusters are 
very large, a finer mesh clustering was conducting by partitioning the data into 34 clusters 
(Figure 8.10).  Thirty-five clusters were requested but the routine only found 34 seed location.  
Consequently, it outputted 34 clusters, which are displayed as ellipses.  Though the ellipses are 
still larger than those produced by the nearest neighbor hierarchical procedure (see figure 7.7 in 
Chapter 7), there is some congruency; clusters identified by the nearest neighbor procedure have 
corresponding ellipses using the K-Means procedure. 
 

Figure 8.11 shows a section of southwest Baltimore County with four full clusters and 
three partial clusters visible.  They are displayed as convex hulls.  Looking at the distribution, 
several clusters make intuitive sense while a couple of others do not.  For example, the two 
clusters at the top of the map highlight a concentration along a major arterial (U.S. Highway 40).  
Similarly, the cluster in the middle right appears to capture incidents along two arterial roads.  
However, the other three full clusters do not appear to capture meaningful patterns and appear 
somewhat arbitrary. 
  

Other uses of the K-Means algorithm are possible.  For example, one problem that affects 
most police departments is the need to allocate personnel throughout a city in a balanced and fair 
way.  Too often, some police precincts or districts are overburdened with Calls for Service 
whereas others have more moderate demand.  The issue of re-drawing or re-assigning police 
boundaries in order to re-establish balance is a continual one for police departments.  The K-
Means algorithm can help in defining this balance, though there are many other factors that will 
affect particular boundaries.  The number of groupings, K, can be chosen based on the number of 
police districts that exist or that are desired.  The locations of division or precinct stations can be 
entered in a secondary file in order to define the initial ‘seed’ locations.  The K-Means routine 
space.  Once an agreed upon solution is found, it is easy to then re-assign police beats to fit the 
new arrangement.  
 

Advantages and Disadvantages of the K-Means Procedure 
 
 In short, the K-Means procedure will divide (partition) the data into the number of groups 
specified by the user, K.  Whether these groups make any sense or not will depend on how 
carefully the user has selected clusters.  Choosing too many will lead to defining patterns that do  



Figure 8.9:



Figure 8.10:



Figure 8.11:
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not really exist whereas choosing too few will lead to poor differentiation among neighborhoods 
that are distinctly different.  
 

This choice is both a strength and weakness of the technique. The K-Means procedure 
provides a great deal of control for the user and can be used as an exploratory tool to identify 
possible hot spots.  Whereas the nearest neighbor hierarchical method produces a solution based 
on geographical proximity with most clusters being very small and STAC identifies autonomous 
areas of high density, the K-Means can allow the user to control the size of the clusters.  In terms 
of policing, the K-Means is better suited for defining larger geographical areas than the nearest 
neighbor method, perhaps more appropriate for a patrol area than for a particular hot spot.  
Again, if carefully used, the K-Means gives the user the ability to fine tune a particular model of 
hot spots, adjusting the size of the clusters (vis-a-via the number of clusters selected) as well as 
their separation in space in order to fit a particular pattern which is known. 
 
 Yet it is this same flexible characteristic that makes the technique potentially difficult to 
use and prone to misuse.  Since the technique will divide the data set into K groups, there is no 
assumption that these K groups represent real hot spots or not.  A user cannot just arbitrarily put 
in a number and expect it to produce meaningful results. A more extensive discussion of this 
issue can be found in Murray and Grubesic (2002).  Grubesic and Murray (2001) present some 
newer approaches in the K-Means methodology. 
 
 The technique is, therefore, better seen as both an exploratory tool as well as a tool for 
refining a hot spot search.  If the user has a good idea of where there should be hot spots, based 
on community experience and the reports of beat officers, then the technique can be used to see 
if the incidents actually correspond to the perception.  It also can help identify hot spots which 
have not been perceived or identified by officers. Alternatively, it can identify hot spots that do 
not really exist and which are merely by-products of the statistical procedure.  Experience and 
sensitivity are needed to know whether an identified hot spot is real or not. 
 
Some Thoughts on the Concept of Hot Spots 
 

Advantages of the Concept 
 

The six techniques discussed in this and the last chapter have both advantages and 
disadvantages.  Among the advantages are that they attempt to isolate areas of high concentration  
of incidents and can, therefore, help law enforcement agencies focus their resources on these 
areas.  One of the powerful uses of a hot spot concept is that it is focused. It can provide new 
information about locations that police officers or community workers may not recognize 
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(Rengert, 1995). Given that most police departments are understaffed, a strategy that prioritizes 
intervention is very appealing.  The hot spot concept is imminently practical. 

 
 Another advantage to the identification of hot spots is that the techniques systematically 
implement an algorithm.  In this sense, they minimize bias on the part of officers and analysts 
since the technique operates somewhat independently of preconceptions.  As has been 
mentioned, however, these techniques are not totally without human judgment since the user 
must make decisions on the number of hot spots and the size of the search radius, choices that 
can allow different users to come to different conclusions.  There is probably no way to get 
around subjectivity since law enforcement personnel may not use a result unless it partly 
confirms what they already know.  But, by implementing an algorithm, it forces users to at least 
go through the steps systematically. 
 

A third advantage is that these techniques are visual, particularly when used with a GIS.  
The mode and fuzzy mode routines output the results as a dbf file, which can be displayed in a 
GIS as a proportional circle.  The Nnh, Rnnh, Stac, and Kmeans routines can output the results 
directly as graphical objects, either as standard deviational ellipses or as convex hull, which can 
be displayed directly in a GIS.  Visual information can help crime analysts and officers to 
understand the distribution of crime in an areas, a necessary step in planning a successful 
intervention.  We should never underestimate the importance of visualization in any analysis. 

 
Limitations of the Concept 

 
However, there are also some distinct limitations to the concept of a hot spot, some 

technical and some theoretical.  The choice involved in a user making a decision on how strict or 
how loose to create clusters allows the potential for subjectivity, as has been mentioned.  In this 
sense, isolating clusters (or hot spots) can be as much an art as it is a science.  There are limits to 
this, however.  As the sample size goes up, there is less difference in the result that can be 
produced by adjusting the parameters.  For example, with 6,000 or more cases, there is very little 
difference between using the 0.1 significance level in the nearest neighbor clustering routine and 
the 0.001 significance level.8

 

  Thus, the subjectivity of the user is more important for smaller 
samples than larger ones. 

                         
8  On one test of 6,051 burglaries with a minimum cluster size requirement of 10 incidents, for example, we 

obtained 100 first-order clusters, 9 second-order clusters, and no third-order clusters by using a 0.1 
significance level for the nearest neighbor hierarchical clustering routine.  When the significance level was 
reduced to 0.001, the number of clusters extracted was 97 first-order clusters, 8 second-order clusters, and 
no third-order clusters. 
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 A second problem with the hot spot concept is that it is usually applied to the volume of 
incidents and not to the underlying risk.  Clusters (or hot spots) are defined by a high 
concentration of incidents within a small geographical area, that is, on the volume of incidents 
within an area.  This is an implicit density measure - the number of incidents per unit of area 
(e.g., incidents per square mile).  But higher density can also be a function of a higher population 
at risk. 
 
 For some policing policies, this is fine.  For example, beat officers will necessarily 
concentrate on high incident density neighborhoods because so much of their activity revolves 
around those neighborhoods.  From a viewpoint of providing concentrated policing, the density 
or volume of incidents is a good index for assigning police officers (Sherman and Weisburd, 
1995).  From the viewpoint of ancillary security services, such as access to emergency medical 
services, neighborhood watch organizations, or residential burglar alarm retail outlets, areas with 
higher concentrations of incidents may be a good focal point for organizing these services. 
 
 But for other law enforcement policies, a density index is not a good one.  From the 
viewpoint of crime prevention, for example, high incident volume areas are not necessarily 
unsafe and that effective preventive intervention will not necessarily lead to reduction in crime.  
It may be far more effective to target high risk areas rather than high volume areas.  In high risk 
areas, there are special circumstances which expose the population to higher-than-expected 
levels of crime, perhaps particular concentrations of activities (e.g., drug trading) or particular 
land uses that encourage crime (e.g., skid row areas) or particular concentrations of criminal 
activities (e.g., gangs).  A prevention strategy will want to focus on those special factors and try 
to reduce them. 
 
 Risk, which is defined as the number of incidents relative to the number of potential 
victims/targets, is only loosely correlated with the volume of incidents.  Yet, hot spots are 
usually defined by volume, rather than risk.  The risk-adjusted hierarchical nearest neighbor 
clustering routine, discussed in Chapter 7, is the only tool among these that identifies risk, rather 
than volume.  It is clear that more tools will be needed to examine hot spot locations that are 
more at risk. 
 
 The final problem with the hot spot concept is more theoretical.  Namely, given a 
concentration of incidents, how do we explain it?   To identify a concentration is one thing.  To 
know how to intervene is another.  It is imperative that the analyst discover some of the 
underlying causes that link the events together in a systematic way.  Otherwise, all that is left is 
an empirical description without any concept of the underlying causes.  For one thing, the 
concentration could be random or haphazard; it could have happened one time, but never again.  
For another, it could be due to the concentration of the population at risk, as discussed above.  
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But, it could also be due to the concentration of activities that attract offenders along with 
victims.  In Chapter 14 and, again, in Chapter 28, we examine locations where offenders are 
attracted.  Many of these are shopping malls, which is where a lot of crime occurs.  Thus, the hot 
spot could be a destination as much an origin variable.  Finally, the concentration could be 
circumstantial and not be related to anything inherent about the location.    
 

The point here is that an empirical description of a location where crime incidents are 
concentrated is only a first step in defining a real >hot spot=.  It is an apparent >hot spot=.  Unless 
the underlying vector (cause) is discovered, it will be difficult to provide adequate intervention.  
The causes could be environmental (e.g., concentrations of land uses that attract attackers and 
victims) or behavioral (e.g., concentrations of gangs). The most one can do is try to increase the 
concentration of police officers.  This is expensive, of course, and can only be done for limited 
periods.  Eventually, if the underlying vector is not dealt with, incidents will continue and will 
overwhelm the additional police enforcement.  In other words, ultimately, reducing crime around 
a >hot spot= will need to involve many other policies than simply police enforcement, such as 
community involvement, gang intervention, land use modification, job creation, the expansion of 
services, and other community-based interventions.  In this sense, the identification of an 
empirical >hot spot= is frequently only a window into a much deeper problem that will involve 
more than targeted enforcement. 
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Endnotes 
 

i. The steps are as follows: 
 

Global Selection of Initial Seed Locations 
 

A. A 100 x 100 grid is overlaid on the point distribution; the dimensions of the grid 
are defined by the minimum and maximum X and Y coordinates. 

 
B. A separation distance is defined, which is: 
 

 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑡 ∗ 0.5�𝐴
𝑁

 

 
where t is the Student’s t-value for the .01 significance level (2.358), A is the area 
of the region, and N is the sample size.  The separation distance was calculated to 
prevent adjacent cells from being selected as seeds. 

 
C. For each grid cell, the number of incidents found are counted and then sorted in 

descending order. 
 

D. The cell with the highest number of incidents found is the initial seed for cluster 
1. 

 
E. The cell with the next highest number of incidents is temporarily selected.  If the 

distance between that cell and the seed 1 location is equal to or greater than the 
separation distance, this cell becomes initial seed 2.   

 
F. If the distance is less than the separation distance, the cell is dropped and the 

routine proceeds to the cell with the next highest number of incidents. 
 

G. This procedure is repeated until K initial seeds have been located thereby 
selecting the remaining cell with the highest number of incidents and calculating 
its distance to all prior seeds.  If the distance is equal to or greater than the 
separation distance, then the cell is selected as a seed.  If the distance is less than 
the separation distance, then the cell is dropped as a seed candidate. Thus, it is 
possible that K initial seeds cannot be identified because of the inability to locate 
K locations greater than the threshold distance.  In this case, CrimeStat keeps the 
number it has located and prints out a message to this effect. 

 
Local Optimization of Seed Locations 

 
H. After the K initial seeds have been selected, all points are assigned to the nearest 

initial seed location.  These are the initial cluster groupings. 
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I. For each initial cluster grouping in turn, the center of minimum distance is 

calculated.  These are the second seed locations. 
 

J. All points are assigned to the nearest second seed location. 
 

K. For each new cluster grouping in turn, the center of minimum distance is 
calculated.  These are third seed locations. 

 
L. Steps J and K are repeated until no more points change cluster groupings.  These 

are the final seed locations and cluster groupings. 
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Attachments 
  



K-Means Clustering as an Alternative Measure of Urban Accessibility 
 

Richard J. Crepeau 
Department of Geography and Planning 

Appalachian State University 
Boone, NC 

 
The relationship between land use and the transportation system is an important 

issue.  Many planners recognize that transportation policies, practices and outcomes 
affect changes in land use, and vice versa, but there is disagreement as to how best to 
describe this phenomenon.  Traditional methods include measures of accessibility via a 
matrix of zones (tracts, traffic analysis zones, etc.).  However, there are limits to the way 
interaction and accessibility is described with such discrete units.   

 
Through the use of K-Means clustering, an alternate measure of accessibility can 

be calculated. Rather than relying on census geography, the left map shows ten retail 
clusters in San Diego County (1995) as calculated by CrimeStat’s K-Means clustering 
technique (using 1x standard deviational ellipse).  The retail hot spots were calculated 
using a geocoded point file of retail establishments in the county.  These clusters are not 
bound by census geography and allow a more realistic appraisal about the attractiveness 
of specific regions within the county.  An analyst can then determine if residential 
location within a hot spot has an effect on travel patterns, or if there is a relationship 
between proximity to a hot spot and travel behavior.  While this example illustrates a 
measure of regional retail attractiveness, the flexibility of CrimeStat allows an analyst to 
evaluate these relationships on a local level, thus allowing a scope of inquiry from 
regional to local accessibility (as shown in right map, which uses the same parameters as 
the left figure, but limiting its sample to retail in a sub-region of San Diego County noted 
by the arrow). 
 

Regional Hot Spots Local Hot Spots 

  
 



 

Hot Spot Verification in Auto Theft Recoveries 
 

Bryan Hill 
Glendale Police Department 

Glendale, AZ 
 

We use CrimeStat as a verification tool to help isolate clusters of activity when one 
application or method does not appear to completely identify a problem.  The following example 
utilizes several CrimeStat statistical functions to verify a recovery pattern for auto thefts in the 
City of Glendale (AZ). The recovery data included recovery locations for the past 6 months in the 
City of Glendale which were geocoded with a county-wide street centerline file using ArcView.   
 

First, a spatial density “grid” was created using Spatial Analyst with a grid cell size of 
300 feet and a search radius of 0.75 miles for the 307 recovery locations.  We then created a 
graduated color legend, using standard deviation as the classification type and the value for the 
legend being the CrimeStat “Z” field that is calculated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the map, the K-means (red ellipses), Nnh (green ellipses) and Spatial Analyst grid (red-
yellow grid cells) all showed that the area was a high density or clustering of stolen vehicle 
recoveries.  Although this information was not new, it did help verify our conclusion and aided in 
organizing a response. 
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Chapter 9: 

Hot Spot Analysis of Zones 
 
 In this chapter, we will discuss methods for identifying hot spots with zonal data.  The 
user should be thoroughly familiar with the information presented in Chapter 5 on spatial 
autocorrelation indices because two of the same indices are used for the analysis of local 
variations in zones. 
 
  We are going to look at four techniques for analyzing hot spots with zonal data or with 
individual level data that have attributes (count or interval variables that measure a characteristic 
associated with the X and Y coordinates).  These are Anselin’s Local Moran, the Getis-Ord 
Local “G”, the Zonal Nearest Neighbor Hierarchical Clustering algorithm, and the Risk-adjusted 
Zonal Nearest Neighbor Hierarchical Clustering algorithm.   Figure 9.1 shows the Hot Spot 
Analysis of Zones page. 
 
Assigning Point Data to Zones 
 
 If a user has information on the location of individual events (e.g., robberies), then it is 
better to utilize that information with the hot spot techniques discussed in Chapters 7 and 8. The 
individual-level information will contain all the uniqueness of the events.   
 

However, sometimes it is not possible to analyze data at the individual level.  The user 
may need to aggregate individual data points to spatial areas (zones) in order to compare the 
events to data that are only obtained for zones, such as census data, or to model environmental 
correlates of the data points or may find that individual data are not available (e.g., when a police 
department releases information by police beats but not individual streets).   Zonal data can 
include crime counts by zone, socio-economic information (e.g., collected by the census or 
estimated by a Metropolitan Planning Organization), or some other data that are aggregated to 
the small areas.  In other words, the zone becomes the unit of analysis instead of the individual 
data points.   

 
Since the zones are not events, they have to be spatially analyzed by assuming that all the 

data resides at a single point within the zone.  This is usually the centroid (the geographical 
center of the zone) but sometimes the center of minimum distance (the point at which the sum of 
the distances to all other points is minimized) has been used, too, especially if the zone is very 
irregularly shaped.  However, when individual data points are assigned to zones, information is 
lost.  For example, the distance between zones is a singular value for all the points in those zones 
whereas there is much greater variability with the distances between individual events.   Also,  



Hot Spot Analysis of Zones Screen
Figure 9.1:
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topological information, such as the shape of the zone or the number of other zones that are 
adjacent, is lost. 

 
For the spatial autocorrelation indices, the interaction between zones is defined by 

distance.  There are advantages and disadvantages.  Contiguity (or adjacency) is a property of a 
zone, not a point.  Thus, adjacency defines whether one zone is next to another zone whereas 
distance is the distance between single points that represent the zones (e.g., centroids).  For 
example, if two zones are 0.25 miles apart, it is not known whether they are adjacent or not.  In 
other words, in adopting a distance-based weight, information about adjacencies is lost.  On the 
other hand, a distance-based weight is standardized.  If two zones are adjacent, it is not known 
how far apart they are separated.  Adjacencies can be misleading since they do not indicate the 
size of the adjacent zones whereas a specified distance is always constant.   
 

The zonal data also must include an attribute variable, a variable associated with the zone 
(e.g., number of robberies; median household income; percentage of households living below 
poverty level).  The attribute can be a count or a continuous variable for a distributional property 
of the zone (e.g., median household income; percentage of households below poverty level) or 
even a binary variable (e.g.,1 v. 0).1  The indices discussed in this chapter are applied to the 
interaction between the attribute variable of the central zone and other zones, weighted by the 
distance between them. 

 
Individual level data can also have attributes.  For example, Levine and Lee (2013) 

analyzed journey-to-crime distances for offenders in Manchester, England.  In this case, the 
attribute variable was the distance traveled and the statistics discussed in this chapter are 
appropriate for analyzing that attribute data.  Other examples of individual level data with 
attributes would be the age of the offender, the number of prior convictions, or the number of 
years of formal education.  The key criterion is that the records must have an attribute which is 
either a count or an interval variable. 
 
Local Indicator of Spatial Association 
 
 The basic concept behind a zone-specific measure of spatial autocorrelation is that of a 
local indicator of spatial association (LISA) and has been discussed by a number of researchers 
(Mantel, 1967; Getis, 1991; Anselin, 1995).  For example, Anselin (1995) defines this as any 
statistic that satisfies two requirements: 
 
                                                 
1  There is no fundamental difference between a count variable and a continuous interval or ratio variable 

since a real number can be converted into a count by multiplying by a power of 10 (e.g., 1.23 = 123 x 10-2).  
The statistics discussed in this chapter are applicable to either count or continuous data. 
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1. The LISA for each observation indicates the extent to which there is significant 
spatial clustering of similar values around that observation; and 

 
2. The sum of the LISAs for all observations is proportional to the global indicator of 

spatial association: 
 
 ∑                  (9.1) 

 
where Li is the local indicator of zone , g(Yi ) is a function of the value of an 
intensity variable, Yi, at location , h(Yji) is a weight function of the values of the 
intensity variable observed in the neighborhood ji of , and f is a scaling constant 
to ensure that the sum of Li equals the global spatial autocorrelation index. 

 
The function of the intensity variable can be a raw score, Yi, a Z-transformation of the 

intensity variable, such as: 
 

                    (9.2) 

 
where  is the mean of Y and SY is the standard deviation of variable Y, or some other function. 
 

 In other words, a LISA is an indicator of the extent the value of an observation is affected 
by its neighboring observations.  This requires two conditions.  The first is that each observation 
has a value of an attribute variable that can be assigned to it (i.e., an intensity or weight value) in 
addition to its X and Y coordinates.  For crime incidents, this means data must be aggregated 
into zones (e.g., number of incidents by census tracts, zip codes, or police reporting districts).   

 
Second, the neighborhood has to be defined.  This could be either adjacent zones, all 

other zones negatively weighted by the distance from the observation zone, or all other zones 
negatively weighted by the distance from the observation zone up to some distance whereupon 
the weight is zero afterward (a bandwidth).   Once these are defined, the LISA indicates the value 
of the observation zone in relation to its neighborhood.   
 
Anselin=s Local Moran 
 
 Anselin=s Local Moran statistic was developed by Luc Anselin and is the oldest LISA 
statistic (Anselin, 1995).  The procedure applies Moran=s “I” statistic to individual zones (see 
Chapter 5), allowing them to be identified as similar or different to their nearby pattern.  
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The definition of “Ii” is from Getis and Ord (1996): 
 

 ∑ ̅            (9.3) 

 
where Zi is the intensity of observation i, ̅ is the mean intensity over all observations, Zj is 
intensity for all other observations, j (where j =/  i),  is the variance over all observations, and 
Wij is a distance weight for the interaction between observations i and j.  The first term in 
equation 9.3 refers only to observation  while the second term is the sum of the weighted values 
for all other observations (but not including  itself).  
 
 The expected “Ii” is defined as: 
 

 
∑

             (9.4) 
 
where Wij is the distance weight for the interaction between observations  and .  The variances 
of Ii are somewhat complicated (see endnote i for the formulas). 
 
 Similarity or Dissimilarity 
 
 Since the global Moran’s “I” statistic measures similarity in observations over a study 
area (see Chapter 5), the local Moran “Ii” also indicates the similarity of a zone relative to its 
neighbors.  Thus, in neighborhoods where both the zone and its neighbors have high attribute 
values, the Local Moran will be positive indicating that the particular zone is similar (i.e., also 
>high=).  Similarly, in neighborhoods where both the zone and its neighbors have  >low= attribute 
values, the Local Moran also will be positive  indicating that the zone is similar to its neighbors 
(i.e., also >low=).  When the Local Moran statistic is positive, this is an indicator of similarity, not 
absolute value of the intensity variable. 
  
 Conversely, if a zone has a high value of the intensity variable while its neighbors have 
low values or, alternatively, it has a low value while the neighbors have high values, then the 
Local Moran statistic will be negative.  Dissimilarity is an indicator of either a hot spot or a cold 
spot, in other words zones that are different from their neighborhood.  Hot spots would be seen if 
the number of incidents in a zone is much higher than in the nearby zones.  Cold spots would be 
seen if the number of incidents in a zone is much lower than in the nearby zones.   

 
In other words, the Local Moran statistic indicates whether the zone is similar or 

dissimilar to its neighbors.   
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ID Field 
   
The user should indicate a field for the ID of each zone.  This ID will be saved with the 

output and can then be linked with the input file (Primary File) for mapping. 
 
 Distance Weights 
 

The weights, Wij, can be either an indicator of the adjacency of a zone to the observation 
zone (i.e., >1' if adjacent; 0 if not adjacent) or a distance-based weight which decreases with 
distance between zones i and j.  Adjacency indices are useful for defining near neighborhoods; 
the adjacent zones have full weight while all other zones have no weight.  Distance weights, on 
the other hand, are useful for defining spatial interaction; zones which are farther away can have 
an influence on an observation zone, although one that is much less.  CrimeStat uses distance 
weights, in two forms.   
 

First, there is a traditional distance decay function: 
 

               (9.5) 

 
where dij is the distance between the observation zone, i, and another zone, j.  For example, a 
zone which is two miles away has half the weight of a zone that is one mile away. 
 
  Small distance adjustment 
 
 Second, there is an adjustment for small distances. The weight index becomes 
problematic with small distance between zones since the weight will approach infinity for dij -> 
0.  To correct for this, the routine includes an adjustment for small distances so that the 
maximum weight can be never be greater than 1.0 (see Chapter 5).  The adjustment scales 
distance to one mile, which is a typical distance for crime analysis.  When the small distance 
adjustment is turned on, the minimal distance is scaled automatically to be one mile.   The 
formula used is: 
 
 	

	
             (9.6) 

 
in whichever distance units are specified (miles, kilometers, etc). 
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Output for Each Zone 
 

 The output is for each zone includes: 
 

1. The sample size 
2. The ID identifier 
3. The X coordinate 
4. The Y coordinate 
5. The “Ii” value 
6. The expected “Ii”. 
 
If the variance box is checked, the program will also calculate the variance, standard 

error, and a Z-test of “Ii” for each zone.  The default is for the variance not to be calculated.   
 
 Simulation of Confidence Intervals for Anselin=s Local Moran   

 
 There are two ways to estimate confidence intervals for Anselin’s Local Moran.  First, 
the routine can calculate the variance and, for each zone, the standardized AIi@ score to produce a 
Z-test of the significance of the AIi@.  Assuming the sample size is greater than 120, 95% percent 
confidence intervals can be estimated by: 

 
 95%	 	 1.98          (9.7) 
 
and 99% confidence intervals can be estimated by: 
 
 99%	 	 2.58          (9.8) 
 
 One problem with this test is that AIi@ may not actually follow a normal standard 
distribution.  That is, if AIi@ is calculated for all zones with random data, the distribution of the 
statistic may not be (and often will not be) normally distributed. This would be especially true if 
the variable of interest, Z, is skewed with some zones having very high values while the majority 
having low values, as is typically true with crime distributions. 

 
 Second, the user can estimate  confidence intervals (called credible intervals) using a 
Monte Carlo simulation.  A permutation type simulation is run whereby the locations of the 
zones are kept and the original values of the intensity variable, Z, are maintained but randomly 
re-assigned to zones for each simulation run.  This will maintain the structure of the attribute “Z” 
variable but will estimate the value of “Ii” for each under random assignment of this variable.   
 

Note that a simulation may take time to run especially if the data set 
is large or if a large number of simulation runs are requested. 
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 If a permutation Monte Carlo simulation is run to estimate credible intervals, specify the 
number of simulations to be run (e.g., 1,000, 5,000, 10000).  In addition to the AIi@ for each zone, 
the expected AIi@ and the variance (if requested), the output includes the results that were 
obtained by the simulation for: 
 

1. The minimum AIi@ value 
2. The maximum AIi@ value 
3. The 0.5 percentile of AIi@ 
4. The 2.5 percentile of AIi@ 
5. The 97.5 percentile of AIi@ 
6. The 99.5 percentile of AIi@ 
 
The two percentile pairs (2.5 and 97.5; 0.5 and 99.5) create approximate 95% and 99% 

credible intervals respectively. The minimum and maximum AIi@ values create an >envelope= 
around each zone.  It is important to run enough simulations to produce reliable estimates. 
 

The tabular results can be printed, saved to a text file or saved as a '.dbf' file with a 
LMoran<root name> prefix with the root name being provided by the user.  For the latter, 
specify a file name in the ASave result to@ in the dialogue box. The >dbf= file can then be linked to 
the input >dbf= file by using the ID field as a matching variable.  This would be done if the user 
wants to map the AIi@ variable, the Z-test, or those zones for which the AIi@ value is either higher 
than the 97.5 or 99.5 percentiles or lower than the 2.5 or 0.5 percentiles of the simulation results.   
 

Example 1: Local Moran Statistics for Baltimore Auto Thefts 
 

Using data on 14,853 motor vehicle thefts for 1996 in both Baltimore County and 
Baltimore City, the number of incidents occurring in each of 1,349 census block groups was 
calculated (Figure 9.2).  As seen, the pattern shows a higher concentration towards the center of 
the metropolitan area, as would be expected, but that the pattern is not completely uniform.   
 

There are many block groups within the City of Baltimore with very low counts of auto 
thefts and there are block groups within the County with very high counts.  Using these data, 
CrimeStat calculated the Local Moran statistic with the variance box checked and the small 
distance adjustment used.  The range of Ii values varied from -37.26 to +180.14 with a mean of 
5.20.  The standardized Local Moran >Z= varied from -12.71 to 50.12 and with a mean of 1.61.  
Figure 9.3 maps the distribution.  Because a negative Ii value indicates dissimilarity, these values 
have been drawn in red compared to blue for a positive Ii value.   As seen, in both the City of 
Baltimore and the County of Baltimore, there are block groups with large negative Ii values, 
indicating that they differ from the surrounding block groups.   



Figure 9.2:



Figure 9.3:
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 For example, in the central part of Baltimore City, there is a small area of about eight 
block groups with low numbers of auto thefts, compared to the surrounding block groups.  These 
form a >cold spot=.  Consequently, they appear in dark tones in Figure 9.3 indicating that they 
have high Ii values (i.e., negative spatial autocorrelation).  Similarly, there are several block 
groups on the western side of the County which have relatively high numbers of auto thefts 
compared to the surrounding block groups. They form a hot spot.  Consequently, they also 
appear in dark tones in Figure 9.3 because this indicates positive spatial autocorrelation, having 
values that are similar to the surrounding blocks. In other words, similarity is shown in blue and 
dissimilarity in red. 

 
Example 2: Simulated Local Moran Confidence Intervals for Houston Burglaries 

 
 To illustrate the simulated confidence intervals, we apply the Local Moran statistic to 
burglaries in the City of Houston shown in figure 9.4. The data were 26,480 burglaries that 
occurred in 2006.  They were aggregated to 1,179 traffic analysis zones (TAZ).  Anselin=s Local 
Moran statistic was calculated on each of the TAZ’s with 1,000 Monte Carlo simulations being 
calculated.  Figure 9.5 shows a map of the calculated local AIi@ values.  It can be seen that there 
are many more zones of positive spatial autocorrelation where the zones are similar to their 
neighbors.  In most of these cases, the zone has few burglaries whereas it is surrounded by zones 
that also have few burglaries.  A few zones have negative spatial autocorrelation. In most of the 
cases, the zones have many burglaries and are surrounded by zones with few burglaries. 

 
Confidence intervals were calculated in two ways.  First, the theoretical variance was 

calculated and a Z-test computed.  This is done in CrimeStat by checking the >theoretical 
variance= box.  The test assumes that AIi@ is normally distributed, which may or may not be a 
valid assumption.  Second, a Monte Carlo simulation was used to estimate the 99% confidence 
intervals (i.e., outside the 0.5 and 99.5 percentiles).   
 
 Table 9.1 shows the results for four records. The four records illustrate different 
combinations.  In the first record (TAZ 522), the AIi@ value is 0.000373, indicating positive 
spatial autocorrelation (i.e., nearby zones have similar values).  Comparing it to the 95% credible 
intervals, it is larger than the 97.5th percentile.  In addition, the Z-test, based on the theoretical 
variance, is positive.  Thus, both the simulated confidence intervals and the theoretical 
confidence interval indicate that the AIi@ for this zone is significant. 
  



Figure 9.4:



Figure 9.5:
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 Table 9.1: 
 Anselin=s Local Moran 95% Confidence & Credible Intervals 

 4 Cases Estimated from Theoretical Variance and from Monte Carlo Simulation 
 
        Simulated  Theoretical 

TAZ  X  Y  AIi@   Expected  0.5 %  97.5 %      Z-test  p 

522 3152030 13941900 0.000373 -0.000010 -0.000856 0.000216 2.29 0.05
534 3200630 13955800 0.000345 -0.000007 -0.000516  0.000226 1.82 n.s.
182 3126150 13842900 -0.040641 -0.000087 -0.014287 0.007292 -9.69 0.0001
384 3156740 13879400 -0.000886 -0.000018 -0.001259 0.000593 -2.20 0.05

 
  

In the second record (TAZ 534), the AIi@ value is 0.000345, also indicating positive spatial 
autocorrelation.  However, the AIi@ value is greater than the 97.5th percentile, indicating that the 
simulation suggests the AIi@ is greater than what would be expected by chance.  On the other 
hand, the Z-test, based on the theoretical distribution, is not significant.  Thus, there is an 
inconsistency between simulation test and the Z-test.  
 
 In the third record (TAZ 182), there is consistency between the simulated and theoretical 
significance tests.  The AIi@ is negative (-0.040641), indicating negative spatial autocorrelation 
(i.e., the has different values than nearby zones).  The simulation shows that the AIi@ is more 
negative than the simulated 5th percentile and the Z-test is also significantly negative. 
 
 The fourth record (TAZ 384) shows a negative AIi@, indicating negative spatial 
autocorrelation (i.e., nearby zones have different values).  But there is inconsistency in the test.  
The simulation shows that this AIi@ falls between the 5th and 97.5th percentiles, indicating non-
significance, whereas the Z-test suggests the AIi@ is significant. 
 
 In general, simulated confidence intervals will be similar to the theoretical ones.  But, 
there can be discrepancies. The reason is that the sampling distribution of AIi@ may not be (and 
probably is not) normally distributed.  Of the 1,179 traffic analysis zones, 661 showed significant 
AIi@ values according to the simulated 99% credible intervals (i.e., either equal to or smaller than 
the 0.5 percentile or equal to or greater than the 99.5 percentile) while 688 of the zones showed 
significant AIi” values according to the theoretical Z-test at the 99% level (i.e., having a Z-value 
equal to or less than -2.58 or equal to or greater than 2.58).  It would behoove the user to 
estimate the number of zones that are significant according to both the simulated and theoretical 
confidence intervals before making a decision as to which criterion to use. 
 

Therefore, both the simulated confidence interval and the theoretical distribution should 
be used with caution.  The best mapping solution may be to map only those zones that are highly 
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significant with both tests showing substantial significance. Or, alternatively, map only those 
zones with the highest positive or highest negative AIi@ values.  
 
 Uses of Anselin’s Local Moran 

 
 Anselin’s Local Moran has a number of uses.  First, it can identify zones that are different 
(dissimilar) from its neighbors.  This can be a good first step in finding locations that either have 
higher crime numbers (a hot spot) or lower crime numbers (a cold spot) than the neighboring 
areas.  This can focus police efforts on identifying the problems that cause the zone to be higher 
in the case of a hot spot or to identify factors that mitigate crime in the case of a cold spot.  
 
 Second, another use of Anselin=s Local Moran statistic is to identify >outliers=, zones that 
are very different from their neighbors.  In this case, zones with a high negative I value (e.g., 
with an “Ii” smaller than two standard deviations below the mean) are indicative of outliers.  
They either have a high number of incidents whereas their neighbors have a low number or, the 
opposite, a low number of incidents amidst zones with a high number of incidents.  Identifying 
the outliers can focus on zones that are unique (and which should be studied) or, in multivariate 
analysis, on zones that need to be statistically treated differently in order to minimize a large 
modeling error (e.g., creating a dummy variable for the extreme outliers in a regression model). 
 
 In short, the Local Moran statistic can be a useful tool for identifying zones that are 
dissimilar from their neighborhood.  To use the Local Moran statistic, however, requires that the 
data be summarized into zones in order to produce the necessary intensity value.  Given that 
most crime incident databases will list individual events without intensity or weight values 
assigned, this will entail additional work by a law enforcement agency. 
 
 Limitations of Anselin’s Local Moran 
 
 There are several limitations to the method.  First, because it is an index of similarity, a 
positive “Ii” value does not necessarily indicate a hot spot.  The positive “Ii” value could be due 
to zones with low values of the intensity variable surrounded by other zones that also have low 
values.  Thus, in terms of using the method to identify hot spots of zones can lead to ambiguous 
results.  It is best seen as a first step in identifying hot spot zones. 
 
 Second, there are concerns about the statistical criterion used to identify a zone as being 
similar or dissimilar to its neighbors.  One has to be suspect about a technique that finds 
significance in more than half the cases.  It would probably be more conservative to use 99% 
confidence intervals for identifying zones that show positive or negative spatial autocorrelation 
rather than using 95% confidence intervals or, better yet, choosing only those zones that have 
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very negative or very positive AIi@ values.  Unfortunately, this characteristic of Anselin=s local 
Moran is also true of the local Getis-Ord statistic, which is discussed below.  The significance 
tests, whether simulated or theoretical, are not strict enough and, thereby, increase the likelihood 
of a Type I (false positive) error.  A user must be very careful in interpreting AIi@ values for 
individual zones and would be better served choosing only the very highest or lowest. 
 
 For a detailed discussion of problems in conducting tests on local spatial autocorrelation 
statistics, such as the local Moran or Getis-Ord Local “G” (to be discussedbelow), see Waller 
and Gottway (2004; p. 238). 
 
Getis-Ord Local AG@   
 
 The Getis-Ord Local G statistic applies the Getis-Ord "G" statistic to individual zones to 
assess whether particular zoness are spatially related to the nearby zones (see Chapter 5).  Unlike 
the global Getis-Ord AG@ but like Anselin’s Local Moran, the Getis-Ord Local AG@ is applied to 
each individual zone.  The formulation presented here is taken from Wong and Lee (2005).  The 
AG@ value is calculated with respect to a specified search distance (defined by the user), namely: 
 

 	
∑

∑
                    (9.9) 

 
 	                    (9.10) 

 
	 	                 (9.11) 

 

	
∑

∑
	                  (9.12) 

  
where wj is the weight of zone Aj@ from zone Ai@, Wi is the sum of weights for zone Ai@, and n is 
the number of cases.  
 

The standard error of G(d) is the square root of the variance of G.  Consequently, a Z-test 
can be constructed by: 
 . . 	                  (9.13) 

 

 	
. .

                 (9.14) 
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A good example of using the Getis-Ord local AG@ statistic in crime mapping is found in 
Chainey and Racliffe (2005, pp. 164-172).  
 

ID Field 
   
The user should indicate a field for the ID of each zone.  This ID will be saved with the 

output and can then be linked with the input file (Primary File) for mapping. 
 

Search Distance 
 

The user must specify a search distance for the test and indicate the distance units (miles, 
nautical miles, feet, kilometers, meters,  
 

Getis-Ord Local AG@ Simulation of Confidence Intervals 
 

Since the Getis-Ord AG@ statistic may not be normally distributed, the significance test is 
frequently inaccurate.  Instead, a permutation type Monte Carlo simulation can be run whereby 
the original values of the intensity variable, Z, for the zones are maintained but are randomly re-
assigned to zones for each simulation run.  This will maintain the distribution of the variable Z 
but will estimate the value of G for each zone under random assignment of this variable.  Specify 
the number of simulations to be run (e.g., 100, 1000, 10000).   
 

Output for Each Zone 
 

The output is for each zone includes:  
 

1. The sample size 
2. The ID 
3. The X coordinate 
4. The Y coordinate 
5. The AG@ 
6. The expected AG@ 
7. The difference between AG@ and the expected AG@ 
8. The standard deviation of AG@  
9. A Z-test of "G" under the assumption of normality for the zone 

 
and if a simulation is run: 
 

10. The 0.5 percentile of AG@ for the zone 
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11. The 2.5 percentile of AG@ for the zone 
12. The 97.5 percentile of AG@ for the zone 
13. The 99.5 percentile of AG@ for the zone 

 
The two pairs of percentiles (5 and 95; 2.5 and 97.5; 0.5 and 99.5) create approximate 

95% and 99% credible intervals respectively around each zone. The minimum and maximum AG@ 
values create an >envelope= around each zone.  However, unless a large number of simulations 
are run, the actual AG@ value may fall outside the envelope for any zone. The tabular results can 
be printed, saved to a text file or saved as a '.dbf' file.  For the latter, specify a file name in the 
ASave result to@ in the dialogue box.  The file is saved with a LGetis-Ord<root name> prefix 
with the root name being provided by the user. 
 

The >dbf= output file can be linked to the Primary File by using the ID field as a matching 
variable.  This would be done if the user wants to map the AG@ variable, the expected AG@, the Z-
test, or those zones for which the AG@ value is either higher than the 97.5 or 99.5 percentiles or 
lower than the 2.5 or 0.5 percentiles of the simulation results respectively (95% or 99% 
confidence intervals). 
 

Example: Testing Houston Burglaries with the Getis-Ord Local AG@ 
 

Using the same data set on the Houston burglaries as above, the Getis-Ord Local AG@ was 
run with a search radius of 2 miles.  The output file was then linked to the input file using the ID 
field to allow the mapping of the local AG@ values.  Figure 9.6 illustrates the Z-test of the Getis-
Ord Local AG@ for different zones.  The map displays the significance of the Z-test (the 
difference between the AG@ and the expected AG” relative to the standard error of “G”).  Zones 
with a Z-test of +1.96 or higher are shown in blue (hot spots).  Zones with Z-tests of -1.96 or 
smaller are shown in red (cold spots) while zones with a Z-test between -1.96 and +1.96 are 
shown in yellow (no pattern). 
 

As seen, there are some very distinct patterns of zones with high positive spatial 
autocorrelation and low positive spatial autocorrelation.  Examining the original map of 
burglaries by TAZ (Figure 9.4), it can be seen that where there are many burglaries, the zones 
tend to show high positive spatial autocorrelation (hot spots) in Figure 9.6. Conversely, where 
there are few burglaries, the zones show either low positive spatial autocorrelation (‘cold spots’) 
or, more commonly, no pattern in Figure 9.6.   In particular, the greater downtown Houston area, 
and area southwest of downtown that includes the Texas Medical Center and a commercial area 
west of downtown around the IH 610 ‘loop’ show areas of significant ‘cold spots’.  These are 
areas dominated by commercial or office buildings and generally have relatively few burglaries. 



Figure 9.6:
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Uses of the Getis-Ord Local AG@ 
 

 The Getis-Ord Local AG@ is very good at identifying hot spots and also good at 
identifying cold spots. As mentioned, Anselin=s Local Moran can only identify positive or 
negative spatial autocorrelation, that is, whether the zones are similar or dissimilar.  Those zones 
with positive spatial autocorrelation could occur because zones with high values are nearby other 
zones with high values or they could occur because zones with low values are nearby other zones 
with low values.  The Getis-Ord Local AG@ can distinguish those two types.  
  

Limitations of the Getis-Ord Local AG@ 
 
 The biggest limitation with the Getis-Ord Local AG@, which also applies to the global 
Getis-Ord and Getis-Ord Correlogram routines (see Chapter 5), is that it cannot detect negative 
spatial autocorrelation where a zone is surrounded by neighbors that are different (either having a 
high value surrounded by zones with low values or having a low value and being surrounded by 
zones with high values).  In actual use, both the Anselin=s Local Moran and the Getis-Ord Local 
AG@ should be used to produce a full interpretation of the rsults. 
 
 Another limitation is that the significance tests are too weak, allowing too many zones to 
show significance. In the data shown in Figure 9.6, 63% of the zones (740) were statistically 
significant by the Z-test!  A simulation of credible intervals also showed a very high proportion 
having G values greater or less than the 95% credible intervals.  Thus, there is a substantial Type 
I error with this statistic (false positives), a similarity it shares with Anselin=s Local Moran.   
 
 Reducing the search radius will reduce the number of zones with significant Z-scores.  
For example, with a 1 mile search radius, only 44% of the zones were statistically significant by 
the Z-test.  But, given the size of the zones, there is a limit to how small a search radius can be 
made. With the Houston block groups, for example, the average area of a block group is 0.48 
square miles.  If a typical block group size is viewed as a square having that area, then each side 
would be about 0.7 miles in length.  Choosing a search radius smaller than 0.7 would end up 
with many zones not having neighbors selected, especially farther away from the city center 
where zones are generally much larger in size.  This would lead to an unrealistic estimate of the 
amount of spatial autocorrelation.  In other words, there is a trade-off between the precision of 
the search radius and the accuracy of the “G” estimate. In this case, a search radius of two miles 
is a realistic search radius for this geographical distribution. 
 
 Waller and Gottway (2004, p. 238) point out that there are four problems with the testing 
of  LISA statistics since the measures are interrelated: First, the distributional properties remain 
largely unknown.  Second, multiple tests lead to overly rejecting the null hypothesis, which we 
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have demonstrated above.  Third, the LISA’s of neighboring zones are often highly correlated 
due to using the same data and, fourth, many of the tests are based on small samples sizes since 
the number of events in any one zone may be limited.  A random simulation can overcome the 
first problem by using the empirical distribution as a basis for calculating credible intervals, but 
it cannot overcome the next three.  
 
 In short, a user should be very careful in interpreting zones with significant AG@ values 
and would probably be better served by choosing only those zones with the highest or lowest AG@ 
values. 
 
Zonal Nearest Neighbor Hierarchical Clustering 
 

The zonal nearest neighbor hierarchical spatial clustering routine applies the nearest 
neighbor hierarchical clustering algorithm (Nnh; see Chapter 7 for the background and details) to 
zonal data.  The point-based Nnh is a constant-distance clustering routine that groups points 
together on the basis of spatial proximity.  A threshold distance is defined and the minimum 
number of points that are required for each cluster specified.  The output can be displayed with 
ellipses or convex hulls.  

 
On the other hand, in the zonal Nnh (Znnh), the algorithm is adjusted to allow weighting 

of each zone usually applied to a single point within the zone (e.g., a centroid).  Thus, if the 
‘point’ is a centroid of a zone, then the weighting is an attribute assigned to that centroid (e.g., 
population, employment, median household income).  Clusters are groups of adjacent zones that 
have much higher weights than non-clustered zones.  

 
The routine requires a primary file (e.g., robberies) that is weighted with the weight or 

intensity variable (see Primary File).  On the Znnh routine, the user defines a weighting variable, 
a threshold distance, the minimum number of values of the weighting variable that are required 
for each cluster, and the type of output size, either standard deviational ellipses or convex hulls.   

 
The routine identifies first-order clusters that represent groups of zones that are closer 

together than the threshold distance, that have the highest weights, and in which there is at least 
the minimum number of zones specified by the user (the minimum is 3 zones). Clustering is 
hierarchical in that the first-order clusters are treated as separate ‘points’ to be clustered into 
second-order clusters, and the second-order clusters are treated as separate ‘points’ to be 
clustered into third-order clusters, and so on.  Higher-order clusters will be identified only if the 
distances between their centers are closer than the new threshold distance.  
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For example, if the attribute to be grouped is the number of crimes in a zone, then the 
routine identifies adjacent zones that have high concentrations of crimes.   The user can modify 
the number of clusters identified and the relative size of them by changing the search radius or 
the minimum number of attributes that must be grouped together.  The results can be output as 
either standard deviational ellipses or convex hulls. 
 

Weighting Variable 
 
 Each zone must be weighted by an attribute variable.  This is the weight or intensity 
variable defined on the Primary File page.  The user specifies whether the weight or the intensity 
variable is to be used for the attribute.  The default is Intensity. 

 
Clustering Criteria 
 
Two criteria are used to group zones together.  
 
Criterion 1: Threshold Distance 

 
The first criterion in identifying clusters is whether zones are closer than a specified 

threshold distance.  There are two alternatives in selecting the threshold distance: 1) a fixed 
distance (the default is 2 miles); or 2) a random nearest neighbor distance. 
 
  Fixed distance 

 
Unlike the Nnh routine for clustering points (Chapter 7), the default alternative for 

selecting a threshold distance in the Znnh is to choose a fixed distance (in miles, nautical miles, 
feet, kilometers, or meters).  The user checks the AFixed distance@ box and selects a threshold 
distance.  The default value is 2 miles but the user can change this. 

 
The main advantage of this method is that, first, the search radius can be specified exactly 

and, second, unlike points, zones do not overlap and are spatially dispersed.  The distance 
between adjacent zones may be substantial especially for large zones at the periphery of an urban 
area.  Thus, to capture adjacent zones that have high values of the attribute variable requires 
choosing a search radius that is large.   

 
The main disadvantage of this method is that the choice of a threshold is subjective.  

There is no reason why any particular search radius should be chosen. Further, the larger the 
distance that is selected, the greater the likelihood that clusters will be found by chance.  This 
can be tested using a Monte Carlo simulation (see below). 
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Random nearest neighbor distance 
 
 The alternative is to use the expected random nearest neighbor distance for first-order 
nearest neighbors. The user specifies a one-tailed confidence interval around the random 
expected nearest neighbor distance.  The t-value corresponding to this probability level, t, is 
selected from the Student=s t-distribution under the assumption that the degrees of freedom are at 
least 120.2  This selection is controlled by a slide bar under the routine (see Figure 9.1). From 
Chapter 6, the mean random distance is defined as: 

 

0.5            (9.15) 

 
where A is the area of the region and N is the number of zones and the standard error of the mean 
random distance is: 
 

 ≅ .           (9.16) 

 
where A is the area of the region and N is the number of zones.  The confidence interval around 
that distance is defined as: 
 
 	 	 ∗        (9.17) 
 
where t is the t-value associated with a probability level in the Student=s t-distribution.   
  

The approximate lower limit of this confidence interval is: 
 

 	 	 	 	 	 ∗  
 

 ≅ 0.5 .          (9.18) 

 
 
 
 

                                                 
2  This is the next highest degree of freedom in the Student=s t-table below infinity. 
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and the upper limit of this confidence interval is: 
 
 	 	 	 	 	 ∗  
 

 ≅ 0.5 .          (9.19) 

 
The confidence interval defines a probability for the distance between any pair of zones.  

For example, for a specific one-tailed probability, p, fewer than p% of the zones would have 
nearest neighbor distances smaller than this selected limit if the distribution was spatially 
random.  If the data were spatially random and if the mean random distance is selected as the 
threshold criteria (the default position on the slide bar), approximately 50% of the pairs will be 
closer than this distance.  For randomly distributed data, if a p#.05 level is taken for t (two steps 
to the left of the default or the fifth in from the left), then only about 5% of the pairs would be 
closer than the threshold distance.  Similarly, if a p#.75 level is taken for t (one step to the right 
of the default or the fifth in from the right), then about 75% of the pairs would be closer than the 
threshold distance. 

 
Table 9.2: 

 Approximate Probability Values Associated with Threshold Scale Bar 
 
     Scale Bar 
  Position  Probability  Description 
 
     1   0.00001  Far left point of slide bar 
  2   0.0001   Second from left 
  3   0.001   Third from left 
  4   0.01   Fourth from left 
  5   0.05   Fifth from left 
  6   0.1   Sixth from left 
  7   0.5   Sixth from right (default value) 
  8   0.75   Fifth from right 
  9   0.9   Fourth from righ 
  10   0.95   Third from righ 
  11   0.99   Second from righ 
  12   0.999   Far right point of slide bar 
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In other words, the threshold distance is a probability level for selecting any two zones (a 
pair) on the basis of a chance distribution.  The slide bar has 12 levels and is associated with a 
probability level for a t-distribution from a sample of 120 or larger.  From the left, the p-values 
are approximately (see Table 9.2 above): 

 
Taking a broader conception of this, if there is a spatially random distribution, then for all 

distances between pairs of zones, of which there are 
 

           (9.18) 
 
fewer than p% will be shorter than this threshold distance. 
 
  Area must be defined correctly 
 

Note that it is very important that area be defined correctly for this routine to work. If the 
user defines the area on the measurement parameters page (see Chapter 3), the Znnh routine uses 
that value to calculate the threshold distance.  If the user does not define the area on the 
measurement parameters page, the routine calculates the area from the minimum and maximum 
X/Y values (the bounding rectangle), which will usually be a larger area.  In either case, the 
routine will be able to calculate a threshold distance and run the routine.   
 

However, if the area units are defined incorrectly on the measurement parameters page, 
then the routine will certainly calculate the threshold distance wrongly.  For example, if data are 
in feet but the area on the measurement parameters page are defined in square miles, most likely 
the routine will not find any zones that are farther apart the threshold distance since that distance 
is defined in miles.  In other words, it is essential that the area units be consistent with the data 
for the routine to properly work. 

 
Criterion 2: Zones with the Highest Number of Attributes 
 
The second criterion involves the weighting of each zone.  With zonal data, each zone 

has an attribute value, defined either by the intensity variable or weight variable on the Primary 
File page. Clusters are defined by those zones that are within the threshold distance but which 
have the highest combined value of the attribute variable.  The algorithm looks for a ‘center’ of 
three of more zones for which the total value of the attribute variable is highest. Like the Nnh 
routine, the process is iterative, first finding an approximate center and then re-calculating it with 
respect to the total value of the attribute variable for those zones within the threshold distance of 
the center.  Eventually, the process stabilizes and the routine quits. 
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Table 9.3 presents a simple example.  Suppose there are two zones (A and B) within the 
second matrix and each has three other zones closer than the threshold distance (C, D, E for Zone 
A and F, G, H for Zone B).  In this example, Zone A would be chosen as the initial center for the 
first cluster because the sum of the weights (for itself and for the three other zones that are within 
the threshold distance) add to 85 whereas the sum of the weights for the other points for Zone B 
only add to 65 even though Zone B had a higher weight for itself than Zone A.  
 

Table 9.3: 

Example of Weighting Pairs of Zones by Attributes 
 

    Zone A     Zone B 
 
 Other Zones  Weighting   Other Zones  Weighting  
  A (itself) 10     B (itself) 20 
  C  20     F  10 
  D  30     G  15  
  E  25     H  20 
    ---       --- 
  TOTAL: 85       65 
 

 
The routine then removes the zones selected for the first cluster (A, C, D, and E).  It then 

attempts to find a second cluster.  In this example, there is only one other (B, F, G, and H), which 
is then removed from the matrix.  If there were more zones, the routine would look for additional 
centers of clusters. 

 
Having completed an initial identification of cluster centers, the routine then calculates 

the center of minimum distance (CMD) for the selected points and then calculates those zones 
that are within the threshold distance of the CMD.  It repeats the process for a second cluster.   
After a second round of clustering, the routine repeats the process for a third cluster.  The 
iterations continue until no zones change clusters and the calculated center of minimum distance 
changes very little. 

 
First-order Clusters 
 
Using these criteria, CrimeStat constructs a first-order clustering of the zones.   For each 

first-order cluster, the center of minimum distance is output as the cluster center, which can be 
saved as a >.dbf= file. 
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Second and Higher-order Clusters 
 

The first-order clusters are then tested for second-order clustering.  The procedure is 
similar to first-order clustering except that the cluster centers (the center of minimum distance 
for each) are now treated as >points= which themselves are clustered (see endnote ). The process 
is repeated until no further clustering can be conducted.  Either all sub-clusters converge into a 
single cluster, the threshold distance criterion fails, or there are fewer than four seeds in the 
higher-order cluster. 
 

Note that this process is similar to that of the Nnh routine discussed in Chapter 7 except 
the selection of clusters is function of the total value of the attribute variable and not just the 
distance between zones. 
 
 Simulating Confidence Intervals 
 

A Monte Carlo simulation can be run to estimate the approximate confidence intervals 
around first-order Znnh clusters.  Second- and higher-order clusters are not simulated since their 
structure depends on first-order clusters.  The user specifies the number of simulation runs and 
the Znnh clustering is calculated for randomly assigned data.  The random output is sorted and 
percentiles are calculated. The output includes the number of first-order clusters, the area, the 
number of points, the number of zones, and the density.  
 

Confidence intervals can be estimated from these percentiles.  The two most commonly 
used ones are the 95% (defined by the 2.5 and 97.5 percentiles) and the 99% (defined by the 0.5 
and 99.5 percentiles).   The simulated data that is used can be viewed by checking the 'Dump 
simulation data' box on the Options tab. 

 
Type of Graphical Output 

 
The type of graphical output is specified, either standard deviational ellipses or convex 

hulls around the zones identified in each cluster. If the output is to be ellipses, then the output 
size for the clusters can be adjusted by the second slide bar.  These are the number of standard 
deviations defined by the ellipse, from one standard deviation (the default value) to three 
standard deviations.  Typically, one standard deviation will cover about 50-60% of the zones 
(and a higher percentage of the total of the weighting variable) whereas three standard deviations 
will cover more than 99% of the zones.  On the other hand, if the output is to be convex hulls, the 
routine outputs a convex hull for each identified cluster.  
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  Ellipse cluster output 
 

The results can be output graphically as an ellipse to ArcGIS ‘shp’, MapInfo ‘mif’, 
various ASCII formats, or Google Earth ‘kml’ (if the coordinate system is spherical) files.  A file 
name should be provided. For MapInfo ‘mif’ format, the user has to define up to nine parameters 
including the name of the projection and the projection number.  If the MapInfo system file 
MAPINFOW.PRJ is placed in the same directory as CrimeStat, then a list of common 
projections with their appropriate parameters is available to be selected. 

 
 First and higher-order ellipses will be output as separate objects.  The prefix will be 

‘Znnh1’ for the first-order ellipses, ‘Znnh2’ for the second-order ellipses, and ‘Znnh3’ for the 
third-order ellipses.  Higher-order ellipses will only index the number. 
 
  Output size for ellipses 
 

The cluster output size can be adjusted by the lower slide bar.  This specifies the number 
of ellipse standard deviations to be calculated for each cluster: one standard deviation (1X - the 
default value), one and a half standard deviations (1.5X), or two standard deviations (2X).  The 
default value is one standard deviation.  Typically, one standard deviation will cover more than 
half the zones in a cluster whereas two standard deviations will cover more than 99% of the 
zones in a cluster, though the exact percentage will depend on the distribution.  Slide the bar to 
select the number of standard deviations for the ellipses.  The output file is saved as 
Znnh<number><file name> with the file name being provided by the user.  The number is the 
order of the clustering (i.e., 1, 2…). 
 

Restrictions on the number of clusters can be placed by defining a minimum number of 
zones that are required.  The default is 10 and the minimum is 3.  If there are too few zones 
allowed, then there will be many very small clusters.  By increasing the number of required 
zones, the number of clusters will be reduced. 

 
 Convex hull cluster output 
 
The clusters can also be output as convex hulls to ArcGIS ‘shp’, MapInfo ‘mif’, various 

ASCII formats, or Google Earth ‘kml’ (if the coordinate system is spherical) files.  Specify a file 
name.  For MapInfo ‘mif’ format, the user has to define up to nine parameters including the 
name of the projection and the projection number.  If the MapInfo system file MAPINFOW.PRJ 
is placed in the same directory as CrimeStat, then a list of common projections with their 
appropriate parameters is available to be selected. 
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The name will be output with a ‘CZnnh1’ prefix for the first-order clusters, a ‘CZnnh2’ 
prefix for the second-order clusters, and a ‘Cznnh3’ prefix for the third-order clusters.  Higher-
order clusters will index only the number. 

 
Note that unlike the Nnh clustering algorithm for points, discussed in Chapter 7, the zonal 

Nnh generally has much larger search areas.  Consequently the convex hulls will be much larger 
than the ellipses, even the 2x ellipse (the opposite is true with the Nnh). 

 
Tabular Output 

 
The routine outputs six results for each cluster that is calculated: 
 
1. The hierarchical order and the cluster number 
2. The mean center of the cluster (Mean X and Mean Y) 
3. The standard deviational ellipse of the cluster (the rotation and the lengths of the 

X and Y axes) 
4. The number of zones in the cluster 
5. The area of the cluster 
6. The density of the cluster (the total weight of the zones divided by area) 

 
and if a simulation is run: 
 

7. The minimum for the spatially random Znnh simulations: 
8. The maximum for the spatially random Znnh simulations 
9. The 0.5 percentile for the spatially random Znnh simulations 
10. The 1 percentile for the spatially random Znnh simulations 
11. The 2.5 percentile for the spatially random Znnh simulations 
12. The 5 percentile for the spatially random Znnh simulations 
13. The 10 percentile for the spatially random Znnh simulations 
14. The 90 percentile for the spatially random Znnh simulations 
15. The 95 percentile for the spatially random Znnh simulations 
16. The 97.5 percentile for the spatially random Znnh simulations 
17. The 99 percentile for the spatially random Znnh simulations 
18. The 99.5 percentile for the spatially random Znnh simulations 

 
Example 1: Simulated Clustering of Zones 
 
 To illustrate the Znnh routine, a dispersed cluster structure for an arbitrary variable with 
five main groupings was created with 1,179 City of Houston Traffic Analysis Zones (TAZ).  The 
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five clusters can be labeled as central, southwest, northwest, northeast and southeast.  Figure 9.7 
illustrates the pattern that was created. 

 
Four separate search areas were selected with a minimum of 25 ‘events’ being required of 

the attribute variable: 
 

1. 2 miles 
2. 5 miles 
3. 8 miles 
4. 12 miles 

 
Figures 9.8-9.12 illustrate the results of the clustering using these search distances with 

the standard deviational ellipse.  Figure 9.11 also shows the convex hull of the search radius.  
Notice that a search radius of 2 miles produces small clusters and did not cover the clusters in the 
northeast, the southeast and most of the southwest.  The reason is that TAZs for those areas are 
quite large with many being larger than 2 miles. 

 
A 5 mile search radius covered the five clusters though the clusters are still small.  The 8 

mile search radius appeared to fit the data better while the 12 mile search radius produced too 
large ellipses with one large one for the central area.  Note that Figure 9.11 shows the convex 
hulls of the 8 mile search radius and which covers most of the TAZs of the City of Houston. 

 
Example 2: Clustering of Houston Burglaries by Traffic Analysis Zones 
 
 The second example examines burglaries in the City of Houston in 2006.  In that year, 
24,935 burglaries were recorded. The data from which these came were assigned to blocks.  Each 
of the burglaries was geocoded to the mid-block and then aggregated into 1,179 TAZs.  Figure 
9.4 above illustrates the pattern of burglaries in Houston.   
 
 The Znnh routine was run with four different search radii and with a minimum of 25 
burglaries being required for each cluster: 
 

1. 0.5 miles 
2. 2 miles 
3. 5 miles 
4. 8 miles 
 
 

 



Figure 9.7:



Figure 9.8:



Figure 9.9:



Figure 9.10:



Figure 9.11:



Figure 9.12:
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Figures 9-13 shows the results of the 0.5 mile search radius. Four clusters were identified, 
but they were very small and covered only the downtown Houston area.  The reason is that with 
a half mile radius, only very small TAZ’s can be captured within the radius and these are 
typically in the central downtown area.  Further, they do not capture many burglaries, only 139 
of the 24,935.  However, they do a better job of capturing high density burglary TAZ’s, defined 
as burglaries per square mile (Figure 9.14) 

 
Figure 9.15 through 9.17 show the results of using 2, 5 and 8 mile search radii.  The 2 

mile search radius produced 10 small clusters; the 5 mile search radius produced 9 medium-sized 
clusters, and the 8 mile search radius identified 5 moderately large clusters.  Clearly the cluster 
structure produced by the 2 mile search radius was also too small to fit the citywide pattern 
whereas either the 5 mile search radius or the 8 mile search radius seemed to best fit the overall 
data.  Depending on whether the user wants smaller or larger clusters would determine which of 
these is selected. 
 
 Keep in mind that there is a danger is using large search radii since the likelihood of 
obtaining clusters by chance increases.  To illustrate this, two Monte Carlo simulations of 1000 
runs was made with both the 0.5 and the 8 mile search radius.  Table 9.4 compares the actual 
clusters with the simulated clusters. 
 
 With the 0.5 mile search radius, no clusters were identified in the Monte Carlo 
simulation.  This indicates that the clusters identified in Figure 9.13 are most likely real.  On the 
other hand, with the 8 mile search radius and randomly distributed data, the expected number of 
clusters would be expected to vary between 5 and 8 clusters 95% of the time.  This is calculated 
as the credible interval defined by the 2.5th and 97.5th percentiles.  Thus, the five clusters 
obtained by the Znnh are not significantly greater than or smaller than what would be expected 
by chance.  Similarly, the area of the ellipses, the number of attribute points captured and the 
number of zones are not significantly different than what would be expected by chance.   
 

In short, the distribution that was obtained was not fundamentally different from a chance 
distribution.  This is primarily the result of selecting a very large search radius.  A user has to 
balance the choice between a small search radius which would capture clusters that are 
statistically much less likely to be due to chance but which cover only a small proportion of the 
study area with a larger search radius to capture the overall pattern but which increases the 
likelihood of identifying clusters by chance.  In other words, there is a precision versus utility 
choice with a zonal clustering algorithm such as the Znnh. 
 
 
 



Figure 9.13:



Figure 9.14:



Figure 9.15:



Figure 9.16:



Figure 9.17:
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 Table 9.4: 

Zonal Nearest Neighbor Hierarchical Clustering of Houston Burglaries 
(N= 24,935) 

 
0.5 mile search radius, Minimum points per cluster=25 

 
   Area of      Number  Number 
     Cluster  Ellipse (sq mi)      of Points of Zones          Density   

1 0.005   56    35  11,633.1 
2 0.310   68  155       219.3 
3 0.081   29    36       359.4 
4 0.374   99    34       264.7 

 
No clusters found in simulation 
 

8 mile search radius, Minimum points per cluster=25 
 

   Area of      Number    Number 
     Cluster  Ellipse (sq mi)      of Points   of Zones          Density   
 1  171.758      12,749    623  74.227 
 2  99.028         3,253      91  32.849 
 3  130.048        5,070    288  38.986 
 4  65.936         2,418      86  36.672 
 5  31.450            681      26  21.653 
 
     Area of      Number   
     Percentile  Clusters  Ellipse (sq mi)      of Zones     Density 
     0.5               4         10.34                25       0.707 
            1.0              5         11.04                25          0.730 
            2.5              5         12.29               25          0.777 
            5.0              5         13.74               25          0.862 
           10.0              5         15.74               26          0.938 
           90.0              7        239.21            467          2.092 
           95.0              8        241.59            471          2.183 
           97.5              8        243.05            477          2.353 
           99.0              8        244.67            481          2.631 
           99.5              8        245.06            483          2.798 
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Uses of Zonal Nearest Neighbor Hierarchical Clustering  
 
 This brings up one of the dilemmas in using a zonal clustering technique.  On the one 
hand, since zones do not overlap, the dispersion is much more spread out than with individual 
events.  As seen in Chapter 7, the regular nearest neighbor hierarchical clustering routine (Nnh) 
produced quite small clusters.  With zonal data, however, all the events are assigned to a single 
point within the zone which either creates a cluster associated with a single or else a dispersion 
between adjacent zones that have a higher concentration.  Since the identification of a single 
zone is not very useful, the Znnh routine requires a minimum of three adjacent zones to be 
included in a cluster. 
 
 Still, the Znnh can be useful for describing overall cluster patterns in a study area even 
with the increased uncertainty associated with large search radii.  As Figures 9.16 and 9.17 
illustrate, meaningful areas of higher concentration can be identified even though the identified 
clusters cannot be empirically distinguished from a chance distribution.   This gives the user 
flexibility in defining groupings of zones which can then be used for various purposes (e.g., 
assigning patrols or defining contingency areas). 
 
 Limitations of Zonal Nearest Neighbor Hierarchical Clustering 
 
 On the other hand, the Znnh routine does have some limitations.  The first was shown 
above, namely that to ensure that clusters are substantially different from that expected by 
chance, only small search radii can be chosen.  However, given that most zones are associated 
with population density with the smallest zones being in the downtown center but increasing in 
size with distance from the center, the use of a small search radius becomes less useful. 
 
 Second, choosing a larger search radius can produce a cluster structure that appears to fit 
the data better but cannot be empirically distinguished from a chance distribution.  Since there is 
not a single criterion that can be used to select among these, there is a certain amount of 
arbitrariness in the selection of a search radius or in the minimum number of events/attribute 
values specified.  A user will have to experiment with different combinations to find the cluster 
structure that best fits the data.  In this sense, the Znnh routine is more similar to the K-means 
clustering routine discussed in Chapter 8 than the Nnh routine in Chapter 7. 
 
 The best solution, of course, is to use the location of individual events and cluster them 
with either either Nnh, STAC or K-means routines discussed in Chapters 7 and 8.  The Znnh 
routine should only be used if the data are organized by zones and cannot be disaggregated.  In 
this case, the user must be aware of the limitations of the Znnh method and of the trade-off 
between precision (certainty) and utility. 
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 A third limitation is that the cluster structure will almost certainly be different than had 
the individual events been clustered using the point-based Nearest Neighbor Hierarchical 
Clustering routine (Nnh).  The requirement that zones do not overlap and that all events are 
assigned to the centroid of the zone ensures that the Znnh clusters will almost always be larger in 
size than the point-based Nnh clusters.  In short, assigning events to zones and then clustering the 
zones will produce a larger and less focused cluster structure than the events themselves.  The 
Znnh is only useful when it is not possible to disaggregate events to individual locations.
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Endnotes 
 
i. The variance of the Local Moran is defined in three steps: 
 

A. First, define b2. 
 

∑

∑
 

 
This is the fourth moment around the mean divided by the squared second 
moment around the mean.   

 
B. Second, define 2wi(kh): 
 
 2 ∑ ∑  

 
where k =/  i and h =/  i.  This term is twice the sum of the cross-products of all 
weights for i with themselves, using k and h to avoid the use of identical 
subscripts.  Since each pair of observations, i and j, has its own specific weight, a 
cross-product of weights are two weights multiplied by each other (where i =/  j) 
and the sum of these cross-products is twice the sum of all possible interactions 
irrespective of order (i.e., Wij = Wji).  Because the weight of an observation with 
itself is zero (i.e., Wii = 0), all terms can be included in the summation. 

 
C. Third, define the variance, standard deviation, and an approximate (pseudo) 

standardized score of Ii: 
 

 
∑ ∑ ∑ ∑
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Attachments 
 

  



Using Local Moran’s “I” to Detect Spatial Outliers in Soil Organic 
Carbon Concentrations in Ireland 

 
Chaosheng Zhang1 David McGrath2 

Lecturer in GIS Research Officer 
1 Department of Geography, National University of Ireland, Galway, Ireland 

2 Teagasc, Johnstown Castle Research Centre, Wexford, Ireland 
 
One objective in the study of soil organic carbon concentrations is to produce 

a reliable spatial distribution map. A geostatistical variogram analysis was applied 
to study the spatial structure of soils in Ireland for the purpose of carrying out a 
spatial interpolation with the Kriging method.  The variogram looks at similarities 
in organic carbon concentrations as a function of distance.  In the analysis, a 
relatively poor variogram was observed, and one of the main reasons was the 
existence of spatial outliers. Spatial outliers make the variogram curve erratic and 
hard to interpret, and impair the quality of the spatial distribution map. 

 
CrimeStat was used to identify the spatial outliers. The parameter of the 

standardized Anselin’s Local Moran’s “I (z)” was used. When z < -1.96, the sample 
was defined as a spatial outlier. Out of 678 soil samples, a total of 39 samples were 
detected as spatial outliers, and excluded in the spatial structure calculation. As a 
consequence, the variogram curve was significantly improved. This improvement 
made the final spatial distribution map more reliable and trustable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Spatial outliers are clearly different from the majority of samples nearby.  

Compared with the samples nearby, high value spatial outliers are found in the 
southeastern part, and low value spatial outliers are located in the western and 
northern parts of the country. 



 

CrimeStat IV 
 
 

Part IV: Spatial Modeling I 
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Chapter 10: 

 Kernel Density Interpolation 

 
Introduction 
 
 In this chapter, we discuss tools aimed at interpolating incidents, using the kernel density 
approach. Kernel Density Interpolation (sometimes called Kernel Density Estimation) is a 
technique for generalizing incident locations to an entire area.  Whereas the spatial distribution 
and hot spot statistics provide statistical summaries for the data incidents themselves, 
interpolation techniques generalize those data incidents to the entire region.  In particular, they 
provide density estimates for all parts of a region (i.e., at any location).  The density estimate is 
an intensity variable, a Z-value, that is estimated at a particular location.  Consequently, it can 
be displayed by either surface maps or contour maps that show the intensity at all locations. 
 
 There are many interpolation techniques, such as Kriging, trend surfaces, local regression 
models (e.g., Loess, splines), and Dirichlet tessellations (Anselin, 1992; Cleveland, Grosse & 
Shyu, 1993; Venables & Ripley, 1997).  Most of these require a variable that is being estimated 
as a function of location.  However, kernel density estimation is an interpolation technique that 
is appropriate for individual point locations (Silverman, 1986; Härdle, 1991; Bailey & Gatrell, 
1995; Burt & Barber, 1996; Bowman & Azalini, 1997). 
 
Kernel Density Estimation 
 
 Kernel density estimation involves placing a symmetrical surface over each point, 
evaluating the distance from the point to a reference location based on a mathematical function, 
and summing the value of all the surfaces for that reference location.  This procedure is 
repeated for all reference locations.  It is a technique that was developed in the late 1950s as an 
alternative method for estimating the density of a histogram (Rosenblatt, 1956; Whittle, 1958; 
Parzen, 1962).  A histogram is a graphic representation of a frequency distribution.  A 
continuous variable is divided into intervals of size, s (the interval or bin width), and the number 
of cases in each interval (bin) are counted and displayed as block diagrams. The histogram is 
assumed to represent a smooth, underlying distribution (a density function). However, in order to 
estimate a smooth density function from the histogram, traditionally researchers have linked 
adjacent variable intervals by connecting the midpoints of the intervals with a series of lines 
(Figure 10.1).  
 

 
 



CONSTRUCTING A  DENSITY ESTIMATE FROM HISTOGRAM
Figure 10.1:
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 Kernel Estimates as an Alternative to Histograms 
 
 Unfortunately, doing this causes three statistical problems (Bowman & Azalini, 1997): 
 

1. Information is discarded because all cases within an interval are assigned to the 
midpoint.  The wider the interval, the greater the information loss. 

 
2. The technique of connecting the midpoints leads to a discontinuous and not 

smooth density function even though the underlying density function is assumed 
to be smooth.  To compensate for this, researchers will reduce the width of the 
interval.  Thus, the density function becomes smoother with smaller interval 
widths, although still not very smooth.  Further, there are limits to this technique 
as the sample size decreases when the bin width gets smaller, eventually 
becoming too small to produce reliable estimates. 

 
3. The technique is dependent on an arbitrarily defined interval size (bin width).  

By making the interval wider, the estimator becomes cruder and, conversely, by 
making the interval narrower, the estimator becomes finer. However, the 
underlying density distribution is assumed to be smooth and continuous and not 
dependent on the interval size of a histogram. 

 
 To handle this problem, Rosenblatt (1956), Whittle (1958) and Parzen (1962) developed 
the kernel density method in order to avoid the first two of these difficulties; the bin width issue 
still remains.  What they did was to place a smooth kernel function over each point and sum the 
functions for each location on the scale. Figure 10.2 illustrates the process with five point 
locations.  As seen, over each location, a symmetrical kernel function is placed; by symmetrical 
is meant that is falls off with distance from each point at an equal rate in both directions around 
each point.  In this case, it is a normal distribution, but other types of symmetrical distribution 
have been used.  The underlying density distribution is estimated by summing the individual 
kernel functions at all locations to produce a smooth cumulative density function.  Notice that 
the functions are summed at every point along the scale and not just at the point locations.  The 
advantages of this are that, first, each point contributes equally to the density surface and, 
second, the resulting density function is continuous at all points along the scale. 
 
 The third problem mentioned above, interval size, still remains since the width of the 
kernel function can be varied. In the kernel density literature, this is called bandwidth and refers 
essentially to the width of the kernel.  Figure 10.3 shows a kernel with a narrow bandwidth 
placed over the same five points while Figure 10.4 shows a kernel with a wider bandwidth 
placed over the points.  Clearly, the smoothness of the resulting density function is a result of 
the bandwidth size. 
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Figure 10.3:
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Figure 10.4:
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 Kernel Functions 
 
 There are a number of different kernel functions that have been used in applications.  
Figure 10.5 illustrates five different kernel functions that are available in CrimeStat.     
 
 The first is the normal distribution and is the most commonly used (Kelsall & Diggle, 
1995a).  It has the following functional form: 
 

 ∑         (10.1) 

 
where g(xj) is the density of cell , dij is the distance between cell	 	and an incident location,	 , h 
is the standard deviation of the normal distribution (the bandwidth), K is a constant, Wi is a 
weight at the point location and Ii is an intensity at the point location. This function extends to 
infinity in all directions and, thus, will be applied to any location in the region. In CrimeStat, the 
constant K is initially set to 1 and then re-scaled to ensure that either the densities or probabilities 
sum to their appropriate values (i.e., N for densities and 1.00 for probabilities). 
 
 In other words, the density of cell	 	is the sum over all incidents of a distance function 
where the function is the normal distribution.  Each cell, in turn, is evaluated with this function 
and the result is a density estimate for every cell in the reference grid. 
 
 In CrimeStat, there are four alternative kernel functions that can be used, all of which 
have a circumscribed bandwidth (search area) unlike the normal distribution. The quartic 
function is applied to a limited area around each incident point defined by the radius, h.  It falls 
off gradually with distance until the bandwidth radius is reached.  Its functional form is: 
 
 1. Outside the specified bandwidth, h: 
 
 0           (10.2)  
 
 2. Within the specified bandwidth, h: 
 

 ∑ 1         (10.3)  

 
where g(j) is the density of cell	 , dij is the distance between cell	 	and an incident location,	 , h is 
the radius of the search area (the bandwidth) , K is a constant, Wi is a weight at the point location, 
and Ii is an intensity at the point location. The summation is for the incidents that are within the 
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bandwidth.  Thus, each cell,	 , has a different number of incidents that fall within the bandwidth 
search area, Mj.  In CrimeStat, the constant K is initially set to 1 and then re-scaled to ensure 
that either the densities or probabilities sum to their appropriate values (i.e., N for densities and 
1.00 for probabilities). 
 
 The triangular (or conical) distribution falls off evenly with distance, in a linear 
relationship. It also has a circumscribed radius and is, therefore, applied to a limited area around 
each incident point, h.  Compared to the quartic function, it decays more rapidly.  Its 
functional form is: 
 
 1. Outside the specified bandwidth, h: 
 
 0           (10.4)  
 
 2. Within the specified bandwidth, h: 
 
 ∑         (10.5) 
 
where g(xj) is the density of cell	 , dij is the distance between cell	 	and an incident location,	 , h 
is the radius of the search area (the bandwidth) , K is a constant, Wi is a weight at the point 
location, and Ii is an intensity at the point location. The summation is for the incidents that are 
within the bandwidth.  Thus, each cell,	 , has a different number of incidents that fall within the 
bandwidth search area, Mj.  In CrimeStat, the constant K is initially set to 0.25 and then 
re-scaled to ensure that either the densities or probabilities sum to their appropriate values (i.e., N 
for densities and 1.00 for probabilities). 

 
 The negative exponential (or peaked) distribution falls off very rapidly with distance up 
to the circumscribed radius.  Its functional form is: 
 

1. Outside the specified bandwidth, h: 
 

 0           (10.6)  
 
 2. Within the specified bandwidth, h: 
 
 ∑          (10.7)  
where g(xj) is the density of cell	 , dij is the distance between cell	 	and an incident location,	 , h 
is the radius of the search area (the bandwidth) , K is a constant, A is an exponent, Wi is a weight 
at the point location, and Ii is an intensity at the point location. The summation is for the 
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incidents that are within the bandwidth.  Thus, each cell,	 , has a different number of incidents 
that fall within the bandwidth search area, Mj.  In CrimeStat, A is set to 3 while K is initially set 
to 1 and then re-scaled to ensure that either the densities or probabilities sum to their appropriate 
values (i.e., N for densities and 1.00 for probabilities). 
 
 Finally, the uniform distribution weights all points within the circle equally.  Its 
functional form is: 
 

1. Outside the specified bandwidth, h: 
 
 0           (10.8)  
 

2. Within the specified bandwidth, h:   
 

 ∑           (10.9) 
 
where g(xj) is the density of cell	 , K is a constant, Wi is a weight at the point location, and Ii is an 
intensity at the point location. The summation is for the incidents that are within the bandwidth.  
Thus, each cell,	 , has a different number of incidents that fall within the bandwidth search area, 
Mj.  Initially, K is set to 0.1 but then re-scaled to ensure that either the densities or probabilities 
sum to their appropriate values (i.e., N for densities and 1.00 for probabilities). 
 
 Kernel Parameters 
 
 The user can select these five different kernel functions to interpolate the data to the grid 
cells.  They produce subtle differences in the shape of the interpolated surface or contour.  The 
normal distribution weighs all points in the study area, though near points are weighted more 
highly than distant points.  The other four techniques use a circumscribed circle around the grid 
cell.  The uniform distribution weighs all points within the circle equally.  The quartic function 
weighs near points more than far points, but the fall off is gradual. The triangular function 
weighs near points more than far points within the circle, but the fall off is more rapid.  Finally, 
the negative exponential weighs near points much more highly than far points within the circle 
and the decay is very rapid. 
 
 The use of any of one of these depends on how much the user wants to weigh near points 
relative to far points.  Using a kernel function which has a big difference in the weights of near 
versus far points (e.g., the negative exponential or the triangular) tends to produce finer 
variations within the surface than functions which weight more evenly (e.g., the normal 
distribution, the quartic, or the uniform); these latter ones tend to smooth the distribution more. 
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Shape and size of the bandwidth 
 
 However, Silverman (1986) has argued that it does not make that much difference as long 
as the kernel is symmetrical.  There are also edge effects that can occur and there have been 
different proposed solutions to this problem (Venables & Ripley, 1997). 
 
 There have also been variations on the size of the bandwidth with various formulas and 
criteria proposed (Silverman, 1986; Härdle, 1991; Venables & Ripley, 1997).  Generally, 
bandwidth choices fall into either fixed or adaptive (variable) kernels (Kelsall & Diggle, 1995a; 
Bailey & Gatrell, 1995). CrimeStat follows this distinction, which will be explained below.   
 
 Another suggestion is to use the Moran correlogram, which was discussed in Chapter 5, 
to estimate the shape of the weighting function (Cliff & Haggett, 1988; Bailey & Gattrell, 1995).   
This would be appropriate for variables that have weights, such as population or employment.  
The Moran correlogram displays the degree of spatial autocorrelation as a function of distance.   
Whether the autocorrelation falls off quickly or more slowly can be used to select an 
approximate kernel function (e.g., a negative exponential function decays quickly whereas a 
quartic function decays very slowly).  The bandwidth could also be selected by the distance at 
which the Moran correlogram levels off (i.e., approaches the global I value).  This would lead 
to an estimate that minimizes spatial autocorrelation in the data set.  It would be good for 
capturing major trends in the data, but would not be good for identifying local clusters (hot 
spots) since the bandwidth distance would incorporate most of a metropolitan area. 
  

Three-dimensional kernels 
 
 The kernel function can be expanded to more than two dimensions (Härdle, 1991; Bailey 
& Gatrell, 1995; Burt & Barber, 1996; Bowman & Azalini, 1997).  Figure 10.6 shows a 
three-dimensional normal distribution placed over each of five points with the resulting density 
surface being a sum of all five individual surfaces.  Thus, the method is particularly appropriate 
for geographical data, such as crime incident locations.  The method has also been developed to 
relate two or more variables together by applying a kernel estimate to each variable in turn and 
then dividing one by the other to produce a three-dimensional estimate of risk (Kelsall & Diggle, 
1995a; Bowman & Azalini, 1997). 
 
 Significance testing of density estimates is more complicated.  Current techniques tend 
to focus on simulating surfaces under spatially random assumptions (Bowman & Azalini, 1997; 
Kelsall & Diggle, 1995b).  Because of the still experimental nature of the testing, CrimeStat 
does not include any testing of density estimates in this version. 
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 CrimeStat Kernel Density Methods 
 
 CrimeStat has two kernel density interpolation routines. The first applies to a single 
variable while the second to the relationship between two variables.  Both routines have a 
number of options. In addition, kernel density interpolation is used in several other CrimeStat 
routines including journey-to-crime modeling, Bayesian journey-to-crime modeling, and 
Head-Bang interpolation.  Those latter techniques will be discussed in Chapters 11, 13, and 14.  
 
 Figure 10.7 shows the Interpolation I screen in CrimeStat and the two routines that are 
available.  Users indicate their choices by clicking on the tab and menu items.  For either 
technique, it is necessary to have a reference file, which is usually a grid placed over the study 
region (see chapter 3).  The reference file represents the region to which the kernel estimate will 
be generalized. Figure 10.8 illustrates a reference grid over the Baltimore region with 100 
columns and 90 rows. 
 
Single Kernel Density Interpolation 
 
 The single kernel density routine in CrimeStat is applied to a distribution of point 
locations, such as crime incidents.  It can be used with either a primary file or a secondary file; 
the primary file is the default.  For example, the primary file can be the location of motor 
vehicle thefts.  The points can also have a weighting or an associated intensity variable (or 
both).  For example, the points could represent the location of police stations while the weights 
(or intensities) represent the number of calls for service. Again, the user must be careful in 
having both weighting and intensity variables as the routine will use both variables in calculating 
densities, which could lead to double weighting. 
 
 It is necessary to define the appropriate file on the Primary or Secondary file pages. Also, 
it is necessary to define a reference file, either an existing file or one generated by CrimeStat (see 
Chapter 3).  There are other parameters that must be defined. 
 

File to be Interpolated 
 
 First, the user must indicate whether the Primary file or the Secondary file (if used) is to 
be interpolated. 
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Method of Interpolation 
 
 Second, the user must indicate the method of interpolation.  Five types of kernel density 
estimators are used:  
 

1. Normal distribution (bell; default) 
2. Uniform (flat) distribution 
3. Quartic (spherical) distribution  
4. Triangular (conical) distribution 
5. Negative exponential (peaked) distribution 

 
 In our experience, there are advantages to each.  The normal distribution produces an 
estimate over the entire region whereas the other four produce estimates only for the 
circumscribed bandwidth radius.  If the distribution of points is sparse towards the outer parts of 
the region, then the four circumscribed functions will not produce estimates for those areas, 
whereas the normal will.  Conversely, the normal distribution can cause some edge effects to 
occur (e.g., spikes at the edge of the reference grid), particularly if there are many points near 
one of the boundaries of the study area.  The four circumscribed functions will produce less of a 
problem at the edges, although they still can produce some spikes.  Within the four 
circumscribed functions, the uniform and quartic tend to smooth the data more whereas the 
triangular and negative exponential tend to emphasize >peaks= and >valleys=.  The differences 
between these different kernel functions are small, however.  The user should probably start 
with the default normal function and adjust accordingly to how the surface or contour looks. 
 

Choice of Bandwidth 
 
 Third, the user must indicate how bandwidths are to be defined.  There are two types of 
bandwidth for the single kernel density routine, fixed interval or adaptive interval.   
 

Fixed interval 
 
 With a fixed bandwidth, the user must specify the interval to be used and the units of 
measurement (square miles, square nautical miles, square feet, square kilometers, or square 
meters).  Depending on the type of kernel estimate used, this interval has a slightly different 
meaning.  For the normal kernel function, the bandwidth is the standard deviation of the normal 
distribution.  On the other hand, for the uniform, quartic, triangular, or negative exponential 
kernels, the bandwidth is the radius of the search area to be interpolated.  
 
 There are few guidelines for choosing a particular bandwidth other than by visual 
inspection (Venables & Ripley, 1997).  Some have argued that the bandwidth be no larger than 
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the finest resolution that is desired and others have argued for a variation on random nearest 
neighbor distances (see Spencer Chainey’s article in the attachments section of this chapter). 
Others have argued for particular sizes (Silverman, 1986; Härdle, 1991; Kadafar, 1996; Farewell, 
1999; Talbot, Kulldorff, Forand, & Haley, 2000; see endnote ).  There does not seem to be 
consensus on this issue.  Consequently, CrimeStat leaves the definition up to the user. 
 
 Typically, a narrower bandwidth interval will lead to a finer mesh density estimate with 
lots of ‘peaks and valleys’.  A larger bandwidth interval, on the other hand, will lead to a 
smoother distribution and, therefore, less variability between areas.  While smaller bandwidths 
show greater differentiation among areas (e.g., between >hot spot= and >low spot= zones), one has 
to keep in mind the statistical precision of the estimate.  If the sample size is not very large, 
then a smaller bandwidth will lead to more imprecision in the estimates, and the ‘peaks and 
valleys’ may show nothing more than random variation.  On the other hand, if the sample size 
is large, then a finer density estimate can be produced.  In general, it is a good idea to 
experiment with different fixed intervals to see which results make the most sense. 
 

Adaptive interval 
  
 An adaptive bandwidth adjusts the bandwidth interval so that a minimum number of 
points are found.  This has the advantage of providing constant precision of the estimate over 
the entire region.  Thus, in areas that have a high concentration of points, the bandwidth is 
narrow whereas in areas where the concentration of points is sparser, the bandwidth will be 
larger.  This is the default bandwidth choice in CrimeStat since we believe that consistency in 
statistical precision is paramount.  The degree of precision is generally dependent on the sample 
size of the bandwidth interval.  The default is a minimum of 100 points within the bandwidth 
radius.  The user can make the estimate more fine grained by choosing a smaller number of 
points (e.g., 25) or more smooth by choosing a larger number of points (e.g., 200). Again, 
experimentation is necessary to see which results make the most sense. 
 

Output Unit 
 
 Fourth, the user must indicate the measurement units for the density estimate in points 
per square miles, square nautical miles, square feet, square kilometers, or square meters.  The 
default is points per square mile. 
 

Intensity or Weighting Variable 
 
 If an intensity or weighting variable is to be used (and has been defined on the Primary or 
Secondary file page), the appropriate box must be checked.  Be careful about using both 
intensity and weighting variables to avoid >double weighting=. 
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 Density Calculation 
 
 Finally, the user must indicate the type of output for the density estimates.  There are 
three types of calculation that can be conducted with the kernel density routine.  The 
calculations are applied to each reference cell: 
 

1. The kernel estimates can be calculated as absolute density estimates using 
equations 10.1-10.9, depending on what type of kernel function is used.  The 
estimates at each reference cell are re-scaled so that the sum of the densities over 
all reference grids equals the total number of incidents.  That is, the estimate is 
the number of incidents/points that occurred in each grid cell.  This is the default 
choice.   

 
2. The kernel estimates can be calculated as relative density estimates.  These 

divide the absolute densities by the area of the grid cell. It has the advantage of 
interpreting the density in terms that are familiar.  Thus, instead of a density 
estimate represented by points per grid cell, the relative density will convert this 
to points per square mile or points per square kilometer.  

 
3. The densities can be converted into probabilities by dividing the density at any 

one cell by the total number of incidents.  
 

 Since the three types of calculation are directly interrelated, the output surface will not 
differ in its variability.  The choice would depend on whether the calculations are used to 
estimate absolute densities, relative densities, or probabilities.  For comparisons between 
different types of crime or between the same type of crime and different time periods, usually 
absolute densities are the unit of choice (i.e., incidents per grid cell).  However, to express the 
output as a probability, that is, the likelihood that an incident would occur at any one location, 
then outputting the results as probabilities would make more sense.  For display purposes, 
however, it makes no difference as both look the same. 
 

Output File 
 
 The results can be displayed in an output table or can be output into two formats: 1) 
Raster grid formats for display in a surface mapping program- Surfer for Windows >.dat= format 
(Golden Software, 2008) or ArcGIS Spatial Analyst >asc= format (ESRI, 2012); or 2) Polygon 
grids in ArcGIS >.shp=, MapInfo >.mif= or various Ascii formats. However, all but Surfer for 
Windows require that the reference grid be created by CrimeStat.1 

                         
1  CrimeStat will output the geographical boundaries of the reference grid and will assign a third-variable 
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 Example 1: Kernel Density Estimate of Baltimore County Street Robberies 
 
 An example can illustrate the use of the single kernel density routine.  Figure 10.9 
shows a Surfer for Windows output of 1180 street robberies for 1996 in Baltimore County.  The 
reference grid was generated by CrimeStat and had 100 columns and 90 rows. Thus, the routine 
calculated the distance between each of the 10,800 reference cells and each of the 1180 robbery 
incident locations, evaluated the kernel function for each measured distance, and summed the 
results for each reference cell.  The normal distribution kernel function was selected for the 
kernel estimator and an adaptive bandwidth with a minimum sample size of 100 was chosen as 
the parameters. 
 
 There are three views in the figure: 1) a map view showing the location of the incidents; 
2) a surface view showing a three-dimensional interpolation of robbery density; and 3) a contour 
view showing contours of high robbery density.  The surface and contour views provide 
different perspectives.  The surface shows the peaks very clearly and the relative density of the 
peaks.  As can be seen, the peak for robberies on the eastern part of the County is much higher 
than the two peaks in the central and western parts of the County.  The contour view can show 
where these peaks are located; it is difficult to identify location clearly from a three-dimensional 
surface map.  Highways and streets could be overlaid on top of the contour view to identify 
more precisely where these peaks are located.  
 
 Figure 10.10 shows an ArcGIS map of robbery density with the robbery incident 
locations overlaid on top of the density contours.  Here, we can see quite clearly that there are 
three strong concentrations of incidents, one on the west side, one on the northern border 
between Baltimore City and Baltimore County, and one on the east side which blends with a 
smaller peak in the southeast corner of the County.   
 
 From one perspective, the kernel estimate is a better >hot spot= identifier than the cluster 
analysis routines discussed in Chapters 7 and 8.  Cluster routines group incidents into clusters 
and distinguish between incidents which belong to the cluster and those which do not belong.  
Depending on which mathematical algorithms are used, different clustering routines will return 
differing allocations of incidents to clusters.  The kernel estimate, on the other hand, is a 
continuous surface; the densities are calculated at all locations; thus, the user can visually inspect 

                                                                               
(called Z) as the density estimate.  ArcGIS >.shp= files can be read directly into the program.  For 
MapInfo, on the other hand, the output is in MapInfo Interchange Format (a >.mif= and a >.mid= file). The 
files must be imported to a MapInfo >.tab= file.  For both output formats, the values of Z can be shown as a 
thematic map but the ranges must be adjusted to illustrate the high density locations (i.e., the default values 
in most GIS programs will not display the densities very well).  On the other hand, the default interval 
values for Surfer for Windows and ArcGIS Spatial Analyst provide a reasonably good visualization. 

 



Figure 10.9:



Figure 10.10:
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the variability in density and decide what to call a >hot spot= without having to define arbitrarily 
where to cut-off the >hot spot= zone. 
 
 Going back to the Surfer for Windows output, Figure 10.11 shows the effects of varying 
the bandwidth parameters.  There are three fixed bandwidth intervals (0.5, 1, and 2 miles 
respectively) and there are two adaptive bandwidth intervals (a minimum of 25 and 100 points 
respectively).  As can be seen, the fineness of the interpolation is affected by the bandwidth 
choice.  For the three fixed intervals, an interval of 0.5 miles produced a finer mesh 
interpolation than an interval of 2 miles, which tended to >oversmooth= the distribution.  
Perhaps, the intermediate interval of 1 mile gives the best balance between fineness and 
generality?  For the two adaptive intervals, the minimum sample size of 25 gave very specific 
peak locations whereas the adaptive interval with a minimum sample size of 100 gave a 
smoother distribution.   
 
 Which of these should be used as the best choice would depend on how much confidence 
the analyst has in the results.  A key question is whether the >peaks= are real or merely 
by-products of small sample sizes.  The best choice would be to produce an interpolation that 
fits the experience of the department and officers who travel an area. Again, experimentation and 
discussions with beat officers will be necessary to establish which bandwidth choice should be 
used in future interpolations. 
   
 Note in all five of the interpolations, there is some bias at the edges with the City of 
Baltimore (the three-sided area in the central southern part of the map).  Since the primary file 
only included incidents for the County, the interpolation nevertheless has estimated some 
likelihood at the edges; these are edge biases and need to be ignored or removed with an ASCII 
editor.2  Further, the wider the interval chosen, the more bias was produced at the edge.  
 
Dual Kernel Density Interpolation 
 
 The dual kernel density routine in CrimeStat is applied to two distributions.   For 
example, the primary file could be the location of auto thefts while the secondary file could be 
the centroids of census tracts with the population of the census tract being an intensity variable.   
The dual routine must be used with both a primary file and a secondary file.  Also, it is  

                         
2  All the CrimeStat outputs except for ArcGIS >shp= files are in ASCII.  There are usually >edge effects= and 

values interpreted outside the actual geographical area.  These can be removed with an ASCII editor by 
substituting >0' for the values at the edges or outside the study region. For >shp= files, the values at the edges 
can be edited within the ArcGIS program.  Another alternative is to >cut out= the cells that are beyond the 
study area.  Care must be taken, however, to not edit an output file too much otherwise it will bear little 
relationship to the calculated kernel estimate. 



Figure 10.11:
Interpolation of Baltimore County Vehicle Thefts: 1996Interpolation of Baltimore County Vehicle Thefts: 1996

Different Smoothing Parameters
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necessary to define a reference file, either an existing file or one generated by CrimeStat (see 
Chapter 3).  Several parameters need to be defined. 
 

File to be Interpolated 
 
 The user must indicate the order of the interpolation.  The routine uses the language first 
file and second file in making the comparison (e.g., dividing the first file by the second; adding 
the first file to the second).  The user must indicate which is the first file - the Primary or the 
Secondary.  The default is that the Primary file is the first file. 
 

Method of Interpolation 
 
 The user must indicate the type of kernel estimator.  As with the single kernel density 
routine, five types of kernel density estimators are used 
 

1. Normal distribution (bell; default) 
2. Uniform (flat) distribution 
3. Quartic (spherical) distribution  
4. Triangular (conical) distribution 
5. Negative exponential (peaked) distribution 

 
 In our experience, there are advantages to each.  The normal distribution produces an 
estimate over the entire region whereas the other four produce estimates only for the 
circumscribed bandwidth radius.  If the distribution of points is sparse towards the outer parts of 
the region, then the four circumscribed functions will not produce estimates for those areas, 
whereas the normal will.  Conversely, the normal distribution can cause some edge effects to 
occur (e.g., spikes at the edge of the reference grid), particularly if there are many points near 
one of the boundaries of the study area.  The four circumscribed functions will produce less of a 
problem at the edges, although they still can produce some spikes.  Within the four 
circumscribed functions, the uniform and quartic tend to smooth the data more whereas the 
triangular and negative exponential tend to emphasize >peaks= and >valleys=.  The differences 
between these different kernel functions are small, however.  The user should probably start 
with the default normal function and adjust accordingly to how the surface or contour looks. 
 

Choice of Bandwidth 
 

The user must define the bandwidth parameter.  There are three types of bandwidths for 
the single kernel density routine - fixed interval, adaptive interval, or variable interval.   
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  Fixed interval 
 

With a fixed bandwidth, the user must specify the interval to be used and the units of 
measurement (square miles, square nautical miles, square feet, square kilometers, or square 
meters).  Depending on the type of kernel estimate used, this interval has a slightly different 
meaning.  For the normal kernel function, the bandwidth is the standard deviation of the normal 
distribution.  For the uniform, quartic, triangular, or negative exponential kernels, the 
bandwidth is the radius of the search area to be interpolated.  Since there are two files being 
compared, the fixed interval is applied both to the first file and the second file.  
 

Adaptive interval 
 
 An adaptive bandwidth adjusts the bandwidth interval so that a minimum number of 
points (sample size) is found.  This sample size is applied to both the first file and the second 
file.  It has the advantage of providing constant precision for the kernel estimate over the entire 
region.  Thus, in areas that have a high concentration of points, the bandwidth is narrow while 
in areas where the concentration of points is sparser, the bandwidth will be wider.  This is the 
default bandwidth choice in CrimeStat since consistency in statistical precision is important.  
The degree of precision is generally dependent on the sample size of the bandwidth interval.  
The default is a minimum of 100 points.  The user can make the estimate finer by choosing a 
smaller number of points (e.g., 25) or smoother by choosing a larger number (e.g., 200).  
 
  Variable interval 
 
 With a variable interval, each file (the first and the second) have different intervals.  For 
both, the units of measurements must be specified (square miles, square nautical miles, square 
feet, square kilometers, or square meters).   
 
 There is a good reason why a user might want to use variable intervals.  In comparing 
two kernel estimates, the most common comparison is to divide one by the other.  However, if 
the density estimate for a particular cell for the denominator variable approaches zero, then the 
ratio will blow up and become a very large number.  Visually, this will be seen as spikes in the 
distribution, the result, usually, of too few cases.  In this case, the user might decide to smooth 
the denominator more than numerator to reduce these spikes.  For example, the interval for the 
first file (the numerator) could be 0.5 miles whereas the interval for the second file (the 
denominator) could be 1 mile.  Experimentation will be necessary to see whether this is 
warranted.  But, in our experience, excessively large densities happen when either there are too 
few cases or there is an irregular boundary to the region with a number of incidents grouped at 
one of the edges. 
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  Use kernel bandwidths that produce stable estimates 
 
 Note that with a dual kernel calculation, particularly the ratio of one variable to another, 
it is important not to choose too small a bandwidth. This could have the effect of creating spikes 
at the edges of the study area or in low population density areas.  For example, in low 
population density areas, there will probably be fewer events than in more built-up area.  For 
the denominator of a ratio estimate, an extremely low value could cause the ratio to be 
exaggerated (a >spike=) relative to neighboring grid cells.  Using a larger bandwidth will produce 
a more stable average. 

 
Output Unit 

 
 The user must indicate the measurement units for the density estimate in points per 
square miles, square nautical miles, square feet, square kilometers, or square meters. 
 

Intensity or Weighting Variable 
 
 If an intensity or weighting variable is to be used (and has been defined on the Primary or 
Secondary file page), the appropriate box must be checked.   Be careful about using both 
intensity and weighting variables to avoid >double weighting=. 
 

Density Calculation    
 

The user must indicate the type of density output.  There are six types of density 
calculations that can be conducted with the dual kernel density routine.  The calculations are 
applied to each reference cell:  

 
1. There is the ratio of densities.  This is the first file divided by the second file.  

This is the default choice. For example, if the first file is the location of auto thefts 
incidents and the second file is the location of census tract centroids with the 
population assigned as an intensity variable, then ratio of densities would divide 
the kernel estimate for auto thefts by the kernel estimate for population and would 
be an estimate of auto thefts risk. 

 
2. There is also the log ratio of densities.  This is the natural logarithm of the 

density ratio, that is 
 

Log ratio of densities   =   Ln [ g(xj) / g(yj) ] (10.10) 
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where g(xj) is the density estimate for the first file and g(yj) is the density estimate 
for the second file.  For a variable that has a spatially skewed distribution such 
that most reference cells have very low density estimates, but a few have very 
high density estimates, converting the ratio into a log function will tend to mute 
the spikes that occur.  This measure has been used in studies of risk (Kelsall & 
Diggle, 1995b).  

 
3. There is the absolute difference in densities.  This is the first file minus the 

second file.  This can be a useful output for examining differential effects.  For 
example, by using the centroids of census block groups (see example 2 below) 
with the population of the census block group assigned as an intensity variable, 
the difference in population between two different census years can be estimated. 
Since the spatial arrangements of the block groups changes slightly from one 
census to the next (the U. S. Census Bureau suggests that census units be drawn 
so that there are approximately equal populations in each unit), estimating the 
difference in kernel densities between two census can show where the changes 
have occurred irrespective of the particular census units.  
 

4. There is the relative difference in densities.  Like the relative density in the 
single-kernel routine (discussed above), the relative difference in densities first 
standardizes the densities of each file by dividing by the grid cell area in familiar 
units (square miles or square kilometers) and then subtracts the secondary file 
relative density from the primary file relative density.  This can be useful in 
calculating changes between two time periods, for example in calculating a 
change in relative density between two censuses or a change in the crime density 
between two time periods. 

 
5. There is the sum of the densities.  This is the density estimate for the first file 

plus the density estimate for the second file. A possible use of the sum operation 
is to combine two different density surfaces, for example the density of robberies 
plus the density of assaults; 

 
6. Finally, there is the relative sum of densities. The relative sum of densities first 

standardizes the densities of each file by dividing by the grid cell area in familiar 
units (square miles or square kilometers) and then adds the secondary file relative 
density to the primary file relative density.  This can be useful for identifying the 
total effects of two distributions.  For example, the total impact of robberies and 
burglaries on an area can be estimated by taking the relative density of robberies 
and adding it to the relative density of burglaries.  The result is the combined 
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relative density of robberies and burglaries per unit area (e.g., robberies and 
burglaries per square mile). 
 

 Output File 
 
 Finally, the user must specify the file formats for the output. The results can be output in 
three forms.  First, the results are displayed in an output table. Second, the results can be output 
into two raster grid formats for display in a surface mapping program: Surfer for Windows 
format as a >.dat= file (Golden Software, 2008) and ArcGIS Spatial Analyst format as an ‘asc= file 
(ESRI, 2012).  Third, the results can be output as polygon grids into ArcGIS >.shp=, MapInfo 
>.mif= and various Ascii formats (see footnote 1). All but Surfer for Windows require that the 
reference grid be created by CrimeStat. 
 

  Example 2: Kernel Density Estimates of Vehicle Thefts Relative to Population 
 
 As an example of the use of the dual kernel density routine, the dual routine is applied in 
both the City of Baltimore and the County of Baltimore to 14,853 motor vehicle theft locations 
for 1996 relative to the 1990 population of census block groups.  Again, a reference grid of 100 
columns by 108 rows was generated by CrimeStat.  
 
 Figure 10.12 shows the resulting density estimate as a Surfer for Windows output; again, 
there is a map view, a surface view, and a contour view.  The normal kernel function was used 
and an adaptive bandwidth of 100 points was selected.  As seen, there is a very high 
concentration of auto theft incidents within the central part of the metropolitan area.  The 
contour view suggests five or six peak areas that are close to each other. 
 
 Much of this concentration, however, is produced by high population density in the 
metropolitan center.  Figure 10.13, for example, shows the kernel estimate for 1349 census 
block groups for both the City of Baltimore and the County of Baltimore with the 1990 
population assigned as the intensity variable.  Again, the normal kernel function was used with 
an adaptive bandwidth of 100 points being selected.  The map shows three views: 1) a surface 
view; 2) a contour view; and 3) a ground level view looking directly north.  The distribution of 
population is, of course, also highly concentrated in the metropolitan center with two peaks, 
quite close to each other with several smaller peaks. 
 
 When these two kernel estimates are compared using the dual kernel density routine, a 
more complicated picture emerges (Figure 10.14).  This routine has conducted three operations: 
1) it calculated the distance between each of the 10,800 reference cells and the 14,853 auto theft 
locations, evaluated the kernel function for each measured distance, and summed the results for 
each reference cell; 2) it calculated the distance between each of the 10,800 reference cells and 
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the 1349 census block groups with population as an intensity variable, evaluated the kernel 
function for each intensity-weighted distance, and summed the results for each reference cell; 
and 3) divided the kernel density estimate for auto thefts by the kernel density estimate for 
population for each reference cell location.   
 
 While the concentration of motor vehicle thefts relative to population (>motor vehicle 
theft risk@) is still high in the metropolitan center, there are bands of high risk that spread 
outward, particularly along major arterials.  There are now many >hot spot= areas that have a 
high distribution of motor vehicle thefts relative to the residential population.  We could, of 
course, refine this analysis further by taking, for example, employment as a baseline variable 
rather than population; employment is a better indicator for the daytime population distribution 
whereas the residential population is a better indicator for nighttime population distribution 
(Levine, Kim, & Nitz, 1995a; 1995b). 
 

Example 3: Kernel Density Estimates and Risk-adjusted Clustering of Robberies 
Relative to Population 

 
 The final example shows how the dual kernel interpolation compares with the 
risk-adjusted nearest neighbor clustering, discussed in chapter 6. Figure 10.15 shows 15 
first-order and two second-order risk-adjusted clusters overlaid on the dual kernel estimate of 
1996 robberies relative to 1990 population.3 As seen, there is a correspondence between the 
identified risk-adjusted clusters and the dual kernel interpolation of the ratio of robberies to 
population.  For a broad regional perspective, the interpolation produces an adequate model of 
where there is a high robbery risk.  At the neighborhood level, however, the risk-adjusted 
clusters are more specific and would be preferable for use by police in identifying high-risk 
locations. 
 
 The advantage of a dual kernel density interpolation routine is that two variables can be 
related together. By interpolating one variable to a reference grid and then interpolating a second 
variable to the same reference grid, the two variables have been interpolated to the same 
geographical units. The two interpolations can then be related, by dividing, subtracting, or 
summing. As has been mentioned throughout this manual, one of the problems with techniques 
that depend on the concentration of incidents is that they ignore the underlying population 
at-risk. With the dual routine, however, we can start to examine the risk and not just the 
concentration. 
 
                         
3  The risk-adjusted hierarchical clustering (Rnnh) method defined the largest search radius but a minimum of 

25 points being required to be clustered.  The kernel estimate for both the Rnnh and the dual-kernel 
routines used the normal distribution function with an adaptive bandwidth of 25 points. 
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 Visually Presenting Kernel Estimates 
 
 Whether the single- or dual-kernel estimate is used, the result is a grid interpretation of 
the data.  By scaling these values in a GIS program, a visualization of the data is obtained.  
Areas with higher densities can be shown in darker tones and those with lower densities can be 
shown in lighter tones; some people do the opposite with the high density areas being lighter.  
 
 To make the visualization even more realistic, one could use a GIS program to cut out 
those grid cells that are outside the study area or are on water bodies. Before doing this, however, 
be sure to re-scale the estimated AZ@ values so that they will sum to the total of the original grid.  
For example, if the original sample size was 1000, then the grid cells will sum to 1000 if the 
absolute density option is chosen.  If, say, 20% of these cells are then removed to improve the 
visualization, then the grid cell Z values have to be re-scaled so that their sum will continue to be 
1000.   A simple way to do this is to, first, add up the Z values for the remaining cells and, 
second, multiply each grid cell Z by the ratio of the original sum to the reduced sum. 
 
Advantages and Limitations of Kernel Density Interpolation 
 
 There are advantages and limitations to the kernel density interpolation method for hot 
spot analysis.   
 
 Advantages of Kernel Density Interpolation 
 
 The main advantage of kernel density interpolation is its ability to visualize a broad, 
regional view of events.  Whereas each of the hot spot analysis techniques discussed in 
Chapters 7 and 8 (and 9 for the Zonal Nnh) drew boundaries around the hot spots, kernel density 
interpolation provides density estimates through the study area. One can see all the high density 
and low density areas simultaneously.  For example, this can provide a police department with 
an overview of the high crime areas and can form the basis of patrol deployment. Essentially, for 
a city-wide or region-wide view, there is no better technique (Chainey, Thompson & Uhlig, 
2008). 
 
 Limitations of Kernel Density Interpolation 
 
 At the same time, there are limitations to the approach for hot spot analysis.  There are 
three statistical problems.  First, the method does depend on overgeneralizing data.  By 
interpolating N data points to M grid cells where M is almost always much greater than N, means 
that the data are being shared across many grid cells.  This can lead to overgeneralization of 
results.  For example, 10,000 cases seems like a large data set (which it normally is), but when 
it is generalized to 10,000 grids (100 columns x 100 rows), this leaves an average of 1 data point 
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per grid cell. It is well known that sampling error is very high with small samples and almost 
infinitely high with a sample size of 1.  Yet the method pools the data so that every grid cell is 
represented by all (for the normal distribution kernel) or most (for the other kernels) data points.  
This leads to additional spatial autocorrelation among the estimates since each grid cell shares 
the same data points with adjacent grid cells.  The practical effect of this is that a hot spot can 
appear to be larger than it truly is.  Too many users are taking kernel density interpolations as 
evidence of hot spots even with very small samples.  These hot spots will turn out to be nothing 
more than random variation.  Again, if used carefully, the method can provide an overview of 
crime density in a study area.  But, one has to be very, very careful in using the method to 
define specific hot spots. 
 
 Second, like other hot spot analysis methods, kernel density interpolation is effected by 
the choice of kernel used and the selected bandwidth. The normal distribution kernel, for 
example, will smooth the data and eliminate small nodules (‘peaks and valleys’) whereas the 
quartic and exponential kernels will emphasis the small nodules.  Whether the more granular 
variation in density estimates is valid or not depends on the sample size.  With a small sample 
size, small hot spots may be nothing more than random variation and may not be real.  Unless 
the sample size is very large (meaning 10,000 or more cases), we recommend using the normal 
distribution kernel to avoid finding false hot spots.  In addition, the selected bandwidth 
determines the smoothness of the visualization.  Again, if the sample size is large, a smaller 
bandwidth is appropriate whereas a larger bandwidth is more desirable for smaller samples.  
One has to consider the precision of the estimates, which is a function of the sample size (i.e., 
larger is better). 
 
 Third, because the technique smoothes data, it is often inappropriate for small area 
analysis.  It will lead to generalization of data points into adjacent areas from where the events 
occur and can lead to false conclusions (Levine, 2008).  For example, motor vehicle crashes 
typically occur on freeways, highways, major arterial roads, and minor arterial roads.  Few 
occur on residential (neighborhood) streets, typically less than 15%.  Levine (2009) found that 
only 11% of motor vehicle crashes in the Houston metropolitan area occurred on local roads 
even though these roads accounted for 61% of the total road mileage in the region. The 
likelihood of a crash occurring on any particular local road is extremely small.  However, since 
nearly one half of the crashes occurred at intersections, the method would generalize crashes at 
two intersecting arterial roads into the adjacent neighborhood streets when, in reality, very few 
crashes will occur on those streets.  
 
 Similarly, Levine (2008) showed how vehicle thefts that were concentrated in parking 
lots in a commercial area of Houston were generalized by kernel density interpolation into the 
local residential neighborhoods.  In other words, the method produces spatial distortion 
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especially for small area (large-scale), neighborhood-level analysis.  Very often, hot spots are 
very limited spatially, sometimes into an area less than half a block wide.   
 
 Taking another example, in a 1986 study of dangerous bus stops in Los Angeles, the most 
serious one was identified on one corner of a Hollywood (CA) intersection (Levine, Wachs & 
Shirazi, 1986).  The hot spot involved a drug trade that occurred at a food stand on the corner 
and was supplied by drug dealers who used a bar near the intersection for cover.  The crimes 
occurred only on that corner of the intersection; the other three corners had no crime events. 
 
 In other words, the amount of smoothing involved in kernel density interpolation will 
distort spatial relationships for very small hot spots and will make it appear as if there is a risk in 
nearby blocks when there might not be such a risk.  The use of one of the cluster routines 
discussed in chapters 7 and 8 would be more appropriate for small area analysis.  
 
Conclusion 
 
 Kernel density estimation is one of the most utilized spatial statistical techniques.  There 
is currently research on the use of this technique in both the statistical theory and in developing 
applications.  For crime analysis, the technique represents a powerful way of conducting both 
regional hot spot analysis as well as being able to link the hot spots to an underlying 
population-at-risk.  It can be used both for police deployment by targeting areas of high 
concentration of incidents as well as for prevention by targeting areas with high risk.  It can also 
be used as a research tool for analyzing two or more distributions. Caution has to be used in 
adapting the method for small area (large scale) neighborhood type of analysis.  Other 
techniques are more appropriate for that level. 
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Endnotes 
 
i. There are differences in opinion about how wide a particular fixed bandwidth should be determined. The 

smoothing is done for a distribution of values, Z. If there are only unique points (and, hence, there is no Z 
value at a point), the distances between points can be substituted for Z.  Thus, MeanD is the mean 
distance, sd(D) is the standard deviation of distance, and iqr(D) is the inter-quartile range of distances 
between points.  These would be substituted for MeanZ, sd(Z), and iqr(Z) respectively 

 
Silverman (1986; 45-47; Härdle, 1991; Farewell, 1999) proposed a bandwidth, h, of: 
 
 1.06 ∗ min	

.
 

 
 

where min is the minimum of the next two terms, sd(Z) is the standard deviation of the variable, Z, being 
interpolated, iqr(Z) is the inter-quartile range of Z, and N is the sample size.   
 
Bowman and Azzalini (1997; 31) defined a slightly different optimal bandwidth for a normal kernel: 
 
 ∗  

 
To avoid being influenced by outlier, they suggested using the median absolute deviation estimator for 
sd(Z): 
 
 

.
 

 
 

Scott (1992) suggested an upper bound on the normal kernel of 
 

h = 1.144 * sd(Z) * N-1/5 
 

Bailey and Gatrell (1995, 85-87) offered a rough choice for the bandwidth of 
 
  0.68  
 

but suggested that the user could experiment with different bandwidths to explore the surface. 
 

On the other hand, the concept of an adaptive bandwidth is based more on sampling theory (Bailey & 
Gatrell, 1995).  By increasing the bandwidth until a fixed number of points are counted ensures that the 
level of precision is constant throughout the region.  As with all sampling, the standard error of the 
estimate is a function of the sample size; a larger sample leads to smaller error.  In general, if there was 
independent sampling, the 95% confidence interval of a bandwidth for a normal kernel could be 
approximated by: 
 
 95%	 	 ̅ 1.96

.  

 
where N(h) is the adaptive sample size (the number of points counted within the bandwidth for the adaptive 
kernel).  This assumes that a point has an equal likelihood of falling within the bandwidth of one cell 
compared to an adjacent cell (i.e., it sits on the boundary of the bandwidth circle). The adaptive bandwidth 
criterion requires that the bandwidth be increased until it captures the specified number of points. 
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Endnotes (continued) 
 
On average, if there are N points in a region of area, A, and if the adaptive sample size is N(p), then the 
average area required to capture N(p) points is: 
 
  
 
and the average bandwidth, Mean(h), is: 
 
 

  

 
Each of these provide different criteria for the bandwidth size with the adaptive being the most 
conservative.  For example, for a standardized distribution with 1000 data points, a standardized mean of Z 
of 0 and a standardized standard deviation of 1, the Silverman criteria would produce a bandwidth of 
0.2663; the Bowman and Azzalini criteria would produce a bandwidth of 0.2661; the Scott criteria would 
produce a bandwidth of 0.2874 and the Bailey and Gatrell criteria would produce a bandwidth of 0.1708.  
For the adaptive interval, if the required adaptive sample size is 25, then the average bandwidth would be 
approximately 0.3162 (this assumes that the area is a circle with a radius of 2 standardized standard 
deviations).  
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Attachments 
 
 

  



Kernel Density Interpolation to Estimate Sampling Bias in the Climatic 
Response of Sphagnum Spores in North America 

 
Mike Sawada 

 Laboratory for Applied Geomatics and GIS Science 
 University of Ottawa, Department of Geography, Canada 
 
 Sphagnum moss, the dominant species of bogs, thrives under certain ranges of 
temperature and precipitation.  Sphagnum releases spores for reproduction and these are 
transported, often long distances, by wind and water.  Thus, the presence of a spore in the fossil 
record may not indicate nearby Sphagnum plants.  However, spores should be most numerous 
near Sphagnum plants.  Over time, these spores and pollen from other plants accumulate in lake 
and bog sediments and leave a fossil record of vegetation history.   
 

We wanted to use the amount of fossil Sphagnum spores in different parts of North 
America to infer past climates.  To do so, we had to first show that Sphagnum spores are most 
abundant in climates where Sphagnum plants thrive and secondly, that this center of abundance 
is not biased sampling because of under sampling in parts of climate space.  First, we developed 
a Sphagnum spore response surface showing the relative abundance of spores along the axes of 
temperature and precipitation (Fig. A).   
 
 CrimeStat was used in the second stage to develop a kernel density surface using a 
quartic kernel for 3007 sample sites within climate space (Fig. B).  These were smoothed and 
visualized in Surfer.  The surface showed that the intensity of points is higher in regions 
surrounding the response maximum.  This gave us confidence that the Sphagnum response was 
real since other parts of climate space are well sampled but unlikely to produce high spore 
proportions.  This fact allowed climate inferences to be made within the fossil record for past 
time periods using the amount of Sphagnum spores present.   
 

 

Figures modified from Gajewski, Viau, Sawada et al. 2001. Global Biogeochemical Cycles, 



Describing Crime Spatial Patterns By Time of Day in Belo Horizonte 
 

Renato Assunção, Cláudio Beato, Bráulio Silva 
CRISP, Universidade Federal de Minas Gerais, Brazil  

 
We used the kernel density estimate to visualize time trends for crime occurrences 

on a typical weekday.  We found markedly different spatial distributions depending on 
the time, with the amount of crime varying and the hot spots, identified by the ellipses, 
appearing in different places. 

  
The analysis used 1114 weekday robberies from 1995 to 2000 in downtown Belo 

Horizonte. Breaking the data into hours, we used the normal kernel, a fixed bandwidth of 
450 meters and outputted densities option (points per square unit of area). Note that the 
latter option could be useful if one is interested only in the hot spot locations, and not in 
the distribution during the day. To make the ellipses, we used the nearest neighbor 
hierarchical spatial clustering technique with a minimum of 35 incidents. We output the 
results to MapInfo, keeping the same scale for all maps. Four of them are shown below.  
 
 

 
9:00 AM 1:00 PM

7:00 PM 11:00 PM



Using Kernel Density Smoothing and Linking to ArcGIS: 
Examples from London, England 

 
Spencer Chainey 

Jill Dando Institute of Crime Science 
University College 
London, England 

 
CrimeStat offers an effective method for creating kernel density surfaces. The 

example below uses residential burglary incidents in the London Borough of Croydon, 
England for the period June 1999 – May 2000 (N=3104). The single kernel routine was 
used to produce a kernel density surface representing the distribution of residential 
burglary.   

 
The kernel function used was the quartic, which is favoured by most crime 

mappers as it applies added weight to crimes closer to the centre of the bandwidth.  
Rather than choosing an arbitary interval it is useful to use the mean nearest neighbour 
distance for different orders of K, which can be calculated by CrimeStat as part of a 
nearest neighbour analysis.  For the Croydon data, an interval of 269 metres was chosen, 
which relates to a mean nearest neighbour distance at a K-order of 13.  The output units 
were densities in square kilometres and was output to ArcGIS. 
 

Kernel density estimation is a particularly useful method as it helps to precisely 
identify the location, spatial extent and intensity of crime hotspots.  It is also visually 
attractive, so helping to invoke further enquiry and the reasoning behind why crime and 
disorder is concentrated. The density surface that is created can reflect the distribution of 
incidents against the natural geography of the area of interest, including representing the 
natural boundaries, such as reservoirs and lakes, or an alignment that follows a particular 
street in which there is a high concentration of offending.  The method is also less 
subjective if clear guidelines are followed for the setting of parameters.  
 

 



Infant Death Rate and Low Birth Weight  
in the I-5 Corridor of Seattle and King County 

 
Richard Hoskins 

Washington State Department of Health 
Olympia, Washington 

 
 Although the infant death rate (< 1 year old) has been steadily declining in 
Washington, the incidence of low birth weight (< 2500 gms) is increasing. This is a 
significant public health problem, resulting in suffering and high medical cost.  If we 
know where the rates are high at a neighborhood level we can develop more efficient and 
effective programs.  The goal is to determine regions where rates are clustered and to 
characterize those regions with respect to SES variables from the US Census.  
 
 Birth and infant death data were geocoded to the street level. In order to detect 
clusters of high infant death and low birth weight, several CrimeStat tools were used. We 
find that using several tools at once helps detect regions where something untoward is 
going on and also helps develops guesses about where other problems might be expected 
develop.   

  
 The result of a kernel density interpolation using a normal estimator is shown 
above along with an empirical Bayes rate and standardized mortality ratio (SMR) 
calculated in SAS and mapped in Maptitude (www.caliper.com). Starting with over 2,500 
infant deaths, about 25,000 low weight births (out of over 500,000 live births) occurred in 
the Seattle I-5 corridor region in King County from 1989-2002.  The kernel density 
method was used to detect high rate regions. A clearly articulated region and ridge 
appears on the grid of the kernel density map and the 3D and prism maps.  
    
 

I-5 corridor in Kernel density Top:  3-D map: empirical Bayes rate    
King County  interpolation Bottom:  Prism map: SMR 



The Risk of Violent Incidents Relative to Population Density in Cologne Using 
the Dual Kernel Density Routine 

 
Dietrich Oberwittler and Marc Wiesenhütter 

Max Planck Institute for Foreign and International Criminal Law 
Freiburg, Germany 

 
When estimating the density of street crimes within a metropolitan area by interpolating 

crime incidents, the result is usually a very high concentration in the city center.  However, there 
is also a very high concentration of people either living or pursuing their daily routine activities 
in these areas.  The question emerges how likely is a criminal event when taking into account the 
number of people spending their time in these areas.  The CrimeStat dual kernel density routine 
is able to estimate a ratio density surface of crime relative to the 'population at risk'. 

  
In this example, data on ‘calls to the police’ for assault and battery from April 1999 to 

March 2000 (N=6363 calls) and population from Cologne were used.  Exact information on the 
number of people spending their time in the city does not exist. Therefore, 1997 counts of pas-
sengers entering and leaving the public transport system at each of 550 stations and bus stops in 
the city was used as a proxy variable. The number of persons at each station or bus stop was as-
signed to adjacent census tracts and added to the resident population resulting in a crude measure 
of the 'population at risk'. 

 
In the dual kernel routine, the density estimate of crime incidents is compared to the den-

sity estimate of the population at risk, defined by the centroids of census tracts with the number 
of persons as an intensity variable.  We chose the normal method of interpolation and adaptive 
intervals with a minimum of five points.  The adaptive bandwidth adjusts for the fact that there 
are fewer incidents and census tracts at the edges of the city, resulting in a relatively smoother 
density surface for the ratio.  The results were output to ArcView. 

 
The effect of adjusting the crime distribution for the underlying 'population at risk' be-

comes quite visible. Whereas the concentration of crime is highest in the city center (left map), 
the crime risk (right map) is in fact much higher in several more distant areas that are known for 
high concentrations of socially disadvantaged persons. Given the imperfect nature of the popula-
tion data these results should be interpreted as a broad view on the distribution of crime risk that, 
nevertheless, has important policy implications.  
 
  Single kernel density of crime incidences 

(assault & battery, Cologne 1999/2000) 
Dual kernel density of crime incidences  
relative to population at risk 



Kernel Density Interpolation of 
Police Confrontations in 

Buenos Aires Province, Argentina:  1999 
 

Gastón Pezzuchi 
Crime Analyst 

Buenos Aires Province Police Force 
Buenos Aires, Argentina 

 
One of our first tryouts with the CrimeStat software involved the calculation of 

both single and dual kernel density interpolations using data on 1999 confrontations with 
the police within Buenos Aires Province, an area that covers 29 counties around the 
Federal Capital. The confrontations include mostly gun fights with the police but also 
other attacks (e.g., knives, rocks, sticks).  In the last three years, there has been an 
increase in confrontations with the police. The single interpolation shows a density 
surface that gives a good picture of the ongoing level of violence while the dual 
interpolations shows a risk surface using the personnel deployment data; the latter are 
confrontations relative to the number of police deployed.  Typically, police are allocated 
to areas according to crime rates.\ 

 

Events = Police shootings (aprox. 800)

Buenos Aires City
(No-Data)

Buenos Aires City
(No-Data)

Example: Kernel Density Estimation
(CrimeStat)

Single Interpolation - Density of Events Dual Interpolation - Ratio of densities (Risk)

N N

Dens ity
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Medium

High
No Data

Frontera
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Both images are quite different, suggesting varying policing strategies.  For 
example, though there are two well-defined hot spot areas in the Province (one in the 
north, the other in the south), the high levels of risk detected in the southern areas came 
as a complete surprise.  The northern area has a higher crime rate than the southern area, 
hence a high police deployment.  However, the level of confrontation is approximately 
equal between the two areas. 



Evolution of the Urbanization Process in the Brazilian Amazonia 
 

Silvana Amaral, Antônio Miguel V. Monteiro, Gilberto Câmara, José A. Quintanilha 
INPE, Instituto Nacional de Pesquisas Espaciais, Brazil 

 
The Brazilian Amazon rain forest is the world’s largest contiguous area of tropical 

rain forest in the world. During the last three decades, the region has experienced the 
largest urban growth rates in Brazil, a process that has reorganized the network of human 
settlements in the region. We used the CrimeStat single and dual kernel density routines 
to visualize trends in urbanization from 1996 to 2000 in Amazonia.  Two variables were 
used to measure urbanization: 1) the concentration of urban nuclei (city density); and 2) 
the ratio of urban to total population.  

 
The concentration of cities was spatially associated with federal roads in the 

eastern and southern portions, and along the Amazonas River in the middle of the region. 
Additionally, the surfaces of urban population show that city density is not always 
associated with large urban populations. From 1996 to 2000 city density increased in the 
western Amazonia (Pará state) at a greater rate than the growth of the urban population. 
In the southeastern part of the region (Rondônia state), there were many urban centers.  
But the ratio of urban to total population was small, indicating that they are 
predominately agricultural regions.  

 
 
 

 

Urban Pop/Total Pop-1996 

City density - 2000 

 
City density - 1996 

Urban Pop/Total Pop-2000 



Using Small Area Estimation to Target Health Services  
in Harris County, TX 

 
Thomas F. Reynolds, MS 

University of Texas-Houston School of Public Health 
 
 In Texas, the City of Houston and Harris County organized a Public Health Task 
force to make recommendations concerning the provision of health services for those 
without health insurance.  Task force members wanted to know approximately how many 
area citizens did not have health insurance.  
 
 Data from the two most recent Current Population Survey Annual Social and 
Economic Supplements (CPS-ASEC, 2003-04) were used to derive a synthetic estimate 
using a stratified model.  Estimates were calculated at census tract and block group 
levels.  Selected political divisions were clipped from base maps for political officials and 
legislators. 
 
 Percentages are indicative of risk.  On the other hand, numbers are essential for 
targeting physical resources. There is seldom a perfect correspondence between high 
percentages and large numbers.   For example, an area with a concentration of multi-
family housing may have a relatively small percentage, but a large number, of uninsured.  
Percentage maps of the uninsured (figure 1) are generally clustered and informative; 
however, due to large variations in population numbers at both levels of census 
geography, maps of the population densities of uninsured proved most valuable to 
officials (figure 2). 
 
 CrimeStat was used to develop the density maps.  The single kernel density 
routine was used to estimate the density of block group values using the centroid to 
represent the values and the number of uninsured as an intensity value. The Moran 
Correlogram was used to select the type of kernel for the single-kernel interpolation (a 
uniform distribution) and an optimal bandwidth.   
 
Fig. 1:  Percent Uninsured Fig. 2:  Population Density of Uninsured 



 

 

Identifying Voucher Holder and Crime Concentrations using Dual 
Kernel Density Estimation 

 
Ron Wilson, U.S. Department of Housing and Urban Development 

 
Public housing authorities and law enforcement are cooperating to reduce neighborhood 
crime where Housing Choice Voucher Program (HCVP) participants concentrate. When 
police departments and housing authorities can identify geographically combined 
voucher holder and crime concentrations, more specific strategies can be employed to 
reduce those crimes and prevent victimization. Aggravated assaults are common in and 
around neighborhoods where HCVP households concentrate. I used the relative sum of 
densities option of the Dual Kernel Density Estimation routine in CrimeStat IV to identify 
where HCVP households and aggravated assaults were concentrated in 2010.  
 
Several areas of voucher holder and aggravated assault concentrations are revealed with 
gradations in density, some in census tracts with high poverty. The Dallas Police 
Department might deploy varying community policing approaches in these areas based 
on concentration grade to reduce assault opportunities while building relationships with 
neighborhood residents. The Dallas Public Housing Authority may help voucher holders 
find safer neighborhoods to relocate outside the concentrated areas, in particular to areas 
with low poverty. These findings may also help Dallas city officials craft separate place-
based polices that work to eliminate the root causes of aggravated assaults in these areas.  
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Chapter 11: 

Head-Bang Interpolation 
 
Interpolation II Tab 
 

The interpolation II tab includes the Head-Bang routine and the Interpolated Head-Bang 
routine.  Figure 11.1 show the graphical interface for the Interpolation II page, which includes 
the Head-Bang and the Interpolated Head-Bang routines. 
 

Head-Bang Technique   
 

The Head-Bang statistic is a weighted two-dimensional smoothing algorithm that is 
applied to zonal (polygon) data, such as census tracts, traffic analysis zones, or zip codes.  It was 
developed at the National Cancer Institute to smooth out >peaks= and >valleys= in health data that 
occur because of small numbers of events (Pickle, Mungiole, Jones, Gretchen, & White, 1996; 
Mungiole, Pickle, & Simonson, 2002; Pickle & Su, 2002).   

 
For example, with lung cancer rates (lung cancer cases relative to population), counties 

with small populations could show extremely high lung cancer rates with only an increase of a 
couple of cases in a year or, conversely, very low rates if there was a decrease in a couple of 
cases.  On the other hand, counties with large populations will show stable estimates because 
their numbers are larger; their confidence intervals will be small because changes from one year 
to the next will have little effect on their rates. 

 
However, unlike other smoothing techniques, such as kernel density interpolation 

(discussed in Chapter 10), the Head-Bang is designed to remove small-scale local variations 
within a data set while preserving regional trends.  It is particularly useful where there are large 
differences in the population sizes of the different zones, which can lead to huge variability in 
the rates over the study area.   

 
The aim of the Head-Bang statistic, therefore, is to smooth out the values for smaller 

geographical zones while generally keeping the values for larger geographical zones.  It is a 
variance reduction technique.  The methodology is based on the idea of a median-based Head-
Banging smoother proposed by Tukey and Tukey (1981) and later implemented by Hansen 
(1991) in two dimensions.  Mean smoothing functions tend to over-smooth in the presence of 
edges while median smoothing functions tend to preserve the edges. 

 
 



Figure 11.1:

Interpolation II Screen
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Median Smoother 
 

The Head-Bang routine applies the concept of a median smoothing function to a three-
dimensional plane (an area where there is information about an attribute that occurs at each 
location).  It is a moving average that is placed over each location (zone) but which includes 
information on the values of the neighboring locations.  But, unlike kernel density estimation 
which interpolates the data to a grid, the Head-Bang preserves the zonal organization.   
 

The Head-Bang algorithm used in CrimeStat is a simplification of the methodology 
proposed by Mungiole, Pickle and Simonson (2002) but similar to that used by Pickle and Su 
(2002).1  Consider a set of zones with a variable being displayed.  In a raw map, the value of a 
variable assigned to any one zone is independent of the values for nearby zones.  However, in a 
Head-Bang smoothing, the value of any one zone becomes a function of the values of nearby 
zones.  It is a moving average that provides an estimate for the value of the zone, similar to 
kernel density interpolation (discussed in Chapter 10) but it preserves the geographical 
arrangements of the zones.  It is useful for eliminating extreme values in a distribution and 
adjusting the values of zones to be similar to their neighbors.   

 
Data Elements 
 
There are three elements to the data that are relevant to the Head-Bang.  First, there is a 

zone structure.  All the data are represented by zones.  Second, for each zone, there is a variable 
of interest that will be smoothed, Zi.  This variable could be a count (e.g., the number of crimes), 
a rate (e.g., the number of crimes relative to the population), or even a continuous variable (e.g., 
median household income).  Third, each zone has a weight variable, Wi (e.g., population).  The 
values of the variable of interest, Zi, are then estimated using the weights, Wi. 

 
Zone Structure 
 
The user has to choose an appropriate zone organization.  A trade-off has to be made 

between the geographical size of the zone and the value of the weighting variable (typically 
population).  Ideally, the zones should be as small as possible in terms of area (e.g., census tracts 
or even blocks) so that local variations in rates can be seen.  On the other hand, a small 
geographical zone can have a small population, which creates volatility in the rate from one year 
to the next.  While the technique can smooth the rates of zones with small populations, huge 
variability in the rates over time might be seen.  Thus, choosing larger population zones would 

                                                 
1 The Head-Bang statistic is sometimes written as Head Bang or even Headbang.  We prefer to use the term 

with the hyphen (Head-Bang). 
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produce more stable rates.  The technique has been used on zones as large as counties for 
national comparisons (Pickle & Su, 2002).  With large zones, local variations cannot be seen, 
though for national comparisons that is less critical.   

 
Local Neighborhood 
 
The procedure works through a local neighborhood around each zone. A neighborhood 

can be defined in different ways.  The CrimeStat routine uses the nearest neighbor routine 
(discussed in Chapter 6) to identify the K nearest neighbors where K is defined by the user.  
Thus, distance is the criterion for identifying a zone as being a nearest neighbor, consistent with 
the approach of Mungiole, Pickle and Simonson (2002). An alternative definition is that of 
contiguity (or adjacency) so that the neighbors share a common border.  In this version of 
CrimeStat, this definition is not implemented. 

 
For each zone in turn (the central zone), a set of neighbors is defined.  Mungiole and 

Pickle (1999) found that 6 neighbors generally produced small errors between the actual values 
and the smoothed values, and that increasing the number did not reduce the error substantially.  
On the other hand, increasing the number of neighbors smoothed the data too much.  They also 
found that choosing fewer than 6 neighbors could sometimes produce unstable results.  

 
Triplets 
 
In the original formulation of the Head-Bang technique (Hansen, 1991; Mungiole, Pickle 

& Simonson, 2002), the Head-Bang was applied to triplets around the central point (zone), the 
zone which is to be smoothed.  Since the aim of the technique is to smooth zones that have 
similar underlying rates while highlighting regional differences in rates, the idea was to create a 
separation or cleavage in the neighborhood around the central zone.  Hence, Hansen (1991) 
proposed the concept of a triplet.   

 
A triplet is two other points (endpoints) that forms a straight line with the central point.2  

The line should separate neighboring zones with higher rates from those with lower rates. 
However, since the three points will not usually be in a perfect straight line, the angle formed 
between the central point and the two endpoints must be greater than a certain threshold.  They 
typically used a minimum angle of 1350 separation.   

 
 
 

                                                 
2  They call this collinear.  However, the term collinear has different meanings including variables that are 

high correlated with each other.  To avoid confusion, this chapter does not use that term. 
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Screens 
 
The two endpoints are then assigned to two groups (called screens).  Of the two 

endpoints, the one with the higher value is assigned to a high screen while the one with the lower 
value is assigned to a low screen.  After all neighborhood points have been assigned to each 
screen, the median of each screen is taken and the value of the central point compared to these.  
 

Pickle and Su (2002), however, simplified the procedure by simply dividing the values of 
the neighbors into two screens irrespective of whether they formed a triplet with the central point 
or not.  The results are virtually identical to the initial Head-Bang results.  Consequently, that 
procedure is adopted in the CrimeStat version. The values of the neighbors are sorted from high 
to low irrespective of whether they form triplets or not and divided into the high screen and >low 
screen groupings at the middle record.  If the number of neighbors is even, then the two groups 
are of equal size and mutually exclusive; on the other hand, if the number of neighbors is odd, 
then the middle record is counted twice, once with the high screen and once with the low screen.   

 
For each screen, the median value is calculated. The median of the high screen is called 

the high median and the median of the low screen is called the low median. 
 

 Decision Rules for Head-Bang Statistic 
 

The value of the central zone is then compared to these two medians.  The decision rules 
are as follows: 
 

1. First, if the value of the central zone falls between the two medians (low and high, 
then the central zone retains its value.   

 
2. Second, if the value of the central zone is either higher than the high median or 

lower than the low median, then its weight determines whether it is adjusted.  It is 
compared to the screen to which it is closest (high or low).  If it has a weight that 
is greater than all the weights of its closest screen, then it maintains it value.   

 
For example, if the central zone has a value greater than the high median but also 
greater has a weight greater than any of the high screen zones, then it still 
maintains its value.   

 
3. However, if its weight is smaller than the weights of any zone in its closest 

screen, then the central zone takes the value of the median for the screen to which 
it is closest.   
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For example, if the central zone is closer to the high median than to the low 
median but has a weight that is smaller than one or more zones in the high screen, 
then it takes the high median as its value. Similarly, if the central zone is closer to 
the low median than to the high median but has a weight that is smaller than one 
or more zones in the low screen, then it takes the low median as its value. 

 
4. After all points (zones) have been assigned estimates for the variable of interest, Zi, 

the process is repeated 9 more times to ensure that the final smoothing is stable.  
 

 The logic ensures that if a central zone is large in size relative to its neighbors (i.e., has a 
greater weight), then its observed rate is most likely an accurate indicator of risk.  However, if 
the zone is smaller in size than its neighbors, then its value is adjusted to be like its neighbors.  In 
this case, extreme rates, either high or low, are reduced to moderate levels (smoothed).  ‘Peaks’ 
or ‘valleys’ are minimized while the values of real edges in the data are maintained. 
 
 Example to Illustrate Decision Rules 
 
 A simple example will illustrate this process. Suppose the intensity variable is a rate (as 
opposed to a count; see below).  For each point, the eight nearest neighbors are examined. 
Taking one zone (“A”), suppose the eight nearest neighbors of zone A have the following values 
(Table 11.1).3  Note that the value at the central point (zone A) is not included in this list.  These 
eight are the nearest neighbors only.   
 

Table 11.1: 
Example: Nearest Neighbors of Zone AA@ 

 
Neighbor  Rate  Weight  
   B   10  1000  
   C   15  3000 
   D   12  4000 
   E   7  1500 
   F   14  2300 
   G   16  1200 
   H   10  2000 
   I   12  2500  

                                                 
3  Mungiole and Pickle (1999) found that 6 neighbors generally produced small errors between the observed 

and smoothed values.  However, sometimes adding more neighbors can improve the stability.  The example 
above uses 8 neighbors. 
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 Next, the 8 neighbors are sorted from the lowest rate to the highest (Table 11.2).  The 
record number (neighbor) and weight value are sorted along with the rate. 
 

Table 11.2: 
Sorted Nearest Neighbors of Zone AA@ 

 
Neighbor  Rate  Weight  
   E   7  1500 
   B   10  1000 
   H   10  2000 
   D   12  4000 
   I   12  2500 
   F   14  2300 
   C   15  3000 
   G   16  1200 

 
Third, a cumulative sum of the weights is calculated starting with the lowest rate (Table 

11.3).  Fourth, the neighbors are then divided into two groups at the median.  Since the number 
of records is even, then the low screen records are E, B, H, and D while the high screen records 
are I, F, C and G. The weighted medians of the low screen and high screen are calculated.  Since 
these are rates, the low screen median is calculated from the first four records while the high 
screen median is calculated from the second four records.  

 
Table 11.3: 

Cumulative Weights for Nearest Neighbors of Zone AA@ 
 

Cumulative 
Neighbor  Rate  Weight  Weight  
   E   7  1500    1500 
   B   10  1000    2500 
   H   10  2000    4500 
   D   12  4000    8500 
   I   12  2500  11000 
   F   14  2300  13300 
   C   15  3000  16300 
   G   16  1200  17500 
 

 



11.8 

Using record E as an example, the calculations are as follows (assume the baseline is >per 
10,000=).  The rate is multiplied by the weight and divided by the baseline (for example, 7 * 
1500/10000 = 1.05).  This is called the score; it is an estimate of the count of events in that zone.  
Table 11.4 shows the scores for each record and the cumulative score.  The cumulative score of 
each screen is divided in half to obtain the median. 
 

For the low screen, the median score is 8.85/2 = 4.425.  This falls between records H and 
D.  To estimate the rate associated with this median score, the interval in scores between records 
H and D is interpolated, and then converted to rates.  The interval between records H and D is 
4.80 (8.85-4.05).  The low screen median score, 4.425, is (4.425-4.05)/4.80 = 0.0781 of the 
distance for that interval. For the rates, the interval between records H and D is 2 (12-10). Thus, 
0.0781 of that interval is 0.1563.  This is added to the rate of record H to yield a low median rate 
of 10.1563. 
 

For the high screen, the median score is 12.64/2 = 6.32.  This falls between records F and 
C. To estimate the rate associated with this median score, the interval in scores between records 
F and C is interpolated, and then converted to rates. The interval between records F and C is 4.50 
(10.72-6.22).  The low screen median score, 6.32, is (6.32-6.22)/4.50 = 0.0222 of the distance in 
that interval. The interval between the rates of records F and C is 1 (15-14). Thus, 0.0222 of that 
interval is 0.0222.  This is added to the rate of record F to yield a high median rate of 14.0222. 
 

Table 11.4: 
Cumulative Scores by Screens for Nearest Neighbors of Zone AA@ 

 
Low screen 

AScore@   Cumulative 
Neighbor Rate    Weight Rate*Weight/Baseline Score 
  E  7   1500     1.05     1.05 
  B  10   1000       1.00     2.05 
  H  10   2000       2.00     4.05 
  D  12   4000       4.80     8.85 

 
High screen 

AScore@   Cumulative 
Neighbor Rate   Weight Rate * Weight/Baseline Score 
  I  12   2500       3.00     3.00 
  F  14   2300       3.22     6.22 
  C  15   3000      4.50    10.72 
  G  16   1200       1.92    12.64  
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Finally, the rate associated with the central zone (zone A in our example) is compared to 
these two medians.  If its rate falls between these medians, then it keeps its value.  For example, 
if the rate of zone A is 13, then that falls between the two medians (10.1563 and 14.0222).   
 

On the other hand, if its rate falls outside this range (either lower than the low median or 
higher than the high median), its value is determined by its weight relative to the screen to which 
it is closest. For example, suppose zone A has a rate of 15 with a weight of 1700.  In this case, its 
rate is higher than the high median (14.0222) but its weight is smaller than three of the weights 
in the high screen.  Therefore, it takes the high median as its new smoothed value.  Relative to its 
neighbors, it is smaller than three of them so that its value is probably too high. 
 
 But, suppose it has a rate of 15 and a weight of 3000?  Even though its rate is higher than 
the high median, its weight is also higher than the four neighbors making up the high screen.  
Consequently, it keeps its value.  Relative to its neighbors, it is a large zone and its value is 
probably accurate. 
 

For counts (discussed below), the comparison is simpler because all weights are equal.  
Consequently, the count of the central zone is compared directly to the two medians.  If it falls 
between the medians, it keeps its value.  If it falls outside the two medians, then it takes the one 
to which it is closest (the high median if it has a higher value or the low median if it is lower).  

 
Rates and Counts 

 
The original Head-Bang statistic was applied to rates (e.g., number of lung cancer cases 

relative to population).  In the CrimeStat implementation, the routine can be applied to counts 
(volumes) or rates or can even be used to estimate a rate from counts.  Counts have no weights 
(i.e., they are self-weighted).  In the case of rates, though, they should be weighted (e.g., by 
population).  The most plausible weighting variable for a rate is the same baseline variable used 
in the denominator of the rate (e.g., population, number of households) because the rate variance 
is proportional to 1/baseline (Pickle and Su, 2002).  
 
 Need to Define Intensity variable 
 

Whether a count or a rate variable is to be analyzed, an Intensity variable must be defined 
on the Primary file page (see Chapter 3).  The Intensity variable is the variable that will be 
smoothed.  If it is not defined, then the Head-Bang routine will not be available.  Note that a 
separate weight variable on the Primary file page should also be used to weight the data if a rate 
is being analyzed.  But, this can only work in conjunction with a defined intensity variable.  In 
other words, be sure that an intensity variable is defined to use the Head-Bang routine. 
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Smoothed median for count variable 
 

With a count variable, there is only a count (the number of events).  There is no 
weighting of the count since it is self-weighting (i.e., the number equals its weight). In 
CrimeStat, the count variable is defined as the Intensity variable on the Primary file page.  For a 
count variable: 
 

1. If the value of the central zone falls between the two medians (low median and 
high median), then the central zone retains its value.   
 
2. If the value of the central zone is higher than the high median, then it takes the 
high median as its smoothed value; 
 
3. If the value of the central zone is lower than the low median, then it takes the low 
median as its smoothed value.  

 
Smoothed median for rate variable 

 
With a rate, there is both a value (the rate) and a weight.  The rate variable is defined as 

the Intensity variable on the Primary file page.  However, there is a separate weight that must be 
applied to this rate to distinguish a large zone from a small zone.  In CrimeStat, the weight 
variable is always defined on the Primary file page as the Weight variable.   

 
 Depending on whether the rate is input as part of the original data set or created out of 

two variables from the original data set, it will be defined slightly differently. If the rate is part of 
the original data set, then it is defined as the intensity variable on the Primary file page. 
However, if the rate is created out of two variables from the Primary file data set, it is defined on 
the Head-Bang interface under >Create rate=.  
 
 Setup 
 
 For either a rate or a count, the statistic requires an intensity variable be defined in the 
Primary file.  The user must specify whether the variable to be smoothed is a rate variable, a 
count variable, or two variables that are to be combined into a rate.  If a weight is to be used (for 
either a rate or the creating of a rate from two count variables), then it must be defined as an 
Intensity on the Primary file page.  Note that if the intensity variable is a rate, it should also be 
weighted. A typical weighting variable is the population size of the zone.  
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The user has to complete the following steps to run the routine:  
 

1. Define input file and coordinates on the Primary file page 
 
2. Define an intensity variable, Z(intensity), on the Primary file page. 
 
3. OPTIONAL: Define a weighting variable in the weight field on the 

Primary file page (for rates and for the creating of rates from two count 
variables) 

 
4. Define an ID variable to identify each zone. 
 
5. Select data type: 

 
A. Rate: the variable to be smoothed is a rate variable which 

calculates the number of events (the numerator) relative to a 
baseline variable (the denominator). 

 
a. The baseline units should be defined, which is an assumed 

multiplier in powers of 10.  The default is >per 100' 
(percentages) but other choices are 0 (no multiplier used), 
>per 10' (rate is multiplied by 10), >per 1000', >per 10,000', 
>per 100,000', and >per 1,000,000'. This is not used in the 
calculation but for reference. 

 
b. If a weight is to be used, the >Use weight variable= box 

should be checked. 
 

B. Count: the variable to be smoothed is a raw count of the number 
of events.  There is no baseline used. 

 
C. Create Rate: A rate is to be calculated by dividing a count 

variable by a baseline variable. 
 

a. The user must define the count (numerator) and baseline 
(denominator) variables. 

 
b. The baseline scale must be defined, which is an assumed 

multiplier in powers of 10.  The default is >per 100' 
(percentages) but other choices are 1 (no multiplier used), 
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>per 10' (rate is multiplied by 10), >per 1000', >per 10,000', 
>per 100,000', and >per 1,000,000'.  This is used in the 
calculation of the rate. 

 
c. If a weight is to be used, the >Use weight variable= box 

should be checked. 
 

6. Select number of neighbors.  In CrimeStat, the number of neighbors can 
run from 4 through 40.  The default is 6. If the number of neighbors 
selected is even, the routine divides the data set into two equal-sized 
groups.  If the number of neighbors selected is odd, then the middle zone 
is used in calculating both the low median and the high median. It is 
recommended that an even number of neighbors be used (e.g., 4, 6, 8, 10). 

 
7. Select output file.  The output can be saved as a dbase >dbf= file. If the 

output file is a rate, then the prefix RateHB is used.  If the output is a 
count, then the prefix VolHB is used.  If the output is a created rate, then 
the prefix CrateHB is used. 

 
8. Run the routine by clicking >Compute=. 

 
Output 

 
The Head-Bang routine creates a >dbf= file with the following variables: 

 
1. The ID field 
2. The X coordinate 
3. The Y coordinate 
4. The smoothed intensity variable (called >Z_MEDIAN=).  Note that this is 

not a Z score but a smoothed intensity (Z) value  
5. The weight applied to the smoothed intensity variable.  This will be 

automatically 1 if no weighting is applied. 
 
 The >dbf= file can then be linked to the input >dbf= file by using the ID field as a matching 
variable.  This would be done if the user wants to map the smoothed intensity variable. 
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Example 1: Using the Head-Bang Routine for Mapping Houston Burglaries 
 

 Figure 11.2 shows a map of Houston burglaries by traffic analysis zones.  The mapped 
variable is the number of burglaries committed in 2006.  On the Head-Bang interface, the >Count= 
box was checked, indicating that the number of burglaries will be estimated.  The number of 
neighbors was left at the default 6.  The output >dbf= file was then linked to the input >dbf= file 
using the ID field to allow the smoothed intensity values to be mapped.  The variable is mapped 
with 5 equal-size intervals. Quintiles could also have been used.   
 

Figure 11.3 show a smoothed map of the number of burglaries conducted by the Head-
Bang routine.  To be consistent with Figure 11.2, 5 equal-size intervals were also used. 
Comparing the two maps, it can be seen that there are fewer zones in the Head-Bang map that 
are in the lowest interval/bin (in yellow).  The actual count was 498 zones with scores of less 
than 10 in Figure 11.3 compared to 528 zones in Figure 11.2.  Also, there are fewer zones in the 
highest interval/bin (in black) as well.  The actual count was 181 zones with scores of 40 or more 
in Figure 11.3 compared to 215 zones in Figure 11.2.  In other words, the Head-Bang routine has 
assigned many of the highest or lowest values to the median values of their neighbors. 
 

Example 2: Using the Head-Bang Routine for Mapping Burglary Rates 
 

The second example shows how the Head-Bang routine can smooth rates.  In the Houston 
burglary data base, a rate variable was created that divided the number of burglaries in 2006 by 
the number of households in 2006.  This variable was then multiplied by 1000 to minimize the 
effects of decimal place (the baseline unit).  Figure 11.4 show the raw burglary rate (burglaries 
per 1,000 households) for the City of Houston in 2006. 
 

The Head-Bang routine was set up to estimate a rate for this variable (Burglaries per 
1000 Households).  On the Primary file page, the intensity variable was defined as the calculated 
rate (burglaries per 1,000 households) because the Head-Bang will smooth the rate.  Also, a 
weight variable was selected on the Primary file page.  In this example, the weight variable was 
the number of households.  With any rate, there is always the potential of a small zone producing 
a very high rate.  Consequently, the estimates were weighted to ensure that the values of each 
zone are proportional to their size.  Zones with larger numbers of households will keep their 
values whereas zones with small numbers of households will most likely change their values to 
be closer to their neighbors.   

 
On the Head-Bang interface, the >Rate= box was checked (Figure 11.5).  The ID variable 

was selected (which is also TAZ03).  The baseline number of units was set to >per 1000'; this is 
for information purposes, only, and will not affect the calculation.   
 



Figure 11.2:



Figure 11.3:



Figure 11.4:



Figure 11.5:

Defining Rates with Head-Bang Routine
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 On the Primary file page, the number of households was chosen as the weight variable 
and the >Use weight variable= box was checked under the Head-Bang routine..  The number of 
neighbors was left at the default 6.  Finally, an output >dbf= file was defined in the >Save Head-
Bang= dialogue.  

 
 The output >dbf= file was linked to the input >dbf= file using the ID field to allow the 
smoothed rates to be mapped.  Figure 11.6 show the result of smoothing the burglary rate.  As 
can be seen, the rates are more moderate than with the raw numbers (comparing Figure 11.4 with 
Figure 11.6).  There are fewer zones in the highest rate category (100 or more burglaries per 
1,000 households) for the Head-Bang estimate compared to the raw data (64 compared to 185) 
but there are also more zones in the lowest rate category (0-24 burglaries per 1,000 households) 
for the Head-Bang compared to the raw data (585 compared to 520).  In short, the Head-Bang 
routine reduced the rates throughout the map. 
 

Example 3: Using the Head-Bang Routine to Create Burglary Rates from Separate 
Counts of Burglaries and Households 

 
The third example illustrates using the Head-Bang routine to create smoothed rates.  In 

the Houston burglary data set, there are two variables that can be used to create a rate.  First, 
there is the number of burglaries per traffic analysis zone.  Second, there is the number of 
households that live in each zone.  By dividing the number of burglaries by the number of 
households, an exposure index can be calculated.  Of course, this index is not perfect because 
some of the burglaries occur on commercial properties, rather than residential units.  But, 
without separating residential from non-residential burglaries, this index can be considered a 
rough exposure measure. 
 

On the Head-Bang interface, the >Create Rate= box is checked (Figure 11.7).  The ID 
variable is selected (which is TAZ03 in the example).  The numerator variable is selected which, 
in the example is the number of burglaries (BURG2006).  Next, the denominator variable is 
selected.  In the example, the denominator variable is the number of households (HH2006).  The 
baseline units must be chosen and, unlike the rate routine, are used in the calculations.  For the 
example, the rate is >per 1,000' which means that the routine will calculate the rate (burglaries 
divided by households) but then will multiply by 1,000.  On the Head-Bang page, the >Use 
weight variable= box under the >Create rate= column is checked.   

 
Next, the number of neighbors are chosen, both for the numerator and for the 

denominator.  One has to be careful about the denominator especially if some zones have very 
few households.  The result would be an extreme rate estimate.  To avoid this, it is recommended 
that a larger number of neighbors be used for the denominator than for the numerator.  In the  
 



Figure 11.6:



Figure 11.7:

Creating Rates with Head-Bang Routine
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example, the default of 6 neighbors is chosen for the numerator variable (burglaries) while 8 
neighbors are chosen for the denominator variable (households). 

 
Finally, a >dbf= output file was defined and the routine was run. The output >dbf= file was 

then linked to the input >dbf= file using the ID field to allow the smoothed rates to be mapped.  
Figure 11.8 show the results. Compared to the raw burglary rate (Figure 11.2), there are fewer 
zones in the highest category (36 compared to 185) but also more zones in the lowest category 
(607 compared to 520).  Like the rate smoother, the rate that is created has reduced the rates 
throughout the map. 

 
Uses of the Head-Bang Routine 

 
The Head-Bang routine is useful for several purposes.  First, it eliminates extreme 

measures, particularly very high ones (>peaks=).  For a rate, in particular, it will produce more 
stable estimates.  For zones with a small population, a few events can cause dramatic increases in 
the rate.  The Head-Bang smoother will eliminate those extreme fluctuations.  The use of 
population weights for estimating rates ensures that unusually high or low proportions that are 
reliable due to large populations are not modified whereas values based on small populations are 
modified to be more like those of the surrounding counties.  Similarly, for counts (counts), the 
method will produce values that are more moderate.  
 

Limitations of the Head-Bang Routine 
 

On the other hand, the Head-Bang methodology does distort data.  Because the extreme 
values are eliminated, the routine aims for more moderate estimates.  However, those extremes 
may be real. Consequently, the Head-Bang routine should not be used to interpret the results for 
any one zone but more for the general pattern within the area.   

 
Also, there is often a trade-off that the user will have to make between the geographical 

size of the zone (smaller is better) with the stability of the estimates (larger population is better).  
Choosing zones that are very small (e.g., blocks or block groups) can produce unreliable 
estimates while choosing zones that are too large (e.g., districts or even counties) can eliminate 
meaningful local variations.  The choice of zones is critical. 

 
However, if used carefully, Head-Bang smoothing is a powerful tool for examining risk 

within a study area and for identifying changes in risk over time. 
 

 
 
 



Figure 11.8:
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Interpolated Head-Bang Statistic 
 

The Head-Bang calculations can be interpolated to a grid.  If the user checks this box, 
then the routine will also interpolate the calculations to a grid using kernel density estimation.  
An output file from the Head-Bang routine is required.  Also, a reference file is required to be 
defined on the Reference File page.  

 
Essentially, the routine takes a Head-Bang output and interpolates it to a grid using a 

kernel density function.  The same results can be obtained by inputting the Head-Bang output on 
the Primary file page and using the single kernel density routine on the Interpolations I page.  
The user must then define the parameters of the interpolation.  However, there is no intensity 
variable in the Interpolated Head-Bang because the intensity has already been incorporated in the 
Head-Bang output.  Also, there is no weighting of the Interpolated Head-Bang estimate. 
 

The user must then define the parameters of the interpolation.  Chapter 10 discussed these 
in more detail and provided guidelines, which will not be repeated here. 
 

Method of Interpolation 
 

There are five types of kernel distributions to interpolate the Head-Bang to the grid: 
 

1. The normal kernel overlays a three-dimensional normal distribution over each point 
that then extends over the area defined by the reference file.  This is the default kernel 
function.  However, the normal kernel tends to over-smooth.  One of the other kernel 
functions may produce a more differentiated map; 
 

2. The uniform kernel overlays a uniform function (disk) over each point that only 
extends for a limited distance; 
 

3. The quartic kernel overlays a quartic function (inverse sphere) over each point that 
only extends for a limited distance; 
 

4. The triangular kernel overlays a three-dimensional triangle (cone) over each point 
that only extends for a limited distance; and 
 

5. The negative exponential kernel overlays a three dimensional negative exponential 
function over each point that only extends for a limited distance. 
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The different kernel functions produce similar results though the normal is generally 
smoother for any given bandwidth. 
 
 Choice of Bandwidth 
 
 The kernels are applied to a limited search distance, called 'bandwidth'. For the normal 
kernel, bandwidth is the standard deviation of the normal distribution.  For the uniform, quartic, 
triangular and negative exponential kernels, bandwidth is the radius of a circle defined by the 
surface.  For all types, a larger bandwidth will produce smoother density estimates and both 
adaptive and fixed bandwidth intervals can be selected. 
 
  Adaptive bandwidth 
 
 An adaptive bandwidth distance is identified by the minimum number of other points 
found within a circle drawn around a single point.  A circle is placed around each point, in turn, 
and the radius is increased until the minimum sample size is reached.  Thus, each point has a 
different bandwidth interval.  The user can modify the minimum sample size.  The default is 100 
points.  If there is a small sample size (e.g., less than 500), then a smaller minimum sample size 
would be more appropriate). 
 

Fixed bandwidth 
 
 A fixed bandwidth distance is a fixed search radius for each point.  The user must define 
the radius and its distance units (miles, nautical miles, feet, kilometers, meters.) 
 

Output (areal) units 
 
 Specify the areal density units as points per square mile, per squared nautical miles, per 
square feet, per square kilometers, or per square meters.  The default is points per square mile. 
 

Calculate Densities or Probabilities 
 
 The density estimate for each cell can be calculated in one of three ways: 
 

Absolute densities 
 
 This is the number of points per grid cell and is scaled so that the sum of all grid cells 
equals the sample size. This is the default. 
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Relative densities   
 
 For each grid cell, this is the absolute density divided by the grid cell area and is 
expressed in the output units (e.g., points per square mile). 
 
  Probabilities 

 
This is the proportion of all incidents that occur in each grid cell.  The sum of all grid 

cells equals 1.  Select whether absolute densities, relative densities, or probabilities are to be 
output for each cell. The default is absolute densities. 

 
Output 

 
 The results can be output as a Surfer for Windows file (for both an external or generated 
reference file) or as an ArcGIS '.shp', MapInfo '.mif', ArcGIS Spatial Analyst 'asc', or ASCII grid 
'grd' file (only if the reference file is generated by CrimeStat.) The output file is saved as 
IHB<root name> with the root name being provided by the user. 
 

Example: Using the Interpolated Head-Bang to Visualize Houston Burglaries 
 
 The Houston burglary data set was, first, smoothed using the Head-Bang routine (Figure 
11.3 above) and, second, interpolated to a grid using the Interpolated Head-Bang routine.  The 
kernel chosen was the default normal distribution but with a fixed bandwidth of 1 mile.  Figure 
11.9 show the results of the interpolation.    
 
 To compare this to an interpolation of the original data, the number of burglaries in each 
zone was interpolated using the single kernel density routine.  The kernel used was also the 
normal distribution with a fixed bandwidth of 1 mile.  Figure 11.10 show the results of 
interpolating the raw burglary numbers. 
 
 A comparison of these two figures shows that they both capture the areas with the highest 
burglary density.  However, the Interpolated Head-Bang produced fewer high density cells 
which, in turn, allowed the moderately high cells to stand out.  For example, in southwest 
Houston, the Interpolated Head-Bang showed two small areas of moderately high density of 
burglaries whereas the raw interpolation merged these together. 
 
 
  



Figure 11.9:



Figure 11.10:
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Advantages and Disadvantages of the Interpolated Head-Bang 
 
 The Interpolated Head-Bang routine has advantages and disadvantages over the regular 
Head-Bang.  Its advantages are that it, like the Head-Bang, captures the strongest tendencies by 
eliminating >peaks= and >valleys=.  But, it allows a smoother representation of the data.  Zones are 
usually of unequal size with those in the center of a metropolitan area being much smaller than 
those in the periphery (the MAUP problem; see Wikipedia, 2012; Hipp, 2007; Wooldridge, 
2002; Openshaw, 1984).).  There is a visual distortion that occurs with large areas simply due to 
the larger area that they cover.  The Head-bang will mute the effect of extreme low or high 
values in the periphery, but it will not eliminate the visual distortion that one sees in looking a 
map.   
 

On the other hand, the interpolated Head-Bang routine does this by smoothing the data 
even more than the Head-Bang itself.  There is a danger that it could over-smooth the data. The 
user has to determine whether the elimination of areas with very high or very low density values 
is real and not just due to small number of events. 
 
  For law enforcement applications, this may or may not be an advantage.  Some hot 
spots, for example, are small areas where there are a many crime events.  Smoothing the data 
may eliminate the visibility of these.  On the other hand, large hot spots will generally survive 
the smoothing process because the number of events is large and will usually spread to adjacent 
grid cells.  As usual, the user has to be aware of the advantages and disadvantages in order to 
decide whether a particular tool, such as the interpolated Head-Bang, is useful or not. 
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Chapter 12: 

Space-Time Analysis 
 

In this chapter, we discuss three techniques that are used to analyze the relationship 
between space and time.  Up to this point, we have analyzed the distribution of incidents 
irrespective of the order in which they appeared or in which the time frame in which they 
appeared.  The only temporal analysis that was conducted was in Chapter 4 where several spatial 
description indices, including the standard deviational ellipse, were compared for different time 
periods. 
 

As police departments usually know, however, the spatial patterning of incidents does not 
occur uniformly throughout the year, but instead are often clustered together during short time 
periods.  At certain times, a rash of incidents will occur in certain neighborhoods and the police 
often have to respond quickly to these events.  In other words, there is both clustering in time as 
well clustering in space.  This area of research has been developed mostly in the field of 
epidemiology (Knox, 1963, 1988; Mantel, 1967; Mantel and Bailar, 1970; Besag and Newell, 
1991; Kulldorf and Nargawalla, 1995; Bailey and Gattrell, 1995).  However, most of these 
techniques are applicable to crime analysis and criminal justice research as well. 
 

CrimeStat includes four space-time techniques: the Knox index, the Mantel index, the 
Spatial-temporal moving average, and Correlated Walk Analysis. Figure 12.1 shows the Space-
Time Analysis screen. 
 
Measurement of Time in CrimeStat 
 

Time can be defined as hours, days, weeks, months, or years.  The default is days.  
However, please note that for any of these techniques, in CrimeStat time must be measured as an 
integer (or real) variable, as mentioned in Chapter 3.  Time cannot be defined by a formatted 
date code (e.g., 11/06/01, July 30, 2002).   Each of the three space-time routines require that time 
be an integer or real variable (e.g., 1, 2, 34527, 2.8).   If given formatted dates, the routines will 
calculate an answer, but the result will not be correct.   
 

If the time unit is days, a simple transformation is to use the number of days since 
January 1, 1900.  Most spreadsheet and data base programs usually assign an integer number 
from this reference point.  For example, November 12, 2001 has the integer value of 37207 while 
January 30, 2002 has the integer value of 37286.  These are the number of days since January 1, 
1900.  Any spreadsheet program (e.g., Excel) can convert a date format into a real number with 
the Value function. Also, any arbitrary numbering system will work (e.g., 1, 2, 3). 



Figure 12.1:

Space-Time Analysis Screen
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Space-Time Interaction 
 
 There are different types of interaction that could occur between space and time. Four 
distinctions can be made.  First, there could be spatial clustering all the time.  Certain 
communities are prone to certain events.  For example, robberies often are concentrated in 
particular locations as are vehicle thefts.  The hot spot methods that were discussed in chapters 7, 
8 and 9 are useful for identifying these concentrations. In this case, there is no space-time 
interaction since the clustering occurs all the time. 
 
 Second, there could be spatial clustering within a specific time period.  Hot spots could 
occur during certain time periods.  For example, motor vehicle crashes tend to occur with much 
higher frequencies in the late afternoon and early evening, often as a by-product of congestion on 
the roads.  Crash hot spots will tend to appear at certain times because of the congestion.  At 
most other times, the concentration does not occur because the congestion levels are lower. 
 
 Third, there could be episodic space-time clustering.  A number of events could occur 
within a short time period within a concentrated area.  This type of effect is very common with 
motor vehicle thefts.  A car thief gang may decide to attack a particular neighborhood.  After a 
binge of car thefts, they move on to another neighborhood.  In this instance, there are a number 
of theft incidents that are occurring within a limited period in a limited location. The cluster 
moves from one location to another.  In this case, there is an interaction between space and time 
in that spatial hot spots appear at particular times, but are temporary.  The ability to detect this 
type of shift is very important to police departments since it affects their ability to respond. 
 
 Fourth, there could be periodic space-time interaction in which the relationship between 
space and time occurs at certain times but not others and is somewhat predictable.  The 
interaction could be concentrated, as in the spatial clustering mentioned above, or it could follow 
a more complex pattern.  For example, there could be a diffusion of drug sales from a central 
location to a more dispersed area.  Whereas initially, the drug dealing is concentrated in a few 
locations, it starts to diffuse to other areas.  However, the diffusion may occur at different times 
of the year (e.g., Christmas and New Years).  Alternatively, vehicle thefts may shift towards 
seaside communities during the summer months when the number of vacationers increases and 
then shift back to the city at other times of the year.  We saw an example of this in Chapter 4 
where the ellipse of motor vehicle thefts shifted between June and July to the communities along 
the Chesapeake River near Baltimore. This type of diffusion is not clustering per se, in that it 
may be spread over a very large coastline.  But it is a distinct space-time interaction. 
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 The importance of these distinctions is that many space-time tests that exist only measure 
gross space-time interaction, rather than space-time clustering.  For example, the Knox and 
Mantel tests that are discussed below test for spatial interaction.  The interaction could be the 
result of spatial clustering, but does not necessarily have to be. The interaction could occur in a 
very complex way that would not easily lend itself to more focused intervention by the police.  
Still, the ability to identify the interaction is an important first step in planning an intervention 
strategy. 
 
Knox Index 
 

The Knox Index is a simple comparison of the relationship between incidents in terms of 
distance (space) and time (Knox, 1963; 1964).  That is, each individual pair is compared in terms 
of distance and in terms of time interval.  Since each pair of points is being compared, there are 
N*(N-1)/2 pairs.  The distance between points is divided into two groups - Close in distance and 
Not close in distance, and the time interval between points is also divided into two groups - 
Close in time and Not close in time.  The definitions of >close= and >Not close= are left to the user. 
 

A simple 2 x 2 table is produced that compares closeness in distance with closeness in 
time.  The number of pairs that fall in each of the four cells is compared (Table 12.1).  
 

Table 12.1: 

Logical Structure of Knox Index 
 
   
  

Close in time Not close in time TOTAL 

 
Close in distance 

 
O1 

 
O2 

 
S1 

 
Not close in distance 

 
O3 

 
O4 

 
S2 

 
TOTAL 

 
S3 

 
S4 

 
N 

 
where N = O1 + O2 + O3 + O4  
 S1 =   O1 + O2 
 S2 =   O3 + O4 
 S3 =   O1 + O3 
 S4 =   O2 + O4  
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The actual number of pairs that falls into each of the four cells are then compared to the 
expected number if there was no relationship between closeness in distance and closeness in 
time. The expected number of pairs in each cell under strict independence between distance and 
the time interval is obtained by the cross-products of the columns and row totals (Table 12.2). 
 

Table 12.2: 

Expected Frequencies for Knox Index 
 
   
  

 
Close in time 

 
Not close in time 

 
Close in distance 

 
E1 

 
E2 

 
Not close in distance 

 
E3 

 
E4 

 
 
where  E1 =   S1 * S3 / N 
  E2 =   S1 * S4 / N 
  E3 =   S2 * S3 / N 
  E4 =   S2 * S4 / N 
 

The difference between the actual (observed) number of pairs in each cell and the 
expected number is measured with a Chi-square statistic (equation 12.1): 

 

 χ ∑            (12.1) 

 
Monte Carlo Simulation of Critical Chi-square Values 
 
Unfortunately, the usual probability test associated with the Chi-square statistic cannot be 

applied since the observations are not independent.  The interaction between space and time 
tends to be compounded when calculating the Chi-square statistic.  For example, we have noticed 
that the Chi-square statistic tends to get larger with increasing sample size, a condition that 
would normally not be true with independent observations.   

 
To handle the issue of interdependency, there is a Monte Carlo simulation of the Chi-

square value for the Knox Index under spatial randomness (Dwass, 1957; Barnard, 1963).  This 
is known as randomization since it assumes that any location within the study area could be 
available for an event.  If the user selects a simulation, the routine randomly selects M pairs of a 
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distance and a time interval where M is the number of pairs in the data set  and 
calculates the Knox Index and the Chi-square test. Each pair of a distance and a time interval are 
selected from the range between the minimum and maximum values for distance and time 
interval in the data set using a uniform random generator.  

 
An alternative simulation is to assume that the spatial location of the events are fixed and 

cannot change.  This would occur, for example, if one was measuring a unique set of individuals 
who do not change or certain neighborhoods only or even applying the statistic to grouped data 
where the groups do not change  In this case, a permutation simulation would be appropriate, 
similar to the simulations used in the spatial autocorrelation indices (see Chapters 5 and 9).  For 
this version of CrimeStat, we only use a randomization simulation. 
 
  Output of simulation 
 

The randomization simulation is repeated K times, where K is specified by the user. 
Usually, it is wise to run the simulation 1000 or more times.  The output includes: 

 
1. The sample size 
2. The number of pairs 
3. The calculated chi-square value of the Knox Index from the data 
4. The minimum chi-square value of the Knox Index from the simulation 
5. The maximum chi-square value of the Knox Index from the simulation 
6. Ten percentiles from the simulation: 
 

a. 0.5% 
b. 1% 
c. 2.5% 
d. 5% 
e. 10% 
f. 90% 
g. 95% 
h. 97.5% 
i. 99% 
j. 99.5% 

 
Methods for Dividing Distance and Time 

 
 In the CrimeStat implementation of the Knox Index, the user can divide distance and time 
interval based on the three criteria: 
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1. The mean (mean distance and mean time interval).  This is the default. 

 
2. The median (median distance and median time interval) 
 
3. User-defined criterion for distance and time separately. 

 
 There are advantages to each of these methods.  The mean is the center of the 
distribution; it denotes a balance point.  The median will divide both distance and time interval 
into approximately equal numbers of pairs.  The division is approximate since the data may not 
easily divide into two equal numbered groups.  A user-defined criterion can fit a particular need 
of an analyst.  For example, a police department may only be interested in incidents that occur 
within two miles of each other within a one week period.  Those criteria would be the basis for 
dividing the sample into >Close= and >Not close= distance and time intervals. 

 
 Example of the Knox Index 
 
 For an example, vehicle thefts in Baltimore County for 1996 were taken.  There were 
1855 vehicle thefts for which a date was recorded in the data base.  The data base was further 
broken down into twelve separate monthly subsets.  Using the median as the criterion for 
dividing the data into ‘Close’ and ‘Not close’ for both distance and time interval, the Knox Index 
was calculated for the entire set of 1855 incidents.  Then, using the median distance for the entire 
year but a month-specific median time interval, the Knox Index was calculated for each of the 
twelve months.  Table 12.3 presents the Chi-square values and their pseudo-significance levels. 
 
 To produce a better test of the significance of the results, 1000 random simulations were 
calculated for the vehicle theft for the entire year.  Table 12.3 below shows the results.  Because 
an extreme value could be obtained by chance with a random distribution, reasonable cut-off 
points are usually selected from the simulation.  In this case, we want a cut-off point that 
approximates a 5% significance level.  Since the Knox Index is a one-tailed test (i.e., only a high 
chi-square value is indicative of spatial interaction), we adopt an upper threshold of the 95 
percentile.  In other words, only if the observed Chi-square test for the Knox Index is larger than 
the 95th percentile will the null hypothesis of a random distribution between space and time be 
rejected. 
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Table 12.3: 

Knox Index for Baltimore County Vehicle Thefts 
Median Split 

(N = 1,855 with 1,719,585 comparisons) 
 
95 Percentile 

     Actual  Simulation   Approx. 
  Month   Chi-square Chi-square  p 
  January       0.26        6.95   n.s. 
  February       0.00        6.61   n.s. 

  March        0.00        6.86   n.s. 
   April   0.50        6.56   n.s. 
   May   1.04        7.25   n.s. 
   June   0.01        6.02   n.s. 
   July   9.96        9.05   .05 
   August        5.91        5.55   .05 
   September  0.27        5.41   n.s. 
   October       3.33        6.43   n.s. 
   November  10.79        8.91   .01 
  December  0.00        6.87   n.s. 

--------------------------------------------------------------------------------------- 
  All of 1996  8.69     41.89   n.s. 
 
 For the entire year, there was not a significant clustering between space and time.  
Approximately, 26.7% of the incidents were both close in distance (i.e., closer than the median 
distance between pairs of incidents) and close in time (i.e., closer than the median time interval 
between pairs of incidents).  However, when individual months are examined, three show 
significant relationships: July, August, and November.  During these months, there is an 
interaction between space and time.  Typically, this indicates that, during those months, incidents 
that cluster together spatially tend also to cluster together temporally.  However, it could be the 
opposite (i.e., events that cluster together temporally tend to be far apart spatially).   
 
 The next step would to identify whether there are particular clusters that occur within a 
short time period.  Using one of the >hot spot= analysis methods discussed in Chapters 7 and 8, an 
analyst could take the events for the three months and try to identify whether there is spatial 
clustering during those three months that does not normally occur. We did not do that here, but 
the point is that the Knox Index is useful to identify when there is spatial clustering. 
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 Problems with the Knox Index 
 
 The Knox Index is a simple measure of space-time clustering.  But there are potential 
problems with it.  First, because it is only a 2 x 2 table, different results can be obtained by 
varying the cut-off points for distance or time.  For example, using the mean as the cut-off, the 
overall Chi-square statistic for all vehicle thefts was 8.67, reasonably close.  However, when a 
cut-off point for distance of 1000 meters and a cut-off point for time of 80 days was used, the 
Chi-square statistic dropped to 3.16.  In other words, the Knox Index will produce different 
results for different cut-off points. 
 
 A second problem has to do with the interpretation.  As with any Chi-square test, 
differences between the observed and expected frequencies could occur in any cell or any 
combination of cells.  Finding a significant relationship does not automatically mean that events 
that were close in distance were also close in time; it could have been the opposite relationship.  
However, a simple inspection of the table can indicate whether the relationship is as expected or 
not.  In the above example, all the significant relationships showed a higher proportion of events 
that were both close in distance and close in time. 
 
Mantel Index 
 
 The Mantel Index resolves some of the problems of the Knox Index.  Essentially, it is a 
correlation between distance and time interval for pairs of incidents (Mantel, 1967).   More 
formally, it is a general test for the correlation between two dissimilarity matrices that 
summarizes comparisons between pairs of points (Mantel and Bailar, 1970).  It is based on a 
simple cross-product of two interval variables (e.g., distance and time interval): 
 
 ∑ ∑          (12.2) 
 
where Xij is an index of similarity between two observations, i and j, for one variable (e.g., 
distance) while Yij is an index of similarity between the same two observations, i and j, for 
another variable (e.g., time interval).  The comparison is between two observations and does not 
include a comparison of an observation with itself.  Hence, j is incremented up to N-1. 
 
 The cross-product is then normalized by dividing each deviation by its standard 
deviation: 
 

 ∑ ∑          (12.3) 
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 ∑ ∑           (12.4) 

 
where Xij and Yij are the original variables for comparing two observations, i and j, and Zx and 
Zy are the normalized variables.  
 

Monte Carlo Simulation of Confidence Intervals 
 
 Even though the Mantel Index is a Pearson product-moment correlation between distance 
and time interval, the observations are not independent and, in fact, are highly interdependent.  
That is, the correlation is between observations for the same distance and time variable rather 
than between the two variables by themselves.  Thus, the values of the Mantel r tend to be very 
low. 

 
Further, the usual significance test for a correlation coefficient is not appropriate.  

Instead, the Mantel routine offers a simulation of the confidence intervals around the index.  If 
the user selects a simulation, the routine randomly selects M pairs of a distance and a time 
interval where M is the number of pairs in the data set  and calculates the Mantel 
Index.  Each pair of a distance and a time interval are selected from the range between the 
minimum and maximum values for distance and time interval in the data set using a uniform 
random generator.  As with the Knox Index simulation discussed above, the simulation is a 
randomization where every location within the study area is possible for an event to occur, 
compared to a permutation simulation where the spatial locations are fixed.  For this version of 
CrimeStat, we only use a randomization simulation. 
 

The random simulation is repeated K times, where K is specified by the user. Usually, it 
is wise to run the simulation 1000 or more times.  The output includes: 
 

1. The sample size 
2. The number of pairs 
3. The calculated Mantel Index from the data 
4. The minimum Mantel value from the simulation 
5. The maximum Mantel value from the simulation 
6. Ten percentiles from the simulation: 

a. 0.5% 
b. 1% 
c. 2.5% 
d. 5% 
e. 10% 
f. 90% 
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g. 95% 
h. 97.5% 
i. 99% 
j. 99.5% 

 
Example of the Mantel Index 

 
 In CrimeStat, the Mantel Index routine calculates the correlation between distance and 
time interval.  To illustrate, Table 12.4 examines the Mantel correlation for the 1996 vehicle 
thefts in Baltimore County that was illustrated above.  As seen, the correlations are all low.  
However, as with the Knox Index, July, August and November produce relatively higher 
correlations.  As mentioned above, the correlations tend to be very low because the test is 
between observations for the same variables, rather than between variables.   
 

Table 12.4: 
Mantel Index for Baltimore County Vehicle Thefts 

Median Split 
(N = 1,855 and 1,719,585 Comparisons) 

 
  Simulation Simulation Approx. 
  Month         r  2.5%  97.5%   p-level 
  January -.0047  -0.033    0.033     n.s. 
  February -.0023   -0.037    0.042     n.s. 
  March   -.0245   -0.032  0.039     n.s. 
  April   0.0077 -0.040    0.041     n.s. 
  May   0.0018 -0.038    0.043     n.s. 
  June   0.0043 -0.035    0.041     n.s. 
  July   0.0348 -0.034    0.033     .025 
  August    0.0544 -0.034    0.035     .01 
  September  0.0013 -0.044    0.046     n.s.  
  October  0.0409 -0.037    0.043     n.s. 
  November  0.0630 -0.042    0.040     .001 
  December  0.0086 -0.035    0.038     n.s. 
  -------------------------------------------------------------------------------------- 
  All of 1996 0.0015   -0.009    0.010     n.s. 

 
To test whether these correlations are significant or not, 1000 random simulations were 

calculated for each month using the same sample size as the monthly vehicle theft totals. Table 
12.4 above shows the results. Because an extreme value could be obtained by chance with a 
random distribution, reasonable cut-off points are usually selected from the simulation.  In this 
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case, we want cut-off points that approximate a 5% significance level.  Since the Mantel Index is 
a two-tailed test (i.e., one could just as easily get dispersion between space and time as 
clustering), we adopt a lower threshold of the 2.5 percentile and an upper threshold of 97.5 
percentile.  Combined, the two cut-off points ensure that approximately 5% of the cases will be 
either lower than the lower threshold or higher than the upper threshold under random 
conditions.1  In other words, only if the observed Mantel Index is smaller than the lower 
threshold or larger than the upper threshold will the null hypothesis of a random distribution 
between space and time be rejected. 
 

In Table 12.4, for the entire year, the observed Mantel Index (correlation between space 
and time) was 0.0015.  The 2.5th percentile was -.009 and the 97.5th percentile was 0.01.  Since 
the observed value is between these two cut-off points, we cannot reject the null hypothesis of no 
relationship between space and time.  However, for the individual months, again, July, August 
and November have correlations above the upper cut-off threshold.  Thus, for those three months 
only, the amount of space-time clustering in the vehicle theft data is most likely greater than 
what would be expected on the basis of a chance distribution.  One would, then, have to explore 
the data further to find out where those vehicle thefts were occurring, using one of the hot spot 
routines in Chapters 7 or 8. 
 

Limitations of the Mantel Index 
 

The Mantel Index is a useful measure of the relationship between space and time. But it 
does have limitations.  First, because it is a Pearson-type correlation coefficient, it is prone to the 
same types of problems that befall correlations.  Extreme values of either space or time could 
distort the relationship, either positively, if there are one or two observations that are extreme in 
both distance in time interval, or negatively, if there are only one or two observations that are 
extreme in either distance or in time interval. 
 

Second, because the test is a comparison of all pairs of observations, the correlations tend 
to be very small, as noted above.  This makes it less intuitive as a measure than a traditional 
correlation coefficient that varies between -1 and +1 and in which high values are expected.  For 
most analysts, it is not very intuitive to have an index where 0.05 is a high value.  This does not 
fault the statistic as much make it a little non-intuitive for users.   
 

                         
1  It would be possible to make a one-tailed test with the simulation.  For example, if one is only interested in 

the degree of clustering, one could adopt the 95 percentile as the threshold.  An observed Mantel value that 
was lower than this threshold would be consistent with the null hypothesis. 
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Third, as with any correlation coefficient, the sample size needs to be fairly large to 
produce a stable estimate.  In the above, example, one could further break down monthly vehicle 
thefts by week or, even, day.  However, the number of cases will decrease considerably.  In the 
above example, with 1,855 vehicle thefts over a year, the weekly average would be around 36, 
which is a small sample.  Intuitively, a crime analyst wants to know when space-time clustering 
is occurring and a short time frame is critical for detection.  A week would be the largest time 
interval that would be useful.   

 
However, as the sample size gets small, the index becomes unstable. The sample size 

makes the index volatile.  While the Monte Carlo simulation will adjust for the sample size, the 
range of the cut-off thresholds will vary considerably from one week to another with small 
sample sizes.  The analyst will have to run the simulation a large number of times to adjust for 
the varying sample sizes.   Also, the shortened time frame allows fewer distinctions in time.  If 
one takes a very narrow time frame (e.g., a day), there will be virtually no time differences 
observed because there is not enough data to produce reliable estimates.   
 

One way to get around this is to have a moving average where the time frame is adjusted 
to fit a constant number of days (e.g., a 14 day moving average).  The advantage is that the 
sample size tends to remain constant; one could therefore reduce the number of recalculations of 
the cut-off thresholds since they would not vary much from one day to another.  To make this 
work, however, the data base must be set up to produce the appropriate number of incidents for a 
moving average analysis. 
 

Nevertheless, the Mantel Index remains a useful tool for analysts.  It is still widely used 
for space-time analysis and it has been generalized to many other types of dissimilarity analyses 
than just space and time.  If used carefully, the index can be a powerful tool for detection of 
clusters that are also concentrated in time. 
 
Spatial-Temporal Moving Average 
 

The Spatial-Temporal Moving Average is a simple statistic.  It is the moving mean center 
of M observations where M is a sub-set of the total sample, N.  By >moving=, the observations are 
sequenced in order of occurrence.  Hence, there is a time dimension associated with the 
sequence.  The M observations are called the span and the default span is 5 observations.  The 
span is centered on each observation so that there are an equal number on both sides.  Because 
there are no data points prior to the first event and after the last event, the first few mean centers 
will have fewer observations than the rest of the sequence.  For example, with a span of 5, the 
first and last mean centers will have only three observations, the second and next-to-last will 
have 4 observations, while all others will have 5.  In general, it is a good idea to choose an odd 
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number since the middle of the span will be centered on a real observation rather than having to 
fall between two in the case of an even span. 
 

Though simple, the Spatial-Temporal Moving Average is very useful for detecting 
changes in behavior by serial offenders.  In the next chapter, we will examine journey-to-crime 
models that attempts to estimate the likely origin location of a serial offender based on the 
distribution of incidents committed by the offender.   However, if the serial offender has either 
moved residences or else moved the field of operation, then the technique will error because it is 
assuming a stable field of operations when, in fact, it is not.  The moving average can suggest 
whether the offender=s behavior is stable or not. 
 

As an example, figure 12.2 below shows the Spatial-Temporal Moving Average of an 
offender who committed 12 offenses before being arrested.  The individual committed eight 
thefts from vehicles, two thefts from stores, one residential burglary and one highway robbery.  
The actual incidents are shown in red circles with the sequence number displayed.  The moving 
average is shown in blue squares with the sequence number displayed.  The path of the moving 
average is shown as a green line. 
 

As seen, there is a definite shift in the field of operation by this offender.  The mean 
center moved about a mile during this period but the consistency of the trend suggests that 
something fundamental changed by the offender, either the person moved residences or the 
nature of the committed crimes changed.  In using the Journey-to-crime tools, an analyst would 
probably want to focus on the latter events since these are more geographically circumscribed.  
Notice that the last two moving averages are relatively close to the actual residence location of 
the offender when arrested (less than three-quarters of a mile away). 
 

In short, the Spatial-Temporal Moving Average simply plots the changes in the mean 
center of the span and is useful for detecting changes in the behavior pattern of serial offenders. 

 
Correlated Walk Analysis 
 
 Correlated Walk Analysis (CWA) is a tool that is aimed at analyzing the spatial and 
temporal sequencing of incidents committed by a single serial offender.   In this sense, it is the 
>flip side= of Journey to crime analysis (see Chapter 13).  Whereas journey to crime analysis 
makes guesses about the likely origin location for a serial offender, based on the spatial 
distribution of the incidents committed by the offender, the CWA routine makes guesses about 
the time and location of a next event, based on both the spatial distribution of the incidents and 
the temporal sequencing of them.  In effect, it is a Spatial-Temporal Moving Average with a 
prediction of a next event.



Figure 12.2:
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The statistical origin of CWA is Random Walk Theory.  Random Walk Theory has been 
developed by physicists to explain the distribution of molecules in a rapidly changing 
environment (e.g., the movements of a particle in a gas which is diffusing - Brownian 
movement).   Sometimes called a >drunkard=s walk=, the theory starts with the premise that 
movement is random in all directions. From an arbitrary starting point, a particle (or person) 
moves in any direction in a series of steps. The direction of each step is independent of the 
previous steps.  After each step, a random decision is made and the person moves in a random 
direction.  This process is repeated ad infinitum until an arbitrary stopping point is selected (i.e., 
the observer quits looking).  It has been shown mathematically that all one and two dimensional 
random walks must eventually return to their original starting point (Spitzer, 1963; Henderson, 
Renshaw, & Ford, 1983; see endnote i).  This is called a recurrent random walk.  On the other 
hand, independent random walks in more than two dimensions are not necessarily recurrent, a 
state called transient random walk.   
 

Figure 12.3 illustrates a random walk of 2000 steps.  For a large number of steps in a 
two-dimensional walk, the likely distance of a person (or particle) from the starting point is: 

 
 √            (12.4) 
 
where dRMS is the root mean square of distance. 

 
There are a number of different types of random walks.  The simplest is a movement of 

uniform distance only along a grid cell (i.e., a Manhattan geometry).  The person can only move 
North, South, East or West for a unit distance of 1.  A more complex random walk allows 
angular distances and an even more complex random walk allows varying distances (e.g., 
normally distributed random distances, uniformly random distances).  The walk in Figure 12.3 
was of this latter type.  X and Y values were selected randomly from a range of -1 to +1 using a 
uniform random number generator. For a conceptual understanding of Random Walk Theory, see 
Chaitin (1990) and, for a mathematical treatment, see Spitzer (1976).  Malkiel (1999) applied the 
concepts of Random Walk Theory to stock price fluctuations in a book that has now become a 
classic. 
 

Henderson, Renshaw and Ford (1984) have introduced the concept of a correlated 
random walk.  In a correlated random walk, momentum is maintained.  If a person is moving in a 
certain direction, they are more likely to continue in that direction than to reverse direction or 
travel orthogonally.  In other words, at any one decision point, the probabilities of traveling in 
any direction are not equal; the same direction has a higher probability than an orthogonal 
change (i.e., turning 90 degrees) and those, in turn, have a higher probability than completely 
reversing direction.   

 



Figure 12.3:g
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By implication, the same is true for distance and distance.  A longer step than average is 
likely to be followed by another longer step than average while a shorter step than average is 
likely to be followed by another short step.  Similarly, there is consistency in the time interval 
between events; a short interval is also likely to be followed by a short interval.  In other words, 
a correlated random walk is a random walk with momentum (Chen & Renshaw, 1992; 1994).  
These authors have applied the theory to the analysis of the branching of tree roots (Henderson, 
Ford, Renshaw, & Deans, 1983; Renshaw, 1985). 
 

Correlated Walk Analysis Routine 
 

Correlated Walk Analysis is a set of tools that can help an analyst understand the 
sequencing of sequential events in terms of time interval, distance and direction.  In CrimeStat, 
there are three CWA routines.  The first two help the analyst understand whether there are 
repeating patterns in time, distance or direction while the last routine allows the analyst to make 
a guess about the next likely event, when it will occur and where it will occur.  The three 
routines are: 
 

1. CWA - Correlogram 
2. CWA - Diagnostics 
3. CWA - Prediction 

 
CWA - Correlogram 

 
The CWA - Correlogram routine calculates the correlation in time interval, distance, and 

bearing (direction) between events.  It does this through lags.  A lag is a separation in the 
intervals between events.  The difference between the first and second event is the first interval.  
The difference between the second and third events is the second interval.  The difference 
between the third and fourth events is the third interval, and so forth.   For each successive 
interval, there is a time difference; there is a distance and there is a direction.  One could extend 
this to all the intervals, comparing each interval with the next one; that is, we compare the first 
interval with the second, the second interval with the third, the third interval with the fourth, and 
so on until the sample is complete. When comparing successive intervals, this is called a lag of 1.  
It is important to keep in mind the distinction between an event (e.g., an incident) and an 
interval.  It takes two events to create an interval.  Thus, for a lag of 1, there are M=N-1 intervals 
where M is the number of intervals and N is the number of events (e.g., for 3 incidents, there are 
2 intervals). 
 

A lag of two compares every other event.  Thus, the first interval is compared to the third 
interval; the second interval is compared to the fourth; the third interval is compared to the fifth; 
and so on until there are no more intervals left in the sample.  Again, the comparison is for time 
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difference, distance, and direction separately. We can extend this logic to a lag of 3 (every third 
event), a lag of 4 (every fourth event), and so forth.    
 

The CWA - Correlogram routine calculates the Pearson Product-Moment correlation 
coefficient between successive events.  For a lag of 1, it compares successive events and 
correlates the time interval, distance, and bearing separately for these successive events.  For a 
lag of 2, it compares every other event and correlates the time interval, distance, and bearing 
separately for these successive events.  The routine does this until it reaches a maximum of 7 
lags (i.e., every seventh event).  However, if the sample size is very small, it may not be able to 
calculate all lags.  It will require 12 incidents (events) to calculate all seven lags since it requires 
at least four observations per lag (i.e., N - L - 4 where N is the number of events and L is the 
maximum number of lags calculated). 
 

Adjusted Correlogram 
 

The Correlogram calculates the raw Pearson correlation coefficient between intervals by 
lag for time, distance, and bearing.  One of the problems that may appear, especially with small 
samples, is that the correlation with higher-order lags are very high, either positive or negative. 
There are probably two reasons for this.  For one thing, with each lag, the sample size decreases 
by one; with a very small sample size, correlations can become very volatile, jumping from 
positive to negative, and from low to high.  Another reason is that periodicity in the data set is 
compounded with higher-order lags in the form of >echos=.  For example, if a lag of 2 is high, 
then a lag of 4 will also be somewhat high since there is a compounding of the lag 2 effect.  
When combined with a small sample size, it is not uncommon to have higher-order lags with 
very high correlations, sometimes approaching +/- 1.0.  The user must be careful in selecting a 
higher-order lag because there is an apparent effect that may be due to the above reasons, rather 
than any real predictability.  One of the key signs for spurious higher-order effect is a sudden 
jump in the strength of the correlation from one lag to the next (though sometimes a high higher-
order lag can be real; see examples below). 
 

To minimize these effects, the output also includes an adjusted correlogram that adjusts 
for the loss of degrees of freedom.  The formula is: 

 
             (12.5) 
 
where M is the number of intervals (N-1) and L is the number of lags.  For example, for a sample 
size of 13, there will be 12 intervals (M).  For a lag of 1, the adjustment will be: 
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 0.909          (12.6) 
 

The effect of the adjustment is to reduce the correlation for higher-order lags.  It will not 
completely eliminate the effect, but it should help minimize spurious effects.  As will be shown 
below, however, sometimes high correlations for higher-order lags are real. 
 

CWA - Correlogram Output 
 

The CWA - Correlogram routine outputs 10 parameters: 
 

1. The sample size (number of events); 
2. Number of intervals; 
3. Information on the units of time, distance, and bearing; 
4. Final distance to origin in meters (distance between last and first event); 
5. Expected random walk distance from origin (if sequence was strictly random); 
6. Drift (the ratio of actual distance from origin to expected random walk distance); 
7. Final bearing from origin (direction between last event and first event); 
8. Expected random walk bearing.  Defined as 0 because there is no expected 

direction. 
9. Correlations by lag for time, distance, and bearing (up to 7 lags); and 
10. Adjusted correlations by lag for time, distance, and bearing (up to 7 lags). 

 
The aim of the CWA - Correlogram is to examine repetitive sequences, whether for time 

interval, distance or direction.  It is possible to have separate repetitions for time, distance and 
direction.   For example, an offender may commit crimes every 7 days or so, say, on the 
weekend.  In this case, the individual is repeating himself/herself about once every week.  
Similarly, an individual may alternate directions, first going East then going West, then going 
back to the East, and so forth.  In other words, what we=re asking with the routine is whether 
there are any repetitions in the sequence of incidents committed by a serial offender.  Does 
he/she repeat the crimes in time?  If so, what is the periodicity (the repititious sequence?  Does 
he/she repeat the crimes in distance?  Is so, what is the periodicity?  Finally, does he/she repeat 
the crimes in direction?  If so, what is the periodicity?  The CWA - Correlogram, therefore, 
analyzes the sequence of incidents committed by an individual and does this separately for time 
interval, distance, and direction.  
 

Offender repetition 
 

Why is this important?  Most crime analysis is predicted on the assumption that offenders 
(people in general) repeat themselves, consciously or unconsciously.  That is, individuals have 



12.21 

specific behavior patterns that tend to be repeated.  If an individual acts in a certain way (e.g., 
committing a burglary), then, most likely, the person will repeat himself/herself again.  There is 
no guarantee, of course.  But, because human beings do not behave spatially or temporally 
random but tend to operate in somewhat consistent ways, there is a likelihood that the individual 
will act in a similar manner again.   
 

This assumption is the basis of profiling which aims at understanding the MO of an 
offender.  If offenders were totally random in their behavior, detection and apprehension would 
be made much more difficult than it already is.  So, between the two extremes of a totally 
random individual (the >random walk person=) and a totally predictable individual (the 
>algorithmic person=), we have the bulk of human behavior, at least in terms of time, distance and 
direction. 
 

CWA - Diagnostics 
 

The Diagnostics routine is similar to the CWA - Correlogram except that it calculates an 
Ordinary Least Squares autoregression for a particular lag.  That is, for a variable the routine 
regresses each interval against a previous interval.  The user enters the lag number (the default is 
1) and the routine produces three regression models for the successive event as the dependent 
variable against the prior event as the independent variable.  There are three equations, for time 
interval, distance, and bearing separately.  The output includes: 
 

1. The sample size (number of events); 
2. The number of intervals; 
3. Information on the units of time, distance, and bearing; 
4. The multiple correlation coefficient; 
5. The squared multiple correlation coefficient (i.e., R2); 
6. The overall standard error of estimate; 
7. The regression coefficient for the constant and for the prior event; 
8. The standard error of the regression coefficients; 
9. The t-values for the regression coefficients; 
10. The p-value (two-tail) for the regression coefficients; 
11. An analysis of variance test for the full model.  This includes sum of squares for 

the regression term and for the residual; 
12. The ratio of the regression sum of squares to the residual sum of squares (the F-

ratio); and 
13. The p-value associated with the F-value. 

 
What the regression diagnostics provides is an indicator of the amount of predictability in 

the lag.  It has the same information as the Correlogram (since the square of the correlation, r2, is 
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the same as R2 for a single independent variable regression equation), but it is easier to interpret.  
Essentially, it is argued below that, unless the R2 in the regression equation is sufficiently high, 
that one is better off using the mean or median lag for prediction.  Conversely, if the R2 is very 
high, then the user should be suspicious about the data. 
 

CWA - Prediction 
 

Finally, after having analyzed the sequential pattern of events, the user can make a 
prediction about the time and place of the next event.  There are three methods for making a 
prediction, each with a separate lag: 
 

1. Mean difference 
2. Median difference 
3. Regression equation 

 
The method is applied to the last event in the data set.  The mean difference applies the 

mean interval of the data for the specified lag to the last event.  For example, for time interval 
and a lag of 1, the routine calculates the time interval between each event and takes the average.  
It then applies the mean time interval to the last time in the data set as the prediction.  The 
median difference applies the median interval of the data for the specified lag to the last event.  
For example, for bearing and a lag of 1, the routine calculates the direction (bearing) between 
each event, calculates the median bearing, and applies that median to the location of the last 
event in the data set as the predicted value.  
 

The regression equation calculates a regression coefficient and constant for the specified 
lag and uses the data value for the last interval as input into the regression equation; the result is 
the predicted value.   For example, for distance and a lag of 1, the routine calculates the 
regression coefficient and constant for a regression equation in which each event is compared to 
the previous event.  The last distance in the data set (i.e., between the last event and the previous 
event) is used as an input for the regression equation and the predicted distance is marked off 
from the coordinates of the last event. 
 

In other words, the routine takes the time and location of the last event and adds a time 
interval, a direction, and a distance as a predicted next event (next time, next location).  The 
method by which this prediction is made can be the mean interval, the median interval, or the 
regression equation.  If the user species a lag other than 1, that lag is applied to the last event.  
For example, for time with a mean difference and a lag of 2, the routine calculates the time 
interval between each event and every other event, calculates the average, and applies that 
average to the last event in the data set.   
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CWA - Prediction Graphical Output 
 

The CWA - Prediction routine outputs five graphical objects in >shp=, >mif, ‘kml’ (if the 
coordinates are spherical) or various Ascii formats.  The routine adds five prefixes to the file 
name of the output object: 
 

1. Events - a line indicating the sequence of events.  If the user also brings in the 
points in the data set, it will be possible to number each of these steps; 

2. PredDest - the predicted location for the next event; 
3. PW - a line from the last location in the data set to the predicted location; 
4. POrigL - a point representing the center of minimum distance of the data set.  The 

center of minimum distance is taken as a proxy for the origin location of the 
offender; and 

5. Path - a line from the expected origin to the predicted destination  
 

For example, if the user provides the file name >NightRobberies= and specifies a >shp= 
output, there will be five objects output: 
 
 EventsNightRobberies.shp 
 PredDestNightRobberies.shp 
 PathNightRobberies.shp 
 POrigLNightRobberies.shp 
 PWNightRobberies.shp 
 
 Example 1: A Completely Predictable Individual 
 
 The simplest way to illustrate the logic of the CWA is to start with a completely 
predictable individual.  This individual commits crimes on a completely systematic basis.  Table 
12.5 illustrates the behavior of this individual. 
 
 Starting at an arbitrary origin with an X coordinate of 1 and a Y coordinate of 1 on day 1, 
the individual commits 13 incidents in total.  In the table, these are numbered events 1 through 
13. From the origin, the individual always travels in a Northeast direction of 45 degrees 
(clockwise from due North - 0 degrees).  The individual=s second incident is at coordinate X=2, 
Y=2.  Thus, the individual traveled at 45 degrees from the previous incident and for a distance of 
1.4142 (the hypotenuse of the right angle created by traveling one unit in the X direction and one 
unit in the Y direction).  For the third incident, the individual commits this at X=4, Y=4.  Thus, 
the direction is also at 45 degrees from the previous location but the distance is now 2.8284 (or 
the square root of 8 which comes from a step of 2 along the X axis and a step of 2 along the Y 
axis).  For the fourth incident, the individual commits the crime at X=7, Y=7.  Again, the 
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direction is 45 degrees, but the distance is 4.2426 (or the square root of 18 which comes from a 
step of 3 along the X axis and a step of 3 along the Y axis).  
 

Table 12.5: 

Example of a Predictable Serial Offender: 1 
(N = 13 incidents) 

   Event       X   Y Distance Days   Time Interval 
   1       1   1     -  - 
   2       2   2 1.4142  3  2 
   3       4   4 2.8284  7  4 
   4       7   7 4.2426  9  2  
   5       8   8 1.4142  13  4 
   6     10 10 2.8284  15  2 
   7     13 13 4.2426  19  4 
   8     14 14 1.4142  21  2 
   9     16 16 2.8284  25  4 
   10     19 19 4.2426  27  2 
   11     20 20 1.4142  31  4 
   12     22 22 2.8284  33  2 
   13     25 25 4.2426  37  4 
 ---------------------------------------------------------------------------------------------  
 Logical       
 prediction        
 for  
 next event 14    26 26 1.4142 39 2 
 ---------------------------------------------------------------------------------------------  
 
 For the fifth incident, again the individual traveled at 45 degrees to the previous incident, 
but repeated himself/herself with a step of only 1 unit in both the X and Y directions.  The 
individual then continued the sequence, always traveling in a 45 degree orientation due North.  
For distance, a step of 1 in both the X and Y directions is followed by a step of 2 in both 
directions, and is followed by a step of 3 in both directions.  In other words, the individual 
repeats direction every time and repeats distance every third time.  There is a periodicity of 1 for 
direction and 3 for distance. 
 

For time interval, this individual repeats him/herself every other time.  The second event 
occurs 2 days after the first event.  The third event occurs 4 days after the second event; the 
fourth event occurs 2 days after the third event; the fifth events occurs 4 days after the fourth 
event; and so forth.  In other words, for time interval, the individual repeats him/herself every 
other interval (i.e., the periodicity is 2).   
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Figure 12.4 illustrates the sequence; the number at each event location is the number of 
the day that the individual committed the offense (starting at an arbitrary day 1). 
 

Since this fictitious individual is completely predictable, we can easily guess when and 
where the next event will occur (see Table 12.5 above).  The direction will, of course, be at 45 
degrees from the previous location.  Looking at the last known event (event 13), the distance 
traveled was 4.2426.  Thus, we predict that the individual will revert to a move of 1 in the X 
direction and 1 in the Y direction, or coordinates X=26, Y=26.  Finally, for time interval, since 
the last known time interval was 4 days, then this individual will commit the next event 2 days 
later, or day number 39.  
 

Example 1: Analysis 
 

The first step is to analyze the sequencing of the events.  There are 13 events and 12 
intervals.  The CWA - Correlogram produces the output shown in Table 12.6 below. 
 

Table 12.6: 
Correlogram of Predictable Serial Offender: 1 

(N=13 Incidents and M=12 Intervals) 
 

Correlated Walk Analysis -- Correlogram:
-------------------------------------------------------------- 
    Sample size ......…....:  13 
    Measurement type ...:  Direct 
    Input units .……........:  Feet 
    Time units ....…….....:  Days 
    Distance units ...…...:  Feet 
    Bearing units ....…....:  Degrees 

Correlation Adjusted Correlation 

Lag Time Distance Bearing Lag Time Distance Bearing 
------- ---------- ------------ ---------- -------- ----------- ---------- ----------- 

0 1.00000 1.00000 1.00000 0 1.00000 1.00000 1.00000 
1 -1.00000 -0.42105 1.00000 1 -0.90909 -0.38278 0.90909 
2 1.00000 -0.56522 1.00000 2 0.81818 -0.46245 0.81818 
3 -1.00000 1.00000 1.00000 3 -0.72727 0.72727 0.72727 
4 1.00000 -0.38462 1.00000 4 0.63636 -0.24476 0.63636 
5 -1.00000 -0.58824 1.00000 5 -0.54545 -0.32086 0.54545 
6 1.00000 1.00000 1.00000 6 0.45455 0.45455 0.45455 
7 -1.00000 -0.28571 1.00000 7 -0.36364 -0.10390 0.36364 



Figure 12.4:g
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 Looking at the unadjusted correlations, it can be seen that time shows an alternating 
pattern of perfect correlations.  The first repeating positive 1.0 correlation is for lag 2, which is 
the exact periodicity that was specified in the example.  This offender repeats the time sequence 
every other time.  Thus, if the individual alternates between committing offenses 2 and 4 days 
after the last, then knowing the time interval for the last offense, it can be assumed that the next 
event will repeat the next-to-the-last time interval. 

 
For distance, the highest correlation is for a lag of 3.  This offender repeated 

himself/herself every third time, which is exactly what was programmed into the example.  
Knowing the location of the last event, it can be assumed that the individual will choose the same 
distance for the next interval as three earlier.  Finally, all lags show a perfect 1.0 correlation for 
bearing.  The lowest one is taken, which is a lag of 1.  That is, this individual repeats the 
direction every single time (i.e., he/she always travels in the same direction).  In summary, the 
CWA - Correlogram shows that the individual repeats the time interval every other time, the 
distance every third time, and the direction every time. 
 

The CWA - Diagnostics routine merely confirms these correlations.  The regression 
equations yield an R2 of 1.0 (unadjusted) for each of three variables, for the appropriate lag.  For 
example, Table 12.7 below shows the regression results for distance for a lag of 3 

 
Table 12.7: 

Regression Results for Serial Offender 1: Distance 
 ------------------------------------------------------------------------------------------------------ 
 Variable:  distance  Standard error of estimate: 0.00000 
 Multiple R:  1.00000  Squared multiple R:  1.00000 
 
   Coefficient  Std Error  t  p(2 Tail) 
 Constant 0.000000  0.00000  0.00000 0.00000 
 Coefficient 1.000000  0.00000  0.00000 0.00000 
 
 Analysis of Variance 
 Source     Sum-of-Squares df Mean-Square   F-ratio   P 
 Regression 12.00000  1 12.00000   0.00000   0.00000 
 Residual 0.00000  8   0.00000 
 Total  12.00000  9 
 ------------------------------------------------------------------------------------------------------ 
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Correlogram of a Predictable Offender: 1
Figure 12.5:
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 The adjusted CWA - Correlogram shows a similar pattern, though the absolute 
correlations have been reduced.  The best decision would still be for a lag of 2 for time, a lag of 3 
for distance, and a lag of 1 for bearing.  Figure 12.5 shows a graph of the correlogram.  
CrimeStat has a built-in graph function for the CWA - Correlogram and CWA-Adjusted 
correlogram. 

 
  Example 1: Prediction 
 

Finally, for prediction, it is apparent that the best method would be to use a regression 
equation with lags of 2 for time, 3 for distance, and 1 for bearing.  Table 12.8 shows the output. 
As can be seen, the routine predicts exactly the next time and location.  The next event for this 
completely predictable serial offender will be on day 39 at the location with coordinates X=26, 
Y=26.  
 

Table 12.8: 

Predicted Results for Serial Offender 1 
(Regression Equation with Lags of 2 for Time, 3 for Distance, 1 for Bearing) 

 
     Predicted From 
 Variable   Value  Event  Method Lag 
 Time interval    2.00000   13  Regression   2 
 Distance interval   1.41421   13  Regression   3 
 Bearing interval  44.99997   13  Regression   1 
 
 Predicted time   39.00000 
 Predicted X coordinate 26.00000 
 Predicted Y coordinate 26.00000 
 ----------------------------------------------------------------------------------------------- 
 

The regression equation is the best model in this case.  The other methods produce 
reasonably close approximations, however.  Table 12.9 shows the results of using other methods 
for prediction.  As seen, a model where all three components (time, distance, bearing) were 
lagged by 1 as well as a model where all three components were lagged by 3 also produces the 
expected correct answer.  The mean interval and median interval methods also produce 
reasonably close, though not exact, answers.  In this particular case, the regression method with 
the best lags produced the optimal solution. 
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Table 12.9: 

Comparison of Methods for Predictable Serial Offender 1 
 

EVENT X Y DISTANCE DAYS 
TIME 
INTERVAL

Logical 
Prediction 
for next event 14 26 26 1.4142 39 2

PREDICTION: 

Mean (lag=1) 14 27.0 27.0 2.8 40.0 3.0
Median (lag=1) 14 27.0 27.0 2.8 41.0 4.0

Regression: 

Lag=1 14 26.6 26.6 2.3 39.0 2.0
Lag=2 14 27.0 27.0 2.9 39.0 2.0
Lag=3 14 26.0 26.0 1.4 39.0 2.0
Optimal 
(t=2,d=3,b=1) 14 26.0 26.0 1.4 39.0 2.0

 
 

Example 2: Another Completely Predictable Individual 
 

A second example is also a perfectly predictable individual. This time, the directional 
component changes from event to event.  The directional trend is northward, but with changes in 
angle every third event.  The time pattern is completely consistent with subsequent events 
occurring every two days.  Table 12.10 presents the pattern and the logical next event while figure 
12.6 displays the pattern. 

 
The CWA - Correlogram reveals that both distance and bearing repeat themselves every 

third event while the time interval is repeated every time.  The regression diagnostics show that 
there is perfect predictability for time and for distance, and high predictability for bearing (not 
shown).  Finally, a regression model is used for prediction with lags of 1 for time, 3 for distance, 
and 3 for bearing.  The model correctly predicts the expected time (days=25) and location (X=3, 
Y=25).  Table 12.11 shows the results. 
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Table 12.10: 

Example of a Predictable Serial Offender: 2 
(N = 14 incidents) 

   Time 
   Event       X   Y Distance Days Interval 
     1       3   1      -    1     - 
     2       1   3 2.8284     3    2 
     3       1   5 2.0000    5    2 
     4       3   7 2.8284    7    2  
     5       1   9 2.8284    9    2 
     6       1 11 2.0000  11    2 
     7       3 13 2.8284  13    2 
     8       1 15 2.8284  15    2 
     9       1 17 2.0000  17    2 
   10       3 19 2.8284  19    2 
   11       1 21 2.8284  21    2 
   12       1 23 2.0000  23    2 
 ----------------------------------------------------------------------------------- 
 Logical       
 prediction        
 for  
 next event  13       3 25 2.8284  25    2 
 ----------------------------------------------------------------------------------- 
 

Methodology for CWA 
 

These two examples illustrate what the CWA routine is doing.  There are three steps.  
First, the sequential pattern is analyzed with the CWA - Correlogram.  This analysis shows which 
lags have the strongest correlations between lags for time, distance, and bearing separately.  
Second, the pattern is tested with a regression model.  The purpose is to determine how strong a 
relationship can be obtained for any particular model.  As will be suggested below, if a model is 
too weak or, conversely, too strong, it most likely will not predict very well.  Third, a prediction 
model is selected.  The user can utilize the regression model or use the mean interval or median 
interval.  Fourth, and finally, the prediction is made. 
 
 Example 3: A Real Serial Offender 
 
 How well does the CWA routine work with real serial offenders?  People are not as 
predictable as these examples.  The examples are algorithmic and people don=t work like  
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Table 12.11: 
Comparison of Methods for Predictable Serial Offender 2 

 
TIME 

EVENT X Y DISTANCE DAYS INTERVAL DIRECTION 

Logical 
Prediction 
for next event 13 3 25 2.8284 25 2 45 

PREDICTION: 
Mean (lag=1) 13 2.2 25.2 2.5 25.0 2.0 28.6 
Median (lag=1) 13 3.0 25.0 2.8 25.0 2.0 45.0 

Regression: 
Lag=1 13 3.0 25.0 2.8 25.0 2.0 45.0 
Lag=2 13 1.9 25.2 2.4 25.2 2.0 22.5 
Lag=3 13 3.0 25.0 2.8 25.0 2.0 45.0 
Optimal 
(t=1,d=3,b=3) 13 3.0 25.0 2.8 25.0 2.0 45.0 

 
 
algorithms.  But, to the extent to which there is some predictability in human behavior, the CWA 
routine can be a useful tool for crime analysis, detection, and apprehension. 
 
 To illustrate this, a serial offender was identified from a large data set obtained from 
Baltimore County.  The individual committed 16 offenses between 1992 and 1997 when he was 
eventually apprehended. The profile of crimes committed by this individual were quite diverse.  
There were 11 larceny incidents (shoplifting and bicycle theft), 1 residential burglary, 1 
commercial burglary, 2 assaults, and 1 robbery.   
 

To test the model, the first 15 incidents were used to predict the 16th.  This allowed the 
error between the observed and predicted values for time and location to be used for evaluation.  
Figure 12.7 shows the sequencing of actions of the first 15 incidents committed by this individual, 
most of which occurred in the eastern part of Baltimore County.   
 
 The CWA - Correlogram revealed a complicated pattern (Figure 12.8).  The adjusted 
matrix was used because of the high correlations at higher-order lags.  Nevertheless, the optimal 
lags appeared to be 1 for time, 3 for distance, and 6 for bearing.   A regression model was used to 
test these parameters.  Figure 12.7 also shows the predicted location for the next likely location 
(the red plus sign) and the location where the individual actually committed the 16th event (green 
triangle).  The error in prediction was good.  The distance between the actual and predicted  
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locations was 1.8 miles and the error in predicting the time of the next location was 3.9 days.  
Overall, the model did quite well for this individual.   
 
 Event Sequence as an Analogy to a Correlated Walk 

 
 Nevertheless, there are problems in the model for this case.  First, this is not a true 
sequence of actions, but a pseudo-sequence.  The individual doesn=t go from the first event to the 
second event to the third event, and so forth. A considerable time may elapse between events. 
Similarly, distance and direction are conceptual only, not real.  For example, in figure 12.7, the 
individual did not actually travel across the inlets of the Chesapeake Bay as the lines indicate.  
Distance between the events was actually much greater than estimated by the model and direction 
was more complex.  Nevertheless, to the extent to which an individual makes a spatial decision 
about where to go, implicitly he or she is making a directional and distance decision.  In other 
words, the decision making process may take into account prior locations.  In this case, the CWA 
routines would be useful. 
 
 Example 4: A Second Real Serial Offender 
 
 A second real example confirms that the method can produce reasonably close predictions.  
An offender committed 13 crimes, including three incidents of shoplifting, eight incidents of theft 
from a vehicle, one residential burglary, and one highway robbery.  The correlogram showed that 
a lag of 1 was strongest for time, distance, and bearing (figure 12.9).  The R-squares were 
moderate (0.45 for time; 0.18 for distance; 0.18 for bearing).  Using the regression method with a 
lag of 1 for each component, the likely location of the next event was predicted (Figure 12.10).  
The error between the predicted event and the actual event was, again, reasonable with a 
difference in time of 3.3 days and a difference in distance of 2.4 miles. 
 
 Accuracy of Predictions 
 

However, it is important not to be overly optimistic about the technique.  It is always 
possible to find cases that fit a method very well.  The above mentioned cases appear to do that.  
Unfortunately, the method is not a magic elixir for predicting serial offenders.  Like any method, 
it has error.  It is also a fairly new tool in crime analysis so that we do not have a lot of experience 
with it.  One example of its use was by Helms (2005), who was also is cautious about its utility.2  

                         
2  Personal communication from Dan Helms, National Law Enforcement Corrections and Technology Center, 

Denver, CO. 
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To explore the accuracy of the method, 50 serial offenders were identified from a large 
data base of more than 41,000 incidents in Baltimore County between 1993 and 1997 (see 
Chapter 10 for details).  The 50 offenders were identified based on knowing the dates on which 
they committed crimes, or at least on which they committed crimes for which they were charged 
and eventually tried.  The number of incidents varied from a low of 7 incidents to a high of 38 
incidents.  An attempt was made to produce balance in the number of incidents, though the actual 
distribution of cases did reflect the availability of candidates in the data base.  For the fifty 
individuals, the distribution of incidents was 7 (five individuals), 8 (four individuals), 9 (six 
individuals), 10 (two individuals), 11 (five individuals), 12 (five individuals), 13 (six individuals), 
14 (three individuals), 15 (six individuals), 17 (two individuals), and one individual each for 20, 
21, 24, 29 and 38 incidents. 
 

To test the CWA model, the last event committed by these individuals was removed so 
that N-1 events could be used to predict event N.  In this way, it is possible to evaluate the 
accuracy of the method.  
 

Ten methods were compared: 
 

1. The optimal regression method for time with the lag having the strongest 
relationship being selected; 

2. The optimal regression method for location (distance and bearing) where the with 
the lags for distance and bearing having the strongest relationship being selected; 

3. A regression model for time with a lag of 1; 
4. A regression model for location with a lag of 1 (for both distance and bearing); 
5. The mean interval for time; 
6. The mean interval for location (distance and bearing); 
7. The median interval for time; 
8. The median interval for location (distance and bearing); 
9. The mean center of the incidents (for location only); and 
10. The center of minimum distance of the incidents (for location only). 

 
The latter two methods were used for reference.  For journey to crime estimation, the 

center of minimum distance is the best at predicting the origin location of serial offenders (see 
Chapter 13).  The reason is because this statistic minimizes the distance to all incident locations.  
The mean center was close behind, though not quite as good.  As an estimate, the center of 
minimum distance is a very good index when there is a single origin that is being predicted.  On 
the other hand, where the purpose is to predict the location of a next event, the center of minimum 
distance and mean center may be less than useful since they will not generally predict the actual 
next location.  They minimize error, but are rarely accurate.  For example, in the above mentioned 
cases (two theoretical and two real), these statistics did not predict accurately the location of the 
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next event.  Instead, they identified a point in the middle of the distribution where the sum of the 
distances to all incident locations was small. 
 

 Error analysis 
 

Each of the models was compared to the actual time and location of the last, removed 
incident.  For time, the error measure was in days (the absolute difference between the actual day 
and the predicted day).  For location, the error measure was in miles (i.e., absolute distance 
between the actual and predicted location).  The results were mixed.  Overall, error was moderate.  
Table 12.12 summarizes the overall error. 
 

Overall, the center of minimum distance and the mean center do produce, as expected, 
smaller errors for distance than any of the CWA methods; as noted above, locations in the middle 
of the distribution of incidents will minimize error, but they will not predict accurately the 
location of a next event nor indicate in which direction it will occur from the last event.  On the 
other hand, the CWA methods are not particularly accurate, either.  They work very well for a 
completely predictable offender, as was seen in the examples above, but not necessarily for real 
offenders. 
 

Among the CWA methods, the mean interval, median interval and the lag 1 regression 
appears to give better results for time than the optimal regression.  Overall, the median interval 
produces the lowest median error, which is about a month and half.    In terms of location, the 
mean interval and median intervals produce slightly better results than the optimal regression, 
though the lag 1 regression was just as good. 
 

Comparison of CWA Methods 
 

At this point, it is unclear as when it is best to use this technique.  Three variables seem to 
explain part of the error variation.   

 
First, a larger sample size leads to better prediction, as would be expected (Table 12.13). 

For time, there is definitely an improvement in predictability with larger sample sizes.  Among 
these methods, the mean interval and lag 1 regression show the smallest error for the largest 
samples (14 cases).  For distance, on the other hand, generally, the error increases with increasing 
sample size.  The one exception is for the optimal regression method where medium-sized 
samples (10-13 cases) produce the lowest error.  
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Table 12.12: 

Average and Median Error for CWA Methods 
(50 Serial Offenders) 

 
       Average Median 
  Method    Error  Error 
 
   Time (days) 
  Optimal regression: time  112.2    79.8 
  Lag 1 regression: time     88.1    70.0 
  Mean interval: time     89.7    64.9 
  Median interval: time     91.2    45.5 
  
   Distance (miles) 
  Optimal regression: location      6.4      5.4 
  Lag 1 regression: location      5.7      4.2 
  Mean interval: location      5.8      4.7 
  Median interval: location      5.3      3.9 
  
   Reference Location (miles) 
  Mean center        3.3      1.7 
  Center of minimum distance      3.1      1.2 

 
Factors Affecting Predictability 

 
Long time span 

 
 There are a variety of reasons for these results, but one reason may be the time span of the 
events.  Some of these offenders committed crimes over a long period, up to five years.  Sample 
size is intrinsically related to the time span (r=0.55).  The longer the time span that an offender 
commits crimes, the more incidents he/she will perpetrate.  With increasing time, the individual=s 
behavior patterns may change (e.g., he/she may move residences). 
 
 For those offenders with many incidents, a separate analysis was conducted of the events 
occurring within the last year.  Many of these individuals appeared to have moved their base of 
operation over time, so the isolation of the most recent events was done in order to produce a 
clearer behavior pattern.  The results, while promising, were not dramatic.  Accuracy was 
improved a little compared to using the full sequence, particularly spatial accuracy.  However, 
even with the last few events, these frequently occurred over a long time period (up to two years).  
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 Consequently, the idea of isolating a >clean= set of events did not materialize, at least with 
these data.  On the other hand, with a data set of only recent events, it may be possible to improve 
predictability. 

 
Table 12.13: 

Sample Size and Prediction Error 
(Average Error) 

 
Time (days) 

 
  Sample Optimal Lag 1  Mean  Median 
  Size  Regression Regression Interval Interval 
  6-9  143.4  108.5  116.4  120.8 
  10-13  108.2    86.8    83.4    79.5 
  11+  79.8    65.1    65.7    71.2 
 

Distance (miles) 
 
  Sample Optimal Lag 1  Mean  Median  
  Size  Regression Regression Interval Interval 
  6-9      7.4     5.2     5.0     4.4 
  10-13      5.5     6.0     5.7     5.5 
  11+      6.1     5.9     6.8     6.1 
 

Centrographic: Distance (miles) 
 
      Center of 
  Sample Mean   Minimum 
  Size  Center  Distance 
  6-9     2.9        2.4 
  10-13     2.9        3.1 
  11+     4.3        4.1 
 
 

Strength of predictability 
 

A second variable that appears to have an effect is the strength of predictability, based on 
the first N-1 cases.  For the diagnostics routine, as the overall R-square for the regression equation 
increases, the regression equation does better.  However, with very high R-square coefficients, the 
error is worse.  Table 12.14 shows the relationship. 
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The lowest error is obtained with moderate R-square coefficients, for both time and 
distance.  This is why one has to be careful with very high lagged correlations in the correlogram 
and high R-squares in the diagnostics.  Unless one is dealing with a perfectly predictable 
individual (as the two theoretical examples illustrated), high correlations may be a result of a very 
small sample size, rather than any inherent predictability. 
 

Table 12.14: 
Regression Diagnostics and Prediction Error 

Comparison of CWA Regression Methods 
 
   Time (days)    Distance (miles) 
 
    Optimal  Lag 1  Optimal Lag 1 
  R-Square Regression  Regression Regression Regression 
 
  0-0.29         93.7      90.9        6.7      6.3 
  0.30-0.59       89.3      33.8        6.0      5.0 
  0.60+      164.3    122.7        6.3      5.2 
 

Limitations of the Technique 
 

In short, users should be careful about using the CWA technique.  It can be useful for 
identifying repeating patterns by an offender, but it won=t necessarily predict accurately the 
offender=s next actions.  There are a variety of reasons for the lack of predictability.  First, there 
may be intermediate events that are unknown.  With each of these offenders in the Baltimore 
County data base, there is always the possibility that the individuals committed other  crimes for 
which they were not charged.  The sequential analysis assumes that all the events are known.  But 
this may not be the case.   
 

A simulation on several cases was conducted by removing events and then re-running the 
correlogram and prediction models.  Removing one event did not appreciably alter the 
relationship, but removing more than one event did. In other words, if there are unknown events, 
the true sequential behavior pattern of the offender may not be properly identified. Considering 
that most offenders commit fewer than 10 incidents before they get caught, the statistical effect of 
missing information may be critical. 
 

A second reason has been alluded to already.  In applying the model to crime events, it is 
not a true sequential model, but a pseudo-sequential model since much time may intervene 
between events.  Distance and direction are conceptual in the sense that the individual doesn=t 
directly orient from one event to the other, but returns to his/her living patterns.  Thus, what may 
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appear to be a repeating pattern may not be.  Here, the issue of sample size is critical.  If there are 
only a few incidents on which to base an analysis, one could see a pattern which actually doesn=t 
exist.  One has to be careful about drawing inferences from very small samples.  
 

A third reason is that people are inherently unpredictable. The two algorithmic examples 
produced excellent results, but few persons are that systematic about their behavior.  Therefore, 
we must be cautious in expecting too much out of the model. 
 
 Conclusion 
 

Nevertheless, the model has utility.  First, it can help police identify whether there is a 
pattern in an offender=s behavior.  Knowing that there is a pattern can help in planning an arrest 
strategy.  Even if the strategy does not pay off every time, it may improve police effectiveness.  In 
short, the CWA can help a police department analyze the sequential behavior of an offender they 
are trying to catch.  They may be able to anticipate a new event and may be able to warn people 
who are more likely to be attacked by this individual.  If used carefully, the model can be useful 
for crime analysis and detection. 
 

Second, it can encourage the development of additional predictor tools for individuals.  As 
mentioned above, the center of minimum distance produces a >best guess= estimate in the sense 
that it minimizes the distance to the next event.  It usually doesn=t predict the next event, but it 
does produce a minimal error. If used in conjunction with the CWA, it may be possible to narrow 
the search area for the next event. 
 

Third, the CWA model can stimulate research into crime prediction.  Police are always 
trying to predict the next event by an offender and will use multiple techniques and a lot of 
intuition in trying to >out-guess= an offender. It is hoped that the CWA model will stimulate more 
research into predicting the sequence of offender behavior as well into how those sequences 
aggregate into a large spatial pattern.  Most of this text has been devoted to analyzing the spatial 
patterns of a large number of events.  The statistics have, perhaps naively assumed that each of 
those events were independent.  In reality, they are not since many crimes are committed by the 
same individuals.  In theory, a distribution of crime incidents could be disaggregated into a 
distribution of sequences of events committed by the same offenders, if we had enough 
information.  Understanding how aggregate distributions is a by-product of the behavior of a 
limited number of individuals is an important research goal that needs to be addressed. 
 
 
  



12.45 

References 
 

Bailey, T. C. & Gatrell, A. C. (1995). Interactive Spatial Data Analysis.  Longman Scientific & 
Technical: Burnt Mill, Essex, England. 
 
Barnard, G. A. (1963).  Comment on ‘The Spectral Analysis of Point Processes’ by M. S. Bartlett, 
Journal of the Royal Statistical Society, Series B, 25, 294. 
 
Besag, J. & Newell, J. (1991).  The detection of clusters in rare diseases. Journal of the Royal 
Statistic Society A, 154, Part I, 143-155. 
 
Chaitin, G. (1990).  Information, Randomness and Incompleteness (second edition).  World 
Scientific: Singapore. 
 
Chen, A. & Renshaw, E. (1994) The general correlated random walk. Journal of Applied 
Probability, 31, 869-884.  
 
Chen, A. & Renshaw, E. (1992). The Gillis-Domb-Fisher correlated random walk. Journal of 
Applied Probability, 29, 792-813.  
 
Dwass, M (1957).  Modified randomization tests for nonparametric hypotheses. Annals of 
Mathematical Statistics, 28, 181-187. 
 
Henderson, R., E., Ford, D., Renshaw, E. & Deans, J. D. (1983).  Morphology of the structural 
root system of Sitka Spruce 1.  Analysis and Quantitative Description.  Forestry, 56 (2), 121-135. 
 
Henderson, R., Renshaw, E., & Ford, D. (1984).  A correlated random walk model for two-
dimensional diffusion.  Journal of Applied Probability, 21, 233-246. 
 
Henderson, R., Renshaw, E., & Ford, D. (1983).  A note on the recurrence of a correlated random 
walk.  Journal of Applied Probability, 20, 696-699. 
 
Knox, E. G. (1988). Detection of clusters.  In Elliott, P. (ed), Methodology of Enquiries into 
Disease Clustering, London School of Hygiene and Tropical Medicine: London. 
 
Knox, E. G. (1964). The detection of space-time interactions. Applied Statistics, 13, 25-29. 
 
Knox, E. G. (1963).  Detection of low intensity epidemicity: application in cleft lip and palate.  
British Journal of Preventive and Social Medicine, 18, 17-24. 



12.46 

References (continued) 
 
Kulldorff, M. & Nagarwalla, N. (1995).  Spatial disease clusters: Detection and inference, 
Statistics in Medicine, 14, 799-810. 
 
Malkiel, B. G. (1999).  A Random Walk Down Wall Street (revised edition). W. W. Norton & 
Company: New York. 
 
Mantel, N. (1967).  The detection of disease clustering and a generalized regression approach.  
Cancer Research, 27, 209-220.  
 
Mantel, N. & Bailar, J. C. (1970). A class of permutational and multinomial test arising in 
epidemiological research, Biometrics, 26, 687-700. 
 
Renshaw, E. (1985).  Computer simulation of sitka spruce: spatial branching models for canopy 
growth and root structure.  Journal of Mathematics Applied in Medicine and Biology, 2, 183-200. 
 
Spitzer, F. (1976).  Principles of Random Walk (second edition).  Springer: New York. 
 
 
 
 

  



12.47 

Endnotes 

 
i. Henderson, Renshaw and Ford (1983) defined the correlated walk as a two-dimensional 

walk where the sum of the probabilities in four directions along a lattice are: 
 
 P = p + q + 2r = 1 
 

 where P is the total probability (1), p is the probability of continuing in the same direction, 
q is the probability of moving in an opposite direction, and r is the probability of moving 
one unit to the right or to the left.  The advantage of this formulation is that the 
probabilities do not have to be equal (i.e., p could exceed q or r).  Nevertheless, the 
individual steps can be considered a special case of a correlated random walk in the plane 
(Henderson, 1981).   

 
 The non-lattice two dimensional case can also be considered a recurrent random walk 

since a step in any direction (not just along a lattice) can be considered the result of two 
steps, one in the X direction and one in the Y (or, alternatively, a pairing of all steps in the 
X direction with all steps in the Y direction).  Unfortunately, this logic does not apply to 
more than two dimensions.  Such multi-dimensional walks do not have to return to their 
origin. However, Spitzer (1963) has shown that an independent walk is recurrent if the 
second moment around the origin is finite. 
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Attachments 
  



Tracking a Burglary Gang with the Correlated Walk Analysis 
 

Bryan Hill 
Glendale Police Department 

Glendale, AZ 
 

The space-time analysis tools provided with CrimeStat add an important element 
to an analyst’s review of a tactical prediction effort.  Although the method for calculating 
the Correlated Walk Analysis (CWA) is still more experimental than proven, it allows the 
analyst to see potential patterns in relation to a suspect’s crime travel in terms of time, 
distance, and direction.  In a recent burglary series involving several jurisdictions in our 
county, the CWA technique was used as part of an aggregate process referred to as the 
Probability Grid Method.  That method combines results from several models to predict 
the next likely area for a new hit in a crime series.  One of the most confusing aspects of 
these burglaries was the fact that several jurisdictions were involved and the offenders 
seemed to bounce back and forth from one jurisdiction to the next.   

 
There were also 219 offenses in the series, providing considerable complexity. 

Because there were so many events, the distances could be anywhere from 0.5 miles to 
20 miles, I could never really put my finger on what direction or distance the offender 
would hit next, but was confident a pattern existed and was likely changing over time. 
The following map shows the probability grid areas predicted and the CWA points 
predicted.  The triangles shown represent the last four hits. The first hit was near the 
probability grid prediction in the northern portion of the map; however the subsequent 
hits were all very close to where the CWA routine predicted they would be.  This was 
also a brand new area for these offenders and was a surprise to the department 
investigating these incidents. This area was not what was expected based on the SD 
ellipses and other methods used to predict the next event.  The CWA tool requires more 
testing to determine the accuracy of its predictions, however it may turn out to be a 
valuable tool in a crime analyst’s arsenal. 
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Chapter 13: 

Journey-to-Crime Estimation 

 
The Journey-to-crime (Jtc) routine is a distance-based method that makes estimates about 

the likely residential location of a serial offender.  It is an application of location theory, a 
framework for identifying optimal locations from a distribution of markets, supply 
characteristics, prices, and events.  The following discussion gives some background to the 
technique.  Those wishing to skip this part can go to page 13.12 for the specifics of the Jtc 
routine. 
 

Location Theory 
 

Location theory is concerned with one of the central issues in geography.  This theory 
attempts to find an optimal location for any particular distribution of activities, population, or 
events over a region (Haggett, Cliff & Frey, 1977; Krueckeberg & Silvers, 1974; Stopher & 
Meyburg, 1975; Oppenheim, 1980, Ch. 4; Bossard, 1993).  In classic location theory, economic 
resources were allocated in relation to idealized representations (Anselin & Madden, 1990).  
Thus, von Thünen (1826) analyzed the distribution of agricultural land as a function of the 
accessibility to a single population center (which would be more expensive towards the center), 
the value of the product produced (which would vary by crop), and transportation costs (which 
would be more expensive farther from the center).  In order to maximize profit and minimize 
costs, a distribution of agricultural land uses (or crop areas) emerges flowing out from the 
population center as a series of concentric rings.  Weber (1909) analyzed the distribution of 
industrial locations as a function of the volume of materials to be shipped, the distance that the 
goods had to be shipped, and the unit distance cost of shipping; consequently, industries become 
located in particular concentric zones around a central city.  Burgess (1925) analyzed the 
distribution of urban land uses in Chicago and described concentric zones of both industrial and 
residential uses.  Their theory formed the backdrop for early studies on the ecology of criminal 
behavior and gangs (Thrasher, 1927; Shaw, 1929). 
 

In more modern use, the location of persons with a certain need or behavior (the >demand= 
side) is identified on a spatial plane and places are selected as to maximize value and minimize 
travel costs.  For example, for a consumer faced with two retail shops selling the same product, 
one being closer but more expensive while the other being farther but less expensive, the 
consumer has to trade off the value to be gained against the increased travel time required. In 
designing facilities or places of attraction (the >supply= side), the distance between each possible 
facility location and the location of the relevant population is compared to the cost of locating 
near the facility.  For example, given a distribution of consumers and their propensity to spend, 
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such a theory attempts to locate the optimal placement of retail stores, or, given the distribution 
of patients, the theory attempts to locate the optimal placement of medical facilities. 
 

Predicting Locations from a Distribution 
 

One can also reverse the logic.  Given the distribution of demand, the theory could be 
applied to estimate a central location from which travel distance or time is minimized.  One of 
the earliest uses of this logic was that of John Snow, who was interested in the causes of cholera 
in the mid-19th century (Cliff and Haggett, 1988).  He postulated the theory that water was the 
major vector transmitting the cholera bacteria.  After investigating water sources in the London 
metropolitan area and concluding that there was a relationship between contaminated water and 
cholera cases, he was able to confirm his theory by an outbreak of cholera cases in the Soho 
district of London.  By plotting the distribution of the cases and looking for water sources in the 
center of the distribution (essentially, the center of minimum distance; see Chapter 4), he found a 
well on Broad Street that was, in fact, contaminated by seepage from nearby sewers.  The well 
was closed and the epidemic in Soho receded.  Incidentally, in plotting the incidents on a map 
and looking for the center of the distribution, Snow applied the same logic that had been 
followed by the London Metropolitan Police Department who had developed the famous >pin= 
map in the 1820s. 
 

Theoretically, there is an optimal solution that minimizes the distance between demand 
and supply (Rushton, 1979).  However, computationally, it is an almost impossible task to 
define, requiring the enumeration of every possible combination.  Consequently in practice, 
approximate, though sub-optimal, solutions are obtained through a variety of methods (Everitt, 
2011, Ch. 4). 
 
Travel Demand Modeling 
 

A sub-set of location theory models the travel behavior of individuals.  It actually is the 
converse.  If location theory attempts to allocate places or sites in relation to both a supply-side 
and demand-side, travel demand theory attempts to model how individuals travel between places, 
given a particular constellation of them.  One concept that has been frequently used for this 
purpose is that of the gravity function, an application of Newton=s fundamental law of attraction 
(Oppenheim, 1980).  In the original Newtonian formulation, the attraction, F, between two 
bodies of respective masses Mi and Mj, separated by a distance d12, will be equal to: 

 
             (13.1) 
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where g is a constant or scaling factor which ensures that the equation is balanced in terms of the 
measurement units (Oppenheim, 1980).  As we all know, of course, g is the gravitational 
constant in the Newtonian formulation.  The numerator of the function is the attraction term (or, 
alternatively, the attraction of M2 for M1) while the denominator of the equation, D2, indicates 
that the attraction between the two bodies falls off as a function of their squared distance. It is an 
impedance term. 
 

Social Applications of the Gravity Concept 
 

The gravity model has been the basis of many applications to human societies and has 
been applied to social interactions since the 19th century.  Ravenstein (1895) and Andersson 
(1897) applied the concept to the analysis of migration by arguing that the tendency to migrate 
between regions is inversely proportional to the squared distance between the regions. Reilly=s 
>law of retail gravitation= (1929) applied the Newtonian gravity model directly and suggested that 
retail travel between two centers would be proportional to the product of their populations and 
inversely proportional to the square of the distance separating them: 

 

             (13.2) 

 
where Tij is the interaction between centers i and j, Pi and Pj are the respective populations, dij is 
the distance between them raised to the second power and α is a balancing constant.  In the 
model, the initial population, Pi, is called a production while the second population, Pj, is called 
an attraction.   
 

Stewart (1950) and Zipf (1949) applied the concept to a wide variety of phenomena 
(migration, freight traffic, exchange of information) using a simplified form of the gravity 
equation: 

 

             (13.3) 

 
where the terms are as in equation 13.2 but the exponent of distance is only 1.  In doing so, they 
basically linked location theory with travel behavior theory.  Given a particular pattern of 
interaction for any type of goods, service or human activity, an optimal location of facilities 
should be solvable.   
 

In the Stewart/Zipf framework, the two P=s were both population sizes and, therefore, 
their sums had to be equal.  However, in modern use, it=s not necessary for the productions and 
attractions to be identical units (e.g., Pi could be population while Pj could be employment).   
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The total volume of productions (trips) from a single location, i, is estimated by summing 
over all destination locations, j: 

 

 ∑            (13.4) 

 
where Ti is the number of trip originating from zone , K is a constant, and L is the number of 

zones. 
 

Over time, the concept has been generalized and applied to many different types of travel 
behavior.  For example, Huff (1963) applied the concept to retail trade between zones in an 
urban area using the general form of: 

 

             (13.5) 

 
where Tij is the number of purchases in location j by residents of location i, Aj is the 
attractiveness of zone j (e.g., square footage of retail space), dij is the distance between zones i 
and j, β is the exponent of Sj, and λ is the exponent of distance, and α is a constant (Bossard, 
1993).  The distance component, dij

-λ , is sometimes called an inverse distance function.  This is a 
single constraint model in that only the attractiveness of a commercial zone is constrained, that is 
the sum of all attractions for j must equal the total attraction in the region. 
 

Again, it can be generalized to all zones by, first, estimating the total trips generated from 
one zone, i, to another zone, j: 

 

             (13.6) 

 
where Tij is the interaction between two locations (or zones), Pi is productions of trips from 
location/zone i, Aj is the attractiveness of location/zone j, Dij is the distance between zones i and 
j, β is the exponent of Sj, ρ is the exponent of Hi, λ is the exponent of distance, and α is a 
constant.   
 

Second, the total number of trips generated by a location, i, to all destinations is obtained 
by summing over all destination locations, j: 

 

 ∑            (13.7) 
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 This differs from the traditional gravity function by allowing the exponents of the 
production from location i, the attraction from location j, and the distance between zones to vary.  
Typically, these exponents are calibrated on a known sample before being applied to a forecast 
sample and the locations are usually measured by zones. Thus, retailers in deciding on the 
location of a new store can use this type of model to choose a site location to optimize travel 
behavior of patrons.  They will, typically, obtain data on actual shopping trips by customers and 
then calibrate the model on the data, estimating the exponents of attraction and distance.  The 
model can then be used to predict future shopping trips if a facility is built at a particular 
location.   
 

This type of function is called a double constraint model because the balancing constant, 
K, has to be constrained by the number of units in both the origin and destination locations; that 
is, the sum of Pi over all locations must be equal to the total number of productions while the 
sum of Pj over all locations must be equal to the total number of attractions.  Adjustments are 
usually required to have the sum of individual productions and attractions equal the totals 
(usually estimated independently). 
 

The equation can be generalized to other types of trips and different metrics can be 
substituted for distance, such as travel time, effort, or cost (Isard, 1960). For example, for 
commuting trips, usually employment is used for attractions, frequently sub-divided into retail 
and non-retail employment. In addition, for productions, median household income or car 
ownership percentage is used as an additional production variable.  Equation 13.7 can be 
generalized to include any type of production or attraction variable (13.8 and 10.9): 

 

            (13.8) 

 

 ∑           (13.9) 

 
where Tij is the number of trips produced by location i that travel to location j, Pi is either a 
single variable associated with trips produced from a zone or the cross-product of two or more 
variables associated with trips produced from a zone, Aj is either a single variable associated 
with trips attracted to a zone or the cross-product of two or more variables associated with trips 
attracted to a zone, dij is either the distance between two locations or another variable measuring 
travel effort (e.g., travel time, travel cost), ρ, β, and λ are exponents of the respective terms, α1 is 
a constant associated with the productions to ensure that the sum of trips produced by all zones 
equals the total number of trips for the region (usually estimated independently), and α2 is a 
constant associated with the attractions to ensure that the sum of trips attracted to all zones 
equals the total number of trips for the region.  Without having two constants in the equation, 
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usually conflicting estimates of K will be obtained by balancing the equation against productions 
or attractions.  The summation over all destination locations, j (Equation 13.9), produces the total 
number of trips from zone i. 
 

Intervening Opportunities 
 

Stouffer (1940) modified the simple gravity function by arguing that the attraction 
between two locations was a function not only of the characteristics of the relative attractions of 
two locations, but of intervening opportunities between the locations.  His hypothesis, A.assumes 
that there is no necessary relationship between mobility and distance.. that the number of persons 
going a given distance is directly proportional to the number of opportunities at that distance and 
inversely proportional to the number of intervening opportunities@(Stouffer, 1940, p. 846).  This 
model was used in the 1940s to explain interstate and intercounty migration (Bright & Thomas, 
1941; Isbell, 1944; Isard, 1979).  Using the gravity type formulation, we can write this as: 

 

 
∑

         (13.10) 

 
where Tji is the attraction of location j by residents of location i, Aj is the attractiveness of zone j, 
Ak is the attractiveness of all other locations that are intermediate in distance between locations i 
and j, dij is the distance between zones i and j, β is the exponent of Sj, ξ is the exponent of Sk, λ is 
the exponent of distance, and α is a constant. While the intervening opportunities are implicit in 
Equation 13.5 in the exponents, β and λ, and coefficient, K, Equation 13.10 makes the 
intervening opportunities explicit. The importance of the concept is that the interaction between 
two locations becomes a complex function of the spatial environment of nearby areas and not 
just of the two locations. 
 

Urban Transportation Modeling 
 
 This type of model is incorporated as a formal step in the urban transportation planning 
process, implemented by most regional planning organizations in the United States and 
elsewhere (Stopher & Meyburg, 1975; Krueckeberg & Silvers, 1974; Field & MacGregor, 1987).   
 
 The step, called trip distribution, is linked to a five step model.  First, data are obtained 
on travel behavior for a variety of trip purposes.  This is usually done by sampling households 
and asking each member to keep a travel diary documenting all their trips over a two or three day 
period.  Trips are aggregated by individuals and by households. Frequently, trips by different 
purposes are separated.  Second, the volume of trips produced by and attracted to zones (called 
traffic analysis zones) is estimated, usually on the basis of the number of households in the zone 
and some indicator of income or private vehicle ownership.  Third, trips produced by each zone 
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are distributed to every other zone usually using a gravity-type function (Equation 13.9).  That is, 
the number of trips produced by each origin zone and ending in each destination zone is 
estimated by a gravity model.  The distribution is based on trip productions, trip attractions, and 
travel >resistance= (measured by travel distance or travel time).  Fourth, zone-to-zone trips are 
allocated by mode of travel (car, bus, walking, etc); and, fifth, trips are assigned to particular 
routes by travel mode (i.e., bus trips follow different routes than private vehicle trips).  The 
advantage of this process is that trips are allocated according to origins, destinations, distances 
(or travel times), modes of travel and routes.  Since all zones are modeled simultaneously, all 
intermediate destinations (i.e., intervening opportunities) are incorporated into the model. 
Chapters 25-31 present a crime travel demand model, an application of travel demand modeling 
to crime. 

 
 Alternative Distance Decay Functions 
 

One of the problems with the traditional gravity formulation is in the measurement of 
travel resistance, either distance or time.  For locations separated by sizeable distances in space, 
the gravity formulation can work properly.  However, as the distance between locations 
decreases, the denominator approaches infinity.  Consequently, an alternative expression for the 
interaction has been proposed which uses the negative exponential function (Hägerstrand, 1957; 
Wilson, 1970): 

 

          (13.11) 

 
where Aji is the attraction of location j for residents of location i, Sj is the attractiveness of 
location j, Dij is the distance between locations i and j, β is the exponent of Sj, e is the base of the 
natural logarithm (i.e., 2.7183..), and α is an empirically-derived exponent. Sometimes known as 
entropy maximization, the latter part of the equation includes a negative exponential function 
which has a maximum value of 1 (i.e., e-0 = 1).  This has the advantage of making the equation 
more stable for interactions between locations that are close together.  For example, Cliff and 
Haggett (1988) used a negative exponential gravity-type model to describe the diffusion of 
measles into the United States from Canada and Mexico.  It has also been argued that the 
negative exponential function generally gives a better fit to urban travel patterns, particularly by 
automobile (Foot, 1981; Bossard, 1993; NCHRP, 1995). 
 

Other functions have also be used to describe the distance decay - negative linear, normal 
distribution, lognormal distribution, quadratic, Pareto function, square root exponential, and so 
forth (Haggett & Arnold, 1965; Taylor, 1970; Eldridge & Jones, 1991).  Later in the chapter, we 
will explore several different mathematical formulations for describing the distance decay.  One, 
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in fact, does not need to use a mathematical function at all, but could empirically describe the 
distance decay from a large data set and utilize the described values for predictions.   

 
The use of mathematical functions has evolved out of both the Newtonian tradition of 

gravity as well as various location theories which used the gravity function.  A mathematical 
function makes sense under two conditions: 1) if travel is uniform in all directions; and 2) as an 
approximation if there is inadequate data from which to calibrate an empirical function.  The first 
assumption is usually wrong since physical geography (i.e., oceans, rivers, mountains) as well as 
asymmetrical street networks make travel easier in some directions than others.  As we shall see 
below, the distance decay is quite irregular for Journey-to-crime trips and would be better 
described by an empirical, rather than mathematical function. 
 

In short, there is a long history of research on both the location of places as well as the 
likelihood of interaction between these places, whether the interaction is freight movement, land 
prices or individual travel behavior.  The gravity model and variations on it have been used to 
describe the interactions between these locations. 
 

Travel Behavior of Criminals 
 

Journey-to-crime Trips 
 

The application of travel behavior theory to crime has a sizeable history as well.  The 
analysis of distance for Journey-to-crime trips was applied in the 1930s by White (1932), who 
noted that property crime offenders generally traveled farther distances than offenders 
committing crimes against people, and by Lottier (1938), who analyzed the ratio of chain store 
burglaries to the number of chain stores by zone in Detroit.  Turner (1969) analyzed delinquency 
behavior by a distance decay travel function showing how more crime trips tend to be close to 
the offender=s home with the frequency dropping off with distance.  Phillips (1980) is, 
apparently, the first to use the term Journey-to-crime is describing the travel distances that 
offenders make though Harries (1980) noted that the average distance traveled has evolved by 
that time into an analogy with the journey to work statistic. 

 
 Journey-to-crime trips by crime type 

 
Rhodes and Conly (1981) expanded on the concept of a criminal commute and showed 

how robbery, burglary and rape patterns in the District of Columbia followed a distance decay 
pattern.  LeBeau (1987a) analyzed travel distances of rape offenders in San Diego by victim-
offender relationships and by method of approach.  Boggs (1965) applied the intervening 
opportunities model in analyzing the distribution of crimes by area in relation to the distribution 
of offenders.  Other empirical descriptions of Journey-to-crime distances and other travel 
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behavior parameters have been studied by Blumin (1973), Curtis (1974), Repetto (1974), Pyle 
(1974), Capone and Nichols (1975), Rengert (1975), Smith (1976), LeBeau (1987b), and Canter 
and Larkin (1993).  It has generally been accepted that property crime trips are longer than 
personal crime trips (LeBeau, 1987a), though exceptions have been noted (Turner, 1969).   Also, 
it would be expected that average trip distances will vary by a number of factors: crime type; 
method of operation; time of day; and, even, the value of the property realized (Capone & 
Nichols, 1975). 

 
In more recent years, there have been more focused studies of travel behavior by types of 

crime: commercial robberies in the Netherlands (Van Koppen and Jansen, 1998); vehicle thefts 
in Baltimore County (Levine, 2005); robberies in Chicago and confrontations, burglaries, and 
vehicle thefts in Las Vegas (Block and Helms, 2005); residential burglaries in The Hague 
(Bernasco and Nieuwbeerta, 2005); homicides in Washington, DC (Groff and McEwen, 2005); 
bank robberies in Baltimore County (Levine, 2007);  robberies in Chicago (Bernasco and Block, 
2009); and the trips of drunk drivers involved in crashes in Baltimore County (Levine & Canter, 
2011).   These studies show substantial variability in crime trip lengths with many trips being 
long.   

 
 Personal characteristics and the journey-to-crime 
 
In addition, there are several studies that have examined the how the personal 

characteristics of offenders effect their journey-to-crime. In terms of gender, Rengert (1975) 
found that female offenders were more likely to commit crimes within their own residential area 
than male offenders, hence making shorter trips, a result supported by Pettiway (1995) and by 
Groff and McEwen (2005).  However, Phillips (1980) found that female offenders traveled 
longer distances, on average, than male offenders, a result supported by Fritzon (2001) who 
studied female arsonists.   

 
 In terms of age of the offender, several studies (Groff & McEwen, 2005; Snook, Cullen, 
Mokros, & Harbort, 2005; Bernasco & Nieuwbeerta, 2005; Snook, 2004; Warren, Reboussin, 
Hazelwood, Cummings, Gibbs, & Trumbetta, 1998) have shown that generally juveniles make 
shorter trips. 

 
However, none of these studies attempted to control for myriad of factors that affect the 

journey-to-crime.  In a more controlled study, Levine and Lee (2012) examined the interaction of 
gender and age group for offenders in Manchester, England and found distinct interactions 
between gender and age group.  Juvenile male offenders had the shortest crime trips where adult 
male offenders had the longest.  Female offenders, both juveniles and adults, had moderately 
long crime trips, though not as long as the adult males.  However, a much higher proportion of 
crime trips by females went to commercial areas, in particular the town centre in Manchester. 
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Modeling the Offender Search Area 
 

Conceptual work on the type of model have been made by Brantingham and Brantingham 
(1981) who analyzed the geometry of crime and conceptualized a criminal search area, a 
geographical area modified by the spatial distribution of potential offenders and potential targets, 
the awareness spaces of potential offenders, and the exchange of information between potential 
offenders.  In this sense, their formulation is similar to that of Stouffer (1940), who described 
intervening opportunities, though their=s is a behavioral framework.  An important concept 
developed by the Brantingham=s is that of decreased criminal activity near to an offender=s home 
base, a sort of a safety area around their near neighborhood.  Presumably, offenders, particularly 
those committing property crimes, go a little way from their home base so as to decrease the 
likelihood that they will get caught. This was noted by Turner (1969) in his study of delinquency 
in Philadelphia.  Thus, the Brantingham=s postulated that there would be a small safety area (or 
>buffer= zone) of relatively little offender activity near to the offender=s base location; beyond that 
zone, however, they postulated that the number of crime trips would decrease according to a 
distance decay model (the exact mathematical form was never specified, however). 
 

Crime trips may not even begin at an offender=s residence.  Routine activity theory 
(Felson, 2002; Cohen & Felson, 1979) suggests that crime opportunities appear in the activities 
of everyday life.  The routine patterns of work, shopping, and leisure affect the convergence in 
time and place of would be offenders, suitable targets, and absence of guardians.  Many crimes 
may occur while an offender is traveling from one activity to another.  Thus, modeling crime 
trips as if they are referenced relative to a residence is not necessarily going to lead to better 
prediction. 
 

The mathematics of Journey-to-crime has been modeled by Rengert (1981) using a 
modified general opportunities model: 

 
          (13.12) 

 
where Pij is the probability of an offender in location (or zone) i committing an offense at 
location j, Ui is a measure of the number of crime trips produced at location i (what Rengert 
called emissiveness), Vj is a measure of the number of crime targets (attractiveness) at location j, 
and f(Dij) is an unspecified function of the cost or effort expended in traveling from location i to 
location j (distance, time, cost).   He did not try to operationalize either the production side or the 
attraction side.  Nevertheless, conceptually, a crime trip would be expected to involve both 
elements as well as the cost of the trip. 
 

In short, there has been a great deal of research on the travel behavior of criminals in 
committing acts as well as a number of statistical formulations. 
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Predicting the Location of Serial Offenders 
 

The Journey-to-crime formulation, as in Equation 13.9, has been used to estimate the 
origin location of a serial offender based on the distribution of crime incidents.  The logic is to 
plot the distribution of the incidents and then use a property of that distribution to estimate a 
likely origin location for the offender.  Inspecting a pattern of crimes for a central location is an 
intuitive idea that police departments have used for a long time.  The distribution of incidents 
describes an activity area by an offender, who often lives somewhere in the center of the 
distribution. It is a sample from the offender=s activity space.  Using the Brantingham=s 
terminology, there is a search area by an offender within which the crimes are committed; most 
likely, the offender also lives within the search area. 
 

For example, Canter (1994) shows how the area defined by the distribution of the >Jack 
the Ripper= murders in the east end of London in the 1880s included the key suspects in the case 
(though the case was never solved).  Kind (1987) analyzed the incident locations of the 
>Yorkshire Ripper= who committed thirteen murders and seven attempted murders in northeast 
England in the late 1970s and early 1980s.  Kind applied two different geographical criteria to 
estimate the residential location of the offender.  First, he estimated the center of minimum 
distance. Second, on the assumption that the locations of the murders and attempted murders that 
were committed late at night were closer to the offender=s residence, he graphed the time of the 
offense on the Y axis against the month of the year (taken as a proxy for length of day) on the X 
axis and plotted a trend line through the data to account for seasonality.  Both the center of 
minimum distance and the murders committed at a later time than the trend line pointed towards 
the Leeds/Bradford area, very close to where the offender actually lived (in Bradford). 

 
There are several alternative models that have been proposed for Journey-to-crime 

modeling.  The major ones are discussed in depth in Attachment A at the end of the chapter. 
 

Geographic Profiling 
 

Journey-to-crime estimation should be distinguished from geographical profiling.  
Geographical profiling involves understanding the geographical search pattern of criminals in 
relation to the spatial distribution of potential offenders and potential targets, the awareness 
spaces of potential offenders including the labeling of >good= targets and crime areas, and the 
interchange of information between potential offenders who may modify their awareness space 
(Brantingham & Brantingham, 1981).  According to Rossmo: 
 

 A..Geographic profiling focuses on the probable spatial behaviour of the offender within 
the context of the locations of, and the spatial relationships between, the various crime 
sites.  A psychological profile provides insights into an offender=s likely motivation, 
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behaviour and lifestyle, and is therefore directly connected to his/her spatial activity.  
Psychological and geographic profiles thus act in tandem to help investigators develop a 
picture of the person responsible for the crimes in question@ (Rossmo, 1997).   

 
In other words, geographic profiling is a framework for understanding how an offender 

traverses an area in searching for victims or targets; this, of necessity, involves understanding the 
social environment of an area, the way that the offender understands this environment (the 
>cognitive map=) as well as the offender=s motives. 

 
On the other hand, Journey-to-crime estimation follows a much simpler logic involving 

the distance dimension of the spatial patterning of a criminal. It is a method aimed at estimating 
the distance that serial offenders will travel to commit a crime and, by implication, the likely 
location from which they started their crime >trip=.  In short, it is a strictly statistical approach to 
estimating the residential whereabouts of an offender compared to understanding the dynamics 
of serial offenders.   
 

It remains an empirical question whether a conceptual framework, such as geographic 
profiling, can predict better than a strictly statistical framework.  Understanding a phenomenon, 
such as serial murders, serial rapists, and so forth, is an important research area.  We seek more 
than just statistical prediction in building a knowledge base.  However, it does not necessarily 
follow that understanding produces better predictions.  In many areas of human activity, strictly 
statistical models are better at predicting than explanatory models.  I will return to this point later 
in the section. 
 

The CrimeStat Journey-to-crime Routine 
 

The Journey-to-crime (Jtc) routine is a diagnostic designed to aid police departments in 
their investigations of serial offenders.  The aim is to estimate the likelihood that a serial 
offender lives at any particular location.  Using the location of incidents committed by the serial 
offender, the program makes statistical guesses at where the offender is liable to live, based on 
the similarity in travel patterns to a known sample of serial offenders for the same type of crime.  
The Jtc routine builds on the Rossmo (1993a; 1993b; 1995) framework, but extends its modeling 
capability. 
 

1. A grid is overlaid on top of the study area.  This grid can be either imported or 
can be generated by CrimeStat (see Chapter 3).  The grid represents the entire 
study area.  There is no optimal study area.  The technique will model that which 
is defined.  Thus, the user has to select an area intelligently. 
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2. The routine calculates the distance between each incident location committed by a 
serial offender (or group of offenders working together) and each cell, defined by 
the centroid of the cell.  Rossmo (1993a; 1995) used indirect (Manhattan) 
distances.  However, this would be appropriate only when a city falls on a 
uniform grid.  The Jtc routine allows direct, indirect or network distances. These 
are defined on the Measurement Parameters page (see Chapter 3) In most cases, 
direct distances would be the most appropriate choice as a police department 
would normally locate origin and destination locations rather than particular 
routes that are taken (see below). 

 
3. A distance decay function is applied to each grid cell-incident pair and sums the 

values over all incidents. The user has a choice whether to model the travel 
distance by a mathematical function or an empirically-derived function. 

 
4. The resultant of the distance decay function for each grid cell-incident pair is 

summed over all incidents to produce a likelihood (or density) estimate for each 
grid cell.   
 

5. In both cases, the program outputs the two results: 1) the grid cell which has the 
peak likelihood estimate; and 2) the likelihood estimate for every cell.  The latter 
output can be saved as a Surfer7 for Windows >dat=, ArcGIS Spatial Analyst8 >asc=, 
ASCII >grd=, ArcGIS7 >.shp=, MapInfo7 >.mif= , or as an Ascii grid >grd= file which 
can be read by many GIS packages (e.g., Vertical Mapper8). These files can also 
be read by other GIS packages (e.g., Maptitude). 

 
Figure 13.1 shows the logic of the routine and Figure 13.2 shows the Journey-to-crime 

(Jtc) screen. There are two parts to the routine.  First, there is a calibration model that is used in 
the empirically-derived distance function based on a large sample of crime trips by offenders.  
Second, there is the Journey-to-crime (Jtc) model for estimating the likely origin location of a 
single serial offender.  To estimate the function, the user can select either the already-calibrated 
distance function or the mathematical function.  The empirically-derived function is, by far, the 
easiest to use and is, consequently, the default choice in CrimeStat. It is discussed below. 
However, the mathematical function can be used if there is inadequate data to construct an 
empirical distance decay function or if a particular form is desired. 
 
 
   



Logic of Journey to Crime Interpolation Routine
Figure 13.1:

Primary file:
Crime locations

Distance decay function

Reference gridReference grid



Journey-to-crime Screen
Figure 13.2:
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Journey-to-crime Estimation Using Mathematical Functions 
 

Let us start by illustrating the use of the mathematical functions because this has been the 
traditional way that distance decay has been examined.  The CrimeStat Jtc routine allows the 
user to define distance decay by a mathematical function.   
 

Probability Distance Functions 
 

The user selects one of five probability density distributions to define the likelihood 
that the offender has traveled a particular distance to commit a crime.   The advantage of having 
five functions, as opposed to only one, is that it provides more flexibility in describing travel 
behavior.  The travel distance distribution followed will vary by crime type, time of day, method 
of operation, and numerous other variables.  The five functions allow an approach that can 
simulate more accurately travel behavior under different conditions.  Each of these has 
parameters that can be modified, allowing a very large number of possibilities for describing 
travel behavior of a criminal.   
 

Figure 13.3 illustrates the five types.1  Default values based on Baltimore County have 
been provided for each.  The user, however, can change these as needed.  Briefly, the five 
functions are: 
 

Linear 
 

The simplest type of distance model is a linear function.  This model postulates that the 
likelihood of committing a crime at any particular location declines by a constant amount with 
distance from the offender=s home.  It is highest near the offender=s home but drops off by a 
constant amount for each unit of distance until it falls to zero.  The form of the linear equation is: 

 

          (13.14) 

                         
1  There are, of course, many other types of mathematical functions that can be used to describe a declining 

likelihood with distance.  However, the five types of functions presented here are commonly used.  We 
avoided the inverse distance function because of its potential to distort the likelihood relationship: 

 

            (13.13) 

  
where k is a power (e.g., 1, 2, 2.5).  For large distances, this function can be a useful approximation of the 
lessening travel interaction with distance.  However, for short distances, the function goes towards infinity 
as the distance approaches zero.  In fact, for dij = 0, the function is unsolvable.  Since many distances 
between reference cells and incidents will be zero or close to zero, the function becomes unusable. 

 



Five Mathematical Functions
Journey-to-crime Travel Demand Functions

Figure 13.3:

Five Mathematical Functions
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where f(dij)  is the likelihood that the offender will commit a crime at a particular location, i, 
defined here as the center of a grid cell, dij is the distance between the offender=s residence and 
location i, A is a slope coefficient which defines the fall off in distance, and B is a constant.  It 
would be expected that the coefficient B would have a negative sign since the likelihood should 
decline with distance.  The user must provide values for A and B.  The default for A is 1.9 and 
for B is -0.06.  This function assumes no buffer zone around the offender=s residence.  When the 
function reaches 0 (the X axis), the routine automatically substitutes a 0 for the function. 
 

Negative Exponential 
 

A slightly more complex function is the negative exponential.  In this type of model, the 
likelihood is also highest near the offender’s home and drops off with distance.  However, the 
decline is at a constant rate of decline, thus dropping quickly near the offender=s home until is 
approaches zero likelihood.  The mathematical form of the negative exponential is 

 

          (13.15) 

 
where f(dij) is the likelihood that the offender will commit a crime at a particular location, i, 
defined here as the center of a grid cell, dij is the distance between each reference location and 
each crime location, e is the base of the natural logarithm, A is the coefficient and B is an 
exponent of e.  The user inputs values for A  - the coefficient, and B - the exponent.  The default 
for A is 1.89 and for B is -0.06.  This function is similar to the Canter model (discussed in 
Attachment A) except that the coefficient is calibrated.  Also, like the linear function, it assumes 
no buffer zone around the offender=s residence. 
 

Normal 
 

A normal distribution assumes the peak likelihood is at some optimal distance from the 
offender=s home base.  Thus, the function rises to that distance and then declines.  The rate of 
increase prior to the optimal distance and the rate of decrease from that distance is symmetrical 
in both directions.  The mathematical form is: 
 
 

           (13.16) 

 

 
√

        (13.17) 
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where f(dij) is the likelihood that the offender will commit a crime at a particular location, i 
(defined here as the center of a grid cell), dij is the distance between each reference location and 

each crime location, ̅ is the mean distance input by the user, Sd is the standard deviation of 
distances, e is the base of the natural logarithm, and A is a coefficient.  The user inputs values for 
̅, Sd, and A.  The default values are 4.2 for the mean distance, ̅, 4.6 for the standard deviation, 

Sd, and 29.5 for the coefficient, A.   
 

By carefully scaling the parameters of the model, the normal distribution can be adapted 
to a distance decay function with an increasing likelihood for near distances and a decreasing 

likelihood for far distances.  Choosing a standard deviation greater than the mean (e.g., ̅ = 1,Sd 
= 2) will skew the distribution to the left.  The function becomes similar to the model postulated 
by Brantingham and Brantingham (1981) in that it is a single function which describes travel 
behavior.  
 

Lognormal 
 

The lognormal function is similar to the normal except it is more skewed, either to the 
left or to the right.  It has the potential of showing a very rapid increase near the offender=s home 
base with a more gradual decline from a location of peak likelihood (see Figure 13.3).  It is also 
similar to the Brantingham and Brantingham (1981) model.  The mathematical form of the 
function is: 
 

 
√

,

       (13.18) 

 
where f(dij) is the likelihood that the offender will commit a crime at a particular location, i, 
defined here as the center of a grid cell, dij is the distance between each reference location and 

each crime location, ̅ is the mean distance, Sd is the standard deviation of distances, e is the 

base of the natural logarithm, and A is a coefficient.  The user inputs ̅, Sd , and A.  The default 

values are 4.2 for the mean distance, ̅, 4.6 for the standard deviation, Sd, and 8.6 for the 
coefficient, A. They were calculated from the Baltimore County data (see Table 13.3).  
 
  Truncated Negative Exponential 
 
 The truncated negative exponential is a joined function made up of two distinct 
mathematical functions - the linear and the negative exponential.  For the near distance, a 
positive linear function is defined, starting at zero likelihood for distance 0 and increasing to dp, a 
location of peak likelihood.  Thereupon, the function follows a negative exponential, declining 
quickly with distance.  The two mathematical functions making up this spline function are 
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 Linear:   0  for dij $ 0, dij# dp  (13.19) 

 
 Negative 

 Exponential:    for Xi > dp   (13.20) 

 
where dij is the distance from the home base, B is the slope of the linear function and for the 
negative exponential function A is a coefficient and C is an exponent.  Since the negative 
exponential only starts at a particular distance, dp, A, is assumed to be the intercept if the Y-axis 
were transposed to that distance.  Similarly, the slope of the linear function is estimated from the 
Cutoff distance, dp, by a peak likelihood function. The default values are 0.4 for the Cutoff 
distance, dp, 13.8 for the peak likelihood, and -0.2 for the exponent, C. Again, these were 
calculated with Baltimore County data. 
 
 This function is the closest approximation to the Rossmo model (see Attachment A).  
However, it differs in several mathematical properties.  First, the >near home base= function is 
linear (Equation 13.19), rather than a non-linear function.  It assumes a simple increase in travel 
likelihoods by distance from the home base, up to the edge of the safety zone.2  Second, the 
distance decay part of the function (Equation 13.20) is a negative exponential, rather than an 
inverse distance function (see Attachment A); consequently, it is more stable when distances are 
very close to zero (e.g., for a crime where there is no >near home base= offset).   
 
 Calibrating an Appropriate Probability Distance Function 
 
 The mathematics are relatively straightforward.  However, how does one know which 
distance function to use?  The answer is to get some data and calibrate it.  It is important to 
obtain data from a sample of known offenders where both their residence at the time they 
committed crimes as well as the crime locations are known.  This is called the calibration data 
set.  Each of the models are then tested against the calibration data set using an approach similar 

                         
2  There are, of course, many other types of mathematical functions that can be used to describe a declining 

likelihood with distance.  However, the five types of functions presented here are commonly used.  We 
avoided the inverse distance function because of its potential to distort the likelihood relationship: 

 

            (13.21) 

  
where k is a power (e.g., 1, 2, 2.5).  For large distances, this function can be a useful approximation of the 
lessening travel interaction with distance.  However, as the distance between the reference cell location and 
an incident location becomes very small, approaching zero, then the likelihood estimate becomes very 
large, approaching infinity.  In fact, for dij = 0, the function is unsolvable.  Since many distances between 
reference cells and incidents will be zero or close to zero, the function becomes unusable. 
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to that explained below.  An error analysis is conducted to determine which of the models best 
fits the data. Finally, the >best fit= model is used to estimate the likelihood that a particular serial 
offender lives at any one location.  Though the process is tedious, once the parameters are 
calculated they can be used repeatedly for predictions. 
 
 Because every jurisdiction is unique in terms of travel patterns, it is important to calibrate 
the parameters for the particular jurisdiction.  While there may be some similarities between 
cities (e.g., Eastern Acentralized@ cities v. Western Aautomobile@ cities), there are always unique 
travel patterns defined by the population size, historical road pattern, and physical geography.  
Consequently, it is necessary to calibrate the parameters anew for each new city.  Ideally, the 
sample should be a large enough so that a reliable estimate of the parameters can be obtained.  
Further, the analyst should check the errors in each of the models to ensure that the best choice is 
used for the Jtc routine.  However, once it has been completed, the parameters can be re-used for 
many years and only periodically re-checked. 
 
 Example of Calibrating a Journey-to-crime Estimate with a Mathematical Function 
 
  I will illustrate the calibration of a journey-to-crime probability estimate using a 
mathematical function with data from Baltimore County, MD.  The steps in calibrating the Jtc 
parameters were as follows: 
 

1. 49,083 matched arrest and incident records from 1992 through 1997 were 
obtained in order to provide data on where the offender lived in relation to the 
crime location for which they were arrested.3  
 

2. The data set was checked to ensure that there were X and Y coordinates for both 
the arrested individual=s residence location and the crime incident location for 
which the individual was being charged.  The data were cleaned to eliminate 
duplicate records or entries for which either the offender=s residence or the 
incident location were missing.  The final data set had 41,424 records.  There 
were many multiple records for the same offender since an individual can commit 

                         
3  There are several sources of error associated with the data set.  First, these records were arrest records prior 

to a trial. Undoubtedly, some of the individuals were incorrectly arrested.  Second, there are multiple 
offenses.  In fact, more than half the records were for individuals who were listed two or more times in the 
database.   The travel pattern of repeat offenders may be slightly different than for apparent first-time 
offenders (see Figure 13.22).  Third, many of these individuals have lived in multiple locations.  
Considering that many are young and that most are socially not well adjusted, it would be expected that 
these individuals would have multiple homes.  Thus, the distribution of incidents could reflect multiple 
home bases, rather than one.  Unfortunately, the data we have only gives a single residential location, the 
place at which they were living when arrested. 
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more than one crime.  In fact, more than half the records involved individuals who 
were listed two or more times.   The distribution of offenders by the number of 
offenses for which they were charged is seen in Table 13.1.  As would be 
expected, a small proportion of individuals account for a sizeable proportion of 
crimes; approximately 30% of the offenders in the database accounted for 56% of 
the incidents. 

 
3. The data were imported into a spreadsheet, but a database program could equally 

have been used.  For each record, the direct distance between the arrested 
individual=s residence and the crime incident location was calculated.  Chapter 3 
presented the formulas for calculating direct distances between two locations and 
are repeated in endnote i.  

 
Table 13.1 

Number of Offenders and Offenses in Baltimore County: 1993-97 
(Journey-to-crime Database) 

 
  Number of Number of Percent of Number of Percent of 
  Offenses Individuals Offenders Incidents Incidents 
  1  18,174        70.0%     18,174      43.9% 
  2    4,443        17.1%       8,886      21.5% 
  3    1,651           6.4%       4,953      12.0% 
  4       764            2.9%       3,056        7.4% 
  5       388            1.5%       1,940        4.7% 
  6-10       482            1.9%       3,383        8.2% 
  11-15         61            0.2%          757               1.8% 
  16-20         10         <0.0%          175        0.4% 
  21-25           3         <0.0%            67        0.2% 
  26-30           0         <0.0%               0        0.0% 
  30+           1         <0.0%            33      <0.0% 
  --------------------------------------------------------------------------------------- 
    25,977         41,424 

 
4. The records were sorted into sub-groups based on different types of crimes.  Table 

13.2 presents the categories with their respective sample sizes.  Of course, other 
sub-groups could have been identified.  Each sub-group was saved as a separate 
file.  The same records can be part of multiple files (e.g., a record could be 
included in the >all robberies= file as well as in the >commercial robberies= file).  
All records were included in the >all crimes= file. 
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Table 13.2: 

Baltimore County Files Used for Calibration: 1993-97 
 

Crime Type   Sample Size 
All crimes    41,426 
Homicide         137 
Rape         444 
Assault      8,045 
Robbery (all)   /   3,787 
Commercial robbery        1,193 
Bank robbery         176 
Burglary      4,694 
Motor vehicle theft      2,548 
Larceny    19,806 
Arson         338 
 

5. For each type of crime, the file was grouped into distance intervals of 0.25 miles 
each.  This involved two steps.  First, the distance between the offender=s 
residence and the crime location was sorted in ascending order.  Second, a 
frequency distribution was conducted on the distances and grouped into 0.25 mile 
intervals (often called bins).  The degree of precision in distance would depend on 
the size of the data set.  For 41,426 records, quarter mile bins were appropriate. 
 

6. For each type of crime, a new file was created which included only the frequency 
distribution of the distances broken down into quarter mile distance intervals, di. 
 

7. In order to compare different types of crimes, each of which will have different 
frequency distributions, two new variables were created.  First, the frequency in 
the interval was converted into the percentage of all crimes of in each interval by 
dividing the frequency by the total number of incidents, N, and multiplying by 
100.  Second, the distance interval was adjusted.  Since the interval is a range with 
a starting distance and an ending distance but has been identified by spreadsheet 
program as the beginning distance only, a small fraction, representing the 
midpoint of the interval, is added to the distance interval.  In our case, since each 
interval is 0.25 miles wide, the adjustment is half of this, 0.125.  Each new file, 
therefore, had four variables: the interval distance, the adjusted interval distance, 
the frequency of incidents within the interval (the number of cases falling into the 
interval), and the percentage of all crimes of that type within the interval. 
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8. Using the OLS regression program in the regression module (see Chapter 15), a 
series of regression equations was set up to model the frequency (or the 
percentage) as a function of distance.  In this case, I used our routines, but other 
statistical packages could equally have been used.  Again, because comparisons 
between different types of crimes were of interest, the percentage of crimes (by 
type) within an interval was used as the dependent variable (and was defined as a 
percentage, i.e., 11.51% was recorded as 11.51).  Five equations testing each of 
the five models were set up. 

 
 Estimating Parameter Values Using Grouped Data 
 
 The parameters of the function can be estimated from the grouped data.  
 

Linear 
 

 For the linear function, the test is: 
 
          (13.22) 
 
where Pcti is the percentage of all crimes of that type falling into interval i, di is the distance for 
interval i, A is the intercept, and B is the slope.  A and B are estimated directly from the 
regression equation.   
 
  Negative Exponential 
 
 For the negative exponential function, the variables have to be transformed to estimate 
the parameters.   The function is: 
 
          (13.23) 
 
 A new variable is defined which is the natural logarithm of the percentage of all crimes of 
that type falling into the interval, ln(Pcti).  This term was then regressed against the distance 
interval, di: 
 
 Pct K Bd          (13.24) 
 
 However, since the original equation has been transformed into a log function, B is the 
coefficient and A can be calculated directly from: 
 
 Pct Ln A Bd         (13.25) 
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           (13.26) 
 
 If the percentage in any bin is 0 (i.e., Pcti = 0), then a value of -16 is taken since the 
natural logarithm of 0 cannot be solved (it approximates -16 as the percentage approaches 
0.0000001). 
 
  Normal 
 
 For the normal function, a more complex transformation must be used.  The normal 
function in the model is: 
 

 
√

         (13.27) 

 
First, a standardized Z variable for the distance, di, is created: 
 

           (13.28) 

 

where ̅ is the mean distance and  is the standard deviation of distance.  These are calculated 
from the original data file (before creating the file of frequency distributions).  Second, a normal 
transformation of Z is constructed with: 
 

 
√

        (13.29) 

 
Finally, the normalized variable is regressed against the percentage of all crimes of that type 
falling into the interval, Pcti with no constant 
 
 ∗         (13.30) 
 
A is estimated by the regression coefficient. 
 
  Lognormal 
 
 For the lognormal function, another complex transformation must be done.  The 
lognormal function for the percentage of all crimes of a type for a particular distance interval is: 
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√

       (13.31) 

 
The transformation can be created in steps.  First, create L: 
 

           (13.32) 
 
Second, create M: 
 

 ̅           (13.33) 
 
Third, create O: 
 

           (13.34) 

 
Fourth, create P by raising e to the Oth power. 
 
           (13.35) 
 
Fifth, create the lognormal conversion, Lnormal: 
 

 
√

        (13.36) 

 
Finally, the lognormal variable is regressed against the percentage of all crimes of that type 
falling into the interval, Pcti with no constant: 
 
 ∗         (13.37) 
 
A is estimated with the regression coefficient. 

 
  Truncated Negative Exponential 
 
 For the truncated negative exponential function, two models were set up.  The first 
applied to the distance range from 0 to the distance at which the percentage (or frequency) is 
highest, Maxdi.  The second applied to all distances greater than this distance: 
 
 Linear:   for 0 	    (13.38) 
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 Negative 
 Exponential:  for 	     (13.39) 
 
 To use this function, the user specifies the distance at which the peak likelihood occurs 
(Cutoff d) and the value for that peak likelihood, P (the peak likelihood).  For the negative 
exponential function, the user specifies the exponent, C.   
 
 In order to splice the two equations together (the spline), the CrimeStat truncated 
negative exponential routine starts the linear equation at the origin and ends it at the highest 
value.  Thus, 
 
 A = 0           (13.40) 
 

 
	

          (13.41) 

 
where P is the peak likelihood and Cutoff d is the cutoff distance at which the probability is 
highest. 
 
 The exponent, C, can be estimated by transforming the dependent variable, Pcti, as in the 
negative exponential above (Equation 13.23) and regressing the natural log of the percentage 
(ln(Pcti) against the distance interval, di, only for those intervals that are greater than the Cutoff 
distance.  I have found that estimating the transformed equation with a coefficient, A in: 
 
          (13.42) 
 
         (13.43) 
 
gives a better fit to the equation.  However, the user need only input the exponent, C, in the Jtc 
routine as the coefficient, A, of the negative exponential is calculated internally to produce a 
distance value at which the peak likelihood occurs.  The formula is: 
 

 	         (13.44) 
 
where P is the peak likelihood, dp is the distance for the peak likelihood, C is an exponent 
(assumed to be positive) and di is the distance interval for the histogram. 
 

9. Once the parameters for the five models have been estimated, they can be 
compared to see which one is best at predicting the travel behavior for a particular 
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type of crime.  It is to be expected that different types of crimes will have 
different optimal models and that the parameters will also vary. 
 

Example from Baltimore County, MD 
 

Let us illustrate with the Baltimore County, MD data.  Figure 13.4 shows the frequency 
distribution for all types of crime in Baltimore County.  As can be seen, at the nearest distance 
interval (0 to 0.25 miles with an assigned >adjusted= midpoint of 0.125 miles), about 6.9% of all 
crimes occur within a quarter mile of the offender=s residence (it can be seen on the Y-axis).  
However, for the next interval (0.25 to 0.50 miles with an assigned midpoint of 0.375 miles), 
almost 10% of all crimes occur at that distance (9.8%). In subsequent intervals, however, the 
percentage decreases, a little less than 6% for 0.50 to 0.75 miles (with the midpoint being 0.625 
miles), a little more than 4% for 0.75 to 1 mile (the midpoint is 0.875 miles), and so forth.   
 

The best fitting statistical function was the negative exponential.  The particular equation 
was: 

 
 5.575 .         (13.45) 
 
 This is shown with the solid line.  As can be seen, the fit is good for most of the 
distances, though it underestimates at close to zero distance and overestimates from about a half 
mile to about four miles.  There is only slight evidence of decreased activity near to the location 
of the offender.  
 

However, the distribution varies by type of crime.  With the Baltimore County data, 
property crimes, in general, occur farther away than personal crimes.  The truncated negative 
exponential generally fit property crimes better, lending support for the Brantingham and 
Brantingham (1981) framework for these types.  For example, larceny offenders have a definite 
safety zone around their residence (Figure 13.5).  Fewer than 2% of larceny thefts occur within a 
quarter mile of the offender=s residence.  However, the percentage jumps to about 4.5% from a 
quarter mile to a half.  The truncated negative exponential function fits the data reasonably well 
though it overestimates from about 1 to 3 miles and underestimates from about 4 to12 miles. 
 

Similarly, motor vehicle thefts show decreased activity near the offender=s resident, 
though it is less pronounced than larceny theft.  Figure 13.6 shows the distribution of motor 
vehicle thefts and the truncated negative exponential function which was fit to the data.  The fit 
is reasonably good though it tends to underestimate middle range distances (3-12 miles). 
 



Negative Exponential Distribution
Journey-to-crime Distances: All Crimes

Figure 13.4:

Negative Exponential Distribution



Truncated Negative Exponential Function
Journey-to-crime Distances: Larceny

Figure 13.5:

Truncated Negative Exponential Function



Truncated Negative Exponential Function
Journey-to-crime Distances: Vehicle Theft

Figure 13.6:

Truncated Negative Exponential Function
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Some types of crime, on the other hand, are very difficult to fit.  Figure 13.7 shows the 
distribution of bank robberies.  Partly because there were a limited number of cases (N=176) and 
partly because it is a complex pattern, the truncated negative exponential gave the best fit, but 
not a particularly good one.  As can be seen, the linear (>near home=) function underestimates 
some of the near distance likelihoods while the negative exponential drops off too quickly; in 
fact, to make this function even plausible, the regression was run only up to 21 miles (otherwise, 
it underestimated even more).  
 

For some crimes, it was very difficult to fit any single function.  Figure 13.8 shows the 
frequency distribution of 137 homicides with three functions being fitted to the data - the 
truncated negative exponential, the lognormal, and the normal.  As can be seen each function fits 
only some of the data, but not all of it. 
 

Testing for Residual Errors in the Model 
 
 In short, the five mathematical functions allow a user to fit a variety of distance decay 
distributions. Each of the models will predict some parts of the distribution better than others.  
Consequently, it is important to conduct an error analysis to determine which model is >best=.  In 
an error analysis, the residual error is defined as: 

 
 	        (13.46) 
 
where Yi is the observed (actual) likelihood for distance i and E(Yi) is the likelihood predicted by 
the model.  If raw numbers of incidents are used, then the likelihoods are the number of incidents 
for a particular distance.  If the number of incidents are converted into proportions (i.e., 
probabilities), then the likelihoods are the proportions of incidents for a particular distance.  
 

The choice of >best model= will depend on what part of the distribution is considered most 
important.  Figure 13.9, for example, shows the residual errors on vehicle theft for the five fitted 
models.  That is, each of the five models was fit to the proportion of vehicle thefts by distance 
intervals (as explained above).  For each distance, the discrepancy between the actual percentage 
of vehicle thefts in that interval and the predicted percentage was calculated. If there was a 
perfect fit, then the discrepancy (or residual) was 0%.  If the actual percentage was greater than 
the predicted (i.e., the model underestimated), then the residual was positive; if the actual was 
smaller than the predicted (i.e., the model overestimated), then the residual was negative.   



Truncated Negative Exponential Function
Journey-to-crime Distances: Bank Robbery

Figure 13.7:

Truncated Negative Exponential Function



Normal Lognormal and Truncated Negative Exponential Functions
Journey-to-crime Distances: Homicide

Figure 13.8:

Normal, Lognormal, and Truncated Negative Exponential Functions



Vehicle Theft
Residual Error for Jtc Mathematical Models

Figure 13.9:

Vehicle Theft



13.36 

As can be seen in Figure 13.9, the truncated negative exponential fit the data well from 0 
to about 5 miles, but then became poorer than other models for longer distances.  The negative 
exponential model was not as good as the truncated for distances up to about 5 miles, but was 
better for distances beyond that point.  The normal distribution was good for distances from 
about 10 miles and farther.  The lognormal was not particularly good for any distances other than 
at 0 miles, nor was the linear. 
 

The degree of predictability varied by type of crime.  For some types, particularly 
property crimes, the fit was reasonably good.  I obtained R2 in the order of 0.86 to 0.96 for 
burglary, robbery, assault, larceny, and auto theft.  For other types of crime, particularly violent 
crimes, the fit was not very good with R2 values in the order of 0.53 (rape), 0.41 (arson) and 0.30 
(homicide).  These R2 values were for the entire distance range; for any particular distance, 
however, the predictability varied from very high to very low.   
 

In modeling distance decay with a mathematical function, a user has to decide which part 
of the distribution is the most important as no simple mathematical function will normally fit all 
the data (even approximately).  In these cases, I assumed that the near distances were more 
important (up to, say, 5 miles) and, therefore, selected the model which >best= fit those distances 
(see Table 13.2).  However, it was not always clear which model was best, even with that limited 
criterion.   

 
Problems with Mathematical Distance Decay Functions 

 
There are several reasons that mathematical models of distance decay distributions, such 

as illustrated in the Jtc routine, do not fit data very well.  First, as mentioned earlier, few cities 
have a completely symmetrical grid structure or even one that is approximately grid-like (there 
are exceptions, of course).  Limitations of physical topography (mountains, oceans, rivers, lakes) 
as well as different historical development patterns make travel asymmetrical around most 
locations.   
 

Second, there is population density.  Since most metropolitan areas have much higher 
intensity of land use in the center (i.e., more activities and facilities), travel tends to be directed 
towards higher land use intensity than away from them.   For origin locations that are not directly 
in the center, travel is more likely to go towards the center than away from it.   

 
 This would be true of an offender as well.  If the person were looking for either persons 
or property as >targets=, then the offender would be more likely to travel towards the metropolitan 
center than away from it.  Since most metropolitan centers have street networks that were laid 
out much earlier, the street network tends to be irregular.  Consequently, trips will vary by 
location within a metropolitan area.  One would expect shorter trips for offenders living close to 
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the metropolitan center than one living farther away,  living in more built-up areas than in lower 
density areas, living in mixed use neighborhoods than in strictly residential neighborhoods; and 
so forth.  Thus, the distribution of trips of any sort (in our case, crime trips from a residential 
location to a crime location), will tend to follow an irregular, distance decay type of distribution.  
Simple mathematical models will not fit the data very well and will make many errors. 
 

Third, the selection of a best mathematical function is partly dependent on the interval 
size used for the bins.  In the above examples, an interval size of 0.25 miles was used to calculate 
the frequency distribution.  With a different interval size (e.g., 0.5 miles), however, a slightly 
different distribution is obtained.  This affects the mathematical function that is selected as well 
as the parameters that are estimated.   For example, the questoin of whether there is a safety zone 
near the offender=s residence from which there is decreased activity or not is partly dependent on 
the interval size.  With a small interval, the zone may be detected whereas with a slightly larger 
interval the subtle distinction in measured distances may be lost.  On the other hand, having a 
smaller interval may lead to unreliable estimates since there may be few cases in the interval.  
Having a technique depend on the interval size makes it vulnerable to misspecification. 
 

Uses of Mathematical Distance Decay Functions 
 

Does this mean that one should not use mathematical distance functions?  I would argue 
that under most circumstances, a mathematical function will give less precision than an 
empirically-derived one (see below).  However, there are two cases when a mathematical model 
would be appropriate.  First, if there is either no data or insufficient data to model the empirical 
travel distribution, the use of a mathematical model can serve as an approximation.  If the user 
has a good sense of what the distribution looks like, then a mathematical model may be used to 
approximate the distribution.  However, if a poorly defined function is selected, then the selected 
function may produce many errors. 
 

A second case when mathematical models of distance decay would be appropriate is in 
theory development or application.  Many models of travel behavior, for example, assume a 
simple distance decay type of function in order simplify the allocation of trips over a region.  
This is a common procedure in travel demand modeling where trips from each of many zones are 
assigned to every other zone using a gravity type of function (Stopher & Meyburg, 1975; Field & 
MacGregor, 1987).  Even though the model produces errors because it assumes uniform travel 
behavior in all directions, the errors are corrected later in the modeling process by adjusting the 
coefficients for allocating trips to particular roads (traffic assignment).  The model provides a 
simple device and the errors are corrected down the line.  Still, I would argue that an empirically-
derived distribution will produce fewer errors in allocation and, thus, require less adjustment 
later on.  Errors can never help a model and it is better to get it more correct initially than to have 
to adjust it later on. Nevertheless, this is common practice in transportation planning. 
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 Using the Routine with a Mathematical Function 
 
 The Jtc routine which allows mathematical modeling is simple to use.  Figure 13.10 
illustrates how the user specifies a mathematical function.  The routine requires the use of a grid 
which is defined on the reference file tab of the program (see chapter 3).  Then, the user must 
specify the mathematical function and the parameters.  In the figure, the truncated negative 
exponential is being defined.  The user must input values for the peak likelihood, the Cutoff 
distance, and the exponent (see equations 10.43 and 10.44 above).  In the figure, since the serial 
offenses were a series of 18 robberies, the parameters for robbery have been entered into the 
program screen.  The peak likelihood was 9.96% (entered as a whole number - i.e., 9.96); the 
distance at which this peak likelihood occurred was the second distance interval 0.25-0.50 miles 
(with a mid-point of 0.38 miles); and the estimated exponent was 0.177651.  As mentioned 
above, the coefficient for the negative exponential part of the equation is estimated internally. 
 

Table 13.3 gives the parameters for the >best= models which fit the data for the 11 types of 
crime in Baltimore County. For several of these (e.g., bank robberies), two or more functions 
gave approximately equally good fits.  Note that these parameters were estimated with the 
Baltimore County data.  They will not fit any other jurisdiction.  If a user wishes to apply this 
logic, then the parameters should be estimated anew from existing data. Nevertheless, once they 
have been calibrated, they can be used for predictions. 
 

The routine can be output to ArcGIS, MapInfo, Atlas*GIS, Surfer for Windows, Spatial 
Analyst, and as an Ascii grid file which can be read by many other GIS packages.  All but Surfer 
for Windows require that the reference grid be created by CrimeStat.  
 

Empirically Estimating a Journey-to-crime Calibration Function 
 

An alternative to mathematical modeling of distance decay is to empirically describe the 
Journey-to-crime distribution and then use this empirical function to estimate the residence 
location.  CrimeStat has a two-dimensional kernel density routine that can calibrate the distance 
function if provided data on trip origins and destinations.  The logic of kernel density estimation 
was described in chapter 10, and will not be repeated here. Essentially, a symmetrical function 
(the >kernel=) is placed over each point in a distribution.  The distribution is then referenced 
relative to a scale (an equally-spaced line for two-dimensional kernels and a grid for three-
dimensional kernels) and the values for each kernel are summed at each reference location.  See 
chapter 8 for details. 
 
  



Jtc Mathematical Distance Decay Function
Figure 13.10:
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Table 13.3: 

Journey-to-crime Mathematical Models for Baltimore County 

Parameter Estimates for Percentage Distribution 
(Sample Sizes in Parentheses) 

 
ALL CRIMES 
 
 Negative Exponential:  Coefficient:   5.575107 
     Exponent:    0.229466 

 
HOMICIDE 
 
 Truncated 
 Negative Exponential:  Peak likelihood  14.02% 
     Cutoff distance  0.38 miles 
     Exponent   0.064481 
 
RAPE 
 
 Lognormal:   Mean   3.144959 
     Standard Deviation 4.546872 
     Coefficient   0.062791 

 
ASSAULT 
 
 Truncated 
 Negative Exponential:  Peak likelihood  27.40% 
     Cutoff distance  0.38 miles 
     Exponent  0.181738 
 
ROBBERY 
 
 Truncated 
 Negative Exponential:  Peak likelihood  9.96% 
     Cutoff distance  0.38 miles 
     Exponent  0.177651 
 
COMMERCIAL ROBBERY 
 
 Truncated 
 Negative Exponential:  Peak likelihood  4.9455% 
     Cutoff distance  0.625 miles 
     Exponent  0.151319 
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Table 13.3: (continued) 
 
BANK ROBBERY 
 
 Truncated 
 Negative Exponential:  Peak likelihood  9.96% 
     Cutoff distance  5.75 miles 
     Exponent  0.139536 

 
BURGLARY 
 
 Truncated 
 Negative Exponential:  Peak likelihood  20.55% 
     Cutoff distance  0.38 miles 
     Exponent  0.162907 
 
AUTO THEFT 
 
 Truncated 

  Negative Exponential:  Peak likelihood  4.81% 
     Cutoff distance  0.63 miles 
     Exponent  0.212508 
 
LARCENY  
 
 Truncated 
 Negative Exponential:  Peak likelihood  4.76% 
     Cutoff distance  0.38 miles 
     Exponent  0.193015 
 
ARSON  
 
 Truncated 

  Negative Exponential:  Peak likelihood  38.99% 
     Cutoff distance  0.38 miles 
     Exponent  0.093469 

 
 Calibrate Kernel Density Estimate 
 
 The CrimeStat calibration routine allows a user to describe the distance distribution for a 
sample of Journey-to-crime trips.  The requirements are that: 

 
1. The data set must have the coordinates of both an origin location and a destination 

location; and 
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2. The records of all origin and destination locations have been populated with 
legitimate coordinate values (i.e., no unmatched records are allowed). 
 
Data set definition 

 
The steps are relatively easy to run the routine.  First, the user defines a calibration data 

set with both origin and destination locations.  Figure 13.11 illustrates this process.  As with the 
primary and secondary files, the routine reads Excel ‘xls’ and ‘xlsx’, ArcGIS >shp=, dBase >dbf=, 
Ascii >txt=, and MapInfo >dat= files.   For both the origin location (e.g., the home residence of the 
offender) and the destination location (i.e., the crime location), the names of the variables for the 
X and Y coordinates must be identified as well as the type of coordinate system and data unit 
(see Chapter 3).  In the example, the origin locations has variable names of HomeX and HomeY 
and the destination locations has variable names of IncidentX and IncidentY for the X and Y 
coordinates of the two locations respectively.  However, any name is acceptable as long as the 
two locations are distinguished. 
 

The user should specify whether there are any missing values for these four fields (X and 
Y coordinates for both origin and destination locations).  By default, CrimeStat will ignore 
records with blank values in any of the eligible fields or records with non-numeric values 
(e.g.,alphanumeric characters, #, *).  Blanks will always be excluded unless the user selects 
<none>.  There are 8 possible options: 
 

1. <blank> fields are automatically excluded. This is the default 
2. <none> indicates that no records will be excluded.  If there is a blank field, 

CrimeStat will treat it as a 0 
3. 0 is excluded 
4. B1 is excluded 
5. 0 and B1 indicates that both 0 and -1 will be excluded 
6. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be excluded 

 
Any other numerical value can be treated as a missing value by typing it (e.g., 

99)Multiple numerical values can be treated as missing values by typing them, separating each 
by commas (e.g., 0, -1, 99, 9999, -99). 
 

The program will calculate the distance between the origin location and the destination 
location for each record.  If the units are spherical (i.e., lat/lon), then the calculations use 
spherical geometry; if the units are projected (either meters or feet), then the calculations are 
Euclidean (see chapter 3 for details). 
 
 



Jtc Calibration Data Input
Figure 13.11:
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  Kernel Parameters 
 

Second, the user must define the kernel parameters for calibration.  There are five choices 
that have to be made (Figure 13.12): 
 

1. The method of interpolation.  As with the two-dimensional kernel technique 
described in Chapter 10, there are five possible kernel functions: 

 
A. Normal (the default); 
B. Quartic; 
C. Triangular (conical); 
D. A negative exponential (peaked); and 
E. A uniform (flat) distribution. 

 
2. Choice of bandwidth.  The bandwidth is the width of the kernel function.  For a 

normal kernel, it is the standard deviation of the normal distribution whereas for 
the other four kernels (quartic, triangular, negative exponential, and uniform), it is 
the radius of the circle defined by the kernel.  As with the two-dimension kernel 
technique, the bandwidth can be fixed in length or made adaptive (variable in 
length).  However, for the one-dimensional kernel, the fixed bandwidth is the 
default since an even estimate over an equal number of intervals (bins) is 
desirable. If a fixed bandwidth is selected, the interval size must be specified and 
the units defined (in miles, kilometers, feet, meters, and nautical miles).  The 
default is 0.25 mile intervals.  If the adaptive bandwidth is selected, the user must 
identify the minimum sample size that the bandwidth should incorporate; in this 
case, the bandwidth is widened until the specified sample size is counted. 
 

3. The number of interpolation bins.  The bins are the intervals along the distance 
scale (from 0 up to the maximum distance for a Journey-to-crime trip) and are 
used to estimate the density function.  There are two choices.   

 
A. The user can specify the number of intervals (the default choice with 100 

intervals).  In this case, the routine calculates the maximum distance (or 
longest trip) between the origin location and the destination location and 
divides it by the specified number of intervals (e.g., 100 equal-sized 
intervals). The interval size is dependent on the longest trip distance 
measured.  
 

 
 



Jtc Calibration Kernel Parameters
Figure 13.12:
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B. Alternatively, the user can specify the distance between bins (or the 
interval size).  The default choice is 0.25 miles, but another value can be 
entered.  In this case, the routine counts out intervals of the specified size 
until it reaches the maximum trip distance.  

 
4. The output units.  The user specifies the units for the density estimate (in units per 

mile, kilometer, feet, meters, and nautical miles).  
 

5. The output calculations.  The user specifies whether the output results are in 
probabilities (the default) or in densities.  For probabilities, the sum of all kernel 
estimates will equal 1.0.  For densities, the sum of all kernel estimates will equal 
the sample size. 

 
Saved calibration file 

 
Third, the user must define an output file to save the empirically determined function.  

The function is then used in estimating the likely home residence of a particular function.  The 
choices are to save the file as a >dbf= or Ascii text file.  The saved file then can be used in the Jtc 
routine.  Figure 13.13 illustrates the output file format. 
 

Calibrate 
 

Fourth, the calibrate button runs the routine.  A calibration window appears and indicates 
the progress of the calculations.  When it is finished, the user can view a graph illustrating the 
estimated distance decay function (Figure 13.14).  The purpose is to provide quick diagnostics to 
the user on the function and selection of the kernel parameters.  While the graph can be printed, 
it is not a high quality print.  If a high quality graph is needed, the output calibration file should 
be imported into a graphics program.  
 

Examples from Baltimore County, MD 
 
I will illustrate this method by showing the results for the same data sets that were 

calculated above in the mathematical section (Figures 13.4-13.8).  In all cases, the normal kernel 
function was used.  The bandwidth was 0.25 miles except for the bank robbery data set, which 
had only 176 cases, and the homicide data set, which only had 137 cases; because of the small 
sample sizes, a bandwidth of 0.50 miles was used for these two data sets.  The interval width 
selected was a distance of 0.25 miles between bins (0.5 miles for bank robberies and homicides) 
and probabilities were output. 
 



Jtc Calibration Output File
Figure 13.13:



Jtc Calibration Graphic Output
Figure 13.14:
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Figure 13.15 shows the kernel estimate for all crimes (41,426 trips).  A frequency 
distribution was calculated for the same number of intervals and is overlaid on the graph. It was 
selected to be comparable to the mathematical function (see Figure 13.4).  Note how closely the 
kernel estimate fits the data compared to the negative exponential mathematical function.  The fit 
is good for every value but the peak value; that is because the kernel averages several intervals 
together to produce an estimate. 
 

Figure 13.16 shows the kernel estimate for larceny thefts.  Again, the kernel method 
produces a much closer fit as a comparison with Figure 13.5 will show.  Figure 13.17 shows the 
kernel estimate for vehicle thefts.  Figure 13.18 shows the kernel estimate for bank robberies and 
Figure 13.19 shows the kernel estimate for homicides.  An inspection of these graphs shows how 
well the kernel function fits the data, compared to the mathematical function, even when the data 
are irregularly spaced (in vehicle thefts, bank robberies, and homicides).  Figure 13.20 compares 
the distance decay functions for homicides committed against strangers compared to homicides 
committed against known victims. 
 

In short, the Jtc calibration routine allows a much closer fit to the data than any of the 
simpler mathematical functions.  While it=s possible to produce a complex mathematical function 
that will fit the data more closely (e.g., higher order polynomials), the kernel method is much 
simpler to use and gives a good approximation to the data. 

 

Journey-to-crime Estimation Using a Calibrated File 
  

After the distance decay function has been calibrated and saved as a file, the file can be 
used to calculate the likelihood surface for a serial offender. The user specifies the name of the 
already-calibrated distance function (as a >dbf= or an Ascii text file) and the output format.  As 
with the mathematical routine, the output can be to ArcGIS, MapInfo, Atlas*GIS, Surfer for 
Windows, Spatial Analyst, and as an Ascii grid file which can be read by many other GIS 
packages.  All but Surfer for Windows require that the reference grid be created by CrimeStat. 
 

The result is produced in three steps: 
 

1. The routine calculates the distance between each reference cell of the grid and 
each incident location; 

 
2. For each distance measured, the routine looks up the calculated value from the 

saved calibration file; and  
 

3. For each reference grid cell, it sums the values of all the incidents to produce a 
single likelihood estimate. 



Kernel Density Estimate by Percent of Crimes
Journey-to-crime Distances: All Crimes

Figure 13.15:

Kernel Density Estimate by Percent of Crimes



Journey-to-crime Distances: Larceny
Figure 13.16:

Kernel Density Estimate by Percent of CrimesKernel Density Estimate by Percent of Crimes



Journey-to-crime Distances: Vehicle Theft
Figure 13.17:

Kernel Density Estimate by Percent of CrimesKernel Density Estimate by Percent of Crimes



Journey-to-crime Distances: Bank Robbery
Figure 13.18:

Kernel Density Estimate by Percent of CrimesKernel Density Estimate by Percent of Crimes



Journey-to-crime Distances: Homicide
Figure 13.19:

Kernel Density Estimate by Percent of CrimesKernel Density Estimate by Percent of Crimes



Journey-to-crime Distances: Homicide by Victim Relationship
Figure 13.20:

Kernel Density Estimate by Percent of CrimesKernel Density Estimate by Percent of Crimes
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 Application of the Routine 
 

To illustrate the techniques, the results of the two methods on a single case are compared.  
The case has been selected because the routines accurately estimate the offender=s residence. 
This was done to demonstrate how the techniques work.  In the next section, I will ask the 
question about how accurate these methods are in general. 
 

The case involved a man who had committed 24 offenses.  These included 13 thefts, 5 
burglaries, 5 assaults, and one rape.  The spatial distribution was varied; many of the offenses 
were clustered but some were scattered.  Since there were multiple types of crimes committed by 
this individual, a decision had to be made over which model to use to estimate the individual=s 
residence.  In this case, the theft (larceny) model was selected since that was the dominant type 
of crime for this individual.   
 

For the mathematical function, the truncated negative exponential was chosen from Table 
13.3 with the parameters being: 
 

Peak likelihood  4.76% 
Cutoff distance  0.38 miles 
Exponent   0.193015 

 
For the kernel density model, the calibrated function for larceny was selected (see Figure 13.16). 
 

Figure 13.21 shows the results of the estimation for the two methods.  The output is from 
Surfer for Windows (Golden Software, 2008).   The left pane shows the results of the 
mathematical function while the right pane shows the results for the kernel density function.  The 
incident locations are shown as circles while the actual residence location of the offender is 
shown as a square.  Since this is a surface model, the highest location has the highest predicted 
likelihood. 
 

In both cases, the models predicted quite accurately.  The discrepancy (error) between the 
predicted peak location and the actual residence location was 0.66 miles for the mathematical 
function and 0.36 miles for the kernel density function.  For the mathematical model, the actual 
residence location (square) is seen as slightly off from the peak of the surface whereas for the 
kernel density model the discrepancy from the peak cannot be seen. 

 
 Nevertheless, the differences in the two surfaces show distinctions.  The mathematical 
model has a smooth decline from the peak likelihood location, almost like a cone.  The kernel 
density model, on the other hand, shows a more irregular distribution with a peak location 
followed by a surrounding >trough= followed a peak >rim=.  This is due to the irregular distance  



Man Charged with 24 Offenses in Baltimore County
Predicted and Actual Location of Serial Thief

Figure 13.21:

Man Charged with 24 Offenses in Baltimore County
Predicted with Mathematical and Kernel Density Models for Larceny

Residence = square
Crime locations=circlesCrime locations circles

Mathematical Model:
Truncated Negative Exponential

Kernel Density Model
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decay function calibrated for larceny (see Figure 13.16).  But, in both cases, they more or less 
identify the actual residence location of the offender. 
 

Choice of Calibration Sample 
 
 The calibration sample is critical for either method.  Each method assumes that the 
distribution of the serial offender will be similar to a sample of >like= offenders.  Obviously, 
distinctions can be made to make the calibration sample more or less similar to the particular 
case.  For example, if a distance decay function of all crimes is selected, then a model (of either 
the mathematical or kernel density form) will have less differentiation than for a distance decay 
function from a specific type of crime.  Similarly, breaking down the type of crime by, say, mode 
of operation or time of day will produce better differentiation than by grouping all offenders of 
the same type together.  This process can be taken on indefinitely until there is too little data to 
make a reliable estimate.  An analyst should try to match a calibration sample to the actual as is 
possible, given the limitations of the data.   
 
 For example, in our calibration data set, there were 4,694 burglary incidents where both 
the offender=s home residence and the incident location were known. The approximate time of 
the offense for 2,620 of the burglaries was known and, of these, 1,531 occurred at night between 
6 pm and 6 am.  Thus, if a particular serial burglar for whom the police are interested in catching 
tends to commit most of his burglaries at night, then choosing a calibration sample of nighttime 
burglars will generally produce a better estimate than by grouping all burglars together.  
Similarly, of the 1,531 nighttime burglaries, 409 were committed by individuals who had a prior 
relationship with the victim.  Again, if the analysts suspect that the burglar is robbing homes of 
people he knows or is acquainted with, then selecting the subset of nighttime burglaries 
committed against a known victim would produce even better differentiation in the model than 
taking all nighttime burglars. However, eventually, with further sub-groupings there will be 
insufficient data. 
 

This point has been raised in a recent debate.  Van Koppen and De Keijser (1997) argued 
that a distance decay function that combines multiple incidents committed by the same 
individuals could distort the estimated relationship compared to selecting incidents committed by 
different individuals.4  This result has been supported by Smith, Bond and Townsley (2009) and 

                         
4  They also argued that the combination of incidents - which they called >aggregation=, would distort the 

relationship between distance and incidence likelihood because of the ecological fallacy.  To my mind, they 
are incorrect on this point.  Data on a distribution of incidents by distance traveled is an individual 
characteristic and is not >ecological= in any way.  An ecological inference occurs when data are aggregated 
with a grouping variable (e.g., state, county, city, census tract; see Langbein and Lichtman, 1978).  A 
frequency distribution of individual crime trip distances is an individual probability distribution, similar, for 
example, to a distribution of individuals by height, weight, income or any other characteristic.  Of course, 
there are sub-sets of the data that have been aggregated (similar to heights of men v. heights of women, for 



13.59 

Townsley and Sidebottom (2010).  Rengert, Piquero and Jones (1999) argued that such a 
distribution is nevertheless meaningful.  In our language, these are two different sub-groups - 
persons committing multiple offenses compared to persons committing only one offense.  
Combining these two sub-groups into a single calibration data set will only mean that the result 
will have less differentiation in prediction than if the sub-groups were separated out.   
 

Actually, there is not much difference, at least in Baltimore County, a result that we also 
found in Baltimore County, MD (Levine & Lee, 2012).  From the 41,426 cases, 18,174 were 
committed by persons who were only listed once in the database while 23,251 offenses were 
committed by persons who were listed two or more times (7,802 individuals).  Categorizing the 
18,174 crimes as committed by >single incident offenders and the 23,251 crimes as committed by 
>multiple incident offenders=, the density distance decays functions were calculated using the 
kernel density method (Figure 13.22). 

 
The distributions are remarkably similar.  There are some subtle differences.  The 

average Journey-to-crime trip distance made by a single incident offender is longer than for 
multiple incident offenders (4.6 miles compared to 4.0 miles, on average); the difference is 
highly significant (p#.0001), partly because of the very large sample sizes.   However, a visual 
inspection of the distance decay functions shows they are similar.  The single incident offenders 
tend to have slightly more trips near their home, slightly fewer for distances between about a 
mile up to three miles, and slightly more longer trips.  But, the differences are not very large.   
 

There are several reasons for the similarity.  First, some of the >single incident offenders= 
are actually multiple incident offenders who have not been charged with other incidents.  
Second, some of the single incident offenders are in the process of becoming multiple incident 
offenders so their behavior is probably similar.  Third, there may not be a major difference in 
travel patterns by the number of offenses an individual commits, certainly compared to the major 
differences by type of crime (see graphs above).  In other words, the distinction between a single 
offender crime trip and a multiple offender crime trip is just another sub-group comparison and, 
apparently, not that important.  Nevertheless, it is important to choose an appropriate sample  
  

                                                                               
example).  Clearly, identifying sub-groups can make better distinctions in a distribution. But, it is still an 
individual probability distribution and does not produce bias in estimating a parameter, only variability.  
For example if a particular distance decay function implies that 70% of the offenders live within, say, 5 
miles of their committed incidents, then 30% do not live within 5 miles.  In other words, because the data 
are individual level, then a distance decay function, whether estimated by a mathematical or a kernel 
density model, is an individual probability model (i.e., an attempt to describe the underlying distribution of 
individual travel distances for Journey-to-crime trips).  See the following discussion (Wikipedia, 2010a; 
2010b; Friedman, 1999).  

 



Journey-to-crime Distances
Figure 13.22:
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from which to estimate a likely home base location for a serial offender.  The method depends on 
a similar sample of offenders for comparison. 
 

Sample Data Sets for Journey-to-crime Routines 
 

Three sample data sets from Baltimore County have been provided for the Journey-to-
crime routine. The data sets are simulated and do not represent real data.  The first file - 
JtcTest1.dbf, are 2000 simulated robberies while the second file - JtcTest2.dbf, are 2500 
simulated burglaries.  Both files have coordinates for an origin location (HomeX, HomeY) and a 
destination location (IncidentX, IncidentY).  Users can use the calibration routine to calculate the 
travel distances between the origins and the destinations.  A third data set - Serial1.dbf, are 
simulated incident locations for a serial offender.  Users can use the Jtc estimation routine to 
identify the likely residence location for this individual.  In running this routine, a reference grid 
needs to be overlaid (see chapter 3).  For Baltimore County, appropriate coordinates for the 
lower-left corner are -76.910 longitude and 39.190 latitude and for the upper-right corner are -
76.320 longitude and 39.720 latitude. 

 
How Accurate are the Methods? 
 

A critical question is how accurate are these methods?  The Journey-to-crime model is 
just that, a model.  Whether it involves using a mathematical function or an empirically-derived 
one, the assumption in the Jtc routine is that the distribution of incidents will provide information 
about the home base location of the offender.  In this sense, it is not unlike the way most crime 
analysts will work when they are trying to find a serial offender.  A typical approach will be to 
plot the distribution of incidents and routinely search a geographic area in and around a serial 
crime pattern, noting offenders who have an arrest history matching case attributes (MO, type 
weapon, suspect description, etc.).  Because a high proportion of offenses are committed within a 
short distance of offender residence=s, the method can frequently lead to their apprehension.  But, 
in doing this method, the analysts are not using a sophisticated statistical model. 
 
 Test Sample of Serial Offenders 
 
 To explore the accuracy of the approach, a small sample of 50 serial offenders was 
isolated from the database and used as a target sample to test the accuracy of the methods. The 
50 offenders accounted for 520 individual crime incidents in the database.  To test the Jtc method 
systematically, the following distribution was selected (Table 13.4).  The sample was not 
random, but was selected to produce a balance in the number of incidents committed and to, 
roughly, approximate the distribution of incidents by serial offenders.  Each of the 50 offenders 
was isolated as a separate file so that each could be analyzed in CrimeStat. 
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Table 13.4: 

Serial Offenders Used in Accuracy Evaluation 

 
       Number of Crimes 
         Number of  Committed by 
         Offenders  Each Person 
     4   3 
     4   4 
     4   5 
     4   6 
     4   7 
     4   8 
     3   9 
     3   10 
     3   11 
     2   12 
     2   13 
     2   14   
     2   15 
     1   16 
     1   17 
     1   18 
     1   19 
     1   20 
     1   21 
     1   22 
     1   24 
     1   33 
          _________      _________ 
     50   520       
 
 Identifying the Crime Type 
 
 Each of the 50 offenders was categorized by a crime type.  Only two of the offenders 
committed the same crime for all their offenses; most committed two or more different types of 
crimes.  Arbitrarily, each offender was typed according to the crime type that he/she most 
frequently committed; in the two cases where there was a tie between two crime types, the most 
severe was selected (i.e., personal crime over property crime).  While I recognize that there is 
arbitrariness in the approach, it seemed a practical solution.  Any error in categorizing an 
offender would be applicable to all the methods.  The crime types for the 50 offenders 
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approximately mirrored the distribution of incidents:  larceny (29); vehicle theft (7); burglary (5); 
robbery (5); assault (2); bank robbery (1); and arson (1). 
 
 Identifying the Home Base and Incident Locations 
 
 In the database, each of the offenders was listed as having a residence location.  For the 
analysis, this was taken as the origin location of the Journey-to-crime trip.  Similarly, the 
incident location was taken as the destination for the trip. Operationally, the crime trip is taken as 
the distance from the origin location to the destination location.  However, it is very possible that 
some crime trips actually started from other locations. Further, many of these individuals have 
moved their residences over time; we only have the last known residence in the database. 
Unfortunately, there was no other information in the digital database to allow more accurate 
identification of the home location.  In other words, there may be, and probably are, numerous 
errors in the estimation of the Journey-to-crime trip.  However, these errors would be similar 
across all methods and should not affect their relative accuracy. 
 

Evaluated Methods 
 

Eleven methods were compared in estimating the likely residence location of the 
offenders.  Four of the methods used the Jtc routines and seven were simple spatial distribution 
methods (Table 13.5). 
 

The mean center and center of minimum distance are discussed in chapter 4.  The center 
of minimum distance, in particular, is more or less the geographic center of distribution in that it 
ignores the values of particular locations; thus, locations that are far away from the cluster 
(extreme values) have no effect on the result.  When the center of minimum distance is 
calculated on a road network in which each segment is weighted by travel time or speed, the 
result is the center of minimum travel time, the point at which travel time to each of the incidents 
is minimized.  The directional mean, triangulated mean, geometric and harmonic means are 
discussed in chapter 4. 
 

The Test 
 

Each of these eleven methods were tested with the the files created for the serial 
offenders.  For the seven >means= (mean center, geometric mean, harmonic mean, directional 
mean, triangulated mean, center of minimum distance, center of minimum travel time), the mean 
was itself the best guess for the likely residence location of the offender.  For the four Journey-
to-crime functions, the grid cell with the highest likelihood estimate was the best guess for the 
likely residence location of the offender. 
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Table 13.5: 

Comparison Methods for Estimating the Home Base of a Serial Offender 
 
   Journey-to-crime Methods 
 

1. Mathematical model for all crimes 
2. Mathematical model for specific crime type 
3. Kernel density model for all crimes 
4. Kernel density model for specific crime type 

 
   Spatial Distribution Methods 
 

5. Mean center 
6. Center of minimum distance 
7. Center of minimum travel time  

   (calculated on road network weighted by travel  time) 
8. Directional mean (weighted) calculated with >lower left corner= as origin 
9. Triangulated mean 
10. Geometric mean 
11. Harmonic mean 

 
Measurement of Error 

 
For each of the 50 offenders, error was defined as the distance in miles between the >best 

guess= and the actual location.  For each offender, the distance between the estimated home base 
(the >best guess=) and the actual residence location was calculated using direct distances.  Table 
13.6 presents the results.  The data show the error by method for each of the 50 offenders.  The 
three right columns show the average error of all methods and the minimum error and maximum 
errors obtained by a method.  The method with the minimum error is boldfaced; for some cases, 
two methods are tied for the minimum. The bottom three rows show the median error, the 
average error and the standard deviation of the errors for each method across all 50 offenders.  

 
Results of the Test 
 
The results point to certain conclusions.  First, the degree of precision for any of these 

methods varies considerably.  The precision of the estimates vary from a low of 0.0466 miles 
(about 246 feet) to a high of 75.7 miles.  The overall precision of the methods is not very high 
and is highly variable.  There are a number of possible reasons for this, some of which have been 
discussed above.  Each of the methods produces a single parameter from what is, essentially, a 
probability distribution whereas the distribution of many of these incidents are widely dispersed.   



Table 13.6:

Accuracy of Methods for Estimating Serial Offender Residences
 (N= 50 Serial Offenders)

Number Primary * Mean Center of Mini- Triangulated Geometric Harmonic Jtc Kernel: Jtc Kernel: Jtc Math: Jtc Math: * All Methods
of Crime * Center mum Distance Mean Mean Mean All Crimes Crime Type All Crimes Crime Type * Average Minimum Maximum

Dataset Crimes Type * Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) Error (miles) * Error Error Error
------------------- -------------------- --------------------- * ------------------------------------------------------------ ---------------------------------------------------------- ----------------------- ----------------------------- -------------------------- ---------------------- ------------------------- * -------------------- ---------------------------------------------------

3A 3 Larceny * 31.5991 32.4477 32.4109 31.5995 31.6000 32.7824 32.7880 32.7824 32.7880 * 32.3109 31.5991 32.7880
3B 3 Larceny * 13.2303 12.1683 24.1531 13.2311 13.2319 10.7526 14.4929 10.7526 11.2501 * 13.6959 10.7526 24.1531
3C 3 Bank robbery * 2.8348 0.9137 2.7767 2.8335 2.8322 0.6775 5.8416 0.6775 6.0946 * 2.8313 0.6775 6.0946
3D 3 Burglary * 2.9733 3.2603 6.1013 2.9728 2.9724 4.6038 3.3883 3.3882 3.7931 * 3.7170 2.9724 6.1013
4A 4 Vehicle theft * 4.2436 4.2670 3.8217 4.2436 4.2436 4.2527 4.2364 4.2527 4.2590 * 4.2022 3.8217 4.2670
4B 4 Larceny * 1.9618 0.3100 2.0563 1.9621 1.9623 0.3125 0.2018 0.3125 0.2784 * 1.0397 0.2018 2.0563
4C 4 Larceny * 4.4733 4.4733 4.6789 4.4733 4.4733 4.9681 4.3563 4.2637 4.3563 * 4.5018 4.2637 4.9681
4D 4 Assault * 0.2925 0.1905 0.0466 0.2925 0.2926 0.0703 0.0703 0.0703 0.4560 * 0.1979 0.0466 0.4560
5A 5 Larceny * 17.3308 16.6459 17.8985 17.3292 17.3276 15.9738 17.8655 15.9739 16.4526 * 16.9775 15.9738 17.8985
5B 5 Larceny * 1.3609 0.2481 1.7733 1.3586 1.3564 0.2068 0.6974 0.5140 0.6974 * 0.9126 0.2068 1.7733
5C 5 Larceny * 2.2458 2.6832 16.4518 2.2450 2.2442 2.7886 2.4205 2.7886 3.0922 * 4.1067 2.2442 16.4518
5D 5 Larceny * 0.9169 0.2250 0.2371 0.9171 0.9174 0.1577 0.4267 0.1577 0.4267 * 0.4869 0.1577 0.9174
6A 6 Larceny * 5.1837 5.2081 7.9621 5.1837 5.1837 5.1271 4.8554 4.9393 5.2256 * 5.4298 4.8554 7.9621
6B 6 Vehicle theft * 1.3720 1.1869 0.9625 1.3710 1.3700 3.1126 2.3800 1.3566 2.0831 * 1.6883 0.9625 3.1126
6C 6 Larceny * 1.3199 0.3157 1.7928 1.3192 1.3184 0.2580 0.5272 0.2580 0.5272 * 0.8485 0.2580 1.7928
6D 6 Larceny * 3.2458 2.3324 6.5209 3.2431 3.2405 1.2506 2.6253 1.9718 1.9718 * 2.9336 1.2506 6.5209
7A 7 Larceny * 3.9023 3.4185 2.3176 3.9022 3.9021 2.7419 3.0532 3.1364 3.0532 * 3.2697 2.3176 3.9023
7B 7 Larceny * 12.4100 9.2973 14.8293 12.4107 12.4115 8.5357 8.6148 8.5357 8.8275 * 10.6525 8.5357 14.8293
7C 7 Burglary * 5.0501 7.1477 10.8567 5.0481 5.0460 7.9975 7.9975 7.9975 7.6274 * 7.1965 5.0460 10.8567
7D 7 Larceny * 2.2686 0.7733 75.7424 2.2684 2.2682 0.0892 0.7191 0.0892 0.7191 * 9.4375 0.0892 75.7424
8A 8 Larceny * 6.0298 6.0165 6.2653 6.0264 6.0229 8.4210 6.2962 6.2022 6.1166 * 6.3774 6.0165 8.4210
8B 8 Larceny * 1.0041 1.1437 2.1776 1.0042 1.0042 1.7475 1.3510 1.5298 1.3510 * 1.3681 1.0041 2.1776
8C 8 Larceny * 1.3059 1.6944 1.3684 1.3043 1.3027 2.1513 1.2020 2.1513 1.8707 * 1.5946 1.2020 2.1513
8D 8 Vehicle theft * 3.5794 2.3780 5.5915 3.5809 3.5825 0.5900 1.3340 1.9133 1.3340 * 2.6537 0.5900 5.5915
9A 9 Robbery * 5.2527 5.7156 4.8574 5.2529 5.2532 7.8257 7.1961 6.2520 5.9265 * 5.9480 4.8574 7.8257
9B 9 Larceny * 8.1923 10.6555 6.9916 8.1886 8.1850 12.4578 10.3957 12.4578 12.0514 * 9.9529 6.9916 12.4578
9C 9 Robbery * 3.7778 3.8454 11.0042 3.7758 3.7738 4.9015 5.1862 4.6206 4.3445 * 5.0255 3.7738 11.0042
10A 10 Larceny * 0.9358 0.5159 1.1003 0.9355 0.9353 0.0606 0.3720 0.2601 0.7172 * 0.6481 0.0606 1.1003
10B 10 Larceny * 2.8581 3.4940 14.2219 2.8536 2.8491 6.4051 6.5709 10.3095 6.4758 * 6.2264 2.8491 14.2219
10C 10 Larceny * 0.8052 0.7251 5.5938 0.8050 0.8049 0.9059 0.8404 0.9060 1.2786 * 1.4072 0.7251 5.5938
11A 11 Vehicle theft * 2.9127 3.2715 3.1192 2.9130 2.9134 3.6936 3.4335 3.4282 3.2087 * 3.2104 2.9127 3.6936
11B 11 Robbery * 0.3250 0.3250 0.2513 0.3250 0.3250 0.4235 0.2263 0.4235 0.7011 * 0.3695 0.2263 0.7011
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11C 11 Vehicle theft * 1.2689 1.7157 1.4750 1.2709 1.2729 2.8945 0.6984 2.8945 2.2049 * 1.7440 0.6984 2.8945
12A 12 Larceny * 3.3881 4.2334 10.9241 3.3867 3.3852 6.4050 3.2639 5.5843 5.2132 * 5.0871 3.2639 10.9241
12B 12 Larceny * 0.5562 0.5361 2.8003 0.5562 0.5562 0.7897 0.6709 0.7897 0.9631 * 0.9132 0.5361 2.8003
13A 13 Larceny * 6.3282 7.2857 6.0244 6.3248 6.3213 7.6438 7.4607 7.6438 7.9915 * 7.0027 6.0244 7.9915
13B 13 Assault * 1.4943 1.4943 1.5279 1.4944 1.4944 1.6501 1.5954 1.6501 2.0824 * 1.6092 1.4943 2.0824
14A 14 Larceny * 1.9363 0.8706 1.4498 1.9365 1.9368 0.3434 0.6058 0.2596 0.7631 * 1.1224 0.2596 1.9368
14B 14 Arson * 0.6898 0.3727 0.8086 0.6899 0.6900 0.3359 0.3359 0.3359 0.6213 * 0.5422 0.3359 0.8086
15A 15 Vehicle theft * 0.7282 0.7189 0.3362 0.7277 0.7271 0.8155 0.4855 0.8155 1.5128 * 0.7630 0.3362 1.5128
15B 15 Robbery * 0.4914 0.4914 0.8254 0.4914 0.4914 0.6468 0.5693 0.6468 0.6546 * 0.5898 0.4914 0.8254
16A 16 Vehicle theft * 2.1107 2.0995 8.2311 2.1107 2.1107 1.5957 1.6404 2.5911 2.4033 * 2.7659 1.5957 8.2311
17A 17 Burglary * 1.6484 0.3093 1.0227 1.6461 1.6438 0.2879 0.2879 0.2879 0.5268 * 0.8512 0.2879 1.6484
18A 18 Larceny * 0.6308 0.4196 1.0876 0.6329 0.6349 0.2132 0.3383 0.2132 0.6985 * 0.5410 0.2132 1.0876
19A 19 Larceny * 8.6462 9.4195 8.6772 8.6486 8.6511 10.2869 9.2708 9.7022 9.5548 * 9.2064 8.6462 10.2869
20A 20 Burglary * 6.3520 5.7969 28.3094 6.3486 6.3452 0.5934 0.8673 0.5934 0.7945 * 6.2223 0.5934 28.3094
21A 21 Burglary * 1.2396 0.8861 1.2776 1.2393 1.2390 0.5243 0.5243 1.0253 0.4965 * 0.9391 0.4965 1.2776
22A 22 Larceny * 3.6828 2.6232 2.0949 3.6803 3.6777 2.4937 2.8944 2.4937 2.8944 * 2.9484 2.0949 3.6828
24A 24 Larceny * 1.7959 0.5892 2.3033 1.7975 1.7991 0.2658 0.3574 0.4222 0.6587 * 1.1099 0.2658 2.3033
33A 33 Robbery * 3.9901 5.0481 7.2505 3.9940 3.9979 7.9485 7.6939 8.1907 7.9439 * 6.2286 3.9901 8.1907

------------------- -------------------- --------------------- * ------------------------------------------------------------ ---------------------------------------------------------- ----------------------- ----------------------------- -------------------------- ---------------------- ------------------------- * -------------------- ---------------------------------------------------
Median Error = * 2.5517 2.2159 3.4704 2.5509 2.5502 1.9494 2.0102 2.0615 2.1440
Mean Error = * 4.0434 3.8441 7.6472 4.0429 4.0424 4.0395 4.0305 4.0163 4.1467 *
SD Error = * 5.2166 5.3845 12.0642 5.2166 5.2166 5.5678 5.6237 5.5398 5.4177 *
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Few of the offenders had such a concentrated pattern that only a single location was 
possible.  Since these are probability distributions, not everyone follows the >central tendency=.  
Also, some of these offenders may have moved during the period indicated by the incidents, 
thereby shifting the spatial pattern of incidents and making it difficult to identify the last 
residence. 

 
A second conclusion is that, for any one offender, the methods produce similar results.  

For many of the offenders the difference between the best estimate (the minimum error) and the 
worst estimate (the maximum error) is not great.  Thus, the simple methods are generally as good 
(or bad) as the more sophisticated methods. 
 

Third, across all methods, the center of minimum travel time, which is calculated on a 
road network (see chapters 3 and 30), and it=s distance-based >cousin= - the center of minimum 
travel time, had the lowest average error.  Thus, the approximate geographic center of the 
distribution where travel time to each of the incidents was minimal produced as good an estimate 
as the more sophisticated methods.  However, it was not particularly close (3.84 miles, on 
average).  The worst method was the triangulated mean which had an average error of 7.6472 
miles.  The triangulated mean is produced by vector geometry and will not necessarily capture 
the center of the distribution. Other than this, there were not great differences. This reinforces the 
point above that the methods are all, more or less, describing the central tendency of the 
distribution.  For offenders that don=t live in the center of their distribution, the error of a method 
will necessary be high. 
 

Looking at each of the 50 offenders, the methods vary in their efficacy.  For example, the 
Jtc kernel function for all crimes was the best or tied for best for 17 of the offenders, but was also 
the worst or tied for worst for 9.  Similarly, the Jtc kernel function for the specific crimes was 
best or tied for best for 8 of the offenders, but worse for 4.  Even the most consistent  was best 
for 4 offenders, but also worst for one.  On the other hand, the triangulated mean, which had the 
worst overall error, produced the best estimate for 9 of the individuals while it produced the 
worst estimate for 25 of the individuals.  Thus, the triangulated mean tends to be very accurate or 
very inaccurate; it had the highest variance, by far. 

 
Fourth, the median error is smaller than the average error.  That is, the median is the point 

at which 50% of the cases had a smaller error and 50% had a larger error.  Overall, most of the 
cases were found within a shorter distance than the average would indicate.  This indicates that 
several cases had very large errors whereas most had smaller errors; that is, they were outliers.  
Over all methods, the Jtc kernel approach for all crimes had the lowest median error (1.95 miles). 
In fact, all four Jtc methods had smaller median errors than the simple centrographic methods.  In 
other words, they are more accurate than the centrographic methods most of the time.  The 
problem in applying this logic in practice, however, is that one would not know if the case being 
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studied is typical of most cases (in which case, the error would be relatively small) or whether it 
was an outlier.  In other words, the median would define a search area that captured about 50% 
of the cases, but would be very wrong in the other 50%.   If we could somehow develop a 
method for identifying when a case is >typical= and when it isn=t, increased accuracy will emerge 
from the Jtc methods.  But, until then, the simple center of minimum travel time will be the most 
accurate method. 
 

Fifth, the amount of error varies by the number of incidents.  Table 13.7 below shows the 
average error for each method as a function of three size classes: 1-5 incidents; 6-9 incidents; and 
10 or more incidents.  As can be seen, for each of the ten methods, the error decreases with 
increasing number of incidents.  In this sense, the measured error is responsive to the sample size 
from which it is based.  It is, perhaps, not surprising that with only a handful of incidents no 
method can be very precise. 
 

Sixth, the relative accuracy of each of these methods varies by sample size.  The method 
or methods with the minimum error are boldfaced.  For a limited number of incidents (1-5), the 
Jtc mathematical function for all crimes (i.e., the negative exponential with the parameters from 
Table 13.5) produced the estimate with the least error, followed by the Jtc kernel function for all 
crimes; the  was the third best.  The differences in error between these were not very great. For 
the middle category (6-9 incidents), the center of minimum distance produced the least error 
followed by the Jtc mathematical function for the specific crime type.  For those offenders who 
had committed ten or more crimes, the Jtc kernel function for the specific crime type produced 
the best estimate, followed by the center of minimum distance.  The two mathematical functions 
produced the least accuracy for this sub-group, though again the differences in error are not very 
big (2.2 miles for the best compared to 2.7 miles for the worst).  In other words, only with a 
sizeable number of incidents does the Jtc kernel density approach for specific crimes produce a 
good estimate.  It is better than the other approaches, but only slightly better than the simple 
measure of the center of minimum distance. 
 
 Search Area for a Serial Offender? 
 
 A number of researchers have been interested in the concept of a search area for the 
police (Rossmo, 2000; Canter, 2003).  The concept is that the Journey-to-crime method can 
define a small search area within which there is a higher probability of finding the offender.  The 
average or median error discussed above can be used to define such a search area if treated as a 
radius of a circle.  While intuitive, this does not necessarily represent a meaningful statistic.  For 
example, taking the average error of the center of minimum distance (3.84 miles) would produce 
a search area of 46.4 square miles, not exactly a small area in which to find a serial offender.  
Even if we take the median error of 1.94 miles from the Jtc kernel approach for all crimes (1.94  
  



Table 13.7:

 Method Estimation Error and Sample Size
 Average Error of Method by Number of Incidents (miles)

* Jtc Jtc Jtc Jtc * All Methods
Number of * Mean Center of Mini- Triangulated Geometric Harmonic Kernel: Kernel: Math: Math: * Average Minimum
Incidents * Center mum Distance Mean Mean Mean All Crime types All Crime types * Error Error
-------------- * ----------- -------------------------------------------- ---------------- --------------- ----------- ------------------- ----------- ------------------- * ----------------- --------------

3-5 * 6.9553 6.4861 9.3672 6.9160 6.9545 6.4622 7.2321 6.3278 6.9954 * 7.0774 6.3278
* *

6-9 * 4.2596 4.0753 10.6160 4.3331 4.2576 4.4805 4.2489 4.2274 4.2020 * 4.9667 4.0753
* *

10+ * 2.3832 2.3149 4.8136 2.4575 2.3827 2.4880 2.2176 2.6725 2.6243 * 2.7060 2.2176
-------------- * ----------- -------------------------------------------- ---------------- --------------- ----------- ------------------- ----------- ------------------- * ----------------- --------------

13.66
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miles) will still produce a search area of 11.9 square miles, and it would be correct only half the 
time.  These methods are still very imprecise.  
 

Confirmation of These Results 
 
 This analysis was first conducted in 2000 with version 1.1 of CrimeStat (Levine, 2000).  
Since then, it has been confirmed with several studies.   Snook, Zito, Bennell, and Taylor (2005) 
found a similar result with 16 serial burglars who had committed 10 or more incidents in the 
United Kingdom.  Simple measures did as well as the complex measures.   

 
Snook, Canter and Bennell (2002) compared the journey-to-crime method with the 

judgment of student volunteers and found that the journey-to-crime method was not significantly 
more accurate than the student judgments.  A subsequent study found that simple training of 
geographic principles improved the predictive accuracy of police officers in predicting the 
residence location of 36 serial offenders and were as accurate as the journey-to-crime method 
(Bennell, Snook, Taylor, Corey, & Keyton, 2007). 

 
Paulsen (2006) conducted an analysis of 247 serial offenders from Baltimore County and 

found that simple centrographic measures were more accurate than the more complex journey-to-
crime method.  He also compared four different software packages in terms of their accuracy.  
He found that all packages had about the same degree of accuracy, that simple centrographic 
approaches were generally more accurate, that there were substantial differences in the accuracy 
by different crime types, but, most importantly, none of the methods were very accurate.  

 
Bennell, Taylor , and Snook (2007) examined a number of studies of geographic profiling 

and argued that simple heuristics can provide as much accuracy as more sophisticated methods, 
with much less effort and cost to a police department.  

 
In other words, in several independent tests of the accuracy of the journey-to-crime 

approach to geographical profiling, simple measures, particularly the center of minimum 
distance, do as well as, if not better than, the journey-to-crime approach. 

 
Theoretical Limitations 
 
There are also some theoretical problems in journey-to-crime analysis which limits the 

method’s ability to predict the origin location of a serial offender.   First, the method is entirely 
based on distance traveled from a theoretical origin that will be estimated by the method.  The 
means for assigning the distance is the journey-to-crime function that has been chosen (normal, 
quartic, exponential etc).  However, transportation modelers usually conceptualize travel 
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distance not as an independent variable but the result of predispositions, attractions, and 
networks (Domencich &  McFadden, 1975; Ortuzar & Willumsen, 2001; Culp, 2002).  Different 
individuals have predispositions to travel that vary by gender as well as by age (Levine &  Lee, 
2012).  

 
Second, the distance function in a journey-to-crime model is assumed to operate in any 

direction.  In reality, there is a large amount of asymmetry in the direction of travel because 
attractions are more concentrated towards the center of a metropolitan area (FCCDR, 1994; 
Bruegmann, R.,2008; Bertaud, 2009; SCTLC 2009).  For example, an offender who lives in a 
suburb is more likely to travel towards the center of a metropolitan area than away from it 
because there are more opportunities in the center than farther away.  Similarly, offenders in a 
high crime neighborhood of a metropolitan area are more likely to travel to other high crime 
neighborhoods and not just in any direction.  In addition travel is restrained by physical and 
social barriers (Bernasco & Block, 2009). The journey-to-crime approach assumes a uniform 
cost function that applies to everyone. 

 
Third, criminal opportunities (or attractions) are never measured, but are inferred from 

the pattern of crime incidents.  That is, the crime location is assumed to represent the opportunity 
for the offender, but the attraction for the offender is never measured.  Therefore, the distance 
traveled is assumed to represent the likelihood of travel by the offender without any 
differentiation by place, crime type, type of person, or environment.  As a pragmatic tool for 
informing a police search, one could argue that this is not important.  However, in a different 
location or crime set, the distance function is liable to differ substantially. 

 
Fourth, it is not clear whether knowing an offender=s >cognitive map= will help in 

prediction.  There have been no evaluations that have compared a strictly statistical approach 
with an approach that utilizes information about the offender as he or she understands the 
environment.  It cannot be assumed that integrating information about the perception of the 
environment will aid prediction.  In most travel demand forecasts that transportation engineers 
and planners make, cognitive information about the environment is not utilized except in the 
definition of trip purpose (i.e., what the purpose of the trip was).  The models use the actual trips 
by origin and destination as the basis for formulating predictions, not the understanding of the 
trip by the individual.  Understanding is important from the viewpoint of developing theory or 
for ways to communicate with people.  But, it is not necessarily useful for prediction.  In short, 
understanding and prediction are not the same thing.  

 
In short, journey-to-crime methodology is limited both theoretically and empirically.  

Theoretically, it ignores the distribution of opportunities and focuses only on the cost of travel.   
Empirically, the method has a substantial amount of error and cannot even do as well as simple 
measures in terms of prediction. Finally, existing journey-to-crime methodologies assume that 



13.71 

the awareness space of serial offenders surrounds the offender’s anchor point.   But, there are 
offenders who commit crimes far from where they reside or from their anchor point, so called 
‘Commuter’ offenders ( Paulson, 2006). 
 
 Cautionary Notes 
 

There are certain cautions that must be considered in using either of these Journey-to-
crime methods (the mathematical or the empirical).  First, a simple technique, such as the center 
of minimum distance, may be as good as a more sophisticated technique. It does not always 
follow that a sophisticated method will produce any more accuracy than a simple one.   
 

Second, there are other limitations to the technique.  The model must be calibrated for 
each individual jurisdiction.  Further, it must be periodically re-calibrated to account for changes 
in crime patterns.  For example, in using the mathematical model, one cannot take the parameters 
estimated for Baltimore County (Table 13.3) and apply them to another city or if using the kernel 
density method take the results found at one time period and assume that they will remain 
indefinitely.  The model is a probability model, not a guarantee of certainty.  It provides guesses 
based on the similarity to other offenders of the same type of crime.  In this sense, a particular 
serial offender may not be typical and the model could actually orient police wrongly if the 
offender is different from the calibration sample.  It will take insight by the investigating officers 
to know whether the pattern is typical or not. 
 

Third, as a theoretical model, the Journey-to-crime approach is quite simple.  It is based 
on a distribution of incidents and an assumed travel distance decay function.  As mentioned 
above, the method does not utilize information on the distribution of target opportunities nor 
does it utilize information on the travel mode and route that an offender takes.  It is purely a 
statistical model.   

 
The research area of geographic profiling attempts to go beyond statistical description 

and understand the cognitive maps that offenders use as well as how these interact with their 
motives.  This is good and should clearly guide future research.  But it has to be understood that 
the theory of offender travel behavior is not very well developed, certainly compared to other 
types of travel behavior.  Further, some types of crime trips may not even start from an 
offender=s residence, but may be referenced from another location, such as vehicle thefts 
occurring near disposal locations.  Routine activity theory would suggest multiple origins for 
crimes (Cohen & Felson, 1979). 
 

The existing models of travel demand used by transportation planners (which have 
themselves been criticized for being too simple) measure a variety of factors that have only been 
marginally included in the crime travel literature - the availability of opportunities, the 
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concentration of offender types in certain areas, the mode of travel (i.e., auto, bus, walk), the 
specific routes that are taken, the interaction between travel time and travel route, and other 
factors.  It will be important to incorporate these elements into the understanding of Journey-to-
crime trips to build a much more comprehensive theory of how offenders operate.  Travel 
behavior is very complicated and we need more than a statistical distance model to adequately 
understand it.  

 
In the next chapter, a Bayesian approach to journey-to-crime modeling will be discussed 

in which additional information about the origin location for the offender is introduced into the 
model in order to improve the distance estimate.  As we shall see, the method is more accurate 
and more precise than the journey-to-crime function. 
 

Draw Crime Trips 
 

The Journey-to-crime module also includes one utility that can help visualize the pattern 
before selecting a particular estimation model.  This is a Draw Crime Trips routine that simply 
draws lines between the origin and destination of individual crime trips.  The X and Y 
coordinates of an origin and destination location are input and the routine draws a line in ArcGIS 
>shp=, MapInfo >mif=, Google Earth ‘kml’ or various Ascii formats. 
 

Figure 13.23 illustrates the drawing of the known travel distances for 444 rape cases for 
which the residence location of the rapist was known.  Of the 444 cases, 113 (or 25.5%) occurred 
in the residence of the rapist.  However, for the remaining 331 cases, the rape location was not 
the residence location.  As seen, many of the trips are of quite long distances.  This would 
suggest the use of a Journey-to-crime function that has many trips at zero distance but with a 
more gradual decay function. 
  



Figure 13.23:
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Endnotes 
 
i. If the coordinate system is projected with the distance units in feet, meters or miles, then the distance 

between two points is the hypotenuse of a right triangle using Euclidean geometry: 
 
                  repeat (3.1) 

 
where each location is defined by an X and Y coordinate in feet, meters, or miles.  If the coordinate system 
is spherical with units in latitudes and longitudes, then the distance between two points is the Great Circle 
distance.   All latitudes and longitudes are converted into radians using: 
 

  	 	                 repeat (3.2) 

 

  	 	                 repeat (3.3) 

 
Then, the distance between the two points is determined from: 
 

  2             repeat (3.4) 

 
with all angles being defined in radians (Snyder, 1987, p. 30, 5-3a). 
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Attachments 
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A Note on Alternative Journey-to-crime Models 
 

Ned Levine 
Ned Levine & Associates 

Houston, TX 
 

 There are several alternative journey-to-crime models that have been developed in 
addition to the CrimeStat model.  This is a brief note on two of them, the Rossmo model and the 
Canter model.  The citations are listed in the reference section above. 

Rossmo Model 
 

 Rossmo (1993a; 1995) has adapted location theory, particularly travel behavior modeling, 
to serial offenders.  In a series of papers (Rossmo, 1993a; 1993b; 1995; 1997) he outlined a 
mathematical approach to identifying the home base location of a serial offender, given the 
distribution of the incidents.  The mathematics represent a formulation of the Brantingham and 
Brantingham (1981) search area model, discussed above in which the search behavior of an 
offender is seen as following a distance decay function with decreased activity near the 
offender=s home base.  He has produced examples showing how the model can be applied to 
serial offenders (Rossmo, 1993a; 1993b; 1997). 
 
 The model has four steps (what he called criminal geographic targeting): 
 

1. First, a rectangular study area is defined that extends beyond the area of the 
incidents committed by the serial offender.  The average distance between points 
is taken in both the Y and X direction.  Half the Y coordinate inter-point distance 
is added to the maximum Y value and subtracted from the minimum Y value.  
Half the X coordinate inter-point distance is added to the maximum X value and 
subtracted from the minimum X value.   These are based on projected 
coordinates; presumably, the directions would have to be adjusted if spherical 
coordinates were used.  The rectangular study defines a grid from which columns 
and rows can be defined. 

 
2. For each grid cell, the Manhattan distance to each incident location is taken (see 

Chapter 3 for definition). 
 

3. For each Manhattan distance from a grid cell to an incident location, MDij, one of 
two functions is evaluated: 
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A. If the Manhattan distance, Mdij, is less than a specified buffer zone radius, 
B, then: 
 

 ∏
| | | |

       (13.47) 

 
where Pij is the resultant of offender interaction for grid cell i; with 
incident j, c is the incident number, summing to T; φ = 0; k is an 
empirically determined constant; g is an empirically determined exponent; 
and f is an empirically determined exponent. 

 
The Greek letter, Π, is the product sign, indicating that the results for each 
grid cell-incident distance, Mdij, are multiplied together across all 
incidents, c.  This equation reduces to: 
 

 ∏
| | | |

       (13.48) 

 

 ∏
| | | |

       (13.49) 

 
Within the buffer region, the function  is the ratio of a constant, k, times 
the radius of the buffer, B, raised to another constant, g-f, divided by the 
difference between the diameter of the circle, 2B, and the critical 
Manhattan distance, Mdij, raised to a constant, g.  This is a non-linear 
function that is increasing within the buffer zone. 

 
4. If the Manhattan distance, Mdij, is greater than a specified buffer zone 

radius, B, then 
 

 ∏
| | | |

       (13.50) 

 
where Pij is the resultant of offender interaction for grid cell, i, and 
incident location, j; c is the incident number, summing to T; φ = 1; k is an 
empirically determined constant (the same as in Equation 13.47 above); 
and f is an empirically determined exponent (the same as in Equation 
13.47 above). 
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Again, the Greek letter, Π, indicates that the results for each grid cell-
incident distance, Mdij, are multiplied together across all incidents, c.  This 
equation reduces to: 

 

 ∏
| | | |

       (13.51) 

  

 ∏
| | | |

       (13.52) 

 
Outside of the buffer region, the function is a constant, k, divided by the 
distance, Mdij, raised to an exponent, f.  It is an inverse distance function 
and drops off rapidly with distance. 

 
4. Finally, for each grid cell, i, the functions evaluated in step 3 above are summed 

over all incidents. 
 

For both the >within buffer zone= (near to home base) and >outside buffer zone= (far from 
home base) functions, the coefficient, k, and exponents, f and g, are empirically determined.  
Though he does not discuss how these are calculated, they are presumably estimated from a 
sample of known offender locations where the distance to each incident is known (e.g., arrest 
records).   
 

The result is a surface model indicating a likelihood of the offender residing at that 
location.  He describes it as a probability surface, but it is actually a density surface.  Since the 
probability of interaction between any one grid cell, i, and any one incident, j, cannot be greater 
than 1, the surface actually indicates the product of individual likelihoods that the offender uses 
that location as the home base. To be an actual probability function, it would have to be re-scaled 
so that the sum of the grid cells was equal to 1. 
 

The second function - >outside the buffer zone= (Equation 13.52) is a classic gravity 
function, similar to Equation 13.5 except there is no attraction definition.  It is the distance decay 
part of the gravity function.  The first function, Equation 13.49, is an increasing curvilinear 
function designed to model the area of decreased activity near the offender=s home base. 
 
 Strengths and Weaknesses of the Rossmo model 
 

The Rossmo model has both strengths and weaknesses.  First, the model has some 
theoretical basis utilizing the Brantingham and Brantingham (1981) framework for an offender 
search area as well as the mathematics of the gravity model and distinguishes two types of travel 
behavior - near to home and farther from home.  Second, the model does represent a systematic 
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approach towards identifying a likely home base location for an offender.  By evaluating each 
grid cell in the study area, an independent estimate of the likelihood is obtained, which can then 
be integrated into a continuous surface with an interpolation graphics routine. 
 

There are problems with the particular formulation, however.  First, the exclusive use of 
Manhattan distances is questionable.  Unless the study area has a street network that follows a 
uniform grid, measuring distances horizontally and vertically can lead to overestimation of travel 
distances; further, the more the layout differs from a north-south and east-west orientation, the 
greater the distortion.  Since many urban areas do not have a uniform grid street layout, the 
method will necessarily lead to overestimation of travel distances in places where there are 
diagonal or irregular streets.5 
 

Second, the use of a product term, Π, complicates the mathematics.  That is, the 
technique evaluates the distance from a particular grid cell, i, to a particular incident location, j.  
It then multiplies this result by all other results.  Since the P values are actually densities, which 
can be greater than 1.0, the process, if strictly applied, would be a compounding of probabilities 
with overestimation of the likelihood for grid cells close to incident locations and 
underestimation of the likelihood for grid cells farther away.  In the description of the method, 
however, Rossmo actually mentions summing the terms.  Thus, the substitution of a summation 
sign, Σ, for the product sign would help the mathematics. 
 

A third problem is in the distance decay function (Equation 13.52).  The use of an inverse 
distance term has problems as the distance between the grid cell location, i, and the incident 
location, j, decreases.  For some types of crimes, there will be little or no buffer zone around the 
offender=s home base (e.g., rapes by acquaintances).  Consequently, the buffer zone radius, B, 
would approach 0.  However, this would cause the model to become unstable since the inverse 
distance term will approach infinity.  
 
 Fourth, the use of a mathematical function to describe the distance decay, while easy to 
define, probably oversimplifies actual travel behavior.  A mathematical function to describe 
distance decay is an approximation to actual travel behavior.  It assumes that travel is equally 
likely in each direction, that travel distance is uniformly easy (or difficult) in each direction, and 
that, similarly, opportunities are uniformly distributed.  For most urban areas, these conditions 
would not be true.  Few cities form a perfect grid (there are exception, such as Salt Lake City), 
though most cities have sections that are grided.  Both physical geography limit travel in certain 
directions as does the historical street structure, which is often derived from earlier communities.  

                         
5  It should also be pointed out that the use of direct distances will underestimate travel distances particularly 

if the street network follows a grid. 
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A mathematical function does not consider this structure, but rather assumes that the >impedance= 
in all directions is uniform.   
 

This latter criticism, of course, would be true for all mathematical formulations of travel 
distance.  There are corrections that can be made to adjust for this.  For example, in the urban 
travel demand type model, trip distribution between locations is estimated by a gravity model, 
but then the distributed trips are constrained by, first, the total number of trips in the region 
(estimated separately), second, by mode of travel (bus v. single driver v. drivers plus passengers 
v. walk, etc.), and, third, by the route structure upon which the trips are eventually assigned 
(Krueckeberg & Silvers, 1974;  Stopher & Meyburg, 1975; Field & MacGregor, 1987).  
Calibration at all stages against known data sets ensures that the coefficients and exponents fit 
>real world= data as closely as possible. It would take these types of modifications to make the 
travel distribution type of model postulated by Rossmo and others be a more realistic 
representation. 
 

Fifth, the model imposes mathematical rigidity on the data.  While there are two different 
functions that could vary from place to place, the particular type of distance decay function 
might also vary.  Specifying a strict form for the two equations limits the flexibility of applying 
the model to different types of crime or to places where the distance decay does not follow the 
form specified by Rossmo. 
 

A sixth problem is that opportunities for committing crimes - the attractiveness of 
locations, are never measured.  That is, there is no enumeration of the opportunities that would 
exist for an offender nor is there an attempt to measure the strength of this attraction.  Instead, 
the search area is inferred strictly from the distribution of incidents. Because the distribution of 
offender opportunities would be expected to vary from place to place, the model would need to 
be re-calibrated at each location. In this sense, both the Canter model (described below) and my 
Journey-to-crime model (described in the chapter) also share this weakness.  It is understandable 
in that victim/target opportunities are difficult to define a priori since they can be interpreted 
differently by individuals.  Nevertheless, a more complete theory of Journey-to-crime behavior 
would have to incorporate some measure of opportunities, a point that both Brantingham and 
Brantingham (1981) and Rengert (1981) have made.  
 

Finally, the >buffer zone= concept is but one interpretation of the tendency of many crimes 
not to be committed close to the home location.  There are other interpretations that are 
applicable.  For example, the distribution of crime opportunities is often not close to the home 
location, either.  Many crimes occur in commercial areas.  In most American and British cities, 
residential areas are not located in commercial areas.  Thus, there will usually be a distance 
between a residential location and a nearby crime opportunity.  This does not imply anything 
about a >safety zone= for the offender but, instead, may illustrate the distribution of crime 
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opportunities.  If we could map the travel distance of, say, shopping trips, we would probably 
find a similar distribution to that seen in most of Journey-to-crime studies (and illustrated 
below).   
 

The concept of a >buffer zone= is a hypothesis, not a certainty.  The language of it is so 
appealing that many people believe it to be true.  But, to demonstrate the existence of a >buffer 
zone= would require interviewing offenders (or offenders who have been arrested) and 
demonstrating that they did not commit crimes near their residence even though there were 
opportunities (i.e., they valued safety over opportunity).  Otherwise, one cannot distinguish 
between the >buffer zone= hypothesis and the distribution of available opportunities.  They may 
very well be the same thing. 

 

Canter Model 
 

Canter=s group in Liverpool and, more recently, Huddersfield (Canter & Tagg, 1975; 
Canter & Larkin, 1993; Canter & Snook, 1999; Canter, Coffey, Huntley, & Missen, 2000) have 
modified the distance decay function for Journey-to-crime trips by using a negative exponential 
term, instead of the inverse distance.  Their Dragnet program uses the negative exponential 
function: 

 

           (13.53) 
 
where Y is the likelihood of an offender traveling a certain distance to commit a crime,, dij is the 
distance (from a home base location to an incident site), α is an arbitrary constant, β is the 
coefficient of the distance, P is a normalization constant, and e is the base of the natural 
logarithm.  The model is similar to Equation 13.52 except, like Rossmo, it does not include the 
attractiveness of the location. 
 

Using the logic that most crimes are committed near the offender=s home base, Canter, 
Coffey, Huntley, and Missen (2000) use a five step process to estimate a search strategy: 
 

2. The study area is defined by a rectangle that is 20% larger in area than that 
defined by the minimum and maximum X/Y points.  A grid cell structure of 13, 
300 cells is imposed over the rectangle.  Each grid cell is a reference location, i. 

 
3. A decay coefficient is selected.  In Equation 13.53, this would be the coefficient, 

β, for the distance term, dij, both of which are exponents of e.  Unlike Rossmo, 
Canter uses a series of decay coefficients from 0.1 to 10 to estimate the sensitivity 
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of the model. The equation indicates the likelihood with which any location is 
likely to be the home base of the offender based on one incident.  

 
4. Because different offenders have different search areas, the measured distances 

for each cell are divided by a normalization coefficient, P, that adjusts all offenses 
to a comparable range.  Canter uses two different types of normalization function: 
1) Mean inter-point distance between all offenses (across a group of offenders); 
and 2) The QRange, which is an index that takes into account asymmetry in the 
orientation of the incidents. 

 
5. For each reference cell, i, the distance between each grid cell and each incident 

location is evaluated with the function and the standardized likelihoods are 
summed to yield an estimate of location potential. 

 
6. A search cost index is defined by the proportion of the study area that has to be 

searched to find the offender.  By calibrating the model against known cases, an 
estimate of search efficiency is obtained. 

 
Additional modifications can be added to the functions to make them more flexible 

(Canter, Coffey, Huntley & Missen, 2000).  For example, >steps= are distances near to home 
where offenders are not likely to act while >plateaus= are constant distances near to home where 
there is the highest likelihood of acting.  For example, Canter and Larkin (1993) found an area 
around serial offenders= homes of about 0.61 mile in radius within which they were less likely to 
commit crimes. 
 

Canter and Snook (1999) provide estimates of the search cost (or efficiency) associated 
with various distance coefficients.  For example, with the known home base locations of 32 
burglars, a β of 1.0 yielded a mean search cost of 18.06%; that is, on average, only 18.06% of the 
study area had to be searched to find the location of 32 burglars in the calibration sample.  
Clearly, for some of them, a larger area had to be searched while for others a smaller area; the 
average was 18.06%.  Conversely, the mean search cost index for 24 rapists was 21.10% and for 
37 murderers 28.28%.  They further explored the marginal increase in locating offenders by 
increasing the percentage of the study area that had to be searched.  They found for their three 
samples (burglary, rape, homicide) that more than half the offenders could be located within 15% 
of the area searched. 
 

The Canter model is different from the Rossmo model is that it suggests a search strategy 
by the police for a serial offender rather than a particular location.  The strength of it is to 
indicate how narrow an area the police should concentrate on in order to optimize finding an 
offender.  Clearly, in most cases, only a small area needs be searched.  



13.92 

 Strengths and Weaknesses of the Canter model  
 

The model has both strengths and weaknesses.  First, the model provides a search 
strategy for law enforcement.  By examining which type of function best fits a certain type of 
crime, police can target their search efforts more efficiently.  The model is relatively easy to 
implement and is practical.  Second, the mathematical formulation is stable.  Unlike the inverse 
distance function in the Rossmo model, Equation 13.49 will not have problems associated with 
distances that are close to 0.  Further, the model does provide a search strategy for identifying an 
offender.  It is a useful tool for law enforcement officers, particularly as they frame a search for a 
serial offender. 
 

There are also weaknesses to the model.  First, it lacks a theoretical basis. Canter=s 
research has provided a great deal in terms of understanding the activity spaces of serial 
offenders (Canter & Larkin, 1993; Canter & Gregory, 1994; Canter, 1994; Hodge & Canter, 
1998).  However, the empirical model used is strictly pragmatic.  Second, mathematically, it 
imposes the negative exponential function without considering other distance decay models.    In 
the Dragnet program, the decay function is a string of 20 numbers so that, in theory, any function 
can be explored.  However, the default is a negative exponential. The negative exponential has 
been used in many travel behavior studies (Foot, 1981; Bossard, 1993), but it does not always 
produce the best fit.  While the model can be adapted to be more flexible by different exponents 
and including steps and plateaus, for example, it is still tied to the negative exponential form. 
Thus, the model might work in some locations, but may fail in others; a user can=t easily adjust 
the model to make it fit new data. 
 

Third, the coefficient of the negative exponential, α, is defined arbitrarily.  In the Dragnet 
program, it is usually set as 0.5.  While this ensures that the result never exceeds 1.0 for any one 
incident, there is a limit on the location potential summation since the total potential is a function 
of the number of incidents (i.e., it will be higher for more incidents). It would have been better if 
the coefficient were calibrated against a known sample. 
 

Fourth, and finally, also similar to the Rossmo model (and to my journey-to-crime 
model), criminal opportunities (or attractions) are never measured, but are inferred from the 
pattern of crime incidents. As a pragmatic tool for informing a police search, one could argue 
that this is not important.  However, in a different location, the distance coefficient is liable to 
differ as is the search cost index.  It would need to be re-calibrated each time. 
 

Nevertheless, the Canter model is a useful tool for police department and can help shape 
a search strategy.  It is different from the other location models in that it is not focused so much 
on the best prediction for a location of an offender (though the summation discussed above in 
step 4 can yield that) as it does in defining where the search should be optimized. 



Using CrimeStat for Geographic Profiling 
 

Brent Snook, Memorial University of Newfoundland,  
Paul J. Taylor, University of Liverpool, Liverpool 

Craig Bennell, Carleton University, Ottawa 
 

 A challenge for researchers providing investigative support is to use information 
about crime locations to prioritize geographic areas according to how likely they are to 
contain the offender’s residence. One prescient solution to this problem uses probability 
distance functions to assign a likelihood value to the activity space around each crime 
location. A research goal is to identify the function that assigns the highest likelihood to 
the offender’s actual residence, since this should prove more efficient in future 
investigations.  
 
 CrimeStat was used to test of the effectiveness of two functions for a sample of 68 
German serial murder cases, using a measure known as error distance. The top figures 
below illustrate the two functions used and the bottom figures portray the corresponding 
effectiveness of the functions by plotting the percentage of the sample ‘located’ by error 
distance. A steeper effectiveness curve indicates that home locations were closer to the 
point of highest probability and that, consequently, the probability distance function was 
more efficient. In this particular test, no difference was found between the two functions 
in their ability to classify geographic areas.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Original Article: Taylor, P.J., Bennell, C., & Snook B. (2002) Problems of Classification in Investigative Psychology. Proceedings of 
the 8th Conference of the International Federation of Classification Societies, Krakow, Poland 

0

0.1

0.2

0.3

0.4

0.5
0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Distance from Crime

Pr
ob

ab
ili

ty
 o

f L
oc

at
io

n 
O

ff
en

de
r's

 H
om

e

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Distance from Crime

Pr
ob

ab
ili

ty
 o

f L
oc

at
in

g 
O

ff
en

de
r's

 H
om

e

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 800

Error Distance

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge
 o

f S
am

pl
e

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 800

Error Distance

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge
 o

f S
am

pl
e

Negative Exponential 
 

Truncated Negative 
Exponential 

Distance Decay Model 

Cumulative Error 
Distance 



Using Journey-to-crime Routine for Journey-after-crime Analysis 
 

Yongmei Lu 
Department of Geography 

Southwest Texas State University 
San Marcos, TX 

 
 The study of vehicle theft recovery locations can fill a gap in the knowledge about 
criminal travel patterns.   Although the journey-to-crime routine of CrimeStat was 
designed to analyze the distance between offense location and offender’s residential 
location, it can be used to describe the distance between vehicle theft location and the 
corresponding recovery location. 
 
 There were more than 3000 vehicle thefts in the City of Buffalo in 1998.  
Matching the offenses with vehicle recoveries in the same year, 1600 location pairs were 
identified for a journey-after-vehicle-theft analysis. To evaluate the randomness of the 
distances, 1000 groups of simulations were conducted. Every group contains 1600 
simulated trips of journey-after-vehicle-theft. The results indicate that 1) short distances 
dominate journey-after-vehicle-theft, and 2) the observed trips are significantly shorter 
than the random trips given the distribution of possible vehicle theft and recovery 
locations. 
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Using Journey-to-crime Analysis for Different Age Groups of Offenders 
 

Renato Assunção, Cláudio Beato, Bráulio Silva 
CRISP, Universidade Federal de Minas Gerais , Brazil  

 
CrimeStat offers a method for analysing the distance between the crime scene and 

the residence of the offender within the spatial modeling module.   We analysed homicide 
incidents in Belo Horizonte, a Brazilian city of 2 million inhabitants, for the period 
January 1996 – December 2000.  We used 496 homicide cases for which the police 
identified an offender who was living in Belo Horizonte, and for which both the crime 
location and offender residence could be identified. The cases were divided into three 
groups according to the offender‘s age: 1) 14 to 24 (N=201); 2) 25 to 34 (N=176); and 3) 
35 or older (N=119).  The journey-to-crime calibration routine was used to produce a 
probability curve P(d) that gives the approximate chance of  an offender travelling 
approximately distance  d to commit the crime.  

 
We used the normal kernel, a fixed bandwidth of 1000 meters, 100 output bins, 

and the probability (or proportion of all points) option, rather than densities. This is to 
allow comparisons between the three age groups since they have different number of 
homicides. We tested for each age group separately and directed the output to a text file 
to analyse the three groups simultaneously.  

 
The green, blue, and purple curves are associated with the 14-24, 25-34, 35+ year 

olds respectively.  There are more similarities than differences between the groups.  Most 
homicides are committed near to the residence of the offenders with between 60% t o 
70% closer than one mile from their home. However, the curve does not vanish totally 
even for large distances because there are around 15% of offenders, of any age group, 
travelling longer than 3 miles to commit the crime.  The oldest offenders travel longer 
distances, on average, followed by the youngest group, with the 25-34 year olds 
travelling the shortest distances.  
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Catching the Bad Guy 
 

Bryan Hill 
Glendale Police Department 

Glendale, AZ 
 

The City of Glendale, Arizona recently had a string of auto thefts committed by 
the same individual. The map shows known auto theft suspects and their home address.  
The red area in the map shows the most probable home address.  Prior to the analysis, the 
Phoenix Police Department’s Crime Analysis Unit was able to calibrate the CrimeStat Jtc 
routine with known offender robbery suspect data.  
 

Monthly citation data was used to search for anyone that lived within the area 
identified by the routine who also drove a red Saturn.  A suspect with a felony warrant 
was identified and proved to be also the suspect in a series of armed robberies and a 
homicide that occurred in the Phoenix and Glendale jurisdictions.  When he was arrested 
for the felony warrant at his home, evidence of the robberies and homicide were found.   
 



Constructing Geographic Profiles  
Using the CrimeStat Journey-to-crime Routine 

 
Josh Kent, 

Michael Leitner, 
Louisiana State University 

Baton Rouge, LA 
 

The map below shows a geographic profile constructed from nine crime sites 
associated with a Baton Rouge serial killer, Sean Vincent Gillis, who was apprehended 
on April 29, 2004 at his residence in Baton Rouge.  Eight of the nine are body dump sites 
and the ninth is a point of fatal encounter.  All crime sites were located in the City of 
Baton Rouge and surrounding parishes. Gillis’s hunting style can best be described as 
that of a typical ‘localized marauder’. 
 

The Journey-to-crime routine, implemented in CrimeStat , was applied to simulate 
the travel characteristics of Gillis to and from the known crime sites.  Gillis’s travel 
behavior was calibrated with different mathematical functions that were derived from the 
known travel patterns of 301 homicide cases in Baton Rouge. 
 

The profile was estimated using Euclidean distance and the negative exponential 
distance decay function.  It predicts the actual residence of Gillis extremely accurately.  
The straight-line error distance between the predicted and the actual residence is only 
0.49 miles.  The proportion of the entire study area that must be searched in order to 
successfully identify the serial offender’s residence is 0.05% (approximately 0.98 square 
miles out of a 2094.75 square miles study area). 
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Predicting Serial Offender Residence by Cluster in Korea 
 

Kang Eun Kyoung 
Scientific Investigation Center, Korea National Police Agency 

 
Since April, 2009, the Korea National Police Agency have been operating a Geographic 

Profiling system called GeoPros.  GeoPros automatically links three information systems: information 
the police have collected, CrimeStat, and electronic mapping.  Police are able to select areas that need 
crime prevention and decide which need CCTV. Profilers also use this system to predict the residence of 
serial offenders using CrimeStat routines linked with GeoPros.  Specifically, the Nnh and Jtc routines 
were useful in predicting offender residence locations.  We analyzed multiple serial offenders’ data and 
found that offenders typically have 2 or 3 clusters related to their activities (home, workplace, and 
possibly evening entertainment).  

 
For example, one offender committed 32 

crimes including rape, robbery, and theft. With the 
Nnh, we found 3 clusters. The first was associated 
with the criminal’s residence; the second was 
associated with his father’s residence, and the third 
with his lover’s house. The criminal’s residence was 
only 10 meters away from the first cluster. 

 
Another case involved unsolved arson 

cases over ten years (101 offences).  There were 
two clusters that emerged.  One consisted of 
activities in the morning or the evening while 
the second cluster consisted of activities in the 
afternoon. We hypothesized that the first cluster 
was related to the offender’s home while the 
second with the offender’s workplace. It turned out that the criminal’s residence was only 60 meters 
away from the first cluster while his workplace was near the second cluster. We gave the detectives 
involved the information and within two weeks were able to catch the criminal.  
 

One important finding is that offender’s residence is typically not inside of the cluster areas, but 
nearby, which may relate to a buffer zone. In addition to these cases, we have predicted the residence of 
many cases of serial rape and arson by cluster analysis.  

Serial rapist’s map

1st Cluster 
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Bayesian Journey-to-Crime Modeling 
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Chapter 14: 

Bayesian Journey-to-crime Modeling 
 
 The Bayesian Journey-to-crime module (Bayesian Jtc) includes a set of tools for 
estimating the likely residence location of a serial offender.  It is an extension of the Journey-to-
crime routine (Jtc) that uses a travel distance function to make an estimate about the likely 
residence location of a serial offender.  The Bayesian Jtc routine adds information about specific 
origins of offenders who committed crimes in the same locations to the Jtc to update the 
estimate.  Before proceeding with this chapter, users should be thoroughly familiar with the 
material on Jtc modeling discussed in Chapter 13.   
 
 First, the theory behind the Bayesian Jtc routine will be described.  While this material is 
not essential for running the routine, it does provide the background behind the routine.  Users 
who want to go immediately into the routine should skip to the data section on p. 14.10. 
 
 Second, data requirements will be discussed.  Third, the routine will be illustrated with 
data from Baltimore County and from Chicago.  Fourth, the use of probability filters as 
extensions will be illustrated. Fifth, and finally, some guidelines are provided for analysts. 

 

Bayesian Probability 
 
 Bayes Theorem is a formulation that relates the conditional and marginal probability 
distributions of random variables.  The marginal probability distribution is a probability 
independent of any other conditions.  Hence, P(A) and P(B) is the marginal probability (or just 
plain probability) of A and B respectively.   
 
 The conditional probability is the probability of an event given that some other event has 
occurred. It is written in the form of P(A|B) (i.e., event A given that event B has occurred).  In 
probability theory, it is defined as: 
 

| 	 	 	
           (14.1) 

 
 Conditional probabilities can be best be seen in contingency tables.  Table 14.1 below 
shows a possible sequence of counts for two variables (e.g., taking a sample of persons and 
counting their gender - male = 1 v. female = 0, and their age - older than 30 = 1 v. 30 or younger 
= 0).  The probabilities can be obtained just by counting: 
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P(A)  =   30/50 = 0.6 
P(B)  =   35/50 = 0.7 
P(A and B) = 25/50 = 0.5 
P(A or B) = (30+35-25)/50 = 0.8 
P(A|B) = 25/35 = 0.71 
P(B|A) = 25/30 = 0.83 
 

 However, if four of these six calculations are known, Bayes Theorem can be used to 
solve for the other two.  Two logical terms in probability are the >and= condition and the >or= 
condition.  Usually, the symbol  1 is used for >and= c is used for >or=, but writing it in words 
might make it easier to understand. 

 
 Table 14.1: 

Example of Determining Probabilities by Counting 
 

A has 
NOT A has 
occurred occurred TOTAL 

B has NOT 
occurred 10 5 15 

B has occurred 10 25 35 

TOTAL 20 30 50 
 

The following two theorems define these.   
 

1. The probability that either A or B will occur is: 
  

	 	 	 	 	         (14.2) 
 

2. The probability that both A and B will occur is: 
 

	 	 ∗ | ∗ |                 (14.3) 
 
Bayes Theorem relates the two equivalents of the >and= condition together: 
 

∗ | 	 ∗ |                   (14.4) 
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| 	 ∗ |
                    (14.5) 

 
 The theorem is sometimes called the >inverse probability= in that it can invert two 
conditional probabilities: 
 

| 	 ∗ |
           (14.6) 

 
 By plugging in the values from the example in Table 14.1, the reader can verify that 
Bayes Theorem produces the correct results, for example: 
 

 | . ∗ .

.
0.83          (14.7) 

 
 Bayesian Inference   
 
 In the statistical interpretation of Bayes Theorem, the probabilities are estimates of a 
random variable.  Let θ be a parameter of interest and let X be some data.  Thus, Bayes Theorem 
can be expressed as: 
 

| 	
| ∗

                    (14.8) 

 
 Interpreting this equation, P(θ|X) is the probability of θ given the data, X, and is called 
the posterior probability (or posterior distribution).  P(θ) is the probability that θ has a certain 
distribution and is often called the prior probability.  P(X|θ) is the probability that the data would 
be obtained given that θ is true and is often called the likelihood function (i.e., it is the likelihood 
that the data will be obtained given the distribution of θ).  Finally, P(X) is the marginal 
probability of the data, the probability of obtaining the data under all possible scenarios; 
essentially, it is the data. 
 
 The equation can be rephrased in words: 
 
  Posterior  Likelihood of   Prior 
  probability that obtaining the data  probability 
  θ is true given the given θ is true  * of θ 
  data, X  = ------------------------------------------------    (14.9) 
      Marginal probability of X 
 
 In other words, this formulation allows an estimate of the probability of a particular 
parameter, θ, to be updated given new information.  Since θ is the prior probability of an event, 
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given some new data, X, Bayes Theorem can be used to update the estimate of θ.  The prior 
probability of θ can come from prior studies, an assumption of no difference between any of the 
conditions affecting θ, or an assumed mathematical distribution.  The likelihood function can 
also come from empirical studies or an assumed mathematical function.  Irrespective of how 
these are interpreted, the result is an estimate of the parameter, θ, given the evidence, X.   
 
 A point that is often made is that the prior probability of obtaining the data (the 
denominator of the above equation) is not known or cannot easily be evaluated.  The data are 
what was obtained from some data gathering exercise (either experimental or from observations).  
Thus, it is not easy to estimate it. Consequently, often the numerator only is used for estimate the 
posterior probability since: 
 

| ∝ 	 | ∗                   (14.10) 
 
where ∝ means >proportional to=.   In some statistical methods (e.g., the Markov Chain Monte 
Carlo simulation, or MCMC, discussed in Chapters 17, 18 &19), the parameter of interest is 
estimated by thousands of random simulations using approximations to P(X|θ) and  P(θ) 
respectively. 
 
 The key point is that estimates of parameters can be systematically updated by additional 
information.  The formula requires that a prior probability for the estimate be given with new 
information being added which is conditional on the prior estimate, meaning that it takes into 
account information from the prior.  Bayesian approaches are increasingly being used to provide 
estimates for complex calculations that previously were intractable (Denison, Holmes, Mallilck, 
& Smith, 2002; Lee, 2004; Gelman, Carlin, Stern, & Rubin, 2004).  Our regression module 
includes the use of the MCMC algorithm to estimate complex equations. 
 
 Application of Bayesian Inference to Journey-to-crime Analysis   
 
 Bayes Theorem can be applied to the Journey-to-crime methodology.  In the Journey-to-
crime (Jtc) method, an estimate is made about where a serial offender is living.  The Jtc method 
produces probability estimates based on an assumed travel distance function (or, in more refined 
uses of the method, travel time).  That is, it is assumed that an offender follows a typical travel 
distance/time function.  This function can be estimated from prior studies (Canter & Gregory, 
1994; Canter, 2003) or from creating a sample of known offenders - a calibration sample (see 
Chapter 13; Levine, 2000) or from assuming that every offender follows a particular 
mathematical function (Rossmo, 1995; 2000).  Essentially, it is a prior probability for a particular 
location, P(θ).  That is, it is a guess about where the offender lives on the assumption that the 
offender of interest is following an existing travel distance model. 
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 However, additional information from a sample of known offenders where both the crime 
location and the residence location are known can be added. This information would be obtained 
from arrest records, each of which will have a crime location defined (a >destination=) and a 
residence location (an >origin=).  If these locations are then assigned to a set of zones, a matrix 
that relates the origin zones to the destination zones can be created (Figure 14.1).  This is called 
an origin-destination matrix (also known as a trip distribution or O-D matrix, for short). 
 
 In this figure, the numbers indicate crimes committed in each destination zone which 
originated from each origin zone (i.e., where the offender lived).  For example, taking the first 
row in Figure 14.1, there were 37 crimes that were committed in zone 1 and in which the 
offender also lived in zone 1; there were 15 crimes committed in zone 2 in which the offender 
lived in zone 1; however, there were only 7 crimes committed in zone 1 in which the offender 
lived in zone 2; and so forth.  
 
 Note two things about the matrix.  First, the number of origin zones can be (and usually 
is) greater than the number of destination zones because crimes can originate outside the study 
area.  Second, the marginal totals have to be equal.  That is, the number of crimes committed in 
all destination zones must equal the number of crimes originating in all origin zones. 
 
 This information can be treated as the likelihood estimate for the Journey-to-crime 
framework.  That is, if a certain distribution of incidents committed by a particular serial 
offender is known, then this matrix can be used to estimate the likely origin zones from which 
offenders came, independent of any assumption about travel distance. In other words, this matrix 
is equivalent to the likelihood function in Equation 14.8, which is repeated below: 
 

 | 	
| ∗

           repeat (14.8) 

 
 The estimate of the likely origin location of a serial offender can be improved by 
updating the Jtc estimate, P(θ), with information from an empirically-derived likelihood 
estimate, P(X|θ).   
 
 Figure 14.2 illustrates the process.  Suppose a serial offender committed crimes in three 
zones.  These are shown in terms of grid cell zones.  In reality, most zones are not grid cells but 
are irregular.  However, illustrating with grid cells makes the process more understandable.  
Using an O-D matrix based on those cells, only the destination zones corresponding to those 
cells are selected (Figure 14.3).  This process is repeated for all serial offenders in the calibration 
file.  Destination zones that are repeated by different serial offenders are counted multiple times, 
once for each occurrence.  This results in marginal totals that correspond to frequencies for those 
serial offenders who committed crimes in the selected zones.  The marginal totals are then  
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converted to probabilities.  In other words, the distribution of crimes is conditioned on the 
locations that correspond to where the serial offender of interest committed his or her crimes.  It 
is a conditional probability. 
 
 But, what about the denominator of the Bayesian formula, P(X)?  Essentially, it is the 
spatial distribution of all crimes irrespective of which particular model or scenario we are 
exploring.  In practice, it is very difficult, if not impossible, to estimate the probability of 
obtaining the data under all circumstances.  Therefore, only the numerator in equation 14.8 is 
estimated and the final probabilities are re-scaled so that they sum to 1.0 over the study area: 
  

| ∝ k ∗ | ∗         (14.11) 
 

where k is a scaling constant. 
 
 We are going to change the symbols at this point so the Jtc represents the distance-based 
Journey-to-crime estimate, O represents an estimate based on an origin-destination matrix, and 
O|Jtc represents the particular origins associated with crimes committed in the same zones as 
that identified in the Jtc estimate. Therefore, there are three different probability estimates of 
where an offender lives: 
 

1. A probability estimate of the residence location of a single offender based on the 
location of the incidents that this person committed and an assumed travel 
distance function, P(Jtc); 

 
2. A probability estimate of the residence location of a single offender based on a 

general distribution of all offenders, irrespective of any particular destinations for 
incidents, P(O). Essentially, this is the distribution of origins irrespective of the 
destinations; and 

 
3. A probability estimate of the residence location of a single offender based on the 

distribution of offenders given the distribution of incidents committed by other 
offenders who committed crimes in the same location, P(O|Jtc). 
 

 Therefore, Bayes Theorem can be used to create an estimate that combines information 
both from a travel distance function and an origin-destination matrix in which the posterior 
probability of the Journey-to-crime location taking into account the origin-destination matrix is 
proportional to the product of the prior probability of the Journey-to-crime function, P(Jtc), and 
the conditional probability of the origins for other offenders who committed crimes in the same 
locations, P(O). This will be called the product probability.  



Figure 14.2:
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As mentioned above, it is very difficult to determine the probability of obtaining the data 
under any circumstance, P(O).  Consequently, the Bayesian estimate is usually calculated only 
with respect to the numerator, the product of the prior probability and the likelihood function, 
and the result re-scaled so that the probabilities over the study area sum to 1.0.  
 
 A very rough approximation to the full Bayesian probability can be obtained by taking 
the product probability and dividing it by the general probability: It relates the product term (the 
numerator) to the general distribution of crimes.  This will produce a relative risk measure, 
which is called Bayesian Risk: 
 

 | 	
| ∗

               (14.12) 

 
 In this case, the product probability is being compared to the general distribution of the 
origins of all offenders irrespective of where they committed their crimes.  Note that this 
measure will correlate with the product term because they both have the same numerator. 
 

The Bayesian Journey-to-crime Estimation Module 
 
 The Bayesian Journey-to-crime estimation module is made up of two routines, one for 
diagnosing which Journey-to-crime method is best and one for applying that method to a 
particular serial offender.  Figure 14.4 show the layout of the module.  

 

Data Preparation for Bayesian Journey-to-crime Estimation 
 
 There are four data sets that are required: 
 

1. The incidents committed by a single offender for which an estimate will be made 
of where that individual lives;  

 
2. A Journey-to-crime travel distance function that estimates the likelihood of an 

offender committing crimes at a certain distance (or travel time if a network is 
used); 

 
3. An origin-destination matrix; and 

 
4. A diagnostics file of multiple known serial offenders for which both their 

residence and crime locations are known (optional for use in diagnostics routine). 
 

   



Figure 14.4:

Bayesian Journey-to-crime Screen
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 Serial Offender Data 
 
 The first required data set is information on the location of crimes committed by a single 
serial offender. For each serial offender for whom an estimate will be made of where that person 
lives, the data set must include the location of the incidents committed by the offender. The data 
are a series of records in which each represents a single event.  On each record, there are X and 
Y coordinates identifying the location of the incidents this person has committed (Table 14.2).  
There may be other data on the records, but the X and Y coordinates are essential. 
 
 Table 14.2: 

 Minimum Information Required for Serial Offenders: 
 Example for Offender Who Committed Seven Incidents 
 

ID UCR INCIDX INCIDY 
TS7C 430.00 -76.494300 39.2846 
TS7C 440.00 -76.450900 39.3185 
TS7C 630.00 -76.460600 39.3157 
TS7C 430.00 -76.450700 39.3181 
TS7C 311.00 -76.449700 39.3162 
TS7C 440.00 -76.450300 39.3178 
TS7C 341.00 -76.448200 39.3123 

 
 Journey-to-crime Travel Function  
 
 The second data set that is required is a journey-to-crime (Jtc) function.  The Journey-to-
crime travel function is an estimate of the likelihood of an offender traveling a certain distance.  
Typically, it represents a frequency distribution of distances traveled, though it could be a 
frequency distribution of travel times if a network was used to calibrate the function with the 
Journey-to-crime estimation routine.  It can come from an a priori assumption about travel 
distances, prior research, or a calibration data set of offenders who have already been caught.  
The ACalibrate Journey-to-crime function@ routine (on the Journey-to-crime page under Spatial 
modeling) can be used to estimate this function (see Chapter 13). 
 
 The BJtc routine can use two different travel distance functions:  
 

1. An already-calibrated distance function; and  
 

2. A mathematical formula.   
 
 Either direct or indirect (Manhattan) distances can be used though the default is direct 
distance (see Measurement Parameters in Chapter 3, p. 3.29).  In practice, an empirically-derived 
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travel function is often as accurate, if not better, than a mathematically-defined one.  Given that 
an origin-destination matrix is also needed, it is easy for the user to estimate the travel function 
using the ACalibrate Journey-to-crime function@.   
 
 If the user does not have data to calibrate a journey-to-crime travel function, then a 
mathematical model should be used.  Typically, the negative exponential function is used for this 
purpose; the default values will work for many distributions. 
 
 Origin-destination Matrix 
 
 The third required data set is an origin-destination matrix.  The origin-destination matrix 
relates the number of offenders who commit crimes in one of N zones who live (originate) in one 
of M zones, similar to Figure 14.1 above.  It can be created from the ACalculate observed origin-
destination trips@ routine (on the >Describe origin-destination trips= page under the Trip 
distribution module of the Crime Travel Demand model; see Chapter 28).  
 
 How many incidents are needed where the origin and destination location are known?  
While there is no simple answer to this, the numbers ideally should be in the tens of thousands.  
If there are N destinations and M rows, ideally one would want an average of 30 cases for each 
cell to produce a reliable estimate.  Obviously, that is a huge amount of data that cannot easily 
found with any real database.  For example, if there are 325 destination zones and 532 origin 
zones (for the Baltimore County example given below), that would be 172,900 individual cells. 
If the 30 cases or more rule is applied, then that would require 5,187,000 records or more to 
produce a barely reliable estimate for most cells.   
 
 The task becomes even more daunting when it is realized that most of these links (cells) 
have few or no cases in them as offenders typically travel along certain pathways. Obviously, 
such a demand for data is impractical even in the largest jurisdictions.  Therefore, we 
recommend that as much data as possible be used to produce the origin-destination (O-D) matrix, 
at least several years worth.  The matrix can be built with what data is available and then 
periodically updated to produce better estimates. 
 
 Diagnostics File for Bayesian Jtc Routine 
 
 The fourth data set is an optional diagnostics file.  It is used for estimating which of 
several alternative parameters is best at predicting the residence location of serial offenders. 
Essentially, it is a set of serial offenders, each record of which has the X and Y coordinates of 
both the residence location and the crime location.  For example, offender T7B committed seven 
incidents while offender S8A committed eight incidents. The records of both offenders are 
placed in the same file along with the records for all other offenders in the diagnostics file. 
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 The diagnostics file provides information about which parameter (to be described below) 
is best at guessing where an offender lives.  The assumption is that if a particular parameter was 
best with the K offenders in a diagnostics file in which the residence location was known, then it 
also will be best for a serial offender for whom the residence location is not known. 
 
 How many serial offenders are needed to make up a diagnostics file?  Again, there is no 
simple answer to this although the number is much less than for the O-D matrix.  Clearly, the 
more, the better since the aim is to identify which parameter is most sensitive with a certain level 
of precision and accuracy.  We used 88 offenders in the diagnostics file for Baltimore County 
(see below).  Certainly, a minimum of 10 would be necessary.  But, more would certainly be 
more accurate.  Further, the offender records used in the diagnostics file should be similar in 
other dimensions to the offender that is being tracked.  However, this may be impractical.  In the 
example data set, we combined offenders who committed different types of crimes. The results 
may be different if offenders who had committed only one type of crimes were tested (though 
Leitner and Kent, 2009, found that using records for all crimes produced more accurate measures 
than using crime-specific records). 
 
 Once the data sets have been collected, they need to be placed in an appended file, with 
one serial offender on top of another.  Each record has to represent a single incident.  Further, the 
records have to be arranged sequentially with all the records for a single offender being grouped 
together.  The routine automatically sorts the data by the offender ID.  But, to be sure that the 
result is consistent, the data should be prepared in this way. 
 
 The structure of the records is similar to the example in Table 14.3 below.  At the 
minimum, there needs to be an ID field and the X and Y coordinates of both crime location and 
the residence location.  Thus, in the example, all the records for the first offender (Num 1) are 
together; all the records for the second offender (Num 2) are together; and so forth.  The ID field 
is any numeric or string variable.  In Table 14.3, the ID field is labeled AID@, but any label would 
be acceptable as long as it is consistent (i.e., all the records of a single offender are together). 
 
 In addition to the ID field, the X and Y coordinates of both the crime and residence 
location must be included on each record. In the example table, the ID variable is called 
OffenderID, the crime location coordinates are called IncidX and IncidY while the residence 
location coordinates are called HomeX and HomeY.  Again, any label is acceptable as long as 
the column locations in each record are consistent.  As with the Journey-to-crime calibration file, 
other fields can be included.  
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Table 14.3: 

Example Records in Bayesian Journey-to-crime Diagnostics File 
 

OffenderID HomeX HomeY IncidX IncidY
Num 1 -77.1496 39.3762 -76.6101 39.3729 
Num 1 -77.1496 39.3762 -76.5385 39.3790 
Num 1 -77.1496 39.3762 -76.5240 39.3944 
Num 2 -76.3098 39.4696 -76.5427 39.3989 
Num 2 -76.3098 39.4696 -76.5140 39.2940 
Num 2 -76.3098 39.4696 -76.4710 39.3741 
Num 3 -76.7104 39.3619 -76.7195 39.3704 
Num 3 -76.7104 39.3619 -76.8091 39.4428 
Num 3 -76.7104 39.3619 -76.7114 39.3625 
Num 4 -76.5179 39.2501 -76.5144 39.3177 
Num 4 -76.5179 39.2501 -76.4804 39.2609 
Num 4 -76.5179 39.2501 -76.5099 39.2952 
Num 5 -76.3793 39.3524 -76.4684 39.3526 
Num 5 -76.3793 39.3524 -76.4579 39.3590 
Num 5 -76.3793 39.3524 -76.4576 39.3590 
Num 5 -76.3793 39.3524 -76.4512 39.3347 
Num 6 -76.5920 39.3719 -76.5867 39.3745 
Num 6 -76.5920 39.3719 -76.5879 39.3730 
Num 6 -76.5920 39.3719 -76.7166 39.2757 
Num 6 -76.5920 39.3719 -76.6015 39.4042 
Num 7 -76.7152 39.3468 -76.7542 39.2815 
Num 7 -76.7152 39.3468 -76.7516 39.2832 
Num 7 -76.7152 39.3468 -76.7331 39.2878 
Num 7 -76.7152 39.3468 -76.7281 39.2889 
.   
.   
.   
.   
Num Last -76.4320 39.3182 -76.4297 39.3172 
Num Last -76.4880 39.3372 -76.4297 39.3172 
Num Last -76.4437 39.3300 -76.4297 39.3172 
Num Last -76.4085 39.3342 -76.4297 39.3172 
Num Last -76.4083 39.3332 -76.4297 39.3172 
Num Last -76.4082 39.3324 -76.4297 39.3172 
Num Last -76.4081 39.3335 -76.4297 39.3172 

 
Logic of the Routine 

 
 The module is divided into two parts (under the ABayesian Journey-to-crime Estimation@ 
page of ASpatial Modeling@): 
 

1. Diagnostics for Journey-to-crime methods; and 
 

2. Estimate likely origin location of a serial offender. 
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 The Adiagnostics@ routine takes the diagnostics calibration file and estimates a number of 
methods for each serial offender in the file and tests the accuracy of each parameter against the 
known residence location.  The result is a comparison of the different methods in terms of 
accuracy in predicting both where the offender lives as well as minimizing the distance between 
where the method predicts the most likely location for the offender and where the offender 
actually lives. 
 
 The Aestimate@ routine allows the user to choose one method and to apply it to the data 
for a single serial offender.  The result is a probability surface showing the results of the method 
in predicting where the offender is liable to be living. 
 

Bayesian Journey-to-crime Diagnostics 
 
 The following applies to the Bayesian Journey-to-crime (BJtc) Diagnostics routine only. 
 

Data Input 
 
 The user inputs the four required data sets.   
 

1. Any primary file with an X and Y location. A suggestion is to use the file for the 
one of the serial offenders, but this is not essential; 

 
2. A grid that will be overlaid on the study area.  Use the Reference File under Data 

Setup to define the X and Y coordinates of the lower-left and upper-right corners 
of the grid as well as the number of columns (see Chapter 3, p. 3.21); 

 
3.  A Journey-to-crime travel function (Jtc) that estimates the likelihood of an 

offender committing crimes at various distances or travel times if a network is 
used (see Chapter 13).   

 
4. An observed origin-destination matrix (see Chapter 28, p. 28.17); and 

 
5. A diagnostics file of known serial offenders in which both their residence and 

crime locations are known (BJtc Diagnostics) 
 

Methods Tested 
 
 The BJtc Diagnostics routine compares six methods for estimating the likely location of a 
serial offender and will include up to four additional methods if filters are used (see below). 
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1. The Jtc distance method, P(Jtc); 
 

2. The general crime distribution based on the origin-destination matrix, P(O).  
Essentially, this is the distribution of origins irrespective of the destinations;  

 
3. The distribution of origins in the O-D matrix based only on the incidents in zones 

that are identical to those committed by the serial offender, P(O|Jtc); 
 

4. The product of the Jtc estimate (1 above) and the distribution of origins based 
only on those incidents committed in zones identical to those by the serial 
offender (3 above), P(Jtc)*P(O|Jtc).  This is the numerator of the Bayesian 
function (Equation 14.8), the product of the prior probability times the likelihood 
estimate; 

 
5. The Bayesian Risk estimate as indicated in Equation 14.8 above (method 4 above 

divided by method 2 above), P(Bayesian).  This is a rough approximation to the 
full Bayesian function in Equation 14.12 above; and 

 
6. The center of minimum distance, Cmd.  Previous research has shown that the 

center of minimum of distance has the least error in minimizing the distance 
between the most likely location for the offender and where the offender actually 
lives (Paulsen, 2006a; Snook, Zito, Bennell, & Taylor, 2005; Levine, 2000). 

 
7. If filters are used: The product of the Jtc estimate and the filters, P(Jtc)*F1*F2. 
 
8. If filters are used: The product of the Conditional estimate and the filters, 

P(O|Jtc)*F1*F2. 
 
9. If filters are used: The product of the “Product” estimate and the filters, 

P(Jtc)*P(O|Jtc)*F1*F2. 
 
10. If filters are used: The product of the Bayesian Risk estimate and the filters, 

P(Bayesian)*F1*F2. 
 

 Interpolated Grid 
 
 For each serial offender in turn in the BJtc Diagnostics file and for each method, the 
routine overlays a grid over the study area.  The grid is defined by the Reference File parameters 
(see Chapter 3).  The routine then interpolates each input data set into a probability estimate for 
each grid cell with the sum of the cells equaling 1.0 (within three decimal places).   
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 The manner in which the interpolation is done varies by the method: 
 

1. For the Jtc method, P(Jtc), the routine interpolates the selected distance function 
to each grid cell to produce a density estimate.  The densities are then re-scaled so 
that the sum of the grid cells equals 1.0 (see Chapter 10 on kernel density 
interpolation); 

 
2. For the general crime distribution method, P(O), the routine sums up the incidents 

by each origin zone from the origin-destination matrix and interpolates that using 
the normal distribution method of the single kernel density routine (see Chapter 
10 on kernel density interpolation). The density estimates are converted to 
probabilities so that the sum of the grid cells equals 1.0; 

 
3. For the distribution of origins based only on the incidents committed by the serial 

offender, from the origin-destination matrix the routine identifies the zone in 
which the incidents occurred and reads only those origins associated with those 
destination zones.  Multiple incidents committed in the same origin zone are 
counted multiple times.  The routine adds up the number of incidents counted for 
each zone and uses the single kernel density routine to interpolate the distribution 
to the grid (see Chapter 10 on kernel density interpolation).  The density estimates 
are converted to probabilities so that the sum of the grid cells equals 1.0;  

 
4. For the product of the Jtc estimate and the distribution of origins based only on 

the incidents committed by the serial offender, the routine multiples the 
probability estimate obtained in 1 above by the probability estimate obtained in 3 
above.  The probabilities are then re-scaled so that the sum of the grid cells equals 
1.0; 

 
5. For the Bayesian Risk estimate, the routine takes the product estimate (4 above) 

and divides it by the general crime distribution estimate (2 above).  The resulting 
probabilities are then re-scaled so that the sum of the grid cells equals 1.0; and 

 
6. For the center of minimum distance estimate, the routine calculates the center of 

minimum distance for each serial offender in the Adiagnostics@ file and calculates 
the distance between this statistic and the location where the offender is actually 
residing.  This is used only for the distance error comparisons. 

 
7. For the interaction of the Jtc, Conditional, “Product” and Bayesian Risk estimates 

with the filters, the estimates are obtained by multiplying the filters times these 
terms and then re-scaling so that the sum of the grid cells equals 1.0. 
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 Note in all of the probability estimates (excluding 6), the cells are converted to 
probabilities prior to any multiplication or division.  The results are then re-scaled so that the 
resulting grid is a probability (i.e., all cells sum to 1.0). 
 

Output 
 
 For each offender in the BJtc Diagnostics file, the routine calculates three different 
statistics for each of the methods: 
 

1. The estimated probability in the cell where the offender actually lives.  It does this 
by, first, identifying the grid cell in which the offender lives (i.e., the grid cell 
where the offender=s residence X and Y coordinate is found) and, second, by 
noting the probability associated with that grid cell; 

 
2. The percentile of all grid cells in the entire grid that have to be searched to find 

the cell where the offender lives based on the probability estimate from 1 above, 
ranked from those with the highest probability to the lowest.  Obviously, this 
percentage will vary by how large a reference grid is used (e.g., with a very large 
reference grid, the percentile where the offender actually lives will be small 
whereas with a small reference grid, the percentile will be larger).  But, since the 
purpose is to compare methods, the actual percentage should be treated as a 
relative index.   

 
 The result is sorted from low to high so that the smaller the percentile, the better.  

For example, a percentile of 1% indicates that the probability estimate for the cell 
where the offender lives is within the top 1% of all grid cells.  Conversely, a 
percentile of 30% indicates that the probability estimate for the cell where the 
offender lives in within the top 30% of all grid cells; and 

 
3. The distance between the cell with the highest probability and the cell where the 

offender lives. 
 
 These three indices provide information about the accuracy and precision of the method. 
Table 14.4 illustrates a typical probability output for four of the methods.  Only five serial 
offenders are shown in the table. 
 

Output matrices  
 
 The BJtc Diagnostics routine outputs two separate matrices.  The probability estimates 
(numbers 1 and 2 above) are presented in a separate matrix from the distance estimates (number 
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Table 14.4: 

Sample Output of Probability Matrix 
 

  Percentile for  Percentile for  Percentile for  Percentile for 
Offender P(Jtc) P(Jtc) P(O|Jtc) P(O|Jtc) P(O) P(O) P(Jtc)*P(O|Jtc) P(Jtc)*P(O|Jtc) 

1 0.001169 0.01% 0.000663 0.01% 0.0003 11.38% 0.002587 0.01% 
2 0.000292 5.68% 0.000483 0.12% 0.000377 0.33% 0.000673 0.40% 

3 0.000838 0.14% 0.000409 0.18% 0.0002 30.28% 0.00172 0.10% 
4 0.000611 1.56% 0.000525 1.47% 0.0004 2.37% 0.000993 1.37%
5 0.001619 0.04% 0.000943 0.03% 0.000266 11.98% 0.004286 0.04% 

 
 Table 14.5 illustrates a typical distance output for four of the methods.  Only five serial 
offenders are shown in the table. 
 

Table 14.5: 

Sample Output of Distance Matrix 
 

  Distance for 

Offender Distance(Jtc) Distance(O|Jtc) Distance(O) P(Jtc)*P(O|Jtc) 
1 0.060644 0.060644 7.510158 0.060644 
2 6.406375 0.673807 2.23202 0.840291 
3 0.906104 0.407762 11.53447 0.407762 
4 3.694369 3.672257 2.20705 3.672257 
5 0.423577 0.405526 6.772228 0.423577 

 
   
3 above).  The user can save the total output as a text file or can copy and paste each of the two 
output matrices into a spreadsheet separately.  We recommend the copying-and-pasting method 
into a spreadsheet as it will be difficult to line up differing column widths for the two matrices 
and summary tables in a text file. 

 

Which is the Most Accurate and Precise Method? 
 

 Accuracy and precision are two different criteria for evaluating a method.  With 
accuracy, one wants to know how close a method comes to a target.  The target can be an exact 
location (e.g., the residence of a serial offender) or it can be a zone (e.g., a high probability area 
within which the serial offender lives).  Precision, on the other hand, refers to the consistency of 
the method, irrespective of how accurate it is.  A more precise measure is one in which the 
method has a limited variability in estimating the central location whereas a less precise measure 
has a higher degree of variability.  These two criteria - accuracy and precision, often conflict.   
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 The following example is from Jessen (1979).  Consider a target that one is trying to >hit= 
(Figure 14.5A).  The target can be a physical target, such as a dart board, or it can be a location 
in space, such as the residence of a serial offender.  One can think of three different >throwers= or 
methods attempting to hit the center of target, the Bulls Eye.  The throwers make repeated 
attempts to hit the target and the >throws= (or estimates from the method) can be evaluated in 
terms of accuracy and precision.  In Figure 14.5B, the thrower is all over the dartboard. There is 
no consistency at all.  However, if the center of minimum distance (Cmd) is calculated, it is very 
close to the actual center of the target, the Bulls Eye.  In this case, the thrower is accurate but not 
precise.  That is, there is no systematic bias in the thrower=s throws, but they are not reliable.  
This thrower is accurate (or unbiased) but not precise. 
 
 In Figure 14.5C, there is an opposite condition.  In this case, the thrower is precise but 
not accurate. That is, there is a systematic bias in the throws even though the throws (or method) 
are relatively consistent.   Finally in Figure 14.5D, the thrower is both relatively precise and 
accurate as the Cmd of the throws is almost exactly on the Bulls Eye.   
 
 One can apply this analogy to a method.  A method produces estimates from a sample.  
For each sample, one can evaluate how accurate is the method (i.e., how close to the target did it 
come) and how consistent is it (how much of variability does it produce).  Perhaps the analogy is 
not perfect because the thrower makes multiple throws whereas the method produces a single 
estimate.   But, clearly, we want a method that is both accurate and precise. 
 

Measures of Accuracy and Precision 
 
 Much of the debate in the area of Journey-to-crime estimation has revolved around 
arguments about the accuracy and precision of the method.  Levine (2000) first raised the issue 
of accuracy by proposing distance from the location with the highest probability to the location 
where the offender lived as a measure of accuracy, and suggested that simple, centrographic 
measures were as accurate as more precise Journey-to-crime methods in estimating this. Paulsen 
(2006a; 2006b) confirmed that centrgraphic methods were more accurate than journey-to-crime 
method.  Snook and colleagues also confirmed this conclusion and showed that human subjects 
could do as well as any of the algorithms (Snook, Zito, Bennell, & Taylor, 2005; Snook, Taylor 
& Bennell, 2004).  
 

On the other hand, Canter, Coffey and Missen (2000), Canter (2003), and Rossmo (2000) 
have argued for an area of highest probability being the criterion for evaluating accuracy, 
indicating a >search cost= or a >hit score= with the aim being to narrow the search area to as small  
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as possible.  Rich and Shivley (2004) compared different Journey-to-crime/geographic profiling 
software packages and concluded that there were at least five different criteria for evaluating 
accuracy and precision - error distance, search cost/hit score, profile error distance, top profile 
area, and profile accuracy. 
 
 Rossmo (2005a; b) and Rossmo and Filer (2005) have critiqued these measures as being 
too simple and have rejected error distance.  Levine (2005) justified the use of error distance as 
being fundamental to statistical error while acknowledging that an area measure is necessary, 
too.   
 
 While the debate continues to develop, practically a distinction can be made between 
measures of accuracy and measures of precision.  Accuracy is measured by how close to the 
target is the estimate while precision refers to how large or small an area the method produces.  
The two become identical when the precision is extremely small, similar to a variance 
converging into a mean as the distance between observations and the mean approach zero.   
 
 In evaluating the methods, five different measures are used: 
 
 Accuracy Measures 
 

1. True accuracy - the probability in the cell where the offender actually lives.  The 
Bayesian Jtc diagnostics routine evaluates the six above mentioned methods on a 
sample of serial offenders with known residence address.  Each of the methods 
(except for the center of minimum distance, Cmd) has a probability distribution.  
That method which has the highest probability in the cell where the offender lives 
is the most accurate. 

 
2. Diagnostic accuracy - the distance between the cell with the highest probability 

estimate and the cell where the offender lives.  Each of the methods produces 
probability estimates for each cell.  The cell with the highest probability is the 
best guess for where the offender lives.  The distance from this location to where 
the offender lives is an indicator of the diagnostic accuracy of the method. 

 
3. Neighborhood accuracy - the percent of offenders who reside within the cell 

with the highest probability.  Since the grid cell is the smallest unit of resolution, 
this measures the percent of all offenders who live at the highest probability cell. 
This was estimated by those cases where the error distance was smaller than half 
the grid cell size. 
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 Precision Measures 
 

4. Search cost/hit score - the percent of the total study area that has to be searched 
to find the cell where the offender actually lived after having sorted the output 
cells from the highest probability to the lowest 

 
5. Potential search cost - the percent of offenders who live within a specified 

distance of the cell with the highest probability.  In this evaluation, two distances 
are used though others can certainly be used: 

 
A. The percent of offender who live within one mile of the cell with the 

highest probability.  
 

B. The percent of offenders who live within one-half mile of the cell with the 
highest probability (AProbable search area in miles@). 

 
 Summary Statistics 
 
 The Adiagnostics@ routine will also provide summary information at the bottom of each 
matrix.   There are summary measures and counts of the number of times a method had the 
highest probability or the closest distance from the cell with the highest probability to the cell 
where the offender actually lived; ties between methods are counted as fractions (e.g., two tied 
methods are given 0.5 each; three tied methods are give 0.33 each).  For the probability matrix, 
these statistics include: 
 

1. The mean (probability or percentile); 
2. The median (probability or percentile); 
3. The standard deviation (probability or percentile); 
4. The number of times the P(Jtc) estimate produces the highest probility; 
5. The number of times the P(O|Jtc) estimate produces the highest probability; 
6. The number of times the P(O) estimate produces the highest probability; 
7. The number of times the product term estimate produces the highest probability; 
8. The number of times the Bayesian estimate produces the highest probability. 
9. If filters are used: The number of times the Jtc, Conditional, Product, and 

Bayesian Risk estimates times the filters produce the highest probability. 
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 For the distance matrix, these statistics include: 
 

1. The mean distance; 
2. The median distance; 
3. The standard deviation distance; 
4. The number of times the P(Jtc) estimate produces the closest distance; 
5. The number of times the P(O|Jtc) estimate produces the closest distance; 
6. The number of times the P(O) estimate produces the closest distance; 
7. The number of times the product term estimate produces the closest distance; 
8. The number of times the Bayesian Risk estimate produces the closest distance; 

and 
9. The number of times the CMD produces the closest distance. 
10. If filters are used: The number of times the Jtc, Conditional, Product, and 

Bayesian Risk estimates times the filters produce the closest distance. 
 
Testing the Routine with Serial Offenders from Baltimore County 

 
 To illustrate the use of the Bayesian Jtc diagnostics routine, the records of 88 serial 
offenders who had committed crimes in Baltimore County, MD, between 1993 and 1997 were 
compiled into a diagnostics file.  The number of incidents committed by these offenders varied 
from 3 to 33 and included a range of different crime types (larceny, burglary, robbery, vehicle 
theft, arson, and bank robbery).   
 
 Because the methods are interdependent, traditional parametric statistical tests cannot be 
used.  Instead, non-parametric tests have been applied. For the probability and distance 
measures, two tests were used.  First, the Friedman two-way analysis of variance test examines 
differences in the overall rank orders of multiple measures (treatments) for a group of subjects 
(Kanji, 1993, 115; Siegel, 1956). This is a Chi-square test and measures whether there are 
significant differences in the rank orders across all measures (treatments).  Second, differences 
between specific pairs of measures can be tested using the Wilcoxon matched pairs signed-ranks 
test (Siegel, 1956, 75-83).  This examines pairs of methods by not only their rank, but also by the 
difference in the values of the measurements. 
 
 For the percentage of offenders who lived in the same grid cell, within one mile, and 
within one half-mile of the cell with the peak likelihood, the Cochran Q test for k related samples 
was used to test differences among the methods (Kanji, 1993, 74; Siegel, 1956, 161-166).  This 
is a Chi-square test of whether there are overall differences among the methods in the 
percentages, but cannot indicate whether any one method has a statistically higher percentage. 
Consequently, the method with the highest percentage was tested against the method with the 
second highest percentage using the Cochran Q test to see whether the best method stood out. 



14.26 

 Results: Accuracy 
 
 Table 14.6 presents the results three accuracy measures.   For the first measure, the 
probability estimate in the cell where the offender actually lived, the product probability is far 
superior to any of the others.  It has the highest mean probability of any of the measures and is 
more than double the probability of the Journey-to-crime method.  The Friedman test indicates 
that these differences are significant and the Wilcoxon matched pairs test indicates that the 
product has a significantly higher probability than the second best measure, the Bayesian Risk, 
which in turn is significantly higher than the Journey-to-crime measure.  At the low end, the 
general probability has the lowest average and is significantly lower than the other measures. 
 
 In terms of the individual offenders, the product probability had the highest probability 
for 74 of the 88 offenders.   For the other methods, the Bayesian Risk measure had the highest 
probability for 10 offenders, the Journey-to-crime measure for one offender, the conditional 
probability for two offenders and the general probability for one offender.   

 
Table 14.6: 

Accuracy Measures of Total Sample 
 

       Mean distance Percent of 
    Mean   from highest  offenders whose 
    probability in  probability cell to residence is in 
 Method  offender cella  offender cell (mi)b highest prob. cellc 
 
 Journey-to-crime   0.00082   2.78     12.5% 
 
 General    0.00025   8.21       0.0% 
 Conditional    0.00052   3.22       3.4% 
 
 Product    0.00170   2.65     13.6% 
 
 Bayesian Risk    0.00131   3.15     10.2% 
 
 Cmd     n.a.    2.62     18.2% 

_____________________________________________________________________ 
a  Friedman χ2 =236.0 ; d.f. = 4; p≤.001; Wilcoxon signed-ranks test at p≤.05: Product > Bayesian 

Risk  > JTC = Conditional > General 
b Friedman χ2 = 114.2; d.f. = 5; p≤.001; Wilcoxon signed-ranks test at p≤.05: CMD = Product = 

JTC > Bayesian Risk = Conditional < General 
c Cochran Q=33.9, d.f. =5, p≤.001; Cochran Q of difference between best & second best=1.14, n.s.  



14.27 

 Finally, for the third accuracy measure, the percent of offenders residing in the area 
covered by the cell with the highest probability estimate, the Cmd has the highest percentage 
(18.2%) followed by the product probability (13.6%), and the Journey-to-crime probability 
(12.5%).  The Cochran Q shows significant differences over all these measures.  However, the 
difference between the measure with the highest percentage in the same grid cell (the Cmd) and 
the measure with the second highest percentage (the product probability) is not significant. 
 
 For accuracy, the product probability appears to be better than the Journey-to-crime 
estimate and almost as accurate as the Cmd.  It has the highest probability in the cell where the 
offender lived and a lower error distance than the Journey-to-crime method (though not 
significantly so). Finally, it had a slightly higher percentage of offenders living in the area 
covered by cell with the highest probability than for the Journey-to-crime.  
 
 The Cmd, on the other hand, which had been shown to be the most accurate in previous 
studies (Paulsen, 2006a; 2006b; Snook, Zito, Bennell, and Taylor, 2005; Snook, Taylor and 
Bennell, 2004; Levine, 2000), does not appear to be more accurate than the product probability. 
It has only a slightly lower error distance and a slightly higher percentage of offenders residing 
in the area covered by the cell with the highest probability.  Thus, the product term has equaled 
the Cmd in terms of accuracy.  Both, however, are more accurate than the Journey-to-crime 
estimate. 
 
 For the measure of diagnostic accuracy (the distance from the cell with the highest 
probability to the cell where the offender lived), the center of minimum distance (Cmd) had the 
lowest error distance followed closely by the product term.  The Journey-to-crime method had a 
slightly larger error.  Again, the general probability had the greatest error, as might be expected.  
The Friedman test indicates there are overall differences among the six measures in the mean 
distance. The Wilcoxon signed-ranks test, however, showed that the Cmd, the product, and the 
Journey-to-crime estimates are not significantly different, though all are significantly lower than 
the Bayesian Risk measure and the conditional probability which, in turn, are significantly lower 
than the general probability.  
 
 In terms of individual cases, the Cmd produced the lowest average error distance for 30 
of the 88 cases while the conditional term (O|Jtc) had the lowest error distance in 17.9 cases 
(including ties).  The product term produced a lower average error distance for 9.5 cases 
(including ties) and the Jtc estimate produced lower average distance errors in 8.2 cases (again, 
including ties). In other words, the Cmd will either be very accurate or very inaccurate, which is 
not surprising given that it is only a point estimate. 
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 Results: Precision 
 
 Table 14.7 presents the three precision measures used to evaluate the six different 
measures.  For the first measure, the mean percent of the study area with a higher probability 
(what Canter called >search cost= and Rossmo called >hit score=; Canter, 2003; Rossmo, 2005a, 
2005b), the Bayesian Risk measure had the lowest percentage followed closely by the product 
term.  The conditional probability was third followed by the Journey-to-crime probability 
followed by the general probability.  The Friedman test indicates that these differences are 
significant overall and the Wilcoxon test shows that the Bayesian Risk, product term, conditional 
probability and Journey-to-crime estimates are not significantly different from each other.  The 
general probability estimate, however, is much worse. 
 
 In terms of individual cases, the product probability had either the lowest percentage or 
was tied with other measures for the lowest percentage in 36 of the 88 cases.  The Bayesian Risk 
and Journey-to-crime measures had the lowest percentage or were tied with other measures for 
the lowest percentage in 34 of the 88 cases. The conditional probability had the lowest 
percentage or was tied with other measures for the lowest percentage in 23 of the cases.  Finally, 
the general probability had the lowest percentage or was tied with other measures for the lowest 
percentage in only 7 of the cases.  
 
 Similar results are seen for the percent of offenders living within one mile of the cell with 
the highest probability and also for the percent living within a half mile.  For the percent within 
one mile, the product term had the highest percentage followed closely by the Journey-to-crime 
measure and the Cmd.  Again, at the low end is the general probability.  The Cochran Q test 
indicates that these differences are significant over all measures though the difference between 
the best method (the product) and the second best (the Journey-to-crime) is not significant. 
 
 Conclusion of the Evaluation 
 
 In conclusion, the product method appears to be an improvement over the Journey-to-
crime method, at least with these data from Baltimore County.  It is substantially more accurate 
and about as precise.  Further, the product probability appears to be, on average, almost as 
accurate as the Cmd, though the Cmd still is more accurate in assessing the exact location of 
offenders.  That is, the Cmd will identify about one-sixth of all offenders exactly.  For a single 
guess of where a serial offender is living, the center of minimum distance produced the lowest 
distance error.  But, since it is only a point estimate, it cannot point to a search area where the 
offender might be living.  The product term, on the other hand, produced an average distance 
error almost as small as the center of minimum distance, but produced estimates for other grid 
cells too.  Among all the probability measures, it had the highest probability in the cell where the 
offender lived and was among the most efficient in terms of reducing the search area. 
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Table 14.7: 

Precision Measures of Total Sample 
 
     Mean percent  Percent of offenders living within 
     of study area  distance of highest probability cell: 
     with higher    
  Method  probabilitya  1 mileb  0.5 milesc  
 
  Journey-to-crime      4.7%  56.8%    44.3% 
 
  General     16.8%    2.3%      0.0% 
  Conditional       4.6%   47.7%    31.8% 
 
  Product       4.2%   59.1%   48.9% 
 
  Bayesian Risk       4.1%   51.1%    42.0% 
 
  Cmd        n.a.    54.5%    42.0% 

 ________________________________________________________________ 
a  Friedman χ2 =115.4 ; d.f. = 4; p_.001; Wilcoxon signed-ranks test at p_.05: Bayesian 

Risk =Product= JTC = Conditional> General 
b Cochran Q = 141.0, d.f. = 5, p_.001; Cochran Q of difference between best and second 

best = 0.7, n.s. 
c Cochran Q = 112.2, d.f. = 5, p_.001; Cochran Q of difference between best and second 

best = 2.0, n.s.  

 
 
 In other words, using information about the origin location of other offenders appears to 
improve the accuracy of the Jtc method.  The result is an index (the product term) that is almost 
as good as the center of minimum distance, but one that is more useful since the center of 
minimum distance is only a single point. 
 
 Of course, each jurisdiction should re-run these diagnostics to determine the most 
appropriate measure. It is very possible that other jurisdictions will have different results due to 
the uniqueness of their land uses, street layout, and location in relation to the center of the 
metropolitan area.  Baltimore County surrounds the City of Baltimore on three sides.  It has a 
mixture of neighborhoods including parts of the central city, older suburbs, newer suburbs, 
separate communities and rural areas.  The model results which fit Baltimore County might not 
fit other places. 
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Tests with Other Data Sets 
 
 The Bayesian Journey-to-crime model was tested in 2009 in several jurisdictions: 
 

1. In Baltimore County with 850 serial offenders (Leitner & Kent, 2009); 
 
2. In the Hague, Netherlands with 62 serial burglars (Block & Bernasco, 2009); 
 
3. In Chicago, with 103 serial robbers (Levine & Block, 2011); and 
 
4. In Manchester, England with 171 serial offenders (Levine & Lee, 2009). 

 
 In all cases, the product probability measure was both more accurate and more precise 
than the Journey-to-crime measure.  In two of the studies (Chicago and the Hague), the product 
term was also more accurate than the Center of Minimum Distance.  In the other two studies 
(Baltimore County and Manchester), the Center of Minimum Distance was slightly more 
accurate than the product term.   
 
 Among the probability methods, the product term was more accurate than all other 
measures for three of the studies (Baltimore County, Chicago, Manchester).  For the Hague 
study, however, the conditional estimate was more accurate.  This was because the journey-to-
crime estimate was very inaccurate due to the small size of the Hague (Block & Bernasco, 2009). 
 
 The mathematics of these models has been explored by O=Leary (2009).  These studies 
are presented in a special issue of the Journal of Investigative Psychology and Offender 
Profiling.  Introductions are provided by Canter (2009) and Levine (2009). 
 
 In short, the product term appears to be almost as good a method as the Center of 
Minimum Distance and generally the best of the probability methods.  However, users should 
first test whether this conclusion holds for their jurisdiction. 
 

Estimate Likely Origin Location of a Serial Offender 
 
 The following applies to the Bayesian Jtc Estimate Likely Origin Location (BJtc) of a 
Serial Offender routine.  Once the BJtc Diagnostic routine has been run and a preferred method 
selected, the next routine allows the application of that method to a single serial offender. 
 

Data Input 
 
 The user inputs the three required data sets and a reference file grid: 
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1. The incidents committed by a single offender that we are interested in catching.  
This must be the Primary File; 

 
2. A Jtc function that estimates the likelihood of an offender committing crimes at a 

certain distance (or travel time if a network is used).  This can be either a 
mathematically-defined function or an empirically-derived one (see Chapter 13 on 
Journey-to-crime Estimation).  In general, the empirically-derived function is 
slightly more accurate than the mathematically-defined one though the differences 
are not large;  

 
3.  An origin-destination matrix; and 

 
4. The reference file also needs to be defined and should include all locations where 

crimes have been committed (see Reference File). 
 

Selected Method 
 
 The BJtc routine interpolates the incidents committed by the serial offender to a grid, 
yielding an estimate of where the offender is liable to live.  There are five standard methods that 
can be used and ten additional methods if filters are used.  However, the user has to choose one 
of these: 
 

1. The Jtc distance method, P(Jtc); 
 

2. The general crime distribution based on the origin-destination matrix, P(O).  
Essentially, this is the distribution of origins irrespective of the destinations;  

 
3. The conditional Jtc distance.  This is the distribution of origins based only on the 

incidents committed by other offenders in the same zones as those committed by 
the serial offender, P(O|Jtc).  This is extracted from the O-D matrix;  

 
4. The product of the Jtc estimate (1 above) and the distribution of origins based 

only on the incidents committed by the serial offender (3 above), P(Jtc)*P(O|Jtc).  
This is the numerator of the Bayesian function (Equation 14.8), the product of the 
prior probability times the likelihood estimate; and 

 
4. The Bayesian Risk estimate as indicated in Equation 14.12 above (method 4 

above divided by method  2 above), P(Bayesian). 
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5. If one filter is used: the interaction between the Jtc, the Conditional, the Product, 
and the Bayesian Risk measures with the one filter. Also, the filter by itself can be 
checked. 
 

6. If two filters are used: the interaction between the Jtc, the Conditional, the 
Product, and the Bayesian measures with the two filters.  Also, the two filters by 
themselves can be checked. 

 
As mentioned, however, the user must choose only one of these for estimation. 
 
 Interpolated Grid 

 
 For the BJtc method that is selected, the routine overlays a grid on the study area.  The 
grid is defined by the reference file parameters (see Chapter 3).  The routine then interpolates the 
input data set (the primary file) into a probability estimate for each grid cell with the sum of the 
cells equaling 1.0 (within three decimal places).  The manner in which the interpolation is done 
varies by the method chosen: 
 

1. For the Jtc method, P(Jtc), the routine interpolates the selected distance function 
to each grid cell to produce a density estimate.  The density estimates are 
converted to probabilities so that the sum of the grid cells equals 1.0 (see Chapter 
10 on kernel density interpolation); 

 
2. For the general crime distribution method, P(O), the routine sums up the incidents 

by each origin zone and interpolates this to the grid using the normal distribution 
method of the single kernel density routine (see Chapter 10 on kernel density 
interpolation).  The density estimates are converted to probabilities so that the 
sum of the grid cells equals 1.0.  

 
3. For the distribution of origins based only on the incident committed by the serial 

offender, the routine identifies the zone in which the incident occurs and reads 
only those origins associated with those destination zones in the origin-destination 
matrix. Multiple incidents committed in the same origin zone are counted multiple 
times.  The routine then uses the single kernel density routine to interpolate the 
distribution to the grid (see Chapter 10).  The density estimates are converted to 
probabilities so that the sum of the grid cells equals 1.0;  
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4. For the product of the Jtc estimate and the distribution of origins based only on 
the incidents committed by the serial offender, the routine multiples the 
probability estimate obtained in 1 above by the probability estimate obtained in 3 
above.  The product probabilities are then re-scaled so that the sum of the grid 
cells equals 1.0; and 

 
5. For the full Bayesian estimate as indicated in equation 14.12 above, the routine 

takes the product estimate (4 above) and divides it by the general crime 
distribution estimate (2 above).  The resulting density estimates are converted to 
probabilities so that the sum of the grid cells equals 1.0. 

 
6. For any of the interactions with filters, the routine takes the filters and interpolates 

them to a grid and converts the estimates to probabilities.  If there is only filter, 
then this layer is interpolated to the grid and converted into probabilities.  If there 
are two filters, each is first interpolated to the grid and converted into 
probabilities.  Then the two probability interpolations are multiplied by each 
other.  The routine then multiplies the resulting filter probability by the 
probability estimate of the selected measure (Jtc, Conditional, Product, or 
Bayesian Risk).  The resulting multiplication product is then re-scaled so that sum 
of the grid cells equals 1.0. 

 
 Note in all estimates, the results are then re-scaled so that the resulting grid is a 
probability (i.e., all cells sum to 1.0). 
 
 Output 
 
 Once the method has been selected, the routine interpolates the data to the grid cell and 
outputs it as a >shp=, >mif/mid=, or Ascii file for display in a GIS program.  The tabular output 
shows the probability values for each cell in the matrix and also indicates which grid cell has the 
highest probability estimate.   
 

Accumulator Matrix 
 
 There is also an intermediate output, called the accumulator matrix which the user can 
save.  This lists the number of origins identified in each origin zone for the specific pattern of 
incidents committed by the offender, prior to the interpolation to grid cells.  That is, in reading 
the origin-destination file, the routine first identifies which zone each incident committed by the 
offender falls within.  Second, it reads the origin-destination matrix and identifies which origin 
zones are associated with incidents committed in the particular destination zones.  Finally, it 
sums up the number of origins by zone ID associated with the incident distribution of the 
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offender.  This can be useful for examining the distribution of origins by zones prior to 
interpolating these to the grid. 
 
 Two Examples of Using the Bayesian Journey-to-crime Routine 
 
 Two examples will illustrate the routine.  Figure 14.6 presents the probability output for 
the general origin model, that is for the origins of all offenders irrespective of where they 
committed their crimes.  It is a probability surface in that all the grid cells sum to 1.0. The map is 
scaled so that each bin covers a probability of 0.0001.  The cell with the highest probability is 
highlighted in light blue.  
 
 As seen, the distribution is heavily weighted towards the center of the metropolitan area, 
particularly in the City of Baltimore.  For the crimes committed in Baltimore County between 
1993 and 1997 in which both the crime location and the residence location was known, about 
40% of the offenders resided within the City of Baltimore and the bulk of those living within 
Baltimore County lived close to the border with City.  In other words, as a general condition, 
most offenders in Baltimore County live relatively close to the center. 
 
  Offender S14A 

 
 The general probability output does not take into consideration information about the 
particular pattern of an offender.  Therefore, we will examine specifically a particular offender.  
Figure 14.7 maps the distribution of an offender who committed 14 offenses between 1993 and 
1997 (offender S14A) before being caught and the residence location where the individual lived 
when arrested  
 
 Of the 14 offenses, seven were thefts (larceny), four were assaults, two were robberies, 
and one was a burglary.   As seen, most of the incidents occurred in the southeast corner of 
Baltimore County though two incidents were committed more than five miles away from the 
offender=s residence. 
 
 The general probability model is not very precise since it assigns the same probability to 
all grid cells for all offenders.  In the case of offender S14A, the error distance between the cell 
with the highest probability and the cell where the offender actually lived was 7.4 miles.  
 
 On the other hand, the Jtc method uses the distribution of the incidents committed by a 
particular offender and a model of a typical travel distance distribution to estimate the likely 
origin of the offender=s residence.  A travel distance estimate based on the distribution of 41,424 
offenders from Baltimore County was created using the CrimeStat Journey-to-crime calibration 
routine (see Chapter 13 on Journey-to-crime Estimation).   



Figure 14.6:



Figure 14.7:
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 Figure 14.8 shows the results of the Jtc probability output. In this map and the following 
maps, the bins represent probability ranges of 0.0001.  The cell with the highest likelihood is 
highlighted in light blue.  As seen, this cell is very close to the cell where the actual offender 
lived.  The distance between the two cells was 0.34 miles.  With the Jtc probability estimate, 
however, the area with a higher probability (dark red) covers a fairly large area.  However, the 
precision of the Jtc estimate is good since only 0.03% of the cells have higher probabilities that 
the cell associated with the area where the offender lived.  In other words, the Jtc estimate has 
produced a very good estimate of the location of the offender, as might be expected given the 
concentration of the incidents committed by this person.  
 
 For this same offender, Figure 14.9 show the results of the conditional probability 
estimate of the offender=s residence location, that is the distribution of the likely origin based on 
the origins of offenders who committed crimes in the same locations as that by S14A. Again, 
the cell with the highest probability is highlighted (in light green). As seen, this method has also 
produced a fairly close estimate, with the distance between the cell with the highest probability 
and the cell where the offender actually lived being 0.18 miles, about half the error distance of 
the Jtc method.  Further, the conditional estimate is more precise than the Jtc with only 0.01% 
of the cells having a higher probability than the cell associated with the residence of hte 
offender.  Thus, the conditional probability estimate is not only more accurate than the Jtc 
method, but also more precise (i.e., more efficient in terms of search area). 
 
 For this same offender, Figure 14.10 shows the results of the Bayesian product estimate, 
the product of the Jtc probability and the conditional probability re-scaled to be a single 
probability (i.e., with the sum of the grid cells equal to 1.0).  It is a Bayesian estimate because it 
updates the Jtc probability estimate with the information on the likely origins of offenders who 
committed crimes in the same locations (the conditional estimate). Again, the cell with the 
highest probability is highlighted (in dark tan).  The distance error for this method is 0.26 miles, 
not as accurate as the conditional probability estimate but more accurate than the Jtc estimate. 
Further, this method is about as precise as the Jtc since 0.03% of the cells having probabilities 
higher than that associated with the location where the offender lived.  
 
 Figure 14.11 shows the results of the Bayesian Risk probability estimate.  This method 
takes the Bayesian product estimate and divides it by the general origin probability estimate.  It 
is analogous to a risk measure that relates the number of events to a baseline population.  In this 
case, it is the estimate of the probability of the updated Jtc estimate relative to the probability of 
where offenders live in general. Again, the cell with the highest likelihood is highlighted (in 
dark yellow). The Bayesian Risk estimate produces an error of 0.34 miles, the same as the Jtc 
estimate, with 0.04% of the cells having probabilities higher than that associated with the 
residence of the offender. 
 



Figure 14.8:
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 Finally, the center of minimum distance (Cmd) is indicated on each of the maps with a 
grey cross.  In this case, the Cmd is not as accurate as any of the other methods since it has an 
error distance of 0.58 miles.  
 
 In summary, all of the Journey-to-crime estimate methods produced relatively accurate 
estimates of the location of the offender (S14A).  Given that the incidents committed by this 
person were within a fairly concentrated pattern, it is not surprising that each of the method 
produced reasonable accuracy.  In Canter and Larkin’s (1994) terminology, this offender is a 
‘marauder’. 

 
Offender TS15A 

 
 But what happens if an offender who did not commit crimes in the same part of town is 
selected, what Canter and Larkin (1994) call a ‘commuter’?  Figure 14.12 shows the 
distribution of an offender who committed 15 offenses (TS15A).  Of the 15 offenses 
committed by this individual, there were six larceny thefts, two assaults, two vehicle thefts, one 
robbery, one burglary, and three incidents of arson.  Twelve of the offenses are relatively 
concentrated but two are more than eight miles away. 
 
 Only three of the estimates will be shown.  The general method produces an error of 4.6 
miles.  Figure 14.13 show the results of the Jtc method. Again, the map bins are in ranges of 
0.0001 and the cell with the highest probability is highlighted.  As seen, the cell with the 
highest probability is located north and west of the actual offender=s residence.  The error 
distance is 1.89 miles. The precision of this estimate is good with only 0.08% of the cells 
having higher probabilities than the cell where the offender lived.  
 

 Figure 14.14 show the result of the conditional probability estimate for this offender. In 
this case, the conditional probability method is less accurate than the Jtc method with an error 
distance between the cell with the highest probability and the cell where the offender lived 
being 2.39 miles.  However, this method is less precise than the Jtc method with 1.6% of the 
study area having probabilities higher than that in the cell where the offender lived. 
 
 Finally, Figure 14.15 shows the results of the product probability estimate.  For this 
method, the error distance is only 0.47 miles, much less than the Jtc method.   Further, it is 
smaller than the CMD which has an error distance of 1.33 miles.  Again, updating the Jtc 
estimate with information from the conditional estimate produces a more accurate guess where 
the offender lives.  Further, the product estimate is more precise with only 0.02% of the study 
area having probabilities higher than the cell covering the area where the offender lived. 
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 In other words, the BJtc routine allows the estimation of a probability grid based on a 
single selected method.  The user must decide which probability method to select and the 
routine then calculates that estimate and assigns it to a grid.  As mentioned above, the BJtc 
Diagnostics routine should be first run to decide on which method is most appropriate for the 
jurisdiction in question.  In these 88 cases, the Bayesian product estimate was the most accurate 
of all the probability methods. However, differences in the balance between central-city and 
suburbs, the road network, and land uses may change the travel patterns of offenders.  So far, as 
mentioned above, in tests in four cities (Baltimore County, Chicago, the Hague, Manchester), 
the product estimate has consistently been better than the Journey-to-crime estimate and almost 
as good, if not better, than the center of minimum distance.  Further, the product term appears to 
be more precise than the Journey-to-crime method though in the Hague study, the conditional 
estimate was more accurate than the product estimate.  The center of minimum distance, while 
generally more accurate than other methods, has no probability distribution; it is simply a point.  
Consequently, one cannot select a search area from the estimate. 

 
Potential to Add New Information to Improve the Methodology 

 
 Further, it should be possible to add more information to this framework to improve the 
accuracy and precision of the estimates.  One obvious dimension that should be added is an 
opportunity matrix, a distribution of targets that are crime attractions for offenders.  Among 
these are convenience stores, shopping malls, parking lots, and other types of land use that 
attract offenders. It will be necessary to create a probability matrix for quantifying these 
attractions.  Further, the opportunity matrix would have to be conditional on the distribution of 
the crimes and on the distribution of origins of offenders who committed crimes in the same 
location.  The Bayesian framework is a conditional one where factors are added to the 
framework but conditioned on the distribution of earlier factors: 
 

| ∝ 	 ∗ | ∗ | ,          (14.13) 
 
where A is the attractions (or opportunities), Jtc is the distribution of incidents, and O is the 
distribution of other offender origins.  It will not be an easy task to estimate an opportunity 
matrix that is conditioned (dependent) upon both the distribution of offences (Jtc) and the origin 
of other offenders who committed crimes in the same location (O|Jtc) and it may be necessary 
to approximate this through a series of filters.  
 

Probability Filters 
 
 A filter is a probability matrix that is applied to the estimate but is not conditioned on 
the existing variables in the model.  For example, an opportunity matrix that was independent of 
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the distribution of offences by a single serial offender or the origins of other offenders who 
committed crimes in the same locations could be applied as an alternative (equation 14.14): 
 

| ∝ 	 ∗ | ∗           (14.14) 
 
 In this case, P(A) is an independent matrix.  Another filter that could be applied is 
residential land use.  The vast majority of offenders are going to live in residential areas.  Thus, 
a residential land use filter estimates the probability of a residential land use for every cell, 
P(R), could be applied to screen out cells that are not residential, such as 
 

| ∝ 	 ∗ | ∗           (14.15) 
 
 In this way, additional information can be integrated into the Journey-to-crime 
methodology to improve the accuracy and precision of the estimates.  Clearly, having additional 
variables be conditioned upon existing variables in the model would be ideal since that would 
fit the true Bayesian approach.  But, even if independent filters were brought in, the model 
might be improved.  
 
 Defining Filters in the Bayesian Journey-to-crime Routine 
 
 The Bayesian Journey-to-crime routine allows filters to be applied. The routine can be 
run with or without filters and the user has a choice of running the routine with no filters, one 
filter (called ‘Filter 1’) and two filters (called ‘Filter 1’ and ‘Filter 2’).  See Figure 14.4 above 
that illustrates how to define the filters on the Bayesian Journey-to-crime page. 
 
 For example, one filter could be whether the grid cell is residential or not.  Each zone in 
the filter variable could have a dummy variable indicating whether it is primarily residential (1) 
or not (0).  The criteria for defining residential could be having a minimum number of 
residential units but also having less than a specified number of persons employed in the zone.  
A ‘pure’ residential zone would have only residences and no employment. 
 

Kent and Leitner (2009) showed that the use of residential land covers improved 
accuracy for Jtc estimates, but did not improve estimates for the Bayesian approach.  
Nevertheless, it is likely that a subset of residential land cover might improve the precision of 
an estimate. 
 
 Another filter could be the amount of employment in a zone. Zones with many 
employees (e.g., commercial areas) would have high values on the filter variable while zones 
with few, if any, employees would have low values on the filter. 
 



14.49 

 A third filter could be the number of businesses of a certain type for crimes of a 
particular type.  For example, to model liquor store robberies, the filter variable could be the 
number of liquor stores in each zone.  Or, to model bank robberies, the filter variable could be 
the number of banks in each zone. 
 
 Whichever variable is used for the filter, the routine interpolates this to the same grid as 
the Journey-to-crime function, P(O), the conditional probability function, P(O|Jtc),  the general 
function, P(O), the production probability function, P(Jtc)*P(O|Jtc), and the Bayesian Risk 

function, 
∗ |

.   

 
The interpolated filter grid is then multiplied by four functions - the Journey-to-crime 

grid, P(Jtc), the conditional probability function, P(O|Jtc), the product probability function, 

P(Jtc)*P(O|Jtc), and the Bayesian Risk function, 
∗ |

. 

 
 Example of the Use of a Probability Filter 
 
 To illustrate this, Figure 14.16 shows the location of 22 crimes committed by a single 
offender, S22A, and the offender’s residence when arrested.  The incidents are shown in blue 
and the residence location in black. The crimes committed were 6 commercial burglaries, 1 
residential burglary, 11 vehicle break-ins and 4 vehicle thefts. 
 

Figure 14.17 shows the result of the Journey-to-crime probability estimate.  As with the 
other maps, the center of minimum distance (CMD) is shown as a gray cross.  Notice that 
neither the center of minimum distance nor the journey-to-crime estimates were particularly 
accurate as the cell with the peak probability was 2.5 miles and the CMD was 2.6 miles 
respectively away from the actual home location of the offender.  

 
Figure 14.18 shows the conditional probability estimate.  With this estimate, the cell 

with the peak probability was much more accurate, being about 0.5 miles away.   
 
 Figure 14.19 shows the product probability estimate which multiplies the Journey-to-
crime estimate by the conditional probability estimate and then re-scales the grid to sum to 1.0.  
This estimate was not particularly accurate as well with the cell having the peak probability 
being 2.5 miles away.  The reason is that the inaccurate Journey-to-crime estimate also made the 
product estimate inaccurate.  In some cases, a more accurate conditional estimate will improve 
the product probability but in other cases it will not.  Block and Bernasco (2009) found that 
journey-to-crime estimates were inaccurate with serial burglars in The Hague, Netherlands, and 
that the conditional probability estimate was more accurate than the product probability estimate 
because the poor journey-to-crime estimates degraded the product estimates.    That is why it is  
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important to analyze which method is best for a single jurisdiction using the Bayesian journey-
to-crime diagnostics routine before applying a particular method a single serial offender. 

 
With offender S22A, a residential land use probability filter was defined by a zonal data 

base of Traffic Analysis Zones (TAZ) in Baltimore County that included both residential 
population variables and employment variables.   A dummy variable was created by defining 
TAZ’s that had 100 or more persons living in them but 200 or fewer employees working in 
them.  Thus, these TAZ’s were primarily residential.  When the TAZ layer was interpolated to 
the grid in the routine, each grid cell had a probability value that varied from 0 to 1 and which 
indicated the likelihood of the cell residential. 

 
Figure 14.20 shows the result of combining the product probability estimate with this 

residential land use filter.  The results were as accurate as the conditional probability estimate in 
distance as the cell with the peak probability was about 0.5 miles away.  But, more important is 
the probability estimate in the cell with the peak probability was much higher than the 
probability estimated for the conditional (0.008842 compared to 0.000345, a ratio that was 25.6 
times higher).   

 
In other words, the effect of narrowing the probability estimates of the product 

probability by discounting cells that were not residential actually improved the accuracy of the 
product probability estimate.   We do not yet know whether using a residential filter will always 
improve accuracy since we have not tested it on a number of cases yet.  It is possible that these 
filters will improve accuracy but it is also possible that they will make precision worse since 
they multiply a conditional probability by a matrix that is constant for all offenders.   
 

Until a thorough evaluation is conducted, the filters are provided as tools for users to 
experiment with in modeling the likely residence location of a serial offender.  
 

Guidelines for Analysts 
 
 The following discussion is for analysts wishing to utilize the technique to try to narrow 
down the geographic areas for particular serial offenders.  The hardest part of using the 
technique is collecting the data and constructing a journey-to-crime (Jtc) function and an origin-
destination (O-D) matrix.  However, once the data have been assembled and the Jtc function 
and the O-D matrix constructed, the technique can be used for multiple serial offenders.  These 
estimates need to be only updated every few years in order to account for changes in travel 
patterns by offenders. 
 

 



Figure 14.20:
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We have argued that an analyst should test which of the different methods produces the 
best estimate for a particular jurisdiction.  However, if an analyst wants to choose a single best 
technique without testing which method works best in the jurisdiction, we recommend sticking 
with the Product probability by itself (without filters).  We have found that the Product estimate 
(the product of the Jtc and Conditional probability estimates) generally produces more accurate 
results than the Jtc function by itself or the Conditional probability by itself, though some 
exceptions have been noted.  The use of filters to improve estimates is still too new a technique 
and needs to be evaluated further. 

 
To simplify, seven basic steps are required to run the “Estimate likely location of a serial 

offender” routine and one additional step if the analyst wants to test which method works best 
for the jurisdiction. 

 
Steps 
 
1. Obtain Required Data 

 
 First, the data that will be needed is a large number of records where both the residence 
location and the crime location are known.  Most likely, these will come from arrest records.  
By large, we mean at least 10,000 cases.  
 

2. Construct Journey-to-crime Function 
 
Second, once these data have been assembled, the user should create a journey-to-crime 

function using the “Calibrate journey-to-crime function” routine (discussed in Chapter 13). 
 

3. Define Zonal Framework 
 
Third, to construct an origin-destination matrix, the analyst will need a zonal framework 

for allocating the incidents to both origin and destination locations.  Commonly used zones are 
census tracts or traffic analysis zones, though others can be used.  Also, we have found good 
results by using a grid as the zone structure, especially with small-sized grid cells (e.g., a 100 
column x 100 row grid).  The single kernel density interpolation tool (discussed in Chapter 10) 
is a useful tool for creating a grid overlay that can be used as a zone framework. 

 
4. Construct Origin-Destination Matrix 

 
Fourth, using the data on offenders where both the residence location and the crime 

location are known and the zonal framework, the origin-destination matrix can be constructed 
using the “Calculate observed origin-destination trips” routine that is discussed in Chapter 28.  
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The routine reads in an origin file (the zonal framework) and a destination file (also the zonal 
framework) and a data file (the set of records of offenders where both residence and crime 
location are known) and outputs the O-D matrix.   The user should save the matrix as a dbf file. 

 
5. Input Jtc Function and O-D Matrix 

 
Fifth, the Jtc function and the O-D matrix are input on the Bayesian Journey-to-crime 

page.  
 
6. Input Records of Single Serial Offender 

 
Sixth, to estimate the likely origin (residence) location of a serial offender, the records 

for that serial offender need to be input as the Primary File.  As with all Primary File inputs, the 
coordinate system and the data metrics need to be defined. 

 
7. Estimate Likely Origin Location of a Serial Offender 

 
 Seventh, and finally, the user selects one estimation method on the Bayesian Journey-to-
crime page and runs the routine.  As mentioned above, unless there is contrary information, we 
recommend using the Product estimate by itself (“Use product of P(Jtc) and P(O|Jtc) estimate”). 
 

8. (Optional) Evaluate which Method Produces the Best Results for the 
Jurisdiction 

 
The Product estimate will generally produce good results for medium-to-large cities.  

However, for small cities, it may not work well and other measures may work better (e.g., the 
Conditional or the Bayesian Risk estimate).  Therefore, an optional strategy is to evaluate which 
of the methods works best in the jurisdiction.   

 
To do this, the analyst will have to assemble a diagnostics file on multiple serial 

offenders where the offender has committed multiple offences (e.g., 5 or more) and where both 
the residence and crime locations are known.  The number of offenders included should be as 
large as possible, at least 50.  The four studies mentioned on page 14.30 all used sizeable data 
sets (60 or more).  The reason is that there needs to be sufficient variability to allow the routine 
to properly estimate the accuracy and precision of each of the methods. 

 
While this requires even more data to be collected, the advantage is that the best 

estimation method can be determined for the jurisdiction.  As mentioned, the use of the Product 
estimate may or may not produce the best estimates. 
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Summary 
 
 In summary, the Bayesian Jtc methodology is an improvement over the current Journey-
to-crime method and appears to be as good, and more useful, than the center of minimum 
distance.  First, it adds new information to the Journey-to-crime function to yield a more 
accurate and precise estimate.  Second, it can sometimes predict the origin of >commuter=-type 
serial offenders, those individuals who do not commit crimes in their neighborhoods (Paulsen, 
2007; Canter & Larkin, 1994).  The traditional Journey-to-crime function cannot predict the 
origin location of a >commuter=-type.  Of course, this will only work if there are prior offenders 
who lived in the same location as the serial offender of interest. If the offender lived in a 
neighborhood where there were no previous serial offenders that were documented in the origin-
destination matrix, the Bayesian approach would not detect that location, either. 
 

Caveat 
 
 A caveat should be noted, however.  The Bayesian method still has a substantial amount 
of error.  Much of this error reflects the inherent mobility of offenders, especially those living in 
in suburbs outside of central cities. While adolescent offenders, especially juvenile males, tend 
to commit crimes within a more circumscribed area (Levine & Lee, 2013), the almost-universal 
ability adults to own automobiles and to travel outside their residential neighborhoods is turning 
crime into a much more mobile phenomena than it was, say, 50 years ago when only about half 
of American households owned an automobile.   
 
 Thus, the Bayesian approach to Journey-to-crime estimation must be seen as a tool that 
produces an incremental improvement in accuracy and precision.  Geographic profiling is but 
one tool in the arsenal of methods that police must use to catch serial offenders. 
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Chapter 15: 

OLS Regression Modeling 1 

 
The Regression I and Regression II modules are a series of routines for regression 

modeling and prediction.   This chapter will lay out the basics of regression modeling and 
prediction and will discuss the Ordinary Least Squares (OLS) model in CrimeStat.   
 
Functional Relationships 
 
 The aim of a regression model is to estimate a functional relationship between a 
dependent variable (call it iy ) and one or more independent variables (call them Kii xx ,1 ).  In an 
actual database, these variables have unique names (e.g., ROBBERIES, POPULATION), but we 
will use general symbols to describe these variables.  The functional relationship can be specified 
by an equation (15.1): 
 
 iKiii xxfy  ),,( 1            (15.1) 
 
where Y is the dependent variable, Kii xx ,1  are the independent variables, )(f  is a functional 

relationship between the dependent variable and the independent variables, and i  is an error 
term (essentially, the difference between the actual value of the dependent variable and that 
predicted by the relationship). 
 
Normal Linear Relationships 
 
 The simplest relationship between the dependent variable and the independent variables 
is linear with the dependent variable being normally distributed, 
 
 iKiKii xxy   110                    (15.2) 

                                                            
1  The regression chapters are the result of the effort of many persons.  The maximum likelihood routines were produced 

by Ian Cahill of Cahill Software in Edmonton, Alberta as part of his MLE++ software package.  We are grateful to him 
for providing these routines and for conducting quality control tests on them. The basic MCMC algorithm in CrimeStat 
for the Poisson-Gamma and Poisson-Gamma-CAR models was designed by Dr. Shaw-Pin Miaou of College Station, 
TX.  We are grateful for Dr. Miaou for this effort.  Improvements to the algorithm were made by us, including the 
block sampling strategy and the calculation of summary statistics. Dr. Dominique Lord of Texas A & M University 
provided technical advice on the Poisson-based models. Dr. Byung-Jung Park of the Korea Transport Institute 
expanded the MCMC algorithms to include various dispersion functions and a Simultaneous Autoregressive function. 
Dr. Ned Levine developed the block sampling methodology and provided overall project management.  The 
programmer for the routines was Ms. Haiyan Teng of Houston, TX.  We are also grateful to Dr. Richard Block of 
Loyola University in Chicago (IL) for testing the MCMC and MLE routines. 
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This equation can be written in a simple matrix notation:  i
T
iiy  βx  where 

),,,1( 1 Kii
T
i xx x and T

K ),,,( 10  β . The number one in the first element of T
ix  

represents an intercept while T denotes that the matrix T
ix is transposed.  

 
This function says that a unit change in each independent variable, kix , for every 

observation, is associated with a unit change in the dependent variable, iy .  The coefficient of 

each variable, k , specifies the amount of change in iy  associated with that independent variable 

while keeping all other independent variables in the equation constant.  The first term, 0 , is the 

intercept, a constant that is added to all observations.  The error term, i , is assumed to be 
identically and independently distributed (iid) across all observations, normally distributed with 
an expected mean of 0 and a constant standard deviation.   If each of the independent variables 
has been standardized by  
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                             (15.3) 

        
then the standard deviation of the error term will be 1.0 and the coefficients will be standardized, 
b1, b2, b3, and so forth. 
 
 The equation is estimated by one of two methods, ordinary least squares (OLS) and 
maximum likelihood estimation (MLE).   Both solutions produce the same results.  The OLS 
method minimizes the sum of the squares of the residual errors while the maximum likelihood 
approach maximizes a joint probability density function. 
 
 Ordinary Least Squares 
 
 Appendix B by Luc Anselin discusses the method in more depth.  Briefly, the intercept 
and coefficients are estimated by choosing a function that minimizes the residual errors by 
setting: 
 

 0
1 1

0 
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kiki xxy                     (15.4) 

 
for k=1 to K independent variables or, in matrix notation: 
 
 0)( XβyXT                                   (15.5) 
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 yXXβX TT                                                                         (15.6) 

 
where T

N ),,,( 21 xxxX   and T
Nyyy ),,,( 21 y . 

 
The solution to this system of equations yields the familiar matrix expression for  

 T
KOLS bbb ),,,( 10 b  

 yXXXb TT
OLS

1)(                                  (15.7) 

 
An estimate for the error variance follows as  
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or, in matrix notation,  
 
 )1/(2  KNs T

OLS ee                    (15.9) 

 
 Maximum Likelihood Estimation 
 

For the maximum likelihood method, the likelihood of a function is the joint probability 
density of a series of observations (Wikipedia, 2010; Myers, 1990).  Suppose there is a sample of 

n independent observations ),,,( 21 Nxxx   that are drawn from an unknown probability density 

distribution but from a known family of distributions, for example the single-parameter 
exponential family.   This is specified as )|( θf  where θ  is the parameter (or parameters if 

there are more than one) that define the uniqueness of the family.   The joint density function 
will be: 
 

 )|()|()|()|,,,( 2121 θθθθ NN xfxfxfxxxf              (15.10) 

 
and is called the likelihood function: 
               

 )|()|,,,(),,,|(
1

2121 θθθ 



N

i
iNN xfxxxfxxxL             (15.11) 

               
where L  is the likelihood and ∏ is the product term. 

 
Typically, the likelihood function is interpreted in term of natural logarithms since the 

logarithm of a product is a sum of the logarithms of the individual terms.  That is,  
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This is called the Log likelihood function and is written as: 

  )|(ln),,,|(ln
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For the OLS model, the log likelihood is: 
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where N is the sample size and 2σ  is the variance.  As a comparison, in Chapter 16 we discuss 
the Poisson model in which the log likelihood is: 
 

  



N

i
iiii yyL

1

!ln)ln(ln         (15.15) 

where )exp( βxT
ii   is the conditional mean for zone i,  and iy  is the observed number of events 

for zone i.  As mentioned, Anselin provides a more detailed discussion of these models in 
Appendix B. 
 
 The MLE approach estimates the value of θ that maximizes the log likelihood of the data 
coming from this family.  Because they are all part of the same mathematical family and are 
distributed as a concave function, the maximum of a joint probability density distribution can be 
easily estimated.  The approach is to, first, define a probability function from this family, second, 
create a joint probability density function for each of the observations (the Likelihood function); 
third, convert the likelihood function to a log likelihood; and, fourth, estimate the value of 
parameters that maximize the joint probability through an approximation method (e.g., Newton-
Raphson or Fisher scores). Because the function is regular and known, the solution is relatively 
easy.  Anselin discusses the approach in detail in Appendix B of the CrimeStat manual.  More 
detail can be found in Hilbe (2008) or in Train (2009). 
 

In CrimeStat, we use the MLE method.  Because the OLS method is the most commonly 
used, a normal linear model is sometimes called an Ordinary Least Squares (OLS) regression.  If 
the equation is correctly specified (i.e., all relevant variables are included), the error term,  , will 

be normally distributed with a mean of 0 and a constant variance, 2σ .    
 

 The OLS normal estimate is sometimes known as a Best Linear Unbiased Estimate 
(BLUE) since it minimizes the sum of squares of the residuals errors (the difference between the 
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observed and predicted values of y ).  In other words, the overall fit of the normal model 

estimated through OLS or maximum likelihood will produce the best overall fit for a linear 
model.  However, keep in mind that because a normal function has the best overall fit does not 
mean that it fits any particular section of the dependent variable better.  In particular, for count 
data, the normal model usually does a poor job of modeling the observations with the greatest 
number of events.  We will demonstrate this with an example below. 
 

Assumptions of Normal Linear Regression 
 
 The normal linear model has some assumptions.  When these assumptions are violated, 
problems can emerge in the model, sometimes easily correctable and other times introducing 
substantial bias.   
 
  Normal Distribution of Dependent Variable 
 

First, the normal linear model assumes that the dependent variable is normally 
distributed.  If the dependent variable is not exactly normally distributed, it has to have its peak 
somewhere in the middle of the data range and be somewhat symmetrical (e.g., a quartic 
distribution; see Chapter 10).   
 

For some variables, this assumption is reasonable (e.g., with height or weight of 
individuals).  However, for most variables that crime researchers work with (e.g., number of 
robberies, number of homicides, journey-to-crime distances), this assumption is usually violated.  
Most variables that are counts (i.e., number of discrete events) are highly skewed.  Consequently, 
when it comes to counts and other extremely skewed variables, the normal (OLS) model will 
produce distorted results.  
 
  Errors are Independent, Constant, and Normally-distributed 
 
 Second, the errors in the model, the ε in equation 15.2, must be independent of each 
other, constant, and normally distributed.  This fits the iid assumption mentioned above.  
Independence means that the estimation error for any one observation cannot be related to the 
error for any other observation.  Constancy means that the amount of error should be more or 
less the same for every observation; there will be natural variability in the errors, but this 
variability should be distributed normally with the mean error being the expected value. 
 
 Unfortunately, for most variables that crime researchers and analysts work with, this 
assumption is usually violated.  With count variables, the errors increase with the count and are 
much higher for observations with large counts than for observation with few counts.  Thus, the 
assumption of constancy is violated.  In other words, the variance of the error term is a function 
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of the count.  The shape of the error distribution is also sometimes not normal either but may be 
more skewed.  Also, if there is spatial autocorrelation among the error terms (which would be 
expected in a spatial distribution), then the error term may be quite irregular in shape; in this 
latter case, the assumption of independent observations would also be violated. 
 
  Independence of Independent Variables 
 
 Third, an assumption of the normal model (and any model, for that matter) is that the 
independent variables are truly independent.  In theory, there should be zero correlation between 
any of the independent variables.  In practice, however, many variables are related, sometimes 
quite highly.  This condition, which is called multicollinearity, can produce distorted coefficients 
and overall model effects.  The higher the degree of multicollinearity among the independent 
variables, the greater the distortion in the coefficients.  This problem affects all types of models, 
not just the normal, and it is important to minimize the effects.   We will discuss diagnostic 
methods for identifying multicollinearity later in the chapter. 
 
  Adequate Model Specification 
 
 Fourth, the normal model assumes that the independent variables have been correctly 
specified.  That is, the independent variables are the correct ones to include in the equation and 
that they have been measured adequately.  By ‘correct ones’, we mean that the independent 
variable chosen should be a true predictor of the dependent variable, not an extraneous one.   
With any model, the more independent variables that are added to the equation, in general the 
greater will be the overall fit.  This will be true even if the independent variables are highly 
correlated with independent variables already in the equation or are mostly irrelevant (but may 
be slightly correlated due to sampling error).  When too many variables are added to an equation, 
strange effects can occur. Overfitting of a model is a serious problem that must be seriously 
evaluated.  Including too many variables will also artificially increase the model’s variance 
(Myers, 1990). 
 
 Conversely, a correct specification implies that all the important variables have been 
included and that none have been left out.  When important variables are not included, this is 
called underfitting a model.  Also, not including important variables lead to a biased model 
(known as the omitted variables bias).  A large bias means that the model is unreliable for 
prediction (Myers, 1990).  Also, the left out variables can be shown to have irregular effects on 
the error terms.  For example, if there is spatial autocorrelation in the dependent variable (which 
there usually is), then the error terms will be correlated.  Without modeling the spatial 
autocorrelation (either through a proxy variable that captures much of its effect or through a 
parameter adjustment), the error can be biased and even the coefficients can be biased. 
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In other words, adequate specification involves choosing the correct number of 
independent variables that are appropriate, neither overfitting nor underfitting of the model.   
Also, it is assumed that the variables have been correctly measured and that the amount of 
measurement error is very small. 
 
 Unfortunately, we often do not know whether a model is correctly specified or not, nor 
whether the variables have been properly measured.  Consequently, there are a number of 
diagnostics tests that can be brought to bear to reveal whether the specification is adequate.  For 
overfitting, there are tolerance statistics and adjusted summary values.  For underfitting, we 
analyze the error distribution to see if there is a pattern that might indicate lurking variables that 
are not included in the model.  In other words, examining violations of the assumptions of a 
model is an important task in assessing whether there are too many variables included or whether 
there are variables that should be included but are not, or whether the specification of the model 
is correct or not.  
 
 Example of Modeling Burglaries by Zones 
 
 For many problems, normal regression is an appropriate tool.  However, for many others, 
it is not.  Let us illustrate this point.  A note of caution is warranted here. This example is used to 
illustrate the application of the normal model in CrimeStat and, as discussed further below, the 
normal model with a normal error distribution is not appropriate for this kind of dataset.   For 
example, figure 15.1 shows the number of residential burglaries that occurred in 2006 within 
1,179 Traffic Analysis Zones (TAZ) inside the City of Houston.  The data on burglaries came 
from the Houston Police Department.  There were 26,480 burglaries that occurred in 2006.  They 
were then allocated to the 1,179 TAZ’s within the City of Houston.  As can be seen, there is a 
large concentration of residential burglaries in southwest Houston with small concentrations in 
southeast Houston and in parts of north Houston.   
 
 The distribution of burglaries by zones is quite skewed.  Figure 15.2 shows a graph of the 
number of burglaries per zone.  Of the 1,179 traffic analysis zones, 250 had no burglaries occur 
within them in 2006.  On the other hand, one zone had 284 burglaries occur within it.   The graph 
shows the number of burglaries up to 59; there were 107 zones with 60 or more burglaries that 
occurred in them. About 58% of the burglaries occurred in 10% of the zones.  In general, a small 
percentage of the zones have the majority of the burglaries.  
 

Example of Normal Linear Model  
 
We can set up a normal linear model to try to predict the number of burglaries that 

occurred in each zone in 2006.    We obtained estimates of population, employment and income 
from the transportation modeling group within the Houston-Galveston Area Council, the  
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Metropolitan Planning Organization for the area (H-GAC, 2010).  Specifically, the model relates 
the number of 2006 burglaries to the number of households, number of jobs (employment), and 
median income of each zone.  The estimates for the number of households and jobs were for 
2006 while the median income was that measured by the 2000 census.  Table 15.1 present the 
results of the normal (OLS) model. 

 
Table 15.1: 

Predicting Burglaries in the City of Houston: 2006 
Ordinary Least Squares: Full Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:                     2006 BURGLARIES 
N:                                 1,179 
Df:                                  1,174 
Type of regression model:       Ordinary Least Squares 
F-test of model:   357.2   p≤.0001 
R-square:                            0.48 
Adjusted r-square:                   0.48 
Mean absolute deviation:  13.5 
 1st (highest) quartile:  26.4 
 2nd quartile:       10.6 
 3rd quartile:      8.3 
 4th (lowest) quartile:     8.8 
Mean squared predictive error:      505.1 
 1st (highest) quartile:       1,497.5 
 2nd quartile:        270.4 
 3rd quartile:        134.3 
 4th (lowest) quartile:       120.9 
 
Predictor  DF Coefficient Stand Error Tolerance VIF t-value    p  
---------------------------------------------------------------------------------------------------------------------
INTERCEPT  1 12.9320   1.269    -    - 10.19  0.001 
HOUSEHOLDS 1  0.0256   0.0008 0.923  1.083 31.37  0.001 
JOBS   1 -0.0002     0.0005 0.903   1.107 -0.453   n.s. 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.0002   0.00003 0.970  1.031 -6.88  0.001 
--------------------------------------------------------------------------------------------------------------------- 
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Summary Statistics for the Goodness-of-Fit 
 
 The table presents two types of results.  First, there is summary information.  Information 
on the size of the sample (in this case, 1,179) and the degrees of freedom (the sample size less 
one for each parameter estimated including the intercept and one for the mean of the dependent 
variable); in the example, there are 1,174 degrees of freedom (1,179 – 1 for the intercept, 1 for 
HOUSEHOLDS, 1 for JOBS, 1 for MEDIAN HOUSEHOLD INCOME, and 1 for the mean of 
the dependent variable, 2006 BURGLARIES).  

 
The F-test presents an Analysis of Variance test of the ratio of the mean square error 

(MSE) of the model compared to the total mean square error (Kanji, 1993, 131; Abraham & 
Ledolter, 2006, 41-51).  Next, there is the R-square (or R2) statistic, which is the most common 
type of overall fit test.  This is the percent of the total variance of the dependent variable 
accounted for by the model.  More formally, it is defined as: 
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where iy  is the observed number of events for a zone, i, iŷ  is the predicted number of events 

given a set of K independent variables, and Mean y  is the mean number of events across zones.   

The R-square value is a number from 0 to 1; 0 indicates no predictability while 1 indicates 
perfect predictability. 
 

For a normal (OLS) model, R-square is a very consistent estimate.  It increases in a linear 
manner with predictability and is a good indicator of how effective a model has fit the data.  As 
with all diagnostic statistics, the value of the R-square increases with more independent 
variables.  Consequently, an R-square adjusted for degrees of freedom is also calculated - the 
adjusted r-square in the table.  This is defined as: 
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where N is the sample size and K  is the number of independent variables. 
 

The R2 value is sometimes called the coefficient of determination.  It is an indicator of the 
extent to which the independent variables in the model predict (or explain) the dependent 
variable.   One interpretation of the R2 is the percent of the variance of Y accounted for by the 
variance of the independent variables (plus the intercept and any other constraints added to the 
model).  The unexplained variance is 1 - R2 or the extent to which the model does not explain the 



15.12 

variance of the dependent variable.  For a normal linear model, the R2 is relatively 
straightforward.  In the example, both the F-test is highly significant and the R2 is substantial 
(48% of the variance of the dependent variable is explained by the independent variables).  
However, for non-linear models, it is not at all an intuitive measure and has been shown to be 
unreliable (Miaou, 1996).   

 
The final two summary measures are Mean Squared Predictive Error (MSPE), which is 

the average of the squared residual errors, and the Mean Absolute Deviation (MAD), which is the 
average of the absolute value of the residual errors (Oh, Lyon, Washington, Persaud, & Bared, 
2003).  The lower the values of these measures, the better the model fits the data.  

 
These measures are also calculated for specific quartiles.  The 1st quartile represents the 

error associated with the 25% of the observations that have the highest values of the dependent 
variable while the 4th quartile represents the error associated with the 25% of the observations 
with the lowest value of the dependent variable.  These percentiles are useful for examining how 
well a model fits the data and whether the fit is better for any particular section of the dependent 
variable. In the example, the fit is better for the low end of the distribution (the zones with zero 
or few burglaries) and less good for the higher end. We will use these values in comparing the 
normal model to other models.  

 
It is important to point out that the summary measures are more useful when several 

models with a different number of variables are compared with each other than for evaluating a 
single model. 

 
 Statistics on Individual Coefficients 

The second type of information presented is about each of the coefficients.   The table 
lists the independent variables plus the intercept.  For each coefficient, the degrees of freedom 
associated are presented (one per variable) plus the estimated linear coefficient.  For each 
coefficient, there is an estimated standard error, a t-test of the coefficient (the coefficient divided 
by the standard error), and the approximate two-tailed probability level associated with the t-test 
(essentially, an estimate of the probability that the null hypothesis of zero coefficient is correct).  
Usually, if the probability level is smaller than 5% (.05), then we reject the null hypothesis of a 
zero coefficient though frequently 1% (.01) or even 0.1% (0.001) have been used to reduce the 
likelihood that a false alternative hypothesis has been selected (called a Type I error). 

 
The last two parameters included in the table are the tolerance of the coefficient and the 

VIF (or Variance Inflation Factor).  They are measures of multicollinearity (or one type of 
overfitting).  Basically, they measure the extent to which each independent variable correlates 
with the other dependent variables in the equation.  The traditional tolerance test is a normal 
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model relating each independent variable to the other independent variables (StatSoft, 2010; 
Berk, 1977).  It is defined as: 

 

 21 iji RTol 
                 (15.18)

 

 

where 2
ijR   is the R-square associated with the prediction of one independent variable with the 

remaining independent variables in the model using an OLS model.  The VIF is simply the 
reciprocal of tolerance: 
 

 ii TolVIF /1
                 (15.19)

 

 
In other words, the tolerance of each independent variable is the unexplained variance of 

a model that relates the variable to the other independent variables.  If an independent variable is 
highly related (correlated with) to the other independent variables in the equation, then it will 
have a low tolerance.  Conversely, if an independent variable is independent of the other 
independent variables in the equation, then it will have a high tolerance.  In theory, the higher the 
tolerance, the better since each independent variable should be unrelated to the other independent 
variables.  In practice, there is always some degree of overlap between the independent variables 
so that a tolerance of 1.0 is rarely, if ever, achieved.  However, if the tolerance is low (e.g., 0.70 
or below), this suggests that there is too much overlap in the independent variables and that the 
interpretation will be unclear.  In Chapter 17, we will discuss multicollinearity and the general 
problem of overfitting in more detail.  

 
 Note that the statistic is labeled as pseudo-tolerance in the CrimeStat output.  The reason 
is that this statistic is only approximate when the independent variable is skewed, a situation that 
we will discuss shortly.  For a normally-distributed independent variable (or approximately 
normally-distributed), however, the tolerance test is exact. 

 
 Looking at the output in Table 15.1, we see that the number of burglaries is positively 
associated with the intercept and the number of households and negatively associated with the 
median household income.  The relationship to the number of jobs is also negative, but not 
significant.  Essentially, zones with larger numbers of households but lower household incomes 
are associated with more residential burglaries.   Because the model is linear, each of the 
coefficients contributes to the prediction in an additive manner.  The intercept is 12.93 and 
indicates that, on average, each zone had 12.93 burglaries.  For every household in the zone, 
there was a contribution of 0.0256 burglaries.  For every job in the zone, there was a contribution 
of -0.0002 burglaries.  For every dollar increase in median household income, there is a decrease 
of -0.0002 burglaries.  Thus, to predict the number of burglaries with the full model in any one 
zone, i, we would take the intercept – 12.93, and add in each of these components: 
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         To illustrate, TAZ 833 had 1762 households in 2006, 2,698 jobs in 2006, and had a median 
household income of $27,500 in 2000.  The model’s prediction for the number of burglaries in 
TAZ 833 is: 
 
 Number of burglaries (TAZ833) =  12.93 + 0.0256*1762 – 0.0002*2,698  
      – 0.0002*27,500 
           =  52.0 
 
The actual number of burglaries that occurred in TAZ 833 was 78.    
 
 Estimated Error in the Model for Individual Coefficients 
 
 In CrimeStat, and in most statistical packages, there is additional information that can be 
output as a file.  There is the predicted value for each observation.  Essentially, this is the linear 
prediction from the model.  There is also the residual error, which is the difference between the 
actual (observed) value for each observation, i, and that predicted by the model.  It is defined as: 
 
 Residual errori  =  Observed Valuei - Predicted valuei            (15.21) 
 
 Table 15.2 below gives predicted values and residual errors for five of the observations 
from the Houston burglary data set. Analysis of the residual errors is one of the best tools for 
diagnosing problems with the model.  A plot of residual errors against predicted values indicate 
whether the prediction is consistent across all values of the dependent variable and whether the 
underlying assumptions of the normal model are valid (see below).  Figure 15.3 show a graph of 
the residual errors of the full model against the predicted values for the model estimated in table 
1.  As can be seen, the model fits quite well for zones with few burglaries, up to about 12 
burglaries per zone.   

 
Table 15.2: 

Predicted Values and Residual Error for Houston Burglaries: 2006 
(5 Traffic Analysis Zones) 

 
 Zone (TAZ)    Actual value      Predicted value     Residual error 
    833   78   52.0    26.0 
    831   46   35.9    10.1 
    911   89   67.6    21.4 
  2173   30   42.3   -12.3 
  2940     3   10.2     -7.2 



Figure 15.3:
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However, for the zones with many predicted burglaries (the ones that we are most likely 
interested in), the model does quite poorly.  First, the errors increase the greater the number of 
predicted burglaries. Sometimes the errors are positive, meaning that the actual number of 
burglaries is much higher than predicted and sometimes the errors are negative, meaning that we 
are predicting more burglaries than actually occurred.  More importantly, the residual errors 
indicate that the model has violated one of the basic assumptions of the normal model, namely 
that the errors are independent, constant, and identically-distributed.  It is clear that they are not.  
 
 Because there are errors in predicting the zones with the highest number of burglaries and 
because the zones with the highest number of burglaries were somewhat concentrated, there are 
spatial distortions from the prediction.  Figure 15.4 show a map of the residual errors of the 
normal model.   As can be seen by comparing this map with the map of burglaries (figure 15.1), 
typically the zones with the highest number of burglaries (mostly in southwest Houston) were 
under-estimated by the normal model (shown in red) whereas some zones with few burglaries 
ended up being over-estimated by the normal model (e.g., in far southeast Houston). 

 
In other words, the normal linear model is not necessarily good for predicting Houston 

burglaries. It tends to underestimate zones with a large number of burglaries but overestimates 
zones with few. 

 
Violations of Assumptions for Normal Linear Regression 

 
 There are several deficiencies with the normal (OLS) model.   First, normal models are 
not good at describing skewed dependent variables, as we have shown. Since crime distributions 
are usually skewed, this is a serious deficiency for multivariate crime analysis. Second, a normal 
model can have negative predictions.  With a count variable, such as the number of burglaries 
committed in a zone, the minimum number is zero.  That is, the count variable is always positive, 
being bounded by 0 on the lower limit and some large number on the upper limit.  The normal 
model, on the other hand, can produce negative predicted values since it is additive in the 
independent variables.  This clearly is illogical and is a major problem with data that are highly 
skewed.  If most records have values close to zero, it is very possible for a normal model to 
predict a negative value. 

 
Non-consistent Summation 

 
 A third problem with the normal model is that the sum of the observed values does not 
necessarily equal the sum of the predicted values.  Since the estimates of the intercept and 
coefficients are obtained by minimizing the sum of the squared residual errors (or maximizing 
the joint probability distribution, which leads to the same result), there is no balancing 
mechanism to require that they add up to the same as the input values.  In calibrating the model, 



Figure 15.4:
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adjustments can be made to the intercept term to force the sum of the predicted values to be 
equal to the sum of the input values.  But in applying that intercept and coefficients to another 
data set, there is no guarantee that the consistency of summation will hold.  In other words, the 
normal method cannot guarantee a consistent set of predicted values. 
 

Non-linear Effects 
 
 A fourth problem with the normal model is that it assumes the independent variables are 
normal in their effect. If the dependent variable was normal or relatively balanced, then a normal 
model would be appropriate.  But, when the dependent variable is highly skewed, as is seen with 
these data, typically the additive effects of each component cannot usually account for the non-
linearity.  Independent variables have to be transformed to account for the non-linearity and the 
result is often a complex equation with non-intuitive relationships.2  It is far better to use a non-
linear model for a highly skewed dependent variable. 
 

Greater Residual Errors 
 
 The final problem with a normal model and a skewed dependent variable is that the 
model tends to over- or under-predict the correct values, but rarely comes up with the correct 
estimate. As we saw with the example above, typically a normal equation produces non-constant 
residual errors with skewed data.  In theory, errors in prediction should be uncorrelated with the 
predicted value of the dependent variable.  Violation of this condition is called heteroscedasticity 
because it indicates that the residual variance is not constant.  The most common type is an 
increase in the residual errors with higher values of the predicted dependent variable.  That is, the 
residual errors are greater at the higher values of the predicted dependent variable than at lower 
values (Draper and Smith, 1981, 147). 
 
 A highly skewed distribution tends to exacerbate this.  Because the least squares 
procedure minimizes the sum of the squared residuals, the regression line balances the lower 
residuals with the higher residuals.  The result is a regression line that neither fits the low values 
nor the high values.  For example, motor vehicle crashes tend to concentrate at a few locations 
(crash hot spots).  In estimating the relationship between traffic volume and crashes, the hot 
spots tend to unduly influence the regression line.  The result is a line that neither fits the number 
of expected crashes at most locations (which is low) nor the number of expected crashes at the 
hot spot locations (which are high). 

                                                            
2  For example, to account for the skewed dependent variable, one or more of the independent variables have 

to be transformed with a non-linear operator (e.g., log or exponential term).  When more than one 
independent variable is non-linear in an equation, the model is no longer easily understood.  It may end up 
making reasonable predictions for the dependent variable, but is not intuitive nor easily explained to non-
specialists.   
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Corrections to Violated Assumptions in Normal Linear Regression 
 
 Some of the violations in the assumptions of an OLS normal model can be corrected.   

 
Eliminating Unimportant Variables 

 
One good way to improve a normal model is to eliminate variables that are not important. 

Including variables in the equation that do not contribute very much adds ‘noise’ (variability) to 
the estimate.  In the above example, the variable, JOBS, was not statistically significant and, 
hence, did not contribute any real effect to the final prediction.  This is an example of overfitting 
a model.  Whether we use the criteria of statistical significance to eliminate non-essential 
variables or simply drop those with a very small effect is less important than the need to reduce 
the model to only those variables that truly predict the dependent variable.  We will discuss the 
‘pros’ and ‘cons’ of dropping variables in Chapter 17, but for now we argue that a good model - 
one that will be good not just for description but for prediction, is usually a simple model with 
only the strongest variables included. 

 
To illustrate, we reduce the burglary model further by dropping the non-significant 

variable (JOBS).  Table 15.3 show the results.  Comparing the results with those from Table 
15.1, we can see that the overall fit of the model is actually slightly better (an F-value of 536.0 
compared to 357.2).  The R2 values are the same while the mean squared predictive error is 
slightly worse while the mean absolute deviation is slightly better.  The coefficients for the two 
common independent variables are almost identical while that for the intercept is slightly less 
(which is good since it contributes less to the overall result).   

 
In other words, dropping the non-significant variable has led to a slightly better fit.  One 

will usually find that dropping non-significant or unimportant variables makes models more 
stable without much loss of predictability, and conceptually they become simpler to understand. 
 

  Eliminating Multicollinearity 
 
 Another way to improve the stability of a normal model is to eliminate variables that are 
substantially correlated with other independent variables in the equation.  This is the 
multicollinearity problem that we discussed above.  Even if a variable is statistically significant 
in a model, if it is also correlated with one or more of the other variables in the equation, then it 
is capturing some of the variance associated with those other variables.  The results are 
ambiguity in the interpretation of the coefficients as well as error in trying to use the model for 
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Table 15.3: 

Predicting Burglaries in the City of Houston: 2006 
Ordinary Least Squares: Reduced Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:                              2006 BURGLARIES 
N:                                    1,179 
Df:                                  1,175 
Type of regression model:           Ordinary Least Squares 
F-test of model:   536.0   p≤.0001 
R-square:                            0.48 
Adjusted r-square:                   0.48 
Mean absolute deviation:       13.5 
 1st (highest) quartile:       26.5 
 2nd quartile:        10.6 
 3rd quartile:      8.3 
 4th (lowest) quartile:     8.8 
Mean squared predictive error:      505.1 
 1st (highest) quartile:       1498.8 
 2nd quartile:        269.5 
 3rd quartile:        135.1 
 4th (lowest) quartile:       120.2 
 
Predictor  DF Coefficient Stand Error Tolerance VIF  t-value    p 
---------------------------------------------------------------------------------------------------------------------
INTERCEPT  1 12.8099   1.240    -   -  10.33   0.001 
HOUSEHOLDS  1  0.0255   0.0008 0.994  1.006  33.44   0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.0002   0.00003 0.994  1.006  -7.03   0.001 
--------------------------------------------------------------------------------------------------------------------- 
 
prediction.  Multicollinearity means that essentially there is overlap in the independent variables; 
they are measuring the same thing.  It is better to drop a multicollinear variable even if it results 
in a loss in fit since it will usually result in a simpler and more stable model. 
 
 For the Houston burglary example, the two remaining independent variables in Table 
15.3 are relatively independent; their tolerances are 0.994 respectively, which points to little 
overlap in the variance that they account for in the dependent variable.  Therefore, we will keep 
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these variables.  However, in the next chapter, we will present an example of how 
multicollinearity can lead to ambiguous coefficients. 
 
 Transforming the Dependent Variable 
 
 It may be possible to correct the normal model by transforming the dependent variable (in 
another program since CrimeStat does not currently do this). Typically, with a skewed dependent 
variable and one that has a large range in values, a natural log transformation of the dependent 
variable can be used to reduce the amount of skewness.  The problem will occur for zones with 0 
since the natural log of 0 cannot be calculated.  Consequently, one takes: 
 
 )1(logln  iei yy                                                                                           (15.22) 
 
where e is the base of the natural logarithm (2.718…) and regresses the transformed dependent 
variable against the linear predictors, 
 
 iKiKii xxy   110ln               (15.23) 
 
This is equivalent to the equation 
 
 iKiKi xx

i ey   110                          (15.24) 
 
with, again, e being the base of the natural logarithm. 
 

In doing this, it is assumed that the log transformed dependent variable is consistent with 
the assumptions of the normal model, namely that it is normally distributed with an independent 
and constant error term, ε, that is also normally distributed. 
 
 One must be careful about transforming values that are zero since the natural log of 0 is 
unsolvable.  Usually researchers will set the value of the log-transformed dependent variable to 0 
or the value of the dependent variable to a small number (e.g., 1) for cases where the raw 
dependent variable actually has a value of 0 (e.g., equation 15.22 above).  But, one must be 
careful that it does not distort relationships if there are many zeros in the data.  For example, in 
the burglary data, there were 250 zones (out of 1,179, or 21%) that had zero burglaries! 
 
 Example of Transforming Dependent Variable on Houston Burglaries 
 
 Using the Houston burglary example from above, we transformed the dependent 
variable– number of 2006 burglaries per TAZ, by taking the natural logarithm of it.  All zones 
with zero burglaries were automatically given the value of 0 for the transformed variable.   
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 The transformed variable was then regressed against the two independent variables in the 
reduced form model (from Table 15.3 above).  Table 15.4 present the results: The coefficients 
are similar in sign.  The R2 value is smaller than the untransformed model (0.42 compared to 
0.48).  Further, the mean squared predictive error is now much lower than the original raw values 
(1.47 compared to 505.14) and the mean absolute deviation is also much lower (1.05 compared 
to 13.50).3  In other words, transforming the dependent variable into a logarithm has improved 
the fit of the estimate substantially.    
 
 Another type of transformation that is sometimes used is to convert the independent 
variables and, occasionally, the dependent variable into Z-scores.  The Z-score of a variable is 
defined as: 

 

 
)( k

kk
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z


                           (15.25) 

 
But all this will do is to standardize the scale of the variable as standard deviations 

around an expected value of zero, but not alter the shape.  If the dependent variable is skewed, 
taking the Z-score of it will not alter its skewness.  

 
A third type of transformation takes the square root of the dependent variable and regress 

it in an OLS model.  When we did this with the Houston burglary data, however, the fit was not 
as good as the log transformation (model not shown).  The mean absolute deviation was more 
than 50% higher and the mean squared predictive error was three times higher.  Again, the basic 
reason is that a count, such as the number of burglaries, is typically Poisson-distributed, meaning 
that it is exponential in form.  Essentially, skewness is a fundamental property of a distribution 
and the normal model is poorly suited for modeling it.  

 
Example of Modeling Skewed Variable with OLS 
 

 A simple example can illustrate this theoretically.  Figure 15.5 shows an exponential 
distribution that relates a dependent variable, Y, to an independent variable, X.  Think of these as 
any two variables that are positively related (e.g., crime & poverty; crime & unemployment).  
The data were created in a spreadsheet by the function Yi = eX with a random error added to 
simulate randomness.  However, the underlying curve is still exponential.  In Figure 15.6, we fit 
a linear model to the data using the CrimeStat module.  The result show that the model tended 
 
                                                            
3   The errors were calculated by, first, transforming the dependent variable by taking its natural log; second, the natural 

log was then regressed against the independent variables; third, the predicted values were then calculated; and, fourth, 
the predicted values were then converted back into raw scores by taking them as the exponents of e, the base of the 
natural logarithm.  The residual errors were calculated from the re-transformed predicted values. 
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Table 15.4: 

Predicting Burglaries in the City of Houston: 2006 
Log Transformed Dependent Variable 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:                              Natural log of 2006 BURGLARIES 
N:                                   1,179 
Df:                                  1,175 
Type of regression model:           Ordinary Least Squares 
F-test of model:   417.4   p≤.0001 
R-square:                            0.42 
Adjusted r-square:                   0.42 
Mean absolute deviation:       1.05 

1st (highest) quartile:       1.23 
 2nd quartile:        0.94 
 3rd quartile:        0.56 
 4th (lowest) quartile:       1.46 
Mean squared predictive error:      1.47 

1st (highest) quartile:       2.02 
 2nd quartile:        1.14 
 3rd quartile:        0.47 
 4th (lowest) quartile:       2.24 
 
Predictor  DF Coefficient Stand Error Tolerance VIF  t-value    p 
---------------------------------------------------------------------------------------------------------------------
INTERCEPT  1  1.5674   0.067    -    -  23.44  0.001 
HOUSEHOLDS  1  0.0012   0.00004 0.994  1.006  28.84  0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.000006   0.000001 0.994  1.006  -4.09  0.001 
--------------------------------------------------------------------------------------------------------------------- 
 
to underestimate both the upper- and lower-ends of the distribution of X, especially the high end 
while overestimating the middle range. 
 
 Transforming the dependent variable into a natural log (i.e., Ln[X]) creates a better fit 
(Figure 15.6).  Similarly, transforming the dependent variable into a square root (i.e., Sqrt[X]) is 
better than the linear though not as good as the log transformation (Figure 15.7).  However, 
neither transformation are as good as fitting a true Poisson function (Figure 15.8).  This can be  
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Modeling Skewed Phenomenon:  I ‐ Data Points

Y = eX

Figure 15.5:
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Modeling Skewed Phenomenon: II ‐ OLS Model

Y = eX

Figure 15.6:
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seen by comparing the Mean Square Predictive Error (MSPE) and the Mean Absolute Deviation 
(MAD) statistics including the quartiles for the MAD (Table 15.5). 
 

Table 15.5: 

Comparing Errors for Models Estimating Exponential Function 
Mean Squared Predictive Error and Mean Absolute Deviation 

 

Model 
 

  Error     OLS w. OLS w.  
  Statistic  OLS  Ln(Y)  Sqrt(Y) Poisson 
 
  MSPE:  4.96  1.94  2.57  1.80  
 
  MAD:   1.79  1.19  1.31  1.15 
    1st quartile:  2.15  1.15  1.48  0.96 
    2nd quartile:  2.15  1.35  1.28  1.36 
    3rd quartile:  2.16  1.01  1.50  1.06 
    4th quartile:  1.50  1.21  0.93  1.21 
 
 As seen, the Poisson provides the best overall fit with both the MSPE and the MAD.  
While the OLS using the log-transformed dependent variable produces a reasonably good fit, 
certainly better than the OLS on the untransformed dependent variable, it still provides a poorer 
fit than a non-linear Poisson function, which is an exponential function.  Further, the MAD for 
the first quartile (i.e., the data points with the highest actual values) is much worse for the OLS 
of the transformed dependent variable compared to the Poisson.  Where the transformed 
dependent variable does as well if not better than the Poisson is in the last two quartiles, the low 
end of the X distribution.   
 

With either the log transformation or the square root transformation, the fit is better for 
the low end of the dependent variable (i.e., those observations with fewer counts of the 
dependent variable) than for the high end.  The reason is because the OLS minimizes the sum of 
the squared deviations of the predictions from the dependent variable.  Since it assumes 
homoscedasticity in the residual errors across the ranges of independent variables, it cannot 
adjust the errors at the high end.  In other words, no matter what transformation is used with an 
OLS, the result will always be worse than a Poisson-based model.  Since we are usually 
interested in the high end of the dependent variable (i.e., those observations with many counts), 
that is a substantial deficiency of the OLS model. 
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Modeling Skewed Phenomenon: III ‐ OLS Model with LogY

Y = eX

Figure 15.7:
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Modeling Skewed Phenomenon: IV ‐ OLS Model with Square RootY

Y = eX

Figure 15.8:
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Modeling Skewed Phenomenon:  V ‐ Poisson Model

Y = eX

Figure 15.9:
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 Keep in mind that this was a created distribution where the data points were distributed 
equally across the X spectrum and where the errors were constant throughout (homosceadstic).  
With real data, a count variable (e.g., number of crimes, income) will usually be highly skewed 
with most observations having low values with a small percentage having high values (or vice 
versa such as with distance traveled) and the errors will typically increase with the value of the 
dependent variable. 

 
Diagnostic Tests and OLS 
 
 To evaluate skewness and other violations of assumptions of a linear model, it is essential 
to examine various diagnostics about the dependent variable.  The regression module has a set of 
diagnostic tests for evaluating the characteristics of the data and the most appropriate model to 
use.  There is a diagnostics box on the Regression I page (see Figure 20.1 in chapter 20).  
Diagnostics are provided on: 
 

1. The minimum and maximum values for the dependent and independent variables 
2. Skewness in the dependent variable 
3. Spatial autocorrelation in the dependent variable 
4. Estimated values for the distance decay parameter – alpha, for use in the Poisson-

Gamma-CAR model 
5. Multicolinarity among the independent variables 

 
Minimum and Maximum Values for the Variables 

 
 The minimum and maximum values of both the dependent and independent variables are 
listed.  A user should look for ineligible values (e.g., -1) as well as variables that have a very 
high range.  The MLE routines are sensitive to variables with very large ranges.  To minimize 
the effect, variables are internally scaled when being run (by dividing by their mean) and then re-
scaled for output.  Nevertheless, variables with extreme ranges in values and especially variables 
where there are a few observations with extreme values can distort the results for models.4  A 
user would be better choosing a more balanced variable than using one where one or two 
observations determines the relationship with the dependent variable. 
 
  

                                                            
4  For example, in Excel, two columns of random numbers from 1 to 10 were listed in 99 rows to represent two variables 

X1 and X2.  The correlation between these two variables over the 99 rows (observations) was -0.03.  An additional row 
was added and the two variables given a value of 100 each for this row.  Now, the correlation between these two 
variables increased to 0.89!  The point is, one or two extreme values can distort a statistical relationship. 
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Skewness Tests 
 
 As we have discussed, skewness in a variable can distort a normal model by allowing 
high values to be underestimated while allowing low or middle-range values to be overestimated.  
For this reason, a Poisson-type model is preferred over the normal for highly skewed variables. 
 
 The diagnostics utility tests for skewness using two different measures.  First, the utility 
outputs the “g” statistic (Microsoft, 2003):        
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 where n is the sample size, Xi is observation i, 


X  is the mean of X, and s is the sample standard 
deviation (corrected for degrees of freedom).  The sample standard deviation is defined as: 
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 The standard error of skewness (SES) can be approximated by (Tabachnick and Fidell, 
1996): 
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                  (15.28) 

 
 An approximate Z-test can be obtained from: 
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g
gZ )(                  (15.29) 

 
Thus, if Z is greater than +1.96 or smaller than -1.96, then the skewness is significant at the 
p≤.05 level.  
 
 An example is the number of crimes originating in each traffic analysis zone within 
Baltimore County in 1996.  The summary statistics were: 

 


X   = 75.108 
   s   =   96.017 
   n   =    325 
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Therefore, 

 79.2391.898*
323*324

325
g  

 

 136.0
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 51.20
136.0

79.2
)( gZ   

 
The Z of the g value shows the data are highly skewed.   
 
 The second skewness measure is a ratio of the simple variance to the simple mean.  
While this ratio had not been adjusted for any predictor variables, it is usually a good indicator of 
skewness.  Ratios greater than about 2:1 should make the user cautious about using a normal 
model. 
 
 If either measure indicates skewness, CrimeStat prints out a message indicating the 
dependent variable appears to be skewed and that a Poisson-type model should be used.  
 
 Testing for Spatial Autocorrelation in the Dependent Variable 
 
 A fourth test that is available is a test for spatial autocorrelation in the dependent variable.  
It will be discussed in the spatial regression section (Chapter 19). 
 
 Multicollinearity Tests 
 
 The fifth type of diagnostic test is for multicollinearity among the independent predictors.  
As we have discussed in this chapter, one of the major problems with many regression models, 
whether MLE or MCMC, is multicollinearity among the independent variables.   
 

To assess multicollinearity, the pseudo-tolerance test is presented for each independent 
variable.  This was discussed above in the chapter (see equation 15.18). 

 

MCMC Version of Normal (OLS) 
 
 There is also a Markov Chain Monte Carlo (MCMC) version of the OLS model which 
assumes the dependent variable is normally distributed.  This will be discussed in chapter 17 on 
Markov Chain Monte Carlo estimation and in chapter 19 on spatial regression modeling. 
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1  The code for the Poisson and Negative Binomial models was developed by Ian Cahill of Cahill Software, 

Edmonton, Alberta, based on his MLE++ software package (http://cahillsoftware.com/2122/index.html).   
The integration and stepwise procedures were developed by us with the programming by Ms. Haiyan Teng 
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Chapter 16: 

Poisson Regression Modeling 

 
In this chapter, we discuss Poisson models for estimating count variables. 

 

Count Data Models 
 
 In chapter 15, we examined Ordinary Least Squares (OLS) regression models.  We 
showed that these models were bound by some strong assumptions of a normally-distributed 
dependent variable and errors that were normal and constant.  We then demonstrated that OLS 
models are inadequate for describing skewed distributions, particularly counts.  Given that crime 
analysis usually involves the analysis of counts, this is a serious deficiency.   
 

Poisson Regression 
 
 Consequently, we turn to count data models, in particular the Poisson family of models. 
This family is part of the generalized linear models (GLMs), in which the OLS normal model 
described above is a special case (McCullagh & Nelder, 1989). Poisson regression is a modeling 
method that overcomes some of the problems of traditional regression in which the errors are 
assumed to be normally distributed (Cameron & Trivedi, 1998).  In the model, the number of 
events is modeled as a Poisson random variable with a probability of occurrence being: 
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                              (16.1) 

 

where iy  is the count for one group or class, i,   is the mean count over all groups, and e is the 

base of the natural logarithm.  The distribution has a single parameter, , which is both the mean 
and the variance of the function.   
 
 The “law of rare events” assumes that the total number of events will approximate a 
Poisson distribution if an event occurs in any of a large number of trials but the probability of 
occurrence in any given trial is small and assumed to be constant (Cameron & Trivedi, 1998).  
Thus, the Poisson distribution is very appropriate for the analysis of rare events such as crime 
incidents (or motor vehicle crashes or uncommon diseases or any other rare event).  The Poisson 
model is not particularly good if the probability of an event is more balanced; for that, the normal 
distribution is a better model as the sampling distribution will approximate normality with 
increasing sample size.  Figure 16.1 illustrates the Poisson distribution for different expected 
means. 



Figure 16.1:
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 The Poisson distribution is part of a large family known as the exponential family of 
distributions (McCullagh & Nelder, 1989).  The probability distribution for this family is 
expressed as (Hilbe, 2008): 
 

 : , 	
:

                  (16.2) 
 
where  is the canonical parameter or link function for observation , b( ) is the cumulant for 
observation	 , α( ) is the scale parameter which is set to one in discrete and count models, and 
C(yi: ) is a normalization (scaling) term that guarantees that the probability function sums to 1.  
This family of functions is unique in that the first and second derivatives of the cumulant, with 
respect to , produce the mean and variance function (Hilbe, 2008).  All members of the class of 
generalized linear models can be converted to the exponential form. 
 

 Since the Poisson family is a member of the exponential family, the mean can be 
modeled as a function of some other variables (the independent variables).  Given a set of 
observations on one or more independent variables, ),,,1( 1 Kii

T
i xx x , the conditional mean of 

iy  can be specified as an exponential function of the x’s: 

 

 βxx
T
ieyE iii  )|(            (16.3) 

 
where i is an observation, T

ix  is a set of independent variables including an intercept, 
T

K ),,,( 10  β  are a set of coefficients, and e is the base of the natural logarithm.  

Equation 16.3 can be also written as: 
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where each independent variable, k , is multiplied by a coefficient, k , and is added to a 

constant, 0 .  In expressing the equation in this form, we have transformed it using a link 

function, the link being the log-linear relationship.  As discussed above, the Poisson model is 
part of the GLM framework in which the functional relationship is expressed as a linear 
combination of predictive variables.  This type of model is sometimes known as a loglinear 
model as the natural log of the mean is a linear function of K independent variables and an 
intercept.   
 

However, we will refer to it as a Poisson model.  In more familiar notation, this is   
 

 KiKiii xxx   22110)ln(            (16.5) 
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 For the Poisson model, the log-likelihood is: 
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where )exp( βxT
ii   is the conditional mean for zone i,  and iy  is the observed number of 

events for observation i.  Anselin provides a more detailed discussion of these functions in 
Appendix B. The data are assumed to reflect the Poisson model and the variance equals the 
mean.  Therefore, it is expected that the residual errors should increase with the conditional 
mean.  That is, there is inherent heteroscedasticity in a Poisson model (Cameron & Trivedi, 
1998).  This is different than a normal model where the residual errors are expected to be 
constant.   
 
 The model is estimated using a maximum likelihood (MLE) procedure, typically the 
Newton-Raphson method or, occasionally, using Fisher scores (Wikipedia, 2010; Cameron & 
Trivedi, 1998).  In Appendix B, Anselin presents a more formal treatment of both the normal and 
Poisson regression models including the methods by which they are estimated. 
 
 Advantages of the Poisson Regression Model 
 
 The Poisson model overcomes some of the problems of the normal model.  First, the 
Poisson model has a minimum value of 0.  It will not predict negative values.  This makes it 
ideal for a distribution in which the mean or the most typical value is close to 0.  Second, the 
Poisson is a fundamentally skewed model; that is, it is data characterized with a long ‘right tail’.  
Again, this model is appropriate for counts of rare events, such as crime incidents. 
 
 Third, because the Poisson model is estimated by the maximum likelihood method, the 
estimates are adapted to the actual data.  In practice, this means that the sum of the predicted 
values is virtually identical to the sum of the input values, with the exception of a very slight 
rounding off error.  
 
 Fourth, compared to the normal model, the Poisson model generally gives a better 
estimate of the counts for each record.  The problem of over- or underestimating the number of 
incidents for most records with the normal model is usually lessened with the Poisson. When the 
residual errors are calculated, generally the Poisson has a lower total error than the normal 
model, as was illustrated in chapter 15.  
 
 In short, the Poisson model has some desirable statistical properties that make it very 
useful for predicting crime incidents.  
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 Example of Poisson Regression 
 
 Using the same Houston burglary database as in chapter 15, we estimate a Poisson model 
of the two independent predictors of burglaries (Table 16.1).   
 

Likelihood Statistics 
 
   Log-likelihood 
 

The summary statistics are quite different from the normal model.  In the CrimeStat 
implementation, there are five separate statistics about the likelihood, representing a joint 
probability function that is maximized.  First, there is the log-likelihood (L).  The likelihood 
function is the joint (product) density of all the observations given values for the coefficients and 
the error variance.  The log-likelihood is the log of this product or the sum of the individual 
densities. Because the function maximizes a probability, which is always between 0 and 1, the 
log-likelihood is always negative with a Poisson model.  

 
Note that in comparing two models, the model with the smallest log-likehood will fit the 

data better assuming that the data set and the dependent variable are the same.  For example, if 
one model has a log-likelihood of -4,000 and a second model on the same data set and dependent 
variable has a log-likelihood of -5,000, the first model is better because it has a smaller log-
likelihood than the second model.  While this is unintuitive, it makes sense in terms of 
probability theory.  If the probability of the first model is 0.6 and that of the second 0.4, then the 
log-likelhood of the first model will be -0.51 and that of the second -.91. Since a likelihood is the 
product of the densities of each individual case (and, therefore, the log-likelihood is the sum of 
the individual logarithms), in practice the log-likelihood is proportional to the probability. 

 
  Aikaike Information Criterion (AIC) 
 
Second, the Aikaike Information Criterion (AIC) adjusts the log-likelihood for degrees of 

freedom since adding more variables will always increase the log-likelihood.   It is defined as: 
 
 AIC  =  -2L + 2(K+1)                               (16.7) 

 
where L is the log-likelihood and K is the number of independent variables.  The model with the 
lowest AIC is ‘best’. 
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Table 16.1: 

Predicting Burglaries in the City of Houston: 2006 
Poisson Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:                             2006 BURGLARIES 
N:                                    1,179 
Df:                                   1,175 
Type of regression model:            Poisson 
Method of estimation:   Maximum likelihood 
 
 Likelihood statistics 
 Log-likelihood:                     -13,639.5 
 AIC:                                 27,287.1 
 BIC/SC:                             27,307.4 
 Deviance:    23,021.4 p:   0.0001 
 Pearson Chi-square:   24,804.4 p:   0.0001 
 Model error estimates 
 Mean absolute deviation:            16.0 

1st (highest) quartile:       33.9 
 2nd quartile:        7.3 
 3rd quartile:        8.8 
 4th (lowest) quartile:       13.9 
 Mean squared predicted error:      714.2 

1st (highest) quartile:       2,351.8 
 2nd quartile:        203.7 
 3rd quartile:        99.8 
 4th (lowest) quartile:       206.7 
 Dispersion tests 
 Adjusted deviance:   19.6 p: 0.0001 
 Adjusted Pearson Chi-Square:        21.1 p: 0.0001 
 Dispersion multiplier:               21.1 p: 0.0001 Inverse dispersion multiplier:     0.05 
 
Predictor  DF Coefficient Stand Error Tolerance VIF  Z-value    p 
-------------------------------------------------------------------------------------------------------------------------------
INTERCEPT  1  2.8745    0.014    -    -  212.47    0.001 
HOUSEHOLDS  1  0.0006    0.000004  0.994  1.006  146.24    0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.000009 0.00000   0.994  1.006  -28.68     0.001 
------------------------------------------------------------------------------------------------------------------------------- 
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Bayes Information Criterion (BIC/SC) 
  

Third, another measure which is very similar is the Bayes Information Criterion (BIC/SC, 
sometimes called Schwartz Criterion), which is defined as: 
 
 BIC/SC  =  -2L+[(K+1)ln(N)]                         (16.8) 
 

These two measures penalize the number of parameters added in the model, and reverse 
the sign of the log-likelihood (L) so that the statistics are more intuitive.  The model with the 
lowest BIC/SC value is ‘best’. 
 

Deviance 
 
Fourth, a decision about whether the Poisson model is appropriate can be based on the 

statistic called the deviance which is defined as: 
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where FL  is the log-likelihood that would be achieved if the model gave a perfect fit and  ML is 

the log-likelihood of the model under consideration. If the latter model is correct, the deviance 

(Dev) is approximately 2 distributed with degrees of freedom equal to )1(  KN .   A value of 

the deviance greatly in excess of )1(  KN  suggests that the model is over-dispersed due to 

missing variables or non-Poisson form.  This statistic is sometimes called the G2 statistic (Bishop, 
Feinberg, & Holland, 1975).  The deviance has N-K-1 degrees of freedom where K is the number 
of parameters estimated (including the constant). 
 
  Pearson Chi-square 
 

Fifth, there is the Pearson Chi-square statistic which is defined by  
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                  (16.10) 

 

 If the mean and the variance are properly specified, then  ∑  

(Cameron and Trivedi, 1998).  Values closer to N (the sample size) show a better fit.  The 
Pearson Chi-square has N-K-1 degrees of freedom where K is the number of parameters 
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estimated (including the constant).  Note, that the expected value depends on the variance 
function, which we will discuss below. 

 
  Model Error Estimates 
 
 Next, there are two statistics that measure how well the model fits the data (goodness-of-
fit).  Mean Absolute Deviation (MAD) and Mean Squared Predicted Error (MSPE) were defined 
in Chapter 15. Comparing these with the results of the normal model (Table 15.1), it can be seen 
that the overall MAD and MSPE are slightly worse than for the normal model, though much 
better than with the log transformed linear model (Table 15.4).  Comparing the four quartiles, it 
can be seen that for three of the four quartiles the normal model had slightly better MAD and 
MSPE scores than for the Poisson but the differences were not great.  
 
  Dispersion Tests 
 
 The remaining four summary statistics measure dispersion.  A more extensive discussion 
of dispersion is given later in the chapter.  But, very simply, in the Poisson framework, the 
variance should equal the mean.  These statistics indicate the extent to which the variance 
exceeds the mean.  
 

First, the adjusted deviance is defined as the deviance divided by the degrees of freedom 
(N-K-1); a value closer to 1 indicates a satisfactory goodness-of-fit. Usually, values greater than 
1 indicate signs of over-dispersion.   

 
Second, the adjusted Pearson Chi-square is defined as the Pearson Chi-square divided by 

the degrees of freedom; again, a value closer to 1 indicates a satisfactory goodness-of-fit.   
 
Third, the dispersion multiplier, γ, measures the extent to which the conditional variance 

exceeds the conditional mean (conditional on the independent variables and the intercept term) 
and is defined by 2)( iiiyVar   .  The Z-test of the dispersion multiplier indicates whether 

the amount of dispersion is significantly greater than that assumed by the Poisson model (Hilbe, 
2008).  The test is: 

 

	 	
∑

∑ √
                (16.11) 

 
 where yi is the observed value of Y and μi is the predicted value of Y.  The statistic is a test of 
over-dispersion, that the conditional variance is greater than the conditional mean. A significant 
value for Z indicates that the assumption of equi-dispersion of the conditional variance is 
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rejected and the model should be estimated as a negative binomial or lognormal for over-
dispersion.   
 
 In some cases, there may be under-dispersion, that is where the conditional variance is 
less than the conditional mean.  In this case, a Poisson with linear correction should be used.  
Unfortunately, the Z-test will identify that as being not significant. We are not aware of a good 
test for under-dispersion and the user will have to use judgment. 

 
Fourth, the inverse dispersion multiplier )( is simply the reciprocal of the dispersion 

multiplier )/1(   ; some users are more familiar with it in this form. 

 
As seen in Table 16.1, the four dispersion statistics are much greater than 1 and indicate 

over-dispersion.  In other words, the conditional variance is greater – in this case, much greater, 
than the conditional mean.  The ‘pure’ Poisson model (in which the variance is supposed to equal 
the mean) is not an appropriate model for these data. 

 
 Individual Coefficient Statistics 
 
 Finally, the signs of the coefficients are the same as for the normal and transformed 
normal models, as would be expected.  The relative strengths of the variables, as seen through 
the Z-values, are also approximately the same.   
 
 In short, the Poisson model has produced results that are an alternative to the normal 
model.  While the likelihood statistics indicate that, in this instance, the normal model is slightly 
better, the Poisson model has the advantage of being theoretically sounder.  In particular, it is not 
possible to get a minimum predicted value less than zero (which is possible with the normal 
model) and the sum of the predicted values will always equal the sum of the input values (which 
is rarely true with the normal model). With a more skewed dependent variable, the Poisson 
model will usually fit the data better than the normal as well.  

 

Problems with the Poisson Regression Model 
 
 On the other hand, the Poisson model is not perfect.  The primary problem is that count 
data are usually over-dispersed.  
 

Over-dispersion in the Residual Errors 
 

In the Poisson distribution, the mean equals the variance.  In a Poisson regression model, 
the mathematical function, therefore, equates the conditional mean (the mean controlling for all 
the predictor variables) with the conditional variance.  However, most actual distributions have a 
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high degree of skewness, much more than are assumed by the Poisson distribution (Cameron & 
Trivedi, 1998; Mitra & Washington, 2007).  

 
As an example, figure 16.2 shows the distribution of Baltimore County and Baltimore 

City crime origins and Baltimore County crime destinations by TAZ.  For the origin distribution, 
the ratio of the variance to the mean is 14.7; that is, the variance is 14.7 times that of the mean!  
For the destination distribution, the ratio is 401.5!   
 
 In other words, the simple variance is many times greater than the mean. We have not yet 
estimated some predictor variables for these variables, but it is probable that even when this is 
done the conditional variance will far exceed the conditional mean.  Many real-world count data 
are similar to this; the variance will usually be much greater than the mean (Lord, 2006) 
although, occasionally, the variance can be smaller than the conditional mean (Lord, 2010).  
What this means in practice is that the residual errors - the difference between the observed and 
predicted values for each zone, will be greater than what is expected.  The Poisson model 
calculates a standard error as if the variance equals the mean.  Thus, the standard error will be 
underestimated using a Poisson model and, therefore, the significance tests (the coefficient 
divided by the standard error) will be greater than they really should be.  In a Poisson multiple 
regression model, we might end up selecting variables that really should not be selected because 
we think they are statistically significant when, in fact, they are not (Park & Lord, 2007). 
 

Under-dispersion in the Residual Errors 
 
 There are also cases where the conditional variance is less than the conditional mean 
(under-dispersion).  This happens sometimes with crime data.  For example, in an analysis of 
drunk driving crashes in Baltimore County, we found that the modeled variance was 
substantially less than the modeled mean (Levine & Canter, 2011).  In both cases, one needs to 
correct the estimated standard error from the Poisson model. 
 
 To visualize over- and under-dispersion, Figure 16.3 shows three different skewed 
distributions, over-dispersed, equi-dispersed (Poisson), and under-dispersed.  These are based on 
the variance-to-mean ratios of the raw data.  Note that the over-dispersed distribution is 
extremely skewed while the under-dispersed distribution is mildly skewed.  Still, with under-
distribution, one cannot assume a normal distribution because it will still underestimate the high 
values of the dependent variable. 
 

Also, the actual dispersion is conditional on the independent variables (i.e., after the 
model has been run).  However, Cameron and Trivedi (1998) suggest that if the raw variance-to-
mean ratio is less than 2.0, most likely the conditional variance will be less than the conditional 
mean.   
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Figure 16.3:
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Poisson Regression with Linear Dispersion Correction 
 
 There are a number of methods for correcting the over-dispersion in a count model.  Most 
of them involve modifying the assumption of the conditional variance equal to the conditional 
mean.  The first is a simple linear correction known as the linear negative binomial (or NB1 
model; Cameron & Trivedi, 1998, 63-65).  The variance of the function is assumed to be a linear 
multiplier of the mean.  The conditional variance is defined as: 
 

 ]|[ iii yV x                      (16.12) 

 

where ]|[ iiyV x  is the variance of iy  given the independent variables. 

 
The conditional variance is then a function of the mean: 
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where  is the dispersion parameter and p  is a constant (usually 1 or 2).   In the case where p  

is 1, the equation simplifies to: 
 

 iii                    (16.14) 

 
This is the NB1 correction.  In the special case where 0 , the variance becomes equal 

to the mean (the Poisson model).  The model is estimated in two steps.  First, the Poisson model 
is fitted to the data and the degree of over- (or under) dispersion is estimated.  The dispersion 
parameter is defined as: 
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where N is the sample size, K is the number of independent variables, iY  is the observed number 

of events that occur in observation (or zone) i, and î  is the predicted number of events for 

observation (or zone) i.  The test is similar to an average chi-square in that it takes the square of 

the residuals 2)ˆ( iiy   and divides it by the predicted values, and then averages it by the degrees 

of freedom. The dispersion parameter is a standardized number.  A value greater than 0 indicates 
over-dispersion while a value less than 0 indicates under-dispersion.  A value of 0 indicates 
equidispersion (or the variance equals the mean). The dispersion parameter can also be estimated 
based on the deviance. 
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 In the second step, the Poisson standard error is multiplied by the square root of the 
dispersion parameter to produce an adjusted standard error: 
     

 ̂ SESEadj                                  (16.16) 

 
The new standard error is then used with the t-test to produce an adjusted t-value.  This 

adjustment is found in most Poisson regression packages using a Generalized Linear Model 
(GLM) approaches (McCullagh and Nelder, 1989, 200).  Cameron & Trivedi (1998) have shown 
that this adjustment produces results that are virtually identical to that of the negative binomial, 
but involving fewer assumptions.  CrimeStat includes an NB1 correction and is called Poisson 
with linear correction.  
 
 Example of Poisson Model with Linear Dispersion Correction (NB1) 
 
 Table 16.2 shows the results of running the Poisson model with the linear dispersion 
correction. The likelihood statistics are the same as for the simple Poisson model (Table 16.1) 
and the coefficients are identical.  The dispersion parameter, however, has now been adjusted to 
be 1.0.  This affects the standard errors, which are now greater.  In the example, the two 
independent variables are still statistically significant, but the Z-values are smaller.  
 

Poisson-Gamma (Negative Binomial) Regression 
 
 A second type of dispersion correction involves a mixed function model.  Instead of 
simply adjusting the standard error by a dispersion correction, different assumptions are made for 
the mean and the variance (dispersion) of the dependent variable.  In the negative binomial 

model, the number of observations )( iY  is assumed to follow a Poisson distribution but the mean

)( i  follows a Gamma distribution (Lord, 2006; Cameron & Trivedi, 1998, 62-63; Venables & 

Ripley, 1997, 242-245).  This is frequently called an NB2 model. 
 
 Mathematically, the negative binomial distribution is one derivation of the binomial 
distribution in which the sign of the function is negative, hence the term negative binomial (for 
more information on the derivation, see Wikipedia, 2010).  For our purposes, it is defined as a 
mixed distribution with a Poisson mean and a one parameter Gamma dispersion function having 
the form: 
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Table 16.2: 
 Predicting Burglaries in the City of Houston: 2006 

Poisson with Linear Dispersion Correction Model (NB1) 
(N= 1,179 Traffic Analysis Zones) 

 
DepVar:                              2006 BURGLARIES 
N:                                    1,179 
Df:                                   1,175 
Type of regression model:            Poisson with linear dispersion correction  
Method of estimation:        Maximum likelihood 
 

Likelihood statistics 
 Log-likelihood:                      -13,639.5 
 AIC:                                 27,287.1 
 BIC/SC :                             27,307.4 
 Deviance:    12,382.5 p:  0.0001 
 Pearson Chi-square:   12,402.2 p:  0.0001 
 Model error estimates 
 Mean absolute deviation:            16.0 

1st (highest) quartile:        33.9 
 2nd quartile:         7.3 
 3rd quartile:         8.8 
 4th (lowest) quartile:        13.9 
 Mean squared predicted error:       714.2 

1st (highest) quartile:        2,351.8 
 2nd quartile:         203.7 
 3rd quartile:         99.8 
 4th (lowest) quartile:        206.7 
 Dispersion tests 
 Adjusted deviance:                 10.5 P: 0.001 
 Adjusted Pearson Chi-Square:    10.6 p: 0.001 
 Dispersion multiplier:                1.0 p: n.s.  Inverse dispersion multiplier:      1.0 
 
------------------------------------------------------------------------------------------------------------------------------- 
Predictor  DF Coefficient Stand Error  Tolerance VIF   Z-value     p 
INTERCEPT  1  2.87452   0.062     -    -     46.26     0.001 
HOUSEHOLDS  1  0.00059   0.00002   0.994   1.006     31.84     0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.000009   0.000001   0.994  1.006     -6.24    0.001 
------------------------------------------------------------------------------------------------------------------------------- 
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where   
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and where θi is a function of a one-parameter gamma distribution where the parameter, τ, is 
greater than 0 (ignoring the subscripts): 
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 The model is used traditionally with integer (count) data though it can also be applied to 
continuous (real) data.  Sometimes the integer model is called a Pascal model while the real 
model is called a Polya model (Wikipedia, 2010; Springer, 2010).   Boswell and Patil (1970) 
argued that there are at least 12 distinct probabilistic processes that can give rise to the negative 
binomial function including heterogeneity in the Poisson intensity parameter, cluster sampling 
from a population which is itself clustered, and the probabilities that change as a function of the 
process history (i.e., the occurrence of an event breeds more events). The interpretation we adopt 
here is that of a heterogeneous population with different observations coming from different sub-
populations, and the Gamma distribution is the mixing variable. 
 

Because both the Poisson and Gamma functions belong to the single-parameter 
exponential family of functions and are convex in shape (increasing smoothly up to a peak and 
then decreasing smoothly), they can be solved by the maximum likelihood method.  The mean is 
always estimated as a Poisson function.  However, there are slightly different parameterizations 
of the variance function (Hilbe, 2008).  In the original derivation by Greenwood and Yule 
(1920), the conditional variance was defined as: 

 
ωi =  μi + μi

2/ ψ                  (16.22) 
 
whereupon ψ (Psi) became known as the inverse dispersion parameter (McCullagh & Nelder, 
1989).    
 

However, in more recent years, the conditional variance was defined within the 
Generalized Linear Models tradition as a direct adjustment of the squared Poisson mean, namely:  
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 ωi =  μi + τ μi
2                 (16.23) 

 
where the variance is now a quadratic function of the Poisson mean (i.e., p is 2 in formula 16.13) 
and τ is called the dispersion multiplier.   This is the formulation proposed by Cameron & 
Trivedi (1998; pp. 62-63).  That is, it is assumed that there is an unobserved variable that affects 
the distribution of the count so that some observations come from a population with higher 
expected counts whereas others come from a population with lower expected counts.  The model 
then has a Poisson mean but with a ‘longer tail’ variance function. The dispersion parameter, τ, is 
directly related to the amount of dispersion. This is the interpretation that we will use in the 
chapter and in CrimeStat. 
 
 Formally, we can write the negative binomial model as a Poisson-gamma mixture form: 

  

 )(~| iii Poissony                           (16.24) 

 

The Poisson mean i  is organized as: 

 
 )exp( i

T
ii   βx                          (16.25) 

 
where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, and i  is the model error independent of all covariates. The )exp( i  is 

assumed to follow the gamma distribution with a mean equal to 1 and a variance equal to 
 /1  where   is a parameter that is greater than 0 (Lord, 2006; Cameron & Trivedi, 1998). 

 
For a negative binomial generalized linear model, the deviance can be computed the 

following way: 
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For a well-fitted model the deviance should be approximately 2  distributed with 1KN  

degrees of freedom (McCullagh and Nelder, 1987).   If )1/(  KND  is close to 1, we generally 

conclude that the model’s fit is satisfactory. 
 
 Example 1 of Negative Binomial Regression 

 
 To illustrate, Table 16.3 presents the results of the negative binomial model for Houston 
burglaries. Even though the individual coefficients are similar, the likelihood statistics indicate 
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that the model fit the data better than the Poisson with linear correction for over-dispersion.  The 
log-likelihood is higher, the AIC and BIC/SC statistics are lower as are the deviance and the 
Pearson Chi-square statistics.    
 
 On the other hand, the model error is higher than for the Poisson and Poisson NB1 
models, both for the mean absolute deviation (MAD) and the mean squared predicted error 
(MSPE).  Accuracy and precision need to be seen as two different dimensions for any method, 
including a regression model (Jessen, 1979, 13-16).  Accuracy is ‘hitting the target’, in this case 
maximizing the likelihood function.  Precision is the consistency in the estimates, again in this 
case the ability to replicate individual data values.  A normal model will often produce lower  
overall error because it minimizes the sum of squared residual errors though it rarely will 
replicate the values of the records with high values and often does poorly at the low end.   
 

For this reason, we say that the negative binomial is a more accurate model though not 
necessarily a more precise one.  To improve the precision of the negative binomial, we would 
have to introduce additional variables to reduce the conditional variance further.  Clearly, 
residential burglaries are associated with more variables than just the number of households and 
the median household income (e.g., ease of access into buildings, lack of surveillance on the 
street, having easy contact with individuals willing to distribute stolen goods).  

 
Nevertheless, the negative binomial is a better model than the Poisson and certainly the 

normal, Ordinary Least Squares.  It is theoretically sounder and does better with highly skewed 
(over-dispersed) data.  In Appendix C, Lord and Park present a more formal presentation of the 
model. 

 
Example 2 of Negative Binomial Regression with Highly Skewed Data 

 
 To illustrate further, the negative binomial is very useful when the dependent variable is 
extremely skewed.   Figure 16.4 show the number of crimes committed (and charged for) by 
individual offenders in Manchester, England in 2006.  The X-axis plots the number of crimes 
committed while the Y-axis plots the number of offenders.  Of the 56,367 offenders, 40,755 
committed one offence during that year, 7,500 committed two offences, and 3,283 committed 
three offences.  At the high end, 26 individuals committed 30 or more offences in 2006 with one 
individual committing 79 offences.  The distribution is very skewed. 
 

A negative binomial regression model was set up to model the number of offences 
committed by these individuals as a function of conviction for previous offence (prior to 2006), 
age, and distance that the individual lived from the city center.  Table 16.4 shows the results.  
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Table 16.3: 
Predicting Burglaries in the City of Houston: 2006 

MLE Negative Binomial Model 
(N= 1,179 Traffic Analysis Zones) 

 
DepVar:                              2006 BURGLARIES 
N:                                   1,179 
Df:                                  1,175 
Type of regression model:           Poisson with Gamma dispersion 
Method of estimation:        Maximum likelihood 
 

Likelihood statistics 
 Log-likelihood:                      -4,430.8 
 AIC:                                 8,869.6 
 BIC/SC :                             8,889.9 
 Deviance:    1,390.1  p:  0.0001 
 Pearson Chi-square:   1,112.7  p:  n.s. 
 Model error estimates 
 Mean absolute deviation:            39.6 

1st (highest) quartile:        124.1 
 2nd quartile:         19.4 
 3rd quartile:         6.2 
 4th (lowest) quartile:        8.9 
 Mean squared predicted error:       62,031.2 

1st (highest) quartile:        242,037.1 
 2nd quartile:         6,445.8 
 3rd quartile:         118.3 
 4th (lowest) quartile:        154.9 
  Dispersion tests 
 Adjusted deviance:                   1.2 p:  n.s 
 Adjusted Pearson Chi-Square:     0.9 p:  n.s. 
 Dispersion multiplier:               1.5 p:  n.s.  Inverse dispersion multiplier:  0.7 
 
Predictor  DF Coefficient Stand Error  Tolerance VIF   Z-value     p 
-------------------------------------------------------------------------------------------------------------------------------
INTERCEPT  1  2.3210    0.083      -    -    27.94     0.001 
HOUSEHOLDS  1  0.0012    0.00007     0.994   1.006   17.66     0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.00001  0.000002   0.994   1.006    -5.13     0.001 
------------------------------------------------------------------------------------------------------------------------------- 

  



Figure 16.4:
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Table 16.4: 

Number of Crimes Committed in Manchester in 2006 
Negative Binomial Model 

(N= 56,367 Offenders) 
 
DepVar:                       NUMBER OF CRIMES COMMITTED IN 2006 
  N:                              56,367 
  Df:                             56,362 
  Type of regression model:      Poisson with Gamma dispersion 
  Method of estimation:   Maximum likelihood 
 
 Likelihood statistics 
  Log-likelihood:                -89,103.7 
  AIC:                            178,217.4 
  BIC/SC:                        178,262.1 
  Deviance:    36,616.6 p: n.s. 
  Pearson Chi-square:   80,950.2 p: 0.0001 
 Model error estimates 
  Mean absolute deviation:     0.93 

1st (highest) quartile:  1.9 
 2nd quartile:   0.7 
 3rd quartile:   0.6 
 4th (lowest) quartile:  0.6 
  Mean squared predicted error:  3.90 

1st (highest) quartile:  13.8 
 2nd quartile:   0.7 
 3rd quartile:   0.6 
 4th (lowest) quartile:  0.6 
  Dispersion tests 
  Adjusted deviance:             0.6 p: n.s. 
  Adjusted Pearson Chi-Square:   1.4 p: n.s. 
  Dispersion multiplier:         0.2 p : n.s.   Inverse dispersion multiplier: 6.2 
 
Predictor  DF Coefficient Stand Error Tolerance Z-value   p 
------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT  1  0.509    0.012      -   41.90  0.001 
DISTANCE  
FROM 
CITY CENTER 1 -0.022    0.003     0.999   -6.74  0.001 
PRIOR OFFENCE 1  0.629    0.008     0.982   80.24  0.001 
AGE OF  
OFFENDER  1 -0.012    0.0003     0.981  -35.09  0.001 
------------------------------------------------------------------------------------------------------------------------------- 
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 The model was discussed in a recent article (Levine & Lee, 2013).  The closer an 
offender lives to the city center, the greater than number of crimes committed.  Also, younger 
offenders committed more offences than older offenders.  However, the strongest variable is 
whether the individual had an earlier conviction for another crime.  Offenders who have 
committed previous offences are more likely to commit more of them again.  Crime is a very 
repetitive behavior! 
 
 The likelihood statistics indicates that the model was reasonably closely.  The likelihood 
statistics were better than that of a normal OLS and a Poisson NB1 models (not shown).  The 
model error was also slightly better for the negative binomial.  For example, the MAD for this 
model was 0.93 compared to 0.95 for the normal and 0.93 for the Poisson NB1.  The MSPE for 
this model was 3.90 compared to 3.93 for the normal and also 3.90 for the Poisson NB1.  The 
negative binomial and Poisson models produce very similar results because, in both cases, the 
means are modeled as Poisson variables.  The differences are in the dispersion statistics.   For 
example, the standard error of the four parameters (intercept plus three independent variables 
was 0.012, 0.003, 0.008, and 0.0003 respectively for the negative binomial compared to 0.015, 
0.004, 0.010, and 0.0004 for the Poisson NB1 model.  In general, the negative binomial will fit 
the data better when the dependent variable is highly skewed and will usually produce lower 
model error. 
 
 Advantages of the Negative Binomial Model 
 
 The main advantage of the negative binomial model over the Poisson and Poisson with 
linear dispersion correction (NB 1) is that it incorporates the theory of Poisson but allows more 
flexibility in that multiple underlying distributions may be operating.  Further, mathematically it 
separates out the assumptions of the mean (Poisson) from that of the dispersion (Gamma) 
whereas the Poisson with linear dispersion correction only adjust the dispersion after the fact 
(i.e., it determines that there is over- or under-dispersion and then adjusts it).  This is neater from 
a mathematical perspective.  Separating the mean from the dispersion can also allow alternative 
dispersion estimates to be modeled, such as the lognormal (Lord, 2006).   This is very useful for 
modeling highly skewed data. 

 
 Disadvantages of the Negative Binomial Model 
 
 The biggest disadvantage is that the constancy of sums is not maintained.  Whereas the 
Poisson model (both “pure” and with the linear dispersion correction) maintains the constancy of 
the sums (i.e., the sum of the predicted values equals the sum of the input values), the negative 
binomial does not.  Usually, the degree of error in the sum of the predicted values is not far from 
the sum of the input values.  But, occasionally substantial distortions are seen. 
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 A second disadvantage is that the negative binomial model cannot handle under-
dispersion.  There are crime data sets that we have seen which show under-dispersion.  For those, 
one needs another type of model.  In Levine and Canter (2011), a Poisson with linear correction 
was used to adjust the standard errors (essentially, making them smaller).  But, better methods 
need to be developed. 

 
 A final disadvantage of the negative binomial is related to the small sample size and low 
sample mean bias. It has been shown that the dispersion parameter of NB2 models can be 
significantly biased or misestimated when not enough data are available for estimating the model 
(Lord, 2006).  For that, a Poisson-lognormal model is a better solution. 
 
 Alternative Poisson Regression Models 
 
 There are a number of variations of these involving different assumptions about the 
dispersion term, such as a lognormal function.  There are also a number of different Poisson-type 
models including the zero-inflated Poisson (or ZIP; Hall, 2000), the Generalized Extreme Value 
family (Weibul, Gumbel and Fréchet), the lognormal function (see NIST 2004 for a list of 
common non-linear functions), and the Negative binomial-Lindley (Lord and Greedipally, 2011). 
 
 There are also alternative methods than maximum likelihood for estimating the likely 
value of a count given a set of independent predictors.  In Chapter 17, we will examine several 
other approaches to estimating the Poisson model and will develop several alternative Poisson 
models. 
 

Likelihood Ratios 
 
 One test that we have not implemented in the regression I module is the likelihood ratio 
because it is so simple.  A likelihood ratio is the ratio of the log-likelihood of one model to that 
of another.  For example, a Poisson-Gamma model run with three independent variables can be 
compared with a Poisson-Gamma model with two independent variables to see if the third 
independent variable significantly adds to the prediction. 
 
 The test is very simple. Let LC be the log-likelihood of the comparison model and let LB 
be the log-likelihood of the baseline model (the model to which the comparison model is being 
compared).  Then, 
 
 LR = 2(LC – LB)                (16.27) 
 

 LR is distributed as a 2  statistic with K  degrees of freedom where K is the difference in 

the number of parameters estimated between the two models including the intercepts.  In the 
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example above, K is 1 since a model with three independent variables plus an intercept (d.f. = 4) 
is being compared with a model with two independent variables plus an intercept (d.f.=3). 
 

Limitations of the Maximum Likelihood Approach 
 
 The functions considered up to this point are part of the single-parameter exponential 
family of functions where the function is smooth and convex.  Because of this, maximum 
likelihood estimation (MLE) can be used.  However, there are more complex functions that are 
not part of this family.  Also, some functions come from multiple families and are, therefore, too 
complex to solve for a single maximum.  They may have multiple ‘peaks’ for which there is not 
a single optimal solution.  For these functions, a different approach has to be used. 
 

Also, one of the criticisms leveled against maximum likelihood estimation (MLE) in 
general is that the approach overfits data.  That is, it finds the values of the parameters that 
maximize the joint probability function.  This is similar to the old approach of fitting a curve to 
data points with higher-order polynomials.  While one can find some combination of higher-
order terms to fit the data almost perfectly, such an equation has no theoretical basis nor cannot 
easily be explained.  Further, such an equation does not usually do very well as a predictive tool 
when applied to a new data set. 
 

MLE has been seen as analogous to this approach.   By finding parameters that maximize 
the joint probability density distribution, the approach may be fitting the data too tightly.  The 
original logic behind the AIC and BIC/SC criteria were to penalize models that included too 
many variables (Findley, 1993).  However, these corrections only partially adjust the model.  It is 
still possible to overfit a model with MLE.  Radford (2006) has suggested that, in addition to a 
penalty for too many variables, that the gradient assent in a maximum likelihood algorithm be 
stopped before reaching the peak.  This would require modifying the MLE algorithm 
substantially. 

 
Further, Nannen (2003) has argued that overfitting creates a paradox because as a model 

fits the data better and better, it will do worse on other datasets to which it is applied for 
prediction purposes.  In other words, it is better to have a simpler, but more robust, model than 
one that closely models one data set.  Probably the biggest criticism against the MLE approach is 
that it underestimates the sampling errors by, again, overfitting the parameters (Husmeier & 
McGuire, 2002).  

 
Instead, we will now examine a method that overcomes some of these difficulties, the 

Markov Chain Monte Carlo (MCMC) approach.  Because the algorithm samples from a larger 
space rather than maximizes a function per se, it has the ability to find solutions to very complex 
problems for which the MLE approach is not appropriate.  Chapter 17 presents this approach. 
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Chapter 17: 
Estimating Complex Models with  

Markov Chain Monte Carlo Simulation 

 
In this chapter, we examine the Markov Chain Monte Carlo (MCMC) method for 

estimating complex models.  We apply it to the family of Poisson models for modeling count 
data. 

 
Markov Chain Monte Carlo (MCMC) Simulation of Regression Functions 
 

To estimate a regression model from a complex function, we use a simulation approach 
called Markov Chain Monte Carlo (or MCMC).  Chapter 12 of the CrimeStat manual discussed 
the Correlated Walk Analysis (CWA) routines.  This was an example of a random walk whereby 
each step follows from the previous step.  That is, a new position is defined only with respect to 
the previous position.  This is an example of a Markov Chain.   

 
 In recent years, there have been numerous attempts to utilize this methodology for 

simulating regression and other models using a Bayesian approach (Lynch, 2007; Gelman, 
Carlin, Stern, & Rubin, 2004; Lee, 2004; Denison, Holmes, Mallick & Smith, 2002; Carlin & 
Louis, 2000; Leonard & Hsu, 1999).  

 
Hill Climbing Analogy 

 
 To understand the MCMC approach, let us use a ‘hill climbing’ analogy.   Imagine a 
mountain climber who wants to climb the highest mountain in a mountain range (for example, 
Mt. Everest in the Himalaya mountain range).  However, suppose a cloud cover has descended 
on the range such that the tops of mountains cannot be seen; in fact, assume that only the bases 
of the mountains can be seen.  Without a map, how does the climber find the mountain with the 
highest peak and then climb it?  Realistically, of course, no climber is going to try to climb 
without a map and, certainly, without good visibility.  But, for the sake of the exercise, think of 
how this could be done. 
 
 First, the climber could adopt a gradient approach with a systematic walking pattern.  For 
example, he/she takes a step.  If the step is higher than the current elevation (i.e., it is uphill), the 
climber then accepts the new position and moves to it.  On the other hand, if the step is at the 
same or a lower elevation as the current elevation, the step is rejected. After each iteration 
(accepting or rejecting the new step), the procedure continues.  Such a procedure is sometimes 
called a greedy algorithm because it optimizes the decision in incremental steps (local 
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optimization; Wikipedia, 2010a; Cormen, Leiserson, Rivest, & Stein; 2009; So, Ye, & Zhang, 
2007; Dijkstra, 1959). 
 
 This strategy can be useful if there is a single mountain to climb (i.e., it is convex 
throughout or at least in the vicinity of the highest peak).  Because generally moving uphill 
means moving towards the peak of the mountain, this approach will often lead the climber to get 
to the peak if the mountain is smooth.  For a single mountain, a greedy algorithm such as our hill 
climbing example often works fine.  The Maximum Likelihood Estimation (MLE) method is 
similar to this in that it requires a smooth convex function for which each step upward is 
assumed to be climbing the mountain.  For functions that are smooth and convex, such as the 
single-parameter exponential family, this algorithm will work very well.  The algorithm goes 
under different names but a common one is the method of steepest ascent (Goldfield, Quandt, & 
Trotter, 1966). 
 
 But, if there are multiple mountains (i.e., a range of mountains), how can we be sure that 
the peak that is climbed is really that of the highest mountain?  In other words, again, without a 
map, for a range of mountains where there are multiple peaks but with only one being the 
highest, there is no guarantee that this greedy algorithm will find the single highest peak.  Greedy 
algorithms work for simple problems but not necessarily for complex ones.  Because they 
optimize the local decision process, they will not necessarily see the best approach for the whole 
problem - the global decision process (Goldfield, Quandt, & Trotter, 1966).   
 
 In other words, there are two problems that the climber faces.  First, he/she does not 
know where to start.  For this a ‘map’ would be ideal.  Second, the search strategy of always 
choosing the step that goes up does not allow the climber to find alternative routes.  Hills or 
mountains, as we all know, are rarely perfectly smooth; there are crevices and ridges and 
undulations in the gradient so that a climber will not always be going up in scaling a mountain.  
Instead, a climber needs to search a larger area in order to find a path that really does go up to the 
peak (sampling, if you wish).   
 
 This is the main reason why the MLE approach cannot estimate the parameters of a 
complex function since the approach works only for functions that are part of the single-
parameter exponential family; they are closed-form functions for which there is a simple maxima 
that can be estimated.  For these functions, which are very common, the MLE is a good 
approach.  These functions are perfectly smooth which will allow a greedy algorithm to work.  
All of the generalized linear model functions – Ordinary Least Squares (OLS), Poisson, negative 
binomial, binomial probit, and others, can be solved with the MLE approach. 
 

However, for a two or higher-parameter family, the approach will not work because there 
may be multiple peaks and a simple optimization approach will not necessarily discover the 
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highest likelihood.  In fact, for a complex surface, MLE may get stuck on a local peak (a local 
optimum) and not have a way to backtrack in order to find another peak which is truly the 
highest.   
 

For these, one needs a map for a good starting location and a sampling strategy that 
allows the exploration of a larger area than just that defined by a greedy algorithm. The ‘map’ 
comes from a Bayesian approach to the problem and the alternative search strategy comes from a 
sampling approach. This is essentially the logic behind the MCMC method. 
 

Bayesian Probability 
  

Let us start with the ‘map’ and briefly review the information that was discussed in 
Chapter 14.  Bayes Theorem is a formulation that relates the conditional and marginal 
probability distributions of random variables.  The marginal probability distribution is a 
probability independent of any other conditions.  Hence, P(A) and P(B) is the marginal 
probability (or just plain probability) of A and B respectively.   
 
 The conditional probability is the probability of an event given that some other event has 
occurred. It is written in the form of P(A|B) (i.e., event A given that event B has occurred).  In 
probability theory, it is defined as: 
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where the symbol   represents the logical concept of ‘and’ (the Boolean intersection of A and 
B), which we expressed in words in Chapter 14. We will use the mathematical symbol now. 
 

Bayes Theorem relates the two equivalents of the ‘and’ condition together. 
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Bayesian Inference   
 
 In the statistical interpretation of Bayes Theorem, the probabilities are estimates of a 
random variable.  Let θ be a parameter of interest and let X be some data.  Thus, Bayes Theorem 
can be expressed as: 
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                                                   (17.6) 

 
 Interpreting this equation, )|( XP   is the probability of   given the data, X . )(P  is 

the probability that   has a certain distribution and is usually called the prior probability.  
)|( XP  is the probability that the data would be obtained given that θ is true and is usually 

called the likelihood function (i.e., it is the likelihood that the data will be obtained given  .  
Finally, )( XP  is the marginal probability of the data, the probability of obtaining the data under 

all possible scenarios of ’s. 
 

The data are what was obtained from some data gathering exercise (either from 
experiments or observations).  Since the prior probability of obtaining the data (the denominator 
of the above equation) is not known or cannot easily be evaluated, it is not easy to estimate it. 
Consequently, often the numerator only is used for estimating the posterior probability since 
 
 )()|()|(  PXPXP                       (17.7) 

 
where   means ‘proportional to’.  Because probabilities must sum to 1.0, the final result can be 
re-scaled so that the probabilities of all entities do sum to 1.0.  The prior probability, )(P , 

essentially is the ‘map’ in the hill climbing analogy discussed above!  It points the way towards 
the correct solution. 
 
 The key point behind this logic is that an estimate of a parameter can be updated by 
additional information.  The formula requires that a prior value for the estimate be given with 
new information being added that is conditional on the prior estimate, meaning that it factors in 
information from the prior.  Bayesian approaches are increasingly being used to provide 
estimates for complex calculations that previously were intractable (Denison, Holmes, Mallilck, 
& Smith, 2002; Lee, 2004; Gelman, Carlin, Stern, & Rubin, 2004). 
 
 Markov Chain Sequences 
 

Now, let us look at an alternative search strategy, the MCMC strategy. Unlike a 
conventional random number generator that generates independent samples from the distribution 
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of a random variable, the MCMC technique simulates a Markov chain with a limiting 
distribution equal to a specified target distribution. In other words, a Markov chain is a sequence 
of samples generated from a random variable in which the probability of occurrence of each 
sample depends only on the previous one.  More specifically, a conventional random number 
generator draws a sample of size N and stops.  It is non-iterative and there is no notion of the 
generator converging.  We simply require N to be sufficiently large to produce reliable statistics.  

 
An MCMC algorithm, on the other hand, is iterative with the generation of the next 

sample dependent on the value of the current sample.  The algorithm requires us to sample until 
convergence has been obtained.  The initial values of an MCMC algorithm are usually chosen 
arbitrarily and samples generated from one iteration to the next are correlated (autocorrelation).  
Consequently, the question of when we can safely accept the output from the algorithm as 
coming from the target distribution gets complicated and is an important topic in MCMC 
(convergence monitoring and diagnosis).   

 
The MCMC algorithm involves five conceptual steps for estimating the parameter: 
 

1. The user specifies a functional model and sets up the model parameters. 
 

2. A likelihood function is set up and prior distributions for each parameter are assumed. 
 

3. A joint posterior distribution for all unknown parameters is defined by multiplying the 
likelihood and the priors as in equation 17.7.   
 

4. Repeated samples are drawn from this joint posterior distribution. However, it is difficult 
to directly sample from the joint distribution since the joint distribution is usually multi-
dimensional. The parameters are, instead, sampled sequentially from their full conditional 
distributions, one at a time holding all existing parameters constant. This is the Markov 
Chain part of the MCMC algorithm.  Typically, because it takes the chain a while to 
reach an equilibrium state, the early samples are thrown out (‘burn-in’) and the results are 
summarized based on the M-L samples where M is the total number of iterations and L 
are the discarded (‘burn-in’) samples (Miaou, 2006). 
 

5. The estimates for all coefficients are based on the results of the M-L samples, for example 
the mean, the standard deviation, the median and various percentiles.  Similarly, the 
overall model fit is based on the M-L samples. 
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MCMC Simulation 
 

 Each of these conceptual steps is complex, of course, and involves some detail.  The 
following represents a brief discussion of the steps. In Appendix C, Dominique Lord and Byung-
Jung Park presents a more formal discussion of the MCMC method in the context of the Poisson-
Gamma-CAR model. 
 
  Step 1: Specifying a Model 
 
 The MCMC algorithm can be used for many different types of models.  In this version of 
CrimeStat, we examine four types of MCMC model: the normal model, two non-spatial Poisson 
regression models (plus a Logit model that will be discussed in Chapter 18).   
 

The normal model is an MCMC variant on the MLE Ordinary Least Squares.  The two 
Poisson models (Poisson-Gamma and Poisson-Lognormal) are used to test over-dispersion while 
the NB1 model, discussed in Chapter 16, can be used to test under-dispersion.  Figure 17.1 
(which is a repeat of Figure 16.3) illustrates three types of dispersion.  Note that over-dispersion 
is more extreme than under-dispersion though both are skewed.  One has to use one of the 
Poisson family models with skewed count data to avoid introducing bias (see Chapter 15 for a 
discussion of bias from the use of an Ordinary Least Squares model). 

 
Irrespective of the model used, in the Bayesian approach, prior probabilities have to be 

assigned to all unknown parameters,	 , , τ, ν.  It is usually assumed that the k coefficients 
follow a multivariate normal distribution with 1k  dimensions: 

 
),(~ 001 Bbβ kMVN          (17.8) 

 
where 1kMVN  indicates a multivariate normal distribution with 1k dimensions, and 0b  and 0B  
are hyperparameters (parameters that define the multivariate normal distribution).  For a non-
informative prior specification, we usually assume T)0,,0(0 b and a large variance

10 100  kIB , where 1kI  denotes the ( 1k )-dimensional identity matrix. Alternatively, 
independent normal priors can be placed on each of the regression parameters, e.g.  

).100,0(~ Nk  If no prior information is known aboutβ , then sometimes a flat uniform prior is 
also used, ),(~ Uj .  

 
1. Normal Model.  This is similar to the Ordinary Least Squares model discussed in 

Chapter 15 in that it assumes the dependent variable is normally-distributed.  
However, it is estimated by the MCMC algorithm rather than by MLE. 

 



Figure 17.1:
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 The dependent variable y is a function of an expected mean for observation		  and an error 

term, i : 

 

 i             (17.9) 

  
where λi is the predicted value of y and is a function of k independent variables (covariates), 
 

 βxT
i           (17.10) 

 
β  is a vector of unknown coefficients for the k covariates plus an intercept.  The error terms   

are independently and identically distributed as normal. Formally, it is defined as:   
       

),0(~  Normali          (17.11) 

 

with τ being the variance The model error, i , is independent of all covariates.  The variance, τ, 

is assumed to follow a gamma distribution with a mean equal to 1 and a variance equal to 
 /1  where   is a parameter that is greater than 0. The assumption on the uncorrelated error 

term i  is that it is constant for all observations.  From equation 17.9, it follows that  

 
),(~  ii Normaly                                (17.12) 

 
2. Poisson-Gamma Model.  This is similar to the negative binomial model 

discussed in Chapter 16 except that it is estimated by MCMC rather than by MLE.  
The Poisson-Gamma model is used when there is over-dispersion in the 
dependent variable.  Formally, it is defined as: 

 

 )(~| iii Poissony                               (17.13) 

 

The Poisson mean  i  is organized as:  

 
 )exp( i

T
ii   βx                              (17.14) 

 
where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, and i  is the model error independent of all covariates. The error, )exp( i , is 

assumed to follow a gamma distribution with a mean equal to 1 and a variance equal to  /1  

where   is a parameter that is greater than 0 (Lord, 2006; Cameron & Trivedi, 1998). 



17.9 

3. Poisson-Lognormal Model.  The Poisson-Lognormal model is an alternative to 
the Poisson-Gamma.  It is useful when there is over-dispersion and when there is 
a small sample size (less than 50) and the sample mean is low (<1.0; Park & Lord, 
2007).  It has been used in a number of transportation studies to model motor 
vehicle crashes (El-Basyouny & Sayed, 2009) and has been adapted to the 
Bayesian approach by Ma, Kockelman and Damien (2008).  Like the Poisson-
Gamma model, the Poisson-Lognormal model is defined as: 

 

 )(~| iii Poissony           (17.15) 

 

The Poisson mean  i  is organized as:  

 
 )exp( i

T
ii   βx          (17.16) 

 
where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, and i  is the model error independent of all covariates. Unlike the Poisson-

Gamma model, the error, )exp( i , is assumed to follow the lognormal distribution with a mean 

equal to 0 and a variance equal to ),(~2
  baGamma .   

 
 The reader is referred to Lord and Miranda-Moreno (2008) for additional details about 
the parameterization of the Poisson-lognormal model. 
 

4. Logit Model.  CrimeStat also includes an MCMC Logit model, but this will be 
discussed in Chapter 18. 

 
How to Choose a Model 

 
A key issue is how to choose among these alternatives.  Overall, the two Poisson-based 

MCMC models give similar coefficients because the expected value is always estimated with a 
Poisson function.  They differ primarily in the dispersion terms.  The user is advised to first run 
an MLE Poisson model and check the diagnostics box. The diagnostics routine provides 
information on whether the dependent variable (the count) is significantly skewed while the 
dispersion parameter from the MLE Poisson model provides information on whether the 
conditional mean (the mean after controlling for the independent predictors) is still skewed.  
Further, for a spatial model (discussed in Chapter 19), the diagnostics routine will provide 
guidelines for the distance decay parameter (alpha).   
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While more research is clearly needed, a simple set of guidelines are as follows: 
 
A. If the dependent variable is not significantly skewed (as indicated by the 

significance level of the “g” skewness test in the diagnostics routine), then run an 
OLS model. 
 

B. If the “g” test of the dependent variable shows significant skewness and the ratio 
of the sample variance to the sample is greater than 2.0, then run an MLE or 
MCMC negative binomial (Poisson-Gamma) model since the negative binomial is 
a robust version of the Poisson.  This is particularly true when the data set is 
larger than 50 cases and when the sample mean is 1.0 or greater.  Note that the 
Poisson-lognormal model will provide similar results.  However, the negative 
binomial is the usual model used with skewed data. 
 

C. If the dispersion parameter in the negative binomial model is very close to 0 and 
is not significant, then the MLE Poisson model can be used.  This is a case of 
equi-dispersion.  However, in our experience very few data sets will show actual 
equi-dispersion.  The vast majority are over-dispersed while some are under-
dispersed. 
 

D. If the “g” test of the dependent variable shows significant skewness and the ratio 
of the sample variance to the sample mean is greater than 2.0 but the sample size 
is less than 50 and the sample mean is less than 1.0, then use the MCMC Poisson-
Lognormal model because it is a more robust model than the Poisson-Gamma 
with small samples and low sample means. 

 
E. Finally, if the “g” test of the dependent variable shows significant skewness but 

the dispersion parameter in the negative binomial is less than 0, then use the NB1  
model that was discussed in Chapter 16.  This is a case of under-dispersion where 
the conditional variance is less than the conditional mean.   
 

F. For all of these tests, the user should be aware of extreme outliers and 
multicollinearity among the independent variables (i.e., eliminate overlapping, 
multicollinear variables) as this can cause instability in the coefficients as well as 
cause models to shift from over-dispersion to under-dispersion, or vice versa. 

 
Data with a Large Number of Zeros  

 
The available Poisson models will handle the vast majority of data sets with count data.  

However, very occasionally, a data set with an extreme number of zeros will be found (e.g., 70% 
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or more of the cases have zero for the dependent variable). In cases where the dataset contains a 
large amount of zeros, traditional models, such as the Poisson-gamma or the Poisson-lognormal, 
can provide biased estimates or have difficulties converging. To overcome this problem, Poisson 
and negative binomial zero-inflated (ZI) models could be used (Lambert, 1992), as long as the 
model properly characterizes the data generating process (Lord et al., 2005). More recently, the 
Negative Binomial-Lindley (NB-L) distribution has been proposed to model datasets with a large 
number of zeros (Ghitany et al., 2008; Lord and Geedipally, 2011). The NB-L distribution is, as 
the name implies, a mixture of the NB and the Lindley distributions (Lindley, 1958; Ghitany et 
al., 2008). This two-parameter distribution has interesting and thorough theoretical properties in 
which the distribution is characterized by a single long-term mean that is never equal to zero and 
a single variance function, similar to the traditional NB distribution. This year, Geedipally et al. 
(2012) were able to fully develop the NB-L generalized linear model. The model has, in fact, 
been found to perform much better than the ZI models. The NB-L may be incorporated in a 
future version of CrimeStat. 

  
  Step 2: Setting up a Likelihood Function 
 
 For any of these types of non-spatial Poisson model, the log likelihood function is set up 
as a sum of individual logarithms of the model.  In the case of the Poisson-Gamma model, the 
log likelihood function is: 
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with iy being the observed (actual) value of the dependent variable, i  being the posterior mean of  

each site, ii  ln ,  is the inverse dispersion parameter, and i is an offset (‘at risk’) variable. 

 
 For the Poisson-Lognormal model, the log likelihood function is: 
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with iy being the observed (actual) value of the dependent variable, i  being the posterior mean of  

each site, ii  ln , and i is an offset (‘at risk’) variable. 

  
  



17.12 

Step 3: Defining a Joint Posterior Distribution 
 
In the case of the Poisson-Gamma model, the posterior probability, ),,ay,|,β,λ(  bp  

of the joint posterior distribution is defined as: 
 

 , , | , ,  | ∙ | , ∙ ∙∙∙ ∙ | ,   (17.19) 

 

where iy is the observed value of the dependent variable, β are the coefficients of each 

independent variable, ψ is the inverse dispersion parameter, while αω and bω are hyperparameters 
estimated internally in the routine.  The equation is not in standard form (Park, 2009).  Note that 

this is a general formulation.  The parameters of interest are ),,(),,( 11 Jn    and  .  

 
 For the Poisson-Lognormal, the posterior probability, ),,ay,|,β,λ(  bp of the joint 

posterior distribution is defined as: 
 
 , , | , ,  | ∙ | , ∙ ∙∙∙ ∙ | ,   (17.20) 

 

where iy is the observed value of the dependent variable, β are the coefficients of the independent 

variable, λ is the Poisson mean, τε is the inverse of the variance and is Gamma distributed, and a 

and b are hyperparameters that are estimated internally in the routine.   
 
 In all the cases, since it is difficult to draw samples of the parameters from the joint 
posterior distribution, we usually draw samples for each parameter from its full conditional 
distribution sequentially.  This is an iterative process (the Markov Chain part of the algorithm). 
 
 Prior distributions for these parameters have to be assigned.  In the CrimeStat 
implementation, there is a parameter dialogue box that allows estimates for each of the 
parameters (including the intercept).  On the other hand, if the user does not know which values 
to assign as prior probabilities, very vague values are used as default conditions to simulate what 
is known as non-informative priors (essentially, vague information).  Sometimes these are known 
as flat priors if they assume all values are likely.  In CrimeStat, we assign a default value for the 
expected coefficients of 0 and a very large variance.  As mentioned, the user can substitute more 
precise values for the expected value of the coefficients or the variance (based on previous 
research, for example).  Generally, having more precise prior values for the parameters will lead 
to quicker convergence and a more accurate estimate. 
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Step 4: Drawing Samples from the Full Conditional Distribution 
 
 Since the full conditional distribution itself is sometimes complicated (and becomes more 
so when the spatial components are added), the parameters are estimated by sampling from a 
distribution that represents the target distribution, either the target distribution itself if the 
function is standardized or a proposal distribution.   While there are several approaches to 
sampling from a joint posterior distribution, the particular sampling algorithm used in CrimeStat 
is a Metropolis-Hastings (or MH) algorithm (Gelman, Carlin, Stern & Rubin, 2004; Denison, 
Holmes, Mallick, & Smith, 2002) with slice sampling of individual parameters (Radford, 2003).2   
  
 The MH algorithm is a general procedure for estimating the value of parameters of a 
complex function (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller & Teller, 1953).  
It was developed in the U. S. Hydrogen Bomb project by Rosenbluth and his colleagues and 
improved by Hastings.3  Hence, it is known as the Metropolis-Hastings algorithm.  With this 
algorithm, we do not need to sample directly from the target distribution but from an 
approximation called a proposal distribution (Lynch, 2007).  The basic algorithm consists of six 
steps (Train, 2009; Lynch, 2007; Denison, Holmes, Mallick, & Smith, 2002). 
 

1. Define the functional form of the target distribution and establish starting values for 
each parameter that is to be estimated, θ0.  For the first iteration, the existing value of 
the parameter, θE, will equal θ0. Set t=1. 
 

2. Draw a candidate parameter from a proposal density, θC.   
 

3. Compute the posterior probability of the candidate parameter and divide it by the 
posterior probability of the existing parameter.  Call this R. 
 

4. If R is greater than 1, then accept the proposal density, θC.  
 

                                                            
2  The Gibbs sampler utilizes the conditional probabilities of all parameters, which have to be specified.  For a 

model such as the Poisson-Gamma, the Gibbs sampler could have been used.  However, for a more 
complex model such as the Poisson-Gamma-CAR/SAR, the conditional probabilities are not easily defined.  
Consequently, we decided to utilize the MH algorithm in the routine.  More information on the Gibbs 
sampler can be found in Lynch (2008); Gelman, Carlin, Stern & Rubin (2004); and Denison, Holmes, 
Mallick, & Smith (2002). Slice sampling is a way of drawing random samples from a distribution by 
sampling under the density distribution (Radford, 2003). 

3  It’s called Metropolis-Hasting because Nicolas Metropolis was the first name listed on the paper.  
However, the math was developed mostly by Marshall Rosenbluth with the idea proposed by Edward 
Teller and the programming done by Arianna Rosenbluth (Wikipedia, 2012). 
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5. If R is not greater than 1, compare it to a random number drawn from a uniform 
distribution that varies from 0 to 1, u.  If R is greater than u, accept the candidate 
parameter, θC.  If R is not greater than u, keep the existing parameter θE. 
 

6. Return to step 2 and keep drawing samples until sufficient draws are obtained. 
 

Let us discuss these steps briefly.  In the first step, an initial value of the parameter is 
taken.  It is assumed that the functional form of the target population is known and has been 
defined (e.g., the target is a Poisson-Gamma function, a Poisson-Gamma-CAR, a Poisson-
Lognormal-SAR function, a Binomial logit-CAR, etc.). The initial value should be consistent 
with this function.   As mentioned above, a non-informative prior value can be selected. 

 
Second, for each parameter in turn, a value is selected from a proposal density 

distribution.  It is considered a ‘candidate’ since it is not automatically accepted as a draw from 
the target distribution.  The proposal density can take any form that is easy to sample from, such 
as a normal distribution or a uniform distribution though usually the normal is used.  Also, 
usually the distribution is symmetric though the algorithm can work for non-symmetric proposal 
distributions, too (Lynch, 2007, 109-112).  In the CrimeStat implementation, we use a normal 
distribution.  The proposal distribution does not have to be centered over the previous value of 
the parameter.  

 
Third, the ratio of the posterior probability of the candidate parameter to the posterior 

probability of the existing parameter is calculated.  This is called the Acceptance probability and 
is defined as: 

 

 Acceptance probability =  
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      (17.21) 

 
The acceptance probability is made up of the product of two ratios. The function f is the 

target distribution and the function g is the proposal distribution. The first ratio, )(*)( EC ff  , is 

the ratio of the densities of the target function using the candidate parameter in the numerator 
relative to the existing parameter in the denominator.  That is, with the target function (the 
function for which we are trying to estimate the parameter values), we calculate the density using 
the candidate value and then divide this by the density using the existing value.  Lynch (2007) 
calls it the importance ratio since the ratio will be greater than 1 if the candidate value yields a 
higher density (and, consequently, higher probability) than the existing one. 

 

The second ratio, )(*)( CE gg  , is the ratio of the proposal density using the existing 

value to the proposal density with the candidate value.  This latter ratio adjusts for the fact that 
some candidate values may be selected more often than others (especially with asymmetrical 
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proposal functions).  Note that the first ratio involves the target function densities whereas the 
second ratio involves the proposal function densities.  If the proposal density is symmetric, then 
the second ratio will only have a very small effect.  

 
Fourth, if R is greater than 1, meaning that the proposal density is greater than the 

original density, the candidate is accepted.  However, if R is not greater than 1, this does not 
mean that the candidate is rejected but is instead compared to a random draw (otherwise we 
would have a ‘greedy algorithm’ that would only find local maxima). 

 
Fifth, a random number, u, that varies from 0 to 1 is drawn from a uniform distribution 

and compared to R.  If R is greater than u, then the value of the candidate parameter is accepted 
and becomes the new ‘existing’ parameter.  Otherwise, if R is not greater than u, the existing 
parameter remains. Finally, in the sixth step, we repeat this algorithm and keep drawing samples 
until the desired sample size is reached. 
 
 Now what does this procedure do?  Essentially, it draws values from the proposal 
distribution that increase the probability obtained from the target distribution. That is, generally 
only candidate values that increase the importance ratio will be accepted.  But, this will not 
happen automatically (as, for example, in a greedy algorithm) since the ratio has to be compared 
to a random number, u, from 0 to 1.  In the early steps of the algorithm, the random number may 
be higher than the existing R since it varies from 0 to 1.  Thus, the candidate value is initially 
rejected more because it does not contribute to a high R ratio.   
 
 But, slowly, the acceptance probability will start to be accepted more often than the 
random draw since the candidate value will slowly approximate the true value of the parameter 
as it maximizes the target function’s probability.  Using the hill climbing analogy, the climber 
will wander around initially going in different directions but will slowly start to climb the hill 
and, most likely, the hill that is highest in the nearby vicinity.  Each step that goes up will be 
accepted.  But, each step that goes down will not necessarily be rejected since it is compared 
with a random ‘step’.  Thus, the climber explores other directions than just ‘up’.  But, over time, 
the climber will slowly move upward and, probably, more likely climb the highest hill nearby.  
 

It is still possible for this algorithm to find a local ‘peak’ rather than the highest ‘peak’ 
since it explores in the vicinity of the starting location.  To truly climb the highest peak, the 
algorithm needs a good starting value.  Where does this ‘good’ starting value come from?  
Earlier research can be one basis for choosing a likely starting point.  The more a researcher 
knows about a phenomenon, the better the researcher can utilize that information to ensure that 
the algorithm starts at a likely place.  Without previous research to provide that value, however, 
Lynch (2007) proposes using the MLE approach to calculate parameters that are used as the 
initial values.  That is, for a common distribution, such as the negative binomial, we use the 
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MLE negative binomial to estimate the values of the coefficients and intercept and then plug 
these into the MCMC routine as the initial values for that algorithm.  CrimeStat allows the 
defining of initial values for the coefficients in the MCMC routine. 
 

Step 5: Summarizing the Results from the Sample 
 

 Finally, after a sufficient number of samples have been drawn, the results can be 
summarized by analyzing the sample.  That is, if a sample is drawn from a target population 
(using the MH approach or another one, such as the Gibbs method), then the distribution of the 
sample parameters is our best guess for the distribution of the parameters of the target function.  
The mean of each parameter would be the best guess for the coefficient value of the parameter in 
the target function.  Similarly, the standard deviation of the sample values would be the best 
guess for the standard error of the parameter in the target distribution.   
 

Credible intervals can be estimated by taking percentiles of the distribution.  This is the 
Bayesian equivalent to a confidence interval in that it is estimated from a sample rather than 
from an asymptotic distribution.  For example, the 95% credible interval can be calculated by 
taking the 2.5th and 97.5th percentiles of the sample while the 99% credible interval can be 
calculated by taking the 0.5th and 99.5th percentiles.  There are also other statistics that can be 
calculated, for example the median (50th percentile and the inter-quartile range (25th and 75th 
percentiles).   
 
 In other words, the entire MCMC sample is used to calculate statistics about the target 
distribution.  Once the MCMC algorithm has reached ‘equilibrium’, meaning that it 
approximates the target distribution fairly closely, then a sample of values for each parameter 
from this algorithm yields an accurate representation of the target distribution. 
 
 MCMC Output 
 
 Let us discuss the statistics presented in the MCMC output.   
 
  Summary Statistics 
 

First, there are the summary statistics represented by the log likelihood, the AIC, the 
BIC/SC, the Deviance, and Pearson Chi-square indices. Second, there are statistics for model 
error represented by the MAD and the MSPE; as with the MLE output, quartiles for these error 
statistics are presented.  Third, there are the coefficients, the standard error, and a t-test based on 
the assumption that the distribution was normal and that the “t” is applicable (an assumption that 
is not necessarily correct).  We present this because it allows a quick evaluation of the 
‘significance’ of an independent variable. 
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 Convergence Statistics 
 
Fourth, in addition to these individual statistics, there are convergence statistics which 

indicate whether the algorithm converged (Spiegelhalter, Best, Carlin, & Van der Linde, 2002).  
It is essential for the user to evaluate whether the sequence converged; if it did not, then the 
coefficients and standard errors are not valid.  These statistics are calculated by comparing 
chains of estimated values for parameters, either with themselves or with the complete series. 
When there is convergence, the estimates will be similar.  

 
 The first convergence statistic is the Monte Carlo simulation error (called MC Error; 

Ntzoufras, 2009, 30-40).  Two estimates of the value of each parameter are calculated and their 
discrepancy is evaluated.  The first estimate is the mean value of the parameter over all M-L 
iterations (total number of iterations minus the number of burn-in samples discarded).  The 
second estimate is the mean value of the parameter after breaking the M-L iterations into m 
chains where m is the integer value of the square root of M-L.   
 
Let: 
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Generally, the MC error is related to the standard deviation of the parameters.  If the ratio 

is less than 0.05, then the sequence is considered to have converged after the ‘burn in’ samples 
have been discarded (Ntzourfras, 2009).  As can be seen, the ratios are very low in Table 17.1. 
 
 The second convergence statistic is the Gelman-Rubin convergence diagnostic (G-R, 
sometimes called the scale reduction factor; Gelman, Carlin, Stern & Rubin, 2004; Gelman, 
1996; Gelman & Rubin, 1992).  Gelman and Rubin called it the R statistic, but we will call it the 
G-R statistic.  The concept is, again, to break the larger chain into multiple smaller chains and 
calculate whether the variation within the chains for a parameter approximately equals the total 
variation across the chains (Carlin & Louis, 2008; Lynch, 2007).  That is, when m chains are run, 
each of length n, the mean of a parameter θm can be calculated for each chain as well as the 
overall mean of all chains θG, the within-chain variance, and the between-chain variance.  The G-
R statistic is the square root of the total variance divided by the within-chain variance: 
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where B is the variance between the means from the m parallel chains, W is the average of the m 
within-chain variances, and n is the length of each chain (Lynch, 2007; Carlin & Louis, 2000). 
   
 The G-R statistic should generally be low for each parameter.  If the G-R statistic is 
under approximately 1.2, then the posterior distribution is commonly considered to have 
converged (Mitra and Washington, 2007).    
 

Example of Estimating Houston Burglaries with the MCMC Poisson-Gamma 
 

 Before we discuss some of the subtleties of the method, let us illustrate this with the 
Houston burglary example that we have been using in the previous two chapters (Table 17.1).  
The data came from the Houston Police Department.  There were 26,480 burglaries that occurred 
in 2006 which were allocated to 1,179 Traffic Analysis Zones (TAZ) within the City of Houston. 
The independent variables were the number of households in 2006 (estimated by the Houston-
Galveston Area Council, the metropolitan planning organization) and the median household 
income for 2000 (from the 2000 U.S. Census). 
 

The MCMC algorithm for the Poisson-Gamma (negative binomial) model was run on the 
Houston burglary dataset.  The total number of iterations was 25,000 with the initial 5,000 being 
discarded (the ‘burn in’ period).  Thus, the results are based on the final 20,000 samples.  
 
  Comparison of MCMC Poisson-Gamma with MLE Poisson-Gamma 
 

By comparing the results of the MCMC Poisson-Gamma estimate on the Houston 
burglary data set with that from the MLE Poisson-Gamma  model from the previous chapter 
(Table 15.3), we can show that the MCMC method produces very similar results to the MLE 
when the estimated functions are identical. This is expected since the hyper-priors MCMC are 
very vague or have large variance. In Table 17.1, the two convergence statistics are very low for 
all three parameters as well as for the error term.  In other words, the algorithm appears to have 
converged properly and the results are based on a good equilibrium chain. 
 

Second, looking at the likelihood statistics, we see that they are very similar to that of the 
MLE negative binomial model.  The log likelihood value is identical for the two models -4430.8.  
The AIC and BIC/SC statistics are also almost identical (8869.6 and 8869.8 compared to 8869.6 
and 8889.9). The deviance statistic is very similar for the two models - 1,387.5 compared to 
1,390.1, as is the Pearson Chi-square statistic – 1,106.4 compared to 1,112.7. 
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Table 17.1: 

Predicting Burglaries in the City of Houston: 2006 
MCMC Poisson-Gamma Model 

(N= 1,179 Traffic Analysis Zones) 
 
 DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,175 
 Type of regression model:            Poisson  with Gamma dispersion 
 Method of estimation:                 MCMC 
 Number of iterations:                25,000  Burn in:  5,000 
 
 Likelihood statistics 
 Log Likelihood:                      -4,430.8 
 AIC:                                  8,869.6 
 BIC/SC:                               8,889.9 
 Deviance:    1,387.5  p≤ 0.0001 
 Pearson Chi-Square:                  1,106.4  p≤ 0.0001 
 Model error estimates 
 Mean absolute deviation:             40.0 

1st (highest) quartile:        124.9 
 2nd quartile:         19.5 
 3rd quartile:         6.2 
 4th (lowest) quartile:        9.0 
 Mean squared predicted error:        63,007.2 

1st (highest) quartile:       245,857.0 
 2nd quartile:         6,527.5 
 3rd quartile:         119.4 
 4th (lowest) quartile:        156.2 
 Dispersion tests 
 Adjusted deviance:                   1.2  p≤ 0.0001 
 Adjusted Pearson Chi-Square:         0.9  p≤ 0.0001 
 Dispersion multiplier:               1.5  p≤ 0.0001  Inverse dispersion multiplier: 0.7 
 
          MC error/ 
Predictor     Mean  Std    t-valuep  MC error std     G-R stat 
------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT         2.3204  0.086  26.88***  0.002    0.019   1.002  
HOUSEHOLDS    0.0012   0.00007     17.57***    0.0000009 0.013    1.001  
MEDIAN  
HOUSEHOLD 
INCOME   -0.00001 0.00002  -4.92***  0.00000003 0.019    1.002 
------------------------------------------------------------------------------------------------------------------------------------- 
***  p≤.001 
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Third, in terms of the model error statistics, the MAD and MSPE are also very similar 
(40.0 and 63,007.2 compared to 39.6 and 62,031.2; while the difference in the MSPE is 976.0, it 
is less than 2% of the MSPE for the MLE.4  Fourth, the over-dispersion tests reveal identical 
values - adjusted deviance (1.2 for both), adjusted Pearson Chi-square (0.9 for both), and the 
Dispersion multiplier (both 1.5). 
 
 Fifth, the coefficients are identical with the MLE up through third decimal place.  For 
example, for the intercept the MCMC gives 2.3204 compared to 2.3210; that of the two 
independent variables are identical within the precision of the table.   This is not surprising since 
when we use non-informative priors, it is expected that the posterior estimates will be very close 
to those estimated by the MLE. 
 

Sixth, the standard errors are identical for all three coefficients. In the MCMC, the 
standard errors are calculated by taking the standard deviation of the sample.  In general, the 
MCMC will produce similar or slightly larger standard errors.  The theoretical distribution 
assumes that the errors are normally distributed.  This may or may not be true depending on the 
data set.  Thus, the MCMC standard errors are non-parametric. 

 
Seventh, a t-test (or more precisely a ‘pseudo’ t-test) is calculated by dividing the 

coefficient by the standard error.  If the standard errors are normally distributed (or 
approximately normally distributed), then such a test is valid.  On the other hand, if the standard 
errors are skewed, then the approximate t-test is not accurate.  CrimeStat outputs additional 
statistics that list the percentiles of the distributions.  These are more accurate indicators of the 
true confidence intervals and are known as credible intervals.  We will illustrate these shortly 
with another example.  In short, the pseudo t-test is an approximation to true statistical 
significance and should be seen as a guide, rather than a definitive answer. 

 
 Example of Estimating Houston Burglaries with the MCMC Normal 
 
 As an example of the MCMC Normal model, we ran the model on the Houston burglary 
data set.   Keep in mind that this is a skewed data set and that the Normal model is not really 
appropriate.  Table 17.2 presents the results.  As a comparison, we repeat the MLE Normal/OLS 
model from Chapter 15 (Table 15.1). 
  
  

                                                            
4  Frequently, the model error is greater for an MCMC model than an MLE model. Whether this represents 

true model error or overfitting by the MLE algorithm is not fully understood at this point.  
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Table 17.2: 

Predicting Burglaries in the City of Houston: 2006 
MCMC Normal Model 

(N= 1,179 Traffic Analysis Zones) 
 
 DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,175 
 Type of regression model:            Poisson with Lognormal dispersion 
 Method of estimation:                 MCMC 
 Number of iterations:                25,000  Burn in:  5,000 
 
 Likelihood statistics 
 Log Likelihood:                      -5342.6 
 AIC:                                 10,693.2 
 BIC/SC:                              10,713.6 
R2:     0.48 

 
 Model error estimates 
 Mean absolute deviation:            13.5 

1st (highest) quartile:        26.5 
 2nd quartile:         10.6 
 3rd quartile:         8.2 
 4th (lowest) quartile:        8.6 
 Mean squared predicted error:      505.1 
 1st (highest) quartile:       1,501.7 
 2nd quartile:         272.3 
 3rd quartile:         130.5 
 4th (lowest) quartile:        120.0 
 
          MC error/ 
Predictor     Mean Std    t-valuep  MC error std               G-R stat 
------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT       12.7804  1.235  10.35***  0.020    0.016    1.001 
HOUSEHOLDS    0.0255 0.001      32.62***    0.000009 0.011        1.0005  
MEDIAN  
HOUSEHOLD 
INCOME      -0.0002 0.00003  -7.00***  0.0000004 0.015     1.0004 
------------------------------------------------------------------------------------------------------------------------------- 
**  p≤.01 
***  p≤.001 
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Table 15.3 (REPEAT): 

Predicting Burglaries in the City of Houston: 2006 
Ordinary Least Squares: Reduced Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:                              2006 BURGLARIES 
N:                                    1,179 
Df:                                  1,175 
Type of regression model:           Ordinary Least Squares 
F-test of model:   536.0   p≤.0001 
R2:                             0.48 
Adjusted R2:                   0.48 
Mean absolute deviation:       13.5 
 1st (highest) quartile:       26.5 
 2nd quartile:        10.6 
 3rd quartile:      8.3 
 4th (lowest) quartile:     8.8 
Mean squared predictive error:      505.1 
 1st (highest) quartile:       1498.8 
 2nd quartile:        269.5 
 3rd quartile:        135.1 
 4th (lowest) quartile:       120.2 
 
Predictor  DF Coefficient Stand Error Tolerance VIF  t-value    p 
---------------------------------------------------------------------------------------------------------------------
INTERCEPT  1 12.8099   1.240    -   -  10.33   0.001 
HOUSEHOLDS  1  0.0255   0.0008 0.994  1.006  33.44   0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.0002   0.00003 0.994  1.006  -7.03   0.001 
--------------------------------------------------------------------------------------------------------------------- 
   

Comparison of MCMC Normal with MLE Normal 
 
 The MCMC Normal and the MLE Normal produce similar estimates.  The log-likelihood 
statistics are unique to the MCMC model, but the R-squares are identical and the Mean Absolute 
Deviation and the Mean Squared Predictive Error values are very close to each other in both 
models.  This means that the MCMC Normal converged on the function in a similar manner to 
the MLE normal.  Also, the coefficients estimates for the MCMC Normal are quite close to those 
produced by the MLE.   
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Thus, it appears that the MCMC Normal can approximate the MLE Normal under some 
circumstances. Further, if the dependent variable is truly normally distributed, then the MCMC 
Normal will produce results that are almost identical.   

 
Note that this is not always the case.  When the dependent variable is highly skewed, we 

have frequently found that the MCMC Normal model will not produce identical results to that of 
the MLE even if a large number of iterations are run.  We are not completely sure why this 
occurs, but the more skewed the distribution or the more complex the model, the less likely the 
MCMC Normal will yield the same solution as the MLE Normal.  In short, the MCMC Normal 
is very sensitive to skewness in a data set and is most appropriate when the dependent variable is 
normally distributed. 

 
Therefore, the user has to be careful in interpreting the MCMC Normal.  Before running 

a spatial regression model using the MCMC Normal (see Chapter 19), users should confirm that 
the MCMC Normal can replicate an MLE Normal/OLS model.  If it does not, they should run an 
alternative model such as the Poisson-Gamma. 

 
Why Run an MCMC when MLE is So Easy to Estimate?   

 
 What we have seen is that the MCMC Poisson-Gamma (negative binomial) model and 
the MCMC Normal model produced results that were very similar to that of the MLE Poisson-
Gamma and MLE Normal models respectively.  In other words, simulating the distribution of the 
Poisson-Gamma function or the MCMC Normal function with the MCMC method has produced 
results that are completely consistent with a maximum likelihood estimate.  
 
 A key question, then, is why bother?  The maximum likelihood algorithm works 
efficiently with functions from the single-parameter exponential family while the MCMC 
method takes time to calculate.  Further, the larger the database, the greater the differential there 
will be in calculating time.  For example in Chapter 16, Table 16.4 presented an MLE negative 
binomial model of the number of 2006 crimes committed by individual offenders in Manchester 
as a function of three independent variables – distance from the city center, prior conviction, and 
age of the offenders.  With an Intel Duo core 2.44 GHz processor, the run took 6 seconds for the 
MLE while it took 86 minutes for the MCMC equivalent!  Clearly, the MCMC algorithm is more 
calculation intensive than the MLE algorithm.  If they produce essentially the same results, there 
is no obvious reason for choosing the slower method over the faster one. 
 
 The reason for preferring the MCMC method, however, has to do with the complexity of 
other models.  The MLE approach works particularly well when all the individual functions in a 
mixed function model belong to the single-parameter exponential family of functions.  For more 
complex functions, however, the method does not work very well.   The likelihood functions 
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need to be worked out explicitly for the MLE approach to work.  For example, if other functions 
for the dispersion were used, such as a Weibul or Gumbel or Cauchy or uniform distribution, the 
MLE approach would not easily be able to solve such equations since the mathematics are 
complex and there may not be a single optimal solution. 
 
 Further, if we start combining functions in different mixtures, such as Poisson mean, 
Gamma dispersion but Weibul shape function, the MLE is not easily adapted.  An example is 
spatial regression where assumptions about the mean, the variance and spatial autocorrelation 
need to be specified exactly.  This is a complex model and there is not a simple second derivative 
that can be calculated for such a function.  The existing spatial models have tried to work around 
this by using a linear form but allowing a spatial autocorrelation term either as a predictive 
variable (the spatial lag model) or as part of the error term (the spatial error model; DeSmith, 
Goodchild, & Longley, 2007; Anselin, 2002).  But, they all assume a normally-distributed 
dependent variable which is rarely found with crime data. 
 
 In short, the MCMC method has an advantage over MLE for complex functions.  For 
simpler functions in which the functions are all part of the same exponential family and for 
which the mathematics has been worked out, MLE is clearly superior in terms of efficiency.   
 
 However, the more irregular and complex the function to be estimated, the more the 
simulation approach has an advantage over the MLE.  For example, to estimate a Poisson-
Gamma (negative binomial) function takes longer with the MCMC method than with the MLE 
method and there is no advantage for the MCMC over the MLE.  On the other hand, the Poisson-
Lognormal model (see below) or the Poisson-Gamma-CAR model (to be discussed in Chapter 
19) cannot be estimated by MLE.  An even more complex model is a spatial risk model where 
the ‘at risk’ variable is constrained to have a coefficient of 1.0 with spatial autocorrelation also 
being tested; this cannot be estimated with MLE. 

 
Example of Estimating Houston Burglaries with the MCMC Poisson-Lognormal 

 
 For an example of a complex mixed function model, let us run the Houston burglary 
dataset with the Poisson-Lognormal. As mentioned above, the Poisson-Lognormal is an 
alternative model to the Poisson-Gamma.  It is particularly useful when the sample mean is low 
and there are lots of zeros. The Poisson-lognormal is usually more stable than the Poisson-
gamma for these kinds of data. 
 
 Table 17.3 shows the results.  Compared to Table 17.1 for the Poisson-Gamma model, 
the log likelihood of the Poisson-Lognormal is more negative (weaker) than for the Poisson-
Gamma while the AIC and BIC statistics are higher. In other words, the MCMC Poisson-Gamma 
fit the data slightly better than the MCMC Poisson-Lognormal though the differences are  small.   
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Table 17.3: 
Predicting Burglaries in the City of Houston: 2006 

MCMC Poisson-Lognormal Model 
(N= 1,179 Traffic Analysis Zones) 

 
 DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,175 
 Type of regression model:            Poisson with Lognormal dispersion 
 Method of estimation:                 MCMC 
 Number of iterations:                25,000  Burn in:  5,000 
 
 Likelihood statistics 
 Log Likelihood:                      -4,650.2 
 AIC:                                  9,308.4 
 BIC/SC:                               9,328.7 
 Deviance:    1,551.9  p≤ 0.0001 
 Pearson Chi-Square:                  4,685.6  p≤ 0.0001 
 Model error estimates 
 Mean absolute deviation:             37.5 

1st (highest) quartile:        122.5 
 2nd quartile:         20.6 
 3rd quartile:         3.3 
 4th (lowest) quartile:        4.0 
 Mean squared predicted error:        62,216.2 
 1st (highest) quartile:       244,906.0 
 2nd quartile:         4,489.4 
 3rd quartile:         40.4 
 4th (lowest) quartile:        63.4 
 Dispersion tests 
 Adjusted deviance:                   1.3  p≤ 0.0001 
 Adjusted Pearson Chi-Square:         4.0  p≤ 0.0001 
 Dispersion multiplier:               2.0   p≤ 0.0001 Inverse dispersion multiplier: 0.5 
 
          MC error/ 
Predictor     Mean  Std    t-valuep  MC error std     G-R stat 
------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT         1.3612  0.092  14.82***  0.002    0.022   1.002  
HOUSEHOLDS    0.0013  0.00005     25.30***    0.0000007 0.014       1.000  
MEDIAN  
HOUSEHOLD 
INCOME   -0.000005 0.00002  -2.92**  0.00000003 0.018    1.001 
------------------------------------------------------------------------------------------------------------------------------------- 
**  p≤.01 
***  p≤.001 
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However, the log-likelihood is the overall probability of the model, not particularly the 
best fit for the residual errors.  Comparing Tables 17.1 and 17.2, we find that the MAD and the 
MSPE are smaller for the Poisson-Lognormal than for the Poisson-Gamma.  The coefficients are 
very similar.  The intercept is smaller in the Poisson-Lognormal while the coefficients for 
households and for median household income are virtually the same.  In short, the Poisson-
Lognormal will predict a slightly smaller expected count than the Poisson-Gamma due to the 
smaller intercept term, but the two sets of estimates are quite similar.  In other words, with these 
data, the Poisson-Lognormal model produces a slightly lower probability but a better fit than the 
Poisson-Gamma.  In this case, we would accept the Poisson-Gamma because the differences are 
not great.  But, there are data sets where the Poisson-Lognormal is definitely better than the 
Poisson-Gamma (Lord & Miranda-Moreno, 2008). 
 

Risk Analysis 
 
One example of where the MCMC method is better than the MLE method is in risk 

analysis. Sometimes a dependent variable is analyzed with respect to an exposure variable.  For 
example, instead of modeling just burglaries, a user might want to model burglaries relative to 
the number of households.  In our example in this chapter (Houston burglaries), we have 
included the number of households as a predictor variable but it is unstandardized, meaning that 
the estimated effect of households on burglaries cannot be easily compared to other studies that 
model burglaries relative to households. 

 
For this, a different type of analysis has to be used.  Frequently called a risk analysis, the 

dependent variable is related to an exposure measure.  The formulation we use is that of Besag, 
Green, Higdon and Mengersen (1995).  Like all the non-linear models that we have examined, 

the dependent variable, iy , is modeled as a Poisson function of the mean, λi: 

 

 )(~| iii Poissony           (17.26) 

 
In turn, the mean of the Poisson is modeled as: 

 

 iii             (17.27) 

 

where i  is an exposure measure and i  is the rate (or risk).  The exposure variable is the 

baseline variable to which the number of events is related.  For example, in motor vehicle crash 
analysis, the exposure variable is usually Vehicle Miles Traveled or Vehicle Kilometers Traveled 
(multiplied by a power of 10 to eliminate very small numbers, such as per 1000 or per 100 
million).  In epidemiology, the exposure variable is the population at risk, either the general 
population or the population of a specific age group perhaps broken down further into gender.  
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For crime analysis, the exposure variable might be the number of households for residential 
crimes or the number of businesses for commercial crimes.  Choosing an appropriate exposure 
variable is not a trivial matter. In some cases, there are national standards for exposure (e.g., 
number of infants for analyzing child mortality; Vehicle Miles Traveled for analyzing motor 
vehicle crash rates).  But, often there are not accepted exposure standards. 
 
 In some cases, the exposure variable may be non-linear in order to capture important 
missing variables. For instance, in highway safety, traffic flow (i.e., the number of vehicle 
traveling passing a given point in a unit of time) has been found to vary in a non-linear fashion. 
This characteristic can be explained by the fact vehicle occupancy (i.e., the number of vehicles 
per unit of length) and vehicle speed, which are directly linked to traffic flow, are variables that 
are not availabe or routinely collected. Hence, traffic flow tends to show non-linear relationships 
(see Lord, Manar, &Vizioli, 2005, for more details). 
 

The rate is further structured in the Poisson-Gamma or Poisson-Lognormal models: 
 
 )βxexp( i

T
iiiii           (17.28) 

 
where the symbols have the same definitions as in equation 17.18 with the error term, εi, being 
modeled either as a Gamma function (equation 17.9) or as a Lognormal function (equation 6.10). 
 

With the exposure term, the full model is estimated as the same fashion, 
 

 )(~ iii Poissony           (17.29) 
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 β-x                  (17.30) 

 

 )],(,0[~  baGammaLognormali        (17.31) 

 

Note that no coefficient for the exposure variable, i , is estimated (i.e., it is 1.0).  It is 

sometimes called an offset variable (or exposure offset).  The model is then estimated either with 
an MLE or MCMC estimation algorithm. 
 

An example is that of Levine (2011) who analyzed the number of motor vehicle crashes 
in which a male was the primary driver relative to the number of crashes in which a female was 
the primary driver for each major road segment in the Houston metropolitan area.  In the risk 
model set up, the dependent variable was the number of crashes involving a male primary driver 
for each road segment while the exposure (offset) variable was the number of crashes involving a 
female primary driver.  The independent variables in the equation were volume-to-capacity ratio 
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(an indicator of congestion on the road), the distance to downtown Houston, and several road 
categories (freeway, principal arterial, etc). 
 
 To illustrate this type of model, we ran a MCMC Poisson-Gamma model using the 
number of households as the exposure variable.  There was, therefore, only one independent 
variable, median household income.  Table 17.4 shows the results 
. 

Compared to the non-exposure burglary model (Table 17.1), the model does not fit the 
data as well.  The log likelihood is lower while the AIC and BIC are higher.  Further, the MAD 
and MSPE statistics for model error are much worse. 

 
Further, the dispersion statistics indicate that there is more over-dispersion with the risk 

model than the simple Poisson-Gamma model. In other words, the exposure variable has not 
eliminated the dispersion as much as the random effects (non-exposure) model. 

 
Looking at the coefficients, the offset variable (number of households) has a coefficient 

of 1.0 because it is defined as such.  The coefficient for median household income is still 
negative, but is stronger than in Table 17.1. The effect of standardizing households as the 
baseline exposure variable has increased the importance of household income in predicting the 
number of burglaries, controlling for the number of households.   
 
 The second part of the table show percentiles for the coefficients, and is preferable for 
statistical testing than the asymptotic t-test.  The reason is that the distribution of parameter 
values may not be normally distributed or may be very skewed, whereas the t- and other 
parametric significance tests assume that there is perfect normality.  CrimeStat outputs a number 
of percentiles for distribution.  We have shown only four of them, the 0.5th, 2.5th, 97.5th, and 
99.5th percentiles.  The 2.5th and 97.5th represent 95% credible intervals while the 0.5th and 99.5th 
represent 99% credible intervals.   

 
The way to interpret the percentiles is to check whether a coefficient of 0 (the ‘null 

hypothesis’) or any other particular value is outside the 95% or 99% credible intervals.  For 
example, with the intercept term, the 95% credible interval is defined by -2.4365 to -2.1292.  For 
both the intercept and median household income, a coefficient of 0 is outside both the 95% and 
99% credible intervals.  In other words, both the intercept and median household income are 
significantly different than 0, though the use of the term ‘significant’ is different than with the 
usual asymptotic normality assumptions since it is based on the distribution of the parameter 
values from the MCMC simulation. 
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Table 17.4: 

Predicting Burglaries in the City of Houston: 2006 

MCMC Poisson-Gamma Model with Exposure Variable 
(N= 1,179 Traffic Analysis Zones) 

 
  DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,176 
 Type of regression model:            Poisson with Gamma dispersion 
 Method of estimation:                MCMC 
 Number of iterations:                25,000  Burn in:                           5,000 
 Distance decay function:             Poisson-Gamma 
 
 Likelihood statistics 
 Log Likelihood:                      -6,634.4 
 AIC:                                  13,274.8 
 BIC/SC:                               13,290.0 
 Deviance:    5,373.5  p≤ 0.0001 
 Pearson Chi-square:   514.4  p≤ 0.0001 
 Model error estimates 
 Mean absolute deviation:             14,147.3 
 Mean squared predicted error:        553,058,555.7 
 Dispersion tests 
 Adjusted deviance:                   4.6 p≤ 0.0001 
 Adjusted Pearson Chi-Square:         0.44 p≤ 0.0001 
 Dispersion multiplier:               2.3 p≤ 0.0001  Inverse dispersion multiplier: 0.44                                             
 
            MC error/ 
Predictor   Mean  Std     t-valuep MC error   std      G-R stat 
-------------------------------------------------------------------------------------------------------------------------------------   
Exposure/offset variable: 
HOUSEHOLDS   1.0    -     -   -   -   - 
Linear predictors: 
INTERCEPT  3.4624      0.0917          37.75***   0.002       0.020   1.002  
MEDIAN  
HOUSEHOLD 
INCOME  -0.00009   0.000002    -4.57***   0.00000004  0.020      1.002 
-------------------------------------------------------------------------------------------------------------------------------------   
***  p≤.001 
 
Percentiles           0.5th         2.5th         97.5th       99.5th 
--------------------------------------------------------------------------------------------------------------------- 
INTERCEPT       3.2242   3.2833   3.6389  3.6942 
MEDIAN  
HOUSEHOLD 
INCOME  -0.00002  -0.00001  -0.00005  -0.00004 
--------------------------------------------------------------------------------------------------------------------- 
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In other words, percentiles can be used as a non-parametric alternative to the t- or Z-test.  
Without making assumptions about the theoretical distribution of the parameter value (which the 
t- and Z-test do – they are assumed to be normal or near normal for “t”), significance can be 
assessed empirically. 

 
In summary, in risk analysis, an exposure variable is defined and held constant in the 

model.  Thus, the model is really a risk or rate model that relates the dependent variable to the 
baseline exposure.  The independent variables are now predicting the rate, rather than the count 
by itself.   

 

Issues in MCMC Modeling 
 
 We now turn to four issues in MCMC modeling.  The first is the starting values of the 
MCMC algorithm.  The second is the issue of convergence to an equilibrium state.  The third 
issue is the statistical testing of parameters and the general problem of overfitting the data while 
the fourth issue is the performance of the MCMC algorithm with large datasets. 
 
 Starting Values of Each Parameter 
 
 The MCMC algorithm requires that initial values be provided for each parameter to be 
estimated.  These are called prior probabilities even though they do not have to be standardized 
in terms of a number from 0 to 1. The CrimeStat routine allows the defining of initial starting 
values for each of the parameters and for the overall Φ coefficient in the various spatial 
regression models (see chapter 18).  If the user does not define the initial starting values, then 
default values are used.  Of necessity, these are vague.  For the individual coefficients (and the 
intercept), the initial default values are 0.  For the Φ coefficient, the initial default values are 
defined in terms of its hyperparameters, (Rho = 0.5; Tauphi = 1; alpha = -1).  Essentially, these 
assume very little about the distribution and are, essentially, non-informative priors. 
 
 The problem with using vague starting values, however, is that the algorithm could get 
stuck on a local ‘peak’ and not actually find the highest probability.  Even though the MCMC 
algorithm is not a greedy algorithm, it still explores a limited space.  It will generally find the 
highest peak within its search radius.  But, there is no guarantee that it will explore regions far 
away from its initial location.  If the user has some basis for estimating a prior value, then this 
will usually be of benefit to the algorithm in that it can minimize the likelihood of finding local 
‘peaks’ rather than the highest ‘peak’. 
 
 Where do the prior values come from?  They can come from other research, of course 
(see Miranda-Moreno et al., 2009).  Alternatively, they can come from other methods that have 
attempted to analyze the same phenomena.  Lynch (2007), for example proposes running an 
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MLE Poisson-Gamma (negative binomial) model and then using those estimates as the prior 
values for the MCMC Poisson-Gamma.  Even if the user is going to run a spatial model (e.g., 
MCMC Poisson-Gamma-CAR/SAR), the estimates from an MLE model are probably good 
starting values.   
 
  Example of Defining Prior Values for Parameters 
 

We can illustrate this with an example.  A model was run on 325 Baltimore County 
traffic analysis zones (TAZ) predicting the number of crimes that occurred in each zone in 1996.  
There were four independent variables: 

1. Population (1996) 
2. Relative median household income index 
3. Retail employment (1996) 
4. Distance from the center of the metropolitan area (in the City of Baltimore) 

 
The dataset was divided into two groups, group A with 163 TAZs and group B with 162 

TAZs.  The model was run as a spatial regression (Poisson-Gamma-CAR – see chapter 19) for 
each of the groups.  Table 17.5 shows the results of the coefficients with the standard errors in 
brackets. 

 
Column 1 shows the results of running the model on group A.  Column 2 shows the 

results of running the model on group B while column 3 shows the results of running the model 
on group B but using the coefficient estimates from group A as prior values.  With the exception 
of the relative income variable, the coefficients of column C generally fall between the results for 
group A and group B by themselves.  Even the one exception – relative income, is very close to 
the ‘non-informative’ estimate for group B. 

 
In other words, using prior values that are based on realistic estimates (in this case, the 

estimates from group A) have produced results that incorporate that information in estimating the 
information just from the data.  Essentially, this is what equation 17.7, updating the probability 
estimate of the data given the likelihood based on the prior probability. In short, using prior 
estimates combines new information with the existing information to update the estimates. Aside 
from protecting against finding local optima in the MCMC algorithm, the prior information 
generally improves the knowledge base of the model. 

 
Convergence 

 
 In theory, the MCMC algorithm should converge into a stable equilibrium state whereby 
the true probability distribution is being sampled.  With the hill climbing analogy, the climber 
has found the highest mountain to be climbed and is simply sampling different locations on the  
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Table 17.5: 

The Effects of Starting Values on Coefficient Estimates  
for Baltimore County Crimes: 

 
Dependent Variable = Number of Crimes in 1996 
 

(1)                                    (2)   (3) 
    Group A    Group B  Group B 
    (N=163 TAZs)  (N=162 TAZs) (N=162 TAZs) 
 
Starting values:   Default/   Default/  Group A  
    ‘non-informative’  ‘non-informative’ estimates 
 
Independent variables 

 
INTERCEPT        4.3621      4.7727      4.7352  
         (0.2674)      (0.2434)      (0.2489) 
 
POPULATION       0.00035      0.00034      0.00035 
         (0.00004)      (0.00004)      (0.00004) 
RELATIVE 
INCOME       -0.0234     -0.0226     -0.0224 
         (0.0047)      (0.0041)      (0.0043) 
RETAIL 
EMPLOYMENT       0.0021      0.0017      0.0017 
         (0.0002)      (0.0002)      (0.0001) 
DISTANCE FROM 
CENTER       -0.0590     -0.0898     -0.0881 
         (0.0160)      (0.0141)      (0.0142) 
AVERAGE 
PHI 
COEFFICIENT       0.0104     -0.0020      0.0077 
         (0.1117)      (0.0676)      (0.0683) 

 
mountain to see which one will provide the best path up the mountain.  The first iterations in a 
sequence are thrown away (the ‘burn in’) because the sequence is assumed to be looking for the 
true probability distribution.  Put another way, the starting values of the MCMC sequence have a 
big effect on the early draws and it takes a while for the algorithm to move away from those 
initial values (remember, it is a random walk and the early steps are near the initial starting 
location).    
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 A key question is how many samples to draw and a second, ancillary question is how 
many should be discarded as the ‘burn in’?  Unfortunately, there is not a simple answer to these 
questions.  For some distributions, the algorithm quickly converges on the correct solution and a 
limited number of draws are needed to accurately estimate the parameters.  In the Houston 
burglary example, the algorithm easily converged with 20,000 iterations after the first 5,000 had 
been discarded.  We have been able to estimate the model accurately after only 4000 iterations 
with 1000 burn in samples being discarded.  The dependent variable is well behaved because it is 
at the zonal level and the model is simple. 
 
 On the other hand, some models do not easily converge to an equilibrium stage.  Models 
with individual level data are typically more volatile.  Also, models with many independent 
variables are complex and do not easily converge.  To illustrate, we estimate a model of the 
residence locations of drunk drivers (DWI) who were involved in crashes in Baltimore County 
between 1999 and 2001 (Levine & Canter, 2011).  The drivers lived in 532 traffic analysis zones 
(TAZ) in both Baltimore County and the City of Baltimore.  The dependent variable was the 
annual number of drivers involved in DWI crashes who lived in each TAZ and there were six 
independent variables: 
 

1. Total population of the TAZ 
2. The percent of the population who were non-Hispanic White 
3. Whether the TAZ was in the designated rural part of Baltimore County (dummy 

variable: 1 – Yes; 0 – No) 
4. The number of liquor stores in the TAZ 
5. The number of bars in the TAZ 
6. The area of the TAZ (a control variable). 

 
 Table 17.6 presents the results. The overall model fit was statistically significant and 
there was very little over-dispersion (as seen by the dispersion parameter). A “pure” Poisson 
model could have been used in this case.  Of the parameters, the intercept and four of the six 
independent variables were statistically significant, based on the t-test.  The results were 
consistent with expectations, namely zones (TAZs) with greater population, a greater percentage 
of non-Hispanic White persons, that were in the rural part of the county, that had more liquor 
stores, and that had more bars had a higher number of drunk drivers residing in those zones. 
 
 However, the convergence statistics were questionable.  Two of the parameters had G-R 
values higher than the acceptable 1.2 level and five of the MC error/standard error values were 
higher than the acceptable 0.05 level.  In other words, it appears that the model did not properly 
converge. Consequently, we ran the model again with 100,000 iterations and discarded the initial 
10,000 ‘burn in’ samples. Table 17.7 shows the results.  Comparing tables 17.6 with 17.5, we 
can see that the overall likelihood statistics was approximately the same as were the dispersion  
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Table 17.6: 

Number of Drivers Involved in DWI Crashes  
Living in Baltimore County: 1999-2001 

MCMC Poisson-Gamma Model with 20,000 Iterations 
(N= 532 Traffic Analysis Zones) 

 
 DepVar:                             Annual Number of Drivers in DWI Crashes Living in TAZ 
 N:                                    532 
 Type of regression model:           Poisson with Gamma dispersion 
 Method of estimation:    MCMC 
 Total number of iterations:          25,000  Burn in: 5,000 
  
 Likelihood statistics 
 Log Likelihood:                     -278.7 
 AIC:                                 573.4 
 BIC/SC:                              607.6 
 Deviance:    316.6  p:  0.0001 
 Pearson Chi-square:   475.6  p:  0.0001 
 Model error estimates 
 Mean absolute deviation:            0.32 
 Mean squared predicted error:       0.25 
 Dispersion tests 
 Adjusted deviance:                   0.60 p: 0.0001 
 Adjusted Pearson Chi-Square:        0.91 p: 0.0001 
 Dispersion multiplier:               0.15 p: 0.0001 Inverse dispersion multiplier:  6.77 
 
          MC error/ 
Predictor  Mean  Std    t-valuep MC error std           G-R stat 
-----------------------------------------------------------------------------------------------------------------------------
INTERCEPT -4.5954  0.476  -9.65***    0.0386   0.081  1.349 
POPULATION  0.0004    0.00005    8.70***    0.000003   0.068    1.165  
PERCENT 
  WHITE    0.0237   0.005       4.81***      0.0004      0.079   1.283  
RURAL    0.6721   0.329       2.04*       0.0184      0.056   1.042  
LIQUOR  
  STORES     0.2423   0.125       1.94n.s.     0.0059      0.047    1.028  
BARS       0.1889   0.058       3.28**      0.0024      0.041   1.008  
AREA   -0.0548   0.033     -1.68n.s.     0.0018      0.055  1.041  
-----------------------------------------------------------------------------------------------------------------------------
n.s.  Not significant 
**    p≤.01 
***  p≤.001 
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Table 17.7: 

Number of Drivers Involved in DWI Crashes  
Living in Baltimore County: 1999-2001 

MCMC Poisson-Gamma Model with 90,000 Iterations 
(N= 532 Traffic Analysis Zones) 

 
 DepVar:                             Annual Number of Drivers in  DWI Crashes Living in TAZ   
 N:                                    532 
 Type of regression model:           Poisson with Gamma dispersion 
 Method of estimation:   MCMC 
 Total number of iterations:          100,000  Burn in: 10,000 
 
  Likelihood statistics 
 Log Likelihood:                      -278.6 
 AIC:                                 573.2 
 BIC/SC:                              607.4 
 Deviance:    317.9  p:  0.0001 
 Pearson Chi-square:   479.5  p:  0.0001 
 Model error estimates 
 Mean absolute deviation:            0.32 
 Mean squared predicted error:       0.25 
 Dispersion tests 
 Adjusted deviance:                   0.61 p:  n.s. 
 Adjusted Pearson Chi-Square:        0.92 p:  n.s. 
 Dispersion multiplier:                0.14 p:  n.s.  Inverse dispersion multiplier:  7.36 
 
          MC error/ 
Predictor  Mean  Std    t-valuep MC error std           G-R stat 
------------------------------------------------------------------------------------------------------------------------------ 
INTERCEPT -4.6608   0.425  -10.96***    0.0222    0.052  1.085  
POPULATION 0.0004   0.00005   8.78***    0.000002   0.041     1.041  
PERCENT 
  WHITE   0.0243    0.004      5.77***      0.0002      0.050   1.081 
RURAL   0.6378      0.324      1.97*       0.0092      0.028   1.005  
LIQUOR 
STORES    0.2431     0.123      1.98*      0.0033      0.027    1.002  
BARS     0.1859    0.055      3.36***      0.0011      0.020   1.004  
AREA   -0.0515   0.032     -1.63n.s.     0.0009      0.029  1.008  
------------------------------------------------------------------------------------------------------------------------------ 
n.s. Not significant 
*    p≤.05 
***  p≤.001 
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statistics.  However, the convergence statistics indicate that the model with 90,000 iterations had 
better convergence than that with only 20,000.  Of the parameters, none had a G-R value greater 
than 1.2 while only one had an MC Error/Standard error value greater than 0.05, and that only 
slightly.   

 
This had an effect on both the coefficients and the significance levels.  The coefficients 

were in the same direction for both models but were slightly different.  Further, the standard 
deviations were generally smaller with more iterations and only one of the independent variables 
was not significant (area, which was a control variable).   
 
 In other words, increasing the number of burn-in samples as well as the number of 
iterations run improved the model.  It apparently converged for the second run whereas it had not 
for the first run. The algorithm did this for two reasons.  First, by taking a larger number of 
iterations, the model was more precise.  Second, by dropping more initial iterations during the 
‘burn in’ phase (10,000 compared to 5,000), the series apparently reached an equilibrium state 
before the sample iterations were calculated.  The smaller standard errors suggest that there still 
was a trend when only 5,000 were dropped but had ceased by the time the first 10,000 iterations 
had been reached. 
 
 The point to remember is that one wants a stable series before drawing a sample.  If in 
doubt, run more during the ‘burn in’ phase.  This increases the calculating time, of course, but 
the results will be more reliable.  Once the MCMC algorithm has reached ‘equilibrium’, it won’t 
take that many additional samples to produce good estimates.  We have estimated that 5,000-
10,000 additional samples beyond the ‘burn-in’ sample will produce good results.  One can 
implement this in stages.  For example, run the model with the default 25,000 iterations with 
5,000 for the ‘burn in’ (for a total of 20,000 sample iterations from which to base the 
conclusions).  If the convergence statistics suggest that the series has not yet stabilized, run the 
model again with more ‘burn in’ samples and, perhaps, more sample iterations.   
 
  Monitoring Convergence 

 A second concern is how to monitor convergence.  There appear to be two different 
approaches.  One is a graphical approach whereby a plot of the parameter values is made against 
the number of iterations (often called trace plots).  If the chain has converged, then there should 
be no visible trend in the data (i.e., the series should be flat).  The WinBugs software package 
uses this approach, in addition to the MC Error and G-R statistics (BUGS, 2008).  For the time 
being, we have not included a graphical plot of the parameters in this version of CrimeStat 
because of the difficulties in using this plot with the block sampling approach to be discussed 
shortly.   
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 Also, graphical visualizations, while useful for informing readers, can be misinterpreted.  
A series that appears to be stable, such as the Baltimore County DWI crash example given 
above, may actually have a subtle trend.  A series can look stable and yet summary statistics such 
as the G-R statistic and the MC Error relative to the standard error statistic do not indicate 
convergence.    

 
 On the other hand, summary convergence statistics, such as these two measures, are not 
completely reliable indicators either since a series may only temporarily be stable.  This would 
be especially true for a simulation with a limited number of runs.  Both the G-R and MC Error 
statistics require that at least 2500 iterations be run, with more being desirable. Further, these 
statistics are not without controversy. Flegal, Haran, & Jones (2008) argue that MCMC standard 
errors are needed to allow assessment of the accuracy of the estimate while Gelman (2007), in 
responding to their concerns, argues that a simulation need only be run sufficiently long so that 
the estimate is more accurate than its standard error.  In other words, the precision defines the 
number of runs needed once the sequence has achieved equilibrium.   
 

Some authors argue that one needs multiple approaches for monitoring convergence 
(Carlin and Louis, 2000, 182-183).  While we would agree with this approach, for the time being 
we are utilizing primarily the convergence statistics approach.   

 
 Statistically Testing Parameters 
 
 With an MCMC model, there are two ways that statistical significance can be tested.  The 
first is by assuming that the sampling errors of the algorithm approximate a normal distribution.  
Thereby, the t-test would be appropriate.  In the output table, the t-value is shown, which is the 
coefficient divided by the standard error.  With a simple model, a dependent variable with higher 
means and adequate sample, this might be a reasonable assumption for a regular Poisson or 
Poisson-Gamma function.  However, for models with many variables and with low sample 
means, such an assumption is probably not valid (Lord & Miranda-Moreno, 2008).  Further, with 
the addition of many predictor parameters added, the assumption becomes more questionable. 
 
 Consequently, MCMC models tend to be tested by looking at the sampling distribution of 
the parameter and calculating approximate 95% and 99% credible intervals based on the 
percentile distribution, as illustrated above in Table 17.4. 
 
  Proper Specification of a Model 
 
 But statistical testing does not just involve testing the significance of the coefficients, 
whether by asymptotic t- or Z-tests or by percentiles.  A key issue is whether a model is properly 
specified.  On the one hand, a model can be incomplete since there are other variables that could 
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predict the dependent variable.  The Houston burglary model is clearly underspecified since there 
are additional factors that account for burglaries, as we suggested above. 
 
 But, there is also the problem of overspecifying a model, that is, including too many 
independent variables.  While the algorithms – MLE or MCMC, can fit virtually any model that 
is defined, logically many of these models should have never been tested in the first place. 
 
  Multicollinearity 
 
 The phenomenon of multicollinearity among independent variables is well known, and 
most statistical texts discuss this.  In chapter 15, we briefly discussed multicollinearity among the 
independent variables.  Now, we will show why multicollinearity can be a problem. 
 
 In theory, each independent variable should be statistically independent of the other 
independent variables.  Thus, the amount of variance for the dependent variable that is accounted 
for by each independent variable should be a unique contribution.  In practice, however, it is rare 
to obtain completely independent predictive variables.  More likely, two or more of the 
independent variables will be correlated.  The effect is that the estimated standard error of a 
predictor variable is no longer unique since it shares some of the variance with other independent 
variables. If two variables are highly correlated, it is not clear what contribution each makes 
towards predicting the dependent variable.  In effect, multicollinearity means that variables are 
measuring the same thing. 
 
 Multicollinearity among the independent variables can produce very strange effects in a 
regression model.  Among these effects are: 1) if two independent variables are highly 
correlated, but one is more correlated with the dependent variable than the other, the stronger one 
will usually have a correct sign while the weaker one will sometimes get flipped around (e.g., 
from positive to negative, or the reverse); 2) two variables can cancel each other out; each 
coefficient is significant when it alone is included in a model but neither are significant when 
they are together; 3) one independent variable can inhibit the effect of another correlated 
independent variable so that the second variable is not significant when combined with the first 
one; and 4) if two independent variables are virtually perfectly correlated, many regression 
routines break down because the matrix cannot be inverted. All these effects indicate that there is 
non-independence among the independent variables.   
 

Aside from producing confusing coefficients, multicollinearity can overstate the 
predictability of a model. Since every independent variable accounts for some of the variance of 
the dependent variable, multicollinearity can cause the overall model to ‘improve’ when it 
probably has not.   
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A good example of this is a model that we ran relating the number of 1996 crime trips 
that originated in each of 532 traffic analysis zones in Baltimore County and the City of 
Baltimore that culminated in a crime committed in Baltimore County.   The dependent variable 
was, therefore, the number of 1996 crimes originating in the zone while there were six 
independent variables: 
 

1. Population of the zone (1996) 
2. An index of relative median household income of the zone (relative to the zone with 

the highest income) 
3. Retail employment in the zone (1996) 
4. Non-retail employment in the zone (1996) 
5. The number of miles of the Baltimore Beltway (I-695) that passed through the zone 
6. Dummy variable indicating whether the Baltimore Beltway passed through the zone. 

 
The last two variables are clearly highly correlated. If a zone has the Baltimore Beltway 

passing through it, then it has some miles of that freeway assigned to it.  The simple Pearson 
correlation between the two variables is 0.71.   Logically, one should not include highly 
correlated variables in a model.  But, what happens if we do this?  Table 17.8 illustrates what can 
happen.  Only the coefficients are shown.  In the first model, the Beltway miles variable was 
used along with population, income, retail employment and non-retail employment.  In the 
second model, the dummy variable for whether the Baltimore Beltway passed through the zone 
or not was used with the four other independent variables.  In the third model, both the Beltway 
miles and the dummy variable for the Baltimore Beltway were both included along with the four 
other independent variables. 
 
 The coefficients for the intercept and the four other independent variables are very 
similar (and sometimes identical) across the three models. So, look at the two correlated 
variables. In the first model, the Beltway miles variable is positive, but not significant.  In the 
second model, the Beltway dummy variable is positive and significant.  In the third model, 
however, when both Beltway variables were included, the Beltway miles variable has become 
negative while the Beltway dummy variable remains positive and significant. 

 
In other words, including two highly correlated variables has caused illogical results.  

That is, without realizing that the two variables are, essentially, measuring the same thing, one 
might conclude that the effect of the Beltway passing through a zone is to increase the likelihood 
that offenders live in that zone but that the effect of having Beltway miles in the zone decreases 
the likelihood!  Any such conclusion is nonsense, of course.  In short, do not include highly 
correlated variables in the same model. 
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Table 17.8: 

Effects of Multicollinearity on Estimation 
MLE Poisson-Gamma Model 

(N= 532 Traffic Analysis Zones in Baltimore County) 
 
Dependent variable: Number of 1996 crimes that originated in a zone 
 

(1)                                    (2)   (3) 
 Independent  
 Variables  Model 1    Model 2  Model 3 

 
Intercept   1.6437***   1.5932***   1.5964***  
Population   0.00045***   0.00045***   0.00045*** 
Relative 
Income  -0.0184***  -0.0188***  -0.0188*** 
Retail 
Employment  -0.00024*  -0.00026*  -0.00026* 
Non-retail 
Employment  -0.0001***  -0.00013***  -0.00013*** 
Beltway miles   0.1864n.s.        ---   -0.0397n.s. 
Beltway        ---    0.3194*   0.3496* 
-------------------------------------------------------------------------------------------------- 
n.s. Not significant 
*   p≤.05 
*** p≤.001 

 
 
How do we know if two or more variables are correlated?   There is a simple tolerance 

test that is included in the MLE models and in the diagnostics utility for the regression module.  
Tolerance is defined as (repeating equation 15.18, from Chapter 15) 

 
 Toli = 1 – R2

j≠i        (17.32) 
 
where R2

j≠i is the R-square associated with the prediction of one independent variable with the 
remaining independent variables in the model.  In the example, the tolerance of both the Beltway 
miles variable and the Beltway dummy variable was 0.49 whereas when each were in the 
equation by themselves (models 1 and 2), the tolerance was 0.97.   The tolerance test should be 
the first indicator in suspecting too much overlap in two or more independent variables. 
 

The tolerance test is a simple one and is based on normal (OLS) regression. 
Consequently, it may be erroneous when one or more of the independent variables are highly 
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skewed.  Nevertheless, it is a good indicator of potential problems.  When the tolerance of a 
variable is low, then the variable should be excluded from the model.  Typically, when this 
happens two or more variables will show a low tolerance and the user can choose which one to 
remove. 
 
 How ‘low’ is low?  There is no simple answer to this, but variables with reasonably high 
tolerance values can have substantial multicollinearity.  For example, if there are only two 
independent variables in a model and they are correlated 0.3, then the tolerance score is 0.91 
(100 – 0.32). While 0.91 appears high, in fact it indicates that there is 9% of overlap between the 
two variables.  CrimeStat prints out a warning message about the degree of multicollinearity 
based on the tolerance levels.  But, the user needs to understand that overlapping independent 
variables can lead to ambiguous and unreliable results.  The aim should be to have truly 
independent variables in a model since the results are more likely to be reliable over time.  
 
  Stepwise Variable Entry to Control Multicollinearity 
 

One solution to limiting the number of variables in a model is to use a stepwise fitting 
procedure.  There are three standard stepwise procedures (Der & Everitt, 2002, 88-89).  In the 
first procedure, variables are added one at a time (a forward selection model).  The independent 
variable having the strongest linear correlation with the dependent variable is added first.  Next, 
the independent variable from the remaining list of independent variables having the highest 
correlation with the dependent variable controlling for the one variable already in the equation is 
added and the model is re-estimated.  In each step, the independent variable remaining from the 
list having the highest correlation with the dependent variable controlling for the variables 
already in the equation is added to the model, and the model is re-estimated.  This proceeds until 
either all the independent variables are added to the equation or else a stopping criterion is met.  
The usual criterion is only variables with a certain significance level are allowed to enter (called 
a p-to-enter). 
 
 Second, a backward elimination procedure works in reverse.  All independent variables 
are initially added to the equation.  The variable with the weakest coefficient (as defined by the 
significance level and the t- or Z-test) is removed, and the model is re-estimated.  Next, the 
variable with the weakest coefficient in the second model is removed, and the model is re-
estimated.  This procedure is repeated until either there are no more independent variables left in 
the model or else a stopping criterion is met.  The usual criterion is that all remaining variables 
pass a certain significance level (called a p-to-remove).  This ensures that all variables in the 
model pass this significance level. 
 
 The third method is a combination of these procedures, first adding a variable in a 
forward selection manner but second removing any variables that are no longer significant or 
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using a backward elimination procedure but allowing new variables to enter the model if they 
suddenly become significant. 
 
 There are advantages to each approach.  A fixed model allows specified variables to be 
included.  If either theory or previous research has indicated that a particular combination of 
variables is important, then the fixed model allows that to be tested.  A stepwise procedure might 
drop one of those variables.  On the other hand, a stepwise procedure usually can obtain the same 
or higher predictability than a fixed procedure.   
 
 Within the stepwise procedures, there are also advantages and disadvantages to each 
method, though the differences are generally very small. A forward selection procedure adds 
variables one at a time.  Thus, the contribution of each new variable can be seen.  On the other 
hand, a variable that is significant at an early stage could become insignificant at a later stage 
because of the unique combinations of variables.  Similarly, a backward elimination procedure 
will ensure that all variables in the equation meet a specified significance level.  But, the 
contribution of each variable is not easily seen other than through the coefficients.  In practice, 
one usually obtains the same model with either procedure, so the differences are not that critical. 
         
 A stepwise procedure will not guarantee that multicollinearity will be removed entirely.  
However, it is a good procedure for narrowing down the variables to those that are significant.  
Then, any co-linear variables can be dropped manually and the model re-estimated.  

 
In the normal and MLE Poisson routines, there is a backward elimination procedure 

whereby variables are dropped from an equation if their coefficients are not significant.   
 
  Overfitting 
 

Overfitting is a more general phenomenon of including too many variables in an equation 
(Radford, 2006; Nannen, 2003).  With the development of Bayesian models, this has become an 
increasing occurrence because the models, usually estimated with the MCMC algorithm, can fit 
an enormous number of parameters. Many of these models estimate parameters that are 
properties of the functions used (called hyperparameters) rather than just the variables input as 
part of the data.  In the Poisson-Gamma-CAR model, for example, we estimate the dispersion 
parameter (ψ) and a general Φ function.  Phi (Φ), in turn, is a function of a global component 
(Rho, ρ), a local component (Tauphi τΦ), and a neighborhood component (Alpha -α). 

 
These parameters are part of the functions and are not data.  But, since they can vary and 

are often estimated from the data, there is always the potential that they could be highly 
correlated and, thereby, cause ambiguous results to occur.  Unfortunately, there are not good 
diagnostics for multicollinearity among the hyperparameters, as there is with the tolerance test.   
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But, the problem is a real one and one that the user should be cognizant.  Sometimes an 
MCMC or MLE model fails to converge properly, meaning that it either did not finish or else 
produced inconsistent results from one run to another.  We usually assume that the probability 
structure of the space being modeled is too complex for the model that we are using.  And, while 
that may be true, it is also possible that there is overlap in some of the hyperparameters.  In this 
case, one would be better off choosing a simpler model – one with fewer hyperparameters, than a 
more complex one. 

 
  Condition Number of Matrix 

 
In other words, a user should be very cautious about overfitting models with too many 

variables, both the data variables and those estimated from functions (the hyperparameters).  We 
have included a condition matrix test for the distance matrix in the Poisson-Gamma-CAR/SAR 
model.  The condition number of a matrix is an indicator of how amenable it is to digital solution 
(Wikipedia, 2010b).  A matrix with a low condition number is said to be well conditioned 
whereas one with a high number is said to be ill-conditioned.  With ill-conditioned matrices, the 
solutions are volatile and inconsistent from one run to another.   How ‘high’ is high?  Numbers 
higher than, say, 400 are generally ill-conditioned while low condition numbers (say, under 100) 
are well conditioned.  Between 100 and 400 is an ambiguous area.  For the Poisson-Gamma-
CAR model, if you see a condition number higher than 100, be cautious.  If you see one higher 
than 400, assume the results are completely unreliable with respect to the spatial component. 
 
  Overfitting and Poor Prediction 
 
 There is also a question about the extent to which a model that is fit is reliable and 
accurate for predicting a data set which is different.  Without going into an extensive literature 
review, a few guidelines can be given.  The Machine Learning computing community 
concentrates on training samples in order to estimate parameters and then using the estimated 
models to predict a test sample (another data set).  In general, they have found that simple 
models do better for prediction than complicated models.  One can always fit a particular data set 
by adding variables or adding complexity to the mathematical function.  On the other hand, the 
more complex the model – the more independent variables in it and the more specified 
hyperparameters, generally the model will do worse when applied to a new data set.  Nannen 
(2003) called this the paradox of overfitting, and it is a rule that a user would be well advised to 
follow.  Try to keep your models simple and reliable.  In the long run, simple models with well-
defined independent variables will generally do better for prediction. 
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Improving the Performance of the MCMC Algorithm 
 
 Most medium- and large police departments use large datasets, such as calls for service, 
crime reports, motor vehicle crash reports and other data sets.  The largest police departments 
have huge data sets, constituting millions of records.  Further, these data are being collected on a 
continual basis. CrimeStat was developed to handle fairly large data sets and the routines are 
optimized for this.   
 

However, large data sets pose a problem for multivariate modeling in a number of ways.  
First, they pose a computing problem in terms of the processing of information. As the number 
of records goes up, the demand for computer resources increases exponentially.  For example, 
consider the problem of calculating a distance matrix for use in, say, the Poisson-Gamma-SAR 
model.  If each number is represented by 64 bits (double precision), then the amount of memory 
space required is a function of K2*64 where K is the number of records.  For example, if there 
are 10,000 records (a relatively small database by police standards), then the amount of memory 
required will be 10,000*10,000*64 = 6.4 billion bits (or 800 Mb).  On the other hand, if the 
number of records is 100,000, then the memory demand goes up to 80,000 Mb (or 80 Gb).  That 
such databases take a long time to be analyzed is understandable. 
 
 Second, large data sets pose problems for interpretation.  The ‘gold standard’ for testing 
of coefficients or even the overall fit of a model has been to compare the coefficients to 0.  This 
follows from traditional statistics (whom the Bayesians call frequentists) whereby a particular 
statistic (in this case, a regression coefficient) is compared to a ‘null hypothesis’ which is usually 
0.  However, with large datasets, especially with extremely large datasets, virtually all 
coefficients will be significantly different from 0, no matter how they are tested (with t-tests or 
with percentiles).  In this case, ‘significance’ does not necessarily mean ‘importance’.  For 
example, if you have a data set of one million records and plug in a model with 10 independent 
variables, the chances are that the majority of the variables will be significantly different than 0. 
This does not mean that the variables are important in any way, only that they account for some 
of the variance of the dependent variable greater than what would be expected on the basis of 
chance.   
 
 The two problems interact when a user works with a very large dataset.  The routines 
may have difficulty calculating the solution and the results may not necessarily be very 
meaningful.  This will be particularly true for complex models, such as the Poisson-Gamma-
CAR which will be discussed in chapter 19.  An example will illustrate this. With an Intel 2.4 
Ghz computer with a dual core, we ran a model with three independent variables on a scalable 
dataset; that is, we took a large dataset and sampled smaller subsets of it.  We then tested the 
MCMC Poisson-Gamma and MCMC Poisson-Gamma-CAR models with subsets of different 
size. Table 17.9 present the results. 
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As can be seen, the calculation time went up exponentially with the sample size.  Further, 
with the spatial Poisson-Gamma-CAR model, a limit was reached.  Because the routine was 
calculating the distance between each observation and every other observation as part of the 
spatial weight coefficients, the memory demands blow up very quickly. The non-spatial Poisson-
Gamma model can be run on larger datasets (we have run them on sets as large as 100,000 
records) but the spatial model cannot be.  Even with the non-spatial model, the calculation time 
for a very large dataset goes up very substantially with the sample size. 

 
Table 17.9: 

Effects of Sample Size on Calculations 
(Second to Complete) 

 
 Sample size  Poisson-Gamma  Poisson-Gamma-CAR 
       125         23           67 
      250         43         163 
      500         81         480 
   1,000       160      1,569 
   2,000       305      6,000 
   4,000       622    25,740 
   5,000       762    43,740 
   8,000    1,247    Unable to complete 
 12,000    1,869    Unable to complete 
 15,000    2,412    Unable to complete 
 20,000    3,278    Unable to complete 
 
 
 Scaling of the Data 
 
 There are several things that can be done to improve the performance of the MCMC 
algorithm with large datasets.  The first is to scale the data, either by reducing the number of 
digits that represent each value or by standardizing by Z-scores.  There are different ways to 
scale the data, but a simple one is to move the decimal places.  For example, if one of the 
variables is median household income and is measured in tens of thousands (e.g., 55,000, 
135,000), then these values can be divided by 1000 so that they represent ‘per 1000’ (i.e., 55.0 
and 135.0 in the example). 
 
 To illustrate, we ran a single-family housing value model on a large data set of 588,297 
single-family home parcels. The data came from the Harris County Appraisal District and the 
model related the 2007 assessed value against the square feet of the home, the square feet of the 
parcel, the distance from downtown Houston and two dummy variables - whether the home had 
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received a major remodeling between 1985 and 2007 and whether the parcel was within 200 feet 
of a freeway.  The valuations were coded as true dollars and were then re-scaled into units of 
‘per 1000’ (e.g., 45,000 became 45.0).   When the data were in real units, the time to complete 
the run was 20.8 minutes for the MCMC Poisson-Gamma using the Block Sampling Method (see 
below).  When the data were in units of thousandths, the time to complete the run was 15.3 
minutes for the MCMC Poisson-Gamma.  
 
 In other words, scaling the data by reducing the number of decimal places led to an 
improvement in calculating time of around 25% for the MCMC model.  The effects on an MLE 
model will be even more powerful due to the different algorithm used.  The point is, scaling your 
data will pay in terms of improving the efficiency of runs. 
 
 Block Sampling Method for the MCMC 
 
 Another solution is to sample records from the full database and run the MCMC 
algorithm on that sample. In the MCMC literature, drawing a sub-sample is called ‘thinning’ the 
sample (Link & Eaton, 2011).  Essentially, a sub-sample is drawn and the MCMC algorithm is 
run. It is clearly much faster to run a sub-sample than the entire database.  However, the problem 
with this approach, as pointed out by McEachern & Berliner (1994) is that it will be less precise 
than by running the full database.  The reason is that there is sampling error and that the results 
from any one sub-sample might deviate from the full database. 
 
 With the block sampling method, on the other hand, multiple subsamples are drawn with 
the overall statistics based on a summary of the individual samples.  That is, a first sub-sample is 
drawn and run through the MCMC algorithm.  The statistics from the run are calculated.  Then, 
the process is repeated with another sample, and the statistics are calculated on this sample.  
Then, the process is repeated again and again.  We call this the block sampling method and it has 
been implemented in CrimeStat.  The advantage over a thinned sample is that, because of the 
Central Limit Theorem, the summary statistics for the repeated samples will converge towards 
the summary statistics of the full database with much smaller sampling error.  
 
 With the block sampling method, the user defines three parameters for controlling the 
sampling: 
 

1. The block sampling threshold – the size of the database beyond which the block 
sampling method will be implemented.  For example, the default block sampling 
threshold is set at 6,000 observations, though the user can change this.  With this 
default, any dataset that has fewer than 6,000 records/observations will be analyzed 
with the full database.  However, any dataset that has 6,000 records or more will 
cause the block sampling routine to be implemented. Note that the user run the entire 
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dataset, no matter how long it takes, by setting the block sampling threshold to be 
greater than the number of records in the dataset. 
 

2. Average block size – the expected block size of a sample from the block sampling 
method.  The default is 400 records thought the user can change this. The routine 
defines a sampling interval, based on n/N where n is the defined average block size 
and N is the total number of records.  For drawing a sample, however, a uniform 
random number from 0 to 1 is drawn and compared to the ratio of n/N.  If the number 
is equal to or less than this ratio (probability), then the record is accepted for the 
block sample; if the number is greater than this ratio, the record is not accepted for 
the block sample. Thus, any one sample may not have exactly the number of records 
defined by the user.  But, on average, the average sample size over all runs will be 
very close to the defined average block size though the variability is high. 

 
3. Number of samples – the number of samples drawn.  The default is 25 though the 

user can change this.  We have found that 20-30 samples produce very reasonable 
results. 

 
The routine then proceeds to implement the block sampling method. For example, if the 

user keeps the default parameters, then the block sampling method will only be implemented for 
databases of 6,000 records or more.  If the database passes the threshold, then each of the 25 
samples are drawn with, approximately, 400 records per sample.  The MCMC algorithm is run 
on each of the samples and the statistics are calculated.  After all 25 samples have been run, the 
routine summarizes the results by averaging the summary statistics (likelihood, AIC, BIC/SC, 
etc), the coefficients, the standard errors, and the percentile distribution.  The results that are 
printed represent the average over all 25 samples. 

 
 
 
 
 
 
 
 
 
 
 
 

 

GUIDELINE: 

Note that MCMC models can take a very long time to calculate.  
For large datasets, we recommend using the block sampling 
method.  A rough rule-of-thumb is that for non-spatial MCMC 
models, the block sampling method should be used for 6,000 or 
more cases while for spatial MCMC models, the block sampling 
method should be used for 2,000 or more cases.  Of course, this will 
depend on the amount of available RAM as well as the processing 
speed of the computer. 
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We have found that this method produces very good approximations to the full database. 
For several datasets, we have compared the results of the block sampling method with running 
the full database through the MCMC routine.  The means of the coefficients appear to be 
unbiased estimates of the coefficients for the full database.  Similarly, the percentiles appear to 
be very close, if not unbiased, estimates of the percentiles for the full database.  On the other 
hand, the standard errors appear to be biased estimates of standard errors of the full database. 

 
The reason is that they are calculated from a sample of n observations where the standard 

errors of the full database are calculated from N observations. An adjusted standard error is 
produced which approximates the true standard error of the full database.  It is defined as; 
 

 
N

n
StdErrErrAdjStd block



 *.        (17.33) 

 
where StdErrblock is the average standard error from the k samples, N is the total number of 

records, and 


n is the average block size (the empirical average, not the expected sample size).  
This is only output when the block sampling method is used. 
 
 Comparison of Block Sampling Method with Full Dataset 
 
  Test 1 
 
 A test was constructed to compare the block sampling method with the full MCMC 
method on two datasets.  The first dataset contained 4000 road segments in the Houston 
metropolitan area and the model that was run was a traffic model relating vehicle miles traveled 
(VMT - the dependent variable) against the number of lanes, the number of lane miles, and the 
volume-to-capacity ratio of the segment.  It is not a very meaningful model but was used to test 
the algorithm.   
 

The dataset was tested with the MCMC model using all records (the full dataset) and the 
block sampling method.  For simplicity, the variables have been called X1…Xk.  The 
significance levels of the coefficients for the full dataset based on the t-test are shown, since 
these are based on the estimated standard errors rather than the adjusted standard errors. 
 

Table 17.10 shows the results of the traffic dataset.  Comparing the full sample results 
with the block sample results, the coefficients are very close to each other, within the second 
decimal place.  Similarly, the adjusted standard errors are very close within the third decimal 
place. On the other hand, the block sampling method took 11.2 minutes to run compared to only  
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Table 17.10: 

Comparing Block Sampling Method with Full Database 
MCMC Poisson-Gamma Model 

Houston Traffic Dataset 
(Time to Complete) 

 
Dependent variable = Vehicle Miles Traveled  

 
    Full dataset   Block Sampling method 
    (N=4000)   (n = 402.9) 
Iterations:   20,000    20,000 
Burn in:    5,000     5,000 
Number of samples:  1    20 
Time to 
 complete run:  7.7 minutes   11.2 minutes 
 
           Adj. 
     Std.      Std.  Std. 
Variable  Coefficient Error  Coefficient   Error Error 

 Intercept    4.5414*** 0.045  4.5498***   0.140  0.044 
 X1     0.6254*** 0.022  0.6267***   0.066  0.021 
 X2     0.8502*** 0.020  0.8618***   0.064  0.020 
 X3     2.4163*** 0.049  2.3938***   0.154  0.049 

_______________________________________________________________________ 
Significance of block sampling method based on unadjusted standard error 
***  p≤.001 

 
 
7.7 for the full dataset.  With a dataset of this size (N=4000), there was no advantage for the 
block sampling method even though it produced very similar results. 

 
Now, let’s take a more complicated dataset.  The second represented 97,429 crimes 

committed in Manchester, England. It is part of a study on gender differences in crime travel 
(Levine & Lee, 2012).  The model related the journey to crime distance against 14 independent  
variables involving spatial location, land use, type of crime, ethnicity of the offender, prior 
conviction history, and gender.   
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 Test 2 
 

 Table 17.11 shows the results of the journey to crime dataset. Not all of the variables 
were significant, according to the t-test of the full dataset.  In this case, there were greater 
discrepancies in the coefficients between the full dataset and the block sampling method.  The 
signs of the coefficients were identical for all parameters except X10, which was not significant.  
For all parameters, though, the coefficient for the full dataset was within the 95% credible 
interval of the block sampling method.  That is, since this is a sample, the sampling error of the 
block sampling method incorporates the coefficient for the full dataset for all 16 parameters.   
 

The adjusted standard errors from the block sampling method were quite close to the 
standard errors of the full dataset; the biggest discrepancy was 0.004 for variable X6 and is about 
15% larger.  Most of the adjusted standard errors are within 10% of the standard error for the full 
dataset, and three are exactly the same. Further, where there is a discrepancy, the adjusted 
standard errors were slightly larger, suggesting that this is a conservative adjustment.  
 
 In short, the block sampling method produced reasonably close results to that of the full 
dataset for both the coefficients and the standard errors.  Given that this model was a very 
complex one (with 14 independent variables), the fit was good.  The biggest advantage of the 
block sampling method, on the other hand, is the efficiency of it.  The block sampling method 
took 222.7 minutes to run compared to 4,855.1 minutes for the full dataset, an improvement of 
more than 20 times!  Running a large dataset through the MCMC algorithm is a very time 
consuming process.  The block sampling approach produced reasonably close results in a much 
shorter period of time.  
 
  Statistical Testing with Block Sampling Method 
 
 Regarding statistical testing of the coefficients, however, we think that the modeled 
standard errors (or percentiles) be used rather than the adjusted errors.  The adjusted standard 
error is an approximation to the full dataset if that dataset had been run.  In most cases, it will not 
have been run. On the other hand, the standard errors estimated from the block sampling method 
and the percentile distribution were the products of running the individual samples.  The errors 
are larger because the samples were much smaller.  But, because this was the method used, 
statistical inferences should be based on the sample. 
 
 What to do if there is a discrepancy?  For some datasets, the coefficients from the block 
sampling method will not be significant whereas they would be if the full dataset was run.  In the 
Manchester example above, only 3 of the coefficients were significant using the block sampling 
method compared to 14 for the full dataset.  This brings up a statistical dilemma.  Does one adopt 
the adjusted standard errors and then re-test the coefficients using the asymptotic t-test or does  
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Table 17.11: 

Comparing Block Sampling Method with Full Database 
MCMC Poisson-Gamma Model 

Manchester Journey to Crime Dataset 
(Time to Complete) 

 
Dependent variable = Distance traveled 

 
    Full dataset   Block Sampling method 
    (N = 97,429)   (n=402.8) 
Iterations:   100,000   100,000 
Burn in:   10,000    10,000 
Number of samples:  1    30 
Time to complete:  4,855.1 minutes  222.7 minutes 
           Adj. 
     Std.      Std.  Std. 
Variable  Coefficient Error  Coefficient   Error Error 

 Intercept   0.2096*** 0.018   0.2103   0.321  0.021 
 X1    0.8871*** 0.025   1.0135*   0.430  0.028  
 X2    0.3311*** 0.018   0.3434   0.294  0.019 
 X3   -0.2274*** 0.012  -0.2751   0.199  0.013 
 X4   -0.2820*** 0.014  -0.3137   0.231  0.015 
 X5    0.2525*** 0.016   0.3099   0.256  0.016 
 X6    0.3560*** 0.027   0.3783   0.488  0.031 
 X7    0.0753*** 0.013   0.1092   0.214  0.014 

X8    0.1766*** 0.021  -0.0030   0.374  0.024 
X9    0.1880*** 0.023   0.1326   0.406  0.026 

 X10    0.0135n.s. 0.016  -0.0070   0.268  0.017 
 X11   -0.5697*** 0.016  -0.6759   0.265  0.017
 X12    0.0042n.s. 0.014   0.0521   0.226  0.015 
 X13   -0.2214*** 0.016  -0.2755   0.262  0.017 
 X14    0.0056*** 0.001  -0.00004   0.016  0.001 
 Error   -0.7299*** 0.008  -0.7062***   0.139  0.009 

____________ 
Based on asymptotic t-test: 
n.s.  Not significant 
*    p≤.05 
***  p≤.001 
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one accept the estimated standard errors and the percentiles?  Our opinion is to do the latter.  The 
former is making an assumption (and a big one) that the adjusted standard errors will be a good 
approximation to the real ones.  In these two datasets, this appears to be the case.  But, we have 
no theoretical basis for assuming that.  It has just worked out for these and a couple of other 
datasets that we have tested. 
 

Therefore, the choice for a researcher is to do one of three things if some of the 
coefficients are not significant using the block sampling method when it appears that they might 
be if the full dataset would be used.   

 
First, one could always run the full dataset through the MCMC algorithm.  If the dataset 

is large, then it will take a long time to calculate.  But, if it is important, then the user should do 
that.  Note that it will be possible to do this only for the Poisson-Gamma model and not for the 
Poisson-Gamma-CAR/SAR spatial model. 
 
 Second, the researcher could try to tweak the MCMC algorithm to increase the likelihood 
of finding statistical significance for the coefficients increasing the number of iterations to 
improve the precision of the estimate and by increasing the average sample size of the block 
sample.  If 400 samples were not sufficient, perhaps 600 would be?  In doing this, the efficiency 
advantage of the block sampling method becomes less important compared to improving the 
accuracy of the estimates.   
 
 Third, the researcher can accept the results of the block sampling method and ‘live’ with 
the conclusions.   If one or more variables was not significant using the block sampling method 
(which, after all, was based on 20 to 30 samples of around 400 records each), then the variables 
are probably not important. In other words, running the MCMC algorithm on the full dataset or 
increasing the sample size of the block samples may find statistical significance in one or more 
variables.  But, the chances are that the variables are not very important, from a statistical 
perspective.   
 
 In our experience, the strongest variables are significant with the block sampling scheme.  
Perhaps the researcher or analyst should focus on those and build a model around them, rather 
than scouring for other variables that have very small effect?  In short, our opinion is that a 
smaller, but more robust, model is better than a larger, more volatile one.  In terms of 
understanding, the major variables need to be isolated because they contribute the most to the 
development of theory.  In terms of prediction, the strongest variables will also have the biggest 
impact.  Elegance in a model should be the aim, not a comprehensive list of variables that might 
be important but probably are not. 
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Chapter 18: 

Binomial Regression Modeling 
 

Introduction 
 
 In this chapter, we discuss binomial regression models as applied to ungrouped data.  
Users should be familiar with the materials in Chapter 15, 16, and 17 before attempting to read 
this chapter.  A good background in statistics is necessary to understand the material.  
 

These are models that are applied to individual cases (records) and where the dependent 
variable has only two responses, expressed as 0 and 1.  They are part of a family of regression 
models called limited dependent variables where the range of possible values is restricted.  They 
are sometimes called restricted dependent variables or, if the restriction is one side of the 
distribution only, censored dependent variables or even truncated dependent variables.  In 
chapters16 and 17, we discussed the Poisson family of regression models.  This is a limited 
dependent variable in that 0 is the minimum since the Poisson models counts (i.e., for which the 
minimum number is 0).   
 
 However, with binomial regression models, the limitations are on both sides of the 
distribution, namely a minimum value of 0 and a maximum value of 1. Such a model is useful 
when there is a discrete choice between two alternatives, for example ‘yes’ versus ‘no’ on a 
survey or ‘males’ versus ‘females’ as a demographic distinction or even ‘under age 65’ versus 
’65 or older’ for an age group distinction.  The key is that there can only be two alternatives and 
that they have to be identified as ‘1’ or ‘0’. 
 
 The underlying model is that of a probability, which also varies from 0 to 1.  The 
problem, however, is that with a binomial variable, the underlying probabilities are not measured 
but only inferred from a discrete, binomial choice.  Thus, the models that have been proposed 
estimate the underlying probability using only the two alternative values for the dependent 
variable.   
 
 The two models that we will examine are the logistic (usually called logit) model and the 
probit model, the two most common forms for estimating the underlying probabilities. Binomial 
functions are also the basic building block for discrete choice models that comprise models for 
estimating probabilities when there are more than two alternatives.  These will be discussed in 
chapters 21 and 22. 
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Generalized Linear Models 
 
 The Generalized Linear Model (GLM) is a family of functions for estimating the 
relationship of many functions to a set of linear predictors in a regression framework (Liao, 
1994; McCullagh & Nelder, 1989).  It relates the expected mean of a distribution, μ, to a link 
function, η, which, in turn, is related to a set of linear predictors, 
 

 η 	β ∑ β X ϵ           (18.1) 
 
where, for case , β0 is the intercept, βK is the coefficient of each of the K independent variables, 
XiK, and εi is an error term.  The coefficients are applied to individual records, i.  To simplify 
notation, we will drop the case letter but it will be understood that the parameters apply to 
individual cases.  
 
 Not all functions can be estimated this way, essentially only those that belong to the 
exponential family of functions and which have a concave, closed-form solution.  In the classic 
linear form of the GLM model (Ordinary Least Squares, or OLS), which we examined in chapter 
15, the link function is simply the mean itself, 
 
 	              (18.2) 
 
 In the Poisson form, which we examined in Chapters 16 and 17, the link function is the 
natural log of the mean, 
 
 	 )            (18.3) 
 
 This brings us to binomial regression and the two forms which are also part of the GLM 
family.  First, there is the logistic (or logit) model where the link function is related to the log of 
the odds          , 
 
 	 / 1 )]           (18.4) 
 
 Second, there is the probit model where the link function is related to the inverse of the 
standard normal cumulative distribution, 
 
 	 )            (18.5) 
 
 There are other link functions that can be expressed by the GLM model, but we will 
concentrate on the logit and probit models.  The logit is the most common way to relate a 
binomial outcome to a set of independent predictors with the probit used less often.  In practice, 
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the logit and probit models produce more or less the same results (Greene, 2008).   They differ 
primarily in the tails of the distribution with the probit approaching the limiting ends of the 
probability more quickly than the logit (Chen & Tsurumi, 2011; Hahn & Soyer, 2005).  
                                                                                                                                                                                    

Logistic Model 
 
 Logit 
 
 The logistic model is related to the binomial probability. It is usually called a logit model 
because it takes the log of the odds (logit and log of the odds are equivalent terms).  If an event 
has two possible outcomes expressed as 0 and 1 (e.g. ‘head’ or ‘tails’, ‘males’ or ‘females’, ‘A’ 
or ‘B’, or any other binomial alternative), then its probability can be estimated for successive 
independent outcomes from  N observations.  Let p be the probability of obtaining one of the 
outcomes which takes the value 1 (call it A) with 1-p (sometimes called q) being the probability 
of obtaining the outcome that takes the value 0 (call it B).   
 
 Binomial Distribution 
 
 The binomial distribution defines the distribution of alternative A in O successive 
samples by (Wikipedia, 2011a; Hosmer & Lemeshow, 2001): 
 

	 1          (18.6) 

 
where P(Y=O) is the probability of obtaining exactly O instances from N observations, p is the 

probability of obtaining A for one observation, and   is the number of combinations for 

getting exactly O outcomes for A and N-O outcomes for B, and is expressed by  
 

	 !

! !
	 ….

… ….
              (18.7) 

 
where ! is a factorial.  
 
 The probability is always estimated with respect to A (or the probability of achieving a 
1).  For example, if p for A is 0.4 (and, therefore, the probability for B is 1-p, or 0.6) and there 
are 10 successive observations, each of which is independent, the probability of getting exactly 4 
instances of p and 6 instances of (1-p) is: 
 

  100
40

	 !

! !
	 ….
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 The probability is often called a Bernoulli trial, named after the Swiss mathematician 
Jacob Bernoulli (1654-1705; Wikipedia, 2011b; Hosmer & Lemeshow, 2001).  Notice that the 
successive outcomes (sometimes called ‘trials’ or ‘experiments’) must be independent.  That is, 
the probability of achieving either of the two outcomes in an observation (or trial) must be 
constant across observations and unrelated to prior observations.  That is, the outcomes are 
random and independent.  The assumption of independence of each observation (or trial or 
experiment) is different from the MCMC method that we discussed in Chapter 17 where the 
results of each sample depend on the value from the previous sample. 
 
 In a binomial experiment, there are exactly N observations and the function P(X=K) is 
called the binomial distribution.  The binomial distribution, in turn, is a special case of the 
Poisson distribution which is a sum of N independent Bernoulli trials with a constant probability 
for each choice. The Poisson distribution expresses the probability of a given number of events 
occurring (in time or in space) if these events are independent and occur with a known 
probability.  In other words, the Poisson distribution, which we examined in Chapters 16 and 17, 
is a more general case of the binomial distribution and, in turn, is part of the GLM family of 
models. The binomial distribution becomes the Poisson for very large samples (i.e., as N 
approaches infinity) and when p is very small (Lord, Washington, & Ivan, 2005). 
 
 Odds Ratio 
 
 Another way to look at the probability of obtaining alternative A compared to alternative 
B is through the Odds Ratio (or just Odds).  This is the ratio of p to 1-p, or 
 

 	 	            (18.8) 

 
and expresses the relative likelihood of obtaining outcome A relative to outcome B.  For 
example, if p is 0.4 then 1-p is 0.6 and the odds ratio is 0.4/0.6 = 0.667.  Alternatively, if p is 0.7 
and 1-p is 0.3, then the odds ratio is 0.7/0.3 = 2.33.  Finally, if p and 1-p are equal (i.e., both are 
0.5), then the odds ratio is 0.5/0.5 = 1.  Note that with the odds ratio, a value greater than 1 
indicates that A is more likely to occur than B while a value less than 1 indicates that A is less 
likely to occur than B (or, conversely, B is more likely to occur than A). Thus, this means that A 
is about 2.3 times more likely to occur than B in the example. 
 
 Log of the Odds Ratio 
 
 Since the logit is the natural log of the odds ratio, if we let the probability, p, represent an 
estimate of the mean of the function, μ, then the logit model relates the logit of p to a linear set of 
predictors, 
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 η 	Ln β ∑ β X ε         (18.9) 

 
 This link function does three things that are useful.  First, it relates the probability of a 
binomial outcome to a set of linear predictors.  Second, taking the exponent of the logit relates 
the odds ratio to a set of linear predictors, 
 

 	 e 	∑         (18.10) 

 
 Therefore, the relative probability of obtaining outcome A relative to outcome B can be 
expressed as an exponential function of a linear set of predictors.  This means that one can relate 
the odds ratio to a set of predictors that can account for the likelihood of A relative to that of B.  
Comparisons can then be made and linked to other variable.  For example, suppose we 
categorize weapon use by robbers into two categories: 1) gun, knife or other weapon, and 2) 
using bodily force or threat.  Then, the probability of using a physical weapon relative to bodily 
force can be expressed as a function of one or more independent variables.   
 
 Third, by taking the log of the odds ratio, the dependent variable is now a continuous 
variable that varies from minus infinity to plus infinity (though in practice between -3 and +3). In 
other words, the logit also eliminates the range restriction of a dependent binomial variable since 
the logit can have any value between minus and plus infinity.   
 
 Figure 18.1 shows the effect of transforming a probability into a logit.  Notice how the 
function is fairly flat from about 0.2 to 0.8 beyond which the logit accelerates.  When we reverse 
the axes and plot the effect of a logit on the probability, we have the classic S-shaped curve 
(Figure 18.2).  The effect of a change in the logit on the probability is most pronounced in the 
middle of the probability range whereas there is less change at the low and high ends of the logit.  
In other words, the effect of the logit is to linearize the probability within the middle range of 
probability in order to allow a regression model to be tested. 
 
 Logistic Form 
 
 Equation 18.9 expresses the log of the odds as a function of linear predictors.  
Manipulating equation 18.9 leads to a solution for p, 
 

 1
∑

∑
	

∑
     (18.11) 
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which is a true logistic (S-shaped) function.  Some references refer to equation 18.9 as a logit 
and 18.11 as a logistic.  However, they are equivalent functions (Liao, 1994).   The probability of 
a 0 is simply 1 minus the probability of a 1, or 
 

 0
∑

        (18.12) 

 
 As an example, figure 18.3 illustrates the probability that is obtained from a logit model 
that is estimated by 
 

 	 10  

 
where X is a simple variable that varies from 0 to 20.  Note the coefficient for X is 1.0.  At the 
low end, the effect of increasing X is minimal in effecting the probability.  In the middle, the 
effect of X is the greatest while at the high end, again, the effect of increasing X on the 
probability is minimal.  This is the nature of a probability function since it is bounded by 0 and 1.  
The logit simply allows the probability to be regressed against one or more independent 
variables. 
 
 The model is inherently non-linear and must be solved by an iterative method.  For the 
normal logit function, maximum likelihood estimation (MLE) is used.  For more complex logit 
functions, Markov Chain Monte Carlo (MCMC) methods can be used. 
 
 Interpretation of the Logit Model 
 
  Sign of the Coefficient 
 
 Examples will be provided shortly but, there are several ways to interpret the logit model 
in equation 18.9 (Pampel, 2000).  First, there is the sign of the coefficient.  As in most regression 
models, a positive sign indicates that the independent variable increases the probability of the 
choice being made while a negative sign indicates that the independent variable decreases the 
probability of the choice being made.  Whether we interpret the results in terms of the log of the 
odds ratio, the odds ratio itself, or the probability, the sign indicates the directional effect of the 
variable. 
 
  Log of the Odds Ratio 
 
 Second, there is the log of the odds ratio.  Since the model is estimated as a log of the 
odds function, the interpretation of the coefficients is similar to other regression models, namely 
the coefficient of each independent variable expresses the change in the dependent variable from  
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a one unit change in that variable.  However, since the dependent variable is a log of the odds, 
the coefficients do not have any intuitive meaning in this form other than indicating the sign of 
the relationship (increasing or decreasing) and the relative strength of the variable as indicated by 
a Z-test (coefficient divided by standard error). 
 
 The use of logged odds for interpretation does have the advantage of symmetry.  For 
example, if the odds of obtaining one alternative (e.g., the odds that a robber will carry some 
type of weapon) is 9:1 (i.e., the probability of the alternative is 0.9 while the probability of other 
alternative is 0.1), then the log of the odds for the alternative is 2.1972.  For the other alternative, 
the log of the odds is -2.1972.  In other words, the log of the odds of the selected alternative 
(which takes the value 1) is the opposite of the log of the odds of the non-selected alternative 
(which takes the value 0). 
 
  Odds ratio 
 
 Third, a more intuitive way to interpret the logit model is through the odds ratio itself. 
Equation 18.10 above shows the odds as a function of the exponentiated linear equation.  Since 
the exponent of a sum is equal to the product of the exponent of the parts, we have 

 

 	 e 	∑ 	 e e e ……e     (18.13) 

 
 The odds ratio can be expressed as the product of the exponentiated coefficients times 
their variable values and including the error term, ε. In this case, the effect of a unit change in 
each independent variable on the odds ratio is the exponentiated coefficient.  For example, if a 
coefficient was -0.2, then the effect of a one unit change in that variable on the odds ratio will be 
e-0.2 = 0.8187 (or a decreasing effect).  Similarly, if a coefficient was 1.1, then the effect of a one 
unit change in that variable on the odds ratio will be e1.1 = 3.0042 (or an increasing effect). As 
mentioned above, the odds ratio has an intuitive meaning in that it indicates the relative 
likelihood of alternative A versus alternative B.   
 
 The percentage change for a one unit increment in the independent variable can be 
determined by (Pampel, 2000): 
 

 	 1 ∗ 100      (18.14) 

 
where βK is the coefficient of an independent variable in the logit function in equation 18.9 while 

 is the odds ratio of the variable. To use the example above, if the coefficients was -0.2, then 
the percentage change from a one unit increase in that variable is -18.1% ([e-.2-1]*100 = [0.819-
1)*100). 
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  Probability 
 
 Fourth, one can express the logit model through a probability itself, essentially solving 
equation 18.11. The result is a probability function.  Unfortunately, the effect of a coefficient on 
the probability is non-linear and not constant and changes according to the level of the 
probability.  That is, when the probability, p, is very low (e.g., 0.1), the effect of an independent 
variable is also very weak.  Similarly, when p is very high (e.g., 0.9), the effect of an 
independent variable is similarly weak.  The effects of an independent variable on the probability 
are strongest when the probability is in the middle range and the absolute strongest when the 
probability is exactly 0.5.   
 
  Variance 
 
 Fifth, an important component of a logit model is the variance.  With logit models, as 
with Poisson models, the variance is a function of the mean.  That is, the probability, p, is the 
expected value of the distribution: 
 
           (18.15) 
 
where Y is a binary variable.  The variance of a probability is, itself, a function of the mean: 
 
 	 1          (18.16) 
 
 This is the similar to the Poisson-based models where the variance of the Poisson is a 
function of mean and is always underdispersion (variance less than the mean).1 With ungrouped 
data, it is not possible for the actual variance to exceed the predicted variance since they are 
measured exactly the same (McCullagh and Nelder, 1989).  With grouped data, however, it is 
possible for the actual variance to exceed the expected variance.  However, since the logit 
routines in CrimeStat only apply to individual records (i.e., there is no grouping), the variance is 
always that indicated by equation 18.16. 
 
  The Error Term 
 
 Finally, let us discuss briefly the error term in the model, ε.  In the GLM interpretation 
(equation 18.1), the error, ε, is the difference between the observed and predicted values. With 
the OLS model discussed in Chapter 15, the errors are assumed to be normally distributed and 

                                                            
1  Note that in an Ordinary Least Squares (OLS), the variance is estimated independently of the mean.  Thus, 

there is no confounding of effects.  This is one advantage of OLS compared to Poisson or binomial models.  
On the other hand, OLS does not model skewed distributions very well nor can it model a binary variable. 
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constant (a condition known as homoscasticity).  With the Poisson family of models discussed in 
Chapters 16 and 17, the errors are normal but not constant (heteroscadstic).  For the ‘true’ 
Poisson model, they are also Poisson but for the negative binomial model, they are Gamma 
distributed. We also discussed lognormal error terms in Chapter 17.  In all cases, though, the 
errors are normally distributed.   
 
 However, for a probability, the error cannot be normally distributed except in the middle 
range of the probabilities.  Take the example shown above in figure 18.3. At the two extremes – 
the low end and the high end, the error will be much smaller than in the middle range of the 
probabilities.  In fact, the error will be greatest in the middle.  But, also, the errors must be 
asymmetrical at the two extremes.  The closer an estimated probability is to either 0 or to 1, the 
more likely the errors will be skewed and asymmetrical (meaning that they will fall on one side 
of the estimate rather than the other.  This is just a function of the limits of a probability which 
have to fall between 0 and 1.  In the middle range, however, the errors are generally symmetrical 
and normally distributed.   
 
 McFadden (1973) and Train (2009) have shown that the errors for a logit model are 
distributed extreme value distribution (sometimes called Gumbel or type I extreme value (see 
also Wikipedia, 2011c).  It is part of a family that describes extreme distributions called the 
Generalized Extreme Value distribution (Wikipedia, 2011d).  The extreme value distribution 
models the maximum or minimum at the extremes of a limited dependent variable, such as a 
probability.  Train (2009) points out that the extreme value gives slightly higher proportions at 
the extremes of a probability than a normal distribution, and also allow for the asymmetry at the 
extremes.  However, in the middle range, the extreme value distribution is virtually 
indistinguishable from a normal distribution.  It is somewhat similar to a Student’s t-distribution 
though the mathematics is different (Wikipedia, 2011e). 
 

Logit Regression 
 
 In CrimeStat, there are three different logit models.  One of these is estimated through 
maximum likelihood (MLE) while the other two are estimated through the Markov Chain Monte 
Carlo (MCMC) simulation methodology.  If readers are unfamiliar with the MCMC method, we 
suggest that they review Chapters 16 and 17 before going forward in this chapter. 
 
 Logit Analysis of Weapon Use for 2007-09 Houston Robberies 
 
  MLE Logit 
 
 In an MLE logit, the logit model shown in equation 18.9 is estimated with a maximum 
likelihood estimator.   As an example, we use data on 3,709 robberies that occurred within the 
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City of Houston from 2007-2009.  Robberies were selected in which both the crime location and 
the offender’s residence location were known.  These came from suspect lists and are only 11% 
of the total robberies committed within the City for those years.  They were selected because the 
suspect list included information on the age, gender and ethnicity of the offender, whether other 
suspects were involved, as well as the distance from the residence to the crime location.  
Additional information on the location of the crime was collected. 
 
 The dependent variable was whether a physical weapon had been used, either a firearm, a 
knife, a stick or another physical object, compared to physical force or the threat of force. Figure 
18.4 show the distribution of the robberies and the type of weapon or threat used.  Of these 3,709 
robberies, 2,333 (or 63%) involved a physical weapon.  These were coded as ‘1’ (used a physical 
weapon) or ‘0’ (did not use a physical weapon).  The goal was to estimate the characteristics 
associated with the use of a physical weapon. 
 
 Table 18.1 shows the results of a regression model relating the use of a physical weapon 
to seven independent variables.  The model was estimated with the maximum likelihood (MLE) 
Logit model in CrimeStat. Only variables that were significant at the .05 or smaller and 
which had very high tolerances were selected for the model (the process of eliminating non-
significant and collinear variables is not shown).  See Chapters 15 and 17 for a discussion of 
multicollinearity. 
 
 The log likelihood is substantially negative and the AIC and BIC, statistics used to 
correct the log likelihood for the number of independent variables (see Chapter 16, p. 16.5) are 
substantially positive, as would be expected.  However, given that there are 3,709 records, we 
would expect the models to be significant.   
 

Therefore, one has to look at other statistics.  In terms of the overall probability, the 
deviance and the Pearson chi-square are both significant, indicating that the model is 
significantly different from a random model (which would be expected).  On the other hand, 
when these are adjusted for degrees of freedom (adjusted deviance and adjusted Pearson Chi-
square), the statistics are not significant.  This indicates that fit of the model was.  This is 
supported by the mean absolute deviation and the measured squared predicted error statistics 
which shows the model fit quite well (a discussion of these statistics are found in Chapter 16).  
Keep in mind, though, that the dependent variable is binary which means that there are only 
values of 0 or 1.   
 
 All six independent variables are highly significant.  The tolerance statistics indicate that 
they are almost completely independent (note, this is not surprising since we eliminated collinear 
statistics while building the model).  This is an important point that we keep re-iterating.   
  



Figure 18.4:
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Table 18.1 
Weapon Use by 2007-09 Houston Robbers: 

MLE Binomial Logit Model 
(N=3,709 Robberies with Known Origin & Destination Coordinates) 

 
DepVar:   WEAPON USE IN ROBBERIES 
 N:                                   3,709 
 Df:                                  3,696 
 Type of regression model:   Logit 
 Method of estimation:          Maximum Likelihood 
 
      Likelihood statistics 
 Log Likelihood:                     -2,345.7 
 AIC:                                 4,707.3 
 BIC/SC:                              4,757.1 
 Deviance:                           2,086.1  p:  0.0001 
 Pearson Chi-Square:                 1,373.3  p:  0.0001 
      Model error estimates 
 Mean absolute deviation:   0.4 
      1st (highest) quartile:        0.4 
      2nd quartile:                  0.4 
      3rd quartile:                   0.5 
      4th (lowest) quartile:         0.6 
 Mean squared predicted error:  0.2 
      1st (highest) quartile:        0.1 
      2nd quartile:                  0.1 
      3rd quartile:                   0.3 
      4th (lowest) quartile:         0.4 
      Dispersion tests 
 Adjusted deviance:                  0.6  p: n.s. 
 Adjusted Pearson Chi-Square: 0.4  p: n.s. 
 
Predictor  DF Coefficient Stand Error   Tolerance Z-value   p Odds ratio 
--------------------------------------------------------------------------------------------------------------------------- 
 INTERCEPT   1   0.7005  0.147         -  4.76 0.001   2.015 
 AGE       1     -0.0197      0.003       0.965     -5.67 0.001   0.981 
 GENDER    1     -0.6059      0.110       0.992     -5.53 0.001    0.546  
 # SUSPECTS     1      0.2981      0.043       0.979      6.89 0.001   1.347 
NIGHT      1      0.5225      0.092       0.985      5.68  0.001   1.686 
 MEDIAN 
HOUSEHOLD 
INCOME    1     -0.000008    0.000002    0.981     -3.47  0.001   1.000 
DISTANCE TO 
   DOWNTOWN 1      0.0316      0.007       0.966      4.56  0.001   1.032 
--------------------------------------------------------------------------------------------------------------------------- 
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Typically, both an MLE and an MCMC model will converge more quickly and will produce 
cleaner estimates if the independent variables are truly independent. 
 

Examining the effects of the individual variables, younger offenders and those who are 
male are more likely to use a physical weapon.  Looking at the odds ratio of -0.0197 means that 
for each year of age for a robber, the likelihood of using a physical weapon decreases by about 
2% ([e0.0197-1]*100).  Female robbers (those whose gender value is 1 in the model) are 45% less 
likely than males to use a physical weapon ([e-0.6059 – 1]*100).  
 
 On the other hand, the more suspects/co-offenders involved in the robbery, the more 
likely there will be a use of a physical weapon.  With an odds ratio of 1.347, each additional co-
offender increases the likelihood of using a physical weapon by 35% ([e1.347-1]*100) compared 
to a robbery with only a single offender.  Similarly, robberies committed at night time (Midnight 
to 6 am) are 69% more likely to involve a physical weapon ([e1.686-1]*100). 
 
 The environmental variables suggest a small effect for income (decreasing) and a small 
effect for distance (increasing).  Why robberies committed farther from downtown involve a 
greater likelihood of having a physical weapon involved is not clear.  For the other variables, the 
effects are what we would expect.  
 
 Note that the odds ratio gives the relative likelihood of the independent variable on the 
dependent variable.  For categorical independent variables, such as GENDER or NIGHT, the 
comparison is between the group with the value 1 (females and night time respectively) 
compared to the group with the value 0 (males and other time periods respectively).  For 
continuous independent variables, such as AGE and #SUSPECTS, the odds ratio indicates the 
incremental effect of a one unit change in that variable.   
 
  MCMC Logit 
 
 CrimeStat includes both maximum likelihood and MCMC versions of the logit.  For 
comparison, we ran the same model as in Table 18.1 using the MCMC algorithm.  There were 
25,000 iterations with 5,000 of these being discarded (‘burn in’).  Hence, the final results were 
from the 20,000 iterations beyond the ‘burn in’ sample.  Table 18.2 shows the results. 
 
 The log likelihood value is stronger (more negative) than for the MLE logit while the 
AIC and BIC statistics are more positive.  The deviance and Pearson chi-square statistics are 
very similar to the MLE logit and indicate that the model was significantly different than one fit 
by chance.  The MCMC error relative to the standard deviation values are all below 0.05 and the 
G-R statistics are well below 1.2 (see Chapter 17 for explanation of these indices).   
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Table 18.2 

Weapon Use by 2007-09 Houston Robbers: 
MCMC Binomial Logit Model 

(N=3,709 Robberies with Known Origin & Destination Coordinates) 
 
DepVar:   WEAPON USE IN ROBBERY 
 N:                                   3,709 
 Df:                                  3,701 
 Type of regression model:   Logit 
 Method of estimation:          MCMC 
Number of iterations:  25,000  Burn in:   5,000 
 Likelihood statistics 
 Log Likelihood:                      -2,348.1 
 AIC:                                  4,712.3 
 BIC/SC:                               4,762.0 
 Deviance:    -587.3  p:  0.0001 
Pearson Chi-square:   1,373.6  p:  0.0001 
 Model error estimates 
 Mean absolute deviation:             0.4 

1st (highest) quartile:        0.3 
 2nd quartile:         0.4 
 3rd quartile:         0.5 
 4th (lowest) quartile:        0.6 
 Mean squared predicted error:        0.2 

1st (highest) quartile:       0.1 
 2nd quartile:         0.1 
 3rd quartile:         0.3 
 4th (lowest) quartile:        0.4 
   Dispersion tests 
 Adjusted deviance:                   -0.2  p:  n.s. 
 Adjusted Pearson Chi-Square:         0.4  p:  n.s. 
                   MC error/ 
Predictor     Mean     Std    t-valuep          . MC error std      G-R stat         Odds ratio 
-------------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT    0.6923    0.150    4.60***      0.005   0.035    1.008   1.998 
AGE   -0.0197    0.003   -5.65***    0.0001      0.030     1.004   0.981 
GENDER    -0.6070     0.110   -5.50***    0.001       0.008     1.000   0.545 
# SUSPECTS  0.3005    0.044    6.81***     0.001       0.022     1.003   1.350 
NIGHT    0.5249     0.091    5.74***     0.001       0.009     1.000   1.690 
MEDIAN 
  HOUSEHOLD 
  INCOME   -0.000008 0.0000   -3.29**     0.0000006   0.024     1.004   1.000 
DISTANCE TO 
  DOWNTOWN  0.0318     0.007    4.58***  0.0001      0.011     1.000  1.032 
-------------------------------------------------------------------------------------------------------------------------------------------- 
*** p≤.001 
**   p≤.01 
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Note, also, that the deviance statistic is negative in Table 18.2.  This is because the 
posterior distribution of the dependent variable (weapon use in robberies) is not normal since it is 
constrained by the binomial variable to be between 0 and 1 and has a small standard deviation 
(Spiegelhalter, 2006).  Thus, with an MCMC logit model, one might expect a negative deviance.  
This was not true with the MLE logit model in Table 18.1, however. In either case, the adjusted 
deviance is not significant, suggesting that the dispersion has been adequately accounted. 
 
 The coefficient estimates are almost identical. They differ only in the third decimal place 
for several values.  Similarly, the standard error estimates are also quite similar up through the 
second decimal place.  Finally, the odds ratios are almost identical for the two estimates, up 
through the second decimal place. 
 
 Note that there is no dispersion measure in the logit model.  The reason is that the 
standard deviation of a binomial variable is always: 
 

 1         (18.20) 

 
 In short, the MCMC logit has replicated the MLE logit model for Houston robbery 
weapon use.  So, why run an MCMC model when an MLE will produce almost identical results 
in a fraction of the time?   The reason has to do with running more complex models than a simple 
logit, particularly a binomial logit with an estimate of spatial autocorrelation. Chapter 19 will 
discuss that issue. 
 
  MCMC Logit-CAR/SAR 
 
 The final logit model is a spatial model.  This will be discussed in Chapter 19. 

 
Probit Model 
 
  MLE Probit  
 
 The logit is the most commonly used way to model a binary variable.  But, there are other 
functions that can also linearize a binary dependent variable.  One commonly used one is the 
probit function for which the link function was defined in equation 18.5.   The probit expresses 
the inverse of the cumulative standard normal distribution as a linear function of independent 
variables (without an error term): 
 

 1 β ∑ β X       (18.21) 
           
where Φ is the cumulative standard normal distribution, 



 

18.19 

 
 




βx
βx

T
i

dxe
x

T
i

2

2

1

2

1
)Φ(

    
     (18.22) 

 
 The inverse of the cumulative standard normal distribution is a Z-score and, essentially, 
the probit is a cumulative Z-score for a one-tailed probability: 

 1 β ∑ β X        (18.23) 
 
 The area under the standard normal distribution is 1.0.  Starting at minus infinity, the area 
under the curve can be expressed as a probability and the link function, η, is a linear regression 
of the Z score of the event probability (Liao, 1994).  The probability of a non-event is 1 minus 
the probability, or 
 

 0 1 β ∑ β X        (18.24) 
 
 Interpreting the coefficients is not intuitive because it involves additive effects of the 
intercept and independent variables on the inverse of the cumulative standard normal 
distribution.  Also, unlike the logit function, there is not an odds ratio.  Nevertheless, the signs of 
the coefficients are in the same direction as for the logit model and the Z-values produced by 
coefficients divided by their standard errors are usually of the same magnitude.   
 
 To see this, we model weapon use among the Houston robbers (Table 18.3).  Comparing 
this table with MLE logit model (Table 18.1), the likelihood statistics are virtually the same; the 
signs of the coefficients are identical and the Z-scores of the coefficients are of the same 
magnitude.  The values of the coefficients are, of course, very different since they express the 
dependent binary variable in different units.  The model is estimated in CrimeStat with 
maximum likelihood.  At this point, there are no MCMC probit models though we may add them 
in later versions. 
 
 Utility of the Probit Model 
 
 With most datasets, the logit and probit models will produce almost identical conclusions.  
They differ primarily in the tails of the distribution with the probit approaching the limiting ends 
of the probability more quickly than the logit.   
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Table 18.3: 

Weapon Use by 2007-09 Houston Robbers: 
MLE Probit Model 

(N=3,709 Robberies with Known Origin & Destination Coordinates) 
 
DepVar:   WEAPON USE IN ROBBERY 
 N:                                   3,709 
 Df:                                  3,696 
 Type of regression model:   Probit 
 Method of estimation:          Maximum Likelihood 
 
  Likelihood statistics 
 Log Likelihood:                     -2,347.4 
 AIC:                                 4,710.9 
 BIC/SC:                              4,760.6 
 Deviance:                           4,479.6  p:  0.0001 
 Pearson Chi-Square:                 2,472.9  p:  0.0001 
  Model error estimates 
 Mean absolute deviation:   0.9 
      1st (highest) quartile:        0.6 
      2nd quartile:                  0.6 
      3rd quartile:                   0.9 
      4th (lowest) quartile:         1.4 
 Mean squared predicted error:  1.2 
      1st (highest) quartile:        0.6 
      2nd quartile:                  0.6 
      3rd quartile:                   1.2 
      4th (lowest) quartile:         2.2 
 Dispersion tests 
 Adjusted deviance:                  1.2  p:  n.s. 
 Adjusted Pearson Chi-Square: 0.7  p:  n.s. 
 
Predictor  DF Coefficient Stand Error    Tolerance Z-value   p 
---------------------------------------------------------------------------------------------------------- 
INTERCEPT   1   0.4550  0.089         -  5.10 0.001 
AGE       1     -0.0121      0.002       0.965     -5.68 0.001 
GENDER    1     -0.3706      0.068       0.992     -5.47 0.001 
 # SUSPECTS     1      0.1656      0.024       0.979      6.89 0.001 
NIGHT      1      0.3181      0.055       0.985      5.78  0.001 
MEDIAN 
  HOUSEHOLD 
  INCOME   1     -0.000005    0.000001    0.981     -3.38  0.001 
DISTANCE TO 
   DOWNTOWN   1      0.0191      0.004       0.966      4.63  0.001 
---------------------------------------------------------------------------------------------------------- 
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Using the example discussed in chapters 15, 16 and 17, we model 2006 Houston 
burglaries in 1,179 traffic analysis zones (TAZ).  But, instead of modeling the number of 
burglaries per TAZ, we created a binomial variable for one or more burglaries. The dependent 
variable was whether the TAZ had one or more burglaries in 2006 and the two independent 
variables were the number of households in 2006 and the 2000 median household income. Table 
18.4 shows the result of the probit model while table 18.5 shows the result of the logit model. 

 
There are some subtle differences.  The logit model has a higher log likelihood value 

(i.e., less negative) and lower AIC and BIC values, suggesting that it is a better probability 
model.   The model error statistics (mean absolute deviation and mean squared predicted error) 
are similar though the logit does a better job in fitting the fourth (lowest) quartile.  

 
The coefficients, however, are a little different.  The intercept for the logit is significant 

while that of the probit is not.  The coefficient for median household income is almost significant 
in the logit model (p≤ 0.1) while it not significant in the probit model.  Whether these differences 
are meaningful would depend on what the researcher is willing to assume.  As mentioned, the 
probit assumes an underlying normal distribution while the logit does not.  If the transition from 
a measured null response (0) to a counted response (1) is assumed to be gradual, then the probit 
may make more theoretical sense. 

 
Figure 18.5 graphs the results of the two models.   As seen, the probit model levels off 

more quickly than the logit model.  That is, at the low end, it approaches both the low and high 
asymptote more quickly than the logit.  The probit shows a more gradual change than the logit, 
which could be a more realistic representation of the shift in probabilities from the null condition 
to the prevalence of the phenomenon. 

  
Nevertheless, the two models are very highly correlated. Hahn and Soyer (2005) make 

the point that the two models will be different if the values at the ends are of interest.  For most 
other tests, however, the estimated probabilities will be very similar.  

 
Conclusion 
 
 We have examined two different models for estimating the effects of independent 
variables on a binary dependent variable, the logit and the probit.  The logit is clearly more 
convenient to use given that the exponentiated coefficients can be expressed in terms of the odds 
ratio.  That is the main reason that it more widely used.  In Chapter 19, we will show how an 
MCMC version of the logit can be adapted to estimate spatial autocorrelation in the dependent 
variable. 
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Table 18.4: 

Predicting Burglaries in the City of Houston: 2006 
MLE Probit Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:   ONE OR MORE BURGLARIES 
 N:                                   1,179 
 Df:                                  1,175 
 Type of regression model:   Probit 
 Method of estimation:          Maximum Likelihood 
 
  Likelihood statistics 
 Log Likelihood:                     -427.5 
 AIC:                                 863.0 
 BIC/SC:                              883.3 
 Deviance:                           347.4  p:  0.0001 
 Pearson Chi-Square:                 220.4  p:  0.0001 
  Model error estimates 
 Mean absolute deviation:   0.2 
      1st (highest) quartile:        0.1 
      2nd quartile:                  0.2 
      3rd quartile:                   0.1 
      4th (lowest) quartile:         1.5 
 Mean squared predicted error:  0.1 
      1st (highest) quartile:        0.0 
      2nd quartile:                  0.1 
      3rd quartile:                   0.0 
      4th (lowest) quartile:         0.3 
 Dispersion tests 
 Adjusted deviance:                  0.3  p:  n.s. 
 Adjusted Pearson Chi-Square: 0.2  p:  n.s. 
 
Predictor   DF Coefficient Stand Error    Tolerance  t-value     p 

--------------------------------------------------------------------------------------------------------------------- 
INTERCEPT  1  0.0252    0.083    -    0.03     n.s. 
HOUSEHOLDS  1  0.0023    0.0002   0.994  14.34     0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 0.000002 0.00000 2  0.994  1.28      n.s. 
--------------------------------------------------------------------------------------------------------------------- 
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Table 18.5: 

Predicting Burglaries in the City of Houston: 2006 
MLE Logit Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:   ONE OR MORE BURGLARIES 
 N:                                   1,179 
 Df:                                  1,175 
 Type of regression model:   Probit 
 Method of estimation:          Maximum Likelihood 
 
  Likelihood statistics 
 Log Likelihood:                     -389.8 
 AIC:                                 787.7 
 BIC/SC:                              807.9 
 Deviance:                           325.4  p:  0.0001 
 Pearson Chi-Square:                 222.6  p:  0.0001 
  Model error estimates 
 Mean absolute deviation:   0.2 
      1st (highest) quartile:        0.1 
      2nd quartile:                  0.2 
      3rd quartile:                   0.1 
      4th (lowest) quartile:         0.4 
 Mean squared predicted error:  0.1 
      1st (highest) quartile:        0.0 
      2nd quartile:                  0.1 
      3rd quartile:                   0.0 
      4th (lowest) quartile:         0.2 
 Dispersion tests 
 Adjusted deviance:                  0.3  p:  n.s. 
 Adjusted Pearson Chi-Square: 0.2  p:  n.s. 
 
Predictor   DF Coefficient Stand Error    Tolerance  t-value     p 

----------------------------------------------------------------------------------------------------------------------- 
INTERCEPT  1  -0.3591 0.151    -  -2.38    0.05 
HOUSEHOLDS  1   0.0073    0.001   0.994  10.31    0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1   0.000006 0.000003  0.994  1.88    n.s. 
----------------------------------------------------------------------------------------------------------------------- 
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 On the other hand, the probit model has applicability in random utility theory which will 
be discussed in Chapter 21.  Train (2009) argues that the probit model can allow for variations in 
the ‘tastes’ of decision makers whereas the logit model imposes greater restrictions on the 
interpretation of coefficients.  It can be used to estimate non-constant error variance 
(heteroscedastic probit models; see Train, 2009) while the logit cannot. But, in general, there 
really is not much of a difference in their conclusions when applied to the same data. 
 
 The final point is that a binary variable, whether measured by the logit or the probit 
model, is the simplest form of modeling a choice made by a decision-maker.  Hence, the logit 
form (and to a lesser extent, the probit) has widespread applicability in decision theory and is the 
basis of discrete choice modeling (Train, 2009; McFadden, 1973).  Chapter 21 will discuss this. 
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Chapter 19: 

Spatial Regression Modeling 
 
 In this chapter, we examine spatial regression modeling using the the Markov Chain 
Monte Carlo (MCMC) method.  Users should be thoroughly familiar with the materials in 
Chapters 15, 16, 17 and 18 before attempting to read this chapter.  A good background in 
statistics is necessary to understand the material. 
 

Spatial Regression Modeling 
 

Spatial regression involves adding a spatial component into a regression model.  There 
are two major ways to express this component, either as an explicit spatial variable or as an 
internally-estimated spatial parameter.  There are advantages and disadvantages to each approach 
and frequently they are included together. 

 
Explicit Spatial Variable 
 
With an explicit spatial variable, a specific spatial relationship is added as an independent 

variable.  Examples of this are the area of the zone, the distance to the central city, the distance to 
a particular facility, or an average value of the dependent variable for nearby zones.   

 
The justification for including an explicit variable depends on what is being modeled.  

For instance, spatial statisticians frequently distinguish between global and local effects.  Global 
effects are those that cover the entire study region whereas local effects affect only a small 
geographic area.  Without distinguishing those two types of effects, ambiguity can be produced 
in a model. 

 
 Area of the zone 
 
One of the most well known spatial variables that should be included in any statistical 

model is the area of the zone.  Typically, zones based on a census will have a size that is 
proportional to their residential population.  Thus, zones in the center of a metropolitan area will 
typically be very small, perhaps single blocks, while zones in the suburbs will be very large, 
covering several square miles.  Without adjusting for the size of the zone, distortions in estimates 
can be produced.  For example, all other things being equal, more events can occur within a 
larger zone than for a smaller zone.  Modelers will frequently include the area of the zone as a 
statistical control variable. 
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 Shape of the zone 
 
Related to this is the shape of the zone.  If two zones have very different shapes (e.g., one 

is square while the other is pointed and long and narrow), allocation error (and, hence, modeling 
error) is liable to be greater in the one that is more irregular, all other things being equal, than in 
the one that is square.  This is the so-called Modifiable Area Unit Problem (or MAUP) problem 
(see Wikipedia, 2012; Hipp, 2007; Wooldridge, 2002; Openshaw, 1984).   

 
There is not a simple statistical variable that can be included to adjust for irregularity, 

short of some fractal measure (Lam & De Cola, 1993).  Ideally, if the zones could be uniform 
grid cells, then distortions due to shape can be minimized.  Otherwise, the user needs to be 
cognizant of the potential for shape to influence the coefficients of a model and be prepared to 
modify the data to incorporate irregular boundaries (e.g., smoothing the distribution of events in 
a hot spot that are assigned to large zones to reduce shape effects; see Chapter 11 on Head-Bang 
Interpolation). 

 
 Distance from downtown 
 
Another well known spatial variable that should be included in a spatial regression model 

is the distance from the zone to the central area in the study region.  For example, with data from 
a city or metropolitan area, this variable would be the distance (in miles or kilometers) to the 
downtown area.    Typically, the density of events is a function of distance from the central city 
primarily due to land costs.  This effect has been studied as far back as the early 19th century 
with the work of von Thünen (1826).  Alonso (1964) modernized the framework by 
demonstrating that each activity has its own land price (i.e., the cost of the land underlying the 
activity) and that a spatial equilibrium will be established in terms of the relative price of 
different activities. 

 
All other factors being equal, there will be more events occurring in the center of a 

metropolitan area than in the periphery primarily due to the increased concentration of activities 
(which is a function of the underlying land costs).  Frequently, there will be a relationship 
between distance from the downtown area and a variable of interest.  For example, Levine 
(2011) showed that the risk of motor vehicle crashes was double in downtown Houston than in 
the suburbs. This was a function of the concentrated traffic in the downtown area, the greater 
number of intersections that created potential conflicts between drivers, and the greater number 
of driveways.  Further, male drivers were more likely to be involved in a crash in the downtown 
area than female drivers so that part of the increased risk was due to a predominance of male 
drivers. 
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In another study, Levine and Lee (2013) showed that the distance traveled for crime trips 
(journey-to-crime) was associated with the distance an offender lived from central Manchester, 
England with a negative binomial model. Further, different types of crime were associated with 
specific travel distances, with property crimes being much longer, on average, than violent 
crime.  Further, these distances were mediated by the distance the offender lived from the city 
center.  Around one-fifth of the crimes committed by females were shoplifting and these were 
much more likely to occur in the city center or in one of the suburban town centers.  

 
To see this, Figure 19.1 shows an estimate of the number of crimes committed in the City 

of Houston from 2007 to 2009 by distance from downtown Houston in quarter mile intervals.  
The data were 807,788 reported crime incidents and the estimate was produced by the CrimeStat 
journey-to-crime interpolation routine using a normal kernel and an adaptive bandwidth with a 
minimum of 200 crimes (see Chapter 13).  As seen, the number of crimes per quarter mile 
increases from about 3,000 in downtown Houston to more than 20,000 at about 11 miles from 
downtown Houston.  The number of crimes then drops rapidly, primarily because the search 
radius extends beyond the boundaries of the City of Houston. 

 
However, each quarter mile ‘band’ covers a larger area.  Consequently, one would 

expect, all other things being equal, for there to be more events with distance from downtown.  It 
is essential to normalize this measure to allow equal comparisons.  Consequently, we divided the 
number of crimes per quarter mile band by the area (in square miles) covered by each band.   

 
Figure 19.2 shows the results.  As seen, the number of crimes per square mile is greater 

than 30,000 in downtown Houston but drops very dramatically with distance.  The curve is 
almost a perfect negative exponential function and is frequently modeled by that function (see 
Chapters 13 and 28).  This could be converted into a probability estimate by dividing each 
density by the total density of all bins.  In other words, the probability of a crime being 
committed in downtown Houston decreases rapidly with distance from downtown.  

 
The point is that one should include explicit spatial variables to account for these 

potential effects, if only for statistical control.  Including a global spatial variable such as the 
distance from downtown has advantages and disadvantages.  It makes explicit how the dependent 
variable changes by distance, such as in the crash risk study mentioned above (Levine, 2011).  
As was discussed in Chapter 6, frequently, local spatial autocorrelation is a function of global 
spatial effects.  Typically, the closer to the center of the city a zone is, the more likely that there 
will be correlations between that zone’s value (of any dependent variable) and the values of 
nearby zones.  This is merely a product of increasing concentration in the central city.  Without 
making the global effect explicit can make it appear that the local effect is stronger than it is.   
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Houston Crimes by Distance from Downtown: 2007-09
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35,000 Figure 19.2:
Houston Crime Density by Distance from Downtown: 2007-09
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The disadvantage in building in an explicit global ‘distance from center’ variable assumes 
that the relationship will hold in future. The zones may be redefined which might distort the 
relationship slightly (e.g., what the U.S. Census Bureau does from census to census).  Also, 
urban change may distort the distance relationship over time, for example with decreasing crime 
rates in central cities (Kneebone & Raphael, 2011).  Of course, this applies to any spatial 
variable and not just to distance from the central area. 

 
Also, the inclusion of a global distance variable may cover up a true local effect. For 

example, Heskin, Levine and Garrett (2000) examined housing and population change using an 
OLS model at the edges of four California cities that had rent control with vacancy control 
provisions.2  By comparing block groups on both sides of the borders, they were able to show the 
effect of vacancy control over rents was to reduce the number of rental housing units from 1980 
to 1990 in the block groups associated with vacancy control compared to the block groups in 
cities without vacancy control.  Had all the block groups in the compared cities been included 
(which included two very large cities – Los Angeles and Oakland), the relationship would have 
been obscured.  

 
In short, there are both global spatial effects and local spatial effects, but they need to be 

distinguished.  To not separate out these effects could easily lead to misinterpretation as the 
relative importance of local spatial clustering (i.e., local spatial autocorrelation).  The ideal 
would be to include both a global distance variable as well as a test for local spatial 
autocorrelation.  The spatial parameter tests discussed below can do this. 

 
 Values of nearby zones 
 
More questionable is the inclusion of values for nearby zones.  A number of studies have 

included the values of nearby zones to account for spatial autocorrelation.  For example, Wachter 
and Cho (1991) showed with an OLS model that the restrictiveness of the zoning in adjacent 
areas independently increased the price of single family homes in Montgomery County, MD. 
That is, by including the price of single family home in adjacent communities, they showed that 
it had an effect on the price of single family homes in the community they were studying; they 
also included a distance to downtown Washington DC as a statistical control variable. 

 
In a recent study of crime trajectories on street segments between 1993 and 2004 in 

Seattle, Weisburd, Groff and Yang (2012) used a multinomial logit model to predict eight 
different crime trajectories (see Chapters 21 and 22 on Discrete Choice Analysis).  They used 

                                                            
2  Vacancy control involves maintaining the regulated rent levels even if the unit becomes vacant as opposed 

to allowing the rent to rise to market levels when a rental unit becomes vacant.  At the time, four cities in 
California had vacancy control provisions. 
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three year intervals to estimate the effects. Among the 28 variables in their model was a spatial 
lag variable which was the average number of crimes on neighboring street segments within one-
quarter of a mile as well as a variable measuring change in spatial lag between the first three year 
period (1993-95) and the last three year period (2002-04). 

 
The advantage of including the values of nearby zones, no matter how defined, is that it 

builds in an effect of the nearby zones.  It is somewhat intuitive to treat the nearby value as an 
exogenous variable to a model in that it produces a coefficient that appears to represent the value 
of those nearby values. 

 
  Problems with using values of nearby zones 
 
There are a number of disadvantages with this approach, however.  First, treating the 

values of nearby zones as an independent variable assumes independence of those zones and 
ignores reciprocal effects.  This can cause simultaneity bias (Wikipedia, 2013). That is, the value 
of the dependent variable in nearby zones is treated as independent of the value of the same 
variable in the zone being modeled (the central zone).  Yet, in reality, the effect is two ways; the 
central zone influences the values of the nearby zones, and vice versa (i.e., they are interrelated). 
The result will be that the coefficient will be biased because some of the estimated effect (the 
coefficient) of the nearby zones is due to the central zone itself (i.e., the value of the central zone 
is on both sides of the equation). Specifying the values of nearby zones as being independent 
does not incorporate the simultaneous effect and will almost certainly produce a biased 
coefficient of the effect.  

 
Second, treating the values of nearby zones as being independent assumes uniformity of 

their effect throughout the study area.  In reality, spatial autocorrelation varies throughout a study 
area.  For example, clustering of events (hot spots) occurs at only some locations, as was 
discussed in Chapters 7, 8 and 9. By assuming a uniform effect throughout the study area, the 
variable adds error to the model and may obscure locations where real clustering effects actually 
occur.  The example given above from Heskin, Levine and Garrett (2000) illustrated the very 
specific local effect of a policy on housing and population change.  In practice, any local spatial 
autocorrelation that affects the value of a central zone will vary throughout a study region, being 
strong in some places and weak in others.  Using a single variable for the values of nearby zones 
will not capture that specificity. 
 

Third, the grouping of nearby zones into a single measure uses arbitrary weighting of the 
zones to be included.  Either contiguous (adjacent) zones are used or else a relationship is 
assumed to operate over a certain distance using a distance decay function (see Chapter 13). The 
choice of the method for weighting the zones can affect the results substantially.  If contiguous 
zones are used, non-standardized zone size can alter the relationship.  For example, in the 
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downtown area of most cities, the zones will be very small, typically a block or two whereas in 
the suburbs, zones are much larger.  Using contiguous zones may not properly cover the spatial 
autocorrelation effect.  In the central city, the effect might extend well beyond one or two blocks 
whereas in the suburbs, the effect might be smaller than adjacent zones.  If distance is used, 
researcher must make assumptions about the decay function, the type of function used (e.g., 
linear, negative exponential) as well as the rate of decay.  The internal approach to be discussed 
below also requires the making of assumptions, a point that will be discussed later in the chapter. 

 
Fourth, adding in a spatial autocorrelation variable does not explain the reason for the 

spatial autocorrelation but simply accounts for some of the additional variance in a model.  That 
is, the spatial autocorrelation variable accounts for additional variance of the dependent variable 
after all the independent variables have been accounted for.  In other words, that there is 
additional variability that is spatially organized beyond that accounted for by the included 
independent variables.  Note that this criticism applies to an internal spatial parameter as well. 

 
The important thing to realize is that spatial autocorrelation is merely a statistical index 

created by spatial effects between nearby zones, either clustering or dispersion.  It is not a ‘thing’ 
or a ‘process’ but merely a statistical index.  The researcher or analyst would do well to find 
other variables that could explain some of the variability. 
 

 Eliminating bias from values of nearby zones 
 
Eliminating the bias from treating the values of nearby zones as exogenous is 

complicated.  There are two main approaches.  First, substitute a truly exogenous variable for the 
externally-defined spatial autocorrelation variable.  This is sometimes called an instrumental 
variable (Wikipedia, 2013a).  For example, if the number of crimes is the dependent variable and 
is correlated with alcohol licenses, substituting the number of alcohol licenses in nearby zones 
for the spatial autocorrelation variable could capture some of the variance associated with nearby 
zones without adding bias to the estimate. 

 
Second, one could run simultaneous models (i.e., Yi predicts Yj as well as Yj predicts Yi 

where ) iteratively many times until the estimates stabilize.  In the models discussed below, 
we use the Markov Chain Monte Carlo (MCMC) approach to produce stabile estimates. 

 
Internally-estimated Spatial Parameter 
 
An alternative, and more elegant, approach is to utilize a spatial parameter within the 

model which is estimated within the calculations themselves.  The advantage is that the 
parameter is estimated simultaneously with the coefficients and will include the reciprocal 
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effects of nearby zones on the central zone, and vice versa.  As with a distance-based external 
variable, the user must make assumptions about the decay of the spatial autocorrelation effect. 

 
There are two common ways to express the internally-estimated spatial parameter, either 

as a Conditional Autoregressive (CAR) function or as a Simultaneous Autoregressive (SAR) 
function (De Smith, Goodchild, & Longley, 2007).  The CAR function was developed by Besag 
(1974) while the SAR model was developed by Whittle (1954). 

 
The CAR model is expressed as: 
 

 


 
ij

jjijiiji ywgyyE )]([)|(          (19.1) 

 
where g is a function relating the expected mean to a linear set of predictors (e.g., Poisson, 
linear/OLS, logit), μi is the expected value for observation i, wij is a spatial weight between the 
observation, i, and all other observations, j (and for which all weights sum to 1.0), and ρ is a 
spatial autocorrelation parameter that determines the size and nature of the spatial neighborhood 
effect.  The summation of the spatial weights times the difference between the observed and 
predicted values is over all other observations (i≠j).  
 
 The SAR model has a simpler form and is expressed as: 
 
 


 

ij
jijiiji ywgyyE ][)|(                      (19.2) 

 
where the terms are as defined above.  Note, in the CAR model the spatial weights are applied to 
the difference between the observed and expected values at all other locations whereas in the 
SAR model, the weights are applied directly to the observed value.  In practice, the CAR and 
SAR models produce very similar results.   
 
 In both these cases, the spatial autocorrelation component is estimated simultaneously 
with the coefficients.  That is, the model assumes that the effects of nearby zones on the central 
zone are reciprocal, each affecting the other.  The use of an internal spatial parameter overcomes 
one of the main problems of incorporating the values of nearby zones.  Instead, the spatial 
parameter is treated as a function of hyperparameters, independent parameters that determine its 
properties. 
 

MCMC Normal-CAR Model 
 
 This is the normal (OLS) model but with a spatial autocorrelation term.  For a spatial 
model, we add a spatial effects parameter, essentially breaking the error term into unexplained 
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variance that is associated with spatial autocorrelation and unexplained variance that has no 
known associations (i.e., noise). 
 

 ii
T
iiy   βx          (19.3) 

 

where , β  is a vector of unknown coefficients for the k covariates plus an intercept, i  is the 

model error independent of all covariates, and i  is a spatial random effect, one for each 

observation. Together, the spatial effects are distributed as a complex multivariate normal (or 
Gausian) density function.   
 

The Normal-CAR model has two mathematical properties.  First, both the error term, i , 

and the dependent variable are normally-distributed.  Second, the model incorporates an estimate 
of local spatial autocorrelation in a CAR format (equation 19.1).    
 

 To model the spatial effect, i , we assume the following: 

 

 




















 

 




2

22
exp)|(

ij
j

i

ij
i

i
ii w

ww
p 






Φ                  (19.4) 

 

where )|( iip Φ  is the probability of a spatial effect given a lagged spatial effect, 
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which sums all over j  except i  (i.e.,all other zones). This formulation gives a conditional 

normal density with mean  ij
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. The parameter    determines the 

direction and overall magnitude of the spatial effects. The term wij is a spatial weight function 

between zones i  and j  (see below).  In the algorithm, the term   /12   and the same variance 

is used for all observations. 
 

 The Phi ( i ) variable is, in turn, a function of three hyperparameters. The first - Rho (  ), 

might be considered a global component.  The second - Tauphi (  ), might be considered a local 

component while the third - Alpha ( ), might be considered a neighborhood component since it 

measures the distance decay.  Phi ( i ) is normally distributed and is a function of Rho and 

Tauphi. 
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Tauphi, in turn, is assumed to follow a Gamma distribution  
 

 ),(~2
  baGamma                    (19.6) 

 
where a and b  are hyper-parameters. For a non-informative prior 01.0a and 01.0b are 

used as a default. Since the error term was assumed to be distributed as a Gamma distribution, it 

is easy to show that i follows ),( i
T
ieGamma  β-x . The prior distribution for   is again 

assumed to follow a Gamma distribution 
 
 ),(~  baGamma                     (19.7) 

 
where a and b  are hyper-parameters. For a non-informative prior 01.0a and 01.0b are 

used as a default. 
 
MCMC Normal-SAR Model 
 

The Normal-SAR model is very similar to the Normal-CAR.  The only difference is in 
the specification of the spatial autocorrelation term.  The SAR (or Simultaneous Autoregressive) 
term is defined as: 
 

 i
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where ie  are iid )/,0( 2

icN  . All the other variables ( , ,ij ic c   ) are exactly the same as for the 

CAR model described above. The Phi ( i ) variable is estimated using equation 19.5 above. 
 
 Potential Problem in Running MCMC Normal-CAR/SAR Models 
 

Users should be cognizant of a potential problem in using the MCMC Normal model with 
or without the CAR/SAR spatial autocorrelation parameter.  The model is appropriate when the 
dependent variable is normally distributed and the CrimeStat MCMC routine will work well 
under these conditions.  However, if the dependent variable is highly skewed, the MCMC 
Normal often will not produce accurate estimates.   
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We are not completely sure of the conditions that cause the MCMC Normal to not 
properly produce a good representation of the data. Users should test whether the MCMC 
Normal (without the spatial autocorrelation parameter) can replicate the results of the MLE 
Normal.  If it can produce a reasonably close approximation, then the MCMC Normal is 
converging properly and the results of an MCMC Normal-CAR or MCMC Normal-SAR can be 
trusted.  However, if the MCMC Normal does not produce a reasonably close approximation to 
the MLE Normal, then the algorithm has not converged properly and the user is advised to use 
one of the Poisson-based models. 
 
 A better convergence can often be obtained by first running the MLE Normal and using 
the estimated intercept and coefficients as prior values in an MCMC Normal.  Chapter 20 
discusses the specifics of assigning prior values in an MCMC model.  
 
 Also, the MCMC Normal is affected by multicollinearity among independent variables.  
Because multicollinearity creates ambiguity in the coefficients of the collinear variables, it will 
affect the stability of the MCMC model.  This is also true in MCMC Poisson-based models but 
has much greater effect for MCMC Normal models.  Our advice is to eliminate collinear 
variables in order that those independent variables in the model are truly independent of each 
other.  This will tend to improve MCMC Normal estimates. 
 
  
 
 

MCMC Poisson-Gamma-CAR Model 
 

 This is the negative binomial model but with a spatial autocorrelation term.   Formally, it 
is defined as: 

 

 )(~| iii Poissony                                         (19.9) 

 
with the mean of Poisson-Gamma-CAR organized as: 
 

 )exp( ii
T
ii   βx                         (19.10) 

 
where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, and i  is the model error independent of all covariates. The )exp( ii    is 

assumed to follow the gamma distribution with a mean equal to 1 and a variance equal to /1  

To repeat, the MCMC Normal is appropriate when the dependent variable is 
normally-distributed.  It is not appropriate for highly skewed dependent variables.  
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where   is a parameter that is greater than 0, and i  is a spatial random effect, one for each 

observation.  
 

 The assumption on the uncorrelated error term i  is the same as in the Poisson-Gamma 

model. The third term in the expression, , is a spatial random effect, one for each observation.  
Together, the spatial effects are distributed as a complex multivariate normal (or Gausian) 
density function.  In other words, the second model is a spatial regression model within a 
negative binomial model. 
 
 The Poisson-Gamma-CAR model has three mathematical properties.  First, the count is 
Poisson distributed, as is true of all Poisson-based models.  Second, the mean is distributed as a 
Gamma function, similar to the negative binomial model.  Third, it incorporates an estimate of 
local spatial autocorrelation in a CAR format (equation 19.1).   The same assumptions about the 
spatial effect apply for the Poisson-Gamma-CAR model as for the Normal-CAR model. 
 

MCMC Poisson-Gamma-SAR Model 
 
 The Poisson-Gamma-SAR model is very similar to the Poisson-Gamma-CAR.  The only 
difference is in the specification of the spatial autocorrelation term.  The SAR (or Simultaneous 
Autoregressive) term is defined as: 
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where ie  are iid )/,0( 2
icN  . All the other variables ( , ,ij ic c   ) are exactly the same as for the 

CAR model described above. The Phi ( i ) variable is estimated using equation 19.5 above. 

 

MCMC Poisson-Lognormal-CAR/SAR Model 
 
 As described in Chapter 17, the Poisson-Lognormal model has a distribution that is 
Poisson-distributed.   
 

 
)(~| iii Poissony           repeat (16.24) 

 

However, the Poisson mean i  is organized as: 
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where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, i  is the spatial random effect,  and i  is the model error independent of all 

covariates. The error, )exp( ii   , is assumed to follow the lognormal distribution with a mean 

equal to 0 and a variance equal to ),(~2
  baGamma .  

 

 To model the spatial effect, i , equation 19.1 is used for the CAR spatial model while 

equation 19.2 is used for the SAR spatial model.  An application of Poisson-Lognormal-CAR 
and SAR models is found in Kim and Lim (2010). 
 

MCMC Binomial Logit-CAR/SAR MODELS 
 
 In Chapter 18, we discussed binomial models, the logit and the probit.  As with Poisson-
based model, these can have a spatial autocorrelation component, too.  In CrimeStat, we include 

a spatial logit model which is the logit model with a spatial autocorrelation term, i .    

 

 ii
T
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 The assumption on the uncorrelated error term i  is the same as in the Poisson-Gamma 

model. The third term in the expression, , is a spatial random effect, one for each observation.   
 

Together, the spatial effects are distributed as a complex multivariate normal (or 
Gausian) density function.  In other words, the second model is a spatial regression component 

within a logit model.  The spatial effect, i , is a spatial random effect, one for each observation.   

It can be modeled as either a CAR (equation 19.1) or a SAR (equation 19.2). 
 

Spatial Weights Function 
 

For all the CAR and SAR models, the spatial weights function, ijw , is a function of the 

neighborhood parameter,  , which is a distance decay function.  Three distance weight 
functions are available in Crimestat: 

 
1. Negative Exponential Distance Decay 

 

 ijd
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where ijd  is the distance between two zones or points and α is the decay coefficient.  The weight 

decreases with the distance between zones with α indicating the degree of decay. 
 

2. Restricted Negative Exponential Distance Decay 
 

 ijd
ij Kew                   (19.15) 

 
where K is 1 if the distance between points is less than equal to a search distance and 0 if it is 
not.   This function stops the decay if the distance is greater than the user-defined search distance 
(i.e., the weight becomes 0). 
 

3. Contiguity Function 
 

 ij ijc w                  (19.16) 

 

where ijw  is 1 if observation j  is within a specified search distance of  observation i (a 

neighbor) and 0 if it is not. 
 

Estimation Procedures for Spatial Models 
 
 For each of the spatial regression models used, we follow the same steps that were 
outlined in Chapter 17.  Conceptually, these are: 
 
1. Specifying a functional model and setting up the model parameters. 

 
2. A likelihood function is set up and prior distributions for each parameter are assumed. 

 
3. A joint posterior distribution for all unknown parameters is defined by multiplying the 

likelihood and the priors.   
 

4. Repeated samples are drawn from this joint posterior distribution.  
 

5. The estimates for all coefficients are based on the results of the M-L samples, for example 
the mean, the standard deviation, the median and various percentiles.  Similarly, the 
overall model fit is based on the M-L samples. 
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 Determining a Distance Decay Function for Alpha 
 
 Each of these steps is applied to the specified models discussed above.  For a spatial 
regression model, a distance function  has to be defined.  Alpha (α) is the exponent for the 
distance decay function in the spatial model. Essentially, the distance decay function defines the 
weight to be applied to the values of nearby records. The weight can be defined by one of three 
mathematical functions.  First, the weight can be defined by a negative exponential function, 
 
 Weight = e –α*d(ij)         (19.17) 
 
where d(ij) is the distance between observations in specified units (e.g., miles, meters) and α is 
the value for alpha, again consistent with the specified distance units.  It is automatically 
assumed that alpha will be negative whether the user puts in a minus sign or not.  The user inputs 
the alpha value in this box. 
 
 Second, the weight can be defined by a restricted negative exponential whereby the 
negative exponential operates up to the specified search distance, whereupon the weight becomes 
0 for greater distances 
 

 Up to Search distance:    Weight = e –α*d(ij)  for d(ij) ≥ 0, d(ij)≤ dp         (19.18) 
  
 
 Beyond search distance:  0  for d(ij) > dp          (19.19) 
 
where dp is the search distance.  The coefficient for the linear component is assumed to be 1.0.    
 

Third, the weight can be defined as a uniform value for all other observations within a 
specified search distance.  This is a contiguity (or adjacency) measure.  Essentially, all other 
observations have an equal weight within the search distance and 0 if they are greater than the 
search distance. The user inputs the search distance and units in this box. 

 
Determining Reasonable Values for Alpha 

 
The default function for the weight is a negative exponential with a default alpha value of 

-1 in miles.  For many data sets, this will be a reasonable value.  However, for other data sets, it 
will not.  Reasonable values for alpha with the negative exponential function are obtained with 
the following procedure: 
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1. Decide on the measurement units to be used to calculate alpha (miles, kilometers, 
feet, etc).  The default is miles. CrimeStat will convert from the units defined for the 
Primary File input dataset to those specified by the user. 
 

2. Calculate the nearest neighbor distance from the Nna routine on the Distance 
Analysis I page.  These may have to be converted into units that were selected in step 
1 above.  For example, if the Nearest Neighbor distance is listed as 2000 feet, but the 
desired units for alpha are miles, convert 2000 feet to miles by dividing the 2000 by 
5280. 

 
3. Input the dependent variable as the Z (intensity) variable on the Primary File page. 

 
4. Run the Moran Correlogram routine on this variable on the Spatial Autocorrelation 

page (under Spatial Description).  By looking at the values and the graph, decide 
whether the distance decay in this variable is very ‘sharp’ (drops off quickly) or very 
‘shallow’ (drops off slowly). 
 

5. Define the appropriate weight for the nearest neighbor distance: 
 

a. Assume that the weight for an observation with itself (i.e., distance = 0) is 1.0. 
 

b. If the distance decay drops off sharply, then a low weight for nearby values 
should be given.  Assume that any observations at the nearest neighbor 
distance will only have a weight of 0.5 with observations further away being 
even lower. 
 

c. If the distance decay drops off more slowly, then a higher weight for nearby 
values should be given. Assume that any observations at the nearest neighbor 
distance will have a weight of 0.9 with observations further away being lower 
but only slightly so. 

 
d. An intermediate value for the weight is to assume it to be 0.75. 

 
6. A range of alpha values can be solved using these scenarios: 

 
a. For the sharp decay, alpha is given by: 

 
 α  =  ln(0.5)/NN(distance)               (19.20) 
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where NN(distance) is the nearest neighbor distance in specified distance units 
(e.g., feet, meters, kilometers)  
 

b. For the shallow distance decay, alpha is given by: 
 

 α  =  ln(0.9)/NN(distance)               (19.21) 
 
where NN(distance) is the nearest neighbor distance. 

c. For the intermediate decay, alpha is given by: 
 

 α  =  ln(0.75)/NN(distance)               (19.22) 
 
where NN(distance) is the nearest neighbor distance.  

 
 These calculations will provide a range of appropriate values for α.  The diagnostics 
routine automatically estimates these values as part of its output. 
 
 Value for Zero Distance Between Records 
 
 The advanced options dialogue has a parameter for the minimum distance to be assumed 
between different records.  If two records have the same X and Y coordinates (which could 
happen if the data are individual events, for example), then the distance between these records 
will be 0.  This could cause unusual calculations in estimating spatial effects.  Instead, it is more 
reliable to assume a slight difference in distance between all records.  The default is 0.005 miles 
but the user can modify this (including substituting 0 for the minimal distance). 
  
 
 
 
 
 
 
 
 
 
 
 
 
  

  

GUIDELINE: 

Note that MCMC spatial regression models will take a very 
long time to calculate.  For large datasets, we recommend using 
the block sampling method discussed in chapter 17.  A rough 
rule-of-thumb is that if the dataset is larger than 2,000 cases, 
the block sampling method should be used for spatial MCMC 
models.  Of course, this will depend on the amount of available 
RAM as well as the processing speed of the computer. 
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Examples of Spatial Regression Modeling 
 

Example 1: MCMC Normal-CAR Analysis of Houston Burglaries 

 
 The first example is the MCMC Normal-CAR model using the Houston burglary data set.  
The data came from the Houston Police Department.  There were 26,480 burglaries that occurred 
in 2006 which were allocated to 1,179 Traffic Analysis Zones (TAZ) within the City of Houston.  
The independent variables were the number of households in 2006 (estimated by the Houston-
Galveston Area Council, the metropolitan planning organization) and the median household 
income for 2000 (from the 2000 U.S. Census). 
 
 With a spatial regression model, the user has to provide a value for the distance decay 
term, alpha (α).  The diagnostics routine that was discussed in Chapter 15 provides plausible 
values of α given the decline in spatial autocorrelation as measured by the Moran Correlogram.  
The diagnostic calculates the nearest neighbor distance (the average distance of the nearest 
neighbors for all observations) and then estimates values based on weights assigned to this 
distance.  Three weights are estimated: 0.9, 0.75 and 0.5.  We utilized the 0.75 weight. In the 
example, based on the nearest neighbor distance of 0.45 miles and a weight of 0.75, the α value 
would be -0.637 for distance units in miles.   
 

Table 19.1 presents the results.  For comparison, we repeat the results for the non-spatial 
MCMC Normal model (from Table 17.2 in Chapter 17).  The R-square of the spatial model is 
slightly worse than the non-spatial model.  But, remember, these are estimates based on samples 
and will vary from run to run. The log likelihood is better for the non-spatial model than for the 
spatial model.  The AIC and BIC/SC statistics are also better.  However, the Mean Absolute 
Deviation (MAD) and the Mean Squared Predictive Error (MSPE) are similar for the two 
models.  There are subtle differences in the MAD and MSPE between the models (e.g., the 
MCMC Normal-CAR has better MAD and MSPE scores for the third and fourth quartiles but not 
for the first two), but the differences are very small. 

 
The biggest differences are in the coefficients. The intercept is smaller for the MCMC 

Normal-CAR while the average Phi coefficient (the average of all the Phi values for individual 
records) is highly significant.  The coefficients for households and for median household income 
are about the same.  In other words, the spatial autocorrelation component (estimated by Phi) 
absorbed a lot of variance in the dependent variable and ‘pulled’ this from the intercept.  Keep in 
the mind that the intercept is a constant that is added to the predicted values for all records. 

 
Two points should be noted.  First, as mentioned above, the MCMC Normal-CAR (or 

MCMC Normal-SAR) model assumes that the dependent variable is approximately normally 
distributed.  However, as discussed in Chapter 15, the Houston burglary data by TAZ is highly  
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Table 19.1: 

Predicting Burglaries in the City of Houston: 2006 
MCMC Normal-CAR Model 
(N= 1,179 Traffic Analysis Zones) 

 
 DepVar:                              2006 BURGLARIES  
 N:                      1179 
 Df:                                   1174 
 Type of regression model:            Normal-CAR 
 Method of estimation:                MCMC 
 Number of iterations:                25000  Burn in:  5000 
  Distance decay function:             Negative exponential 
 

Likelihood statistics 
 Log Likelihood:                      -6,685.7 
 AIC:                                  13,038.5 
 BIC/SC:                               13,381.4 
R2:     0.47 
 
 Model error estimates 
 Mean absolute deviation:             13.2 

1st (highest) quartile:        27.0 
 2nd quartile:         11.4 
 3rd quartile:         7.6 
 4th (lowest) quartile:        6.8 
 Mean squared predicted error:        510.0 
 1st (highest) quartile:       1,510.0 
 2nd quartile:         312.5 
 3rd quartile:         128.3 
 4th (lowest) quartile:        93.5 
             MC error/ 
Predictor   Mean             Std    t-valuep         MC error    std          G-R stat 
--------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT   9.2048  0.582  15.83***        0.009       0.016        1.001  
HOUSEHOLDS   0.0274      0.0004     74.93***        0.000003    0.009        1.000 
MEDIAN  
HOUSEHOLD 
INCOME  -0.0001    0.00001     -10.77***        0.00000002    0.016        1.001 
PHI(Average)   0.1538  0.210      0.73        0.095         0.453       4.266 
--------------------------------------------------------------------------------------------------------------------------------------- 
n.s.  Not significant 
***  p≤.001 
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Table 17.2 (REPEAT): 

Predicting Burglaries in the City of Houston: 2006 
MCMC Normal Model 

(N= 1,179 Traffic Analysis Zones) 
 
 DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,175 
 Type of regression model:            Poisson with Lognormal dispersion 
 Method of estimation:                 MCMC 
 Number of iterations:                25,000  Burn in:  5,000 
 
 Likelihood statistics 
 Log Likelihood:                      -5342.6 
 AIC:                                  10,693.2 
 BIC/SC:                               10,713.6 
R2:     0.48 
 
 Model error estimates 
 Mean absolute deviation:             13.5 

1st (highest) quartile:        26.5 
 2nd quartile:         10.6 
 3rd quartile:         8.2 
 4th (lowest) quartile:        8.6 
 Mean squared predicted error:        505.1 
 1st (highest) quartile:       1,501.7 
 2nd quartile:         272.3 
 3rd quartile:         130.5 
 4th (lowest) quartile:        120.0 
 
          MC error/ 
Predictor     Mean  Std    t-valuep  MC error std     G-R stat 
------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT         12.7804  1.235  10.35***  0.020    0.016   1.001 
HOUSEHOLDS    0.0255  0.001      32.62***    0.000009 0.011       1.0005  
MEDIAN  
HOUSEHOLD 
INCOME   -0.0002  0.00003  -7.00***  0.0000004 0.015    1.0004 
------------------------------------------------------------------------------------------------------------------------------------- 
**  p≤.01 
***  p≤.001 

 
skewed, and over-dispersed.  Thus, the Normal model (whether tested with MLE or MCMC) is 
not appropriate for a highly skewed dependent variable.  The MCMC Normal seems to have 
done a good job of replicating the MLE Normal for this dataset, but neither model is appropriate 
for a skewed dependent variable.  Instead, one of the Poisson-family models should be used. 
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Second, the two diagnostic statistics for Phi that indicate whether the distribution has 
converged on an ‘equilibrium’ state, namely the MC Error/STD and the G-R statistics, are much 
higher than would normally be acceptable (i.e., below 0.05 and 1.20 respectively).  We are not 
completely sure why this occurs, but these particular statistics do not get smaller for Phi in the 
MCMC Normal-CAR (or SAR) models even with a large number of iterations.  In this model 
only, these diagnostic statistics are much higher than with the Poisson models.  Users should be 
aware of this.  Most importantly, though, is that users should ensure that the two diagnostic 
indicators are low for the independent variables, which they are in Table 19.1.  This will indicate 
that the model has converged to an equilibrium and can be trusted. 
 

Example 2: MCMC Poisson-Gamma-CAR Analysis of Houston Burglaries 
 

In the second example, we ran the Houston burglary data set using a Poisson-Gamma-
CAR model since this model is appropriate when there is an over-dispersed dependent variable.  
The procedure we follow is similar to that outlined in Oh, Lyon, Washington, Persaud, and 
Bared (2003).   First, we ran the Poisson-Gamma model that was illustrated in Chapter 16, Table 
16.2 and saved the residual errors.  
 
 Second, we tested the residual errors for spatial autocorrelation using the Moran’s “I” 
routine in CrimeStat.  As expected, the “I” for the residuals was highly significant (“I” = 0.0089; 
p≤.001) indicating that there is substantial spatial autocorrelation in the error term. 
 
 Third, we utilized an α value of -0.637 for distance units in miles as in the MCMC 
Normal-CAR model and ran the Poisson-Gamma-CAR model.  Table 19.2 present the results. 
The likelihood statistics indicate that the overall model fit was similar to that of the Poisson-
Gamma model.  However, the log likelihood was slightly lower and the DIC, AIC and BIC/SC 
were slightly higher.  Similarly the deviance the Pearson Chi-square tests were slightly higher.  
In other words, the Poisson-Gamma-CAR model does not have a higher likelihood than the 

Poisson-Gamma model. The reason is that the inclusion of the spatial component, i , has not 

improved the predictability of the model.  The DIC, AIC, BIC, deviance, and Pearson Chi-square 
statistics penalize the inclusion of additional variables.   
 

Regarding individual coefficients, the intercept and the two independent variables have 
values similar to that of MCMC Poisson-Gamma presented in Table 16.2. Note, though, that the 

coefficient value for the intercept is now smaller.  The reason is that the spatial effects, the i  
values, have absorbed some of the variance that was previously associated with the intercept.  
The table presents an average Phi value over all observations.  The overall average was not 
statistically significant.  However, Phi values for individual coefficients were output as an 
individual file and the predicted values of the individual cases include the individual Phi values. 
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Table 19.2: 

Predicting Burglaries in the City of Houston: 2006 
MCMC Poisson-Gamma-CAR Model 

(N= 1,179 Traffic Analysis Zones) 

 
 DepVar:                              2006 BURGLARIES  
 N:                      1179 
 Df:                                   1174 
 Type of regression model:           Poisson-Gamma-CAR 
 Method of estimation:                MCMC 
 Number of iterations:                25000  Burn in:  5000 
 Distance decay function:             Negative exponential 
 

Likelihood statistics 
 Log Likelihood:                      -4433.3 
 DIC:     10,853.8 
 AIC:                                 8,876.5 
 BIC/SC:                              8,901.9 
 Deviance:    1,469.5 
 p-value of deviance:   0.0001 
 Pearson Chi-square:   1,335.0 
  
 Model error estimates 
 Mean absolute deviation:            45.1 
 Mean squared predicted error:       94,236.4 
 
      Over-dispersion tests 
 Adjusted deviance:                   1.3 
 Adjusted Pearson Chi-Square:        1.1 
 Dispersion multiplier:               1.4 
 Inverse dispersion multiplier:      0.7 
             MC error/ 
Predictor   Mean             Std    t-valuep         MC error    std          G-R stat 
------------------------------------------------------------------------------------------------------------------------------
INTERCEPT   2.2164  0.094  23.53***         0.0034       0.039         1.015  
HOUSEHOLDS   0.0012      0.00007     17.90***         0.000001     0.021        1.003 
MEDIAN  
HOUSEHOLD 
INCOME  -0.000008   0.000002     -5.18***         0.00000003    0.020       1.003 
PHI(Average)   0.024       0.026         0.95n.s.         0.001        0.056       1.023 
------------------------------------------------------------------------------------------------------------------------------
n.s.  Not significant 
***  p≤.001 
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Figure 19.3 shows the residual errors from the Poisson-Gamma-CAR model.  As seen, 
the model overestimated on the west, southwest and southeast parts of Houston.  This is in 
contrast with the normal model (Figure 15.4 in Chapter 15), which underestimated in the 
southwest part of Houston with similar overestimation in the west and southeast.  The Poisson-
Gamma-CAR model has shifted the estimation errors in the southwest.  As we have seen, this 
may not be the best model for this data set, though it is not particularly bad.   
 

Spatial Autocorrelation of the Residuals from the Poisson-Gamma-CAR model 
 
 When we look at spatial autocorrelation among the residual errors, we now find much 
less spatial autocorrelation.  The Moran’s “I” test for the residual errors was 0.0091.  It is 
significant, but much less than before.  To understand this better, Table 19.3 presents the “I” 
values and the Getis-Ord “G” values for a search area of 1 mile for the raw dependent variable 
(2006 burglaries) and four separate models – the normal (OLS), the Poisson-NB1, the MCMC 
Poisson-Gamma (non-spatial), and the MCMC Poisson-Gamma-CAR, along with the Φ 
coefficient from the Poisson-Gamma-CAR model. 
 

Table 19.3: 

Spatial Autocorrelation in Residual Errors of the Houston Burglary Model 
Comparing Different Poisson Models 

 
    ________________Residual Errors____________________________ 
           MCMC      Poisson 
        MCMC Poisson-     Gamma- 
  Raw    Poisson  Poisson- Gamma-    CAR  
  Dependent Normal NB1  Gamma CAR        Φ 
  Variable Model  Model  Model  Model          Coefficient 
Moran’s “I”        0.252****   0.057****  0.119****  0.009***  0.009***          0.042**** 
 
Getis-Ord “G”        0.007**** -6.785**  -16.118**  0.019n.s.  0.017 n.s.          0.027n.s. 
(1 mile search 
 radius) 
____________ 
n.s.  Not significant 
**   p≤.01 
*** p≤.001 
**** p≤.0001 
 

 

 Moran’s “I” tests for positive and negative spatial autocorrelation.  A positive value 
indicates that adjacent zones are similar in value while a negative value indicates that adjacent 
zones are very different in value (i.e., one being high and one being low).  As can be seen, there  

 



Figure 19.3:
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is positive spatial autocorrelation for the dependent variable and for each of the four comparison 
models.  However, the amount of positive spatial autocorrelation decreases substantially. With 
the raw variable – the number of 2006 burglaries per zone, there is sizeable positive spatial 
autocorrelation.  However, the models reduce this substantially by accounting for some of the 
variance of this variable through the two independent variables.  The two negative binomial 
(Poisson-Gamma) models have the least amount with little difference between the Poisson-
Gamma and the Poisson-Gamma-CAR. 
 
 The Getis-Ord “G” statistic, however, distinguishes two types of positive spatial 
autocorrelation, positive spatial autocorrelation where the zones with high values are adjacent to 
zones also with high values (high positive) and positive spatial autocorrelation where the zones 
with low values are adjacent zones also with low values (low positive).   This is a property that 
Moran’s “I” test cannot do.   
 

The “G” has to be compared to an expected “G”, which is essentially the sum of the 
weights.  However, when used with negative numbers, such as residual errors, the “G” has to be 
compared with a simulation envelope.  The statistical test for “G” in Table 19.3 tests whether the 
observed “G” was higher than the 97.5th or 99.5th percentiles (high positive) or lower than the 
2.5th or 0.5th percentiles (low positive) of the simulation envelope. 

 
The results show that the “G” for the raw burglary values are ‘high positive’, meaning 

that zones with many burglaries tend to be near other zones also with many burglaries.  For the 
analysis of the residual errors, however, the normal and Poisson-NB1 models are negative and 
significant, meaning that they show positive spatial autocorrelation but the ‘low positive’ type.  
That is, the clustering occurs because zones with low residual errors are predominately near 
other zones with low residual errors.  The models have better predicted the zones with fewer 
numbers of burglaries than those with higher numbers.  On the other hand, the residuals errors 
for the MCMC Poisson-Gamma and for the MCMC Poisson-Gamma-CAR models are not 
significant.  In other words, these models have accounted for much of the effect measured by the 
“G” statistic.   

 
The last column analyzes the spatial autocorrelation tests on the individual Phi 

coefficients. There is spatial autocorrelation for the Phi values, as seen by a very significant 
Moran “I” value, but it is neither a ‘high positive’ or a ‘low positive’ based on the “G” test.  In 
other words, the Phi values appear to be neutral with respect to the clustering of residual errors.  

  
 Figure 19.4 shows the distribution of the Phi values.  By and large, the spatial adjustment 
is very minor in most parts of Houston with its greatest impact at the edges, where one might 
expect some spatial autocorrelation due to very low numbers of burglaries and ‘edge effects’. 
 



Figure 19.4:
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Putting this in perspective, the spatial effects in the Poisson-Gamma-CAR model are 
small adjustments to the predicted values of the dependent variable.  They slightly improve the 
predictability of the model but do not fundamentally alter it.  Keep in mind that spatial 
autocorrelation is a statistical effect of some other variable operating that is not being measured 
in the model.  Spatial autocorrelation is not a ‘thing’ or a process but the result of not adequately 
accounting for the dependent variable. 
 

In theory, with a correctly specified model, the variance of the dependent variable should 
be completely explained by the independent variables with the error term truly representing 
random error.  Thus, there should be no spatial autocorrelation in the residual errors under this 
ideal situation. The example that we have been using is an overly simple one.  There are clearly 
other variables that explain the number of burglaries in a zone other than the number of 
households and the median household income – the types of buildings in the zone, the street 
layout, lack of visibility, the types of opportunities for burglars, the amount of surveillance, and 
so forth.  The existence of a spatial effect is an indicator that the model could still be improved 
by adding more variables. 
 

Example 3: Modeling Burglary Risk in Houston  
 
 In Chapter 17, we examined risk analysis and used the MCMC algorithm with the 
Poisson-Gamma model to estimate risk.  This can be extended to spatial analysis.  To illustrate 
this type of model, we ran an MCMC Poisson-Gamma-CAR model on the Houston burglary data 
using the number of households as the exposure variable.  There was, therefore, only one 
independent variable, median household income.  Table 19.4 shows the results along with the 
expanded output that is obtained by clicking on the ‘Expanded output’ button. 

 
The summary statistics indicate that the overall model fit is good. The log likelihood is 

high while the AIC and BIC are moderately low.  Compared to the non-exposure burglary model 
(Table 19.2), the model does not fit the data as well.  The log likelihood is lower (i.e., more 
negative) while the AIC and BIC are higher.  Further, the DIC is very high   
 

For the model error estimates, the MAD and the MSPE are smaller, suggesting that the 
burglary risk model is more precise, though not more accurate. However, the dispersion statistics 
indicate that there is ambiguity over-dispersion.  The dispersion multiplier is very low which, by 
itself, would suggest that a “pure” Poisson model could be used.  However, both the adjusted 
Pearson Chi-square and the adjusted deviance are higher.  In other words, the exposure variable 
has not eliminated the dispersion as much as in the random effects (non-exposure) model. 
 

Looking at the coefficients, the offset variable (number of households) has a coefficient 
of 1.0 because it is defined as such.  The coefficient for median household income is still 
negative, but is stronger than in Table 19.2. The effect of standardizing households as the  
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Table 19.4: 

Predicting Burglary Risk in the City of Houston: 2006 
MCMC Poisson-Gamma-CAR Model with Exposure Variable 

Extended Output 
(N= 1,179 Traffic Analysis Zones) 

 
  DepVar:                             2006 BURGLARIES  
 N:                                   1,179 
 Df:                                  1,174 
 Type of regression model:           Poisson-Gamma-CAR 
 Method of estimation:               MCMC 
 Number of iterations:               25000 
 Burn in:                             5000 
 Distance decay function:            Negative exponential 
 
      Likelihood statistics 
 Log Likelihood:                     -4,736.6 
 DIC:    146,129.2 
 AIC:                                 9,481.2 
 BIC/SC:                              9,501.5 
 Deviance:   2,931.1  p: 0.0001 
 Pearson Chi-square:  34,702.9  p: 0.0001 
 
 Model error estimates 
 Mean absolute deviation:            18.6 
 Mean squared predicted error:       1,138.9 
 
      Over-dispersion tests 
 Adjusted deviance:                  2.5 
 Adjusted Pearson Chi-Square:        29.5 
 Dispersion multiplier:              0.6  p: n.s. 
 Inverse dispersion multiplier:      1.7  p: n.s.      
                        MC error/ 
Predictor   Mean  Std    t-valuep  MC error             std   G-R stat 
--------------------------------------------------------------------------------------------------------------------------------------------   
Exposure/offset variable: 
HOUSEHOLDS    1.0 
Linear predictors: 
INTERCEPT  -2.2794    0.0786     -29.00***   0.003       0.036   1.007  
MEDIAN  
HOUSEHOLD 
INCOME  -0.00002   0.000002  -10.38***   0.00000005  0.032      1.006 
AVERAGE PHI    0.0442      0.0320      -1.38n.s.   0.0098      0.021      1.002 
-------------------------------------------------------------------------------------------------------------------------------------------- 
n.s.   Not significant ***  p≤.001 
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Table 19.4: (continued) 
 
Percentiles           0.5th       2.5th         97.5th       99.5th\ 

------------------------------------------------------------------------------------------------------------- 
INTERCEPT       -2.4879   -2.4365   -2.1292  -2.0810 
MEDIAN  
HOUSEHOLD 
INCOME  -0.00002  -0.00002  -0.00001  -0.00001 
AVERAGE PHI  -0.1442   -0.1128      0.0145       0.0348 
------------------------------------------------------------------------------------------------------------- 

 

 
baseline exposure variable has increased the importance of household income in predicting the 
number of burglaries, controlling for the number of households.  Finally, the average Φ value is 
positive but not significant, similar to what it was in Table 19.2.  
 

   Expanded output 
 
The use of t-tests to evaluate whether coefficients are significantly different than zero 

depends on whether the underlying distribution for the coefficients is normal or not.  In the case 
of skewed count data and complex models that are the products of multiple individual functions, 
it is not always clear whether that assumption is valid or not.  Consequently, the CrimeStat 
MCMC module allows the output of statistics that show the distribution of the coefficients in 
terms of several percentiles: 0.5%, 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 97.5% and 
99.5%.   To obtain these percentiles, the user simply checks the ‘Expanded output’ box on the 
MCMC interfact. 

 
 In table 19.4 above, we have shown only four of them, the 0.5th, 2.5th, 97.5th, and 99.5th 
percentiles.  The 2.5th and 97.5th represent 95% credible intervals for a two-tailed test while the 
0.5th and 99.5th represent 99% credible intervals also for a two-tailed test.  

 
One way to interpret the percentiles is to check whether a coefficient of 0 (the ‘null 

hypothesis’) or any other particular value falls outside the 95% or 99% credible intervals.  For 
example, with the intercept term, the 95% credible interval is defined by -2.4365 to -2.1292.  
Since both are negative, clearly a coefficient of 0 is outside this range; in fact, it is outside the 
99% credible interval as well (-2.4879 to -2.0810).  In other words, the intercept is significantly 
different than 0, though the use of the term ‘significant’ is different than with the usual 
asymptotic normality assumptions since it is based on the distribution of the parameter values 
from the MCMC simulation. 
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Of the other parameters that were estimated, median household income is also significant 
beyond the 99% credible interval but the Φ coefficient is not significantly different than a 0 
coefficient (i.e., a Φ of 0 falls between the 2.5th and the 97.5th percentiles).   

 
In other words, percentiles can be used as a non-parametric alternative to the t- or Z-test.  

Without making assumptions about the theoretical distribution of the parameter value (which the 
t- and Z-test do – they are assumed to be normal or near normal for “t”), significance can be 
assessed empirically.  Usually, the t-test and the percentile distribution will lead to the same 
inference, which they do in table 19.5.  But, it is possible that they could differ. 
  
 In summary, in risk analysis, an exposure variable is defined and held constant in the 
model.  Thus, the model is really a risk or rate model that relates the dependent variable to the 
baseline exposure.  The independent variables are now predicting the rate, rather than the count 
by itself.   
 

Example 4: MCMC Binomial Logit-CAR Analysis of Houston Robberies 
 
A final example of spatial regression modeling applies the spatial autocorrelation 

component to the binomial logit model.  The test is whether weapons were used in 3,709 
Houston robberies that occurred in 2007-09 in which the offender had been arrested.  This was 
the example presented in Chapter 18.  The dependent variable was whether a physical weapon 
had been used, either a firearm, a knife, a stick or another physical object, compared to physical 
force or the threat of force. The independent variables were the age and gender of the offender, 
the number of suspects involved, whether the robbery occurred at night (6 PM – 6 AM), the 
median household income of the zone in which the robbery occurred, and the distance between 
the robbery location and downtown Houston.   

 
However, now we will examine the distribution using a spatial autocorrelation function, 

the conditional autoregressive function.   The diagnostic routine was run in CrimeStat to 
determine an appropriate distance decay value (α); this turned out to be -0.4237 in miles.  Table 
19.5 presents the results. 

 
For this model, the block sampling method discussed in Chapter 17 was used. Comparing 

these results with the non-spatial binomial logit model for Houston robbery weapon use (Table 
18.2), the log-likelihood, AIC and BIC values are slightly stronger for the spatial model than the 
non-spatial model, suggesting that the spatial adjustment to individual records has improved the 
overall probability.  The goodness of fit statistics (the mean absolute deviation and mean squared 
predicted error) are slightly lower for the spatial model than for the non-spatial model.  In 
particular, the second and third quartiles show slightly lower errors for the Mean Absolute 
Deviation in the spatial model than the non-spatial model. 
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Table 19.5: 

Weapon Use by 2007-09 Houston Robbers: 
MCMC Binomial Logit-CAR Model 

(N=3,709 Robberies with Known Origin & Destination Coordinates) 
 
DepVar:   WEAPON USE IN ROBBERY 
 N:                                   3,709 
 Df:                                  3,700 
 Type of regression model:   Logit 
Number of block samples:  25  Average block sample size:  395.2 
 Method of estimation:          MCMC 
Number of iterations:  25,000  Burn in:   5,000 
 Likelihood statistics 
 Log Likelihood:                      -2,501.3 
 AIC:                                  5,020.5 
 BIC/SC:                               5,076.5 
 Deviance:    -1,204.4  p:  0.0001 
Pearson Chi-square:   1,359.9  p:  0.0001 
 Model error estimates 
 Mean absolute deviation:             0.4 

1st (highest) quartile:        0.3 
 2nd quartile:         0.3 
 3rd quartile:         0.4 
 4th (lowest) quartile:        0.6 
 Mean squared predicted error:        0.2 

1st (highest) quartile:       0.1 
 2nd quartile:         0.1 
 3rd quartile:         0.3 
 4th (lowest) quartile:        0.4 
   Dispersion tests 
 Adjusted deviance:                   -0.3  p:  n.s. 
 Adjusted Pearson Chi-Square:         0.4  p:  n.s. 
 
       Adj.   Adj.              MC error/ 
Predictor     Mean     Std    t-valuep          . MC error std      G-R stat         Odds ratio 
-------------------------------------------------------------------------------------------------------------------------------------------- 
Intercept:    0.6784    0.495    4.20***      0.019   0.038    1.011   1.971 
AGE   -0.0242    0.012   -6.27***    0.0004      0.032     1.011   0.976 
GENDER      -0.6122     0.372   -5.05***    0.005       0.013     1.003   0.542 
# SUSPECTS  0.3486    0.147    7.25***     0.004       0.025     1.006   1.417 
NIGHT    0.6753     0.323    6.40***     0.005       0.015     1.005   1.965 
MED HH INC   -0.000006 0.0000   -2.21*     0.000    0.026     1.004   1.000 
DISTANCE TO 
  DOWNTOWN  0.0384     0.023    5.04***  0.000       0.016     1.004  1.039 
AVERAGE PHI -0.0006  0.005   -0.33n.s.  0.000  0.016    1.006  0.999 
-------------------------------------------------------------------------------------------------------------------------------------------- 
*** p≤.001 **   p≤.01 *     p≤.05 n.s.  Not significant 
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The coefficients and adjusted standard errors are very similar between the two models.  
They differ only in the second or third decimal place.  The biggest difference is for nighttime 
weapon use, where the spatial coefficient is 0.6753 compared to the non-spatial coefficient of 
0.5249.  This suggest that when spatial location is considered, the nighttime effect in serious 
weapon use is actually stronger; that is, because the bulk of robberies occur during the daytime 
but are more clustered spatially, the use of weapons during robberies actually increases at 
nighttime when controlling for spatial location.  

 
As with the Poisson-Gamma-CAR model, the overall spatial autocorrelation coefficient 

(Average Phi) is not significant.  This is not surprising since the CAR spatial adjustment is done 
for individual records.  In short, the binomial logit-CAR model has produced a slightly better fit 
to the data than the non-spatial binomial logit model.  For prediction, one would use the spatial 
version because of its better fit.  
 

Caveat 
 

As mentioned earlier, any spatial regression model is attempting to identify a spatial 
effect due to clustering, dispersion or some combination whereby the values of nearby zones are 
similar or different than the central zone (the zone being modeled).  In effect, the error term of 
the model is broken into two parts, one associated with a spatial effect (most likely clustering of 
nearby zones but sometimes dispersion – negative spatial autocorrelation) and the other with 
unexplained variance.   

 
What this usually signifies is that there are missing variables that should be included in 

the model, but which are not. For example, Levine (1999) examined the effects of local growth 
control measures on housing production in California counties and cities using an OLS spatial 
lag model (Anselin, 1992).  The initial model showed a significant negative spatial effect. 
However, it was discovered that this was mostly the result of low population density.  When 
density was added to the model, the negative spatial lag effect disappeared. 

 
The important thing to realize with these models is that they identify some variability 

associated with the dependent variable that needs to be explained.  The spatial effect is not real, 
but merely a statistical artifact of examining similarities or differences between nearby zones in 
the dependent variable. The spatial indices are useful in that they will indicate whether there is a 
general spatial effect covering all observations (e.g., distance from downtown; area of the zone) 
or whether clustering or dispersion is specific to only a limited number of observations (e.g., the 

i  coefficient).  However, ultimately, the researcher needs to find other variables that account for 

these effects in order to produce a more stable and realistic model.  
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Summary 
 
To summarize, in this chapter we have gone through a number of spatial regression 

models that apply to normal, Poisson-distributed and binomial logit models.  The choice of any 
of these models is going to depend on the actual distribution of the dependent variable and the 
underlying assumptions for that model.  For example, an MCMC Normal-CAR or MCMC 
Normal-SAR model only applies if the dependent variable is normally distributed; the use of 
such a model with non-normal data will usually lead to biased coefficient estimates.  Similarly, 
the two Poisson spatial regression models presented, the MCMC Poisson-Gamma-CAR/.SAR 
and the MCMC Poisson-Lognormal-CAR/SAR, are applicable if the dependent variable is a 
count variable or is highly skewed with an absolute zero minimum.  The difference is that the 
MCMC Poisson-Lognormal-CAR/SAR model is used when there is a small sample and a low 
sample mean (i.e., most zones have 0 events).  Finally, the MCMC Binomial Logit-CAR/SAR 
model is applicable when the dependent variable is binomial and takes the value 0 or 1. 

 
For each of these, the user must define an appropriate distance decay function (α) on the 

Advanced Options page of the Regression I module.  On the interface of the Regression I 
module, the user can check the diagnostics box to provide plausible values of α based on a 
Moran Correlogram (see Chapter 5). 

 
In each of these cases, though, the user is advised to first fit a non-spatial model to see if 

it produces meaningful results.  There are two reasons for this.  First, unless the independent 
variables are properly chosen, ambiguity can be introduced by adding a spatial parameter since it 
is capturing unobserved variability.  By ‘properly’, we mean that all the independent variables 
are relatively independent (i.e., little multicollinearity) and statistically significant. If a clean 
non-spatial model can be developed first, then adding a spatial autocorrelation component will 
allow the user to see whether there is clustering among the observations that could account for 
some of the effects assigned to the independent variables.  But, if the model is not clean, then the 
results are liable to be confusing. 

 
The second reason is practical.  The spatial regression models can take a long time to run, 

as much as several hours.  It is more practical to develop a non-spatial model before trying to fit 
a spatial to it.  The spatial model should be the last step in the modeling, not the first one. 

 
Finally, Chapter 20 will present an overview of the CrimeStat regression module.  It 

should be seen as a guide to running the routines. 
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Chapter 20: 

The CrimeStat Regression Module 
 
 We now describe the CrimeStat regression module.  There are two pages in the module.  
Regression I allows the testing of a model while Regression II allows a prediction to be made 
based on an already-estimated model.  Figure 20.1 displays the Regression I page.  
 
Regression I Module 
 
 Types of Regression Models 

 
In the current version, 18 possible regression models are available with several options 

for each of these:  
 
  MLE Normal (OLS) 
  MCMC Normal 
  MCMC Normal-CAR 
  MCMC Normal-SAR 
  MLE Poisson 
  MLE Poisson with linear dispersion correction (NB1) 
  MLE Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma (NB2) 
  MCMC Poisson-Gamma-CAR 
  MCMC Poisson-Gamma-SAR 
  MCMC Poisson-Lognormal 
  MCMC Poisson-Lognormal-CAR 
  MCMC Poisson-Lognormal-SAR 
  MLE Binomial Logit 
  MLE Binomial Probit 
  MCMC Binomial Logit 
  MCMC Binomial Logit-CAR 
  MCMC Binomial Logit-SAR 
       
 In addition, each of the 12 MCMC models can be run with an exposure (offset) variable 
used to define the population ‘at risk’ allowing a total of 30 possible regression models to be run. 
 

There are two pages in the module.  The Regression I page allows the testing of a model 
while the Regression II page allows a prediction to be made based on an already-estimated  

  



Figure 20.1:

Regression Modeling I Setup Screen
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model. Also, since the Regression I module and Trip Generation module in the Crime Travel 
Demand Model duplicate regression functions, only one of these can be run at a time. 
 

Input Data Set 
  

The data set for the regression module is the Primary File data set.  The coordinate 
system and distance units are also the same.  The routine will not work unless the Primary File 
has X/Y coordinates. 
 
 Dependent Variable 
 
 To start loading the module, click on the ‘Calibrate model’ tab.  A list of variables from 
the Primary File is displayed.  There is a box for defining the dependent variable.  The user must 
choose one dependent variable.  A keystroke trick is to click on the first letter of the variable that 
will be the dependent variable and the routine will go to the first variable with that letter. 
 
 Independent Variables 
 
 There is another box for defining the independent variables.  The user must choose one or 
more independent variables.  In the routine, there is no limit to the number.  Keep in mind that 
the variables are output in the same order as specified in the dialogue so a user might want to 
think how these should be displayed. 
 
 Type of Dependent Variable 
 
 There are five options that must be defined. The first is the type of dependent variable: 
Skewed (Poisson), Normal (OLS), Binomial probit, or Binomial logit (logistic).  The default is a 
Poisson.   
 
 Type of Dispersion Estimate 

 
The second model decision is the type of dispersion estimate to be used.  The choices are 

Gamma, Poisson, Lognormal, and Poisson with linear correction.  For the MLE models, only 
Gamma, Poisson and Poisson with linear correction are available while for the MCMC models, 
only Gamma and Lognormal are available. The default is Gamma.  For the MLE Normal (OLS) 
and MCMC Normal-CAR/SAR models, the dispersion is automatically normal.  For the 
binomial logit or binomial probit, the dispersion is automatically binomial. 
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Type of Estimation Method 
 
 The third option is the type of estimation method to be used: Maximum Likelihood 
(MLE) or Markov Chain Monte Carlo (MCMC).  The default is MLE.  These methods were 
discussed in Chapters 15 and 17 and in appendices B and C.  
 
 Spatial Autocorrelation Estimate 
 
 Fourth, if the user accepts an MCMC algorithm, then a fourth decision is whether to run a 
spatial autocorrelation estimate along with it (a Conditional Autoregressive function - CAR, or a 
Simultaneous Autoregressive function - SAR). The MCMC Poisson-Gamma, MCMC Poisson-
Lognormal, and MCMC Logit functions can be run with a spatial autocorrelation parameter.   
 
 
 
 
 
 Type of Test Procedure 
 

 The fifth, and last model decision, is whether to run a fixed model or a backward 
elimination stepwise procedure (only with the normal or MLE models).  A fixed model includes 
all selected independent variables in the regression whereas a backward elimination model starts 
with all selected variables in the model but proceeds to drop variables that fail the P-to-remove 
test, one at a time.  Any variable that has a significance level in excess of the P-to-remove value 
is dropped from the equation. 
 

If the fixed model is chosen, then all independent variables will be regressed 
simultaneously.  However, if the stepwise backward elimination procedure is selected, the user 
must define a p-to-remove value. The choices are: 0.1, 0.05, 0.01, and 0.001.  The default is 0.01.  
Traditionally, 0.05 is used as a minimal threshold for significance.  We put in 0.01 as the default 
to make the model stricter; with the large datasets that typically occur in police departments, the 
less strict 0.05 criterion would not exclude many independent variables.  But, the user can 
certainly use 0.05 instead. 

 
 MCMC Choices 
 
 If the user chooses the MCMC algorithm, then nine additional decisions have to be made. 
 
  

Note that the CAR model runs quite quickly whereas the SAR model runs very 
slowly.  Unless the data set is small or a SAR model is absolutely essential, we 
recommend using a CAR function for the spatial regression models. 
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  Number of Iterations 
 
The first MCMC decision is the number of iterations to be run.  The default is 25,000.  

The number should be sufficient to produce reliable estimates of the parameters.  Check the MC 
Error/Standard deviation ratio and the G-R statistic to be sure these are below 1.05 and 1.20 
respectively. 
 
  ‘Burn in’ Iterations 

 
The second MCMC decision is the number of initial iterations that will be dropped from 

the final distribution (the ‘burn in’ period).  The default is 5,000.  The number of ‘burn in’ 
iterations should be sufficient for the algorithm to reach an equilibrium state and produce reliable 
estimates of the parameters.  Check the MC Error/Standard deviation ratio and the G-R statistic 
to be sure these are below 1.05 and 1.20 respectively. 

 
  Block Sampling Threshold 

 
The third MCMC decision is whether to run all the records through the MCMC algorithm 

or whether to draw block samples.   This is called the Block Sampling Threshold.  The algorithm 
will be run on all cases unless the number of records exceeds the number specified in the block 
sampling threshold.  The default threshold is 6,000 cases.  If the number of cases exceeds the 
threshold, then the block sampling method is used (see below). 

 
Note that if you raise the run the block sampling threshold for more cases, calculating 

time will increase substantially.  For the non-spatial Poisson-Gamma model, the increase is 
linear.  However, for the spatial Poisson-Gamma model, the increase is exponential.  Further, we 
have found that we cannot calculate the spatial model for more than about 6,000 cases.  In short, 
the block sampling method must be used for spatial models with a large number of cases. 
 
  Average Block Size 
 

The fourth MCMC decision is the number of cases to be drawn in each block sample if 
the total number of records is greater than the block sampling threshold.  The default is 400 
cases.  Note that this is an average.  Actual samples will vary in size.  The output will display the 
expected sample size and the average sample size that was drawn. 
 
  Number of Samples Drawn 
 

The fifth MCMC decision is the number of samples to be drawn if the total number of 
records is greater than the block sampling threshold.  The default is 25.   We have found that 
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reliable estimates can be obtained from 20 to 30 samples especially if the sequence converges 
quickly and even 10 samples can produce meaningful results.  Obviously, the more samples that 
are drawn, the more reliable will be the final results.  But, having more samples will not 
necessarily increase the precision beyond 30. 

 
  Calculate Intercept 

 
The sixth MCMC decision is whether to run the model with or without an intercept 

(constant).  The default is with an intercept estimated.  To run the model without the intercept, 
uncheck the ‘Calculate intercept’ box. 
 
  Spatial Autocorrelation Estimate 
 
 The seventh MCMC decision is whether to run a spatial autocorrelation model.  There are 
two alternative spatial autocorrelation functions that can be used, a Conditional Autoregressive 
(or CAR) or a Simultaneous Autoregressive (or SAR).  These were defined in Chapter 19. The 
default is no spatial autocorrelation.  Note that estimating the SAR function takes a long time, 
much longer than for the CAR model.  Unless there is a reason for using the SAR, we 
recommend using the CAR for any spatial autocorrelation component. 
 
  Calculate Exposure/Offset 
 
 The eighth MCMC decision is whether to run a risk model.  If the model is a risk or rate 
model, then an exposure (offset) variable needs to be defined.   Check the ‘Calculate 
exposure/offset’ box and identify the variable that will be used as the exposure variable.  The 
coefficient for this variable will automatically be 1.0. 
 
  Advanced Options 
 

There is also a set of advanced options for the MCMC algorithm.  Figure 20.2 displays 
the advanced options dialogue.  We would suggest keeping the default values initially until you 
become very familiar with the routine. 
 
   Initial parameters values for Phi (φ) 

 
The ninth, and last, MCMC decision is the prior values used for the different parameters 

being estimated.  The MCMC algorithm requires an initial estimate for each parameter.  There 
are default values that are used.  For the beta coefficients (including the intercept), the default 
values are 0. This assumes that the coefficient is ‘not significant’ and has a large variance.  It is 
frequently called a ‘non-informative’ prior. These are displayed as a blank screen for the Beta  



Figure 20.2:

Advanced Options for MCMC Poisson-Gamma-CAR Model
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box.  However, estimates of the beta coefficients can be substituted for the assumed 0 
coefficients. To do this, all independent variable coefficients plus the intercept (if used) must be 
listed in the order in which they appear in the model and must be separated by commas.  Do not 
include the beta coefficients for the spatial autocorrelation, , term (if used). 

 
For example, suppose there are three independent variables.  Thus, the model will have 

four coefficients (the intercept and the coefficients for each of three independent variables).  
Suppose a prior study had been done in which a Poisson-Gamma model was estimated as: 

 
. . . .           (20.1) 

 
 The researcher wants to repeat this model but with a different data set and assumes that 
the model using the new data set will have coefficients similar to the earlier research.  Thus, the 
following would be specified in the box for the betas under the advanced options: 
 
 4.5, 0.3, -2.1, 3.4                             (20.2) 

 
The routine will use these values for the initial estimates of the parameters before starting 

the MCMC process (with or without the block sampling method).  The advantage is that the 
distribution will converge more quickly (assuming the model is appropriate for the new data set). 

 
Rho (ρ) and Tauphi (τϕ) 

 
 The spatial autocorrelation component, Φ, is made up of three separate sub-components, 
called Rho (ρ), Tauphi (τϕ), and Alpha (α, see formula 19.5 in chapter 19).  These are additive.   
 
 Rho is roughly a global component that applies to the entire data set.  Tauphi is roughly a 
neighborhood component that applies to a sub-set of the data.  Alpha is essentially a localized 
effect.  The routine works by estimating values for Rho and Tauphi but uses a pre-defined value 
for Alpha.  The default initial values for Rho and Tauphi are 0.5 and 1 respectively.  The user 
can substitute alternative values for these parameters. 
 
   Alpha (α) 
 
 Alpha (α) is the exponent for the distance decay function in the spatial model.  
Essentially, the distance decay function defines the weight to be applied to the values of nearby 
records. The weight can be defined by one of three mathematical functions.  First, the weight can 
be defined by a negative exponential function where: 
 

 	                     (20.3) 
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where is the distance between observations and α is the value for alpha.  It is automatically 

assumed that alpha will be negative whether the user puts in a minus sign or not.  The user inputs 
the alpha value in this box. 
 
 Second, the weight can be defined by a restricted negative exponential whereby the 
negative exponential operates up to the specified search distance, whereupon the weight becomes 
0 for greater distances: 
 

 Up to Search distance: 	  for 0,              (20.4) 

 
 Beyond search distance:        0   for               (20.5) 

 
where dp is the search distance.  The coefficient for the linear component is assumed to be 1.0.    
 

Third, the weight can be defined as a uniform value for all other observations within a 
specified search distance.  This is a contiguity (or adjacency) measure.  Essentially, all other 
observations have an equal weight within the search distance and 0 if they are greater than the 
search distance. The user inputs the search distance and units in this box. 

 
 For the negative exponential and restricted negative exponential functions, substitute the 
selected value for α in the alpha box.  
 

Diagnostic test for reasonable alpha (α) value 
 
The default function for the weight is a negative exponential with a default alpha value of 

-1 in miles.  For many data sets, this will be a reasonable value.  However, for other data sets, it 
will not.   

 
Reasonable values for alpha with the negative exponential function are obtained with the 

following procedure: 
 
1. Decide on the measurement units to be used to calculate alpha (miles, kilometers, 

feet, etc).  The default is miles. CrimeStat will convert from the units defined for the 
Primary File input dataset to those specified by the user. 
 

2. Calculate the nearest neighbor distance from the Nna routine on the Distance 
Analysis I page.  These may have to be converted into units that were selected in step 
1 above.  For example, if the Nearest Neighbor distance is listed as 2000 feet, but the 
desired units for alpha are miles, convert 2000 feet to miles by dividing the 2000 by 
5280. 



20.10 

3. Input the dependent variable as the Z (intensity) variable on the Primary File page. 
 

4. Run the Moran Correlogram routine on this variable on the Spatial Autocorrelation 
page (under Spatial Description).  By looking at the values and the graph, decide 
whether the distance decay in this variable is very ‘sharp’ (drops off quickly) or very 
‘shallow’ (drops off slowly). 
 

5. Define the appropriate weight for the nearest neighbor distance: 
 

a. Assume that the weight for an observation with itself (i.e., distance = 0) is 1.0. 
 

b. If the distance decay drops off sharply, then a low weight for nearby values 
should be given.  Assume that any observations at the nearest neighbor 
distance will only have a weight of 0.5 with observations further away being 
even lower. 
 

c. If the distance decay drops off more slowly, then a higher weight for nearby 
values should be given. Assume that any observations at the nearest neighbor 
distance will have a weight of 0.9 with observations further away being lower 
but only slightly so. 

 
d. An intermediate value for the weight is to assume it to be 0.75. 

 
6. A range of alpha values can be solved using these scenarios: 

 
a. For a sharp decay, alpha is given by: 

 

  	 .
                    (20.6) 

 
b. For a shallow distance decay, alpha is given by: 

 

  	 .
                    (20.7) 

 
c. For an intermediate decay, alpha is given by: 

 

  	 .
                    (20.8) 

 
In all three equations, NNdistance is the nearest neighbor distance.  
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 These calculations will provide a range of appropriate values for α.  The diagnostics 
routine automatically estimates these values as part of its output. 
 
   Value for 0 distance between records 
 
 The advanced options dialogue has a parameter for the minimum distance to be assumed 
between different records.  If two records have the same X and Y coordinates (which could 
happen if the data are individual events, for example), then the distance between these records 
will be 0.  This could cause unusual calculations in estimating spatial effects.  Instead, it is more 
reliable to assume a slight difference in distance between all records.  The default is 0.005 miles 
but the user can modify this (including substituting 0 for the minimal distance). 
 

Output 
 
 The output depends on whether an MLE or an MCMC model has been run. 
  
 Maximum Likelihood (MLE) Model Output 
  
 The MLE routines (Normal, Poisson, Poisson with linear correction, MLE Poisson-
Gamma, Binomial Probit, and MLE Binomial Logit/Logistic) produce a standard output which 
includes summary statistics and estimates for the individual coefficients.   
 
  MLE Summary Statistics 
  
 The summary statistics include: 
 
   Information About the Model 
 

1. The data file 
2. The dependent variable 
3. The number of cases 
4. The degrees of freedom (N – number of parameters estimated) 
5. The type of regression model (Normal/OLS, Poisson, Poisson with linear 

correction, Poisson-Gamma, Binomial Logit) 
6. The method of estimation (MLE) 

 
   Likelihood Statistics 
 

7. Log-likelihood estimate, which is a negative number.  For a set number of 
independent variables, the more negative the log-likelihood the better. 
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8. Log-likelihood per case.  This divides the log-likelihood by the sample size (N).  
This indicates the average contribution to the log-likelihood of each observation.  
The more negative, the better. 

9. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

10. AIC per case.  This divides the AIC statistic by the sample size (N).  This 
indicates the average contribution to the AIC of each observation.  The smaller, 
the better. 

11. Bayesian Information Criterion (BIC), sometimes known as the Schwartz 
Criterion (SC), adjusts the log-likelihood for the degrees of freedom.  The smaller 
the BIC, the better. 

12. BIC per case.  This divides the BIC/SC statistic by the sample size (N). This 
indicates the average contribution to the BIC/SC of each observation.  The 
smaller, the better. 

13. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

14. The probability value of the deviance based on a Chi-square test with N-K-1 
degrees of freedom where K is the number of independent variables. 

15. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data well. 

16. The probability value of the Pearson Chi-square based on a Chi-square test with 
N-K-1 degrees of freedom where K is the number of independent variables. 

 
   Model Error Estimates 

 
17. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 

smaller MAD is better. 
18. Quartiles for the Mean Absolute Deviation.  For any one quartile, smaller is 

better. 
19. Mean Squared Predictive Error (MSPE).  For a set number of independent 

variables, a smaller MSPE is better. 
20. Quartiles for the Mean Squared Predictive Error.  For any one quartile, smaller is 

better. 
21. Squared multiple R (for linear model only).  This is the percentage of the 

dependent variable accounted for by the independent variables.  
22. Adjusted squared multiple R (for linear model only).  This is the squared multiple 

R adjusted for degrees of freedom. 
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   Dispersion Tests 
 

23. Adjusted deviance.  This is a measure of the difference between the observed and 
predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates over-
dispersion. 

24. Probability of adjusted deviance. This is the Pearson Chi-square test with 1 degree 
of freedom. 

25. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for degrees 
of freedom.  The smaller the Pearson Chi-square, the better. A value greater than 
1 indicates over-dispersion. 

26. Probability of adjusted Pearson Chi-square.  This is the Pearson Chi-square test 
with 1 degree of freedom. 

27. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  For example, in a pure Poisson distribution, the dispersion 
should be 1.0.  In practice, a ratio greater than 10 indicates that there is too much 
variation that is unaccounted for in the model.  Either add more variables or 
change the functional form of the model. 

28. Z-test for dispersion multiplier (Poisson models only).  This is a test for whether 
the dispersion parameter is significantly greater than that assumed by the Poisson 
model.  It is a test of over-dispersion. 

29. P-value for Z-test of dispersion parameter (Poisson models only).  This is the one-
tail probability level associated with the Z-test. 

30. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 
 

  MLE Individual Coefficient Statistics 
 
 For the individual coefficients, the following are output: 
 

31. The coefficient.  This is the estimated value of the coefficient from the maximum 
likelihood estimate. 

32. Standard Error.  This is the estimated standard error from the maximum 
likelihood estimate. 

33. Pseudo-tolerance.  This is the tolerance value based on a normal prediction of the 
variable by the other independent variables. 

34. Z-value.  This is asymptotic Z-test that is defined based on the coefficient and 
standard error.  It is defined as Coefficient/Standard Error. 

35. p-value.  This is the two-tail probability level associated with the Z-test. 
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 Table 20.1 show the output for an MLE Poisson-Gamma model that relates the number of 
Houston 2007-09 burglaries to the number of 2008 households and the 2000 median household 
income of Traffic Analysis Zones. 
 

Table 20.1: 

Maximum Likelihood Output for Poisson-Gamma Model 
 
 Model result: 
 Data file:                         Burglaries_within_City_of_Houston.dbf 
 DepVar:                            BURG2006 
 N:                                 1179 
 Df:                                1175 
 Type of regression model:          Poisson-Gamma-no spatial autocorrelation 
 Method of estimation:              MLE 
 
      Likelihood statistics 
 Log-likelihood:                    -4430.800180 
 AIC:                               8869.600361 
 BIC/SC:                            8889.890048 
 Deviance:                          1390.149554 P-value of Deviance:   0.0001 
 Pearson Chi-Square:                1112.717355 P-value of Chi-Square: 0.0001 
 
      Model error estimates 
 Mean absolute deviation:           39.580568 
      1st (highest) quartile:       124.121350 
      2nd quartile:                 19.377810 
      3rd quartile:                 6.195620 
      4th (lowest) quartile:        8.940150 
 Mean squared predicted error:      62031.156586 
      1st (highest) quartile:       242037.095867 
      2nd quartile:                 6445.778853 
      3rd quartile:                 118.261739 
      4th (lowest) quartile:        154.880457 
 
      Dispersion tests 
 Adjusted deviance:                 1.183106  P-value of Deviance:   n.s. 
 Adjusted Pearson Chi-Square:       0.946993  P-value of Chi-Square: n.s. 
 Dispersion multiplier:             1.534057  Z= 910.799548 P-value: 0.0001 
 Inverse dispersion multiplier:     0.651866 
 
----------------------------------------------------------------------------- 
                                            Pseudo- 
 Predictor   DF  Coefficient  Stand Error   Tolerance   z-value      p-value 
 INTERCEPT   1     2.321019     0.083077            .    27.938042    0.001 
    HH2006   1     0.001160     0.000066     0.993563    17.661356    0.001 
MEDHHINC00   1    -0.000008     0.000002     0.993563    -5.129752    0.001 
----------------------------------------------------------------------------- 
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 Markov Chain Monte Carlo (MCMC) Model Output 
 
 The MCMC routines (Normal-CAR/SAR, Poisson-Gamma, Poisson-Gamma-CAR/SAR, 
Poisson-Lognormal, Poisson-Lognormal-CAR/SAR, Binomial Logit, Binomial Logit-
CAR/SAR) produce a standard output and an optional expanded output.  The standard output 
includes summary statistics and estimates for the individual coefficients.  Background 
information on these models is found in chapters 16, 17, 18, and 19.  
 
  MCMC Summary Statistics 
  
 The summary statistics include: 
 

Information About the Model 
 

1. The dependent variable 
2. The number of records 

The sample number.  This is only output when the block sampling method is used. 
3. The number of cases for the sample.  This is only output when the block sampling 

method is used. 
4. Date and time for sample.  This is only output when the block sampling method is 

used 
5. The degrees of freedom (N – number of parameters estimated) 
6. The type of regression model (Normal/OLS, Poisson, Poisson with linear 

correction, Poisson-Gamma, Poisson-Gamma-CAR/SAR, Poisson-Lognormal, 
Poisson-Lognormal-CAR/SAR, Binomial Logit, Binomial Logit-CAR/SAR) 

7. The method of estimation 
8. The number of iterations 
9. The ‘burn in’ period 
10. The block size is the expected number of records selected for each block sample.  

The actual number may vary. 
11. The number of samples drawn.  This is output when the block sampling method 

used. 
12. The average block size. This is output when the block sampling method used. 
13. The type of distance decay function used. This is output for models that use CAR 

or SAR spatial autocorrelation functions. 
14. Condition number for the distance matrix.  If the condition number is large, then 

the model may not have properly converged.  This is output for the Poisson-
Gamma-CAR model only.   
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15. Condition number for the inverse distance matrix.  If the condition number is 
large, then the model may not have properly converged.  This is output for the 
Poisson-Gamma-CAR/SAR, or Poisson-Lognormal-CAR/SAR models only. 

 
Likelihood Statistics 

 
16. Log-likelihood estimate, which is a negative number.  For a set number of 

independent variables, the smaller the log-likelihood (i.e., the most negative) the 
better. 

17. Log-likelihood per case.  This divides the log-likelihood by the sample size (N).  
This indicates the average contribution to the log-likelihood of each observation.  
The more negative, the better. 

18. Deviance Information Criterion (DIC) for models only.  This adjusts the log-
likelihood for the effective degrees of freedom. The smaller the DIC, the better. 

19. Akaike Information Criterion (AIC) adjusts the log-likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

20. AIC per case.  This divides the AIC statistic by the sample size (N).  This 
indicates the average contribution to the AIC of each observation.  The smaller, 
the better. 

21. Bayesian Information Criterion (BIC), sometimes known as the Schwartz 
Criterion (SC), adjusts the log-likelihood for the degrees of freedom.  The smaller 
the BIC, the better. 

22. BIC per case.  This divides the BIC/SC statistic by the sample size (N). This 
indicates the average contribution to the BIC/SC of each observation.  The 
smaller, the better. 

23. Deviance compares the log-likelihood of the model to the log-likelihood of a 
model that fits the data perfectly.  A smaller deviance is better. 

24. The probability value of the deviance based on a Chi-square test with N-K-1 
degrees of freedom where K is the number of independent variables.  

25. Pearson Chi-square is a test of how closely the predicted model fits the data.  A 
smaller Chi-square is better since it indicates the model fits the data well. 

26. The probability value of the Pearson Chi-square based on a Chi-square test with 
N-K-1 degrees of freedom where K is the number of independent variables. 
 

Model Error Estimates 
 

27. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 
smaller MAD is better. 

28. Quartiles for the Mean Absolute Deviation.  For any one quartile, smaller is 
better. 
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29. Mean Squared Predictive Error (MSPE).  For a set number of independent 
variables, a smaller MSPE is better. 

30. Quartiles for the Mean Squared Predictive Error.  For any one quartile, smaller is 
better. 
 

   Dispersion Tests 
 

31. Adjusted deviance.  This is a measure of the difference between the observed and 
predicted values (the residual error) adjusted for degrees of freedom.  The smaller 
the adjusted deviance, the better.  A value greater than 1 indicates over-
dispersion. 

32. The probability value of the adjusted deviance based on a Chi-square test with 1 
degree of freedom. 

33. Adjusted Pearson Chi-square.  This is the Pearson Chi-square adjusted for degrees 
of freedom.  The smaller the Pearson Chi-square, the better. A value greater than 
1 indicates over-dispersion. 

34. The probability value of the adjusted Pearson Chi-square based on a Chi-square 
test with 1 degree of freedom. 

35. Dispersion multiplier.  This is the ratio of the expected variance to the expected 
mean.  For a set number of independent variables, the smaller the dispersion 
multiplier, the better.  In a pure Poisson distribution, the dispersion should be 1.0.  
In practice, a ratio greater than 10 indicates that there is too much variation that is 
unaccounted for in the model.  Either add more variables or change the functional 
form of the model. 

36. Inverse dispersion multiplier.  For a set number of independent variables, a larger 
inverse dispersion multiplier is better. A ratio close to 1.0 is considered good. 

 
  MCMC Individual Coefficient Statistics 
 
  For the individual coefficients, the following are output: 
 

37. The mean coefficient.  This is the mean parameter value for the N-K iterations 
where k is the ‘burn in’ samples that are discarded. With the MCMC block 
sampling method, this is the mean of the mean coefficients for all block samples. 

38. The standard deviation of the coefficient.  This is an estimate of the standard error 
of the parameter for the N-K iterations where k is the ‘burn in’ samples that are 
discarded.  With the MCMC block sampling method, this is the mean of the 
standard deviations for all block samples. 

39. t-value. This is the t-value based on the mean coefficient and the standard 
deviation.  It is defined by Mean/Std. 
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40. p-value. This is the two-tail probability level associated with the t-test.  
41. Adjusted standard error (Adj. Std).  The block sampling method will produce 

substantial variation in the mean standard deviation, which is used to estimate the 
standard error.  Consequently, the standard error will be too large.  An 

approximation is made by multiplying the estimated standard deviation by  
N

n


 

where  is the average sample size of the block samples and N is the number of 
records.  If no block samples are taken, then this statistic is not calculated. 

42. Adjusted t-value.  This is the t-value based on the mean coefficient and the 
adjusted standard deviation.  It is defined by Mean/Adj_Std.  If no block samples 
are taken, then this statistic is not calculated. 

43. Adjusted p-value.  This is the two-tail probability level associated with the 
adjusted t-value. If no block samples are taken, then this statistic is not calculated. 

44. MC error is a Monte Carlo simulation error.  It is a comparison of the means of m 
individual chains relative to the mean of the entire chain.  By itself, it has little 
meaning. 

45. MC error/Std is the MC error divided by the standard deviation.  If this ratio is 
less than .05, then it is a good indicator that the posterior distribution has 
converged. 

46. G-R stat is the Gelman-Rubin statistic which compares the variance of m 
individual chains relative to the variance of the entire chain.  If the G-R statistic is 
under 1.2, then the posterior distribution is commonly considered to have 
converged. 

47. Spatial autocorrelation term (Phi, ϕ) for CAR/SAR models only.  This is the 
estimate of the fixed effect spatial autocorrelation effect.  It is made up of three 
components: a global component (Rho, ρ); a local component (Tauphi, τφ); and a 
local neighborhood component (Alpha, α, which is defined by the user). 

48. The log of the error in the model (Taupsi).  This is an estimate of the unexplained 
variance remaining.  Taupsi is the exponent of the dispersion multiplier, eτψ.  For 
any fixed number of independent variables, the smaller the Taupsi, the better. 

  
  Expanded Output (MCMC Only) 
 
 If the expanded output box is checked, additional information on the percentiles from the 
MCMC sample are displayed.  If the block sampling method is used, the percentiles are the 
means of all block samples.  The percentiles are: 
 

49. 2.5th percentile 
50. 5th percentile 
51. 10th percentile 
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52. 25th percentile 
53. 50th percentile (median) 
54. 75th percentile 
55. 90th percentile 
56. 95th percentile 
57. 97.5th percentile 

 
 The percentiles can be used to construct confidence intervals around the mean estimates 
or to provide a non-parametric estimate of significance as an alternative to the estimated t-value 
in the standard output.  For example, the 2.5th and 97.5th percentiles provide approximate 95 
percent confidence intervals around the mean coefficient while the 0.5th and 99.5th percentiles 
provide approximate 99 percent confidence intervals. 
 
 The percentiles will be output for all estimated parameters including the intercept, each 
individual predictor variable, the spatial effects variable (Phi), the estimated components of the 
spatial effects (Rho and Tauphi), and the overall error term (Taupsi). 
 
 Table 20.2 show selective output from an MCMC Poisson-Lognormal-CAR spatial 
model that relates the number of Houston 2007-09 burglaries to the number of 2008 households 
and the 2000 median household income of Traffic Analysis Zones. The percentiles have been 
reduced to 0.5th, 2.5th, 97.5th, and 99.5th to fit the table. 
 
  Output Phi Values (CAR/SAR Models Only)  
 
 For the CAR and SAR models only, the individual Phi values can be output.  This will 
occur if the sample size is smaller than the block sampling threshold.  Check the ‘Output Phi 
value if sample size smaller than block sampling threshold’ box. An ID variable must be 
identified and a DBF output file defined.  
 
 Save Output 
 

The predicted values and the residual errors can be output to a ‘dbf’ file with a 
REGOUT<root name> file name where rootname is the name specified by the user.  The output 
is saved under a different file name.  The output includes all the variables in the input data set 
plus two new ones: 1) the predicted values of the dependent variable for each observation (with 
the field name PREDICTED); and 2) the residual error values, representing the difference 
between the actual /observed values for each observation and the predicted values (with the field 
name RESIDUAL).  The file can be imported into a spreadsheet or graphics program and the 
errors plotted against the predicted dependent variable (similar to Figure 15.3 in chapter 15). 
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Table 20.2: 

MCMC Output for Poisson-Lognormal-CAR Model 
 

DepVar:                            BURG2006 
 N:                                 1179 
 Df:                                1174 
 Number of iterations:              25000 
 Type of regression model:          Poisson-Lognormal-CAR 
 Method of estimation:              MCMC 
 Distance decay function:           Negative exponential 
 
      Likelihood statistics 
 Log-likelihood:                    -6087.822981 
      Per case:                     -5.163548 
 DIC:                               30510.458212 
 AIC:                               12185.645963 
      Per case:                     6.246823 
 BIC/SC:                            7390.366951 
      Per case:                     6.268335 
 Deviance:                          414.787381     P-value of Deviance:   0.0001 
 Pearson Chi-Square:                422.236291     P-value of Chi-Square: 0.0001 
 
      Model error estimates 
 Mean absolute deviation:           5.387914 
      1st (highest) quartile:       14.262519 
      2nd quartile:                 5.504652 
      3rd quartile:                 1.340483 
      4th (lowest) quartile:        0.493941 
 Mean squared predicted error:      149.000118 
      1st (highest) quartile:       542.211088 
      2nd quartile:                 51.172821 
      3rd quartile:                 3.835512 
      4th (lowest) quartile:        0.298416 
 
      Dispersion tests 
 Adjusted deviance:                 4.456926     P-value of Deviance:    0.0001 
 Adjusted Pearson Chi-Square:       20.611149    P-value of Chi-Square:  0.0001 
 Dispersion multiplier:             0.904852     Z = 133.050700      P-value of Z: 0.0001 
 Inverse dispersion multiplier:     1.105154 
                                                                           MC error/ 
            Mean         Std           t-value p-value   MC error     std          G-R stat 
------------------------------------------------------------------------------------------------- 
Intercept:  0.057768     0.086334      0.669124     n.s.      0.001960      0.022698     1.004705  
HH2006:    0.000156     0.000064      2.448304     0.02     2.7333e-006   0.042825     1.018906  
MEDHHINC00:-5.7411e-008  1.5194e-006   -0.037785    n.s.    2.7607e-008  0.018169     1.001817  
 Spatial autocorrelation 
(Phi):  1.660699     0.063369    26.206660     0.001   0.003377     0.053283     1.026494  
------------------------------------------------------------------------------------------------- 
 Global component 
(Rho)  0.178264     0.142500     1.250969    n.s.     0.001356     0.009515     1.000174  
 Local component 
  (Tauphi):  0.003762     0.000404     9.317862   0.001    0.000018    0.043832     1.019646  
 Neighborhood component 
(Alpha: defined)     -0.636652 Miles 
  
------------------------------------------------------------------------------------------------- 
  
  

  



20.21 

Table 20.2 (continued) 
 

Percentiles    0.5th       2.5th   97.5th        99.5th 
-------------------------------------------------------------------- 
Intercept: -0.153012   -0.103269  0.236579   0.300385 
HH2006:      0.000008      0.000041      0.000289      0.000339 
MEDHHINC00:  -0.000004     -0.000003     0.000003      0.000004 
Spatial component  
(Phi):    1.486406      1.530011      1.776679      1.804173 
Global component  
(Rho):    0.001125      0.005925      0.525452      0.657165 
Local component  
(Tauphi):  0.002892      0.003060      0.004649      0.005008 
--------------------------------------------------------------------  

 
 Save Estimated Coefficients 
 
 The individual coefficients can be output to a DBF file with a REGCOEFF<root name> 
file name where rootname is the name specified by the user.  This file can be used in the ‘Make 
Prediction’ routine under Regression II. 

 
Diagnostics Relevant for Spatial Regression 
 
 In chapter 15, the diagnostic tests for the regression module were described.  Among the 
statistics produced by the routine are two relevant for spatial regression. 
 
 Testing for Spatial Autocorrelation in the Dependent Variable 
 
 First, there is the Moran’s “I” test for spatial autocorrelation.  The statistic was discussed 
extensively in Chapter 5.  If the “I” is significant, CrimeStat outputs a message indicating that 
there is definite spatial autocorrelation in the dependent variable and that it needs to be 
accounted for, either by a proxy variable or by estimating a CAR or SAR model.   

 
A proxy variable would be one that can capture a substantial amount of the primary 

reason for the spatial autocorrelation.  One such variable that we have found to be very useful is 
the distance of the location from the metropolitan center (e.g., downtown).  Almost always, 
population densities are much higher in the central city than in the suburbs, and this differential 
in density applies to most phenomena including crime (e.g., population density, employment 
density, traffic density, events of all types).  It represents a first-order spatial effect, which was 
discussed in Chapters 4 and 5, and is the result of other processes.  Another proxy variable that 
can be used is income (e.g., median household income, median individual income) which tends 
to account for much clustering in an urban area.  The problem with income as a proxy variable is 
that it is both causative (income determines spatial location) as well as a by-product of 
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population densities.  The combination of both income and distance from the metropolitan center 
can capture most of the effect of spatial autocorrelation. 
 
 An alternative is to use the Poisson-Gamma-CAR model to filter out some of the spatial 
autocorrelation.  As we discussed above, this is useful only when all obvious spatial effects have 
already been incorporated into the model.  A significant spatial effect only means that the model 
cannot explain the additional clustering of the dependent variable. 
 
 Estimating the Value of Alpha (α) for CAR/SAR Models 
 
 Second, there is an estimate of a plausible value for the distance decay function alpha, α, 
in the CAR or SAR models.   The way the estimate is produced was discussed above and is 
based on assigning a proportional weight for the distance associated with the nearest neighbor 
distance, the average distance from each observation to its nearest ‘neighbor’ (see chapter 6).   
 
 Three values of α are given in different distance units, one associated with a weight of 0.9 
( a very steep distance decay, one associated with a weight of 0.75 (a moderate distance decay), 
and one associated with a weight of 0.5 (a shallow distance decay).  Users should run the Moran 
Correlogram and examine the graph of the drop off in spatial autocorrelation to assess what type 
of decay function most likely exists.  The user should choose an α value that best represents the 
distance decay and should define the distance units for it.   
 

Regression II Module 
 
 The Regression II module allows the user to apply a model to another dataset and make a 
prediction.  Figure 20.3 show the Regression II setup page.  The ‘Make prediction’ routine 
allows the application of coefficients to a dataset.   
 

Note that, in this case, the coefficients are being applied to a different Primary File than 
that from which they were calculated.  For example, a model might be calculated that predicts 
robberies for 2006.  The saved coefficient file then is applied to another dataset, for example 
robberies for 2007. 
 

There are four types of models that are fitted – normal, Poisson, binomial logit, and 
binomial probit.  For the normal model, the routine fits the equation: 

 
 ⋯                   (20.9) 
 
 

 



Figure 20.3:

Regression Modeling II Setup Screen
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For the Poisson model, the routine fits the equation: 
 

 ⋯                (20.10) 
  
with β0 being the intercept (if calculated), β1…. β k

 being the saved coefficients and Φi is the 
saved Phi values (if a CAR or SAR model was estimated).  Notice that there is no error in each 
equation. Error was part of the estimation model. What were saved were only the coefficients.    
 
 For the binomial logit model, the routine fits the equation: 
 

 1
∑

∑
	

∑
    (20.11) 

 
with β0 being the intercept (if calculated), β1…. β k

 being the saved coefficients and Φi is the 
saved Phi values (if a CAR or SAR model was estimated).  
 
 For the binomial probit model, the routine fits the equation: 
 

 1 β ∑ β X       (20.12) 
           
with β0 being the intercept (if calculated), β1…. β k

 being the saved coefficients and Φi is the 
saved Phi values (if a CAR or SAR model was estimated), and Φ is the cumulative standard 
normal distribution, 
 

For all four types of model, the coefficients file must include information on the intercept 
and each of the coefficients.  The user reads in the saved coefficient file and matches the 
variables to those in the new dataset based on the order of the coefficients file.   
 
 If the model had estimated a general spatial effect from a CAR or SAR model, then the 
general  will have been saved with the coefficient files.  If the model had estimated specific 
spatial effects from a CAR or SAR model, then the specific  values will have been saved in a 
separate Phi coefficients file.  In the latter case, the user must read in the Phi ( ) coefficients 
file along with the general coefficient file.  
 
 Table 20.3 shows the output for the first 20 cases from a prediction of the number of 
burglaries per zone based on the estimation model shown in Table 20.2 (Poisson-Lognormal-
CAR).  The output will include all variables in the input data set plus the Phi coefficient and the 
predicted values.  The user can then calculate residuals by subtracting the predicted from the 
actual (observed) values of the dependent variable. 
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Table 20.3: 

File Output from Poisson-Lognormal-CAR Prediction of Houston Burglaries 
 

TAZ03  BURG2006  PHI  PREDICTED 

532  19 0.633593 7.922792 

534  2 ‐0.163279 7.030844 

536  2 ‐0.223977 11.555803 

530  107 1.323602 21.462356 

537  19 0.259453 15.658255 

522  55 1.537228 5.987060 

538  11 0.335330 7.432503 

516  10 0.364732 9.598958 

481  0 ‐0.350902 8.693915 

474  1 ‐0.161788 8.348133 

482  7 0.009940 12.178501 

496  2 ‐0.245535 17.342402 

548  0 ‐1.199179 13.717904 

475  4 ‐0.037407 8.166218 

435  3 ‐0.425498 8.307698 

476  1 ‐0.056756 8.897897 

484  8 0.014615 16.133065 

483  2 ‐0.066611 7.888521 

477  1 ‐0.076599 8.166218 

478  0 ‐0.050627 9.293352 

 

Conclusion 
 
 This chapter has summarized the structure of the Regression I and Regression II modules 
and most of the options that are available.  The help menu on the program will provide context-
specific help on individual items. Note that if you are using Windows Vista, Windows 7 or 
Windows 8, you must download a utility from Microsoft that allows the help menu to be viewed 
from the program.  See Chapter 1 (p. 1.17) for details. 
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Chapter 21: 

Discrete Choice Modeling 

Introduction 
 
 This chapter describes the discrete choice framework and the two most well-known 
models that are part of it: the Multinomial Logit (MNL) and the Conditional Logit (CL). These 
techniques require a solid background in statistics and especially regression modeling.  A 
background in economics will also be beneficial, though not necessary.  Analysts wishing to use 
these techniques, in particular the conditional logit model, would be advised to find an expert to 
work with in developing applications. 
 

The MNL and CL are two closely related statistical regression models that can be used to 
analyze a discrete outcome variable as a function of a set of independent variables. Discrete 
variables are also known as nominal or categorical variables. They can take on a finite number of 
unordered, mutually exclusive values. Both the MNL and the CL are generalizations of the logit 
model, which is used to analyze binomial (two category) outcome variables and which was 
discussed in Chapter 18.  
 

Gender is an example of a binomial variable (it is either male or female).  The weapon 
used in a robbery (gun, knife, strong arm, or other weapon) is a multinomial variable. Other 
examples are the mode of transport used by a rapist (car, scooter, train, bus, bike, walking) or the 
neighborhood in which a burglary was committed (any one of the city’s neighborhoods).   
 

Although the MNL and CL models can be used for all analytical problems where the 
outcome variable is discrete (nominal, categorical), in a number of disciplines the models are 
used to study the way that people or organizations make choices. Many research questions in the 
social and behavioral sciences, including criminology, deal with understanding and predicting 
discrete choices (Bernasco & Block, 2009). Political scientists aim to understand why people 
vote and what makes them choose a particular party (Palfrey & Poole, 1987). The party vote is a 
discrete variable. Sociologists want to understand what makes people decide in favor of a 
particular education, occupation, or marriage partner (Jepsen & Jepsen, 2002).  Schools, 
occupations and partners are discrete choices. In marketing research, understanding and 
predicting consumer choice is a central concern (McFadden, 1980). Most consumer choices are 
discrete, such as which brand and model of car to purchase, or in which restaurant to have lunch. 
Transportation modelers predict why commuters choose to travel by bus, train, car or bicycle 
(Train, 1980). Behavioral ecological models try to find out what influences an animal’s choice of 
where to forage, rest, or reproduce (Krebs & Davies, 1993).  
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Choice is also a central concern in crime analysis. What criteria does a police officer use 
to arrest or not arrest a juvenile?  How does a robber choose a specific victim or a particular 
location to commit a robbery (Bernasco & Block, 2009)? This question addresses criminal 
location choice, which formed the major impetus to include these models in CrimeStat.  

 
Although the MNL and CL models are both discrete choice models and share the same 

underlying likelihood function, they are quite different in practice. The main difference between 
the MNL and the CL model lies in the assumed sources of variation in choice outcomes. The 
MNL model assumes that variation in the characteristics of decision makers (e.g., age) 
determines variation in choice outcomes, whereas the CL model assumes that variation in the 
characteristics of the alternatives themselves (e.g., presence of a bar) determines variation in the 
choice outcomes. 

 
Aggregated spatial interaction or ‘gravity’ models had been applied to criminal location 

choice and crime trips by Smith (1976) and Rengert (1981). These models bear a strong 
similarity in form and function to the discrete spatial choice models discussed in this chapter, but 
they are aggregated models of the volume of crime trips between areas.  The discrete spatial 
choice approach was introduced in the criminological literature by Bernasco and Nieuwbeerta 
(2005) and has subsequently been applied in other studies (Bernasco, 2006, 2010a, 2010b; 
Bernasco & Block, 2009; Bernasco & Kooistra, 2010; Clare, Fernandez, & Morgan, 2009). 
Bernasco (2007) demonstrates how the discrete choice model can be reversed to form a tool in 
geographic offender profiling.  

 
 Neither the MNL nor the CL models require that the outcome variable be interpreted as a 
choice. In fact, the models can be used to model the outcomes of any process that results a finite 
number of unordered possible outcomes. For example, one study proposed a five-category 
typology of homicides in terms of the geographical relation between victim residence, offender 
residence and homicide location (Tita & Griffiths, 2005). It then used the MNL model to study 
the effects of various interactional, motivational and situational characteristics of the homicides 
on the type of the homicide. In this study it would be difficult to interpret the outcome as a 
decision, but the multinomial model is nevertheless useful to describe the effects of the variables 
on the different outcomes. Besides spatial choice, the conditional logit model has not been used 
very often in research on crime. An exception is a study that investigated the causes of criminal 
vengeance in conflicts (Phillips, 2003).  
 
 In the remainder of this chapter, the MNL and CL models are discussed in detail.  First 
we demonstrate how the discrete choice model (encompassing both MNL and CL) is derived 
from random utility theory, and show the differences between the MNL and the CL models. Next 
we illustrate the structure of the data necessary to estimate MNL and CL models and give 
examples of both models. 
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Discrete Choice Framework  
 
 The discrete choice framework was developed in the 1970’s by McFadden (1973) and 
others working in the field of travel demand, and the first applications of discrete choice were in 
the study of travel mode choice (i.e., the choice between train, bus, car, or airplane). Later the 
model was also applied to the choice of a travel routes and travel destinations (Ben-Akiva & 
Lerman 1985). This book is probably the most accessible and complete reference work on 
discrete choice that focuses on the conditional logit and multinomial logit model. A more 
advanced and more technical reference work is Train (2009), which is freely available 
(http://elsa.berkeley.edu/~train/).   
 

The discrete choice framework consists of a set of assumptions regarding four elements 
of a choice situation (Ben-Akiva & Bierlaire 1999): 

 
1. Decision makers. The decision maker is the person or agent that makes a choice. 

 
2. Alternatives. The decision maker must choose one alternative from the choice set, 

i.e. the set of available alternatives that are mutually exclusive and collectively 
include all possible choices.  
 

3. Attributes. Alternatives have attributes that make them attractive to the decision 
maker. The decision maker evaluates the attractiveness of all alternatives. The 
decision makers themselves can also have attributes. 
 

4. Decision rule. According to economic theory, the decision maker chooses the 
alternative that maximizes his/her (expected) utility (net gain, profits, 
satisfaction).  

 
The discussion that follows is mathematically advanced. Readers who prefer to skip the 

mathematical description of the models may want to continue reading at the ”Data structures” 
section on page 21.7.  We follow the notation of Train (2009). 

 
 A decision maker, labeled n, must make a choice among J alternatives. Note that the 
word ‘alternatives’ is used for the items, actions or locations that can be chosen, and the word 
‘choice’ is used for the decision of the decision maker in selecting one of these alternatives. By 
convention the complete set of available alternatives is referred to as the ‘choice set’, although 
‘set of alternatives’ might better describe it.  
 

Decision maker n obtains a level of utility (profits, satisfaction), Uni, from alternative i if 
that alterative is chosen. The principle of utility maximization asserts that the decision maker 
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decides in favor of the alternative i if and only if the individual expects to derive more utility 
from alternative i than from any other available alternative. Thus, if the decision maker decides 
in favor of alternative i, then that person must expect to derive less utility from each of the other 
alternatives (the expression ∀𝑗 ≠ 𝑖 means ‘for all values of j such that j not equals i).  

 
 ijUU njni ≠∀> .              (21.1) 

 
 The utilities are known by the decision maker, but not by the analyst. The analyst only 
observes the J alternatives, some attributes ani of the alternatives, some attributes dn of the 
decision maker, and can specify a function V, often called representative utility or systematic 
utility, that links these observed attributes to the decision maker’s utility: 
 
 idaVV nnini ∀= ),(              (21.2) 

 
 The analyst incompletely observes utility, so that generally nini VU ≠ . The utility can be 

written as the sum of representative utility Vni and a term µni that captures the factors that 
determine utility but are not observed by the analyst, and that is treated as random. 
 
 ninini VU ε+=               (21.3) 

 
 The probability that decision maker n chooses alternative i is the probability that the 
utility associated with choosing i is greater than the utility associated with any other alternative 
in the choice set: 
 
 )Pr( ijUUP njnini ≠∀>=             (21.4) 

 )Pr( ijVVP njnjninini ≠∀+>+= εε            (21.5) 

 )Pr( ijVVP njnininjni ≠∀−<−= εε            (21.6) 

 
 This is the most general formulation of the discrete choice model, and any specific choice 
model that is consistent with random utility maximization can be derived from specific 
assumptions on the joint distribution of the unobserved utility term µni. CrimeStat can estimate 
the two most basic models of this family, the multinomial logit model and the conditional logit 
model. There are many others, including for example nested logit, mixed logit, and multinomial 
probit. These are described in Train (2009). 
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Multinomial and Conditional Logit 
 
 If the unobserved random utility components µni are independent and identically 
distributed according to an extreme value distribution (also referred to as a Gumbel distribution), 
the MNL model and the CL can be derived. Originally, the general form of both was labeled the 
conditional logit model (McFadden 1973). Today both models are usually simply referred to as 
‘multinomial logit model’ or even ‘logit model’ in the discrete choice literature. CrimeStat 
distinguishes between the MNL and the CL models because despite their mathematical 
equivalence, they require a different organization of the data. In the general model that 
encompasses both the CL and the MNL, the choice probability, Pni, the probability that decision 
maker n chooses alternative i, is given by: 
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 For computational convenience, and because any function can be closely approximated 
by a linear function, representative utility Vni is usually assumed to be linear in the parameters. 
The specification of observed utility Vni is different in the MNL and the CL models. In the MNL 
model, Vni depends on the characteristics of the decision maker while in the CL model, it 
depends on the characteristics of the alternatives.  
 
 Multinomial Logit Model 
 
 In the MNL model,  
 

  ∑
=

==
K

k
knkini XV

1

' βni X²
            (21.8)

 

 
In equation 21.8, K is the number of predictor variables in the model, Xkn  is the value of 

the kth predictor variable for observational unit (e.g. decision maker) n, and ² ki is a parameter 
associated with the kth predictor variable and alternative i. Thus, as can be seen from the k, i and 
n indexes, in the MNL model, there is a separate parameter ² i for every alternative i in the choice 
set per predictor variable (including a constant). Note that the variables Xkn vary only across the 
decision makers n, but not across the alternatives (they have no i subscript). Characteristics of 
the alternatives do not explicitly play a role in this model (implicitly they do, as we would expect 
the ² ki to depend on characteristics of the alternatives). 
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 Conditional Logit Model 
 
 In the CL model, 
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            (21.9)

 

 
where K is again the number of predictor variables in the model, Xkni  is the value of the kth 
predictor variable for observational unit (e.g. decision maker) n and alternative i, and a  ² k is a 
parameter associated with the kth predictor variable. Thus, as can be seen from the k, i and n 
indexes, in the CL model, there is only a single parameter for all alternatives in the choice set per 
predictor variable.  
 
 Note that the variables Xkni vary across the decision makers n  and alternatives i. 
Essentially, going from equation 21.8 to equation 21.9, the i index (that references alternatives) 
moves from the parameter ²  to the predictor variable X, a manifestation of the fact that in the 
MNL model characteristics of alternatives are implicitly included in the estimated alternative-
specific parameters, while in the CL model they are explicitly measured and their effects 
estimated in generic parameters.  

 
 Probabilities in the Multinomial and Conditional Logit Models 

 
Substituting  equation 21.8 into equation 21.7, the multinomial logit probability that 

decision maker n chooses alternative i is:  
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 Note that in equation 21.10, the predictor variables vary across decision makers n but not 
across alternatives i.  Analogously, substituting equation 21.9 into equation 21.7, the conditional 
logit model asserts that the probability that decision maker n chooses alternative i is: 
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 Note that in equation 21.11, it is impossible to estimate effects of attributes of the 
decision maker that do not vary across alternatives (such as age or gender), because such 
variables (and their parameters) automatically cancel out of the equation; the characteristic of the 
decision maker cannot affect which alternative is chosen because those characteristics do not 
vary across the alternatives. This feature differentiates the conditional logit model from the 
multinomial logit model.  
 
 It is possible, though, to estimate the interaction of characteristics of decision makers and 
characteristics of alternatives by creating or measuring variables that vary across both 
alternatives and decision makers. Such variables must have the n and the i subscript so that they 
do not cancel out in the equation.  
 
 An example of a measured interaction is the experience that the decision maker has with 
each of the alternatives. A given decision maker has more experience with one alternative than 
others, and, therefore, is more or less likely to choose the alternative.  Repeat and near repeat 
victimization may be examples of this.   Another example of a measured interaction is the 
distance between decision makers and alternatives. 

 
 An example of a created interaction is the multiplication of a characteristic of decision 
makers (e.g. gender Sn) with a characteristic of alternatives (e.g. location Li) resulting in SLni . 
The resulting variable varies across decision makers (as for a given alternative i its value is 
different for males and females) and across alternatives (because for a given decision maker n it 
varies across locations). 
  

Data Structures 
 
 Although the same mathematical model underlies the MNL model and the CL model, the 
estimation of the CL model requires the data to be organized differently than the estimation of 
the MNL model. This section considers the data structures that hold the information that is 
required to estimate either model.  
 
 The MNL model applies to a n × k matrix (where n refers to cases and k refers to 
variables that vary across cases), while the CL model applies to a  n × i × k matrix, where n 
refers to cases, i refers to alternatives, and k refers to variables that vary across cases and across 
alternatives. The distinctions between these two data structures are explained below. 
 

The Multinomial Logit Model 
 
 The MNL model is estimated on a data set that is similar to the data structure of most 
other regression models and many incident spreadsheets. Each row (record) represents an 
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observational unit n (a case, sometimes a decision maker) and each column represents a variable 
(a characteristic of the unit). The dependent variable is nominal and indicates which alternative 
from a set of alternatives was chosen. The variation in outcomes is explained by variation in the 
characteristics of the observational units (decision makers). Table 21.1 shows a simple example 
that describes the first 5 incidents of a larger data file. For each case we know the area where the 
offender lived (Origin), the area where the crime was committed (Destination), the offender’s 
age (Age), the type of crime committed (CrimeType), and the time of day it was committed 
(Time). There is also a variable that uniquely identifies cases (ID). 
 
 The first record indicates that at 3AM (Time) a burglary (CrimeType) was committed in 
zone P (Destination) by an 18 year old (Age) offender who lived in zone P (Origin). Case 2 is a 
robbery committed at 7 PM in zone P by an offender aged 23 living in zone Q. The third record 
shows that someone aged 42 living in zone R purchased an illicit drug in zone S at 2pm.  
 

Table 21.1: 

Case file Describing 5 Incidents 
 

ID Origin Destination Age CrimeType Time 
1 P P 18 Burglary 3am 
2 Q P 23 Robbery 7pm 
3 R S 42 Illicit drug 2pm 
4 R Q 32 Robbery 1pm 
5 S R 19 Burglary 6am 

 
 
 In principle, any variable (except ID) in the case file can be analyzed as representing a 
choice outcome (an alternative being chosen) although for some variables a choice interpretation 
is more natural than for others. Destination represents the choice outcome of the decision of 
where to commit the crime, CrimeType would be the choice outcome of the decision which type 
of crime to commit, and Time would be the choice outcome of the decision of when to commit 
the crime.  Origin could also be a choice outcome, the outcome of the decision of where to live. 
Age can be a seen as the outcome of the choice at what age to commit the offence.  
 

If the decision to be analyzed is where to commit the offence, the first record in Table 
21.1 indicates that the offender offended in zone P rather than in zones Q, R or S. If the decision 
to be analyzed is which type of crime to commit, the first record in Table 21.1 shows that the 
offender decided to commit a burglary rather than commit a robbery or purchase an illicit drug. 
If the decision to be analyzed is when to commit the offence, the first record in Table 21.1 
indicates that the offender offended at 3am rather than at 1pm, 3pm or any other time of the day.  
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 Let us assume that in Table 21.1, the outcome variable is Destination (i.e. the area in 
which the offender committed the crime). Note that we assume that each offender was able to 
choose any of the alternatives (zones P=1, Q=2, R=3, and S=4 for four alternatives), and also 
note that the data do not contain attributes of the alternatives (e.g. whether the areas are affluent, 
have mixed land use, etc.). A MNL model could be used to assess the relation between linear 
combinations of Time (T) and Age (A) with the choice of a Destination (D) zone. In this case, 
equation 21.12 becomes: 
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where Pn(D=i) is the probability that in the in nth case the Destination chosen is i,  Tn is the Time 
of the nth case, An is the Age of the nth case, and ² Ti is the parameter that represents the effect of 
Time on the probability that Destination i is chosen, ² Ai is the effect of Age on the probability 
that Destination i is chosen, and ² i is an alternative-specific constant, representing the average 
attractiveness of alternative i in the sample. Note that if Destination has four categories, the 
multinomial logit model involves the following four categorical equations.  
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 All four equations are linked by having the same denominator and by  
 

1)4()3()2()1( ==+=+=+= DPDPDPDP nnnn        (21.17) 

 
 Altogether, 12 parameters are estimated, 4 alternative-specific constants (² 1, ² 2, ² 3, ² 4), 4 
for the Time predictor variable (² T1, ² T2, ² T3, ² T4), and 4 for the Age predictor variable (² A1, ² A2, 



 

 21.10 

² A3, ² A4). However, because the effects apply to the differences between the alternatives, the 
parameters for one of the J alternatives must be fixed, and the remaining effects are expressed in 
relation to this fixed ‘reference’ alternative. Like other programs, CrimeStat fixes these 
parameters of the reference alternative to 0 (the user can choose which alternative to use as the 
reference alternative. By default the most frequent alternative is the reference alternative. 
 

Example 1: Modeling Choice of Premises in Chicago Non-street Robberies with the 
Multinomial Logit Model 

 
In 1997, there were 1,587 robbery incidents in Chicago that did not occur on the street, in 

which a specific type of premises was robbed, and for which at least one offender was arrested.   
In 1998, there were 1,441 such incidents.   In this example, characteristics of offenders and 
incidents will be used to describe differences in the type of premises victimized. The statistics 
used to differentiate models will be explained and the premise pattern of robberies in 1998 will 
be predicted using the robbery patterns of 1997.    

 
Figure 21.1 maps the premises type of non street robberies in 1997.  In 1997, 48.6% of 

these robberies were residential, 11.3% were in parking lots and garages, 23.8% were 
commercial, 2.1% were at banks or currency exchanges, 5.5% were in schools and school yards, 
5.1% were in parks, and 3.5% were in public transit or stations.  Although parks are amenities, 
not premises, they will be subsumed under ‘premises ’ here.   

  
Some areas of the city are nearly free of non-street robberies.   Unsurprisingly, 

commercial, and bank robberies are concentrated on main streets.  Residential robberies are 
widespread over large sections of the west and south sides.  The remainder of this brief will look 
at crime and offender characteristics that differentiate residential robberies from each of the other 
premises types using the multinomial logit model in CrimeStat IV. 

 
In Table 21.2, 1,587 non-street robberies in 1997 are analyzed using the multinomial logit 

model.  Residential robberies are compared to 6 other robbery premises.   In the summary section 
of the table, the log likelihood ratio (LLR), Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC/SC) are measures of the differences between a model that includes 
offender and crime characteristics and the naïve (null) hypothesis that only includes the 
frequency of the various premises types.    

 
The best use for these statistics is in comparing models.  The most negative log likelihood 

ratio, and the smallest positive AIC or BIC are best.   Unlike the LLR, the AIC and BIC correct 
for the number of explanatory (independent) variables.  This is important because a model with  

  



Figure 21.1:
Di t ib ti f Chi N St t R bb i i 1997Distribution of Chicago Non Street Robberies in 1997
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Table 21.2: 

Multinomial Logit Model of Crime Premises: 
Non-Street Robbery 1997 

 Model result: 
 Data file:                         1997 CHICAGO NON-STREET ROBBERIES 
 DepVar:                            TYPE OF PREMISES 
 N:                                 1,587 
 Df:                                1,580 
 Type of choice model:              Multinomial logit model 
 Number of Alternatives:            7 
 Method of estimation:              MLE 
 
      Likelihood statistics 
 Log Likelihood:               -1,963.1 
      Per case:                     -1.2 
 AIC:                               3,996.3 
      Per case:                     2.5 
 BIC/SC:                       4,184.2 
      Per case:                     2.6 
 
      Model error estimates 
 Mean absolute deviation:           0.2 
 Mean squared predicted error:      0.1 
 
______________________________________________________________________________ 
REFERENCE CHOICE:   2 RESIDENTIAL 
----------------------------------------------------------------------------- 
 Predictor      Coefficient  Stand Error   t-value      p-value   Odds Ratio 
----------------------------------------------------------------------------- 
      3 GARAGES AND PARKING LOTS 
      Alternative N=180 
Constant      -1.3156      0.250      -5.27       0.001    0.27 
GUNCRIME       0.2768      0.187      1.48        n.s.      1.32 
EVENING         0.4431      0.193      2.30       0.05      1.56 
LATENIGHT    -0.3754      0.235      -1.60        n.s.      0.69 
TRAVEL DIST     0.0059      0.001       4.43       0.001      1.01 
OFFAGE      -0.0016      0.001      -1.88        n.s.      1.00 
OFFBLACK      -0.4792      0.237      -2.02       0.05      0.62 
----------------------------------------------------------------------------- 
      4 COMMERCIAL 
      Alternative N=378 
Constant      -0.6512      0.197      -3.31       0.001      0.52 
GUNCRIME        1.3900      0.137      10.12       0.001      4.01 
EVENING      -0.0614     0.163      -0.38        n.s.      0.94 
LATENIGHT     -0.5360      0.180      -2.97       0.01      0.59 
TRAVEL DIST       0.0049      0.001       4.23       0.001      1.00 
OFFAGE      -0.0018      0.001      -2.66       0.01      1.00 
OFFBLACK      -0.6909      0.186      -3.71       0.001      0.50 
----------------------------------------------------------------------------- 
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Table 21.2: (continued) 
----------------------------------------------------------------------------- 
 Predictor      Coefficient  Stand Error   t-value      p-value   Odds Ratio 
----------------------------------------------------------------------------- 
      5 BANKS AND CURRENCY EXCHANGES 
      Alternative N=34 
Constant      -2.2444      0.411      -5.46       0.001      0.11 
GUNCRIME        1.3043      0.362       3.60       0.001       3.69 
EVENING      -1.5034      0.620      -2.43       0.05      0.22 
LATENIGHT      -1.9124      0.742      -2.58       0.01      0.15 
TRAVEL DIST      0.0083      0.002       3.51       0.001       1.01 
OFFAGE      -0.0022      0.002      -1.09        n.s.       1.00 
OFFBLACK      -1.4572      0.395      -3.69       0.001      0.24 
----------------------------------------------------------------------------- 
      6 SCHOOLS 
      Alternative N=88 
Constant        6.6012      0.783       8.43       0.001    735.99 
GUNCRIME      -2.0686      0.612      -3.38       0.001      0.13 
EVENING      -2.1280      0.480      -4.44       0.001      0.12 
LATENIGHT      -2.2797      0.750      -3.09       0.01      0.10 
TRAVEL DIST      0.0065      0.003       2.30       0.05      1.01 
OFFAGE      -0.3692      0.040      -9.17       0.001      0.69 
OFFBLACK      -1.1614      0.382      -3.04       0.01      0.31 
----------------------------------------------------------------------------- 
      7 PARKS 
      Alternative N=81 
Constant        3.1511      0.573       5.50       0.001     23.36 
GUNCRIME      -0.6429      0.328      -1.96       0.05      0.53 
EVENING        0.0558      0.282       0.20        n.s.         1.06 
LATENIGHT      -1.1378      0.459      -2.48       0.05      0.32 
TRAVEL DIST      0.0070      0.002       3.14       0.01      1.01 
OFFAGE      -0.1966      0.025      -7.90       0.001      0.82 
OFFBLACK      -1.2570      0.311      -4.05       0.001      0.28 
----------------------------------------------------------------------------- 
      8 PUBLIC TRANSPORT 
      Alternative N=55 
Constant      -3.4423      0.617      -5.58       0.001      0.03 
GUNCRIME      -0.6316      0.395      -1.60        n.s.      0.53 
EVENING      -0.4296      0.409      -1.05        n.s.      0.65 
LATENIGHT      -0.0134      0.337      -0.04        n.s.      0.99 
TRAVEL DIST      0.0091      0.002       5.21       0.001      1.01 
OFFAGE      -0.0010      0.001      -0.88        n.s.      1.00 
OFFBLACK        0.6914      0.608       1.14        n.s.      2.00 
----------------------------------------------------------------------------- 
Reference Alternative:    2  Residential 
-----------------------------------------------------------------------------
Multicollinearity statistics 
 
 Predictor     Pseudo-Tolerance  
GUNCRIME       0.98 
EVENING        0.93 
LATENIGHT     0.93 
TRAVEL DIST   0.99 
OFFAGE            1.00 
OFFBLACK       1.00 
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many explanatory variables is likely to have the most negative log likelihood ratio (LLR), but 
part of the size of the LLR results from the large number of variables used in the explanation. 

 
In the second section of Table 21.2, each of the other types of premises is compared to 

the reference type (residential units), which is the type that is chosen most frequently.    Note that 
the coefficients will differ for each of the alternatives. This is because the variables predicting 
each alternative are unique and will differ in their weights.  For some alternatives, an 
independent variable may have a significant positive effect while for other alternatives it may 
have a significant negative effect.   

 
For even other alternatives, the variable may not have a significant effect. For example, 

the use of a gun in a robbery (GUNCRIME) is positively associated with bank robberies but 
negatively associated with school robberies. For robberies in parks, the use of a gun is not related 
to the type of robbery.  Note, also, that these are relative to the reference alternative, which in 
this case are residential robberies. 

 
The numbers in the far right column, the Odds Ratios, are useful for substantive 

interpretation of the model. They indicate the odds increase or decrease associated with the 
variable that the robbery took place on the specific premise compared to the reference alternative 
(residential premises). They are measured as the relative change when the corresponding 
predictor variable increases by one unit. Odds ratios above 1 indicate that the odds increase as 
the predictor variable increases, odds ratios between 0 and 1 indicate they decrease as the 
predictor variable increases.  

 
The p value indicates whether the odds ratio were likely to have occurred by chance if 

there was no relationship in the unit of the explanatory variable.  For example, in the top panel 
on ‘Garages and parking lots’, the value of 1.56 indicates that-- if a robbery occurs in the 
evening (1) it is 1.56 times more likely (or, in other words, 56% more likely) to be in a garage or 
parking lot than at a residence.  The p value indicates whether the odds ratio could have occurred 
by chance if there was no relationship.  Thus, the p-value of 0.05 in the output demonstrates that 
the above odds ratio of 1.56 could have occurred by chance 5% of the time if there was no time-
of-day difference in the probability that robberies take place in residences or in parking lots.     
 

Commercial robberies are 4 times as likely to be committed with a gun than residential 
robberies, and a difference this large could occur only .1% of the time.  Robberies occurring in 
and around schools are significantly different from residential robberies on all six explanatory 
variables.  They are much less likely to involve guns or be committed by black offenders and are 
slightly further away from the offender’s home.   Unsurprisingly, they are all less likely to occur 
in the evening or late night and the offenders are younger than in residential robberies. 
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The coefficients column in section two are similar to those in any regression equation.   
Coefficients are created for each choice (here premises type) including the reference category.    
They are particularly useful for prediction of choice with a new data set(see below).       
 
 The third section indicates to what extent the explanatory variables vary together 
(multicollinearity).   A pseudo tolerance below .90 indicates that this may be a problem in the 
model.  If this is so, delete the variable with the lowest pseudo tolerance and run the model 
again.   In this model all pseudo tolerances are above .9.  Multicollinearity is not a problem. 
 
  Adding another variable to the 1997 model 
 
  Using the Log Likelihood, AIC, and BIC/SC statistics, it is possible to compare one 
decision making model to another.  The decision making model in table 21.2 included six 
explanatory variables.   Table 21.3 below adds the variable, number of offenders, to the model.     
Perhaps residential robbers are more likely to solo offenders than school yard robbers?   
However, adding the number of offenders to the model has little effect.    
 

The more explanatory variables, the fewer degrees of freedom (df) and the more complex 
the model. The log likelihood decreases from -1963 to -1957 (more negative is better).  The AIC 
declines slightly from 3996 to 3994, but the more comprehensive BIC/SC increases from 4184 to 
4209 (closer to 0 is better for both).  In other words, adding number of offenders to the model 
does not improve the differentiation of residential premises from other premises.   For every 
premises type, the number of offenders is not significantly differentiated from residential 
robberies.   
 
  Predicting non-street Robberies in 1998 based on the 1997 model 
 

Once a multinomial logit model is estimated, the parameter estimates can be used to 
predict a dependent variable in other data.   The model developed in predicting the premises of 
robberies in 1997 can be used to predict the premises of robberies in 1998.   This is done by 
saving the coefficients and applying them to the 1998 robbery data.   The results can show how 
well the 1997 model estimated predicted 1998 robberies.   

 
 
 



 

 21.16 

Table 21.3: 
Multinomial Logit Model of Crime Premises: 

Non-Street Robbery 1997 
Number of Offenders Added 

 
Model result: 
 Data file:       1997 CHICAGO NON-STREET 
ROBBERIES 
 DepVar:                          TYPE OF PREMISES 
 N:                               1,587 
 Df:                              1,579 
 Type of choice model:           Multinomial logit model 
 Number of Alternatives:        7 
 Method of estimation:           MLE 
 
      Likelihood statistics 
 Log Likelihood:                 -1957.2 
 AIC:                    3,994.3 
 BIC/SC:                           4,209.1 
 
      Model error estimates 
 Mean absolute deviation:        0.2 
 Mean squared predicted error:      0.1 
 
REFERENCE CHOICE: 2  RESIDENTIAL  
----------------------------------------------------------------------------- 
 Predictor      Coefficient  Stand Error   t-value      p-value   Odds Ratio 
----------------------------------------------------------------------------- 
      3  GARAGES AND PARKING LOTS 
      Alternative N=180 
Constant      -1.2044      0.302      -3.98    0.001      0.30 
GUNCRIME      0.3039      0.191        1.59       n.s.      1.36 
EVENING        0.4481      0.193       2.32        0.05      1.57 
LATENIGHT      -0.3608      0.236      -1.53       n.s.      0.70 
TRAVEL DIST      0.0059      0.001        4.46        0.001      1.01 
OFFAGE      -0.0016      0.001      -1.90        n.s.      1.00 
OFFBLACK      -0.4807      0.237      -2.02        0.050      0.62 
NUM OFF      -0.1011      0.155      -0.65        n.s.      0.90 
----------------------------------------------------------------------------- 
      4 COMMERCIAL 
      Alternative N=378 
 Constant     -0.7871      0.221     -3.55       0.001      0.46  
GUNCRIME         1.3501      0.140        9.61        0.001      3.86  
EVENING      -0.0709      0.163      -0.43     n.s.     0.93  
LATENIGHT      -0.5702      0.183      -3.12      0.01      0.57 
TRAVEL DIST       0.0048      0.001        4.13        0.001      1.00  
OFFAGE      -0.0017      0.001      -2.62       0.01      1.00 
OFFBLACK      -0.6908      0.186      -3.71       0.001      0.50  
NUM OFF        0.1261      0.093        1.36      n.s.      1.13  
----------------------------------------------------------------------------- 
  



 

 21.17 

Table 21.3: (continued) 
 
----------------------------------------------------------------------------- 
 Predictor      Coefficient  Stand Error   t-value      p-value   Odds Ratio 
----------------------------------------------------------------------------- 
      5 BANKS AND CURRENCY EXCHANGES 
      Alternative N=34 
Constant     -1.2864      0.715      -1.80        n.s.      0.28 
GUNCRIME        1.4098      0.365       3.86        0.001      4.09 
EVENING     -1.4180      0.621      -2.28       0.05      0.24 
LATENIGHT      -1.7920      0.743      -2.41       0.05      0.17 
TRAVEL DIST      0.0085      0.002        3.56       0.001      1.01 
OFFAGE     -0.0023      0.002      -1.12        n.s.      1.00 
OFFBLACK      -1.4442      0.396      -3.64       0.001      0.24 
NUM OFF     -0.9035      0.560      -1.61        n.s.      0.41 
----------------------------------------------------------------------------- 
      6 SCHOOLS 
      Alternative N=88 
Constant        6.8782      0.873       7.87       0.001    970.84  
GUNCRIME     -2.0414      0.614     -3.32       0.001      0.13 
EVENING      -2.1276      0.479      -4.44       0.001      0.12 
LATENIGHT      -2.2976      0.752      -3.06       0.01      0.10 
TRAVEL DIST      0.0066      0.003        2.35       0.05      1.01 
OFFAGE      -0.3716      0.040      -9.19       0.001      0.70 
OFFBLACK      -1.1790      0.381      -3.09       0.01      0.31 
NUM OFF      -0.1896      0.279      -0.68        n.s.      0.83 
----------------------------------------------------------------------------- 
      7 PARKS 
      Alternative N=81 
Constant        2.7911      0.618        4.52       0.001     16.30 
GUNCRIME      -0.7293      0.337       -2.17       0.05      0.48 
EVENING        0.0657      0.283        0.23        n.s.      1.07 
LATENIGHT      -1.1658      0.461      -2.53       0.05      0.31 
TRAVEL DIST      0.0068      0.002        3.05       0.01      1.01 
OFFAGE      -0.1946      0.025      -7.83       0.001      0.82 
OFFBLACK      -1.2409      0.312      -3.98       0.001      0.30 
NUM OFF        0.2586      0.177        1.46        n.s.      1.30 
----------------------------------------------------------------------------- 
      8 PUBLIC TRANSPORT 
      Alternative N=55 
Constant      -3.0490      0.721     -4.23       0.001      0.05 
GUNCRIME      -0.5504      0.400      -1.38        n.s.      0.58 
EVENING      -0.4107      0.409      -1.00        n.s.      0.66 
LATENIGHT       0.0074      0.338        0.02        n.s.      1.01 
TRAVEL DIST       0.0092      0.002        5.28       0.001      1.01 
OFFAGE      -0.0010      0.001      -0.90        n.s.      1.00 
OFFBLACK        0.6919      0.608        1.14        n.s.      2.00 
NUM OFF      -0.3629      0.348      -1.04        n.s.      0.70 
----------------------------------------------------------------------------- 
Reference Alternative:    2 RESIDENTIAL 
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Table 21.3: (continued) 
 
----------------------------------------------------------------------------- 
Multicollinearity statistics 
Predictor      Pseudo-Tolerance  
GUNCRIME       0.94 
EVENING       0.92 
LATENIGHT      0.92 
TRAVEL DIST      0.98 
OFFAGE       0.99 
OFFBLACK       1.00 
NUM OFF       0.94 

 
 In Table 21.4, the percentage distribution of the 7 premises types is compared for 1997 
and 1998 with the 1998  percentage correctly predicted for each type of premises using the MNL 
equation developed for 1997 robberies.   Overall, not much has changed between the two years.   
 

Table 21.4: 

Non-Street Robberies in 1997 & 1998 
1998 Predicted by the 1997 Multinomial Logit Model 

 
         Percent  
         Correctly 
         Predicted 
  Type of Premises 1997  1998  for 1998 
  Residential  48.6%  47.8%  53.0%   
  Garages/Parking  11.3%  10.5%  12.6%   
  Commercial  23.8%  25.4%  33.2%   
  Banks/CurrEx    2.1%    3.7%    4.8%    
  Schools       5.5%    5.3%   39.2%    
  Parks     5.1%    4.0%   11.7%   
  Public Transit    3.5%    3.3%    5.0%  
  --------------------------------------------------------------------------------------- 
  Number of Robberies  1587   1441      
         
 In order to be an improvement on the naïve assumption that the percentage of incidents at 
each premises type is no better than the overall distribution of premises in 1998, the multinomial 
logit model based on 1997 (Column 3) should predict the premises of incidents better than the 
marginal percentage distribution of incidents in 1998 (Column 2).  It does for all premise types. 
A few examples: 
 

1. 47.8% of incidents were residential with the model correctly predicting 53.0% 
percent of them.  

2. 25.4% of incidents were commercial with the model correctly predicting 33.2% 
percent.  
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3. 5.3% of incidents were in schools or school yards and the model correctly predicted 
39.2% percent.  

4. Garages and parking lots were only slightly better predicted by the model than by the 
1998 percentage distribution.  10.5% of incidents were in garages or parking lots, and 
the model correctly predicted 12.6% of these. 

 
  Example 1 Conclusion 
 
      When an offender chooses a type of premise to commit a robbery, the choice is not random.  
Personal characteristics such as age and racial group make a difference, but so do decisions that 
the offenders make when coming into the incident such as gun availability, distance from home, 
and time of day.    This example demonstrates how Multinomial Logit models can be used to 
clarify the offender’s choice by the type of premise.   The example also demonstrates that a 
model based on robbery choices made in one year can be useful in prediction of robberies in 
another year. 
 
 Another example of the Multinomial Logit model is presented in the attachment where 
Levine, Robertson and Fosberg analyze the type of weapon used in Houston robberies.   
  

The Conditional Logit Model 
 
 The CL model is estimated on a different data structure. It is a matrix where each row 
(record) represents a combination of an observational unit n (a case, often a decision maker) with  
an alternative in the choice set i, and where each column represents a variable (a characteristic of 
the observational unit and/or the alternative). In this case, each record represents a possible 
alternative that the case (or decision maker) is presented with.  The dependent variable is a 
binomial variable and indicates which alternative i from a set of alternatives was chosen by 
observational unit n.   
 For example, a community is divided into twenty neighborhoods (alternatives).  Each of 
these is classified according to number of businesses, wealth, racial makeup and population size 
(5 variables).   For each case, an offender ‘selects’ a neighborhood where the crime is committed 
(choice).1   For 100 cases and twenty alternatives, a matrix of 2,000 records and a minimum of 
six variables would be necessary.  The sixth variable identifies the chosen alternative.  The 
number of records can grow quickly.  The following is a simplified example. The variation in 
outcomes is explained by variation in the characteristics of the alternatives. CrimeStat is able to 
construct such a file by combining a ‘case file’ and an ‘alternatives file’. Below we present a 
simplified description of the process.  

                                                 
1  The offender may not do this rationally, of course, and may simply be at that location (a routine activity).  

Nevertheless, the model assumes that the offender has made a utility calculation to commit the crime at the 
location.  To that extent, it is a decision among many alternatives. 
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  Destination Choice 
 

 We start with the case file shown in Table 21.1, that is the file that is used for estimating 
a multinomial logit model, and by a model of the Destination (i.e.. in which area, P, Q, R or S, 
did the offender commit the crime?). Whereas a MNL model is used to assess whether linear 
combinations of characteristics associated with the cases (e.g.,Origin, Age, Time and CrimeType) 
predict which zones the offender selects to commit the crime, a CL model is used to assess 
whether characteristics of the alternatives predict the zone chosen. The alternatives are the zones 
themselves and, obviously, additional information is needed on the alternatives.  

 
Table 21.5 shows part of an example file, containing the four alternative destination areas 

P, Q, R and S for the decision on where to offend. The variables include an identifier (Zone), the 
percentage of the household below a poverty threshold (Poverty) and the percentage of the non-
residential land use (Non-Residential) in the zone. 
 

Table 21.5: 

Zone File Describing 4 Alternative Zones 
 

Zone Poverty Non-Residential 
P 2 40 
Q 2 16 
R 4 23 
S 5 12 

 
 The data structure required for estimation of the CL model represents all possible 
combinations of the rows in the case file and the rows in the zone file, including the variables in 
both files.  It also includes for each decision maker a binomial variable indicating the alternative 
that was chosen by the decision maker.  For example, if there are 200 cases (decision makers) 
and 7 alternatives that are available, there will be 1,400 records (200 x 7) in the data set.  Each 
decision maker will be represented 7 times, representing each of the 7 alternatives that the 
decision maker is confronted with.  However, the decision maker will have selected only one of 
these alternatives.  For that record, the value of the binomial choice variable will be 1; for the 
other six records, the value of the binomial choice variable will be 0. 
 
 To go back to the example, Table 21.6 displays the combination of Tables 21.1 and 21.5. 
Note that the columns 1-6 of Table 21.6 are a copy of Table 21.1 with each row repeated four 
times (the first original row in rows 1-4). Also verify that columns 7-9 are copies of Table 21.5, 
with each row repeated five times (the first original row in rows 1, 5, 9, 13 and 17, the second 
original row in rows 2, 6, 10, 14 and 18, etc.). Finally note that the indicator variable,  
 



 

 21.21 

Table 21.6: 

Case-alternative File Describing 20 Case-Alternative Combinations 
 

ID Org Dest Age CrimeTyp Time Zone Pov NonRes Chosen Home 
1 P P 18 Burglary 3am P 2 40 1 1 
1 P P 18 Burglary 3am Q 2 16 0 0 
1 P P 18 Burglary 3am R 4 23 0 0 
1 P P 18 Burglary 3am S 5 62 0 0 
2 Q P 23 Robbery 7pm P 2 40 1 0 
2 Q P 23 Robbery 7pm Q 2 16 0 1 
2 Q P 23 Robbery 7pm R 4 23 0 0 
2 Q P 23 Robbery 7pm S 5 62 0 0 
3 R S 42 Illicit drug 2pm P 2 40 0 0 
3 R S 42 Illicit drug 2pm Q 2 16 0 0 
3 R S 42 Illicit drug 2pm R 4 23 0 1 
3 R S 42 Illicit drug 2pm S 5 62 1 0 
4 R Q 32 Robbery 1pm P 2 40 0 0 
4 R Q 32 Robbery 1pm Q 2 16 1 0 
4 R Q 32 Robbery 1pm R 4 23 0 1 
4 R Q 32 Robbery 1pm S 5 62 0 0 
5 S R 19 Burglary 6am P 2 40 0 0 
5 S R 19 Burglary 6am Q 2 16 0 0 
5 S R 19 Burglary 6am R 4 23 1 0 
5 S R 19 Burglary 6am S 5 62 0 1 

 
 
Chosen, is set to 1 if the value in variable Destination matches the value in variable Zone. The 
variable Home will be discussed below. 
 
 Note that in Table 21.6, the zone characteristics Pov and Nonres only vary across 
alternatives but not across cases (decision makers): the values of these two variables are just 
repeated in every case. Quite often, however, the model includes variables that vary across 
alternatives and across cases as well.  The last column in Table 21.6 contains a binomial 
variable, Home, that indicated whether an alternative zone is the zone of residence of the 
offender. Thus, it has value 1 if Origin=Zone, and 0 otherwise. This variable varies both across 
alternatives (e.g. for a given ID, one alternative equals 1 and the other equal 0) and across cases 
(for a given Zone, say A, it equals 1 for case 1, but 0 for cases 2-5). In a similar fashion (but 
more difficult to verify by just inspecting the table), we could define a new variable that 
represents the distance between the alternative zone and the zone of the offender’s residence. 
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 Note also that the indexing in the independent variables in the MNL and CL models 
reflects the data structures used for estimation. In the MLN model, Vin = ² iXn, where the index n 
in the term Xn indicates that the variables only vary between cases (decision makers), so that we 
only need one row per case. In the CL model, Vin = ² Xni, where the indices n and i in the term Xni 
reflect that the variables can vary between cases (decision makers) and between alternatives, so 
that we need multiple rows case (equation 21.11 demonstrated that in the CL model, the 
variables must vary across alternatives and may vary across decision makers, but cannot be 
estimated when they vary across decision makers only).  
 
 Crime Type Choice 
 
 Now let us consider another type of choice: the choice of a crime type. An offender 
urgently needing money may have to choose a criminal activity that generates the required 
amount as easily and with as little risk as possible. If we assume that burglary, robbery and illicit 
drug dealing are the available alternatives, an alternatives file could look like Table 21.7. The 
variables in this file represent attributes that may differentiate between the crime types: Expected 
Profits, Detection Risk and Time needed to search and attack a target and that may affect the 
attractiveness of these offences to the offenders.  
 

Table 21.7: 

Crime Type File 
(Alternative Crime Types) 

 

Crime type 
Expected 
Profits 

Detection 
Risk 

Sanction 
Severity 

Time Needed 

Burglary 200 .07 3 60  
Robbery 50 .15 5 20  

Illicit drug 20 .02 2 40  
 
 Analogously to the case of destination zone choice, the data structure required for 
estimation of the CL model represents all possible combinations of the rows in the case file 
(Table 21.1) and the rows in the alternatives file (Table 21.6), including the variables in either 
file, and also including for each decision maker a binomial variable indicating the alternative 
(which crime type) that was chosen by the decision maker.  
 
 Table 21.8 displays the combination of Tables 21.1 and 21.7. The first six columns of 
Table 21.8 are a copy of Table 21.1 with each row repeated three times. Also verify that column 
7-9 are copies of Table 21.3, with each row repeated four times (the first original row in rows 
1,4,7, 10, and 13, the second original row in rows 2, 5, 8, 11 and 14, etc.). Finally note that the 
indicator variable Chosen is set to 1 if the value in variable Type matches the value in variable 
CrimeType. 
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Table 21.8: 

Case-alternative File Describing 15 Case-alternative Combinations 
 

ID Org Dest Age CrimeType Time Type Profit Risk Sanc Time Chosen 
1 P P 18 burglary 3am burglary 200 .07 3 60  1 
1 P P 18 burglary 3am robbery 50 .15 5 20  0 
1 P P 18 burglary 3am il. drug 20 .02 2 40  0 
2 Q P 23 robbery 7pm burglary 200 .07 3 60  0 
2 Q P 23 robbery 7pm robbery 50 .15 5 20  1 
2 Q P 23 robbery 7pm il. drug 20 .02 2 40  0 
3 R S 42 il. drug 2pm burglary 200 .07 3 60  0 
3 R S 42 il. drug 2pm robbery 50 .15 5 20  0 
3 R S 42 il. drug 2pm il. drug 20 .02 2 40  1 
4 R Q 32 robbery 1pm burglary 200 .07 3 60  0 
4 R Q 32 robbery 1pm robbery 50 .15 5 20  1 
4 R Q 32 robbery 1pm il. drug 20 .02 2 40  0 
5 S R 19 burglary 6am burglary 200 .07 3 60  1 
5 S R 19 burglary 6am robbery 50 .15 5 20  0 
5 S R 19 burglary 6am il. drug 20 .02 2 40  0 

 

 
Example 2: Modeling Choice of Neighborhood for Residential Burglaries in The 
Hague with the Conditional Logit Model 

 
 The discrete spatial choice approach was first applied to criminal location choices by 
Bernasco & Nieuwbeerta (2005). This example uses CrimeStat to replicate their analysis of 548 
cleared burglaries committed in the years 1996-2001 in the city of The Hague, the Netherlands, 
by solitary offenders ( i.e., offenders who perpetrated the burglary without known accomplishes).  
 
 The discrete spatial choice model of burglary integrated journey-to-crime research (that 
focuses on distance traveled without considering other aspects of criminal location choice) and 
ecological research (that addresses variation in opportunities and target attractiveness, but 
ignores the distance offenders have to travel to reach the targets).  
 
 Bernasco & Nieuwbeerta distinguished 89 neighborhoods in The Hague, which served as 
the spatial units of analysis. They argued that neighborhoods would be attractive for burglary if 
they (1) were affluent, (2) had a large proportion of single-family dwellings, (3) had high 
population turnover (4) had high ethnic heterogeneity, (5) had large numbers of households, (6) 
were  situated relatively close to the city center and (7) were located relatively close to the 
offender’s residence. Note that the first six criteria are the attributes of the 89 alternative 
neighborhoods (independently of any attributes of the burglar), while the last criterion (proximity 
to offender’s home) depends on the locations of both the offender and the potential target 
neighborhoods.  
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        In Table 21.9, the 548 The Hague burglaries are analyzed with the conditional logit model, 
using the following 7 variables as predictors of the burglars’ selection of a target neighborhood: 
 
1. PROPVAL. Average value of residential properties, in 100,000 euro 
2. SINGFAM. Percentage of units that are single-family dwellings, in 10% units 
3. RESMOBIL. Percentage of residents that moved during past year, in 10% units 
4. ETNHETERO. (Ethnic Heterogeneity). Blau / Herfindahl index (x 10) 
5. PROXIMITY. Negative distance between offender neighborhood and potential target 

neighborhood, in kilometers. The authors used negative distance instead of distance because 
this yielded a model in which all expected parameters were positive. 

6. PROXCITY.Negative distance between city center and potential target neighborhood, in 
kilometers 

7. RESUNITS. Number of residential properties in the neighborhood, in 1,000 properties 
 
 The results in Table 21.9 replicate the findings reported by Bernasco & Nieuwbeerta 
(2005, p. 308).2  The summary section of the output reports general information about the model 
and the estimation procedure, including the names of the data file and the dependent variable. 
The output shows that the number of records is 48,772, which is 548 × 89 (i.e. the number of 
offenders multiplied by the number of The Hague neighborhoods). The number of degrees of 
freedom is 541 (the number of offenders -548, minus the number of estimated parameters -7). As 
discussed in the multinomial logit example, the likelihood statistics (Log Likelihood, Akaike 
Information Criterion, AIC ; and Bayesian Information Criterion, BIC) indicate how well the 
model fits the data (lower values indicate better fit). These statistics are only used to compare 
different models, and have no useful interpretation for a single model.   

 
 The coefficient section reports the results for each predictor variable and include the 
estimated coefficients, their standard errors, t-values, and p-values. The odds ratios column is the 
most useful statistic for substantive interpretation of the outcome.  The odds ratio (which equals 
eβ) represents the factor by which the odds that a neighborhood is chosen for a burglary increases 
or decreases when the value of the predictor increases by one unit. An odds ratio greater than 1 
indicates that the odds increase while an odds ratio between 0 and 1 indicate that the odds 
decrease.  
 

For example, the odds ratio of 1.05 for variable PROPVAL indicates that as the average 
value of properties in the neighborhood increases by 100,000 euro, the odds that it is selected by 
a burglar increase by a factor 1.05 (i.e. by approximately 4.5 percent).  Another example: the 
                                                 
2  The standard errors reported here are slightly smaller than those reported by Bernasco & Nieuwbeerta 

(2005), a difference due to their correction of the standard errors for the possible interdependence among 
the burglaries (the 548 burglaries were committed by 290 unique persons; thus, some of them committed 
multiple burglaries).  
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estimated value of 1.67 for proximity means that if a neighborhood is located one kilometer 
closer to the offender’s home, the odds that it will be selected by this burglar increase by a factor 
1.67 (i.e. by approximately 67 percent).  
 

Table 21.9: 

Conditional Logit Model of Burglary Neighborhood Choice 
 
 Model result: 
 Data file:                         TheHagueBurglary.dbf 
 DepVar:                            CHOSEN 
 N:                                 48,772 
 Df:                                541 
 Type of choice model:              Conditional logit model 
 Number of Alternatives:            89 
 Method of estimation:              MLE 
 
      Likelihood statistics 
 Log Likelihood:                    -2,203.3 
 AIC:                               4,420.6 
 BIC/SC:                            4,450.7 
  
      Model error estimates 
 Mean absolute deviation:           0.02 
 Mean squared predicted error:      0.01 
 
----------------------------------------------------------------------------- 
                                       Pseudo-     Odds 
 Predictor   Coefficient Stand Error   Tolerance   t-value   p-value  Ratio 
 PROPVAL     0.0445     0.112    0.33      0.40  n.s.  1.05 
 SINGFAM     0.1239     0.042       0.43      2.96     0.01   1.13 
 RESMOBIL   -0.0285     0.046       0.48  -0.62      n.s.   0.97  
 ETNHETERO   0.1380     0.032       0.37      4.37     0.001  1.15 
 PROXIMITY    0.5140     0.034       0.74     15.22     0.001  1.67 
 PROXCITY    -0.0812     0.049       0.37     -1.66      n.s.   0.92 
 RESUNITS    0.3039     0.029       0.80     10.61     0.001  1.36 
----------------------------------------------------------------------------- 
Average Predicted Probability: 
             Mean 
   CHOSEN    Probability  N        StdDev 
     0       0.011      48224     0.012   
     1       0.028       548         0.024   
 Total       0.011        48772  0.013   

 
 The section also includes the pseudo-tolerances of the indicator variable (see Chapters 15 
and 17 for discussion of this statistic). If the tolerance of a variable is low, this indicates that the 
variable is strongly correlated with linear combinations of the other predictor variables in the 
equation, and that it therefore does not add much unique variability to the prediction of the 
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dependent variable. This situation is called multicollinearity and is usually solved by removing 
the variable with the lowest tolerance from the equation.  Note that three of the variables are not 
significant and several have low tolerances and that a simplified model can be produced by 
dropping them without much loss of generality (not shown). 
 
 The last section also lists average predicted probabilities for neighborhoods that were 
chosen (.028) and those that were not chosen (.011). Note that the average predicted probability 
multiplied by the total number of records yields the total number of burglary cases in the file.3  
 
Conclusion 
 
 In discrete choice modeling, the dependent variable is made up of mutually exclusive and 
exhaustive categories.  The category that is chosen is based upon characteristics of the decision 
maker (in the multinomial logit model), the characteristics of the alternatives (in the conditional 
logit model), or the interaction of the two (also in the conditional logit model).  Interpretations of 
discrete choice models can be closely linked to the economic theory of utility maximization.   Of 
all possible alternatives, the alternative is selected that maximizes gain and minimizes cost. 
 
 The CrimeStat discrete choice module is designed for regression when the dependent 
variable consists of unordered categories such as type of weapon or neighborhood where a crime 
is committed.   This is in contrast to more traditional regression that is mainly concerned with 
dependent variables that are continuous or quasi-continuous, such as rates or counts.   The 
Discrete Choice module is a multinomial extension of binomial logistic regression, discussed in 
Chapter 18, which allows for only two categories of the dependent variable. 
 
 The Discrete Choice module provides for two different models, the multinomial and the 
conditional logit model.  Which one is used must be based upon the availability and relevance of 
data that reflect attributes of the categories and attributes of the cases (usually offenders, or 
crimes). To some extent it also depends upon the number of categories of the dependent variable 
since the tractability of the multinomial model decreases as the number of categories grows.   
  
 The conditional logit model is most appropriate if the outcome is assumed to be based on 
characteristics of the alternatives or their interaction with characteristics of the situation or the 
decision-maker. The CL data structure duplicates every possible alternative for each case and 
designates one as chosen.  The results summarize the difference between the chosen selection 
and all others.  For example, Chicago has seventy-seven neighborhoods that vary in terms of 
wealth, number of businesses, level of drug crime, and population.  They also vary in distance 
from an offender’s home.   Each offender’s decision about in which neighborhood to commit the 
                                                 
3  To do this accurately, one needs more than 3 decimal places.  The CrimeStat output includes six decimal 

places.  We have reduced the number of decimal places in the table to make it clearer. 
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crime is based upon a comparison of the characteristics of the 77 neighborhoods.  The data file 
has one record for each alternative that the decision maker faces.  If 1,000 offenders are 
analyzed, the resultant file would have 77,000 records. 
  

The multinomial model may be appropriate if the choice has fewer categories and is 
dependent mainly on characteristics of the offender and the particular incident.  A separate 
equation is constructed that compares a reference category with every other category of the 
dependent variable. For example, if weapon choice is dependent upon the victim’s age and 
gender, type of target, and time of day,  then a separate equation is constructed comparing gun 
incidents, the most frequent category, to knives, other weapons and strong armed. The data file 
contains one record for each offender. 
 
 In Chapter 22, we discuss the use of the CrimeStat discrete choice module routines to 
estimate these two models.  Two additional routines are included in the discrete choice module.    
First, as discussed above the Conditional logit requires data organization that combines 
characteristics of the incident and all possible choices.   CrimeStat will build this file for you.   
Second, both discrete and conditional models allow for prediction of dependent variables in one 
data set from the relationships found in another.  Thus, in the example of Chicago robberies 
(above) 1998 robbery locations are predicted based on MNL coefficients of 1997 robberies. 
 
 If an analyst wants to consider the ‘who’, ‘where’, or ‘why’ of choice among multiple 
mutually exclusive possibilities and has a model in which criminals maximize the utility of their 
choices, then the either Conditional logit or Multinomial logit in the discrete choice module are 
appropriate techniques. 
  
  
 

  



 

 21.28 

References 
 
Ben-Akiva, M. E., & Bierlaire, M. (1999). Discrete Choice Methods and their Applications to 
Short Term Travel Decisions. In R. W. Hall (Ed.), Handbook of Transportation Science (pp. 5-
34). Norwell, MA: Kluwer. 
 
Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete Choice Analysis: Theory and Application to 
Travel Demand. Cambridge, MA: MIT Press. 
 
Bernasco, W. (2010a). Modeling Micro-Level Crime Location Choice: Application of the 
Discrete Choice Framework to Crime at Places. Journal of Quantitative Criminology, 26(1), 
113-138. 
 
Bernasco, W. (2010b). A Sentimental Journey to Crime; Effects of Residential History on Crime 
Location Choice. Criminology, 48, 389-416. 
 
Bernasco, W. (2007). The usefulness of measuring spatial opportunity structures for tracking 
down offenders: A theoretical analysis of geographic offender profiling using simulation studies. 
Psychology, Crime & Law, 13, 155-171. 
 
Bernasco, W. (2006). Co-Offending and the Choice of Target Areas in Burglary. Journal of 
Investigative Psychology and Offender Profiling, 3, 139-155. 
 
Bernasco, W., & Block, R. (2009). Where Offenders Choose to Attack: A Discrete Choice 
Model of Robberies in Chicago. Criminology, 47(1), 93-130. 
 
Bernasco, W., & Kooistra, T. (2010). Effects of Residential History on Commercial Robbers’ 
Crime Location Choices. European Journal of Criminology, 7(4), 251-265. 
 
Bernasco, W., & Nieuwbeerta, P. (2005). How Do Residential Burglars Select Target Areas? A 
New Approach to the Analysis of Criminal Location Choice. British Journal of Criminology, 45, 
296-315. 
 
Clare, J., Fernandez, J., & Morgan, F. (2009). Formal Evaluation of the Impact of Barriers and 
Connectors on Residential Burglars' Macro-Level Offending Location Choices. Australian and 
New Zealand Journal of Criminology, 42, 139-158. 
 
Jepsen, L., & Jepsen, C. (2002). An empirical analysis of the matching patterns of same-sex and 
opposite-sex couples. Demography, 39(3), 435-453. 
 



 

 21.29 

References (continued) 
 
Krebs, J. R., & Davies, N. B. (1993). An Introduction to Behavioural Ecology (3th ed.). Oxford: 
Blackwell. 
 
McFadden, D. (1980). Econometric Models for Probabilistic Choice Among Products. The 
Journal of Business, 53(3), S13-S29. 
 
McFadden, D. (1973). Conditional Logit Analysis of Qualitative Choice Behavior. In P. 
Zarembka (Ed.), Frontiers in Econometrics (pp. 105-142). New York: Academic Press. 
 
Palfrey, T. R., & Poole, K. T. (1987). The Relationship between Information, Ideology, and 
Voting Behavior. American Journal of Political Science, 31(3), 511-530. 
 
Phillips, S. (2003). The Social Structure of Vengeance: A Test of Black's Model. Criminology, 
41(3), 673-708. 
 
Rengert, G. F. (1981). Burglary in Philadelphia: A Critique of an Opportunity Structure Model. 
In P. J. Brantingham & P. L. Brantingham (Eds.), Environmental Criminology (pp. 189-202). 
Beverly Hills, CA: Sage. 
 
Smith, T. S. (1976). Inverse Distance Variations for the Flow of Crime in Urban Areas. Social 
Forces, 54(4), 802-815. 
 
Tita, G., & Griffiths, E. (2005). Traveling to Violence: The Case for a Mobility-Based Spatial 
Typology of Homicide. Journal of Research in Crime and Delinquency, 42, 275-308. 
 
Train, K. E. (2009). Discrete Choice Methods with Simulation (2nd ed.). New York: Cambridge 
University Press. 
 
Train, K. E. (1980). A Structured Logit Model of Auto Ownership and Mode Choice. The 
Review of Economic Studies, 47(2), 357-370. 
 
 



Attachment A: 21.30 
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Modeling Correlates of Weapon Use in Houston Robberies 

With the Multinomial Logit Model 
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Introduction 

 
 We made an analysis of weapon use in Houston robberies.  Because the type of weapon 
used rarely changes, the Multinomial Logit model was an appropriate modeling tool.  Between 
2007 and 2009, there were 33,419 robberies that occurred within the City of Houston.  Of these, 
suspect information was obtained for 3,709 of these offenses.  Using the suspect information for 
these 3,709 offenses, we modeled predictors of weapon use.   
 
 Figure 21A.1 shows the distribution of weapons within the area covered by the Houston 
Police Department. Of the weapons used, 1,744 (or 47%) involved firearms, 272 (or 7%) 
involved knives, 1,184 (or 32%) involved bodily force, 192 (or 5%) involved threat, and 317 (or 
9%) involved another weapon. Using the ‘other weapon’ as the reference category, we related 
weapon choice to 11 variables grouped into five categories: 1) Offender characteristics (age, 
gender, being of Hispanic ethnicity, being of African-American ethnicity); 2) Presence of co-
offenders (the number of suspects); 3) Whether the robbery occurred on a commercial premise or 
not; 4) Time period (night, afternoon, morning), and 5) Crime location characteristics (median 
household income of the block group at the crime location, distance from the offenders residence 
to the crime location).   
 
Method 
 
 The multinomial logit model was used to estimate the effect of the coefficients on 
weapon choice.  The choice probability, Pni, that the offender, i, chooses a particular weapon, j, is 
estimated by an exponentiated linear combination of independent predictors associated with the 
offender, k, proportional to the choice probabilities for all weapons: 
 

 
	 	 	 	

	 	 	 	

∑

∑ ∑
 

  



Figure 21A.1:
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 That is, the probability of the offender choosing any one weapon is estimated by an 
exponentiated linear combination of observed variables associated with the offenders divided by 
the sum of the exponentiated linear combination for all weapon choices. The coefficients are 
estimated across offenders but the probabilities are calculated for each offender separately.  
 
 Table 21A.1 presents the results of the model and Table 21A.2 summarizes the initial 
frequencies and the average predicted probabilities.  Compared to the use of another weapon (the 
reference group), firearm use was associated with younger Hispanic or African-American males, 
with more accomplices, and was more likely to be committed on commercial premises in higher 
income locations at night or in the early morning.  Crime travel distance was farther.   
 

Table 21A.1: 

Multinomial Logit Predictors of Weapon Use in Houston Robberies: 2007-09 
 
 Model result: 
 DepVar:                            WEAPON 
 N:                                 3709 
 Df:                                3696 
       Likelihood statistics 
 Log Likelihood:                    -4432.1 
 AIC:                               8936.3 
 BIC/SC:                            9160.2 
       Model error statistics 
 Mean absolute deviation:           0.27 
 Mean squared predicted error:      0.14 

 
  Weapon:   Firearm 

----------------------------------------------------------------------------- 
 Predictor  Coefficient   Stand Error    t-value       p-value   Odds ratio 
----------------------------------------------------------------------------- 
  Constant     0.4959  0.005    91.43        0.001  1.64 
  Offender characteristics 
       AGE    -0.0279      0.003      -9.79       0.001  0.97 
    FEMALE    -0.9308      0.005   -171.60       0.001  0.39 
  HISPANIC     1.0317      0.005     190.54       0.001  2.81 
  AFRICAN- 
   AMERICAN    1.3980      0.005     258.29       0.001  4.05 
  Co-offenders 
NUMSUSPCTS     0.1774      0.005      33.08       0.001  1.19 

 Type of premise 
COMMERCIAL     0.6431      0.005     118.73       0.001  1.90 

    Time period 
     NIGHT     0.3927      0.005       72.47       0.001  1.48 
 AFTERNOON    -0.2119      0.005     -39.11       0.001  0.81 
   MORNING     0.1672      0.005      30.84       0.001  1.18 
  Crime location 
MED HH INC     0.00001   0.000003       1.97       0.05  1.00 
    TRAVEL 
  DISTANCE     0.0289      0.004       6.65       0.001  1.03 
-----------------------------------------------------------------------------
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Table 21A.1: (continued) 
 

 Weapon:   Knife 
----------------------------------------------------------------------------- 
 Predictor  Coefficient   Stand Error    t-value       p-value   Odds ratio 
----------------------------------------------------------------------------- 
  Constant    -0.6883     0.005    -126.82       0.001  0.50 
  Offender characteristics 
       AGE     0.0205    0.004       5.82       0.001  1.02 
    FEMALE    -0.1706     0.005     -31.43       0.001  0.84 
  HISPANIC     0.4801     0.005      88.52       0.001  1.62 
  AFRICAN- 
   AMERICAN   -0.1024     0.005     -18.88       0.001  0.90 
  Co-offenders 
NUMSUSPCTS    -0.1842     0.005     -34.03       0.001  0.83 

 Type of premise 
COMMERCIAL     0.0914     0.005      16.84       0.001  1.10 

 Time period 
     NIGHT     0.2574     0.005      47.45       0.001  1.29 
 AFTERNOON    -0.0165     0.005      -3.05       0.01  0.98 
   MORNING     0.1056     0.005      19.46   0.001  1.11 
  Crime location 
MED HH INC     0.000004   0.000003       1.123   n.s.  1.00 
    TRAVEL 
  DISTANCE    -0.0300     0.005      -5.91       0.001  0.97 
----------------------------------------------------------------------------- 

 
 Weapon:   Bodily force 
----------------------------------------------------------------------------- 
 Predictor  Coefficient   Stand Error    t-value       p-value   Odds ratio 
----------------------------------------------------------------------------- 
  Constant     0.5384     0.005      99.27     0.001  1.71 
  Offender characteristics 
       AGE    -0.0012     0.003      -0.42       n.s.  1.00 
    FEMALE     0.0542      0.005       9.99       0.001  1.06 
  HISPANIC     0.2362      0.005      43.61       0.001  1.27 
  AFRICAN- 
   AMERICAN    0.5802      0.005     107.17       0.001  1.79 
  Co-offenders 
NUMSUSPCTS    -0.1342     0.005     -24.96       0.001  0.87 

 Type of premise 
COMMERCIAL     0.2963     0.005      54.70       0.001  1.34 

     Time period 
     NIGHT     0.0861      0.005      15.88       0.001  1.09 
 AFTERNOON     0.4638      0.005      85.64       0.001  1.59 
   MORNING     0.3381     0.005      62.35       0.001  1.40 
  Crime location 
MED HH INC     0.00001   0.000003    4.14       0.001  1.00 
    TRAVEL 
  DISTANCE    -0.0227     0.005      -5.02       0.001  0.98 
----------------------------------------------------------------------------- 
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Table 21A.1: (continued) 
 
 Weapon:   Threat 
----------------------------------------------------------------------------- 
 Predictor  Coefficient   Stand Error   t-value        p-value   Odds ratio 
----------------------------------------------------------------------------- 
  Constant    -1.9169     0.005    -353.16       0.001  0.15 
  Offender characteristics 
       AGE     0.0187     0.004       5.17       0.001  1.02 
    FEMALE    -1.2088      0.005    -222.67       0.001  0.30 
  HISPANIC     0.2279      0.005      42.00       0.001  1.26 
  AFRICAN- 
   AMERICAN    0.6623    0.005     122.08       0.001  1.94 
  Co-offenders 
NUMSUSPCTS    -0.3061      0.005     -56.47      0.001  0.74 

 Type of premise 
COMMERCIAL     0.7707      0.005     142.04       0.001  2.16 

     Time period 
     NIGHT    -0.1765      0.005     -32.52       0.001  0.84 
 AFTERNOON    -0.0113      0.005      -2.08       0.05  0.99 
   MORNING     0.4941      0.005      91.049       0.001  1.64 
  Crime location 
MED HH INC     0.00002    0.000003    4.25       0.001  1.00 
    TRAVEL 
  DISTANCE     0.0193     0.005       3.86      0.001  1.02 
----------------------------------------------------------------------------- 

 Reference choice:   Other weapon 
 
 On the other hand, knife use was associated with older, Hispanic males with few 
accomplices.  The robberies were more likely to be committed on commercial premises at night 
or early morning. Crime travel distance was shorter. 
 
 Bodily force was associated with Hispanic or African-American females and with few 
accomplices.  The robberies were more likely to be committed in higher income locations on 
commercial premises in the afternoon, morning or, to a lesser extent, late at night. The crime 
travel distance was shorter. 
 
 Finally, threats were associated with older Hispanic or African-American males with no 
or few accomplices. The robberies were more likely to be committed on commercial premises in 
the morning in higher income locations. The crime travel distance was farther. 
 
 Table 21A.2 shows that the average predicted probabilities for weapon use across all 
robbers exactly predicted the actual distribution of weapon use. 
 

Conclusion 
 
 The most distinguishing variable is the number of suspects.  More co-offenders lead to a 
greater use of firearms, suggesting the involvement of gangs.  Other consistent predictors are 
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ethnicity - Hispanic or African-Americans are more likely to use weapons than non-Hispanic 
White or Asian suspects, and gender - males are more likely to use firearms, knives or threats 
than females, who in turn are more likely to use bodily force. Commercial properties tend to be  
 

Table 21A.2: 

Summary of Predictions 

          Average 
      Frequency of   Predicted 
  Weapon   Weapon Use     (%)  Probability 
  Firearm    1,744      (47%)    0.47 
  Knife        272       (7%)     0.07 
  Bodily force    1,184      (32%)    0.32 
  Threat        192     (5%)     0.05 
  Other weapon       317      (9%)     0.09 
  TOTAL    3,709      (100%)    1.00 
 
disproportionately associated with weapons of all sorts primarily because they are the most 
common location for robberies in general.  There are subtle differences in the time period and in 
the travel distance in predicting the type of weapon used. 
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Chapter 22:  

The CrimeStat Discrete Choice Module 

We now describe the CrimeStat discrete choice module. There are two pages in the 
module. The Discrete Choice I page allows the creation of a data set appropriate for the 
conditional logit model and it estimates either multinomial logit or conditional logit models.  The 
model coefficients can be saved. Using the saved model coefficients, the Discrete Choice II page 
calculates predicted probabilities in either the same or another data set. 

 
Discrete Choice Modeling I 
 

The aim of the discrete choice I modeling module is to estimate a functional relationship 
between a discrete (nominal) dependent variable and one or more independent variables.  It is a 
statistical method that is derived from utility theory, i.e. random utility maximization (RUM) 
theory.  A ‘decision maker’ (e.g., an offender committing a crime) is faced with a set of 
alternatives, labeled 1 through J, from which s/he has to select exactly one.  The probability that 
an alternative will be chosen is a function of its observed and unobserved utility to the decision 
maker.  The observed utility is a function of known variables and can be expressed as a linear 
combination of the independent variables. The unobserved utility is the random error component 
of the model.  The estimated probability is the exponentiated observed utility of a specific 
alternative, J, divided by the sum of the exponentiated observed utilities of all available 
alternatives (see Chapter 21).   

 
There are two general forms of the discrete choice model, multinomial logit and 

conditional logit.  The multinomial logit model estimates the probability that a specific 
alternative, 1 to J, as a function of characteristics of the decision makers, either personal 
characteristics (e.g., age, gender, ethnicity) or environmental characteristics (e.g., the median 
household income of the block in which the decision maker lives).  The probability that any one 
alternative is chosen is estimated as a function of these characteristics.  Per variable 
(characteristic), there is one parameter estimated for every alternative, one of which is the 
reference alternative in which the coefficients are automatically set to 0. The multinomial logit 
model is most appropriate when the outcome of the choice is expected to depend mostly on 
characteristics of the decision maker (and not on observed characteristics of the alternatives) and 
when there are only a limited number of alternatives available (e.g., 5 weapon choices).  The 
conditional logit model is a more general model and estimates the probability of a set of 
alternatives, 1 to J, as a function of characteristics of the alternatives themselves, possibly in 
interaction with characteristics of the decision maker.  The conditional logit model is most 
appropriate when the outcome of the choice is expected to depend mostly on the characteristics 
of the alternatives, and can handle a large number of alternatives.  However, the analysis file  
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becomes very large.  There is a single parameter estimated for every characteristic of the 
alternative. 

 
Although the multinomial and the conditional logit are based on a single underlying 

statistical model, their estimation requires different data structures.  In the multinomial logit 
model, the data contain a single record for every decision maker, and a single dependent 
(nominal) variable that indicates which alternative (1..J) was chosen. Thus, if there are N 
decision makers, there are N records and at least one variable indicates which alternative was 
chosen. The file structure is thus similar to that used in the regression module.  

 
In the conditional logit model, for each decision maker there is a record for every choice 

that this decision maker is faced. Thus, if there are N decision makers and J alternatives available 
to every decision maker, then the data set has N*J records, one for every alternative faced by the 
decision maker. In this case, the alternative that was selected has to be indicated by a 
dichotomous (dummy) variable (1 for chosen and 0 for not chosen). 

 
Figure 22.1 show the interface for the Discrete Choice I page.  The discrete choice I 

section includes two routines: 
 
1. A utility for creating a data set appropriate for the conditional logit model. It 

matches a data set of Ncases (individuals/offenders/records) with a data set of J 
alternatives.  The result is a data set with N*J records.   
 

2. A routine for estimating either the multinomial logit model or the conditional logit 
model. 

 
Create Data set for Conditional Logit Model 

 
This routine is optional. It simplifies the task of creating a database for use in the 

conditional logit model.  It matches a case database with a alternatives data base, producing the 
cross join of both databases.  The case database is the database for the multinomial logit model. 
It will thus have the individual records of the decision makers – offenders, individuals, 
organizations.  It will include at least one variable indicating the alternative that the decision 
maker selected (e.g., type of crime committed, the type of weapon used, the location where the 
crime was committed) as well as characteristics of the individuals or characteristics associated 
with the individuals (e.g., age, gender, ethnicity, median household income of the zone where the 
decision maker lives time of event, day of week of event).  

 
The alternatives database, on the other hand, lists the individual alternatives that were 

available (e.g., all the locations where a crime could be committed, all the different types of  
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weapons that were used by different offenders) as well as attributes associated with the 
alternatives themselves (e.g., median household income or number of employees working at the 
locations, or characteristics associated with each type of weapon).   

 
The joined file has one record per alternative for each case.  Thus, if there are N 

individuals faced with J choices, then the matching routine will create N*J records.  It should be 
noted that the matching assigns every characteristic associated with a choice to every case 
associated with a decision maker.  A field, called CHOSEN, is automatically added to every 
record.  This field has the value 1 for alternatives that were chosen and 0 for alternatives that 
were not chosen.  The Chosen field should thus sum to N (i.e., only one record per decision 
maker should have a selected alternative).  Also, as an option, and only if both the individuals 
and the alternatives have geographic coordinates, a second field called DISTANCE will be added 
that calculates the distance from each case record to each alternative record.  The user must 
specify which distance units are to be used (miles, kilometers, meters, feet, or nautical miles). 

 
For example, if both the case database and the alternatives database contain X and Y 

coordinates, then it is possible to calculate the distance between every decision maker and every 
choice.  
 
 The routine cannot calculate other interactions associated with a specific alternative and 
particular decision maker, and such interactions must be added to the data outside CrimeStat. 
Interactions between variables in the data can be calculated. For example, to test whether 
increasing distance makes alternatives less attractive for juvenile offenders but not for adult 
offenders, an interaction DISTANCE x AGE can be calculated. Other interactions require 
additional information, for example if location choice is what is modeled, one may want to add a 
variable indicating, for each alternative location,  how many prior offences the offender  has 
committed in that alternative location. In these cases the external file is constructed by the user, 
and the step “Create data set for conditional discrete choice model” is skipped.   

 
Input Case File 

  
 The case data set for the Discrete Choice I module can be the Primary file, the Secondary 
file, or another file.  If the Primary file or Secondary files are used, the coordinate system and 
distance units were defined on the Primary file page.  If another file is used, then any coordinates 
in that file are not defined and the file is treated as a non-spatial file. The user must browse and 
identify the file. To avoid confusion, the user must verify that no variable/field in the input case 
file has the same name as any variable in the Input Alternatives File (see below).   Note: If a 
primary file is used, coordinates must be defined for that file.  If the file is not spatial, then input 
it as ‘Other file’. 
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  Case ID 
 
 Select the Case ID. The Input Case File must have a Case ID, a variable that uniquely 
identifies cases in the Input  Case File.  
 
  Choice Variable 
 
 Select the Choice Variable. The Input Case File must contain a variable (field) that 
identifies alternative chosen by the decision maker.  For example, if the choice is about the type 
of weapon used, then the Choice Variable indicates whether it was a gun, a knife , strong-arm, 
and so forth.  Or, if the choice is the census tract in which a crime was perpetrated, then the 
Choice Variable identifies the  census tract where the incident occurred.  
 

Input Alternatives File 
 

 The alternatives data set for the Discrete Choice I module can be the Primary file, the 
Secondary file, or another file.  If the Primary or Secondary files are used, the coordinate system 
and distance units were defined on the Primary file page.  If another file is used, then any 
coordinates in that file are not defined and the file is treated as a non-spatial file. The user must 
browse and identify the Input Alternatives File. To avoid confusion, the user must verify that no 
variable in the input alternative file has the same name as any variable in the Input Case File. 

 
  Alternatives ID 
 
 Select the Alternatives ID.  The Alternatives File must have an Alternative ID, a variable 
that uniquely identifies records in file. The Alternatives File must contain a record for every 
possible alternative even those that were never chosen.  For example, most census tracts in a city 
have no homicides during a year, but the alternatives file must include every tract.  The coding 
must match the coding of the Choice Variable in the Input Case File. Be careful about duplicate 
ID names in the two files as the name will appear twice in the output file with the first use 
representing the cases and the second use representing the alternatives.  The names reflect the 
link between each case ID and each alternatives ID and it is better to use different names for the 
ID fields to avoid confusion. 
 

 Calculate Distance between Cases and Alternatives 
 
 There is an optional box that allows the routine to calculate the distance from each case 
record to each alternative record.  If checked, the routine will calculate the distance.  This only 
applies if both the case file and the alternatives file are either the Primary file or Secondary. The 
user must specify the distance units to be used in the calculation (in miles, kilometers, feet, 
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meters, or nautical miles).  The box is checked by default.  The saved filed will have a new field 
called DIST.  That is, if the X/Y coordinates for an offender’s home address are coded in the 
Input Case File while the coordinates for census tract are recorded in the Input Alternatives File, 
then the distances from the offender’s home to each alternative census tract will be calculated. 
 

Save Output 
 
The matched Input Case and Input Alternatives file is saved as a new file in ‘dbf’ format, 

that can subsequently be used to estimate a conditional (but not multinomial) logit model, as 
described below under ‘Estimating a conditional logit model’.  The user should define the name 
of the file and point to the directory where it is saved.  The output includes all fields from the 
case file and all fields from the choice file, and optionally a field DIST containing calculated 
distances.  There will be J records for each of the N cases.  An automatically added field called 
CHOSEN takes the value ‘1’ for the choice that was selected and ‘0’ for choices that were not 
selected.  

 
 Note that the joined data base can be very large. Before creating a data set for a 
conditional discrete choice model, include in the alternatives and choice files only variables that 
are likely to be used in the analysis, and to format them to be as small as possible. 
   
Estimate Model 
 
 The Estimate Model routine will estimate a discrete choice model, either the multinomial 
logit or the conditional logit.   
 
 Estimating a Multinomial Logit Model 
 
 The multinomial logit model is used when there is one record per decision maker with a 
choice having been made by the decision maker.  The model estimates the effect of each 
independent variable on the probability of each distinct alternative.  The data are structured so 
that there is one record per decision maker with the choice variable indicating which alternative 
was chosen. The data set is similar to that of the regression model in that there is one record per 
decision maker. The model then estimates the effects of the independent variables on the 
probability of each alternative.  By definition, one of the alternatives (by default the most 
frequently chosen alternative, otherwise to be chosen by the user) is the reference alternative to 
which the other alternatives are compared.  
 
 The multinomial logit model is always estimated with a constant. This type of model is 
appropriate when values of the predictor variables only vary across cases (decision-makers), not 
across alternatives.   
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 Estimating a Conditional Logit Model 
 
 The conditional logit model, on the other hand, is used when the values of the predictor 
variables vary across alternatives. In that case, there is one record per alternative per decision 
maker.  That is, the decision maker is faced with J alternatives but chooses only one.  The 
database must indicate which of the J alternatives was selected and the model estimates the 
effect of each independent variable on choosing an alternative.  There is a record for every 
alternative faced by the decision maker.  The parameter estimates indicate the effects of the 
independent variables on the likelihood that the alternative is selected.  
 
 Data File 
 
 The data set for the model can be either the Primary file or another file (the Secondary 
file is not available).  If the Primary file is used, the coordinate system and distance units are the 
same as were defined on the Primary file page.   
 

Select file for Other Discrete Choice File 
 

 If the discrete choice file is another file than the Primary file, the user must browse and 
identify the file.  
 

Choice Variable 
 

A list of variables from the discrete choice file is displayed.  There is a box for defining 
the choice variable.  The user must select one choice variable.  .  For the conditional logit model, 
on the other hand, the variable contains a set of 1’s (for selected alternatives) or 0’s (for 
alternatives that were not selected).  If the data set was constructed with the CrimeStat ‘Create 
data set for conditional discrete choice model’ routine, then the field CHOSEN should be used.  

 
Note that the field that is added for the choice variable (whether CHOSEN or another 

variable) is inspected for unique values.  If the data set is large, it may take a while to filter 
through those values.   

 
Independent Variables 

 
There is a box for defining the independent variables.  The user must choose one or more 

independent variables.  There is no limit to the number. The variables are output in the same 
order as specified in the dialogue so a user should consider how these are to be displayed. The 
order in which the variables are entered does not affect the estimated parameters. 
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Type of Discrete Choice Model 
 
 The type of discrete choice model to be estimated must be specified.  The choices are 
Multinomial (logit) or Conditional (logit).  The default model is the Conditional logit. NOTE: the 
file used for a Multinomial Logit model is different than the file used for a Conditional Logit 
model.  With the file used in the Multinomial Logit model, there is one record per case with the 
choice specified on the record.  With the file used in the Conditional Logit model, there is one 
record per alternative with J records per case (where J is the number of alternatives).  Be sure to 
use the correct file type.  The routine assumes that the data are consistent with the type of model 
chosen.  For a multinomial logit model, the routine will treat each record as a separate decision 
maker and will estimate a model for each choice less the reference choice.  For a conditional 
logit model, the routine will treat each record as one of J choices (where J is defined by the user 
– see below) and will estimate a single model for the decision. 
 
 The user needs to be very careful that the correct data set is used with the appropriate 
model because the routine can estimate its equations with either of these data sets.  That is, if the 
data set is appropriate for the multinomial logit model but the user specifies a conditional logit 
model, the routine will estimate a single equation treating multiples of J records as a single 
decision maker.  Similarly, if the data set is appropriate for a conditional logit model but the user 
specifies a multinomial logit model, the routine will treat each record as if it were a separate 
decision maker and will estimate one equation for each choice that it finds in the choice variable.  
The results in both these cases will be meaningless since the there is a mismatch between the 
data set and the type of model selected. In short, the user should be aware of this. 
 
  Reference Alternative (multinomial logit model only) 
 
 For the multinomial logit model, the user should specify which choice is to be used as the 
reference.  The constant and the coefficients for the reference choice will automatically be 0. The 
user should specify a particular choice from the list of available alternatives or select the most 
frequently used alternative as the reference choice.  Keep in mind that the coefficients will 
change depending on which alternative is selected as the reference choice since a comparison is 
always relative.  This will affect the interpretation of the coefficients though not the estimated 
probabilities. 
 
 For the conditional logit model, however, there is no reference choice.  Therefore, this 
field will be blanked out when the type of discrete choice model is conditional. 
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Case ID (conditional logit model only) 
 
 When a conditional logit model is estimated, each case contributes multiple records to the 
data file (as many as there are alternatives). In order for CrimeStat to know which records belong 
to the same case (decision maker), the user must specify a Case ID variable, i.e. a variable that 
uniquely identifies cases (decision makers). If the data set was created with the CrimeStat 
‘Create Data set for Conditional Logit Model’ routine, the variable is the Case ID variable 
specified in that routine.  CrimeStat will check the number of alternatives per case, and only 
estimate the conditional logit model if all cases have an equal number of alternatives. If the 
number of alternatives per case is not equal, CrimeStat will issue an error message upon the start 
of the estimation.  
 
 Output for the Discrete Choice Model 
 
 The output includes both summary statistics and individual variable coefficients 
estimates.  The output will vary between the multinomial logit and conditional logit models. 
 

Discrete Choice Model Summary Statistics 
  

The summary statistics include: 
 

Information about the model 
 

1. Date and time 
2. The data file 
3. The dependent (choice) variable 
4. The number of records 
5. The degrees of freedom  
6. The type of choice model (multinomial discrete or conditional discrete) 
7. Number of alternatives. For both the multinomial logit model and the conditional 

logit model, the routine will internally determine the number of alternatives.   
8. The method of estimation (MLE – maximum likelihood estimation) 

 
Discrete choice model likelihood statistics 

 
9. Log likelihood estimate, which is a negative number.  For a set number of 

independent variables, the smaller the log likelihood (i.e., the most negative) the 
better. 

10. Log likelihood per case.  Smaller (more negative) values are better. This is useful 
when comparing a similar model but with different numbers of records. 
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11. Akaike Information Criterion (AIC) adjusts the log likelihood for the degrees of 
freedom.  The smaller the AIC, the better. 

12. AIC per case.  Smaller values are better. 
13. Bayesian Information Criterion (BIC), sometimes known as the Schwartz 

Criterion (SC), adjusts the log likelihood for the degrees of freedom. The smaller 
the BIC, the better. 

14. BIC per case. Smaller values are better. 
15. Mean Absolute Deviation (MAD).  For a set number of independent variables, a 

smaller MAD is better. 
16. Mean Squared Predictive Error (MSPE).  For a set number of independent 

variables, a smaller MSPE is better. 
 

Discrete Choice Individual Coefficients Statistics 
 

There is different coefficient output for the multinomial logit model than for the 
conditional logit model.  The multinomial logit model will output constants and individual 
coefficients for each of J-1 alternatives (where J is the total number of alternatives). The constant 
and coefficients for the reference alternative are automatically defined as zero (0).  For example, 
if there are four alternatives, then three sets of equations will be output, one for each of the J-1 
(4-1=3) alternatives.  The coefficients are always relative to the reference alternative.  Therefore, 
a positive coefficient indicates that the independent variable contributes more for that alternative 
than for the reference alternative while a negative coefficient indicates that the independent 
variable contributes less for that choice than for the reference choice.  The significance test of the 
coefficient indicates whether the difference is statistically significant or not compared to the 
reference alternative.  Note that the multinomial logit model always has a constant. 

 
On the other hand, the conditional logit model will output a single set of individual 

coefficients with no constant.  There is no reference choice and the coefficients are relative to 
not choosing a particular alternative (i.e., having a value of 0 for CHOSEN). 

 
For the individual coefficients, the following are output for each independent variable: 

 
1. The coefficient. 
2. The standard error of the coefficient. 
3. t-value. 
4. p-value.  This is the two-tail probability level associated with the t-test. 
5. Odds ratio.  This is the exponentiation of the coefficient (i.e., eβ).  It indicates the 

change in the odds of that alternative (relative to the reference alternative in the 
multinomial model, and relative to 0 in the conditional logit model) caused by a 
one-unit increase in the independent variable. 
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Average predicted probability 
 

 For the conditional logit model only, an additional table is output that indicates the 
average predicted probability of the model for those cases that were selected (i.e., in which 
CHOSEN=1), for those cases that were not selected (i.e., CHOSEN=0), and for all cases.  The 
number of records associated with each category is indicated as well as the standard deviation. 

 
 Table 22.1 show the output for two of the weapon alternatives for a multinomial logit 
model predicting weapon use during 2006 Houston robberies.  Only the first two weapon 
alternatives (bodily force and firearms) are shown. 
 

Multicollinearity Among Independent Variables in the Discrete Choice Model 
 

A major consideration in any regression model (including discrete choice) is that the 
independent variables are statistically independent. Non-independence is called multicollinearity 
and means that there is overlap in prediction among two or more independent variables.  This 
can lead to uncertainty in interpreting coefficients as well as to an unstable model that may not 
hold in the future.  Generally, it is a good idea to reduce multicollinearity as much as possible.   

 
A tolerance test is given for each coefficient.  This is defined as 1 – the R-square of the 

independent variable predicted by the remaining independent variables in the equation using an 
Ordinary Least Squares model.  It is an indicator of how much the remaining variables in a 
model account for the variance of any particular independent variable.  Since the method uses the 
Ordinary Least Squares (OLS) methods, it is an approximate (pseudo) test for the discrete choice 
routines.  OLS assumes normality and constant residual errors.  However, many independent 
variables are not normally distributed (e.g., income, distance traveled, number of persons living 
in poverty).  Consequently, the use of OLS to test for multicollinearity is exact only when the 
independent variable being examined for tolerance is normally distributed; otherwise, it is an 
approximate test.  Nevertheless, it is useful indicator of multicollinearity.  If the tolerance is low, 
that definitely indicates that there is multicollinearity. On the other hand, a high tolerance level 
does not necessarily indicate that there is little multicollinearity.  

 
From the test, a guidance message is displayed that indicates probable or possible 

multicollinearity. If there is substantial multicollinearity (indicated by low tolerance values), it is 
a good idea is to drop one of the colinear independent variables and re-run the model.  

 
Save Output 

 
 The output from the discrete choice model can be saved.   
 



22.12  

Table 22.1 

Multinomial Logit Model Screen Output 
 

Model result: 
 Data file:                         Houston robberies 2007-2009.dbf 
 DepVar:                            WEAPON 
 N:                                 3709 
 Df:                                3697 
 Type of choice model:              Multinomial logit model 
 Number of Alternatives:            5 
 Method of estimation:              MLE 
      Likelihood statistics 
 Log Likelihood:                    -4432.143485 
      Per case:                     -1.194970 
 AIC:                               8936.286971 
      Per case:                     2.409352 
 BIC/SC:                            9160.153603 
      Per case:                     2.469710 
      Model error estimates 
 Mean absolute deviation:           0.319935 
 Mean squared predicted error:      0.184770 
----------------------------------------------------------------------------- 
 Predictor     Coefficient  Stand Error   t-value      p-value   Odds Ratio 
----------------------------------------------------------------------------- 
      Bodily force 
      Alternative N=1184 
  Constant     0.538440     0.005424     99.266258      0.001     1.713332 
   PRIMAGE    -0.001171     0.002809     -0.416833       n.s.     0.998830 
PRIMGENDER     0.054200     0.005423      9.994519      0.001     1.055695 
  HISPANIC     0.236188     0.005416     43.606294      0.001     1.266412 
     BLACK     0.580160     0.005414    107.168407      0.001     1.786324 
NUMSUSPCTS    -0.134192     0.005376    -24.959032      0.001     0.874422 
COMMERCIAL     0.296323     0.005417     54.700174      0.001     1.344904 
     NIGHT     0.086105     0.005421     15.884819      0.001     1.089921 
 AFTERNOON     0.463824     0.005416     85.641166      0.001     1.590144 
   MORNING     0.338060     0.005422     62.350883      0.001     1.402224 
CL_MDHHINC     0.000011     0.000003      4.135364      0.001     1.000011 
  DISTANCE    -0.022691     0.004519     -5.021083      0.001     0.977565 
----------------------------------------------------------------------------- 
      Firearm 
      Alternative N=1744 
  Constant     0.495888     0.005424     91.425683      0.001     1.641956 
   PRIMAGE    -0.027863     0.002846     -9.791397      0.001     0.972521 
PRIMGENDER    -0.930784     0.005424   -171.601872      0.001     0.394245 
  HISPANIC     1.031718     0.005415    190.544383      0.001     2.805882 
     BLACK     1.397967     0.005412    258.286949      0.001     4.046965 
NUMSUSPCTS     0.177425     0.005363     33.080392      0.001     1.194139 
COMMERCIAL     0.643070     0.005416    118.730846      0.001     1.902312 
     NIGHT     0.392673     0.005418     72.470517      0.001     1.480934 
 AFTERNOON    -0.211853     0.005416    -39.114246      0.001     0.809084 
   MORNING     0.167169     0.005421     30.835798      0.001     1.181955 
CL_MDHHINC     0.000005     0.000003      1.970048      0.050     1.000005 
  DISTANCE     0.028941     0.004351      6.652022      0.001     1.029364 
-----------------------------------------------------------------------------  
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  Saved Multinomial Logit Output 
 
 For the multinomial logit model, the output is a ‘dbf’ file that includes all the input 
variables along with the estimated probability for each choice and the residual error for each 
choice (the observed choice, 1 or 0, minus the predicted probability).  The probability and 
residual error is presented for each of the J alternatives.  These are labeled with a ‘P_ ‘ for 
probability and ‘R_’ for residual error. The different alternatives are indicated by a subscript 
from 0 (for the reference choice) through J-1 (for the other alternatives) in the same order in 
which they are listed in Reference Choice dialogue (excluding the reference choice itself).  For 
example, P_Choice0 is the estimated probability for choice 0 (the reference choice) while 
R_Choice3 is the estimated residual error for choice 3 (the third one listed in the list under 
Reference Choice excluding the reference choice itself).  Table 22.2 shows the first 25 records of 
the file output from the Multinomial Logit model. 
 
  Saved Conditional Logit Output 
 
 For the conditional logit model, the output is a ‘dbf’ file and includes all the input 
variables along with the estimated probability and the residual error for the case.  For each case 
ID, there will be only one record that was chosen.  Further, since the conditional logit model 
produces only one equation, there is only one probability and one residual error. The probability 
is labeled PREDPROB and the residual error is labeled RESID.  The residual error can be used 
to compare different models.  The MAD and MSPE statistics (discussed above) summarize the 
residual errors.  But, a user might want to plot the residuals against one of the independent 
variables to see if it the errors are continuous and increasing (well behaved).  A bizarre error 
pattern can usually indicate that an independent variable is not appropriate. 
 
 Specify a directory where the output file is to be saved and provide a root name.  The 
saved file for the multinomial logit model will have a DCOutMNL prefix while the saved file for 
the conditional logit model will have a DCOutCNL prefix before the user defined root name. 
 

Table 22.3 shows the first 32 records from the file output for the conditional logit model 
that was set up in Figure 22.9 the output of which is display in Figure 22.11. This file copies the 
input records and adds the predicted probability (PREDPROB) for each case-alternative 
combination. For example, for Case 1 the probability of choosing TAZ 403 equals 0.000370. 
Note that within these first 32 zones, the probability of Case 1 choosing TAZ 429 is highest 
(0.046303),which happens to be the TAZ actually chosen by the offender (CHOSEN=1). 
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Table 22.2: 
File Output from Multinomial Logit Model 

First 25 Records 
Make prediction: 
    --------------------------------------------------------- 
    Data file:                            Houston robberies 2010.dbf 
    Type of discrete choice model:        Multinomial discrete model 
    N:                                    3709 
    Predicted Probabilities  
    --------------------------   
    Case ID       Choice0      Choice1      Choice2      Choice3      Choice4       
           1     0.056060     0.370066     0.331705     0.073570     0.168599 
           2     0.096763     0.431871     0.365920     0.060182     0.045264 
           3     0.082294     0.316838     0.508919     0.049205     0.042744 
           4     0.183496     0.380540     0.208544     0.152571     0.074849 
           5     0.092852     0.248848     0.570410     0.045357     0.042533 
           6     0.054154     0.410175     0.446969     0.036294     0.052408 
           7     0.043498     0.405445     0.451540     0.029337     0.070181 
           8     0.083722     0.252532     0.522326     0.118092     0.023329 
           9     0.082219     0.156078     0.665132     0.077454     0.019117 
          10     0.080632     0.448033     0.371738     0.048678     0.050919 
          11     0.086503     0.273349     0.552494     0.045244     0.042410 
          12     0.144867     0.576979     0.041781     0.187909     0.048464 
          13     0.048195     0.159970     0.734329     0.020854     0.036652 
          14     0.107029     0.195817     0.633713     0.044797     0.018644 
          15     0.115121     0.322193     0.338518     0.168298     0.055870 
          16     0.090629     0.491720     0.283552     0.071254     0.062845 
          17     0.078795     0.591412     0.262103     0.042796     0.024894 
          18     0.122961     0.270860     0.446626     0.127957     0.031596 
          19     0.074225     0.261177     0.516627     0.094802     0.053169 
          20     0.156918     0.364621     0.132714     0.280764     0.064982 
          21     0.052718     0.322463     0.475312     0.032347     0.117159 
          22     0.081029     0.416482     0.297664     0.133562     0.071264 
          23     0.114424     0.425378     0.377130     0.070873     0.012195 
          24     0.081482     0.400866     0.316524     0.126742     0.074385 
          25     0.185771     0.322145     0.298299     0.111579     0.082205 
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Table 22.3: 
File Output from Conditional Logit Model 

First 32 records 
 

CASE TAZ AREA ARTERIAL COMMACRES DIST_CBD DISTANCE CHOSEN PREDPROB
1 401 35.97 0.00 14.01 28.01 29.95 0 0.000000
1 402 37.64 13.65 54.58 26.96 34.87 0 0.000000
1 403 8.23 6.66 66.95 21.63 23.04 0 0.000370
1 404 11.10 2.96 0.00 22.42 24.90 0 0.000042
1 405 25.22 12.91 11.08 24.43 26.95 0 0.000001
1 406 21.48 10.70 7.26 20.73 21.92 0 0.000003
1 407 9.40 9.95 54.11 20.18 19.40 0 0.000410
1 408 10.26 0.65 0.00 19.31 18.52 0 0.000091
1 409 4.87 2.48 0.00 16.97 15.38 0 0.000795
1 410 5.49 0.38 0.00 18.28 17.80 0 0.000441
1 411 3.23 0.00 0.00 17.03 16.16 0 0.001030
1 412 4.43 2.38 2.57 19.28 20.98 0 0.000511
1 413 2.56 2.78 2.90 16.80 18.97 0 0.001039
1 414 3.03 1.52 1.66 16.09 18.66 0 0.000781
1 415 7.62 0.00 0.00 18.23 18.97 0 0.000175
1 416 4.13 1.98 0.00 17.05 15.44 0 0.000983
1 417 5.01 0.82 0.00 16.47 15.23 0 0.000655
1 418 8.85 4.72 1.36 22.32 27.84 0 0.000065
1 419 11.00 3.07 8.28 19.66 24.66 0 0.000038
1 420 11.93 2.51 0.36 17.48 18.81 0 0.000047
1 421 4.68 5.87 20.41 14.96 17.75 0 0.000773
1 422 4.41 2.87 15.36 17.13 23.06 0 0.000360
1 423 3.27 0.22 0.00 15.49 21.08 0 0.000420
1 424 5.27 0.36 28.30 14.03 16.51 0 0.000512
1 425 0.88 0.00 62.12 14.35 10.67 0 0.007878
1 426 0.52 0.00 10.82 13.45 10.26 0 0.004882
1 427 0.37 0.00 0.00 12.84 9.46 0 0.004833
1 428 0.80 0.00 0.00 13.56 10.26 0 0.003989
1 429 0.40 0.00 201.95 12.76 9.23 1 0.046303
1 430 3.83 0.00 21.03 15.02 12.46 0 0.001520
1 431 0.23 0.67 19.12 14.70 12.15 0 0.005282
1 432 0.70 0.00 0.00 14.79 11.92 0 0.003635

 

 Save Estimated Coefficients 
 
 The coefficients from either the multinomial logit or the conditional logit models can be 
saved for use with other data sets.  Specify a directory where the coefficients file is to be saved 
and provide a root name.  The saved coefficients file for the multinomial logit model will have a 
DCCoeffMNL prefix while the saved coefficients file for the conditional logit model will have a 
DCCoeffCNL prefix before the user defined root name. 
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Example of Running a Multinomial Logit Model 
 
 To illustrate the process of running a multinomial logit model, we model the premises 
chosen for Chicago residential robberies for 1997. Figure 22.2 shows setting up the multinomial 
logit model including reading in the data file as the ‘Other’ file, defining the choice variable 
(PREMISES) and the selection of the predictors from the list of available independent variables 
(GUNCRIME, EVENING, LATENIGHT, TRAVELDIST, OFFAGE, and OFFBLACK).  
Finally, Figure 22.3 shows the screen output of the multinomial logit model. 
 

Example of Creating and Running a Conditional Logit Model 
 
 To illustrate the process of creating a file for the conditional logit model and then running 
a file to estimate the predictors of the alternatives, we use an example of predicting which Traffic 
Analysis Zone (TAZ) offenders use to commit crimes.  In Figure 22.4, the case file, which 
contains the origin TAZ and destination TAZ of each of 500 offences, is input as the Primary 
File and the coordinates of each crime location are input as the X and Y coordinates. 
 
 In Figure 22.5, the alternatives file is the information on the 325 TAZs themselves.  This 
is input on the Secondary File page and the coordinate for each TAZ are defined.  In figure 22.6, 
both the case file and the alternatives file are defined for the ‘Create data set for conditional logit 
model’ routine. The case file is defined by the Primary File with the case ID being CASE.  The 
alternatives file (the TAZs) are defined by the secondary File with the alternative ID being TAZ.  
The ‘Calculate distance between cases and alternatives’ box is checked and the distance units 
will be calculated in miles. 
 
 Figure 22.7, the file for the created file is defined (CasesXAlternatives.dbf).  Once the 
user calculates ‘Compute’, the routine runs.  When it has finished, it gives a ‘File saved’ message 
(Figure 22.8). 
 

The user should be sure to uncheck the ‘Create data set for conditional logit model’ 
routine box.  Then, either the created file or another file prepared by the user is input as the 
Primary File.  On the Discrete Choice I page, the ‘Estimate Model’ box is checked and the 
conditional logit model is set up.  The dependent variable is CHOSEN if the file was created by 
the cross-joined file, and can have any name if it was prepared by the user. The dependent 
variable must be a  binary (0/1) variable. Subsequently,  several appropriate predictor variables 
are selected from the independent variables list (Figure 22.9).  In the Conditional Logit example 
they are AREA, ARTERIAL, COMMACRES, DIST_CBD and DISTANCE An output file is 
then defined to save the results of the conditional logit model (Figure 22.10).  Once the 
conditional logit model is run, the screen output can be viewed (Figure 22.11). 
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Step 2 Results of the Multinomial Logit Model Estimate

Figure 22.3:
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Step 1 Inputting a Case File as the Primary File

Figure 22.4:
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Step 1: Inputting a Case File as the Primary File



Step 2 Inputting an Alternatives File as the Secondary File

Figure 22.5:
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Step 3 Setting Up the Routine for Creating a Conditional Logit Database

Figure 22.6:
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Step 4 Choosing a File Name to Save the Created File

Figure 22.7:
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Step 5 Running the Routine to Create the File

Figure 22.8:
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Step 6 Setting Up Conditional Logit Model

Figure 22.9:
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Step 7 Defining Output File for the Conditional Logit Model

Figure 22.10:
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Step 8 Screen Output for the Conditional Logit Model

Figure 22.11:

Example of Setting Up and Running a Conditional Logit Model
Step 8: Screen Output for the Conditional Logit Model
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Discrete Choice Modeling II 
 
 The Discrete Choice modeling II module allows the user to apply the estimated 
coefficients from a discrete choice model to another data set (or a subset of the same data set) 
and calculate predicted probabilities, for either the multinomial logit or the conditional logit 
model.  The ‘Make prediction’ routine allows the application of coefficients to a data set. The 
saved coefficients are applied to similar independent variables and to corresponding values of the 
choice variable to produce an estimated probability of an alternative. 
 
Make Prediction 

 
Figure 22.12 show the interface for the Discrete Choice II page. There are two types of 

models that can be fitted – multinomial logit or conditional logit.  For both types of model, the 
coefficients file must include information on each of the coefficients.  In addition, the 
coefficients model for the multinomial must include the value of the constant.  If the coefficients 
file was generated by CrimeStat on the Discrete Choice I page, then all the necessary information 
will be included.  The user reads in the saved coefficient file and matches the variables to those 
in the new data set based on the order of the coefficients file.   
 
 Discrete Choice Saved Coefficients File 
 
 In order to make a prediction, a model must have already been calibrated and the 
coefficients saved in a coefficients file.  Point to the directory where the coefficients file has 
been saved and identify it. 
 
  Available Variables 
 
 The box labeled ‘Available variables’ will list all the fields on the input data set.  
 
 Independent Predictors 
 
 The independent variables that were used in the calibrated coefficients file will be listed 
in the right column.  They will be in the same order as was estimated in the calibration file. 
 
 Matching variables 
 
 Select corresponding variables from the input data file for the middle column.  The items 
should be listed in the same order as in the ‘independent predictors’ column.  They should be 

 



Figure 22.12:

Discrete Choice Modeling II



22.29  

similar variables in content but need not have the names as in the original data file.  Figure 22.13 
shows an example of setting up a multinomial logit prediction model using an already estimated 
multinomial logit model from another data set.  The user reads in the data file and then already-
saved coefficients from the earlier calibration and then matches the variable names in the new 
data set with the saved names from the already calibrated model.  In the example, the variable 
names for travel distance were different in the two files. 
 
 Figure 22.14 shows an analogous example of setting up a conditional logit prediction. 
Again, the variable names in the input file on which the prediction is to be calculated (AREA, 
ARTERIAL, etc.), are the same as those in the file on which the coefficients were estimated. 
This also holds for the ID variable name, which must be specified in case of a conditional logit 
prediction. 
 
  Alternative values (multinomial logit model only) 
 
 The values of the choice variables from the input file will be displayed in the middle 
column. The order should match the values in the adjacent saved coefficients file column.  The 
‘Up’ and ‘Down’ buttons can be used to re-order the values to be sure they are matched exactly. 
 
 Discrete Choice Data File 
 
 The new data set can be either the Primary file or another file.  If another file is being 
used, point to the directory where it is stored and identify it.  The structure of the file for which a 
prediction is made must be the same as that from which the model was initially calibrated.  That 
is, for a multinomial logit prediction, there must be a file with one record per decision maker and 
which includes and ID and each of the independent variables used in the prediction.  For a 
conditional logit prediction, there must be a joined file with a record for every combination of 
case and alternative.   
 
  Saved coefficient values (multinomial logit model only) 
 
 The values of the saved coefficients file will be displayed in the right column. Additional 
values can be added with the “Add to” button and existing values can be removed with the 
“Remove” button.  It is essential that the values in the middle column match exactly their 
corresponding values in the right column. 
 
   
 



Figure 22.13:

Example of Running a Multinomial Logit Prediction



Figure 22.14:

Example of Running a Conditional Logit Prediction
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  Reference alternative (multinomial logit model only) 
 
 The reference alternative value is displayed. If it is not correct, type in the correct value 
to be used or, better yet, re-calibrate the original model. This field will be blanked out for the 
conditional logit model since it is not appropriate. 
 
 Discrete Choice Prediction Output 
 
 The screen output provides predictions of the value of the dependent variable in the same 
order as in the input data set.  For the multinomial logit model, the predictions are labeled as 
CHOICE0 (for the reference choice), CHOICE1, CHOICE2, and so forth, in the same order as in 
the input data set. For each alternative, these predictions represent the probability that this 
alternative is chosen, given the values of the predictor variables.  
 
 For the conditional logit model, the prediction is applied to each available alternative.  
The screen output presents the predictions in matrix format with the case ID listed on the vertical 
axis and the choices listed on the horizontal axis (labeled CHOICE0, CHOICE1, CHOICE2, and 
so forth, in the same order as in the input data set). 
 
 Save Predicted Values for Discrete Choice Prediction 
 

The predicted values and the residual errors can be output to a ‘dbf’ file with a 
DCMakePredMNL<root name> for the multinomial logit and DCMakePredCNL<root name> 
for the conditional logit with the root name being provided by the user. The output files differ 
between the multinomial and conditional logit models.   

 
 Multinomial Logit Prediction Output 
 
For the multinomial logit prediction, there is the probability produced for each of the J 

alternatives.  The probabilities are labeled P_CHOICE0 (for the reference choice), P_CHOICE1, 
P_CHOICE2, and so forth in the same order as in the Choice Values dialogue (with the 
exception of the reference alternative which is always defined as P_CHOICE0). The 
probabilities will sum to 1.0 for all J alternatives (within rounding-off error). 

 
Table 22.4 shows the first 25 cases for the file output of a multinomial logit prediction of 

weapon use for 2010 Houston robberies.  The specific alternatives are labeled Choice0, Choice1, 
Choice2, Choice3, and Choice4 and are the weapon categories in the same order as laid out on 
the interface (namely Other weapon, Bodily force, Firearm, Knife, and Threat).   
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Table 22.4: 

File Output from Multinomial Logit Prediction Routine 

First 25 records 
 

ID  P_CHOICE0  P_CHOICE1  P_CHOICE2 P_CHOICE3  P_CHOICE4 

1  0.056060  0.370066  0.331705 0.073570  0.168599 

2  0.096763  0.431871  0.365920 0.060182  0.045264 

3  0.082294  0.316838  0.508919 0.049205  0.042744 

4  0.183496  0.380540  0.208544 0.152571  0.074849 

5  0.092852  0.248848  0.570410 0.045357  0.042533 

6  0.054154  0.410175  0.446969 0.036294  0.052408 

7  0.043498  0.405445  0.451540 0.029337  0.070181 

8  0.083722  0.252532  0.522326 0.118092  0.023329 

9  0.082219  0.156078  0.665132 0.077454  0.019117 

10  0.080632  0.448033  0.371738 0.048678  0.050919 

11  0.086503  0.273349  0.552494 0.045244  0.042410 

12  0.144867  0.576979  0.041781 0.187909  0.048464 

13  0.048195  0.159970  0.734329 0.020854  0.036652 

14  0.107029  0.195817  0.633713 0.044797  0.018644 

15  0.115121  0.322193  0.338518 0.168298  0.055870 

16  0.090629  0.491720  0.283552 0.071254  0.062845 

17  0.078795  0.591412  0.262103 0.042796  0.024894 

18  0.122961  0.270860  0.446626 0.127957  0.031596 

19  0.074225  0.261177  0.516627 0.094802  0.053169 

20  0.156918  0.364621  0.132714 0.280764  0.064982 

21  0.052718  0.322463  0.475312 0.032347  0.117159 

22  0.081029  0.416482  0.297664 0.133562  0.071264 

23  0.114424  0.425378  0.377130 0.070873  0.012195 

24  0.081482  0.400866  0.316524 0.126742  0.074385 

25  0.185771  0.322145  0.298299 0.111579  0.082205 

 
 

Conditional Logit Prediction Output 
 
For the conditional logit prediction, there is a single probability output which is applied 

to the particular record.  Since the data set for the conditional logit model has a single record for 
each alternative available to the decision maker, the probability applies to that alternative. The 
probabilities within a case will sum to 1.0 for all J alternatives (within rounding-off error). The 
column is labeled PREDPROB.  Table 22.5 shows the first 32 cases for a CL prediction output. 
 
  



22.34  

Table 22.5: 

File Output for Conditional Logit Prediction Routine 
First 32 records 

 
CASE TAZ AREA ARTERIAL COMMACRES DIST_CBD DISTANCE PREDPROB

501 401 35.97 0.00 14.01 28.01 31.59 0.000000
501 402 37.64 13.65 54.58 26.96 34.76 0.000000
501 403 8.23 6.66 66.95 21.63 23.78 0.000331
501 404 11.10 2.96 0.00 22.42 26.45 0.000033
501 405 25.22 12.91 11.08 24.43 30.25 0.000000
501 406 21.48 10.70 7.26 20.73 25.48 0.000002
501 407 9.40 9.95 54.11 20.18 25.72 0.000158
501 408 10.26 0.65 0.00 19.31 24.38 0.000037
501 409 4.87 2.48 0.00 16.97 20.48 0.000368
501 410 5.49 0.38 0.00 18.28 25.22 0.000144
501 411 3.23 0.00 0.00 17.03 23.86 0.000322
501 412 4.43 2.38 2.57 19.28 21.17 0.000496
501 413 2.56 2.78 2.90 16.80 19.37 0.000979
501 414 3.03 1.52 1.66 16.09 18.08 0.000852
501 415 7.62 0.00 0.00 18.23 20.75 0.000134
501 416 4.13 1.98 0.00 17.05 18.92 0.000580
501 417 5.01 0.82 0.00 16.47 17.45 0.000469
501 418 8.85 4.72 1.36 22.32 26.56 0.000080
501 419 11.00 3.07 8.28 19.66 21.68 0.000059
501 420 11.93 2.51 0.36 17.48 16.77 0.000064
501 421 4.68 5.87 20.41 14.96 14.64 0.001236
501 422 4.41 2.87 15.36 17.13 19.13 0.000653
501 423 3.27 0.22 0.00 15.49 16.58 0.000830
501 424 5.27 0.36 28.30 14.03 12.03 0.001008
501 425 0.88 0.00 62.12 14.35 17.89 0.002650
501 426 0.52 0.00 10.82 13.45 17.67 0.001596
501 427 0.37 0.00 0.00 12.84 16.84 0.001586
501 428 0.80 0.00 0.00 13.56 18.02 0.001236
501 429 0.40 0.00 201.95 12.76 16.85 0.014658
501 430 3.83 0.00 21.03 15.02 20.21 0.000472
501 431 0.23 0.67 19.12 14.70 19.10 0.001849
501 432 0.70 0.00 0.00 14.79 18.71 0.001303

 



 

Chapter 23: 

Time Series Forecasting 

 
  Wilpen L. Gorr    Andreas M. Olligschlaeger 
  H. John Heinz III College   TruNorth Data Systems  
  Carnegie Mellon University    Baden, Pennsylvania 

Pittsburgh, Pennsylvania   

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table of Contents 

 
Introduction          23.1 
Time Series Data          23.2 

Service demand         23.2 
Fixed time and observation units       23.3 
Limitations          23.4 

Extrapolative Time Series Forecasting      23.4 
Terms           23.5 
Extrapolative methods         23.7 
Simple Exponential Smoothing       23.8 
Selecting a value for the smoothing constant, α      23.10 
Straw man forecasts         23.10 
Holt Exponential Smoothing        23.14 

Classical Decomposition: Seasonality      23.15 
The Detection Problem         23.16 
 Counterfactuals         23.16 
 Tracking Signals         23.17 

Decision Rules         23.18 

Conclusions          23.20 
References           23.26 
 

  



 

 23.1 

Chapter 23: 

Time Series Forecasting 

Introduction 
 
 This chapter presents time series methods useful for tactical deployment of police 
resources. The methods answer the following questions:  
 

 What crime levels are expected in police zones, patrol districts, census tracts, or other 
areas of a jurisdiction given past time trends?  
 

 Are there any new crime patterns, large increases or decreases, starting up in the 
jurisdiction?  

 
The first question is answered using extrapolative time series models to forecast expected 

crime levels by geographic area. The second uses observed departures from the expected crime 
levels as the basis for detecting new crime patterns on an early warning basis. Automation is 
important for such work. For example, if a police organization has 100 census tracts and 10 
crime types that it wishes to track, then it would have 1,000 time series to analyze—too much 
work for manual visual inspection. This chapter presents standard models and methods long-used 
in industry for time series forecasting and detection, making them available in highly optimized 
and automated computer code tailored for crime analysis. 
 
 Time series forecasting can be complex and require sophisticated software and highly-
trained analysts. The good news here, however, is that the forecasting literature on operations 
management applications has shown that simple methods are as accurate as or more so than 
complex methods. Most influential have been the so called “M-Competitions” in which 
forecasters forecasted time series data without seeing the future data and independent judges 
analyzed forecast accuracy with the future data (see Makridakis et al.,1982 and Hibon & 
Makridakis, 2000).   
 

This chapter presents simple methods that are easy to understand and use. These methods 
are self-adaptive to changing conditions, taking care of themselves in the dynamic setting of 
cities and actions of criminals and police. The implementation in CrimeStat optimizes forecast 
model parameters in extensive but fast algorithms, thereby making the module easy to use. The 
detection component has parameters that cannot be readily optimized, but the chapter provides 
default values from a research study on crime detection (Cohen, et al. 2009). Finally, all areas of 
interest such as all patrol districts in a jurisdiction are processed in a single run, again making it 
efficient for analysts. Outputs are easily displayed in GIS as choropleth maps. On these maps it is 
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desirable for analysts to also display individual crime points when zooming into areas of interest 
for detailed diagnosis (see Gorr and Kurland, Chapter 2, 2012). Out of the entire jurisdiction, the 
automated detection methods bring to attention the areas needing further analysis. Then the 
crime analyst zooms into those areas, one-by-one, and studies the detailed crime patterns. 

 
 The chapter starts with overviews of time series data and extrapolative forecast methods. 
It then presents details on exponential smoothing models, which are among the simplest but most 
accurate forecasting methods, along with classical decomposition for estimation of seasonal 
adjustments.  Early detection of time series pattern changes is the final topic, covered first at the 
conceptual level and then as implemented in CrimeStat. Exponential smoothing forecasts are the 
basis for detection, so that all the methods in this chapter work together. 
 

Time Series Data 
 
 This chapter uses univariate time series data, meaning that for a given observation unit, 
there is only a single variable:  
 

	i 	1, … ,m	and	t	 	1, … , T																																																																																					 23.1 , 
       

where 
i = area identifier (e.g., patrol district, census tract) 
m = total number of areas 
t = time period such as month serial number 
T = most recent time period, called the “forecast origin.” 

 
Service Demand 

 
For example, in the private sector, yit might be defined as the product demand by sales 

territory represented by the number of units of product sold per time period. For police the 
corresponding variable could be the number of crime incidents of a particular type per time 
period, usually counts of offense report incidents or computer aided dispatch (CAD) calls for 
service. Arrest and other incident-related data are less useful for tactical deployment of police 
resources. Offense reports are official records of crimes having been committed and can be either 
Uniform Crime Reporting (UCR) hierarchy-based in the U.S., with only the most serious crimes 
included, or incident-based with individual records for each crime type committed in an incident 
being included. Which one to use depends on the particular need required.  For example, for 
dispatching purposes UCR data may be sufficient to determine priority of a call for service.   

 
The question arises, should one use raw crime counts per area and time interval or crime 

rates which are crime counts per time interval and divided by the population at risk? The answer 
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for tactical deployment of police is to use raw crime counts which directly determine the size of 
effort needed for police deployment. Crime rate is somewhat academic in the sense that it tells 
something about behavior of criminals and the effects of congestion, valuable for insight and 
understanding, but not the needed measure for resource allocation.  
  
 Fixed time and observation units 
 
 The time interval of observations in the forecasting area can be any unit of time from 
hours to days, weeks, months, quarters, or years. For example, electric load forecasting needs 
hourly forecasts. Time series analysis (but not forecasting) of crime patterns can benefit from 
estimating hourly seasonality factors of crime for week days versus weekend days. While 
average hourly variations in crime over the 24 hours of a day can be informative, there is not a 
large enough sample size in crime data by zone or patrol district to yield accurate hourly 
forecasts.  
 

Generally the smallest time intervals possible for crime forecasting are weeks or months, 
but then the time series data is still very noisy. The number of days per month of course varies, 
and some organizations adjust monthly time series data to the average number of days per month 
—multiplying by (365/12)/(days in a month), or doing a similar calculation with the number of 
work days (trading days) per month. This is not necessary if including seasonality in a forecast 
model, because the seasonal factor automatically includes an appropriate adjustment. Most crime 
time series data is seasonal. 
 
 The data used in this chapter might better be called “space and time series data” because 
for crime in a police jurisdiction there are administrative and other areas of interest, each having 
crime time series data and needing forecasts. The administrative areas include “zones” each with 
a police station, commander, field officers, and so forth operating semi-autonomously. A zone is 
partitioned into “patrol districts” each with a single patrol unit assigned three shifts per day. 
Other areas of interest include census reporting areas, such as census tracts in the U.S. Census 
areas which generally have a target population (e.g., 4,000 for census tracts) and are 
neighborhoods with common socio-economic patterns. Often in the U.S. patrol districts are made 
up of one or a few census tracts.  
 

Whatever areas are of interest, the needed aggregate space and time series data can easily 
be generated using GIS: 

 
1. Geocode crime incidents using street addresses. 

 
2. Spatially join the geocoded crime incidents to polygons of the area of interest. 
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3. Using the date of incident, create variables for year and week or month. 
 

4. Count crime incidents by area, year, and week or month to form the crime space 
and time series data. 
 

 The extrapolative forecast models of this chapter make minimum use of the spatial 
arrangement of the areas being forecasted. Multivariate models, not covered in this chapter, can 
use crime counts nearby a particular area as part of the model. Here, however, the only use of 
data outside of a particular area being modeled is in estimation of seasonal factors. As explained 
below, estimating seasonality using data from the entire jurisdiction is generally better than 
doing so for each individual district (whether zones or patrol districts).  
 

Limitations 
 

A major tradeoff associated with crime space and time series data is that police need 
forecasts for areas as small as possible so as to target resources precisely.  However, the smaller 
the area, the fewer the crimes and the less reliable are the model estimates and forecasts. Past 
work suggests that for areas as small as census tracts, it is only possible to forecast high volume 
crimes or crime aggregates (e.g., all serious property crimes) with useful accuracy at the monthly 
level (Gorr, Olligschlaeger, & Thompson, 2003). Low volume crimes, such as homicides, cannot 
be forecasted accurately at all, even for an entire jurisdiction.  

 
The inability to forecast small areas accurately is not a big a limitation as it seems, 

because of research on crime hot spots. Typically 50% of crime occurs in only 5% or less of the 
area of a city, in micro-area hot spots (e.g., Weisburd & Green, 1995, Weisburd et al, 2004; see 
Chapters 7, 8 and 9 of the CrimeStat manual). So if one has an early detection of a large crime 
increase, it likely will be in small areas. Then patrols and other police resources can be directed 
to the emerging hot spot. 
 
Extrapolative Time Series Forecasting 
 
 Industry very likely uses more computer machine cycles for extrapolative forecasting 
than any other statistical method. Every week and month, firms forecast demand by product (or 
service type) and sales territory using mostly exponential smoothing models. The crime 
forecasting problem is analogous, with the count of crime incidents representing service demand 
for police. This section starts at the beginning of time series forecasting and detection, with 
general terms and notation used in the area before moving on to specific models.  
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Terms 
 
 While there are many specialized terms for specific forecast approaches and models, the 
general set, however, is not that large. Below is a collection of general terms and notation. A 
good free reference and textbook is online (Hyndman & Athanasopoulos, 2012).  
 

 Univariate forecast model is one that uses time series data for the variable of 
interest (dependent variable only with no independent variables other than the 
time index itself and seasonality; see below in this list). 
 

 Causal or multivariate forecast model is one that has true independent variables 
in addition to the dependent variable. Often multiple regression models are used 
for this category. This chapter does not include any such models but see Chapters 
15-22 for a discussion of regression and discrete choice modeling. Much of the 
forecasting needs for operations management are met with univariate forecast 
models. Forecasts are often needed for one week or month ahead and it is difficult 
to beat the accuracy of univariate forecast models in the short run. 

 
 Forecast origin is T in notation (23.1). It is the most recent data point. 
 

 Steps ahead is how many time intervals into the future corresponds to a forecast. 
Most tactical needs for police are met with a one-step-ahead forecast. 

 
 Forecast horizon is the maximum number of steps ahead, K, made from a 

forecast origin.  
 

 Trace forecast is the full set of forecasts for a particular origin for each step ahead 
out to the horizon. For example, if one were making a trace forecast with monthly 
data and a 12 month horizon, forecasts would be made for each step ahead, 1, 2, 
and so forth up to 12. Generally, forecast errors increase as step ahead increases. 

 
 Level is the current estimated mean of a time series, denoted in this chapter by ait 

for area i at time t. Notice that level varies with time because this chapter uses 
exponential smoothing methods in which model parameters, such as ait, self-adapt 
to changing time series patterns. Simple exponential smoothing, to be discussed in 
depth in the next section, has only ait  as its parameter and thus just estimates the 
current mean of a time series:  
 

	for	t	 	1, … , T.																																																																																								 23.2  
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 Trend is the estimated change per time interval in the mean of a time series, 
moving ahead from the level. Here trend, denoted as bit for area , is also a 
varying parameter. This term is added to the simple exponential smoothing model 
to yield the Holt exponential smoothing forecast model.   

 
	 	 	for	k	 	1, … , K.																																																																		 23.3  

      
The fitted model at time t is still because ait is the current level of the 
time series at time t. The slope, bit, only comes into play when forecasting by 
adding the expected change. 

  

 Seasonality is the adjustment made for each time observation for seasonal 
patterns such as when, for example, crime is low in February and high in July 
relative to the time series trend line. For weekly data, there are 52 seasonal 
adjustments, Sj with j= 1, …, 52.  Likewise for monthly seasonal adjustments 
there are 12 seasonal adjustments. Seasonal adjustments can be additive or 
multiplicative. Additive seasonal adjustments are affected by the scale (volume) 
of data at an observation unit. So a low crime rate patrol sector would have a 
small seasonal adjustment for any time period but a high crime rate patrol sector 
would have a large adjustment. In contrast, multiplicative seasonality is unitless, 
having values such as 1.20 for a 20 percent increase for a summer month and 0.80 
for a 20 percent decrease for a winter month relative to the time trend. For space 
and time series, it is desirable and necessary to use multiplicative seasonality so 
that seasonality estimated using all crime data of a jurisdiction can be used for any 
sub-area of the jurisdiction. Therefore, this chapter uses multiplicative 
seasonality.  If time period t is in season , seasonality is denoted as Sij(t) and the 
Holt model and forecast with seasonal adjustments are  

 
S 	for	t	 	1, … , T																																																																																 23.4  

 
	for	t	 	1, … , T																																																				 23.5  

 
The method by which this model is estimated, including seasonal factors, is 
covered in later parts of this section.  

 

 Fit error is  where yit is data from t = 1, …, T. Typically 
parameters such as ait and bit are estimated by finding values that minimize the 
sum of squared fit errors, Σ eit

2 over all historical data. 
 



 

 23.7 

 Hold-out sample is data used to estimate the forecast accuracy of a forecast 
model. The steps are to use data from t = 1, …, T to estimate model parameters 
(such as ait and bit) and to make forecasts FT+k for k = 1, …, K. The hold out 
sample in this case is yiT+k for k = 1, …, K and it cannot be used in parameter 
estimation. Researchers set aside (or hold out) the end of a time series and 
forecast that data as if it were not available. Then with forecasts made, they 
compare the forecast and hold out sample data to calculate forecast errors. 

 

 Forecast error is eiT+k = yiT+k - FiT+k where yiT+K is data from a hold out sample or, 
for contemporaneous forecasts (made in real time), is simply actual values 
realized after the forecast is made. Given a sample of forecast errors, researchers 
create summaries using measures such as the mean squared forecast error or mean 
absolute forecast error. 

 
Extrapolative methods 

 
There are two main approaches to extrapolative models. The first, time trends as used in 

exponential smoothing, estimates a time trend model and seasonal adjustments. To forecast, one 
merely continues (extrapolates) the most recently-estimated trend line into the future and makes 
corresponding seasonal adjustments. 

 
The second approach estimates correlations of the dependent variable with its past values 

as well as other correlations. For example, if there was a recent run of large crime counts in a 
time series, an autocorrelation model tends to keep the run going. The Box-Jenkins model uses 
this approach (Box et al., 2008).  Box-Jenkins has some limitations for practice. The first is that 
the method tends to be complex with many parameters being estimated and with several steps to 
the procedure. Also, the preponderance of comparative studies in the literature, including the M-
Competitions, have provided evidence that the simpler time trend models are just as accurate if 
not more so than Box-Jenkins models.  Box-Jenkins tends to overfit noisy data (such as crime 
data at the patrol sector level), thereby leading to less accurate forecasts. Therefore, this chapter 
uses trend models. 

 
With exponential smoothing as the approach, the question arises as to how to estimate 

seasonality. An extension of simple and Holt smoothing is the Holt-Winters forecast model that 
simultaneously estimates level, trend, and seasonal factors. An alternative, and the one taken in 
this chapter, is to: 

 
A. Estimate seasonal factors from the raw time series data, as a preliminary step, using 

Classical Decomposition (Hyndman & Athanasopoulos, section 6-3, 2012);  
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B. Deseasonalize the raw data (in the case of multiplicative seasonal factors) by dividing 
each time series data point by its appropriate seasonal factor; 

 
C. Estimate the simple or Holt exponential smoothing model using the deseasonalized 

data; 
 
D. Make extrapolative forecasts; and 
 
E. Reseasonalize the forecasts. 
 
This approach provides alternatives for estimating seasonal factors. The obvious one to 

try is to estimate seasonal factors for each area or district. A problem with this approach, 
however, is that a season only occurs one a year.  For example, if there are five years of weekly 
data and one wants to estimate the seasonal factor for week 21 (or any other week), then there 
are only five observations. This makes seasonality the least precisely estimated parameters in 
extrapolative models. Often, more accurate seasonality estimates can be obtained and therefore 
more accurate forecasts can be had by pooling data across areas. For example, one could 
estimate separate seasonal factors for residential versus commercial areas and then use the 
resulting estimates for each residential and commercial district’s time series.  

 
A better alternative is to estimate seasonality using all of the data of a jurisdiction.  There 

is evidence that this is the best alternative for crime forecasting (Gorr, Olligschlaeger, & 
Thompson, 2003). Jurisdiction-level seasonal adjustments are smaller than those for the district-
level, closer to overall mean levels, which, in turn, provides greater forecast accuracy. District-
level seasonal factors are overly-influenced by individual data points of the small sample sizes of 
districts.  

 
Simple Exponential Smoothing 
 

 This model estimates the time-varying mean of a univariate time series. Perhaps 
confusing is that there are two types of parameters in the model. First is the mean of the series, 
estimated by ait. The second is the smoothing parameter, α, that determines how quickly or 
slowly the method adapts to changes in the mean of the series over time. Each historical data 
point in the time series is weighted in a sum to estimate ait, with the weights declining 
exponentially with the age of the data from the forecast origin. The weights should 
approximately sum to 1.0.  For small α, the weights drop off slowly with data age, retaining more 
of the history in the estimate and making the mean estimate change slowly. For larger α, the 
weights drop off quickly, retaining relatively little of the historical data and making the mean 
estimate change quickly. The closed form version of the estimated mean is as follows: 
 



 

 23.9 

 α  α(1- α) α 1 	α α 1 	α ⋯                  (23.5) 
 
where 0< α<1.  
 
For example, for α=0.05, this expression is 
 

0.05 0.0475 0.045125 0.042869 ⋯																 23.5  
 
but for α=0.25 it is 
 

0.25 0.1875 0.140625 0.105469 ⋯																 23.5  
 
If T=60 (for example, five years of monthly data) the sum of weights for α=0.05 is 0.954 (and as 
T gets larger, the sum approaches 1) and for α=0.25, it is already 1.000. So aiT is a weighted 
average of all the historical data. 
 

Equation 23.5 is rarely used to calculate the current mean, aiT. Instead an equivalent, 
recursive form is used: 

 
α 1 α 	for	t 1, … . , T.																																																																					 23.6  

 
The only issue with this form is that it needs initial values for ai0. Generally yi1 or the average of 
the first few observations is used for this purpose. After a brief “burn in” period, equation (23.6) 
forgets the initial value and tracks the mean of the series, so the choice of initial values is not 
critical. They just have to be reasonable. 
 

Without a seasonal model component, the forecast for simple exponential smoothing is: 
 

	for	k 1, …K.																																																																																																	 23.7  
 
In other words, the forecast is a straight line, a constant, for any future time period. 
 

For noisy data, such as crime counts in patrol districts, and short-term forecasts of one or 
a few steps ahead, it is hard to beat forecasts from (23.7). If, however, the forecasts go out to six 
months or a year ahead, then a time trend term can improve forecast accuracy, if there is a time 
trend in the data. Therefore a section below introduces the Holt exponential smoothing model 
which includes a time trend.   
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Selecting a value for the smoothing constant, α 
 
Simple smoothing has two things going for it. First is that aiT is a measure of central 

tendency, a mean, and it is almost always more accurate over the long-haul to forecast using 
means. Second is that aiT is self-adaptive to changes in the mean, albeit with a time lag. The 
larger α is, the smaller the lag to estimating a time varying mean, but also larger is the chance 
that aiT will overly respond to noise in the time series, depart from the underlying mean, and thus 
forecast poorly. So there is tradeoff, a balancing act in getting α just right. 

 
The traditional criterion for computing parameters is to minimize the sum of squared fit 

errors, and that is what is done in CrimeStat. Unfortunately the corresponding functional form is 
highly nonlinear, so there is not a closed form solution or equation for computing the optimal α. 
Instead, it is easy enough to try a grid of α values (for example, 0.01, 0.02, …, 0.99 in 
CrimeStat), compute the sum of squared fit errors for each grid value, and choose α that has the 
minimum.  

 
Figures 23.1 through 23.3 show the effects of different smoothing parameter values for 

estimating the time series mean from the sample data provided in CrimeStat for this chapter. The 
data are from census tract 20100, Pittsburgh, Pennsylvania (a high crime area) and are monthly 
time series for serious violent crimes (homicide, rape, robbery, and aggravated assault) between 
1990 and 1999. Figure 23.1 shows smoothed values with near-optimal α = 0.15. The smoothed 
values track the mean of the series well. Jurisdiction-level seasonality, estimated from all of 
Pittsburgh’s serious violent crimes (see the Classical Decomposition section), is included in the 
smoothed values, accounting for much of the month-to month variation.   

 
Figures 23.2 and 23.3 are extreme cases for α values to make a point. Figure 23.2 has 

smoothing for α = 0.01, resulting in very slow adaptation and a very long memory for old data 
values. Values that are too low for α cannot keep up with the changes in this time series so that 
forecasts based on them would do poorly. In contrast, Figure 23.3 has smoothing for α = 0.99 so 
that there is practically no memory of historical values. The smoothed values are very close to 
being the raw data with no smoothing. These smoothed values are too noisy and would forecast 
poorly. So an optimal α value between these two extremes is needed for forecasting, 0.15 as 
shown in Figure 23.1. 
 

Straw man forecasts 
 
Clearly simple exponential smoothing is simple, but there are even simpler methods. 

However, to justify its use, simple exponential smoothing has to forecast more accurately than 
these simpler methods.  Comparative research on forecast methods, as published in journal 
articles such as in the International Journal of Forecasting or the Journal of Forecasting, thus 



Simple Smoothing with α=0.15
Figure 23.1:



Simple Smoothing with α=0.01
Figure 23.2:



Simple Smoothing with α=0.9
Figure 23.3:
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always include straw man methods.  Hold-out sample forecast accuracy is compared on the same 
data between multiple forecast models/methods, including straw man methods. 

 
The simplest method, for the case of no seasonality, is the naïve method forecast, using 

the last historical data point (the forecast origin) as the forecast: 
 

	for	all	k.																																																																																																														 23.8 	 
 
This method, also called the random walk forecast, is sometimes hard to beat, for example, in 
attempting to forecast stock market prices. At other times, when there is a time trend, smooth 
mean over time, or seasonality, the naïve method is easy to beat. Gorr, Olligschlaeger, and 
Thompson (2003) provided evidence that naïve forecasts and other data value-based forecasts 
(such as using the same month’s data from the previous year) forecast very poorly for crime data. 
 

A second straw man is the sample mean of the time series as the forecast: 
 

	 ∑ .																																																																																																				 23.9    

 
Closest to simple exponential smoothing is the mean of a moving window of recent data, for 
example with the sum in (23.9) over t=T-w+1, …, T where w is the window length. This mean is 
also self-adaptive to changes in the mean of the time series, but has a larger time lag than 
exponential smoothing. The choice of a value for w is similar to that for α: too large a value 
makes the mean unresponsive and too small a value makes the mean unreliable. 
 

Holt Exponential Smoothing 
 

 This model retains ait and introduces a second model parameter, bit, that is the coefficient 
of the time index of the time series as in (23.3). The Holt recursive equations for estimation are 
as follows: 
 

α 1 α 																																																																																 23.10  

 
β 1	– 	β 																																																																																		 23.11  

 
where ait is the current level of the time series at time t, bit is the time trend slope used in making 
forecasts, α is the smoothing parameter for the level with 0 < α < 1, β is the smoothing parameter 
for the trend with 0 < β < 1, and the estimated model at the forecast origin, T, is  
 

.																																																																																																																																		 23.12  
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The forecast equation is:  
 

	for	all	k.																																																																																																 23.13  
  

It is worth reiterating that equation (23.10) estimates the current mean or level of the time 
series while equation (23.11) estimates the trend, or change in the series for each step ahead 
forecast. This is in contrast to a linear regression model with the time index as the independent 
variable,  where b0 is the intercept term, the value of  at t is b0.  Parameter ait in 
(28.10) is not an intercept term, but is the mean of the time series at time t.  
 
 The Holt model needs initial values, ai0 and bi0. For the former, one can use the first 
observation or average of the first few observations as in simple exponential smoothing. For the 
latter, one can use the difference yi2-yi1 or the average of the first few such differences. Again, as 
long as reasonable values are used, Holt will soon forget the initial values and be on track with 
the mean parameter values. 
 
 Holt parameter estimation also uses a grid search, but over the two-dimensional α and β 
space. For example, in CrimeStat, if there are 100 values to try for each smoothing parameter, 
then all possible pairs need to be tried with 10,000 pairs in total for the optimization. This is 
easily and quickly done by CrimeStat every time it forecasts using the Holt model. 
 

Classical Decomposition: Seasonality 
 
 This section covers one of the earliest and most robust methods for estimating seasonality 
in a time series, Classical Decomposition. It is a separate procedure for estimating seasonality 
from raw time series data, so it can be applied just for the sake of understanding seasonal 
patterns that are part of a time series whether there is a time trend or not in the series. There are 
no smoothing or other parameters as part of the method, just straightforward calculations. 
 
 As stated earlier, CrimeStat uses the multiplicative form of seasonality, a dimensionless 
factor for each season that is valuable for cross-sectional data, such as in the case of crime space 
and time series data with its several or many zones, patrol districts, or census tracts of interest. 
The basic idea is to create an observation of seasonality for each data point in the series. With 
monthly data and the month of July for example, all of the July observations of seasonality are 
collected over the series and averaged to yield the July seasonality estimate. 
 
 The approach to creating a seasonality estimate for, say, July 2012 is to center an average 
of crimes on July that is one full year long with July in the middle. The average is an estimate of 
the mean of the series with seasonality removed, because the entire year is included in the 
average. Then the observation for multiplicative seasonality is the crime count actual value for 
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July 2012 divided by its centered average. The only problem with this procedure is that the 
number of seasons per year is usually an even number (4 for quarters, 12 for months, and 52 for 
weeks) so there is no natural center of a data window.  Therefore, a simple adjustment is made, 
including an extra data point on each end of the window.  
 

The Detection Problem          
  
 Exponential smoothing provides a relevant model and estimation method for time series 
that are predictable. As long as the data being smoothed do not change abruptly, exponential 
smoothing provides good forecasts. It is difficult to forecast abrupt changes, so often the best that 
can be done is to detect them as soon as possible after they have occurred or started to occur. 
That is the purpose of this section, to provide a method that works in partnership with 
exponential smoothing and extrapolative forecasts for detection of abrupt or large changes. 
 

This section uses a world view that has two states: (a) business-as-usual which has time 
trends that can be accurately extrapolated and (b) exceptions which are departures from business-
as-usual including outliers, step jumps, and turning points when a trend reverses direction. In 
crime space and time series data, a large crime increase is caused by some change in the 
underlying criminal element, for example, formation of a gang rivalry, sales by a new illegal gun 
dealer, parole of serial criminals who continue crime careers, and so forth.  In some cases it can 
be due to the withdrawal of police resources, such as when a special enforcement program ends. 
Large decreases are also of interest and may be due to special police enforcement programs.  

 
Time series detection methods merely draw attention to areas where there is evidence that 

an exception is occurring. It is up to the crime analyst to diagnose a detected area, to determine 
the nature of the problem if one is thought to exist and to recommend interventions. 
 

Counterfactuals 
 
 To detect a change in a crime space and time series, we need a basis for comparison, that 
which would have happened had it been business-as-usual instead of an exception.  This is called 
the “counterfactual forecast” and is provided by extrapolative forecasts. Suppose that one has 
data up to yiT. Then one makes an extrapolative forecast, FiT using data from t = 1, …, T-1 and 
computes the counterfactual forecast error, eiT = yiT – FiT.  Similar to hypothesis testing, if eiT 
(and other recent counterfactual forecast errors) is large enough, then there is evidence that there 
is an exception. If the change is more moderate, the tracking signal to be described next 
accumulates consistent counterfactual forecast errors (e.g. all positive) over several successive 
time periods to also provide evidence of an exception. 
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Tracking Signals 
 
 Detection methods calculate tracking signals, or test statistics. When the signal gets large 
there is evidence that there is exceptional behavior in a time series. This requires one to choose a 
threshold value for a “signal trip” a topic covered later in this section.  
 

A simple tracking signal (and one of the oldest to be used) is the cumulative sum of 
errors: 

 

.																																																																																														 23.14  

 
where w is the window length of the summation. If there is a large error in one direction (say 
positive) or there is a series of medium-sized errors in one direction, then CUSUM may be large 
enough to signal an exception. 
 

Standardized data is created by subtracting the mean from a sample of data and dividing 
by a measure of spread, such as  the sample standard deviation. The advantage of working with 
standardized data is that if there are many samples to be examined, such as all patrol districts in a 
police jurisdiction, then one can use a single threshold value for a “signal trip” indicating 
exceptional behavior. However, with raw data for each area (or zone), one would have to choose 
a separate threshold for each area depending on the scale of the crime problem in each area.  

 
The counterfactual forecast error, eit, has an expected value of zero, so it already behaves 

like the numerator of standardized data. The k-period Brown tracking signal (Brown, 1959) 
divides CUSUM by an alternative measure of spread to the standard deviation, the simple 
smoothed mean of absolute counterfactual forecast errors (called the mean absolute deviation): 

 

	 																																																																																	 23.15  

 
where 
 

β| | 	 1 β 																																																																																	 23.16  
 
and 0<β<1 is a smoothing parameter 

 
While β is a symbol used in 23.16 and also for Holt smoothing, they are two different 

parameters.  One problem with w-period Brown is that after an exception has occurred, the 
signal often has to be manually reset to a low, business-as-usual value. Otherwise, the signal 
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continues to be large indicating exceptional behavior that may already have passed. Trigg (1964) 
thus proposed a modification to smooth the numerator as well as the denominator so that it is 
self-adaptive, resetting itself. Trigg used a common smoothing parameter for both the numerator 
and denominator while others, including McClain (1988), found evidence of better performance 
with separate smoothing parameters for the numerator and denominator. Now Trigg is calculated 
as:  
 

| 	|																																																																																																															 23.17   

where  
 

α 1 α 																																																																																																		 23.18  
 
and 0< α <1 is a smoothing parameter. 
 
Note that while the smoothing parameter is denoted by α here, it is different than the parameters 
also called α for simple and Holt smoothing. While Trigg and Brown methods are similar in 
performance, Trigg is more convenient to use and so CrimeStat uses it.  
 

Decision Rules 
 
 Tracking signals are implemented with decision rules such as the following: 
 

If TriggiT ≥ L then issue a signal trip report       (23.19) 
 
Else do nothing          (23.20) 
 

where L is a threshold level to be chosen by the decision maker. While similar to decision rules 
used in statistics for hypothesis testing, there are important differences. 
 

In the academic world of theory building and model testing, L is chosen to yield 
traditional type I error levels of 1 or 5 percent. A type I error occurs when the signal trips but in 
fact there is no exceptional behavior, in other words, a false positive occurs. These error levels 
are conservative so as not to claim to have evidence that a theory is true unless the evidence is 
strong—scientists are skeptical. A type I error rate (or false positive rate) of 5 percent means that 
5 percent of the negatives (periods without exceptions) are falsely signaled as positives, which is 
a waste of resources if the decision maker takes action.  

 
In management of events such as crimes, however, the false positive rate needs to be 

chosen to fit the situation. Larger false positive rates are often desired; for example, they are 
approximately in the range of 10 to 15 percent for cancer screening in the U.S. because society 
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values early detection of cancer (and therefore more successful treatments on the average) much 
more than the consequences of false positives (pain and wasted cost of biopsies that show no 
cancer present; see Banez et al. 2003, Elmore et al. 2002).  In other words, a false negative, a 
positive that is missed by the decision rule with no signal trip, is much worse than a false 
positive in the cost to society. For example, with crime, an area that is experiencing a large crime 
increase but goes undetected is costly. It is better to accept a larger number of false positives in 
this case than to fail to detect an area which shows a real increase in crime (false negative). 
Crime analysts, when interviewed by Cohen et al. (2009), stated that in their judgment it is 10 
times more important to avoid a false negative than a false positive when monitoring crime time 
series for exceptions.  

 
A true positive is the case where there is an exception (disease or flare up in crimes) and 

the decision rule (23.19) signals it. The true positive rate is the percentage of all positives (cases 
where disease or crime flare up exists, for example) that are signaled by the decision rule—
values in the range of 60 to 90 percent should be attainable for crime data. However, there is a 
trade-off.  To increase the true positive rate, one must also increase the false positive rate.  One 
increases both rates by making the threshold level, L, smaller. The optimal level, L, depends on 
three things. One makes L smaller if prevalence is relatively high (the fraction of all cases that 
are positives), the benefits of finding a positive are high, and the costs of a false positive is 
relatively low. Benefits and costs for police are likely similar to those of physicians screening for 
cancer because the benefits of preventing crimes is high and costs are incurred anyways but with 
efforts redirected to areas with potentially better results.  

 
There is a formal decision framework for choosing L called receiver operating 

characteristics (ROC), a name that comes out of the signal processing field where signals are 
received with equipment. Cohen et al. (2009) provide an overview of this framework applied to 
crime data. While the concepts are good, it is impractical for police departments to carry out a 
formal optimization of choosing values for smoothing parameters for equations (23.16), (23.19) 
and L, except perhaps for the largest organizations. It is necessary for crime analysts to label 
points in a sample of time series that they believe to be positives (true large change points) and 
then independently run monitoring through the sample in simulation mode. Then all possible 
threshold level values and smoothing parameter values are assessed in a grid search and 
optimization model to provide optimal values.  

 
Instead, this chapter recommends default values L=1.5, α=0.9, and β=0.15. We also 

suggest trying L=1.75 and L=2.0 for more conservative values, providing fewer signal trips. The 
values for α and β are optimal ones from Cohen et al. (2009) for the Pittsburgh monthly crime 
data, with α=0.9 being very reactive to the signal and β=0.15 more slowly updating the spread 
measure. Most of the value of the Trigg signal comes from keeping the measure of spread up to 
date so that L functions correctly (see Cohen et al., 2009). 
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Figures 23.4 through 23.7 illustrate Trigg time series monitoring for two Pittsburgh 
serious violent crime, monthly time series: for census tract 20100 as seen earlier in Figures 23.1 
through 23.3, a high crime area, and for census tract 50900 a more moderate crime area. All 
figures use default values of α=0.9, and β=0.15 for the Trigg signal and 0.015 optimal smoothing 
parameter for simple smoothing with jurisdictional-level seasonality. Figure 23.4 uses the default 
value L=1.5 for tract 20100. One can see that Trigg with these values does a good job of 
signaling exceptional values, both high and low values. Figure 23.5 shows the effect of raising L 
to the more conservative 2.0. Only three months are signaled as exceptional. Perhaps this value 
of L is too conservative. Figure 23.6 uses L=1.5 for tract 50900. Again there are many signal 
trips, but they appear to provide good information. Finally Figure 23.7 substitutes the 
conservative L=2.0 which again appears too conservative in this case.  

 
These cases suggest that once a signal is tripped police should provide extra resources to 

the area for three or more additional months, for example, because of the four instances in Figure 
23.6 of repeated exceptions with zero to two months between exceptions.  

 

Conclusions 
 

 This chapter has presented models and methods for time series forecasting of crime 
applied to all subareas of a police jurisdiction. The subareas can be as small as patrol districts or 
census areas such as census tracts. It is best to forecast aggregates of crime types, for example all 
serious violent crimes, all serious property crimes, all disorder crimes, etc. so as to increase the 
sample sizes for each time period and allow for reasonably accurate estimation. Time periods 
used in CrimeStat for time series include weeks and months. Day periods are too short to provide 
adequate sample sizes per period for accurate estimation of model parameters. 
 

This chapter defined relevant terms, provided two univariate time series models (one for a 
time-varying mean and a second for a time-varying time trend that includes a slope/growth term 
for forecasted values), exponential smoothing methods for estimating model parameters, and 
extrapolative forecasts from the models. Exponential smoothing automatically learns and adjusts 
models for smooth changes in time trends and is perhaps the most-widely used time series 
method in industry for operations management.   

 
Seasonality for week of the year (1–52) or month of the year (1–12) is estimated 

separately, using Classical Decomposition, a method provided by the U.S. Census Bureau. 
CrimeStat uses a multiplicative form, seasonal factors, that is valuable for cross-sectional data 
such sub areas of a police jurisdiction where the scale of crime varies considerably. The factors 
are dimensionless and represent percentage changes to time series trends due to season, such as a 
25 percent increase in crime level in July.  

 



Trigg Signal Trips with Simple Smoothing
Figure 23.4:

Jurisdiction Seasonality & L=1.5 
(Pittsburgh Tract 20100)



Trigg Signal Trips with Simple Smoothing
Figure 23.5:

Jurisdiction Seasonality & L=2.0 
(Pittsburgh Tract 20100)



Trigg Signal Trips with Simple Smoothing
Figure 23.6:

Jurisdiction Seasonality & L=1.5 
(Pittsburgh Tract 50900)



Trigg Signal Trips with Simple Smoothing
Figure 23.7:

Jurisdiction Seasonality & L=2.0 
(Pittsburgh Tract 50900)
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Forecasts are extrapolations of estimated time series. They are values from the trend line 

extended into the future with adjustments made for seasonal effects. CrimeStat automatically 
optimizes the fit of time trend parameters and batch forecasts time series for all subareas of 
interest, making it convenient and efficient for the crime analyst.  

 
Perhaps more valuable than the forecasts themselves is the ability to use forecasting as a 

means for detecting large changes in crime time series. CrimeStat uses a signal tracking 
mechanism, the Trigg time series signal, to automatically detect large changes in crime time 
series such as crime flare ups. The objective is to detect large changes as soon as possible. The 
basis for comparison is the counterfactual forecast, an extrapolative forecast made for the last 
data point of a time series, which represents the crime level expected given “business-as-usual” 
or no change in time series pattern. In CrimeStat, every time series in a police jurisdiction gets an 
assessment for every historical data point including the very last, as to whether it appears to be 
ordinary or exceptional.   
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Chapter 24: 

The CrimeStat Time Series Forecasting Module 
 
Introduction 

 
The CrimeStat Time Series Forecasting module is designed for the forecasting of crime 

counts (or counts of any type of event) and the early detection of unusual levels of activity in 
current data. A single run detects and forecasts all districts making up a jurisdiction. The module 
has a single interface page. It requires the user to specify an input file—either the Primary file or 
another file, identify variables in the file used for forecasting, select a seasonality adjustment, 
specify an exponential smoothing model, turn on Trigg tracking signal, use default values or 
choose Trigg parameter values, and save the output. Included in this chapter is an overview of 
the module.  The theory behind the methods is discussed in Chapter 23. 

 

Rationale of the Module 
 

While time series forecasting is useful to police for estimating future crime levels by 
extrapolating the current time series trends and seasonal adjustments, the impetus for the Time 
Series Forecasting Module was to provide a detection mechanism for early warning of large 
changes in crime patterns, either large increases or decreases. Through experience, police 
generally know seasonal patterns, such as increases in summer months and decreases in winter 
months, and know if crime is gradually on the increase or decrease. The time series methods in 
CrimeStat make objective estimates and forecasts for such trends which can be an aid for 
decision making. 

 
Likely more valuable is early detection of a crime flare up or evidence of an abrupt crime 

decrease during a police intervention. Forecasting large crime changes requires advanced models 
not included in this module (e.g., see Gorr, 2009) but early detection (also called “early 
warning”) of large crime changes which have already started is quite feasible (Cohen, Garman, 
& Gorr, 2009). This module uses the Trigg tracking signal, the best of the simple time series 
monitoring methods, and requires counterfactual forecasts as inputs to make jurisdiction-wide 
scans of all subareas (districts) for detection. More sophisticated tracking signals exist, in 
particular the spatial scan statistic (e.g., Neill, 2009), but the Trigg signal is widely used in the 
private sector for monitoring product demand and has simplicity as a virtue. Used as inputs to the 
Trigg tracking signal are one-week-ahead or one-month-ahead forecasts for all districts in a 
jurisdiction as the basis for judging each district’s status as being a departure from the existing 
time trends or not. These forecasts are extrapolations of past patterns and thus represent what 
would have happened given no pattern change (i.e., are counterfactual). The most recent crime 
count of each district is compared to a forecast made from data up to but not including the most 
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recent time period. For districts flagged as having a new pattern or large change, the crime 
analyst can then drill down to details to diagnose problems and determine a course of 
recommended action.  

 
The advantage of using CrimeStat for detection is that it is automated and objective. It 

saves the analyst from visually reviewing time series plots for all district time series and making 
judgments as to what series have unusual changes in crime levels.  

 

Overview of the Module 
 
This module implements the univariate time series models and methods described in 

Chapter 23. It takes as input space and time series data for weekly or monthly crime counts of 
each district of a single police jurisdiction. The crime counts are for a single crime type or crime 
aggregate (such as vehicle thefts, all serious violent crimes, or all property crimes). The districts 
can be any partition of areas dividing up a jurisdiction, for example police zones, patrol districts, 
census tracts, or grid cells. The data are stacked by district with a district name or identification 
number. See data descriptions later in this chapter and the sample data sets provided: “Pittsburgh 
monthly crimes by tract 1990-99.dbf” and “Pittsburgh weekly crimes by tract 1990-99.dbf”. 

 
CrimeStat provides two exponential smoothing estimation methods for time series 

models: 1) Simple Exponential Smoothing which estimates a smoothly-varying time series mean 
for each district and 2) Holt Exponential Smoothing which estimates a smoothly changing time 
trend line used in forecasting expected change (growth or decline) for each time series. The 
module computes the smoothing parameters of exponential smoothing to optimize one-step-
ahead forecast accuracy. It does so by individual district (district optimization) to achieve the 
most tailored and widely-ranging forecasts, but also does so with pooled data by jurisdiction to 
provide robust, stable and often most accurate forecasts and counterfactual forecasts for 
detection.  

 
The methods use multiplicative Classical Decomposition for seasonal adjustments in two 

forms, the first using data from the entire jurisdiction and the second using data for each district.  
Multiplicative seasonal adjustments (factors) are dimensionless quantities, for example, 1.25 
which increases a forecasted crime count by 25 percent relative to the underlying mean estimated 
by exponential smoothing. Jurisdictional seasonal adjustments, while estimated from all district 
time series summed to the jurisdiction level, are used for each district’s seasonal adjustments.  
District-specific seasonal adjustments apply to each district separately.  All model estimates in 
the module use seasonal adjustments.  There are no model degrees of freedom consumed by 
estimating seasonal adjustments with Classical Decomposition (the method uses averages and 
ratios in a simple computational procedure to make estimates).  If a time series is non-seasonal, 
then the adjustments will all be near one in value and have no effect on performance. 



24.3  

The most valuable forecasts for tactical deployment of police resources are one step 
ahead, either one week ahead or one month ahead. The routine chooses smoothing parameters 
that minimize the sum of squared one step-ahead forecast errors and provides one-step ahead 
forecasts for each district in its output. If the user wishes forecasts for additional steps ahead, the 
necessary parameters are available in the output and can be carried out in Excel.   

 
Finally, the module uses the Trigg tracking signal to provide an assessment of each time 

period in each district as to whether the number of events is expected (“business-as-usual”) or is 
exceptional (e.g., large change). The basis of the tracking signal for a given time period is a 
counterfactual forecast for each district made using exponential smoothing on time series data 
up to but not including the time period in question. The counterfactual forecast is the expected 
count given business-as-usual conditions in a district. Then if the actual count of the time period 
is very different than its counterfactual (expected) value, there is a signal trip that provides 
evidence of a change in the structure of the time series.  

 
Data Preparation for Time Series Forecasting 

 
The type of data that is needed is recorded events by individual areas over time.  Each 

record must have the number of events that occurred during a single time period for a single area.  
The events can be crime events (e.g., burglaries, robberies, total part 1 crimes) or they can be 
other types of events (e.g., motor vehicle crashes, flu incidents). For example, if there are 100 
districts that are being monitored and the data are measured by month over a three year period, 
then there will be 3,600 records, one for each month for each district. 

 
There must be a minimum of three years worth of data for the module to work. The 

reason is that seasonality (and other parameters) must be estimated with sufficient precision. For 
example, because a season is defined by the time period (month or week), with three years worth 
of data each season (month or week) only occurs three times. Clearly, the variability of an 
estimate based on only a sample size of 3 is very high.  That is why having more years worth of 
data provides more reliable estimates. Three years is the minimum: if there is less than three 
years, the module will stop and output an error message. 

 
Data for input to the Time Series Forecasting Module need to be prepared using a GIS 

package or a database package. For example, a discussion and methods are found in chapter 9 of 
Preparing Incident Data for Mapping by Gorr and Kurland (2012).  In the module, time series 
data can be input in two different ways.  First, time series data can be input as spatial data as the 
Primary file.  The requirement for either of these is that the X and Y coordinates (centroids) of 
each study district be listed on each of the records.  For example, if there are 100 districts and 52 
weeks per area with three years worth of data, then there will be 15,600 records each with an 
X/Y coordinate listed (100 x 52 x 3). 
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Second, many time series data will not have spatial coordinates assigned. Consequently, 
the data can be input as a non-spatial file. In the input file dialogue on the Time Series 
Forecasting page, the user will choose ‘Other’ for the input file. 
 

Required Fields 
 
Whether the data is spatial or not and whether there are other data elements listed, each 

record must incorporate the following four data elements (with names that can be different than 
those listed):1  

 

 Areal unit —the name or identifier for the district of the incident 
 

 Year—the year (e.g., 2012) 
 

 Season number—either the month number (1–12) or the week number (1–52) 
 

 Event Count—the count of crimes or other types of events 
 

All districts need data starting at the same period (Year and Week or Year and Month) 
through to the end period.  Note that there can be no missing records or data values in records. If 
a district has zero crimes in a given period, the period for the district must be included with the 
value zero for the event count.  

 
Note that data aggregation algorithms generally leave out records with zero frequency. 

One way to add records that have zero frequency is to create a table with all possible districts and 
time periods2  and then to left join that table with the aggregated data, forcing all rows of the new 
table to be in the join. The district and month rows with zero frequency will have the null value 
and the analyst must replace null values with zeros.   
 
 
 
 
 
                                                      
1  Individual incidents can be aggregated into time periods by district in one of several different types of 

programs – GIS, database packages such as Microsoft Access, or spreadsheet programs like Excel.  The 
result is that each record includes a count of the number of events that occurred in a particular district for a 
particular time period. See chapter 9 in Gorr and Kurland (2012) for examples on how to do this. 

2  An easy way to create the table with all possible districts and time periods in Microsoft Access is to (1) 
make a table with all district names or identifiers, (2) make a table with all years; (3) make a table with all 
time periods (e.g., 1, 2, …, 12 for months; 1,2, ….52 for weeks), and (4) use a make table query that 
includes data elements from all three tables but has no joins. This is called a “Cartesian product” and has all 
possible combinations of districts, years, and time periods. 

The finished data must be sorted by District, Year, and Season number (Week 
or Month) in that order. 
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See the sample data sets, “Pittsburgh monthly crimes by tract 1990-99.dbf “and 
“Pittsburgh weekly crimes by tract 1990-99.dbf”, that are available on the download site.  These 
data meet these requirements.  The examples below use the Pittsburgh monthly data. 
 
 
 
 
 
  

Fields to be Defined 
 

Figure 24.1 shows the interface for the Time Series Forecasting module for a run with 
monthly data, jurisdiction-wide seasonality, Simple Exponential Smoothing, and with Trigg 
tracking.  There are 10 fields that must be selected for the module to work.  These include: 
 

Input file. 
 

This is the file with the data for the Time Series Forecasting module.  It can be the 
Primary file or another file.  If it is the Primary file, then it must be a spatial data file with and X 
and Y coordinates defined on each record. If it is another file, select Other and then identify the 
file.   

 
Areal unit 

 
This is the variable name of each district being forecasted. For example, in Figure 24.1 

the Pittsburgh monthly data set is shown and the areal unit is TRACT, the census tract ID. 
 

Year 
 

The year is the calendar year such as 2012 of each data record.  This must be recorded. 
As mentioned above, there must be at least three years of data. 
 

Season number 
 

The season number is a unique temporal identifier.  With this module, only months or 
weeks are allowed.  Thus, the season number is 1 (January) through 12 (December) for months  

 
 
 
 

The week function in Excel creates week 53 of one or two day’s length. The analyst 
must delete points for week 53 because the module only accepts weeks 1–52. 
 



Figure 24.1:

Time Series Forecasting
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and 1 (first week of the year) through 52 (last week of the year) for weeks.  Note that there 
cannot be partial weeks.   
 

Event count 
 

This is the count of the number of events for a given areal unit, year, and time period. 
 

Temporal Unit of Measure 
 

This defines the type of season used, either week or month. 
 
Seasonality Adjustment 
 

The seasonality adjustment is the adjustment made for each time observation for 
seasonal patterns such as when, for example, crime is low in February and high in July relative to 
the time series trend line.  The routine uses: 

 
1. Jurisdiction-wide. Either data from the entire jurisdiction (e.g., the entire city) and 

applies this to each district or  
 

2. District-specific.  Individual data from each district so that each gets its own unique 
seasonal pattern.   

 
In Figure 24.1, the choice is jurisdiction-wide, which generally provides more accurate 

forecasts overall because district-specific seasonal factors are overly influenced by individual 
data points. 
 

Smoothing Method 
 

There are two alternative smoothing models, simple smoothing or Holt exponential 
smoothing: 

 
1. Simple smoothing assumes that there is no trend and that future values will follow 

the mean of recent past values.  Estimated means for data are weighted with weights 
summing to one for all data points but falling of exponentially with the age of data 
points.   
 

2. Holt smoothing adds a smoothed time trend line into the expected number of future 
events. The models have smoothing parameters which determine how quickly 
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exponential smoothing “forgets” the past. The larger a smoothing parameter, the more 
quickly weights fall off with data point age.  

 
The routine automatically chooses smoothing parameters by minimizing one-step-ahead 

forecast errors. It uses jurisdiction-level optimization of simple exponential smoothing’s 
smoothing parameter for a single time series for the entire jurisdiction. The result is a smoothing 
parameter that is relatively small and does a good job of ignoring large changes and, therefore, 
yields good counterfactual forecasts.  If there is a strong time trend (increasing or decreasing) in 
time series, then Holt is the better choice.  Also, given that the option of optimizing smoothing 
parameters by individual district (instead of by the entire jurisdiction) is only available for Holt 
in CrimeStat, Holt is the better choice for estimating widely-differing time series patterns across 
districts and highly dynamic time series patterns within districts.  For detection, Holt is likely 
more conservative because it captures more change in model estimates and, therefore, issues 
fewer signal trips than Simple Exponential Smoothing.  

 
Trigg Tracking Signal 

 
The Trigg Tracking Signal provides a test statistic for unusual activity in the number of 

events. If the absolute value of the signal exceeds a pre-specified threshold value, then there is a 
“signal trip” meaning that it is likely that there is an unusual change in events. The signal has 
three parameters with default values provided, alpha, beta and the threshold value.   

 
1. Alpha is a smoothing parameter that varies between 0 and 1.  An alpha of 0.9 (the 

default value) makes the tracking signal very reactive to current data on the 
anticipation of changes in a time series pattern. Note that “Alpha” is the same name 
for a parameter as used in Simple Exponential Smoothing for forecasting, but here is 
used to smooth the Trigg tracking signal instead of crime counts. 
 

2. Beta is a smoothing parameter that varies between 0 and 1. A value of beta of 0.15 
(the default value) smooths the measure of spread used to standardize the Trigg signal 
and retains a good amount of history while allowing estimates to drift and follow 
changing spread in the data. 

 
3. The threshold is the value of the Trigg Tracking Signal that indicates whether the 

expected number of events will be greater than what is normally expected (“business-
as-usual”).  The default threshold of 1.5 is somewhat liberal in the sense that it will 
signal more periods of unusual activity.  However, most police organizations would 
rather respond to more expected events even if the increased activity does not 
materialize (i.e., are false positives) than not respond and have events blow up. To use 
more conservative values, try 1.75 or 2.0 to get fewer signal trips. 
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Cohen, Garman, and Gorr (2009) found that the default values in the CrimeStat module 
are the best-performing parameter values. However, the user can experiment. Making alpha 
smaller than 0.9 will reduce the importance of recent events and give more sensitivity to 
increases building over several time periods. Similarly, increasing beta above 0.15 will smooth 
the data less and make the Trigg more reactive to changing variability in time series. 

 

Running the Time Series Forecasting Module 
 

With variations in seasonal adjustment and smoothing method, there are 8 possible 
models that can be run: four for weekly data and four for monthly data (Table 24.1).  

 
Table 24.1: 

Time Series Forecast Combinations 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Output 
  

There are three types of output: full, one-step ahead, and the optimized smoothing 
parameters.  The first two outputs produce the following calculated values: 
 

1. DE_SEASON is the number of events per period (EVENTCOUNT) divided by the 
seasonal factor for the current observation’s season (December) and, thus, is a de-
seasonalized count of events. To calculate the seasonal factor for each record divide 
EVENTCOUNT by DE_SEASON. 
 

2. SMTH_LEVEL is the smoothed estimate for the current observation (e.g., December 
2012).  

Season Number Seasonality  Smoothing Method Optimization 
 

Weekly data  Jurisdiction-wide  Simple smoothing  Jurisdiction 
Weekly data  District-specific Simple smoothing Jurisdiction 
 
Weekly data  Jurisdiction-wide Holt smoothing District 
Weekly data  District-specific  Holt smoothing District 
 
Monthly data   Jurisdiction-wide  Simple smoothing Jurisdiction 
Monthly data   District-specific  Simple smoothing Jurisdiction 
 
Monthly data   Jurisdiction-wide  Holt smoothing District 
Monthly data   District-specific  Holt smoothing District 
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3. When using the Holt smoothing method, there is one additional estimated parameter. 
SMTH_SLOPE is the change in estimated crime for each step ahead.  If, for example, 
you need the forecasts for February 2013 and your current time period is December 
2012, you add two times SMTH_SLOPE to SMTH_LEVEL because February 2013 
is two steps ahead of December 2012.  
 

4. SQ_ERROR is the squared forecast error of the current observation from the forecast 
made for it from the previous period (e.g., November 2012 if the current period is 
December 2012). 
 

5. TRIGG is the value of the Trigg Tracking Signal for the current observation.  
 

6. SIGNALTRIP indicates whether the Trigg level was higher than the threshold.  If it 
was, this field will have a 1 to indicate that the Trigg value was greater than or equal 
to the threshold selected and the detected change is an increase, a -1 if the Trigg value 
is greater than or equal to the threshold but the detected change was a decrease, and a 
0 otherwise.  

 
7. FORECAST is the one-step-ahead forecast, for the next observation in time (e.g., 

January 2013 if the current period is December 2012). For a January 2013 forecast 
and simple exponential smoothing it is SMTH_LEVEL for December 2012 
multiplied by the seasonal factor for January 2013. For January 2013 and Holt 
smoothing it is the sum of SMTH_LEVEL and SMTH_SLOPE times the seasonal 
factor for January 2013. 

 
Full Output 

 
 First, the full output includes all the input fields plus the calculated values.  If the user 
clicks the option button for Save full output button and then clicks the Save full output button, a 
save output window opens (Figure 24.2).  Select dBase ‘DBF’ for the Save output to field, 
browse to the folder of your choice, and type a file name (Run99.dbf in Figure 24.2).   Both the 
input data and the one-step ahead forecast are output to the screen and to a ‘dbf’ file. The file 
will be saved with a “TS_F” prefix before the defined file name, Run99.dbf, resulting in 
TS_FRun99.dbf.  
 

Figure 24.3 is an example of the full output from the Pittsburgh monthly data given the 
selections made in Figure 24.1. This output is useful for not only seeing current conditions but 
also the history of a district. For example, census tract 20300 has had a lot of unusual activity 
according to the Trigg signal. It had an unexpected decline in August 1998, two exceptionally 
high values in November and December 1998 and another two in April and May 1999.  So if  



Figure 24.2:

Defining Full File Outputg



Example Full Output from Pittsburgh Monthly Data
Figure 24.3:

g y
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census tract 20300 had a positive signal trip in the last time period in the series, most likely it 
would have been a true positive needing police intervention, given its history of past flare-ups. 

 
Next Time Period Output 
 
Second, the next time period output includes only the calculated fields for both the screen 

and saved file. The word “next” refers to the forecast made for the next time period, while the 
Trigg tracking signal evaluates the current period. Again, in the dialog for saving the output file, 
type the .dbf extension in the chosen file name. The file is saved as a ‘dbf’ file with a “TS_C” 
(for ‘current’) prefix, resulting in TS_CRun2.dbf if Run2.dbf were entered by the user. The same 
field definitions as used in full output apply. 

 
Figure 24.4 shows a sample output, which provides a scan of the entire jurisdiction for 

the current time period. The last time period in the corresponding input data set was December 
1999, so this was taken as the current time period. Here you can see that the first 11 areas shown 
appear to have ordinary crime levels for December 1999 but the last four areas have unusual 
activity, three large increases and one large decrease. The forecasts of this output, just as for the 
full output, are “business-as-usual” forecasts for the next time period, January 2000. 

 
 
 
 
 

 Optimized Smoothing Parameters Output 
 
 The third type of output shows the results of the optimization process for exponential 
smoothing. This provides information on the parameters used to optimize the smoothing for each 
district.  Define the file name and it will be saved as an ASCII text file with a ‘txt’ extension. 
Figure 24.5 illustrates the major output of the optimized smoothing parameters file, in this case 
for all selections in Figure 24.1 except the smoothing method which is now Holt. 

 
1. Optimum Alpha is the smoothing parameter value for level of a time series that 

minimizes the one-step-ahead forecast sum of squared errors. 
 

2. Optimum Gamma is the smoothing parameter value for time trend slope of a time 
series that minimizes the one-step-ahead forecast sum of squared errors. 
 

3. SSE is the resulting optimal sum of squared errors for the time series. 
 

  

Note that the user must choose between full output and next time period 
output.  Only one of these can be output for a single run. 
 



Example Output for Next Period Forecast
Figure 24.4:



Figure 24.5:

Example Optimized Smoothing Parameters Output
Pittsburgh Monthly Data
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It is valuable to review the optimal parameters to see which areas have stable versus 
dynamic time series. Note that for the Trigg calculation, we want a large alpha to detect large 
changes in the number of recent events. That is why the default value of alpha is 0.9.  However, 
for forecasting, we want a low alpha in order to smooth the data to produce a stable forecast. 

 
For example in Figure 24.5 district 40900 has a very stable time series with low alpha 

and gamma while district 20100 has a dynamic level with large alpha and district 40600 has a 
dynamic time trend with high gamma. Therefore, the forecast for district 40900 is liable to be 
more accurate than for district 20100 but district 20100 is liable to have more accurate detections 
of large crime increases. 

 
Guidelines for Running Forecast Models 
 

Each model that is run for a fixed set of data will produce slightly different output.  Based 
on our experience, we have found that there is not a single model type that will cover all data 
sets.  Indeed, much of the forecasting literature for the last 35 years has been attempting to 
design and verify rules on which forecast model to use in different situations and for different 
data.  Each jurisdiction will have its own unique characteristics in its time series data and 
districts within the same jurisdiction will often differ in their characteristics.  Consequently, an 
analyst must experiment with this framework to identify which parameter choices produce the 
best overall fit for that jurisdiction and for the individual districts.  
 

However, some guidelines can be provided based on our studies with this methodology. 
 

1. Detection does not need very accurate forecasts, but just reasonable values because large 
changes in a time series are fairly easily detected. Detection does not attempt numerical 
accuracy but just a binary categorization, either a crime count is exceptional or not. That 
reduces the need for forecast accuracy of the counterfactuals. We recommend using 
Simple Exponential Smoothing with jurisdiction seasonality and optimization for 
detection. 
 

2. Gorr, Olligschlaeger, and Thompson (2003) provide the guideline from empirical testing, 
that to get good forecast accuracy (20% mean absolute forecast error or less) crime time 
series should average at least 25 crimes or so per time period (month or week). It is hard 
to get that volume of crime unless using crime aggregates (such as all serious property 
crimes) and fairly large districts (tracts or police divisions). Very large cities such as New 
York, Los Angeles, Chicago, Houston, Philadelphia or Phoenix may have sufficient 
crime levels in some areas to provide good accuracy by week and for some crime types 
(e.g., vehicle theft, burglaries). It is the high-crime areas that are the most important and 
need the best forecasting accuracy as well as good detection accuracy for tactical 
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deployment of police.  The low-crime areas do not need as good forecast accuracy for 
resource allocation as much as they need good detection for large crime increases, which 
is easily obtainable. 
 

3. Seasonal factors are the least accurately estimated parameters in univariate time series 
models because a season, such as month (e.g., July, 7) or a week (e.g., 23) is only 
observed once a year. If an analyst has five years of data, then there are only five 
observations per seasonal adjustment. Gorr, Olligschlaeger, and Thomson (2003) found 
that jurisdiction-wide seasonality is about 10% more accurate for forecasting than 
district-level seasonality (estimated separately for each district using district data).  
 

4. Different districts, however, have different seasonal patterns, some widely different from 
each other. For example, motor vehicle thefts peak in Pittsburgh in summer months in 
most areas but the major university area has a trough in summer because students (and 
their cars) are mostly gone then. For some applications, then, it may be valuable to give 
up some forecast accuracy to gain information (albeit noisy) on seasonal patterns by 
district. To obtain the most detailed forecasts tailored to each district, we recommend 
district seasonality with the district optimization of smoothing parameters available with 
the Holt method. 
 

5. There is an objective way to choose forecast models in Table 24.1. The CrimeStat output 
includes a sum of squared errors term for each district from minimizing one-step-ahead 
forecasts in selecting smoothing parameters. Average these for a random sample of 
districts a across alternative models and select the method with the minimum sum of 
squared errors. 

 
Overall, for detection/early warning in small-to medium-sized cities, the authors 

recommend using monthly data, simple exponential smoothing, jurisdiction-wide seasonality and 
smoothing parameter optimization.  For the most informative and tailored one-step-ahead 
forecasts, we recommend using monthly data, Holt Smoothing, district seasonality and 
optimization of smoothing parameters. For large metropolises, however, it may be possible to 
run weekly forecasts as long as the average number of events per week is 25 or more in high 
crime areas.   

 
Current research under way by one of the authors suggests that once detected, crime flare 

ups in areas tend to continue for some stretch of time with some periods on and an others off. 
Figure 24.3 showed an example of this behavior. This research suggests that police can adopt 
decision rules to maximize their effectiveness such as “Each time a crime flare up is detected, 
maintain extra police resources in the area for a fixed number additional time periods.” For 
example, the research has experimented with one through three period stretches of time for 
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prevention efforts, each time a signal is tripped. Such rules can expose a relatively large number 
of crimes to prevention while maintaining reasonable workloads for police officers on patrol 
(Gorr & Lee, 2013). 
 

Counterfactual Detection v. Forecasting 
 

The time series forecasting module has two main purposes: 1) as a signal for early 
detection of large changes in time series patterns; and 2) as a forecast for the next time period 
into the future to aid resource allocation decisions.  

 
Signal detection needs a forecast of the level of a time series under “business-as-usual” 

conditions for the most recent data point to answer the question “Does this data point seem 
unusual?” The counterfactual forecast applies exponential smoothing to all data before the most 
recent time period in the time series to forecast its data point. Exponential smoothing is ideal for 
making counterfactual forecasts because by definition it largely ignores recent large changes by 
smoothing them with a relatively low weight, even for the last data point used for estimation. 
Then if the difference between the forecast of what was expected versus the actual value is large, 
we have a signal trip. 

 
Time series forecasting for the next or future time periods, on the other hand, is different 

in that when we make the forecast we do not already have the future actual values. As time 
passes after a forecast is made, eventually the future is realized and we get the actual values. 
Then we can calculate forecast errors “after the fact”.  The module also uses the same 
exponential smoothing routines for forecasting as it does for making counterfactual but for 
different purposes. Smoothing for detection tunes the signal for how reactive the signal is to 
current large changes as opposed to a series of smaller but accumulating changes while 
smoothing for forecasting estimates modules that “drift” with the data, albeit with a lag, to self-
adapt to changing conditions. 

  
However, we believe that major value of exponential smoothing for police is in providing 

counterfactual forecasts for detection while forecasts of the future necessarily are limited to 
extrapolations of known patterns under the existing conditions (i.e., with no surprises). The user 
should be very cautious with forecasting and not assume that the forecast will necessarily come 
to pass.  The forecasts are useful for extrapolating what is to be expected if current conditions 
persist. 

 

Example with Pittsburgh Monthly Crime Data 
 

Using the sample data for Pittsburgh monthly part 1 crime counts, the monthly data was 
run with jurisdiction-wide seasonality and simple smoothing.  Figure 24.6 shows a choropleth 
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map of Pittsburgh of serious violent crimes for December 1999 along with tracts that have signal 
trips. Out of the 140 tracts, there are 19 (or 13.5%) that have signal trips for increases and 8 (or 
5.7%) that have signal trips for decreases.  Clearly, police are more interested in the areas where 
crime increased than in areas where crime decreased.  Nineteen seems manageable for 
investigation by crime analysts and targeted patrol or other police interventions.  

 
Figure 24.7 shows the map zoomed into tract 261400 which has a signal trip for an 

increase and a current crime count of 6. There are three serious violent crimes recorded at the 
same street intersection (at different dates) which display as one point in the map, two crimes 
adjacent to each other, plus a crime near the border of the tract. Research on crime hot spots 
(e.g., Weisburd, Bushway, Lum, & Yang, 2004; see Chapters 7, 8 and 9 of the CrimeStat manual 
) and current research on crime flare ups show that they tend to occur in very small areas (“micro 
areas” on the order of blocks) so when detected at the tract level, the crime analyst can zoom in 
and specify small subareas for targeted patrol. 
 
Conclusion 
 

CrimeStat’s Time Series Forecasting Module provides a crime early warning system for 
police that is comprehensive, uses simple but proven methods, and is easy to use. A crime 
analyst can scan all the districts or areas of an entire jurisdiction in a single run of the module 
and see which ones are starting large crime increases (or decreases). Once detected, police have 
the option and ability to intervene with directed patrol and other means to prevent additional 
crimes in affected districts. The Time Series Forecasting Module also provides extrapolative 
forecasts of expected crimes for the next week or month by district, which can aid resource 
allocations by police. 
 

A major limitation of any approach to working with crime time series data for tactical 
deployment of police resources (e.g., “Where should we target patrols this week?”) is that the 
size of area units needs to be small, certainly patrol districts and smaller, but then the associated 
time series data has relatively low crime counts and any estimated models have sizable 
estimation and prediction errors. In such a situation it is better to use simple models, if for no 
other reason than there is very little else to get out of the limited data than what simple models 
can find. In our academic research we have used many complex models on this kind of data, 
from spatial multiple regression, to Bayesian versions of spatial regression models, to neural 
networks, and to spatial scan statistics without much more benefit than is available now in this 
chapter. Nevertheless, time series analysis of crime data does add value to crime analysis. We 
recommend using the automated detection methods of this chapter for early warning of crime 
increases in conjunction with crime mapping and other sources of information to diagnose and 
respond to emerging crime-area problems. 
  



Figure 24.6:
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Chapter 25: 

Overview of Crime Travel Demand Modeling 
 

The next seven chapters present a module on crime travel demand modeling. Crime travel 
demand modeling is a framework for examining crime trips over an entire metropolitan area.  In 
this chapter, an overview is presented.  In this and the next five chapters, each of the separate 
components of crime travel demand modeling are presented. Finally, in Chapters 31 and 32, 
Richard Block and Dan Helms present case studies of the method applied to Chicago and Las 
Vegas crime data. 
 

Much of the theoretical background was discussed in Chapter 13 (Journey-to-crime).  
Readers would be advised to review that material before proceeding with the crime travel 
demand model. 
 
Travel Demand Forecasting       
 

Crime travel demand modeling is an application of travel demand forecasting (or travel 
demand modeling).  It is used by transportation planners for examining travel patterns over an 
entire metropolitan area and for forecasting future trends.  It is a model of transportation patterns 
in a metropolitan area and is used for both forecasting and the analysis of the likely effects of 
building new roadways or installing new transit facilities. In the United States, it is required by 
Federal law to be used in every metropolitan area greater than 50,000 population as a basis for 
making decisions on highway and transit expenditures (USDOT, 2003: 23CFR450).  It is also 
used for transportation planning in the metropolitan areas of many other countries of the world 
(Field & MacGregor, 1987).   
 

The aim is to model travel over an urban area as a means for coordinating the 
approximately $36 billion dollars in transportation highway funds and $8.6 billion in transit 
funds that are spent every year in the U.S. (BTS, 2007).  Rather than waste funds by building 
new roadways and transit facilities that will be little used, it is a lot more effective to first model 
the likely benefit of a new facility as a basis for making a decision to build it.  In essence, 
Congress requires a transportation model be developed for every metropolitan area as part of an 
evaluation of the benefits to be obtained from particular transportation investments. 
 

The framework has emerged slowly since the 1950s and is now starting its ‘third 
generation’.  For the ‘first generation’ - what is used by most Metropolitan Planning 
Organizations (MPO) today, modeling is conducted entirely at a zonal level.  The ‘second 
generation’ involves modeling individual level choices in travel mode taken within a zonal 
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framework (Horowitz, Koppelman, & Lerman, 1986; McFadden, 2002), while a ‘third 
generation’ involves modeling individual-level trips in a framework known as ‘activity-based’ 
modeling (FHWA, 2009; Culp & Lee, 2005).  In CrimeStat IV, we implement a modified ‘first 
generation’ model, primarily due to the lack of data on individual-level crime trips.  In later 
versions, we may add individual-level choice components. 
 

Need for More Complex Travel Model of Crime 
 

Crime travel demand modeling is an application of travel demand theory targeted 
specifically to crime analysis.  There are many reasons why such an approach is appropriate.  
First, current models of criminal travel behavior are too simple with respect to travel.  As 
Chapter 13 discussed, journey-to-crime models assume that many offenders commit crimes in 
their neighborhoods.  While this assumption is frequently empirically found, it is not a realistic 
model of modern day crime travel.  Prior to World War II, Americans tended to live and shop 
almost exclusively in their residential community.  Many people would grow up and live in a 
single community for most of their lives.  Since World War II, however, American society has 
become very mobile.  People move frequently, not just within metropolitan areas, but between 
metropolitan areas.  For example, between 2009 and 2010, at the height of the Great Recession, 
28.5 million persons moved homes (U.S. Census, 2010a).  This was down from 1999-2000 
where 43.4 million moved (Schacter, 2001) but still represented a substantial amount of 
movement.  More than two-thirds of the households who moved (68%) stayed in the same 
county but 12 percent moved to a different State.  

 
Second, the almost universal use of personal automobiles has increased daily mobility.  

For example, in the 2010 census, 91% of households owned at least one motor vehicle, an 
increase over 2000 where it was 86% (NHMC, 2012; U.S. Census, 2003; Aizcorbe & Starr-
McCluer, 1996).  For certain metropolitan areas, particularly in the west and in the south, motor 
vehicle ownership was greater than 92%. Even in cities with lower vehicle ownership, more than 
half the population do own vehicles (e.g., New York City had 56% of households with one or 
more vehicles in 2000; Wikipedia, 2012a).  
 

Further, per capita vehicle travel has consistently increased over time. Since at least 1960, 
and probably before, the growth in vehicle miles traveled (VMT) has increased at a much faster 
rate than population, a trend that does not seem to be abating (NAP, 2009; BTS, 2003; FHWA, 
1996).  Essentially, automobile use has become almost ubiquitous.  There is no reason to think 
that offenders would not be affected by these trends.  Since there is no data available that could 
test whether offenders are less likely to own an automobile than non-offenders, it has to be 
assumed that more and more offenders have access to an automobile for the use of committing a 
crime. Clearly, the existence of an automobile makes crime travel much more fluid and difficult 
to model.  While offenders will probably commit crimes in locales for which they are familiar, 
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there is no reason to think that those locales will necessarily be the communities in which they 
live.  
 

Third, the widespread availability of motor vehicles has allowed major shifts in intra-
urban travel patterns.  In the last census (2010), approximately half the U.S population lived in 
areas that would normally be called ‘suburbs’, even though the U.S. Census Bureau does not use 
this nomenclature (They use Outlying Counties within a Metropolitan Statistical Area type of 
Core Based Statistical Areas; Wikipedia, 2012b; OMB, 2010).  Within metropolitan areas, 
approximately two-thirds of the population lives in suburban areas.   

 
Much of the community-oriented crime patterns that were described by the so-called 

‘Chicago School of Criminology’ in the 1920s and 1930s are no longer true (Burgess, 1925; 
Thrasher, 1927).  Crimes have decreased in both the central cities and in the suburbs throughout 
the U.S. between 1990 and 2008 (Kneebone & Raphael, 2011).  However, the differentials 
between the central city and the suburbs have decreased over time.  In 1990, for example, the 
differential in violent crime between the central cities and the suburbs was 2.8 times whereas it 
was 2 times in 2008.  Similarly, the differential in property crimes between the central cities and 
the suburbs decreased from 2 times to 1.7 times over that period.  The researchers noted that this 
gap decreased in nearly two-thirds of metropolitan areas in the U.S. These decreases are 
associated with a dramatic drop in crime within the central cities but a more gradual drop in the 
suburbs. 

 
While crime has been decreasing in most metropolitan areas within the U.S., the travel 

patterns of offenders has become quite complex.  Figure 25.1 below shows a sample of 200 
crime trips in Baltimore County that occurred between 1993 and 1997.  As seen, there is a 
complex pattern.  Some of the trips are short; for some, the origin and destination are the same 
location.  But, for other trips, the travel distances are substantial.  In other words, there is a 
complex pattern of crime trips in Baltimore County which is not easily modeled by a simple 
distance decay-type function.  
 

Fourth, an empirical examination of travel patterns shows considerable temporal 
variation.  There are hourly variations, daily variations, and seasonal variation in crimes.  Some 
of this can be understood as reflecting existing travel patterns in congested metropolitan areas.  
For example, in Baltimore County, crime travel distances were generally shorter during the peak 
afternoon ‘rush hours’ (4-7 PM) than at other times.  Such a pattern suggests an adaptation to 
traffic by offenders, a not unreasonable assumption given the difficulties of traversing a 
metropolitan area during peak travel times. 

 
Fifth, crime travel behavior represents a complex pattern in itself.  Especially for personal 

crimes, there is an interaction in the travel patterns of offenders and victims that is very difficult  
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to even describe, least of all model.  Many crimes are committed by multiple offenders and the 
existence of intermediate locations (e.g., ‘fences’ for the distribution of stolen goods, auto theft 
drop locations) makes crime travel even more of a complex pattern to be understood. 
 

In short, American society has become very mobile, leading to larger travel distances, 
more frequent trips, and more complex trips.  Again, offenders are going to be affected by these 
trends.  Because of this, there is a need to understand crime patterns in terms of the complexity 
of travel rather than continue to rely on overly simple models of travel ‘distance decay’. 
 
Crime Travel Demand Framework 

 
Crime travel demand theory is a framework for understanding this complexity.  There 

are two phases: 
 

1. An inventory (or data gathering) phase; and 
2. A modeling phase. 
 
The data gathering involves putting together the necessary data to estimate the model.  

This involves selecting an appropriate zone system (since the model is estimated at the zonal 
level), obtaining data on crime ‘trips’ and allocating it to the zones, obtaining zonal variables that 
will predict trips (both on the production side and on the attraction side), creating possible policy 
or policing interventions, and obtaining one or more modeling networks.1   

 
The modeling phase involves four distinct modeling steps (or stages) that represent a 

logical ‘causative’ pattern: 
 

1. Trip generation - separate models are produced of crime trip productions (i.e., 
the number of crime trips that originate in each zone) and crime trip attractions 
(i.e., the number of crime trips that occur in each zone).  The model may include 
policy or intervention variables as predictors as well as socio-economic variables.  
One of the major uses of the model is to explore how different interventions might 
alter the number of trips taken. 

 
2. Trip distribution - a model that predicts the number of crime trips that will begin 

in every production zone and will end in every attraction zone. 
 

                         
1  In the usual travel demand modeling framework, data gathering is called a land use inventory and involves 

estimating population and employment by different land uses, particularly retail trade and several other 
types of industry.   
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3. Mode split - a model that predicts, for each production-attraction zone pair, 
which travel modes will be taken (e.g., walking, bicycle, driving, bus). 

 
4. Network assignment - a model that predicts, for each production-attraction zone 

pair by travel model, which route is liable to be taken.  
 

The modeling is typically sequential following these steps. The output from each stage is 
then used as an input for the subsequent stage.  Figure 25.2 below shows the sequence.  
 

One can think of the model as a plausible behavioral representation.  First, someone 
decides to make a trip (e.g., an offender decides to commit a robbery to get some money to 
purchase drugs).  That would be the first stage.  Second, that individual decides where to go to 
commit the robbery.  This is the second stage.  Third, the individual decides how to travel to that 
location (walk, drive, or take the bus).  This is the third stage.  Finally, the individual chooses a 
route; in the case of walking, biking, or driving, that is a deliberate choice whereas in the case of 
transit trips, it is dependent on the actual bus or rail network.  This is the fourth stage.   
 

However, the analogy to behavioral decisions quickly breaks down as alternative 
behavioral sequences can be generated (e.g., the offender first makes a trip and then decides to 
commit a crime; the offender first decides to commit a crime and chooses a destination, but then 
commits a crime at an intermediate location in the trip).  As a behavioral model, this type of 
framework is actually not very accurate for predicting individual behavior as a number of studies 
have suggested (Ortuzar &Willumsen, 2001; Domencich & McFadden, 1975). 
 

Consequently, it is important to understand this framework as a zonal model, rather than 
a behavioral explanation.  The data are aggregated at the zonal level and the model is applicable 
to that level.  The model is good at predicting total trips in a metropolitan area and for predicting 
the major trip links, and should be used only at that level.  
 

Note in Figure 25.2 that there is feedback from the network assignment stage to the mode 
split stage.  This is a function of transit use since the choice of travel mode is dependent on the 
availability of an appropriate network (e.g., one cannot have train trips if there are no trains 
nearby).2 

                         
2  In classic travel demand modeling, there are several feedback loops.  One is from the network to the mode 

choice, as in the crime travel demand version.  A second is from the network to both mode choice and trip 
distribution stage.  If a particular route becomes very congested (having a traffic volume-to-capacity ratio 
greater than 1.0), it has been noted alternative destinations become more attractive.  For example, people 
will often travel farther and more out of the way to avoid congested corridors.  In short, there are a variety 
of feedbacks from later stages to earlier stages, and the model is quite flexible in being able to 
accommodate the different sequences. 
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Also, crime travel demand modeling is a framework, rather than a specific theory.  There 
is more than one way to implement the framework.  In transportation modeling, there are many 
variations of the model and transportation planning organizations implement it in slightly 
different ways.  For this reason, it is best thought of as a framework.   
 

In this version of CrimeStat, we implement one particular version of the framework.  It is 
a framework that is consistent and appears to produce reasonable predictions of crime travel 
behavior.  But, clearly, it is not the only way that this could have been implemented.  
 

The ‘second-‘ and ‘third-generation’ travel demand models represent alternative ways of 
modeling travel in a metropolitan area.  In the following chapters, these alternatives will be 
mentioned where appropriate.  Nevertheless, the type of framework implemented in this version 
should be seen as a first step in developing a more realistic model of crime travel behavior. 
 
Crime Travel Definitions 
 

Let us start with two definitions.  
 

Crime Trip 
 

In the CrimeStat implementation, a crime trip is a round-trip journey from an offender’s 
residence that includes a committed crime at a specified location.  From a modeling perspective, 
the offender’s residence will be considered the origin of the trip and the crime location will be 
considered the destination.  Note that there may be intermediate trips between the origin and the 
destination, as Figure 25.3 below illustrates.  But, at some point, the offender will probably 
return home to the initial origin.  Defining a crime trip in this way avoids the issue of identifying 
the actual origin of the trip.  As mentioned in Chapter 13, routine activity theory suggests that 
many crimes are committed while offenders are involved in other activities. The possibilities can 
become quite complex (e.g., an offender stays overnight at some other location than his/her 
residence and commits a crime as a part of that stay rather than while en route to home).   

 
Nevertheless, by referencing all trips with respect to the offender’s residence, a consistent 

set of estimates can be obtained.  Since intermediate trips are almost never known, it is a 
hypothetical question whether modeling origins from offender residences will produce better 
estimates than modeling origins from other locations.3   

                         
3  If it were possible to obtain data on intermediate locations during crime trips by offenders, then it would be 

possible to test whether modeling the origin with respect to these intermediate locations produces more 
stable and clearer predictions than with respect to the residences of the offenders.  But, until that data is 
obtained, the question is speculative. 
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In the usual travel demand forecasting framework, transportation modelers usually 
distinguish productions and attractions from origins and destinations.  The reason is that 
origins are asymmetrical in time.  For example, for a home-to-work (commuting) trip, the origin 
location in the morning is the residence while the destination is the work location.  On the return 
trip, however, the origins and destinations are reversed (i.e., the work location is the origin while 
the home location is the destination).  The models are referenced in the same way that is done 
here, namely from the residence location and the trips are assumed to be reciprocal.  Thus, the 
production end of a trip is always the residence location and the attraction end of a trip is always 
the work location.  The round-trip journey can be broken into different time sequences (e.g., 
morning home-to-work trips; afternoon work-to-home trips), but the production and attraction 
ends are always the same. 

 
In crime travel demand modeling, there is usually data on intermediate trips.  

Consequently, some of the finer analysis cannot be done.  Therefore, we adopt a similar logic, 
but with a slightly different terminology.  As with the usual travel demand modeling, the 
production end is always the home location and the attraction end is always the crime location.  
However, we use origin and destination interchangeably with production and attraction since we 
cannot document the return part of a crime trip. 
 

Crime Travel Demand      
 

Crime travel demand is the number of offenders per unit time that are expected to travel 
on a given segment of the transportation system under a set of socioeconomic, land-use, and 
environmental conditions.  That is, the final model output is an estimate of the number of trips 
(or offenders) that travel on any given segment of the transportation system at a given time under 
a given set of conditions:  
 

Number of trips = number of offenders traveling to crime      (25.1) 
 

First, as mentioned above, the model is estimated sequentially.  In the first stage, trip 
generation, there is a prediction of the number of crime trips that originate from each origin zone 
and the number of crime trips that occur (end) in each destination zone.  In this case, a crime trip 
is equated with an offender because of the nature of arrest records from which these estimates 
come.  With most arrest records, there is a single record for each crime that an individual 
commits.  Thus, the origin is the residence location of the offender while the destination is the 
crime location.  If the individual committed more than one crime, there will be a separate record 
for each crime (or, at least, those that are known).  If two individuals commit a single crime and 
both are arrested, then there will be two records in the data base.  In other words, the nature of 
the data equates a crime trip with a single offender.  Thus, the total number of crime trips 
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estimated (whether from the production or attraction end) is equivalent to the number of 
offenders. 
 

Aggregate Volume/count Model 
 

Second, by a ‘set of socioeconomic, land-use, and environmental conditions’ is meant 
correlates of crime trips.  At the aggregate level of a zone, predictors of crime trips (whether 
productions or attractions) are correlates of those trips. Since the number of trips are being 
predicted, the model estimates volumes (or counts), not rates.4  That is, the number of crime trips 
originating in a zone or ending in a zone is a count of events.  Aggregate counts, in turn, tend to 
be related to other aggregates, particularly population.  Thus, in developing a predictive model, 
population is almost always one of the dominant variables.  Sometimes it can be a sub-set of 
population, such as number of households, number of vehicles, or number of males aged 16-25.  
But, since the number of incidents is usually a function of the size, there can be difficulties in 
inferring individual characteristics from ecological models.5  It is important to keep this 
distinction in mind and not make inferences about individuals.  
 

In addition to population, variables that predict crime trips are also ecological variables - 
employment, retail space, number of bars, number of pawn shops, existence of a freeway, 
number of arterial lane miles, and so forth.  
 

O-D Zone Pairs 
 

In the second stage, trip distribution, a model is estimated of the number of crime trips 
that occur from any particular origin zone to any particular destination zone.  Since the input to 
the second stage is the number of predicted crimes originating in each origin zone and the 
number of predicted crimes ending in each destination zone, the second stage estimates how 
many trips will be distributed from each origin zone to each destination zone.  The result is an 
                         
4  Some agencies have actually used it to predict rates.  Since a rate is an event relative to a baseline, 

population is factored into the dependent variable.  It is possible to apply the model as a rate, though the 
user needs to ensure that all the predictor variables are also rates. 

5  The question of whether an ecological inference is valid or not has been studied extensively.  Sometimes it 
holds and sometime it does not. An ecological inference occurs when data are aggregated with a grouping 
variable (e.g., state, county, city, census tract; see Freedman, 1999; Langbein & Lichtman, 1978).  The 
relationship is often called an ecological fallacy, but that is an oversimplification.  Typically, if the 
between-group variance (i.e., differences) is greater than those within groups, then the ecological 
relationship will be a lot stronger than at an individual level. Conversely, if the within-group variance is 
greater than the between-group variance, a relationship that holds at the individual level will not be seen at 
the aggregate level. There are other ecological characteristics that account for typically higher R2 at the 
aggregate level - spatial autocorrelation, skewness in the dependent variable, and hetereoscedasticity 
(unequal estimation errors around a statistical estimate). 
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estimate of crime trips between zone pairs (an origin zone and a destination zone).  There are 
different names that are used for this combination - zone-to-zone trips; zone pairs; zone-to-zone 
links, O-D links (for origin-destination links), O-D pairs, but in all cases the term refers to the 
number of trips that start in any one origin zone that go to any one destination zone.  
  

Travel Mode 
 

In the third stage, mode split, the number of trips by any O-D combination are then split 
into different travel modes - walking, biking, driving, bus (if available) or train (if available).  In 
the usual travel demand modeling done by transportation modelers, some of these modes are 
broken down very finely (e.g., drive alone trips, car pooling trips, park-and-ride trips).  There is 
no logical reason why mode split cannot be defined in multiple ways.  For our purposes in 
modeling crime trips, simple choices are probably adequate because of a lack of data that would 
allow finer distinctions to be made.  

 
Estimating Travel Routes by Mode 

 
Finally, in the fourth stage, the number of trips from any origin to any destination by 

separate travel modes are assigned to a route on the transportation network.  Thus, if the trip is 
by walking, biking, or driving, the model may predict a different route than if the trip is by 
transit since a transit system is limited to particular bus or rail routes.  Hence, the final stage is an 
estimate of the total number of crimes that occur on any segment of a transportation network by 
separate travel mode.  
 
The CrimeStat Crime Travel Demand Module 
 

The CrimeStat crime travel demand module follows this logic fairly closely, but adapts it 
to the nature of crime data.  Figure 25.4 below shows a screen image of the module.  There are 
five main sections (tabs).  Four of them correspond to the four stages. Each of the four sections 
has several routines associated with them.  These will be explained in the subsequent chapters. 
 

In addition, there is a ‘File worksheet’ section.  This allows the user to save the file 
names in order to keep track of them.  The module is complicated and there are a lot of files used 
- 38 of them, many used multiple times.  In addition, there are a variety of parameters that are 
used for the different files.  The result is complex because not only is the model tested 
sequentially but there are multiple options available for each stage.  The subsequent chapters, the 
file worksheet tab, and the online help menu will try to make the routines easy to understand.  
But, the user has to realize that it will take time to gather the data and to construct the model. 

 
 



Figure 25.4:

Crime Travel Demand Module
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Crime Travel Demand v. Journey-to-crime 
 

A distinction should be made between crime travel demand and journey-to-crime.  Crime 
travel demand modeling is not journey-to-crime modeling.  Journey-to-crime modeling (and its 
use in geographical profiling) is a much simpler system.  Research on journey-to-crime has been 
conducted since the 1930s (see Chapter 13).   For the most part, journey-to-crime modeling is a 
descriptive framework.  Estimates are made of the distance that offenders travel during particular 
crime trips.  A distance decay-type function is estimated from these trips and comparisons are 
made between different types of crime or the same type of crime for different time periods. 
 

There is very little in the way of theory for this type of model.  Crime trips are a function 
of distance plus some other characteristics, such as the crime type or whether there is or is not a 
‘buffer zone; around the offender’s residence (see Chapter 13).  Most of the journey-to-crime 
studies have compared different types of crime by distance traveled, whether measured as 
average distance or by type of function as was used in Chapter 13.  Almost exclusively, the key 
variable is travel distance.  There are very few studies that have looked at travel time (see Kent, 
Leitner & Curtis, 2004 for an exception). 

 
In other words, journey-to-crime modeling is a single-stage model, essentially a 

description, with the primary variable being distance.  It is also ‘non-adjustable’ in the sense that 
the conditions cannot be varied since there is no model that predicts distance other than crime 
type (or buffer zone, for which we did not find evidence; see Chapter 13).  There is very little in 
the way of predictions that the model can make other than to estimate the likely origin location 
of an offender (for events committed by a single offender). 
 

Crime travel demand modeling, on the other hand, is a predictive framework.  Crime trips 
are a function of productions, attractions, and impedance.  Productions are a function of some 
socio-economic and policy variables.  Attractions are a function of some other socio-economic 
and policy variables.  Impedance is a function of cost and availability variables.  Each of these 
components is predicted by different variables.  Hence, the model can be adjusted (e.g., by 
adding or subtracting a policy intervention variable).  One of its benefits is the ability to adjust 
conditions.  For example, if it can be shown that the amount of policing in a zone impacts the 
number of crimes that either originate or end in that zone, then a subsequent run can ‘re-assign’ 
police personnel to impact crimes in other zones. 
 

The model is multi-stage since it is estimated sequentially and, therefore, can be used for 
prediction.  Thus, once the model is estimated on one data set, it can be used on another set.  
Thus, it represents a calibration against a known data set.  For example, one could calibrate the 
model on one year’s worth of data and then use the estimated coefficients and parameters on a 
second year’s worth of data.  This, in fact, is how it is used in transportation modeling.  The 
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model is calibrated on a current year and then applied to a future year to make a forecast of 
future travel demand. 
 

In short, crime travel demand is a theory of travel behavior whereas journey-to-crime 
modeling is but a simple description.  In many ways, crime travel demand modeling is a quantum 
leap in complexity and analysis, requiring gathering a lot more data and calibrating many 
individual steps.  Nevertheless, that complexity allows a far greater use of the model than the 
traditional journey-to-crime. 
 
Models v. Description 
 

A key distinction in the crime travel demand framework is that of an empirical 
description versus a model. The framework can be applied both as an empirical description and 
as a model, assuming that data can be obtained. An empirical description describes the data that 
have been collected.  For example, for trip generation, it is a count of the number of crimes that 
originate in each zone and the number of crimes that occur in each zone.  For trip distribution, it 
is the actual number of trips that go from each origin zone to each destination zone.  For mode 
split, assuming that data could be obtained on travel mode, it is a count of the number of trips for 
each origin-destination pair that are taken by each travel mode.  Finally, for network assignment, 
again assuming that data could be obtained on the actual routes taken, it is a documentation of 
the actual routes that are taken and a count of the number of trips on each segment of the 
transportation network. In other words, an empirical description is a count of the number of 
offenders, whether by origin location, destination location, O-D pair, travel mode, or route. 
 

A model, on the other hand, is a simplified set of relationships that approximate the most 
important features of the actual count.  The model is not reality, but is a rough approximation to 
it.  Because it is rough, a model inevitably makes errors.  Consequently, there always will be a 
difference between a model and the actual events to which the model approximates.  
 

The two differ on other dimensions as well.  A model has only a few variables whereas 
the actual events have many (perhaps hundreds).  A model has a simplified set of relationships 
among the variables whereas the actual events have very complex relationships among the 
variables, often too complex to describe properly.  By simplifying the relationships, a model 
produces, what Herbert Simon and Allen Newell called, an analogy to the actual situation, 
whereas the actual events are literal (Simon & Newell, 1963; Newell, Shaw & Simon, 1957). 
 

The CrimeStat crime travel demand routines can be applied both to empirical data as well 
as modeled relationships.  In fact, two of the routines are directly concerned with the differences 
between the model and the actual data.  Both sets of endeavors have value in their own right, but 
they differ.  An empirical description is most relevant to the present.  For a police department 
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trying to mitigate crime and catch offenders, the empirical description is probably of more use 
than an abstract model.  As will be seen, the empirical description of crime trips will always be 
more complex than the estimated model.  If the only purpose is to describe the actual patterns 
that are occurring, then a model is not needed. 
 

On the other hand, a model has definite advantages that a description does not.  First, it 
can be used for prediction.  If a model is calibrated against a known data set, that model can then 
be applied to a new data set.  For example, one could create an estimate of crime trip productions 
based on existing socioeconomic and land use data.  Then, one could apply that model to a 
forecast data set of future socioeconomic and land use conditions.  The result is a prediction of 
future crime levels.  Of course, since the model was never completely correct in the first place, it 
will inevitably make errors.6  Further, since there is no guarantee that past relationships will 
necessarily hold in the future, there is no certainty about whether the most important part of the 
predicted relationships will actually hold.  Nevertheless, there has been enough success in 
demographic, economic, and transportation modeling that new fields of forecasting have 
emerged as legitimate research activities. 
 

A second advantage of a model is that it can be manipulated.  Variables can be modified 
to explore their effect.  Distributions can be re-arranged to, again, understand their effect.  For 
example, if relationships can be established between the number of crimes produced or attracted 
to zones, on the one hand, and the number of police personnel in a zone or to the existence of a 
large shopping mall, or to the existence of a drug treatment center, on the other hand, then 
scenarios could be run that explore the different arrangements.  These ‘What if?’ types of 
scenarios can be very useful.  For example, if a relationship exists between shopping malls and 
crime trips, what is liable to happen when a new shopping mall is built?  One could take the 
model, add the new shopping mall (or the retail employment or acreage associated with the mall) 
and run the model to make a prediction about its likely impact. Or to take another example, if it 
can be shown that there is a negative relationship between the number of beat police officers and 
the number of crimes originating in zones, then it would be possible to evaluate the likely 
consequences of re-arranging police personnel across different beats.  

 
In short, a model is a very powerful tool for evaluating policy or intervention type 

strategies.  Rather than speculate or gather evidence from other metropolitan areas on their 
experience (which is valuable, of course), a model can be used to simulate the likely 

                         
6  Simon and Newell described two kinds of errors: 1) errors of commission (Type I errors); and 2) errors of 

omission (Type II errors).  The first kind represents relationships and predictions that do not exist (to use 
our terminology) while the second kind represents the failure to detect relationships that do exist. Any 
model will have both sets of errors.  The point to keep in mind is whether a model captures the most 
important relationships and does not make too many Type I errors (Simon & Newell, 1963; Newell, Shaw, 
& Simon, 1957). 
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consequences of an action on crime levels.  In transportation planning, the travel demand model 
is used all the time to evaluate the likely consequences of implementing particular projects.  This 
does not mean that it is the only factor considered in making a decision or even the most 
important factor; clearly, politics, financing, and community support are also major components 
of any decision.  Nevertheless, the travel model is a very important input into any decisions 
about future investments. 
 
Uses of a Crime Travel Demand Model 
 

Table 25.1 illustrates some possible uses of the crime travel demand model, assuming 
that data could be obtained. 
 
 Table 25.1: 
 Possible Uses of Crime Travel Demand Model 

 
Trip Trip Mode  Network 
Generation Distribution Split  Assignment 

 
Description Identify Identify Identify Identify 

correlates crime trip  crime travel  routes taken 
of crimes links models  by offenders 

 
Calibration Estimate Estimate Estimate Estimate 

coefficients origin-to- formula model for 
of predictor destination for travel  routes taken 
variables coefficients modes used by offenders 
for crime for crime by offenders 
origins & trips   
destinations 

 
Prediction Predict future Predict future Predict future Predict future 

 crime levels crime trip crime travel routes used 
 links modes  by offenders 

 
 
The model could be used for description, calibration, or prediction.  In description, the 

emphasis is on describing the travel behavior of offenders.  For trip generation, it involves 
identifying the correlates of crimes, both by origin zone and by destination zone. For trip 
distribution, it involves describing the actual crime trips taken between specific origin zones and 
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specific destination zones.  For mode split, it involves identifying the different modes that 
offenders are using, describing the proportion of each mode that are used, as well as describing 
the modes used for particular origin-destination links.  Finally, network assignment involves 
describing the actual routes taken by offenders. In other words, the emphasis on description is 
identifying the specifics used in crime trips. 
 

On the other hand, calibration involves selecting variables that can approximate the 
description and estimating coefficients for their use.  The emphasis is on finding a limited 
number of general variables and coefficients that can produce a reasonable approximation to the 
actual travel behavior.  Thus, in trip generation, the aim is to find a few variables that can predict 
reasonably accurately the number of crimes by origin zone and destination zone.  In trip 
distribution, the aim is to estimate coefficients that can approximately describe the trips that are 
taken from particular origin zones to particular destination zones.  In mode split, the aim is to 
develop coefficients that can approximate the travel modes used while in network assignment, 
the aim is to find an algorithm that approximates the actual travel routes used by offenders.  The 
result of a calibration is a model that can be generalized whereas a description cannot be 
generalized. 

 
Finally, in prediction, the calibration models are applied to other data, either forecast 

values of future levels of the predictive variables or data from other jurisdictions to see the 
similarities or differences.  The existence of a model (ideally calibrated against a real data set) 
allows a forecast to be made whereas a description cannot be forecast. 
 

Research Uses of a Crime Travel Demand Model 
 

For research, a crime travel demand model has many different uses, only some of which 
are explored in the next five chapters.  First, it organizes crime travel information in a systematic 
manner.  The model is logical and proceeds in a systematic way.  As opposed to a journey-to-
crime-type model, which is just a description, the crime travel demand model systematically 
steps through the four stages in an understandable way.  It is a very good way to organize 
information on crime travel, though, clearly, it is not the only way. 
 

Second, compared to the journey-to-crime literature, it is a more realistic model of 
offender travel.  For one thing, it incorporates information about origin locations.  This helps 
answer the question of why certain areas produce more crimes than others (remember, it is not a 
behavioral explanation, but an ecological model).  For another thing, it incorporates information 
about destination locations and helps answer the question of why certain areas attract more 
crimes than others.  For a third thing, it models travel choice in a more complex manner. Instead 
of assuming that all offenders will travel to a crime in exactly the same way (e.g., by walking), 
the model allows the separation of different travel modes.  For journey-to-crime models, distance 
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is the only impedance variable, whereas for crime travel demand modeling, travel time and travel 
cost are often better predictors of travel behavior, especially in relationship to an available 
network.  In short, it is a much more complex, yet realistic, representation of crime travel 
behavior. 
 

Third, it is a dynamic analysis of travel behavior.  Crime trips are seen as a product of 
neighborhood production factors, attractions, and travel costs (impedance).  Since these change 
by various hours of the day, so too do the travel patterns change.  The ability to model travel at 
different times of the day is one of the strengths of the travel demand type of framework. 
 

Fourth, and finally, a crime travel demand model can allow comparisons between 
different types of crimes in the productions, the attractions, and the costs.  So, too, can journey-
to-crime models be used to compare different type of crimes.  But those comparisons are uni-
dimensional, essentially comparing different distance decay functions.  The crime travel demand 
model can explain the ‘distance decay’ function and hence allow a more structural interpretation 
than was previously possible.  For example, in comparing data sets from Baltimore, Chicago, and 
Las Vegas, Richard Block, Dan Helms and myself are finding that there may be very little 
difference in the cost function used for different types of crime trips, but that differences in these 
trips are more a function of the distribution of opportunities (attractions).  To link this up to the 
early theme of this chapter, American society has become so mobile and the automobile so 
ubiquitous that distances are not as much a barrier to offenders as they used to be.  In other 
words, the distribution of opportunities appears to be the more dominant factor predicting types 
of crimes than the limitations of neighborhoods and small communities.  If this turns out to be 
true, then we are in for a major shift in the type of crimes that our society will experience over 
the next few decades.  Mobility may replace neighborhood as a determining factor in crime 
behavior.  In other words, the local ‘community-based’ offender is morphing into a metropolitan-
wide and, perhaps, regional offender, a not very desirable prospect. The Kneebone and Raphael 
(2011) study may indicate that this has already started to occur.   
 

Crime travel demand modeling allows for a more complex, more interventionist and, 
perhaps, deeper understanding of crime travel than previous types of model, particularly the 
journey-to-crime and serial walk type of model (see Chapter 13).  
 

Utility for Policing and Law Enforcement 
 

For police department and other law enforcement agencies, crime travel demand 
modeling has some advantages as well.  First, it can be used to model different policing 
strategies, as suggested above.  For example, it could be used to evaluate the likely effect of 
shifting patrol deployment.  The ‘What if?’ nature of crime travel demand modeling makes it 
useful to explore alternative arrangements before they are actually implemented. 
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Second, it could be used for forecasting.  As mentioned, if a model has been calibrated on 

one set of data, then it could be applied to another set to predict, for example, the distribution of 
crimes five or ten years later.  Typically, police departments have not done forecasting, but they 
are often expected to be able to anticipate changes.  This type of model can be useful for that 
purpose since Councils of Governments (COG) and Metropolitan Planning Organizations (MPO) 
systematically make forecasts of future population and employment levels. 
 

Third, it can be used for modeling interventions. Aside from modeling different policing 
strategies, a range of land use and communities changes could be explored. For example, what 
would be the effect of introducing more drug treatment centers or more ‘weed and seed’ 
adolescent facilities?  The logic is similar to forecasting.  A model is calibrated against one data 
set.  But, in addition to socioeconomic and land use variables, variables on facilities are added to 
the equation as predictors.  If it can be shown that they have any effect (which we hope they do), 
then these can be used as variables in a modeling scenario. 
 

Fourth, these types of models can be used for anticipating changes in the community.  
Again, this is similar to the forecasting purpose mentioned above.  But, it is slightly different in 
that it anticipates structural changes.  An example was given of anticipating changes from new 
shopping malls.  In Baltimore County, for example, shopping malls were shown to be the 
strongest attractors of crime trips.  In that context, what would happen if a new mall was built?  
This type of model can be used to model this scenario.  Conversely, a lack of employment 
opportunities appears to be correlated with crime productions, at least in Baltimore County.  
What would happen to crime if local employment was increased in certain zones?  Again, this 
type of model is useful for exploring that type of question. 
 

Again, going back to an earlier point, there is, of course, a difference between a model 
and reality (an actual situation).  Reality is complex; models are not, or are a lot simpler.  Still, 
models as analogies can provide insight into mechanisms and allow police, law enforcement, and 
the policy community as a whole to try to simulate changes without having to commit to 
expensive, and perhaps disastrous, changes with little information.  In other words, modeling in 
general, and crime travel demand modeling in particular, is a tool that may have wide utility for 
the law enforcement community. 
 
References on Travel Demand Modeling 
 

In this final section, some sources on travel demand forecasting are listed.  There are a 
large number of sources, though there are few actual textbooks.  A very good textbook on the 
subject is by Ortuzar and Willumsen (2001), while an older, out of print book is by Stopher and 
Meyburg (1975).  There are several major handbooks on the topic (Hensher & Button, 2003; 
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ITE, 2003).  Some good chapters on the subject are found in Beimborn (1995), Field and 
MacGregor (1987, Ch. 6) and by Engelen (1986, Ch 17). Discussions of ‘second’ generation 
models can be found in Domencich and McFadden (1975) and Ben-Akiva and Lerman (1985).  

 
However, probably the best source for articles on the subject are found on the Federal 

Highway Administration (http://www.fhwa.dot.gov) and other web sites.  Among the 
articles/presentations that can be found on that site are FHWA (2012), FHWA (2009), Jeannotte, 
Sallman, Margiotta, and Howard (2009), and McKeever and Griesenbeck (2009).  Of particular 
interest is a study of bicycle and pedestrian travel modeling (Turner, Shunk, and Hottenstein, 
1998), which may be relevant for crime analysis, and ‘third’ generation models.  
 

Older sources, which are still good are by Oppenheim (1975, ch. 4) and Krueckeberg and 
Silvers (1974, Ch. 10), aside from the Stopher and Meyburg text mentioned above. 
  



25.22 

References 
 
Aizcorbe, A. & Starr-McCluer, M. (1996).  Vehicle Ownership, Vehicle Acquisitions, and the 
Growth of Auto Leasing: Evidence from Consumer Surveys. Finance and Economic Discussion 
Series, Federal Reserve Board of Governors: Washington, DC. 
http://www.federalreserve.gov/pubs/feds/1996/199635/199635pap.pdf.  Accessed April 28, 
2012. 
 
Ben-Akiva, M. &  Lerman, S. (1985). Discrete Choice Analysis: Theory and Application to 
Travel Demand.  MIT Press: Cambridge. 
 
BTS (2007). Table 2: A matrix of transportation expenditure by source of finance and type of 
expenditure, Government Transportation Financial Statistics, Bureau of Transportation 
Statistics, U.S. Department of Transportation: Washington, DC., 
http://www.bts.gov/publications/government_transportation_financial_statistics/2007/html/table
_02.html.  Accessed April 28, 2012.  
 
BTS (2003).  U.S. Vehicle-miles (millions), Table 1-32.  National Transportation Statistics 
2004, Bureau of Transportation Statistics, U.S. Department of Transportation: Washington, DC. 
http://www.bts.gov/publications/national_transportation_statistics/2004/html/table_01_32.html. 
Accessed April 28, 2012. 
 
Burgess, E. W. (1925).  The growth of the city: an introduction to a research project.  In Park, 
R.E., Burgess, E. W. & Mackensie, R. D. (ed), The City.  University of Chicago Press: Chicago, 
47-62. 
 
Culp, M. & Lee, E. J. (2005). Improving travel models through peer review. Public Roads, 68 
(6), FHWA-HRT-05-005.  Federal Highway Administration, U.S. Department of Transportation: 
Washington, DC.  http://www.fhwa.dot.gov/publications/publicroads/05may/07.cfm. Accessed 
April 28, 2012.  
 
Domencich, T. & McFadden, D. (1975).  Urban Travel Demand: A Behavioral Analysis. North 
Holland Publishing Company: Amsterdam & Oxford (republished in 1996). Also found at 
http://emlab.berkeley.edu/users/mcfadden/travel.html.  Accessed April 28, 2012.  
 
Engelen, R. E. (1986). Transportation planning. In So, F. S. The Practice of State and Regional 
Planning. American Planning Association: Chicago, Ch. 17, 431-453. 
 
FHWA (2012). FHWA Resource Center Planning Team. Federal Highway Administration, U.S. 
Department of Transportation: Washington, DC. 
http://www.fhwa.dot.gov/resourcecenter/teams/planning/travel.cfm.  Accessed April 29, 2012.  
 
 
  



25.23 

References (continued) 
 
FHWA (2009).  Integrated Urban Systems Modeling, The Exploratory Advanced Research 
Program Fact Sheet, FHWA-HRT-09-042. Federal Highway Administration, U.S. Department 
of Transportation: Washington, DC.  
http://www.fhwa.dot.gov/advancedresearch/pubs/interurbsys.pdf.  Accessed April 28, 2012.  
 
FHWA (1996). Latest VMT growth estimates, Highway Information Update, 1(1), Federal 
Highway Administration, U.S. Department of Transportation: Washington, DC., 
http://www.fhwa.dot.gov//ohim/vol1no1.html. Accessed April 28, 2012. 
 
Field, B. & MacGregor, B. (1987).  Forecasting Techniques for Urban and Regional Planning.  
UCL Press, Ltd: London. 
 
Freedman, David A. (1999). Ecological inference and ecological fallacy.  International 
Encyclopedia of the Social and Behavioral Sciences, Technical Report No. 549, October. 
http://www.stanford.edu/class/ed260/freedman549.pdf.  Accessed March 26, 2012. 
 
Hensher, D. A. & Button, K. J. (2002).  Handbook of Transport Modeling.  Elsevier Science: 
Cambridge, UK. 
 
Horowitz, J. L., Koppelman, F. S. & Lerman, S. R. (1986). A Self-instructing Course in 
Disaggregate Mode Choice Modeling. Federal Transit Administration, U.S. Department of 
Transportation: Washington, DC. http://ntl.bts.gov/DOCS/381SIC.html. Accessed April 28, 
2012. 
 
ITE (2003).  Trip Generation (7th edition).  Institute of Transportation Engineers: Washington, 
DC. 
 
Jeannotte, K., Sallman, D., Margiotta, R. & Howard, M. (2009). Applying Analysis Tools in 
Planning for Operations. FHWA-HOP-10-001, Federal Highway Administration: Washington, 
DC. http://ops.fhwa.dot.gov/publications/fhwahop10001/fhwahop10001.pdf.  Accessed April 29, 
2012.  
 
Kent, J., Leitner, M., & Curtis, A. (2006). Evaluating the usefulness of functional distance 
measures when calibrating journey-to-crime distance decay algorithms. Computers, Environment 
and Urban Systems, 30 (2), 181-200. 
 
Kneebone, E. & Raphael, S. (2011). City and Suburban Crime Trends in Metropolitan America.  
Metropolitan Opportunity Series, Metropolitan Policy Program, Brookings Institution: 
Washington, DC.  
http://www.brookings.edu/papers/2011/0526_metropolitan_crime_kneebone_raphael.aspx. April 
28, 2012.  
 
 



25.24 

References (continued) 
 
Krueckeberg, D. A. & Silvers, A. L. (1974). Urban Planning Analysis: Methods and Models.  
John Wiley & Sons: New York. 
 
Langbein, L. I. & Lichtman, A. J. (1978).  Ecological Inference.  Sage University Paper series on 
Quantitative Applications in the Social Sciences, series no. 07-010.  Beverly Hills and London: 
Sage Publications. 
 
McFadden, D.  L. (2002). The path to discrete-choice models.  Access, No. 20, Spring. 20-25.  
http://www.uctc.net/access/access20.shtml.  Accessed April 28, 2012.  
 
McKeever, M. & Griesenbeck, B. (2009).  Linking Transportation and Land Use. Federal 
Highway Administration: Washington, DC. 
http://www.fhwa.dot.gov/policy/otps/innovation/issue1/linking.htm.  Accessed April 29, 2012.  
 
NAP (2009). Driving and the Built Environment: The Effects of Compact Development on 
Motorized Travel, Energy Use, and CO2 Emissions, Special Report 298. The National 
Academies Press: Washington, DC. http://www.nap.edu/catalog.php?record_id=12747.  
Accessed April 28, 2012.  
 
Newell, A., Shaw, J. C. & Simon, H. A. (1957). Empirical Explorations of the Logic Theory 
Machine, Proceedings of the Western Joint Computer Conference, pp. 218-239. 
 
NHMC (2012).  Quick Facts: Resident Demographics.  National Multi Housing Council: 
Washington, DC. http://www.nmhc.org/Content.cfm?ItemNumber=55508.  Accessed April 28, 
2012.  
 
OMB (2012). 2010 Standards for Delineating Metropolitan and Micropolitan Statistical Areas. 
U.S. Office of Management and Budget, Federal Register, June 28, 2010, 37246.  
http://www.whitehouse.gov/sites/default/files/omb/assets/fedreg_2010/06282010_metro_standar
ds-Complete.pdf.  Accessed April 28, 2012.   
 
Oppenheim, N. (1980). Applied Models in Urban and Regional Analysis. Prentice-Hall, Inc.: 
Englewood Cliffs, NJ. 
 
Ortuzar, J. D. & Willumsen, L. G. (2001).  Modeling Transport (3rd edition). J. Wiley & Sons: 
New York. 
 
Schachter, J. (2001). Geographical mobility: March 1999 to March 2000.  Current Population 
Reports, P20-538, March.  U.S. Census Bureau: Hyattsville, MD. 
 
Simon, H. A. & Newell, A. (1963). The uses and limitations of models. In Marx, M. (ed), 
Theories of Contemporary Psychology, Macmillan: New York, 89-104. 



25.25 

References (continued) 
 
Stopher, P. R. & Meyburg, A. H.  (1975). Urban Transportation Modeling and Planning. 
Lexington, MA: Lexington Books. 
 
Thrasher, F. M. (1927).  The Gang, University of Chicago Press: Chicago. 
 
Turner, S., Shunk, G. & Hottenstein, A. M. (1998). Development of a Methodology to Estimate 
Bicycle and Pedestrian Travel Demand. Report 1723-S, Texas Transportation Institute: College 
Station.  http://tti.tamu.edu/publications/catalog/record/?id=146. Accessed April 28, 2012. 
 
U.S. Census (2010a).  Geographic Mobility/Migration.  U.S. Census Bureau, U.S. Department of 
Commerce: Washington, DC. http://www.census.gov/hhes/migration/data/cps/cps2010.html. 
Accessed April 28, 2012.  
 
U.S. Census (2003).  Net Worth and Asset Ownership of Households: 1998 and 2003 (Table A).  
Current Population Reports, P70-88.  U. S. Census Bureau, U. S. Department of Commerce: 
Washington, DC. http://www.census.gov/prod/2003pubs/p70-88.pdf.  Accessed April 28, 2012.  
 
USDOT (2003).  Title XXIII, Part 450.  Code of Federal Regulations. Code of Federal 
Regulations, Title 23, Part 450, Volume 1. 23CFR450. Washington, DC. 
 
Wikipedia (2012a). List of Cities with Most Households without a Car.  Wikipedia. 
http://en.wikipedia.org/wiki/List_of_U.S._cities_with_most_households_without_a_car.  
Accessed April 28, 2012.   
 
Wikipedia (2012b). Table of United States Metropolitan Statistical Areas.  Wikipedia. 
http://en.wikipedia.org/wiki/Table_of_United_States_Metropolitan_Statistical_Areas#cite_note-
MSA-0.  Accessed April 28, 2012.  
 
 
 



 

Chapter 26: 
Data Preparation for 

 Crime Travel Demand Modeling 

 

Ned Levine 
Ned Levine & Associates 

Houston, TX 
 



 

Table of Contents 
 

Choice of a Zonal System         26.1 
 Typical Zone Systems           26.2 
 Problems with Large Zones          26.2 
 Problems in Obtaining Data for Small Zones        26.3 
 Problems with Irregular Size and Shape        26.5 
 Trips from Outside the Study Area         26.6 
 Small Area Limitations          26.7 
 Calculation Limits for Small Zones         26.8 
Obtaining Crime Data          26.9 
 Crime Data by Origins and Destinations        26.9 
 Choosing a Zonal Model          26.10 
 Assigning Crime Events to Zones         26.10 
 Adjusting Crime Events Estimated from Arrest Records for Accuracy    26.16 
 Obtaining Crime Data by Sub-types         26.20 
 Adequate Sample Size          26.20 
Developing a Predictive Model        26.21 
 Obtaining Socioeconomic Data         26.21 
  Population           26.21 
  Employment           26.22 
  Income levels           26.22 
  Other socioeconomic variables        26.24 
 Obtaining Land Use Data          26.24 
 Special Generators           26.25 
 Spatial Location Variables          26.25 
  Centrality           26.25 
  Local spatial autocorrelation         26.26 
  Estimating spatial effects         26.26 
 Defining Policy or Intervention Variables        26.27 
Where to obtain these data?         26.28 
Creating an Integrated Data Set        26.29 
 Allocating Data to Zones          26.29 



 

Table of Contents (continued) 
 

Combining Data into Origin and Destination Data Sets      26.30 
Obtaining Network Data          26.30 
Road Network            26.31 
 Bi-directional road network         26.31 
 Single-directional road network        26.33 
Bus Network            26.34 
Train Network            26.37 
Where to Obtain Network Data?         26.37 

Conclusion            26.40 
References            26.41 
 
 
 
 
  



26.1 

Chapter 26: 

 Data Preparation for  
Crime Travel Demand Modeling 

 
In this chapter, the data requirements for the crime travel demand model are discussed.  

At the minimum, there are four types of data that are needed for the crime travel demand 
module: 
 

1. A zonal system; 
2. Matched crime data listing both crime location and likely origin location.  This 

can be, further, broken down by crime types, time of day, day of week, and other 
sub-sets of the total number of crimes; 

3. Socioeconomic and land use data for the zones which are used as predictor 
variables; and 

4. Network data on the road system and the transit system. 
 

In addition, there can be supplementary data that help expand the predictive models.  
These include: 
 

5. Policy-related data (e.g., strategic or planned interventions) 
6. Crime data on the actual distribution of crimes by zones, which is used to correct 

the implied distribution from 2 above. 
 

The following is a discussion of each of these requirements. 
 
Choice of a Zonal System 
 

The crime travel demand model is a zonal model.  That is, it analyzes crime trips by 
zones.  For all four stages, the estimates are for zones, not for individuals.  Thus, at the trip 
generation stage, there are two zonal models - one predicting the number of crimes originating in 
each origin zone and one predicting the number of crime ending in each destination zone.  At the 
trip distribution stage, there is a prediction of the number of crimes which originate in each 
origin zone that end up in each destination zone (the implicit number of trips).  At the mode split 
stage, the trips for each origin-destination zone pair are, further, sub-divided into different travel 
modes.  Finally, each origin-destination zone pair by travel mode is assigned a route.  But, at all 
stages, the estimates are for zones.   
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Typical Zone Systems 
 

This makes the choice of a zonal system very critical.  In practice, three types of zone 
system have been used: 
 

1. Census geography 
2. Traffic analysis zones 
3. Grid cells    

 
Census geography follows the geography used by the U.S. Census Bureau (in the United 

States) or by other national census agencies.  Traffic analysis zones are used by most 
transportation planning agencies for modeling transportation in a metropolitan area. They are 
typically super-sets of census geography (e.g., two census tracts combined).  Finally, grid cells 
are uniform zones imposed on a metropolitan area.  While they have desirable statistical 
properties, they are rarely used in practice. 
 

Problems with Large Zones 
 

In deciding on a choice of a zonal system, there are several important issues that must be 
balanced.  The first problem one faces is that of zone size.  Large zones can distort relationships.  
It can be shown that the size of a zone has an impact on the statistical relationships between the 
predictor variables and the dependent variables, which are the number of crime trips by either 
origin or destination zone.  Typically, the larger the zone size, the stronger the relationship.  The 
reason for this effect is complex and has to do with a number of factors, for example minimizing 
within-zone differences in travel behavior and, therefore, maximizing the between-zone variance 
relative to the within-zone variance (Langbein & Lichtman, 1978) or aggregating spatial 
autocorrelation to minimize adjacency effects (Anselin, 1995).  But, the effect is well known.  
The cost of having this stronger statistical relationship is to produce a less precise estimate for 
the region since within-zone differences are minimized.   
 

One can think of this in terms of an arbitrary point within a zone (e.g., the centroid of the 
zone though it could be any location within the zone that is taken as the focal point for 
estimation).  All the data in the zone are assigned to that point.  Thus, the number of crimes that 
originate within the zone or end within the zone are assigned to a single point.  This means that 
whether a crime occurred at the edge of the zone or directly in the middle, it is assigned 
geographically to a single point.  Similarly, any of the predictive socioeconomic or land use 
variables are also assigned to that point (e.g., median household income).  Hence, any spatial 
differences within the zone are eliminated as all events and households are assumed to >live= at 
that point. If there are two adjacent zones, for example, that differ in income levels, most likely 
there is a gradient of income from one to the other; however, putting the measurement of income 
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at a single point in each zone exacerbates the differences between the zones while ignoring the 
similarities (e.g., at the edges of the zones where the population on both sides are liable to be 
more similar).   It should be clear that the larger the zone size, the greater the exaggeration 
between the zones.  In other words, larger zones exacerbate differences between zones while 
minimizing similarities.  The result is an oversimplification of the distribution of characteristics 
of those neighborhoods. 
 

In addition, larger zones have too many trips that both originate and end in the same zone 
(intra-zonal or >local= trips).  Clearly, the larger the average size of a zone, the more likely that a 
trip will be entirely within the zone.  Thus, there is a strong relationship between average zone 
size and the number of intra-zonal trips.  This will be less useful since it minimizes the 
complexity of travel.  The extreme would be to divide a metropolitan area into only a few zones 
(e.g., 4 or 5).  The result would detect large scale travel patterns, but would lead to a majority of 
trips occurring within each zone. One would not be able to say very much about crime travel 
other than a few general patterns (e.g., crime trips from the central city to the suburbs).   
 

On the other hand, if the zones are too small, there is a danger that there would be more 
cells in the trip distribution stage (see Chapter 28) than there are actual events.  The result would 
be inadequate degrees of freedom in a model and unreliable coefficients. A zone model has to 
balance the need for increased precision with the ability to produce stable estimates. 

 
Problems in Obtaining Data for Small Zones 

 
In theory, the ideal zone size would be small, say on the order of a block or two. This 

would allow precision in estimates and the ability to examine the complexity of travel in a 
metropolitan area.  The reason that this is not done very often, however, is the lack of data at the 
block or block group level.  While crime data can be allocated to blocks or block groups, it is 
often difficult to obtain socioeconomic data at that level.  In the United States, for example, 
while the U.S. Census Bureau will release data down to the block level, confidentiality 
requirements require that no data be able to identify individuals.  Hence, there is very limited 
data at the block level, typically gender and race distribution.  Block group data, on the other 
hand, is often easily available, including critical income factors.   
 

The biggest problem with a block group zonal system is in obtaining employment data.  
The U.S. Census Bureau only collects a sample of employment data from the decennial census 
which they release in their Journey-to-work data set (U.S. Census Bureau, 2012). They release 
this data for fairly small geographical units (e.g., block groups) and also produce yearly 
estimates for larger geographical units.  These data can be used to construct employment 
estimates for small geographical areas; however, it is current only in those years close to the 
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census year and becomes quickly outdated.  The Bureau of Labor Statistics also collects 
employment information, but will not release it at such a small geography.  

 
Thus, obtaining these data depends on local organizations, such as a Council of 

Government (COG) or a Metropolitan Planning Organization (MPO).  Till now, these data have 
not typically been released at small geographies such as block groups, but, instead, at a larger 
geographical unit called a traffic analysis zone (TAZ).  However, because of the widespread use 
of GIS and the increasing incorporation of high resolution aerial photography into GIS-based 
land information systems, this situation is changing.  For example, at the Houston-Galveston 
Area Council, the MPO for the greater Houston area, employment estimates are made for as 
small a geography as a 1000 foot by 1000 foot grid cell, essentially a couple of city blocks.  
Thus, it is starting to become possible to obtain employment data at very small geographical 
levels.  In the next few years, more and more data will be available for small geographical units 
and the size limitation mentioned above will slowly disappear. 
 

There is a converse problem with size, however, that also occurs.  If the zones are too 
small (e.g., if data could be obtained at a block face level), there will be too many cells with no 
crime events.  The smaller the geographical unit, the more likely that there will be no events 
recorded.  For example, to illustrate the crime travel demand model, I have used data from 
Baltimore County.  The crime data were 41,974 incidents that occurred between 1993 and 1997 
for which both a crime location and a crime origin were known.  To model these incidents, 
traffic analysis zones (TAZ) were used.  For Baltimore County, there were 325 destination 
TAZ=s while for both Baltimore County and Baltimore City, there were 532 origin TAZ=s.   
Taking the origin TAZ=s, with 41,974 incidents the average number per TAZ was 78.9.  
However, in practice, 27 zones had no crimes originate from them (or approximately 5%).  If a 
smaller geography was used (e.g., block groups), the number of zones with no crime originating 
in them would increase substantially, as would the percentage.  At some point, if the geography 
becomes very small, a high proportion of the zones will have no crimes originating from them.  
This makes modeling very difficult as the average number of events will tend towards zero.  
While there are techniques for modeling a skewed distribution (which will be discussed in 
Chapter 27), the more skewed the distribution, the less accurate typically is the estimate.  
Extremely skewed distributions are more problematic for modeling than mildly skewed 
distributions as the variance terms become very complex to estimate (see Chapter 16). 
 

Still, on average, a small zone system is preferable to a large one.  There is so little data 
for very small geographies that the problem of zones being too small is an unlikely one, at least 
for the foreseeable future.  Where possible, users should try to obtain data at the smallest 
geographical level for which data can be obtained. 
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Problems with Irregular Size and Shape 
 

Another problem facing the choice of a zonal system is the irregular sizes and shapes of 
most zonal data.  For example, the U.S. Census Bureau uses a unit called the census tract for the 
collection of census information.  The census tract is supposed to be an area of approximately 
equal population (though it is rarely entirely equal).  These units generally are wholly within 
jurisdictions (though there are exceptions) and they are made up of blocks and block groups 
(collections of blocks), but in turn are aggregated upward to form enumeration areas within each 
jurisdiction.  This logic makes sense in terms of the mission of the U.S. Census Bureau, which is 
to take the census.  The geography respects political jurisdictions (counties and cities), but is fine 
enough to help manage the data that is collected during the decennial census.   
 

But, from a modeling viewpoint, this geography has problems.  First, the area of census 
tracts typically increase from the central city outward to the far suburban edges of a metropolitan 
area.  Because the logic of the census tract is to approximate an area of equal population, by 
necessity the tract area will increase with the lower densities in most suburban communities.   
Thus, any data assigned to a tract (or to a block or block group within a tract) will be less precise 
in the suburbs than in the central city.  In a travel demand model, one can end up with absurdities 
whereby trips appear to originate at locations where there are no people simply because the 
centroid of the zone falls at a location where there are no households (e.g., in a reservoir).  The 
uneven size of zones usually means that a travel model will be more precise in the center of a 
metropolitan area than in a suburb. 
 

Second, because census tracts are often defined with respect to principal arterial roads 
(which form their edge), they often will have irregular shapes.  This could add a potential source 
of error in that all events and household characteristics within a boundary are assigned to a single 
point in the zone.  On the other hand, if the zones have been selected to represent a neighborhood 
which is relatively uniform, such irregularity may not be a problem. Nevertheless, if two zones 
have very different shapes (e.g., one is square while the other is pointed), allocation error (and, 
hence, modeling error) is liable to be greater in the one that is more irregular, all other things 
being equal, than in the one that is square.  This is the so-called Modifiable Area Unit Problem 
(MAUP)( Wikipedia, 2012; Hipp, 2007; Wooldridge, 2002; Openshaw, 1984). 
 

Again, ideally, a zone system should be a grid whereby each zone is a square of equal 
size; shape and area effects are constant for all zones.  While geographers recognize the value of 
a grid cell for zonal allocation, in practice, it is rarely used.  Among the transportation planning 
agencies in the country, very few use a grid system.  Of the ones with which I am familiar, only 
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the Chicago Area Tranportation Survey (CATS) uses a grid system.1  In Chapters 31 and 32, 
Richard Block and Dan Helms discuss applying the crime travel demand model to Chicago. 
 

Therefore, to sum up, in practice, one has to balance four different criteria in selecting a 
zone system for a crime travel demand model: 
 

1. Zone size (generally, smaller is better within limits) 
2. Consistency of zone size (less variability is better) 
3. Distortion due to shape (more regular is better) 
4. Availability of data 

 
Unfortunately, it is the fourth criterion - the availability of data that is usually the 

determining factor in the choice of a modeling zonal system.  Hopefully, this will change in the 
future as more data at the smaller geographical level become available. 
 

Trips from Outside the Study Area 
 

One other problem confronts the choice of a zone system.  Irrespective of which zone 
system is used (census geography, TAZ, grid cells), a decision has to be made about the extent of 
the area to be used in modeling.  The choice of destination zones is made by the availability of 
crime data.  Typically, data are collected by police departments for their jurisdiction.  Unless 
data sets from several adjacent jurisdictions can be obtained and combined, the analyst typically 
will be restricted to modeling the jurisdiction for which the crime data has been collected.  This 
is called the Modeled Jurisdiction. 
 

Modeling the origin zones is a decision about which zones contribute to the crimes 
occurring in the modeled jurisdiction.  That is, some of the origins of the crime trips occurring 
within the modeled jurisdictions may come from outside that jurisdiction.  For example, in the 
case of Baltimore County, approximately 42% of the crimes occurring within that jurisdiction 
were committed by offenders who lived outside that jurisdiction, of which 38% originated from 
the City of Baltimore.  

 
In such a case, it is very important to include zones beyond the modeled jurisdiction in 

the crime origin model.  That is, to use Baltimore County as an example, if the predictive model 
for crime origins only included the 325 TAZ=s within that jurisdiction, the model would not 
adequately assess the factors predicting crime origins.
                         
1  CATS was used as the prototype by the Federal Highway Administration for developing the original travel 

demand model.  The grid was used because it minimized errors due to irregular size and shape.  
Nevertheless, that model has not been followed by planning agencies in the U.S. 
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But where does one draw the line?  Eventually, because of limitations due to data or due 
to the need to restrict the analysis, a boundary has to be drawn around the study region.  Some 
crimes will inevitably originate from outside that line.  These are called External Trips and refer 
to the trips that originate from outside the study area.  While there is no >hard and fast= principle, 
generally transportation planners recommend that the study area include at least 95% of the trips 
that end in the modeled jurisdiction (Ortuzar & Willumsen, 2001).  With such coverage, the 5% 
(or less) that are external trips will have little effect on the model parameters, and the amount of 
bias will be small (but will always exist unless 100% of the trips can be measured).   
 

I will come back to this point in the next chapter.  But, the critical point is that the zone 
system must incorporate a sizeable area in which at least 95% of the crimes originate from 
within.  Going back to the Baltimore County example, adding in the City of Baltimore increased 
the percentage of trips originating within the study area from 58% (for just Baltimore County) to 
96%, an acceptable level to >draw a boundary= around the study region. 
 

Small Area Limitations 
 

A travel demand model is aimed at modeling travel patterns in a metropolitan-wide area.  
The model is particularly good at estimating travel for the region as a whole and for large sub-
areas of the region.  The model is not particularly good at estimating travel within small 
geographical areas.  The problem of intra-zonal trips - trips in which the origin and the 
destination occur in the same zone, represent trips for which the model cannot describe the travel 
pattern.  These are trips that the model detects are within a small area, but cannot estimate where 
these occur.  Similarly, trips between adjacent zones are often imprecise in a travel demand 
model; the model can indicate the level of short trips, but the level of precision is low.   
 

In other words, the crime travel demand model is good at capturing major travel patterns 
over a large area and not very good at localized travel.  There are other modeling tools for small 
area travel analysis that provide much more detail about the neighborhoods and road system in 
which this travel occurs, such as microsimulation software of travel behavior in a neighborhood 
(Kitamura, Yoshii, & Yamamoto, 2009; Miller & Salvini, 1999). 
 

Therefore, in order to apply a travel demand model to crime analysis, it is important to 
model a substantial part of a metropolitan area.  The model will not be as accurate if a small city 
or area within a metropolitan area is chosen.  In these chapters, crime travel in Baltimore County 
is used as an example case in order to illustrate the different components of the model.  
Baltimore County is a large jurisdiction covering approximately 640 square miles; it represents a 
sizeable part of the Baltimore metropolitan area.  Combining the origin zones of Baltimore City 
with those of Baltimore County provides a very large proportion of the metropolitan area.  In 
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other words, Baltimore County is large enough to model the crime destinations while the origin 
zones represent much of the metropolitan area. 
 

On the other hand, if we attempted to apply the model to a small part of the region, for 
example the town of Towson, the model would be less precise and less accurate since that town 
represents a very small proportion of the overall region.  In short, a crime travel demand model is 
useful for modeling either an entire metropolitan region or a sizeable part of a metropolitan 
region, but should not be considered for a small geographical area.  It is a regional travel model, 
not a local model. 
 

Calculation Limits for the Number of Zones 
 
A final consideration has to do with the number of zones that can be modeled with the 

CrimeStat crime travel demand model.  Depending on whether a computer is 64 bits or 32 bits 
and depending on the operating system, limits may be reached on the number of zones.  For 
example, with a Windows 32 bit operating system, the routine can only access 4 Gb of RAM.  If 
M is the number of origin zones and N is the number of destination zones, then a trip distribution 
matrix, which is subsequently used in the mode split and network assignment stages, involves 
N*M cells.  Each digit requires 64 bits of RAM with 16 digits assigned per cell.  There are also 
seven fields output.  Thus, a trip distribution output file requires approximately M*N*64*16 bits 
of RAM. 
 

To use an example, if the user has 1 Gb of RAM available, then approximately 8,388,608 
grid cells could be handled (or a square matrix of 2,896 x 2,896).  However, Windows requires 
some overhead as does CrimeStat.  Thus, the actual number of grid cells that could be processed 
will be a little less.   
 

One could, of course, add more RAM.  In this case, the file size of the trip distribution 
matrix could be increased.  However, there are limits to this.  First, the calculations will slow 
down, at a rate that is exponential to the file size.  At some point, the calculations will take so 
long as to be impractical.   

 
Second, as mentioned a 32 bit operating system a 4 Gb limit.  Thus, the maximum file 

size would be a square matrix of about 5,793 x 5,793. A 64 bit operating system, on the other 
hand, can access 32 Gb of RAM thus allowing about 268 million cells (or a square matrix of 
16,384).  Clearly, if the study area has many zones, then a 64 bit computer and operating system 
will be essential.  But, even here there are limits. For example, in Chicago there are 21,068 
blocks.  Using these blocks as a zone model in the crime travel demand would be impossible 
even for a 64 bit computer since the matrix routines could not handle such a large matrix, even 
assuming that it is desirable to do so.   Therefore, any zonal model that is selected must be 
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compatible with the calculation limits of the available RAM and the Windows operating system. 
In the case of Chicago, using block groups was an acceptable choice since there are only 2400. 

 
Obtaining Crime Data 

 
There are four types of data that need to be obtained. 

 
Crime Data by Origins and Destinations 

 
First, there is crime data.  But, in order to estimate a crime trip, it is essential that these 

data have information on both crime origins as well as crime destinations.  The most likely 
source of these data will be arrest records whereby both the crime location and the charged 
offender=s residence are given. Only the police are liable to have these data.  Thus, it will be 
necessary to obtain cooperation from the local police department for access to arrest records.  
 

In the data, the residence location is taken as the origin while the crime location is taken 
as the destination of the trip.  As mentioned in Chapter 13 on journey-to-crime, the Atrue@ origin 
of the crime may not be known. First, the offender may not even have been living at the same 
residence as when arrested. Many offenders are highly transitory persons and a residence at the 
time of the arrest may not be the actual one from which the crime occurred. Second, the offender 
may not have traveled directly from home to the crime location, but may have committed the 
crime as part of his/her daily activities (intermediate trips).  However, without any alternative 
data on the actual origins, there is little that can be done except assume that the residence when 
arrested is the origin.  As long as this definition is kept, a consistent estimate can be obtained.2   

 
In effect, one is asking the question, AWhat is the likelihood that an offender who lives in 

zone i will commit a crime in zone j at some point during a day?@  It really does not matter 
whether the offender traveled from the home location to the crime location as opposed to going 
to the crime location from an intermediate location.  The model is simply constructed with 
respect to residence location. 
 

The data has to be organized so that the X and Y coordinates of both the residence 
location (the origin) and the crime location (the destination) are given.  Figure 26.1 illustrates a 

                         
2  If the actual origin was an intermediate location between the home and the crime location, then with a large 

sample of crimes and offenders the idiosyncrasies of one offender=s crime travel pattern is not going to 
affect the coefficients of the prediction model to any great extent.  If all offenders from a particular zone 
committed crimes from an intermediate location which was always the same, then that condition might 
affect the coefficients (assuming one could obtain the data).  But, it is highly unlikely that all offenders will 
commit crimes in the same destination zone using the same intermediate zone as an origin. 
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typical data set.  It will be necessary to geocode both locations in order to establish a >crime trip=, 
an assumed trip from a particular origin location to a particular destination location. 
 

Figure 26.2 shows the location of 41,974 crimes committed in Baltimore County between 
1993 and 1997 while Figure 26.3 shows the assumed origin location of the offenders who 
committed these 41,974 crimes.  As seen, the origins are all over the region, but most (96%) are 
in either Baltimore County or Baltimore City. In other words, a >crime trip= links the origin 
location of each crime with the actual destination where it occurred.  If arrows were to be drawn 
from the origin to the destination, the entire map would be swamped with a series of lines. 
 

Choosing a Zonal Model 
 

The zonal framework used for the Baltimore County analysis was traffic analysis zones 
(TAZ).  The reason for selecting theis was the availability of both population and employment 
data.  The Baltimore Metropolitan Council is the Council of Governments and the Metropolitan 
Planning Organization for the greater Baltimore region.  They use TAZ=s for their transportation 
model.  Since data were available by the TAZ=s, it seemed like a plausible decision.  But, as 
mentioned above, there are advantages and disadvantages to this decision.  Approximately, 20% 
of all crime trips occur within the same zone (intra-zonal trips).  Such a high proportion makes 
the overall model estimates prone to some error.  Figure 26.4 shows the TAZ=s for both 
Baltimore City and Baltimore County. 
 

Note that there is a difference between the zones used for the origins and the zones used 
for the destinations.  In the case of Baltimore County, there are 325 TAZ=s that cover the County.  
However, as mentioned above, since many of the crimes occurring in Baltimore County originate 
in the City of Baltimore, the origin zones include those of the City as well as the County.  Thus, 
there are 532 origin zones. 
 

Assigning Crime Events to Zones    
 

The next step involves assigning the crime origins and the crime destinations separately 
to the zonal model.  That is, each crime event is assigned to zones twice, once for the origins and 
once for the destinations.  Since an arrest record is an implicit crime trip, the residence location 
is assigned to a zone and the destination location is assigned to a zone.  Then, the number of 
crimes originating from each zone are calculated by summing over all records to produce a 
distribution of crimes by origin zone.  Similarly, the number of crimes ending in each zone are 
calculated by summing over all records to produce a distribution of crimes by destination zone.  
The result is two distributions of crimes by zone, one for origins and one for destinations.  
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Figure 26.3:
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How does one assign crime events to a zone?  There are two general ways to do this: 
 

1. Nearest zone centroid - events are assigned to the zone centroid that is closest.  
 

2. Point-in-polygon - events are assigned to the polygon within which it falls. 
 

With the nearest zone centroid method, an incident is assigned to a zone to which it is 
closest whereas with the point-in-polygon method, an incident is assigned to a zone in which it 
falls within the boundary of that zone.  Most GIS packages have a point-in-polygon routine and 
can implement that method.     
 

In CrimeStat, on the Distance Analysis I page, there is an Assign Primary Points to 
Secondary Point routine that will make this assignment based on either method (see Chapter 6). In 
both cases, the incident file must be the primary file and the zonal file must be the secondary file.  
In the nearest zone centroid method, the routine will assign each event to the centroid to which it 
is closest.  It will then sum the number of incidents assigned by zone and will add this as a new 
field to the secondary file (called Freq).   

 
In the point-in-polygon method, the user must also provide the boundary file for the zones 

as an ArcGIS shape file.  The routine will read the boundary file and will determine in which 
polygon an incident falls, and will then assign the incident to that zone.  As with the nearest zone 
centroid method, it will then sum the number of incidents assigned by zone and will add this as a 
new field (Freq) to the secondary file.  Chapter 6 presents details of these two routines, and is not 
repeated here. 
 

There are advantages and disadvantages to each method.  The nearest zone centroid has 
attributes that are probably closest to the location where the incident occurs.  This is important in 
relating socioeconomic and land use characteristics to the events during the trip generation stage 
(see Chapter 27).  Typically, social characteristics change gradually over an urban landscape so 
that an incident is probably closer to its nearest zone centroid than to any other zone centroid.  In 
the case of the point-in-polygon method, incidents are not necessarily assigned to the nearest 
centroid since zonal polygons are frequently irregular in shape.  Thus, to represent the underlying 
characteristics of the location in which the incident occurs by a point-in-polygon may end up 
assigning an incident to a zone that is quite different from where it should be located. 
 

On the other hand, the main advantage of a point-in-polygon assignment is if the zone has 
a meaning in terms of containment or membership.  For example, if a police reporting district 
(which could be a sub-set of a larger police precinct) is used as the zonal model, assigning 
incidents to the reporting district within which they fall will ensure that the incidents are assigned 
to the correct police precinct.   
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In other words, if it is important that events be assigned to the area to which they belong, 
then the point-in-polygon method is usually the best.  On the other hand, if it is important that the 
incidents be assigned to the zone to which they are most similar, then the nearest centroid method 
is usually the best. 
 

For Baltimore County, figure 26.5 shows the number of crimes by origin zone while 
Figure 26.6 shows the number of crimes by destination zone.  In both cases, events were assigned 
by the nearest zone centroid method. 
 

Adjusting Crime Events Estimated from Arrest Records for Accuracy 
 

There is another subtlety that affects the assignment to a zone.  The method that has been 
described assigns records in which there is both an origin and a destination location, such as an 
arrest record.  The reason for doing this is that there is an implied trip between the origin and the 
destination, as was discussed above and in Chapter 25.  However, there may be a difference 
between the distribution of crimes by destination from the arrest records and the actual distribution 
of crimes from all incidents.  The reason is that arrest records represent only a sub-set of all the 
crime records and, often, a small sub-set.  If there are any spatial differences in the arrest 
likelihood across a metropolitan area, it is possible that some areas will have a higher proportion of 
offenders being arrested than other areas.  The result would be a discrepancy between the 
distribution of crimes by arrested individuals and the actual distribution of crimes.  In other words, 
the distribution of crimes as identified by the arrest records could be a biased estimate of the actual 
distribution of crimes. The result could be that the origins of those offenders who were caught will 
be exaggerated relative to the origins of those offenders who were not caught, and the entire model 
could end up being biased.3 

 
If there is a sizeable discrepancy between the distribution of crimes from the arrest records 

and the actual distribution of crimes, it is important to correct this. In the Assign Primary Points to 
Secondary Points routine on the Distance Analysis II page, it is possible to weight the assignment 
by another variable.  This variable can reside on either the secondary (zone) file or on another file.  
A typical correction weight variable would be a proportion that adjusts the empirical distribution 
of crime destinations by the true distribution.  Thus, a weight greater than 1.0 would increase the 
proportion whereas a weight smaller than 1.0 would decrease the proportion.  A weight of 1.0 
would maintain the same proportion.  

                         
3  In the usual travel demand modeling conducted by transportation planners, the origins are assumed to be 

more accurate than the destinations.  The origins are identified typically from census and other population 
enumerations whereas the destinations are estimated from surveys and employment databases.  In the case 
of crime travel, however, the destinations are known with much greater accuracy since those locations are 
documented in police reports. 
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Figure 26.6:
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In order to do this, however, one has to convert the number of crime destinations into 
proportions.  Let=s take an example.  Suppose the empirical and true distribution of crime 
destinations was as follows (Table 26.1): 
 
 Table 26.1: 

 Proportional Weighting Empirical Assignment of Crime Destinations 
 

Empirical  True   Proportional 
Zone   Distribution  Distribution  Weight 

 
  101         .04      .05    1.25 
  102         .03      .025    0.83 
  103         .015     .015    1.00 
  etc. 

 
In the example, the actual (true) distribution of crimes for zone 101 is greater than what 

was measured in the incident-to-zone assignment by a factor of 1.25 to 1 (i.e., .05/.04).  Thus, the 
weight assigned to zone 101 is 1.25.  In zone 102, on the other hand, the actual distribution of 
crime destinations was smaller than what was estimated from the incident-to-zone assignment by 
a factor of 0.83.  Thus, the weight assigned to zone 102 is 0.83.  Finally, the proportion of crimes 
in the empirical and actual distributions for zone 103 is exactly the same.  Thus, the weight 
assigned to zone 103 is 1.00.   
 

The weight variable will be typically a column in the secondary file that corrects the 
empirical distribution.  Naturally, the first time this is done, an analyst would probably not know 
the empirical distribution.  Thus, it will be necessary to repeat the incident-to-zone assignment, 
the first time in order to count the empirical distribution while the second time to weight that 
count by the correction factor (which will have been added as a variable to the secondary - zonal, 
file).  See Chapter 6 for a more complete discussion of weighting a primary points (incidents) to 
secondary points (zones) assignment. 

Note, the adjustment of the empirical count (assignment) is done usually for the 
destination variable, not the origin variable.  In the case of crime events, police will know the 
destination of the crime a lot more accurately than they will the origin since there is a crime 
record on file for the incident.  Hence, any discrepancy between the empirical distribution of 
crimes and the actual distribution will only be known for crime locations (destinations).  
Therefore, in correcting the empirical distribution, we are assuming that we are also correcting the 
true distribution of origins, too.  It should be obvious, though, that we really don=t know.  Unless 
one can obtain a Atrue@ distribution of crime origins and, thereby, correct the origin distribution as 
well as the destination distribution, one has to assume that the adjustment in the destinations will 
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also correct the distribution of the origins during the balancing stage (see Chapter 27 on trip 
generation). 

 
Obtaining Crime Data by Sub-Types 

 
Till now, the discussion has focused on the total number of crimes that occur within a 

zone.  Clearly, it is possible (and preferable) to break this down into distinct sub-groups.  Thus, a 
separate distribution for robberies, burglaries, vehicle thefts, homicides, and other crime types can 
be complied.  In each case, the separate distribution is being assembled in order to produce 
distinct models of crime travel by that type.  The journey-to-crime literature has long illustrated 
the differences in travel distance by crime type and it would be expected that there are substantial 
differences in travel patterns as well.  Most crime analysts and researchers will want to break 
down crimes into these distinct categories.  Similarly, an analysis by time of day or day of week 
also would require breaking down crimes by these different temporal categories.  In general, an 
analysis of all crimes is not very meaningful for most police departments.  Instead, the focus has 
to be on crime types and, perhaps, times of day with other sub-sets also being important (e.g., 
method of operation, use of weapons). 
 

The method used to assign these individual crimes to zones would be, however, exactly 
the same as for the total number of crimes that was illustrated above.  As with the total number of 
crimes, there would be differential weighting of zones in order to correct any bias in the 
distribution of crimes calculated from the arrest records compared to the actual distribution of 
incidents as identified by total crime reports. 
 

Adequate Sample Size 
 

A problem with this approach arises, however.   By breaking down crimes into distinct 
sub-groups (by crime type, time of day, day of week, method of operation, etc), smaller samples 
are produced.  As the sample size decreases, the likelihood of modeling error increases.  If the 
sample is too small, then any of the zonal estimates that are produced in the trip generation stage 
will be subject to considerable sampling error.  Similarly, in subsequent stages (trip distribution 
and mode split), these small sample sizes are further broken down into cells with very small 
sample sizes, with most having zero incidents.   In other words, sampling error becomes a 
problem if the total number of crimes is broken down into very small sub-sets, and the model 
becomes unreliable. 
 

How would one know whether a model is unreliable or not?  Probably the simplest way is 
to repeat the model on two different years worth of data.  That is, the analyst constructs the travel 
demand model on one year=s worth of data and then repeats it on another year.  If the variables 
selected during the trip generation stage are the same and if their coefficients are approximately 
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equal, then the model would appear to be reasonably stable.  On the other hand, if there are 
substantial differences in the selected variables and in their coefficients, most likely the data set 
was too small for the construction of a stable model. One could do formal tests on differences 
between the coefficients to see whether they are similar or different.  But, a general review of the 
coefficients should indicate whether there is stability or variability.  There is not a >hard and fast= 
rule since any differences could be due to real changes in the environment creating crime.  But, 
unless there is some obvious explanation for the differences, most likely they indicate that a 
model is too unreliable to be used from one year to the next (i.e., the sample size is probably too 
small). 
 

Thus, there is a balance that has to be maintained between having a large enough sample 
to produce reasonably reliable trip generation and trip distribution coefficients, and breaking 
down the data into more meaningful categories for analysts and researchers.  In general, I believe 
it is a good idea to model all crimes first before modeling specific sub-types.  The reason is to 
establish baseline characteristics - variables and coefficients.  It will become easier to understand 
how different crime sub-types vary once the overall distribution is known. 
 
Developing a Predictive Model 
 

The above discussion dealt with summarizing crime incidents by zones, both the location 
where the crimes occurred (the destinations) as well as the locations where the offender was 
living (the assumed origins).  In order to develop a predictive model of crime origins and 
destinations, it is also necessary to put together a data set of predictive variables.  Typically, these 
will be socioeconomic and land use variables, though other types of variables can be included.  
 

Obtaining Socioeconomic Data 
 

Population 
 

The most common type of predictive data will be socioeconomic variables.  Among these 
are population, employment, income levels, poverty data, and household characteristics.  At the 
minimum, population will be an important variable.  As mentioned in Chapter 25, the crime travel 
demand model is an aggregate (volume) model.  That is, it counts the total number of crime trips 
(by origin and by destination).  Since, the number of trips is generally a function of the total 
number of persons living in a zone, all other factors being equal, population inevitably will enter 
as either the most important or among the most important variables, as both an origin and a 
destination variable. 
 

Population could be measured by sub-sets (or proxy) variables, too.  For example, the 
number of households, the number of teenagers, and the number of married couples are also sub-
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sets of the total population; the correlation among these variables is usually very high.  Which 
variable is chosen will depend on what type of crime is being predicted.  For the total number of 
crimes, probably the total population (or total number of households) should be used because it is 
a larger and more stable estimate of the total Aat risk@ population.  For specific crimes, however, it 
may be desirable to choose a sub-set of population.  For example, for car thefts, the distribution of 
males, ages 16-30, might be a more intuitive baseline variable as those age groups contribute 
disproportionately to vehicle thefts (as they do to most crime types).  The disadvantage in using 
this variable may be the smaller sample sizes that are obtained for some zones.  A good way to 
test this is to model it twice, once with total population and once with the sub-set variable.  If the 
overall predictability of the model is about the same (or, better, if the sub-set variable predicts 
better than the total population), then the use of the sub-set population will be preferable to the 
total population.  On the other hand, if there is not much difference, stick with total population as 
it is a larger, and more stable, variable. 
 

Employment 
 

A second variable that usually comes up is total employment.  This is particularly valuable 
as a predictor of crime destinations since many crimes are attracted to employment areas (e.g., 
robberies, burglaries, vehicle thefts).  Usually a distinction is made between retail and non-retail 
employment, though other distinctions can also be made (e.g., office employment, government 
employment, military employment).  The reason is that retail employment is usually found in 
commercial areas (e.g., shopping malls, strip malls, retail centers).  In the case of Baltimore 
County, for example, retail employment is the strongest predictor of crime destinations.   
 

As an origin variable, too, employment could be important.  In the three models that were 
compared for this version of CrimeStat (Baltimore County, Chicago, Las Vegas), employment 
was seen as a predictor variable for crime origins in several cases, too, usually as a negative 
predictor (i.e., less employment is associated with more crime).  The reason may be less clear, but 
may have to do with the lack of opportunities in certain districts and neighborhoods. 

 
Income levels 

 
Another obvious variable is income measured in some way.  The relationship between 

crime and low income has long been noted.  There are several possible income-type variables that 
could be used in a model.  The most obvious is the total income level of a zone.  The U. S. Census 
Bureau has a total income variable that is part of their SF 3 release (U.S. Census Bureau, 2011a).  
This measures the total of all household incomes in the census.  While this variable captures the 
total available income in the zone, it is not a very intuitive measure.  Consequently, other 
measures are usually used, such as income per capita or median household income.  Median 
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household income is usually a more typical measure since the average income per person can be 
affected by extreme values.  
 

An important issue about income levels, no matter how measured, is that they inflate over 
time.  That is, since income reflects monetary value at any one point, it does not have a fixed 
reference point.  What this could mean in a model is that, over time, income levels will increase 
(in absolute terms) due simply to inflation.  A model that established, for example, a negative 
relationship between income and crime (i.e., the higher the income of the zone, the less crime) for 
one year would end up predicting lower crime levels for another year simply due to inflation. 
 

It is important to standardize income in order to prevent the impact of inflation affecting 
the model.  There are two ways that this is usually done. First, one can standardize income by 
subtracting the mean and dividing by the standard deviation.  That is,\ 

 

 
̅
            (26.1) 

 
where Ii is the income of each zone, i,  ̅is the mean income of all zones, and SdI is the standard 
deviation of all zones.  This is a classic standardized measure. 
 

A second way to standardize income is to define relative income.  That is, the income 
level of each zone is compared to the income level of the zone with the highest income.  That is, 

 
             (26.2) 

 
where Imax is the income level of the zone with the highest income. This index measures the 
income of a zone relative to the income of the highest income zone.  The closer the income level 
of the zone is to the highest income zone, the smaller the index.  Thus, this is an income 
inequality index, similar to the Gini index though more simply calculated.  The zone with the 
highest income will have a value of 0 whereas the zone with the lowest income will have a 
positive value roughly reflecting the relative differences in income levels between the lowest and 
the highest. 
 

Each of these measures will prevent a shift in the predicted values due to inflation, though 
they each measure slightly different attributes; the first measures just absolute income levels 
(standardized) while the second measures the degree of inequality. 
 

Another type of income variable is the number of persons living under poverty.  Again, 
the relationship between poverty and crime has long been noted (Bursik & Grasmick, 1993)..  
Thus, a variable that measures poverty directly could add sensitivity to a model that simple 
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income might not detect.  The issue of measuring poverty, however, is a complex one.  Different 
government agencies use different measures.  For a discussion, see Citro and Michael (1995). 
 

In general, typically the variables ‘median household income’ and the’ number of persons 
(or households) living under the poverty line’ do correlate quite well.  Therefore, it is unlikely 
that both variables would be significant in a regression equation without, essentially, measuring 
the same thing.  The same is true for education and income, which tend to correlate quite highly.  
Again, both variables in a regression equation would, essentially, be measuring the same thing.  
Thus, in a regression model, it is important to select only the strongest and most stable income 
variable in order to avoid duplicate measures (multicolinearity). I will return to this point in the 
next chapter. 
 

Other socioeconomic variables 
 

Other socioeconomic variables might be useful in a predictive model.  Among these are 
race or ethnicity, vehicle ownership, number of single parent households, number of unemployed 
workers, number of persons living in large rental buildings, and others.  Again, these variables 
might produce greater differentiation in a model.  But, at the same time, they tend to overlap with 
income variables and may be measuring the same thing. 
 

Obtaining Land Use Data 
 

Aside from socioeconomic variables, there are land use variables that could be important 
in predicting both crime origins and destinations.  Among these are parks, bars, pawn shops, 
check cashing businesses, the location of shopping malls, retail space, stadiums, train stations, 
intra-urban metro stations, bus stations, parking lots, hospitals, and adjacency to major freeways 
or arterial roads.  There are a wide variety of land use variables that appear to be important in 
attracting crime as well as in providing an environment that may encourage people to commit 
crimes.  A thorough elaboration of potential land use variables would help to identify particular 
attributes associates with crime and, thereby, increase the predictive ability of a model. 
 

There are two ways to document these land uses.  One is as a simple categorical 
(>dummy=) variable whereby the field is given a >1' if that land use exists in the zone and a >0' 
otherwise (e.g., there is a park in the zone; a freeway runs through the zone; there is a stadium in 
the zone).  The second is a count of the level of that land use variable (e.g., the number of bars; 
retail square footage; park acreage; number of parking stalls in a parking lot).  The second 
variable is, clearly, more precise than the first, but is much harder to document. The availability 
of data will be a constraining factor in building up a set of land use variables that might predict 
crime origins or destinations. 
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Still, before an extensive data inventory is initiated, some cautionary words are in order.  
In the three studies illustrated in this version of CrimeStat, however, few land use variables 
survived once population, employment and income levels were included.  The reason is that many 
land use variables correlate with these basic variables (e.g., the amount of retail space correlates 
with retail employment; bars correlate with low income). Thus, in spite of intuitively being 
related, it was found that most of the land use variables did not improve the models beyond the 
basic variables. 
 

Special Generators 
 

There are exceptions, however.  Particularly, there are special generators that attract 
crimes out of proportion to the amount of employment at those locations.  Among these are 
stadiums, major train stations, airports, and large parks.  Because these are major regional 
facilities and, in the case of stadiums and parks, used only periodically, they may attract more 
crimes that would be expected on the basis of the level of employment at those locations.  
Traditional travel demand models have incorporated these as special variables because they can 
account for variability that is not general throughout the study area.  In the next chapter, I will 
discuss this in more depth.  
 

Spatial Location Variables 
 

Centrality 
 

In addition to socioeconomic and land use variables, spatial location variables might be 
relevant. There are two types of spatial location variables that might be relevant.  The first is the 
centrality of the metropolitan area.  In most American cities, the central downtown area has a 
uniqueness that is greater than that which is explained by any one variable.  For example, not only 
is there a large amount of employment in most Central Business Districts (CBD), but there are 
amenities that are associated with a central location.  Usually, there is a greater concentration of 
restaurants and stores in CBD=s and other employment centers.  Entertainment activities are often 
more concentrated in the CBD; this is not true in many large metropolitan areas (e.g., Los 
Angeles), but it is true in enough of them to make the CBD an entertainment center as well as an 
employment center.  Similarly, transit lines tend to concentrate in the CBD. 
 

In other words, the CBD is a unique place that affects crime trips. Some CBD=s have a 
large number of crime incidents whereas others do not.  Nevertheless, measuring it in a predictive 
equation might increase the predictability of a production or attraction model.  A simple variable 
is the distance from some point within the CBD, for example distance from the City Hall.  Zones 
that are close are liable to have a greater number of crime productions and crime attractions, 
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especially, than zones farther away.  This type of spatial effect is very similar to the first-order 
effect described in Chapter 6.   

 
The use of a distance from the CBD variable can usually strengthen a regression model.  A 

study which illustrates how centrality predicts male-female differentials in motor vehicle crashes 
in Houston is by Levine (2011); male drivers are much more likely to get involved in crashes in 
the central city, particularly the CBD, than females whereas the differentials are much less in the 
suburbs.  Another example is by Levine and Canter (2011) who showed that distance from the 
CBD predicted positively the number of DWI trips that ended in crashes that originated in each 
zone in Baltimore County (i.e., zones farther from the CBD produced more).  Similarly, Levine 
(2007) found that distance from the CBD negatively predicted the number of bank robbery trips 
that originated in each zone (i.e., zones closer to the CBD produced more).   

 
Local spatial autocorrelation 

 
The second type of spatial effect is a localized similarity between adjacent zones.  In other 

words, there frequently is spatial autocorrelation in crime productions or attractions between 
adjacent zones.  These are the second-order spatial effects described in Chapter 6.  Zones that 
have a lot of crimes occurring within them are frequently located next to zones that also have a lot 
of crimes occurring, and the converse.   

 
If the user wants to incorporate local spatial autocorrelation explicitly in the trip 

generation stage, then the use of a Anselin’s Local Moran, the Getis-Ord Local ‘G’ (see Chapter 
9) or a simple adjacency measure (e.g., >1' if the average of adjacent zones is greater than the 
mean for all zones and >0' if it is not) may be sufficient in account for the localized spatial 
autocorrelation. 

 
However, it should be noted that apparent second-order spatial effects may be simply by-

products of first-order spatial effects.  Because of the concentration of events in the central city, 
there are usually more local hot spots in the central city, too.  Before arriving at a conclusion that 
there is definite local spatial autocorrelation, a user would be wise to incorporate a first-order 
global spatial autocorrelation variable, such as distance from the CBD.  If there is additional 
variability after that in incorporated, then the local effect would most likely be rea. 

 
 Estimating spatial effects 
 
The spatial regression models discussed in Chapter 19 explicitly incorporate spatial effects 

as a predictor variable.  If a trip generation model includes both a first-order spatial effect (e.g., 
distance from the CBD) and a local spatial autocorrelation adjustment for each case (the Phi 
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coefficient to use the terminology of Chapter 19), then the model will handle both types of spatial 
autocorrelation.  
 

An alternative is to ignore the spatial effects in the first stage – trip generation, since the 
second stage of the model - trip distribution, incorporates an explicit spatial component by 
weighting distance in estimating the interaction between zones.  Thus, any spatial error produced 
during the trip generation stage is frequently compensated for during the trip distribution stage.   
 

There are advantages and disadvantages to including first- or second-order spatial effects 
in a travel model. Since the trip distribution stage has an explicit spatial interaction term, any 
errors from the first stage (trip generation) are usually accounted for during the second stage. 
Thus, there is little advantage to be gained from including a second-order (spatial autocorrelation) 
variable.  However, including a first-order variable can usually improve the predictability of the 
trip generation model.  
 

Defining Policy or Intervention Variables 
 

Aside from socioeconomic and land use variables, a model might include some policy or 
intervention variables.  One of the best uses of a travel demand model is to model the likely effect 
of a change in one of the predictive variables.  A simple one would be the likely effect of building 
a new facility, for example a shopping mall.  In the estimation stage, if the analyst can show that 
shopping malls are associated with higher (or lower) numbers of crime occurring, then a 
theoretical mall could be placed in a zone and the model run with that as a new input for the zone 
(with every other variable being the same for all zones).  Since the travel demand model is 
sequential, the impact of new crime trips being attracted to the zone can be followed through the 
different stages of the model. 
 

There may be other policy or intervention experiments that can be conducted with a crime 
travel demand model.   In each case, it is necessary to include the variable in the estimation model 
to establish a coefficient for it.  Then, in the simulated experiment, the variable is re-arranged or 
allocated differentially and the model is recalculated.  Again, the result can be used to estimate 
what the likely effects of the intervention could be on crime travel patterns. 
 

Among the possible policy or interventions are the construction of a particular type of 
facility (as mentioned above with a new shopping mall), changing the level of policing in a zone, 
the creation of a drug treatment center, the establishment of a job retraining center, or the 
reduction in the number of adult book shops.  There are a large number of possible interventions 
that might affect the level of crime - either produced (origins) or attracted (destinations).  Further, 
not all of the interventions might reduce crime levels, but some could even increase it (e.g., add 
new shopping malls).  Nevertheless, the ability to add interventions in the model makes it a useful 
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device to estimate the likely effects on crime levels without having to actually implement the 
changes. 
 

In the three studies presented in this version of CrimeStat, there were no interventions that 
were estimated.  Examples of simulated interventions can be seen in Levine and Canter (2011) 
who modeled selective police interventions to reduce DWI trips in Baltimore County that end in 
crashes from zones where a higher proportion of offenders resided and from zones where a higher 
proportion of crashes occurred and Levine (2007) who modeled both bank robbery trips in 
Baltimore County from residence to the bank and the escape route trip back to the residence.  
Still, this type of experiment or >variable= is an important one and which could make the crime 
travel demand model a very powerful analysis tool.  

 
Where to Obtain these Data? 
 

Many of these data are easily found while other data are more difficult to locate.  A lot of 
socioeconomic data is available in the decennial census and distributed by the U.S. Census 
Bureau.  Data on population, households, and income levels can be obtained from the Census 
Bureau for geographies as small as blocks or block groups.  One of the deficiencies of the census 
data, however, is the lack of information on employment. 
 

An alternative is to obtain data from a Council of Governments or Metropolitan Planning 
Organization.  A Council of Governments (COG) is a regional association of cities and counties 
that is involved in planning; sometimes it is called an Association of Governments.  Virtually 
every metropolitan area in the United States has a COG that can be a source of information on 
both population, employment, and, occasionally, land use.  Many COG=s have a forecasting group 
that estimates both population and employment, sometimes for very small geographical units.  
The Houston-Galveston Area Council, for example, has an extensive database of all firms with 10 
or more employees and updates this continually utilizing information on business permits, 
purchased lists from other organizations, and aerial photographs for identifying new commercial 
developments.  They produce estimates of employment for small grid cells that are approximately 
1000 feet on a side; however, these data are released only at the Traffic Analysis Zone (TAZ) 
level.  For more information and a detailed list of local regional councils, see NARC (2012). 
 

A Metropolitan Planning Organization (MPO) is a regional transportation planning 
agency.  In many metropolitan areas (e.g., Los Angeles, Houston, Washington, DC), the MPO is 
part of the COG while in other metropolitan areas (e.g., San Francisco, Chicago), it is not.  They 
will obtain both population and employment data for the TAZ=s as part of their travel modeling 
functions.  For more information and a detailed list of local MPOs, see AMPO (2012). In short, it 
is generally possible to obtain data on population and employment from either COGs or MPOs. 
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Land use data is more difficult to obtain.  Simple information can often be obtained from 
Yellow Pages or online business directories, for example the location of bars and nightclubs.  
More detailed data may have to be obtained from particular cities and counties.  Generally, larger 
cities have a planning department or a public works department who maintains some land use 
data.  The quality of this information will vary, however, and may not be consistent across 
jurisdictions.  In a large metropolitan area, it may be possible to obtain regional land use 
information from the COG, the MPO, regional utility companies, a database of business permits, 
tax assessors’ offices, or even the Army Corps of Engineers. 
 

The point that has to be realized is that a lot of effort is needed to put together a data base 
for modeling crime travel.  Once developed, however, it can be used repeatedly as predictors for 
different types of crime and can be updated more easily. Like a GIS system, there is a substantial 
amount of effort >up front= in order to build a model.  But, once collected, the information can be 
very useful for a multitude of purposes. 

 
Creating an Integrated Data Set 
 

The information that has been collected - both data on crime origins and destinations as 
well as socioeconomic, land use and policy interventions, needs to be integrated into a single 
zonal model.  That is, the data need to be allocated to zones, both origin zones and destination 
zones.  The result will be two different data sets, one for crime origins and one for crime 
destinations.  The origin data set will cover the origin zones while the destination data set will 
cover the destination zones.  The same predictor variables, however, can be in both data sets as 
these variables could predict either origins or destinations, or both.  
 

Allocating Data to Zones 
 

There are two steps in assembling the data into two data sets.  First, the data have to be 
allocated to the zonal system used.  In some cases, these data may be easily available (e.g., 
obtaining population and employment data by TAZ=s when the TAZ is the zonal unit used).  In 
other cases, it may be necessary to allocate the data from one geographical zonal unit to another 
(e.g., from census block groups to TAZ=s).  GIS is a very powerful tool for allocating data from 
one Alayer@ to another.  However, it has to be realized that errors will result from an allocation.  
For example, breaking up a larger zone into small sub-zones (e.g., breaking up a large census tract 
into four small grid cells) will lead to some error in the allocation.  The GIS splitting routines 
usually assume that the data are split proportionately between the four >pieces=.  Thus, if 
employment from a census tract is allocated to two grid cells, one assumes that the workers are 
uniformly distributed within the census tract and the two grid cells will each capture a share equal 
to their area relative to the larger tract.  This may or may not be true.  Where it is not true, 
adjustments need to be made to ensure that zones represent relatively uniform populations. 
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The point is, there is error in allocating data from one type of unit to another, and the 
analyst has to be aware of these potential sources.  It is generally better to obtain data at the 
smallest possible geographical unit in order to minimize the splitting problem described above.  
Aggregation usually causes less error than splitting.  On the other hand, as mentioned at the 
beginning of this chapter, the larger the zonal unit that is used the greater the likelihood that there 
will be within-zone (intra-zonal) trips. 
 

Combining Data into Origin and Destination Data Sets 
 

The second step is the combining of all the data into two separate data sets, one for origins 
and one for destinations.  All the data that are used for the origin model should be together while 
all the data that are used in the destination model should be together. Many variables will be in 
both data sets (e.g., population, employment, income) whereas some variables only make sense as 
an origin or a destination variable (e.g., residential areas as an origin variable for bank robberies; 
a rail station as a destination variable for larceny or robbery).  Since the origin zones will usually 
be more numerous than the destination zones (because they include the destinations and those 
from surrounding jurisdictions), the data have to be consistent across all zones that are used.   
 

For use in the CrimeStat crime travel demand module, these data sets should be in one of 
the acceptable formats (Excel, dbf, dat, or ODBC-compliant).  I have found that building the data 
first in a spreadsheet (e.g., Excel) is easier to do because variables can be more easily added.  
Once constructed, the spreadsheet is converted into a dbf file for use by CrimeStat. 

 
Obtaining Network Data 
 
The final type of data that needs to be obtained is a network. This is important for the third 

and fourth stages in the crime travel demand model - mode split and network assignment.  In the 
mode split routine, trips from each origin zone to each destination zone are divided into different 
travel modes.  For driving travel modes, travel has to go along a road network. For walking or 
biking, there may be additional segments that are not in the road network (e.g., bike paths, short 
cuts for pedestrians); these can usually be added to the road network to make a more realistic 
representation.  However, for transit modes, the trips have to go along a transit route.  In the 
network assignment routine, all zone-to-zone trips by each travel mode are assigned to particular 
routes.  For this, a network is needed, one for each mode. 
 

In both these cases, travel occurs along a network. That is, the distance (or travel time or 
travel cost) from one location to another is calculated using the network, rather than as direct or 
indirect distance.  A network is a collection of segments that are interconnected. Travel can only 
occur on the segments.  Each segment has two or more nodes and one or more connecting lines.  
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Travel is from segment to segment.  Hence, the end nodes have a special status as the connectors 
which allow travel from one segment to another.   
 

In Chapter 30, a more extensive discussion of the shortest cost/path algorithm used for 
network travel is explained.  But, essentially, a >trip= goes from the origin location to the closest 
location on the network.  It then proceeds along the network, taking the shortest path, until it 
reaches a node closest to the destination.  It then travels from that node to the final destination. 
Thus, the representation of the network is very critical.  It has to be accurate and reasonably 
comprehensive.  
 

There are three types of basic networks that need to be considered: 
 

1. Road network (with additional walking or biking segments) 
2. Bus network 
3.  Train network (if appropriate). 

 
In addition, there can be specialized bicycle networks that are distinct from the road 

network.  However, most transportation agencies model bike trips using the road network.  I will 
discuss each of these. 
 

Road Network 
 

In a GIS system, there are typically two types of road networks that are used:  
 

1. A bi-directional (or linear) network 
2. A single-directional network. 

 
Bi-directional road network 

 
In a bi-directional network, travel can occur in both directions along a segment.  A typical 

example is the TIGER system created by the U.S. Census Bureau (2011b).  In this system, each 
segment typically represent the travel along a road from one intersection to another (i.e., a block 
in length), though there are exceptions.  Travel can occur in both directions in the network unless 
there are special codes added to indicate a one-way street.  The TIGER system, in particular, has a 
number of attributes associated with it - sides (left side, right side), address ranges (on both sides), 
census and political designators (again, by sides), and other attributes.  This type of network is 
very common in GIS systems and is widely used in police departments.  Because of the address 
ranges and because it is easily available from the U.S. Census Bureau or companies who improve 
the TIGER system, this type of network forms the basis of most geo-coding systems. 
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There are problems with a bi-directional network, however.  Among these are the 
inabilities to distinguish direction and one-way streets.  From a network modeling perspective, 
travel can occur in either direction.  It is possible to put a field in the data base that identifies 
whether the street is one-way or not and to indicate the direction of travel.  But, this has to be 
added by the user since the TIGER system does not specify that information.   
 

A second problem is the lack of information about travel time or cost on the network.  The 
only metric in the TIGER system are address ranges and, implicitly, distance.  However, since 
travel varies substantially by type of road (larger functional classes have higher speeds) and by 
time of day due to differing levels of congestion, such a system lacks very important information 
for modeling travel.  The TIGER (or similar) system does have functional class codes that 
distinguish different levels of road capacity (e.g., Interstate highways, state highways, principal 
arterial roads, collector roads, etc).  It is possible to assign arbitrary average speeds to each of 
these classes (e.g., 45 miles per hour to an interstate highway; 30 miles per hour to a principal 
arterial; 20 miles an hour to a collector road; and so forth).  By doing so, a reasonable 
approximation to actual travel can be obtained.  However, there is still not a sensitivity to travel 
time by time of day.  For example, in an urban area, travel at the peak afternoon >rush hour= (e.g., 
3:30 PM - 7 PM) will be, on average, a lot slower than at off-peak hours. 
 

This brings up a third problem, namely that there is no interaction between the direction of 
travel and the travel time.  On most principal arterial roads, travel is unequal in speed at any one 
time.  For example, in many metropolitan areas, travel towards the downtown area is much slower 
in the morning than in the opposite direction, whereas the reverse is true in the afternoon.  A bi-
directional network cannot distinguish this and the analysts have to add multiple fields to the 
attribute file in order to make these distinctions (e.g., PM peak from node A to node B direction; 
PM peak from node B to node A direction; etc). 
 

A fourth problem may or may not exist with a bi-directional network.  These networks 
were designed to allow the U.S. Census Bureau to carry out the decennial census.  Thus, a lot of 
attention has given to accuracy of streets and address ranges.  Much less attention has been paid 
to the connectivity of the streets.  A lot of the digitizing that goes into the network has been done 
by local governments, and the quality of this digitizing varies considerably.  Some jurisdictions 
have very precise networks that are updated frequently while other jurisdictions have poorly 
defined networks that are often out of date. Drivers may know that they can travel from point A to 
point B via road C, but the network may not have been sufficiently updated to allow that trip to 
occur in a representation. In some cases, gaps between segments have been noted; the gaps may 
be very small, but they would prevent a model from >traveling= from one segment to the next.  
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Single-directional road network 
 

A single-directional network, on the other hand, separates travel in each direction.  For 
example, if there are two nodes that connect a segment (node A and node B), then there are 
typically two segments for travel in each direction (from node A to node B, and from node B to 
node A).  In this representation, a one-way street is simply a segment that does not have a 
reciprocal pair (i.e., there is only a node A to node B segment, and not the reverse).  
 

Most transportation agencies use single-directional road networks for their travel demand 
modeling.  The reason is that multiple attributes can be assigned to each direction separately, a 
feature that simplifies the building of a realistic network.  Thus, speeds for different time periods 
can be assigned as separate fields on each segment (or, what is usually, done there are separate 
networks for the different travel periods that are modeled). Travel volumes can be assigned to 
each segment which, in turn, allows the creation of a vehicle miles traveled (VMT) field (length x 
volume).  VMT, in turn, can be combined with travel speed to produce an estimate of travel time 
(e.g., VMT divided by speed - in miles per hour, times 60 to produce minutes traveled). Further, 
one-way streets are automatically handled since each direction is a separate segment (i.e., there 
just won=t be a reciprocal pair in the opposite direction).  

 
In short, a single-directional network allows more flexibility in the creation of a network 

and the ability to distinguish travel in different directions as well as travel time by direction and 
time of day.  It is not surprising, therefore, that most travel demand models use a single-
directional representation.  Note, one can add these attributes to a single-directional network, but 
this requires many additional fields. 
 

A further strength of a single-directional network is that it is usually quite up-to-date and 
connectivity has been ensured. Most transportation agencies spend a lot of time cleaning and 
updating the network.  While there are always errors in a network representation, the accuracy of 
most modeling networks is very good. 
 

There is a downside to single-directional networks, however.  Typically, most single-
directional networks model only the larger roadways, those that contribute to regional travel.  
Thus, all freeways, principal arterial roads, minor arterial roads, and some collector roads are 
included. However, most neighborhood streets are not included.  The reason this is done is 
because the travel demand model is aimed at estimating regional and sub-regional travel patterns.  
Very localized travel is not of importance (and, in fact, is typically intra-zonal in nature).  The 
result is a very efficient network because it is a lot smaller.  But, there may be some error by 
using a >skeleton= network.  In particular, local travel might be distorted with such a simplified 
network.  For example, if a neighborhood is bounded by four arterial roads, but with no internal 
streets, according to the model a crime event that originates from within the neighborhood (i.e., 
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the offender lives inside the neighborhood) could take any of the four arterial roads to leave the 
network.  In reality, the offender will probably take a particular route rather than necessarily the 
arterial that is closest to the offender=s address.  This can be handled, but it requires additional 
coding.4 
 

As an example, for Baltimore County and the City of Baltimore, Figure 26.7 shows the 
49,015 segments in the TIGER representation of these two jurisdictions while Figure 26.8 shows 
the 11,045 segments that are used by the Baltimore Metropolitan Council in their travel demand 
modeling.5  Further, since most of the streets in the modeling representation are two-way streets, 
in effect, there are only about 5,000-6,000 actual streets.  In other words, the TIGER network is 
4.4 times larger than the modeling network.  This makes calculation a lot slower than with a 
simplified network.6 As we shall see in Chapter 30, the accuracy of a network is essential for a 
more realistic modeling of actual travel routes by offenders. 
 

Bus Network 
 

A bus network, on the other hand, is a specialized road network that follows the actual 
routes used by buses.  The general road network is useful for modeling driving, walking and 
bicycle trips.  But, it cannot be used for bus trips.  The reason is simply that buses don=t use every 
street but only the larger arterial roads.  Further, travel along many bus routes is variable.  That is, 
a full route might be used during the peak rush hours, but a shortened route might be used during 
the off-peak hours.  Similarly, the frequency of buses (what is called headway by transit agencies) 
varies by time of day; again, in the rush hours, buses are more frequent (though slower) than 
during the off-peak hours. 

 
A bus network, therefore, is essential for modeling bus trips during both the mode split 

stage (when trips between zones are split into separate travel modes) and during the actual 
network assignment.  
 

                         
4  For example, transportation modelers often put in centroid connectors.  These are pseudo-segments that 

connect a zone centroid with an arterial.  It is possible to add pseudo-roads to the modeling network to 
force travel to follow a particular route.  But, it does take a lot of editing to do this. 

5  The modeling network was obtained from the Baltimore Metropolitan Council and, with their permission, 
is illustrated here. 

6  As an example of the efficiency of a modeling network compared to a TIGER network, the network 
assignment routine took six times longer to run with the TIGER network for Baltimore City and Baltimore 
County than with the modeling network.  See Chapter 30 on network assignment for more information 
about the rules for network travel. 
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Figure 26 8:
Modeled Street Network
11,045 Road Segments
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There are two components of a bus network that are required in the network, one of which 
is essential and the other is more optional.  The first is a representation of the segments used in a 
bus network.  Essentially, this is a network that shows where the buses travel.  Bus travel can only 
occur along this network.  As with road travel, the bus network can be represented either as a bi-
directional or as a single-directional network though, again, most transportation modelers and 
transit agencies represent bus routes as single directions. 
 

The second component is the location where access to the buses is allowed (i.e., the bus 
stops).  Without explicitly indicating where there are loading and unloading points, a network 
routine would simply find the shortest distance from the origin to the bus route and >add= the trip 
at that location.  In practice, for most transit agencies, the degree of error in allowing direct access 
anywhere on the route is small since most bus routes stop very frequently (every couple of 
blocks).  Thus, it may not be that important to actually code the bus stops since the amount of 
modeling error will be insignificant.  However, for express buses and for those routes where there 
is a sizeable distance between bus stops, it is important to code the actual bus stops. In Chapter 
30, there is a more extensive discussion of coding bus routes.  Figure 26.9 illustrates the bus 
network for Baltimore County and Baltimore City. 

 
Train network 

 
In those metropolitan areas that have intra-urban train travel, it is important to also obtain 

a rail network.  An offender cannot travel on a train except by using the existing rail system.  
Further, unlike the bus network, it is impossible to >enter= the train except at explicit station 
locations.  Thus, it is critical to obtain both the network and the station locations.  Figure 26.10 
illustrates the intra-urban rail system in Baltimore County and Baltimore City. 
 

Where to Obtain Network Data? 
 

There are many more choices in obtaining network data than with socioeconomic or land 
use data.  Road networks can be obtained from the U.S. Census Bureau (for the TIGER system) 
or from vendors who improve on the TIGER system.  For a modeling network, however, about 
the only choice is the Metropolitan Planning Organization (MPO).  Since MPO=s model regional 
travel on a continuous basis, most agencies in a metropolitan area will defer to them for that 
activity.  Transit networks can also be obtained from MPOs though the transit agencies will have 
their own networks that are usually more comprehensive than those of the MPO.  As with all data, 
the MPO might charge for the data set, though policies vary widely. 
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Figure 26 10:
Baltimore Intra-Urban Rail Network
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Conclusion 
 

In summary, a quite extensive collection of data is needed to run the crime travel demand 
model.  Crime data, socioeconomic data, land use data, policy intervention scenarios, and network 
data must be obtained and prepared prior to running the models.  Further, in practice, a lot of 
editing and >cleaning= of data will be required during the modeling phase in order to improve the 
predictions.   
 

Nevertheless, once the data are obtained, the model can be developed quite quickly.  In the 
next chapter, we will examine the first stage of the crime travel demand model - trip generation. 
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Chapter 27: 

Crime Trip Generation 
 

Background 
 

In this chapter, the theory and mechanics of the trip generation stage will be explained.  
Trip generation is a model of the number of trips that originate and end in each zone for a given 
jurisdiction. Given a set of N destination zones and M origin zones (which include all the 
destination zones and, possibly, zones from adjacent jurisdictions), separate models are produced 
of the number of crimes originating and ending in each of these zones.  That is, a separate model 
is produced of the number of crimes originating in each of the M origin zones, and another model 
is produced of the number of crimes ending in each of the N destination zones.  The first is a 
crime production model while the second is a crime attraction model.  
 

Two points should be emphasized.  First, the models are predictive.  That is, the results of 
the models are a prediction of both the number of crime trips originating in each zone and the 
number of crime trips ending in each zone (i.e., crimes occurring in a zone).  Because the models 
are predictions, there is always error between the actual number and that predicted.  As long as 
the error is not too large, the models can be useful for both analyzing the correlates of crime as 
well as being useful for forecasting or for simulating policy interventions. 
 

Second, because the number of crimes attracted to the study jurisdiction will usually be 
greater than the number of crimes predicted for the origin zones, due primarily to crime trips 
coming from outside the origin areas, it is necessary to balance the productions and attractions.  
This is done in two steps.  One, an estimate of trips coming from outside the study area (external 
trips) is added to the predicted origins as an >external zone=.  Two, a statistical adjustment is done 
in order to ensure that the total number of origins equals the total number of destinations.  This is 
called balancing and is essential as an input into the second stage of crime travel demand 
modeling - trip distribution. 
 

In the following discussion, first, the logic behind trip generation modeling is presented, 
including the calibration of a model, the addition of external trips in making a model, and the 
balancing of predicted origins and predicted destinations.  Second, the mechanics of conducting 
the trip generation model within CrimeStat is discussed and illustrated with data from Baltimore 
County. 
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Modeling Trip Generation 
 

The process of modeling trip generation is fairly well developed, at least with respect to 
ordinary trips.  It proceeds through a series of logical steps that make up the aggregate trip 
generation model. 
 

Trip Purpose 
 

Trip generation modeling starts with the reasons behind travel. At an individual level, 
people make trips for a reason - to go to work, to go shopping, to go to a medical appointment, to 
go for recreation, or, in the case of offenders, to commit a crime. These are called trip purposes.  
Since there are a very large number of trip purposes, usually these are categorized into a few 
major groupings.  In the case of the usual travel demand forecasting, the distinctions are home-
to/from-work (or home-based work trips), home-to/from-non-work (or home-based non-work 
trips, e.g., shopping), and a non-home trip where neither the origin nor the destination are at the 
traveler=s residence location (non-home-based trips).  
 

Since the model has aggregated trips to a zone, the trip purposes are collections of trips 
from each origin zone to each destination zone.  Thus, each zone produces a certain number of 
home-work trips, home-non-work trips, and non-home trips and each zone attracts a certain 
number of home-work trips, home-non-work trips, and non-home trips.  This is the usual 
distinction that most transportation modeling organizations make.  The trip purposes are 
documented during a large travel survey that asks individuals to fill out travel diaries for one or 
two days of travel.  In the travel diaries, detailed information about each trip is documented - 
time of day, destination of trip, purpose of trip, travel modes used in making the trips, 
accompanying passengers, route taken, and time to complete the trip. 
 

Aggregated Crime Trips 
 

For crime trips, however, these distinctions are not very meaningful.  There is very little 
information on how offenders make trips.  One cannot just take a sample of offenders and ask 
them to complete a travel diary about how, when, and where the trip took place.  With arrested 
offenders, it might be possible to produce such a diary, but both memory problems as well as 
legal concerns quickly make this an unreliable source of information. Therefore, as indicated in 
Chapter 26, a decision has been made to reference all trips with respect to the residential home 
location.  All crime trips are analyzed as home-crime trips.   
 

However, other distinctions can be made.  The most obvious is by type of crime.  There 
are robbery trips, burglary trips, vehicle theft trips, and so forth.  Similarly, distinctions can be 
made by travel time such as afternoon trips or evening trips. However, the sample size will 
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decrease with greater distinctions. Logically, one can divide a sample into a very large number of 
important distinctions (e.g., afternoon burglary trips involving two or more offenders).  
However, this reduces the sample size and increases the error in estimation, particularly at the 
trip distribution and subsequent stages. 
 

An important point that distinguishes the aggregate demand types of travel demand 
models, as is being implemented here, and the newer generation of activity-based trips is that 
there are no linked trips with the aggregate approach (Pribyl & Goulias, 2005).  If an offender 
first steals a car, then uses the car to rob a grocery store followed by a burglary, the aggregate 
approach models this as three separate trips, rather than as a series of three linked crime trips 
(which the activity-based models do). This is a deficiency with the aggregate travel demand 
model.  In order to make the aggregate models work, each trip is considered independent of any 
other trip. While this is not realistic behaviorally, since we know that many crimes are 
committed in sequence as part of a single journey (or tour), the zonal approach does limit the 
underlying logic of crime trips.  Nevertheless, the aggregate approach can be very useful as long 
as it implemented consistently.  With the current state of activity-based modeling, there is not yet 
any evidence that they produce more accurate predictions than the cruder, aggregate approach 
(Culp & Lee, 2005). 
 

Correlates of Crime 
 
Any trip has contextual correlates associated with it.  It is well documented that the 

likelihood of making a trip (crime or otherwise) is not equal across areas of a metropolitan 
region.  There are age and gender correlates of travel, socioeconomic correlates of travel, and 
land use correlates of travel; the latter are usually associated with trip purposes (e.g., retail areas 
attract shopping trips).  
 

The trip generation model being implemented in this version of CrimeStat is an aggregate 
model.  Thus, the predictors are aggregate, rather than behavioral, in nature, as discussed in 
Chapter 25.  They are correlates of trips, not necessarily the reasons for the trips.  For example, 
typically population is the best predictor of trips.  Zones with many persons will produce, on 
average, more crime trips than zones with fewer persons.  The observation is not a reason, but is 
simply a by-product of the size of the zone. Similarly, low-income zones will tend to produce, on 
average, more crime trips than wealthier zones; again, this is not a reason, but a correlate of the 
characteristics that might contribute to individual likelihoods for committing crimes. 
 

As mentioned in Chapter 25, there are a number of different variables that could be used 
for prediction, although population (or a proxy for population, such as households), income or 
poverty, and land use variables would be the most common (NCHRP, 1998). 
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Theoretical Relevance of the Variables 
 

In general, the variables that are selected should be empirically stable and theoretically 
meaningful.  That is, they should be stable variables that do not change dramatically from year to 
year.  They should be reliably measured so that an analyst can depend on their values.  Finally, 
they should be meaningful in some ways.  That is, they should be plausible enough that both 
crime analysts and researchers and informed outsiders should agree that the relationship is 
plausible.  The variables either should have been demonstrated to be predictors in earlier 
research or else to be so correlated with known factors as to be considered meaningful proxies.   

 
Spurious correlates 

 
On the other hand, if a variable is either a correlate of a known predictor or idiosyncratic, 

then it is liable not be believed.  For example, the number of taxis usually correlates with the 
amount of employment since taxis tend to ply commercial areas for their trade.  Adding the 
number of taxis in a predictive model is liable to produce significant statistical effects in 
predicting crime destinations.  However, few persons are going to believe that this is a real factor 
since it is understood to be a correlate of a more structural variable.   
 

Idiosyncratic variables are those that appear in unique situations.  For example, in some 
cities, adjacency to a freeway is a correlate of crime origins (e.g., in Baltimore County where low 
income populations live) whereas in other cities, it is a correlate of crime destinations (e.g., in 
Houston where there are frontage roads with major commercial strips that attract crimes).  The 
variables may be real predictors.  However, the analyst or researcher will have difficulty 
persuading others to believe in the model, at least until the results can be replicated. 
 

In other words, what is required for the model is a set of reasonable correlates of crime 
trips that would be plausible and stable over time.  It is an ecological model, not a behavioral 
one. 
 

Social Disorganization Variables 
 

There is a very large literature on the predictors of crime, typically following from the 
social disorganization literature (for example, Park &Burgess, 1924; Thrasher, 1927; Shaw & 
McKay, 1942; Newman, 1972; Ehrlich, 1975; Cohen & Felson, 1979; Wilson & Kelling, 1982; 
Stack, 1984; Messner, 1986; Chiricos, 1987; Kohfeld & Sprague, 1988; Bursik & Grasmick, 
1993; Hagan & Peterson, 1994; Fowles & Merva, 1996; Bowers & Hirschfield, 1999 among 
many other studies).  Much of this literature identifies correlates that are associated with crime 
incidents.  Among the factors that have been associated with crime and delinquency at an 
aggregate geographical level are poverty, low income households, overcrowding, substandard 
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housing, low education levels, single-parent households, high unemployment, minority and 
immigrant populations.1 
 
 Statistical Problems with Predictor Variables 
 

Multicollinearity among the independent variables 
 

There are two statistical problems associated with using these variables as predictors.  
The first is the high degree of overlap between the variables.  Zones that have high poverty levels 
typically also have low household income levels, higher population densities, substandard 
housing, a high percentage of renters, and higher proportion of minority and immigrant 
populations.  In a regression model, this overlap causes a condition known as multicollinearity.  
Essentially, the independent variables correlate so highly among themselves that they produce 
ambiguous, and sometimes strange, results in a regression model.  For example, if two 
independent variables are highly correlated, frequently one will have a positive coefficient with 
the dependent variable while the other will have a negative coefficient; conversely, they 
sometimes can cancel each other out.  Chapter 17 discussed multicollinearity and provided an 
example that showed correlated independent variables can cancel each other out. Thus, in spite 
of the correlates with crime levels, in a model it is usually best to eliminate co-linear variables.  
The result is that simple variables usually end up being the most straightforward to use 
(population, median household income) with many of the subtle, but theoretically relevant, 
variables typically dropping out of the equation. 
 

Failure to distinguish origins from destinations 
 

Second, in much of this literature, however, there is not a clear distinction between origin 
predictors and destination predictors.  That is, in most cases, the correlates of crimes were 
identified but it is often unclear whether these correlates are associated with the neighborhoods 
of the offenders (origins) or the locations where the crimes occur (destinations).  This can result 
in a set of vague correlates without clear direction about whether the variables are associated 
with producing or attracting conditions.  In fact, in much of the early literature on social 
disorganization, it was implicitly assumed that crimes are produced in the neighborhoods where 
the offenders lived, a linkage that is increasingly becoming disconnected.  For modeling crime 
trips, however, it is essential that the predictors of origins be kept separate from the predictors of 
destinations. 
 
 
                         
1  Note that a correlation at an aggregate level does not necessarily imply a correlation at the individual level.  

As has been noted frequently, the vast majority of people do not commit serious crimes and that most 
crimes are committed by a small proportion of the population (Ratcliffe, 2008). 
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Accuracy and Reliability 
 

A trip generation model should be accurate and reliable.  Accuracy means that the model 
should replicate as closely as possible the actual number of trips originating or ending in zones 
and that there should be no bias (which is a systematic under- or over-estimating of trips).  
Reliability means that the amount of error is minimized.   
 

These criteria have two implications which are somewhat at odds.  First, we have to 
choose models that replicate as closely as possible the number of trips originating or ending in a 
zone. In general, this would be a model that had the highest overall predictability. But, second, 
we have to choose models that minimize total prediction errors.  This allows a model to replicate 
the number of trips for as many zones as possible.  The two criteria are somewhat contradictory 
because crime trips are highly skewed.  That is, a handful of zones will have a lot of crimes 
originating or ending in them while most zones will have few or no crimes.  The zones with the 
most crimes will have a disproportionate impact on the final model.  Thus, a model that obtains 
as high a prediction as possible (i.e., highest log-likelihood or R2) may actually only predict 
accurately for a few zones and may be very wrong for the majority.  
 

The strategy, therefore, is to obtain a model that balances high predictability but by 
keeping the total prediction error low.  
 

Count Model 
 

Another element of the model is that the trip generation model is for counts (or volumes), 
not for rates. The model predicts the number of crimes originating in each origin zone and the 
number of crimes occurring in each destination zone.  The model could be constructed to predict 
rates, but normally it is not done. For most travel demand modeling, as mentioned in Chapter 25, 
the model predicts the number of trips originating or ending in a zone.  Thus, there is a crime 
production model that predicts the number of crimes originating in each zone and a crime 
attraction model that predicts the number crimes  
 

Approaches Toward Trip Generation Modeling 
 
Trip Tables 

 
There are two classic approaches to trip generation modeling.  The first uses a trip table 

(sometimes called a cross-classification table or a category analysis).  A trip table is a cross-
classification matrix. Several predictive variables are divided into categories (e.g., three level of 
household income; four levels of vehicle ownership; three levels of population density) and a 
mean number of trips is estimated for each cell, usually from a survey.  For example, a survey of 
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household income might show the relationship between household income and the number of 
trips taken by individuals of the households.  Based on a sample, estimates of the average 
number of trips per person can be obtained for each income level (e.g., 3.4 trips per day for 
persons from low income households; 4.5 trips per day for persons from median income 
households; 6.7 trips per day for persons from high income households). These variables are 
further subdivided into two-way or three-way cross-tabulation tables (e.g., low income and 
medium vehicle ownership; low income and high vehicle ownership).  Table 27.1 illustrates a 
possible trip table model involving two variables.  In practice, three or four variables are used. 
 

The main reason that trip tables are used in a trip generation model is because of the non-
linear nature of trips. Predictive variables are usually not linear in their effects on the number of 
trips.  Thus, unless a sophisticated non-linear model is used, sizeable error can be introduced in a 
prediction.  It is usually safer to use a trip table approach (Ortuzar & Willumsen, 2001).  There 
are some major handbooks on the topic (Henscher & Button, 2002; ITE, 2003).  In fact, the 
Institute of Transportation Engineers publishes a large handbook that gives extensive trip 
production and trip attraction tables by detailed land uses (ITE, 2003).  These tables are often 
used in formal environmental review processes for site analysis and are frequently accepted by 
courts in litigation.  They are not without their problems, however, and there have been 
numerous critiques of the tables (Shoup, 2002; NCHRP, 1998). They also cannot be used in a 
travel demand model and will produce erroneous results. 
 

The problem for crime analysis, however, is that it is impossible to obtain these data.  
One cannot ask a sample of offenders how many crimes they undertake each day in order to 
estimate the mean expectations for a table.  Thus, one has to adopt a more indirect approach in 
modeling crime productions and attractions. 
 

A second problem with the trip table approach is its use of zonal data.  While it could be 
applied to zonal data (e.g., using median household income and average vehicle ownership in 
Table 27.1 instead of individual household income and vehicle ownership), this type of approach 
is prone to ecological inference errors and could be very wrong (Freedman, 1999; Langbein & 
Lichtman, 1978).  There is no guarantee that the splitting of two aggregate variables (essentially, 
the cross-product of their marginal probabilities) will produce an accurate trip estimate; often, 
such an approach leads to very wrong results.  

 
Further, such an approach requires interpretation and some degree of arbitrariness.  For 

example, how does one subdivide median household income?  One person might interpret it 
slightly differently than another; unlike simple numerical counts (e.g., 0 vehicle ownership;  
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Table 27.1: 

Illustration of Possible Trip Table Approach to Trip Generation 

Average Trips per Adult, Age 16+ 
 

Household income 

Low  Medium  High 
Vehicle  0‐1  3.2 4.6 6.7
Ownership  2+  5.4 7.8 8.1

 
 

1 vehicle ownership; 2 vehicle ownership), there is too much variability in categorizing variables 
at the zonal level.2  

 
Linear/OLS Regression Modeling 

 
The second approach is to use a regression framework.  In this approach, the number of 

crimes either originating or ending in each zone is estimated from zone characteristics using a 
regression model.  This can be written in a generalized linear model (‘link’ function) form (see 
Chapter 16): 

 
 ⋯ .      (27.1) 
 

This equation says that some function of the mean number of crimes, f(Yi), either 
originating or ending in zone I, is a linear function of a number of independent variables, X1, X2, 
X3,....XK for these zones; there are K independent variables plus a possible constant. There is also 
an error term which represents the discrepancy between the actual observation and what the 
model predicts.  This is sometimes called residual error since it is the difference between the 
observed and predicted values (Oi - Yi).  The function is unspecified and can be non-linear.3  
 

The traditional approach to regression modeling assumed that the independent variables 
are linear in their effect on the dependent variable.  Thus,  

 

                         
2  There is also subjectivity in subdividing variables at an individual level.  For example, household income 

levels can be subdivided in different ways.  However, with aggregate data, all variables have to be 
subdivided arbitrarily whereas with individual level data, typically only income is done this way. 

3  Some statisticians often refer to the number of parameters that have to be estimated in an equation, not just 
the number of independent variables.  In most regression models, for example, there are K+1 parameters 
that are estimated - coefficients for the K independent variables and a constant term.  In this text, K refers 
to the number of independent variables, not estimated parameters. 
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 ⋯ .      (27.2) 
 

In this model, there are K independent variables and one constant term (β0, sometimes 
called α) that needs to be estimated. For each zone, i, each of the independent variables has a 
weight associated with it (the coefficient, β). The product of the value of the independent variable 
times its weight represents its effect.  The individual effects of each of the K independent 
variables are summed to produce an overall estimate of the dependent variable, Y.   
 

The method for estimating this equation usually minimizes the sum of the squares of the 
residual errors.  Hence, the procedure is called Ordinary Least Squares (or OLS).  If the equation 
is correctly specified (i.e., the dependent variable is normally distributed and all relevant variables 
have been included), the error term, ε, will be normally distributed with a mean of 0 and a 
constant variance, σ2. 
 

Problems with OLS Regression Modeling 
 

However, there are a number of major problems associated with OLS regression 
modeling. These were discussed in Chapter 15 (15.16-15.19).  To repeat, there are five major 
problems with the OLS model. 
 

Skewness of crime events 
 

First, crime events are extremely statistically skewed.  Some locations have a much higher 
likelihood of a crime event (either an origin or a destination) than others. Figure 27.1 below 
shows the number of crimes from 1993 to 1997 in Baltimore County that occurred at each 
location.   That is, the graph shows the number of incidents that occurred at every location, 
plotted in decreasing order of frequency.  Thus, there were 7,965 locations where only one crime 
occurred between 1993 and 1997.  There were 2,878 locations where two crimes occurred in that 
period.  There were 1,138 locations where three crimes occurred in that period.  At the other end 
of the spectrum, there were 332 locations that had 10 or more crimes during the period and there 
were 97 locations that had 30 or more crimes occur.  If we add to this the very large number of 
locations where no crimes occurred, the unequal likelihoods of crime by location is even more 
dramatic.  In other words, the data are highly skewed with respect to the frequency of crimes.  
Most locations either had no crimes occur or very few, while a few locations had many crimes 
occur. 
 

Aggregating crimes into zones tends to reduce some of the skewness.  For example, 
grouping the crimes by origin traffic analysis zone (TAZ) reduced it a little bit.  Nineteen of the 
525 origin zones in Baltimore County and Baltimore City did not have any crimes occur in them 
while 15 zones had only one crime occur.  Six zones had two crimes originate from them while 8  



Figure 27.1:
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zones had three crimes originate from them. At the other end, 1 zone had 738 crimes originate 
from it and another zone had 533 originate from it.  Of the 525 origin zones, 155 had 100 or more 
crime events. Similar results are found for the destination zones.  Figure 27.2 graphs the 
distribution of origins and destinations by TAZ’s in bins of 50 incidents each. 

 
Skewness in the dependent variable usually makes the final model biased and unreliable.  

Particularly if the skewness is positive (i.e., a handful of cases have very large values), the 
resulting regression coefficients will reflect the cases with the highest values rather than represent 
all the cases with approximately equal weights.  These so-called ‘outliers’ can overwhelm a 
regression equation.  In an extreme case, a very large outlier may totally determine the model.4   

 
Skewness makes prediction difficult.  The OLS model assumes that each independent 

variable contributes to the dependent variable at an arithmetic rate; there is a constant slope such 
that a one unit change in the independent variable is associated with a constant change in the 
dependent variable.  With skewness, on the other hand, such a relationship will not be found.  
Large changes in the independent variable will be necessary to produce small changes in the 
dependent variable, but the effect is not constant.  In other words, the OLS model typically cannot 
explain the non-linear changes in the dependent variable.5 
 

Negative predictions 
 

A second problem with OLS is that it can have negative predictions.  With a count 
variable, such as the number of crimes originating or ending in a zone, the minimum number is 
zero.  That is, the count variable is always positive, being bounded by 0 on the lower limit and 
some large number on the upper limit.  The OLS model, on the other hand, can produce negative 
predicted values since it is additive in the independent variables.  This clearly is illogical and is a 
major problem with data that are skewed.  If the most common value is close to zero, it is very 
possible for an OLS model to predict a negative count. 

 

                         
4  For example, an experiment with 100 cases was created with a progressing dependent variable and a 

random independent variable (i.e., the independent variable had its value selected randomly).  The 
dependent variable progressed from 1 to 100.  For the first 99 cases, the independent variable took values 
from 0.12 to 9.9, randomly assigned.  The correlation between these two variables for the first 49 cases was 
0.04.  However, for the 100th case, the independent variable was given a value of 100.  The correlation 
between the two variables now shot up to 0.17. Even though the F-test for this was not significant, it 
represented a sizeable jump. Replacing one other independent value with a 50 caused the correlation to jump 
to 0.23, which was statistically significant.  In other words, two outliers caused a random series to appear 
significant! 

5  It is possible to transform the independent variable into a non-linear predictor, for example by taking the log 
of the independent variable or raising it to some power (e.g., X2).  However, this will not solve the other 
problems associated with OLS, namely negative and non-summative predictions. 



Figure 27.2:
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Non-consistent summation 
  

A third problem with OLS models is that the sum of the input data values do not 
necessarily equal the sum of the predicted values.  Since the estimate of the constant and 
coefficients is obtained by minimizing the sum of the squared residual errors, there is no 
balancing mechanism to require that they add up to the same as the input values.  For a trip 
generation model in which the number of predicted origins must equal the number of predicted 
destinations (after adding in the number of predicted external trips), this can be a big problem.  In 
calibrating the model, adjustments can be made to the constant term to force the sum of the 
predicted values to be equal to the sum of the input values.  But in applying that constant and 
coefficients to another data set, there is no guarantee that the consistency of summation will hold.  
In other words, the OLS method cannot guarantee a consistent set of predicted values. 
 

Non-linear effects 
 

A fourth problem with the OLS model is that it assumes the independent variables are 
linear in their effect. If the dependent variable was normal or relatively balanced, then a linear 
model might be appropriate.  But, when the dependent variable is highly skewed, as is seen with 
these data, typically the additive effects of each component cannot usually account for the non-
linearity.  Independent variables have to be transformed to account for the non-linearity and the 
result is often a complex equation with non-intuitive relationships.6  It is far better to use a non-
linear model for a highly skewed dependent variable. 
 

Uneven residual errors 
 

The final problem with an OLS model and a skewed dependent variable is that the model 
tends to over- or under-predict the correct values, but rarely comes up with the correct estimate. 
With skewed data, typically an OLS equation produces non-constant residual errors.  That is, one 
of the major assumptions of the OLS model is that all relevant variables have been included.  If 
that is the case, then the errors in prediction (the residual errors - the difference between the 
observed and predicted values) should be uncorrelated with the predicted value of the dependent 
variable.  Violation of this condition is called heteroscedasticity because it indicates that the 
residual variance is not constant.  The most common type is an increase in the residual errors with 

                         
6  For example, to account for a skewed dependent variable, one or more of the independent variables have to 

be transformed with a non-linear operator (e.g., log or exponential term).  When more than one independent 
variable is non-linear in an equation, the model is no longer easily understood.  It may end up making 
reasonable predictions for the dependent variable, but it is not intuitive and not easily explained to non-
specialists.  It is possible to transform the independent variable into a non-linear predictor, for example by 
taking the log of the independent variable or raising it to some power (e.g., X2).  However, this will not 
solve the other problems associated with OLS, namely negative and non-summative predictions. 



27.14 

higher values of the predicted dependent variable.  That is, the residual errors are greater at the 
higher values of the predicted dependent variable than at lower values (Draper & Smith, 1981, 
147). 
 

A highly skewed distribution tends to encourage this.  Because the least squares procedure 
minimizes the sum of the squared residuals, the regression line balances the lower residuals with 
the higher residuals.  The result is a regression line that neither fits the low values or the high 
values.  For example, motor vehicle crashes tend to concentrate at a few locations (crash hot 
spots).  In estimating the relationship between traffic volume and crashes, the hot spots tend to 
unduly influence the regression line.  The result is a line that neither fits the number of expected 
crashes at most locations (which is low) nor the number of expected crashes at the hot spot 
locations (which are high).  The line ends up over-estimating the number of crashes for most 
locations and under-estimating the number of crashes at the hot spot locations. 

 
Poisson Regression Modeling 

 
Poisson regression is a non-linear modeling method that overcomes some of the problems 

of OLS regression.  It is particularly suited to count data (Cameron & Trivedi, 1998).  In the 
model, the number of events is modeled as a Poisson random variable: 

 

 
!

          (27.3) 

 
where Yi is the count for one group or class, i,  λ is the mean count over all groups, and e is the 
base of the natural logarithm.  The distribution has a single parameter, λ, which is both the mean 
and the variance of the function.   
 

The ‘law of rare events’ assumes that the total number of events will approximate a 
Poisson distribution if an event occurs in any of a large number of trials but the probability of 
occurrence in any given trial is small (Cameron & Trivedi, 1998).  Thus, the Poisson distribution 
is very appropriate for the analysis of rare events such as crime incidents (or motor vehicle 
crashes or rare diseases or any other rare event).  The Poisson model is not particularly good if the 
probability of an event is more balanced; for that, the normal distribution is a better model as the 
sampling distribution will approximate normality with increasing sample size.  Figure 27.3 
illustrates the Poisson distribution for different expected means. 
 



Figure 27.3:
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The mean can, in turn, be modeled as a function of some other variables (the independent 
variables).  Given a set of observations on dependent variables, Xki (X1, X2, X3,...,XK), the 
conditional mean of Yi  can be specified as an exponential function of the X’s:  

 

 βxx
T
ieyE iii  )|(                   (27.4)  

 
where Xki is a set of independent variables, β is a set of coefficients, and e is the base of the 
natural logarithm..  Now, the conditional mean (the mean controlling for the effects of the 
independent variables) is non-linear.  Equation 27.4 is sometimes written as: 
 
 λ              (27.5) 
 
and is known as the loglinear model.  In more familiar notation, this is written as: 
 

 λ ⋯ . ∑    (27.6) 

 
That is, the natural log of the mean is a function of K random variables and a constant. 
 

Note, that in this formulation, there is not a random error term.  The data are assumed to 
reflect the Poisson model.  There can be residual errors, but these are assumed to reflect an 
incomplete specification (i.e., not including all the relevant variables.  Also, since the variance 
equals the mean, it is expected that the residual errors should increase with the conditional mean.  
That is, there is inherent heteroscedasticity (Cameron & Trivedi, 1998).  This is very different 
than an OLS where the residual errors are expected to be constant.   
 

The model is estimated using a maximum likelihood procedure, typically the Newton-
Raphson method. In Appendix B, Luc Anselin presents a more formal treatment of both the OLS 
and Poisson regression models  

 
Advantages of the Poisson Regression Model 

 
The Poisson model overcomes some of the problems of the OLS model.  First, the Poisson 

model has a minimum value of 0.  It will not predict negative values.  This makes it ideal for a 
distribution in which the mean or the most typical value is close to 0.  Second, the Poisson is a 
fundamentally skewed model; that is, it is non-linear with a long ‘right tail’.  Again, this model is 
appropriate for counts of rare events, such as crime incidents. 
 

Third, because the Poisson model is estimated by either maximum likelihood or Markov 
Chain Monte Carlo (MCMC; see chapters 16 and 17), the estimates are adapted to the actual data.  
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In practice, this means that the sum of the predicted values is virtually identical to the sum of the 
input values, with the exception of very slight rounding off error. In the subsequent balancing of 
the predicted origins and the predicted destinations, this leads to a more stable estimate since the 
only difference between the predicted origins and predicted destinations is the number of trips that 
come from outside the study area (external trips).  Since the external trips are added to the 
predicted origins, the balancing operation is less prone to adjustment error. 
 

Fourth, compared to the OLS model, the Poisson model generally gives a better estimate of 
the number of crimes for each zone.  The problem of over- or under-estimating the number of 
incidents for most zones with the OLS model is usually lessened with the Poisson.  When the 
residual errors are calculated, generally the Poisson has a lower total error than the OLS.   
 

In short, the Poisson model has some desirable statistical properties that make it very useful 
for predicting crime incidents (origins or destinations).  
 

Problems with the Poisson Regression Model 
 

On the other hand, the Poisson model is not perfect.  The primary problem is that count 
data are usually over-dispersed but occasionally can be under-dispersed.  
 

Over-dispersion in residual errors 
 

In the Poisson distribution, the mean equals the variance.  In a Poisson regression model, 
the mathematical function, therefore, equates the conditional mean (the mean controlling for all the 
predictor variables) with the conditional variance.  However, most real data are over-dispersed; the 
variance is generally greater than the mean. Figure 27.4 shows the distribution of Baltimore 
County and Baltimore City crime origins and Baltimore County crime destinations by TAZ (repeat 
of Figure 27.2) and also indicates the variance-to-mean ratio of each variable.  For the origin 
distribution, the ratio of the variance to the mean is 14.7; that is, the variance is 14.7 times that of 
the mean!  For the destination distribution, the ratio is 401.5!   
 

In other words, the variance is many times greater than the mean. Most real-world count 
data are similar to this; the variance will usually be a lot greater than the mean.  What this means in 
practice is that the residual errors - the difference between the observed and predicted values for 
each zone, will be greater than what is expected.  The Poisson model calculates a standard error as 
if the variance equals the mean.  Thus, the standard error will be underestimated using a Poisson 
model and, therefore, the significance tests (the coefficient divided by the standard error) will be 
greater than it really should be.  This would have the effect of identifying variables as being more 
statistically significant in a model than what they actually should be.  In other words, in a Poisson  
 



Figure 27.4:
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regression model, we would end up selecting variables that really should not be selected because 
we think they are statistically significant when, in fact, they are not. 
 

Another problem with the Poisson, which is true for most of the common regression 
methods, is the lack of a spatial predictor component.  For these, the MCMC Poisson models, 
discussed in Chapter 17 can be used.  Also, in the crime travel demand model, spatial interaction is 
explicitly incorporated during the second stage of the model - trip distribution.  Thus, any errors 
introduced in the first stage - trip generation, are usually compensated for during the second.  
Nevertheless, the inclusion of a spatial component in a regression model will generally improve 
the prediction.   
 

Dispersion correction parameter 
 

There are a number of methods for correcting the over-dispersion in a count model.  Most 
of them involve modifying the assumption of the conditional variance equal to the conditional 
mean.  For example, the negative binomial model assumes a Poisson mean but a gamma-
distributed variance term (Cameron & Trivedi, 1998, 62-63; Venables & Ripley, 1997, 242-245).  
That is, there is an unobserved variable that affects the distribution of the count.  There are several 
interpretations of the negative binomial (see Boswell & Patil, 1970) but the most common is to 
assume that there are mixtures of distinct Poisson distributions that make up the real distribution. 

 
 The negative binomial model has a Poisson mean but with a ‘longer tail’ variance function 

and is usually preferred for over-dispersed data sets, such as typical with crime data.  In Appendix 
C, Dominique Lord and Byung-Jung Park present a formal treatment of the negative binomial 
model.  Other adjustments that can be made include the Poisson-Lognormal model (which can be 
estimated in CrimeStat; see Chapter 17) and the zero-inflated Poisson model assumes a Poisson 
function combined with a degenerate function with a probability of 1 for zero counts (Hall, 2000).  
These generally produce better estimates that the simple Poisson especially if a spatial component 
is added.   
 

There is a simple linear correction for over-dispersion that frequently works, called the 
NB1 model (Cameron & Trivedi, 1998, 63-65).  The model proceeds in two steps.  In the first, the 
Poisson model is fitted to the data and the degree of over- (or under-) dispersion is estimated.  The 
dispersion parameter is defined as: 
 

 ∑             (27.7) 

 
where N is the sample size, K is the number of independent variables, Yi is the observed number of 
events that occur in zone , and Pi is the predicted number of events for zone .  The test is similar 
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to an average Chi-square in that it takes the square of the residuals (Yi - Pi) and divides it by the 
predicted values, and then averages it by the degrees of freedom. The dispersion parameter is a 
standardized number.  A value greater than 1.0 indicates over-dispersion while a value of less than 
1 indicates under-dispersion (which is rare, though possible).  A value of 0 indicates 
equidispersion (or the variance equals the mean).  
 

In the second step, the Poisson standard error is multiplied by the square root of the 
dispersion parameter to produce an adjusted standard error: 

 
 ∗ √             (27.8) 
 
The new standard error is then used in the t-test to produce an adjusted t-value.  Cameron and 
Trivedi (1998) have shown that this adjustment produces results that are almost identical to that of 
the negative binomial, but involving fewer assumptions.  Chapter 16 discussed the NB1 model in 
more depth. 
 
 The point is that the Poisson model needs to be adjusted for over-dispersion.  CrimeStat 
provides a number of regression tools for accounting over-dispersion and which can also include a 
spatial autocorrelation adjustment.  Chapters 16 and 17 provide information on these models.   
 

Under-dispersion in residual errors 
 

Occasionally, a data set will be under-dispersed, meaning that the conditional variance is 
substantially lower than the mean. As a rough approximation, Cameron and Trivedi (1998) suggest 
that if the raw variance-to-mean ratio is less than 2.0, then most likely the model will show under-
dispersion with the conditional mean.  If the under-dispersion is slight, then the NB1 model can be 
used to adjust the standard errors.  If it is substantial, however, then other models have to be 
considered.  See Chapter 17 for more details. 
  
Diagnostic Tests 
 

There are a number of diagnostics tests that are used in a regression framework. 
 

Skewness Tests 
 

First, there are tests of skewness in the dependent variable.  As mentioned above, the OLS 
model cannot be applied to data that are highly skewed.  If they are skewed, a non-linear model, 
such as the Poisson, must be used.  Therefore, it is essential to evaluate the degree of skewness. 
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A commonly used measure of skewness is the g statistic (Microsoft, 2012): 
 

 	 ∑          (27.9) 

 
where N is the sample size, Xi is observation ,  is the mean of X, and s is the sample standard 
deviation (corrected for degrees of freedom): 
 

 ∑             (27.10) 

 
The standard error of skewness (SES) can be approximated by (Tabachnick & Fidell, 

1996): 
 

              (27.11) 

 
An approximate Z-test can be obtained from: 

 

              (27.12) 

 
Thus, if Z is greater than +1.96 or smaller than -1.96, then the skewness is significant at the p≤.05 
level. 
 

As an example, for the data on the origins of crimes by TAZ in Baltimore County, we have: 
 

   = 75.108             (27.13) 
 

s   =  96.017             (27.14) 
 
N  = 325             (27.15) 
 

 ∑ =898.31            (27.16)

  
Therefore, 
 

 
∗

∗ 898.391 2.79          (27.17) 
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 0.136            (27.18) 

 
 Z(g)=20.51             (27.19) 
 
The Z of the g value shows the data are highly skewed as was, of course, already known.   

 
Likelihood Ratio Test 

 
Second, there are tests of the overall model. In a maximum likelihood framework, the first 

test is of the log-likelihood function.  A likelihood function is the joint density of all the 
observations, given a value for the parameters, β, and the variance, σ2.  The log-likelihood is the 
natural log of this product, or the sum of the logs of the individual densities.  For the OLS model, 
the log-likelihood is: 

 

 1 ln 2 ln 0.5        (27.20) 

 
where N is the sample size, σ2 is the variance, Yi is the observed number of events for zone , and 
Xkiβk is a series of K independent predictors multiplied by their coefficients. 
 

In the Poisson model, the log-likelihood is: 
 

 ∑ !           (27.21) 
 
where λi is the conditional mean for zone , Yi is the observed number of events for zone , and Yi 
Xkiβk is a cross-product of the observed events times the K independent predictors multiplied by 
their coefficients.  As mentioned above, Luc Anselin provides a more detailed discussion of these 
functions in Appendix B. 
 

Since the maximum likelihood method achieves the model with the highest log-likelihood, 
the log-likelihood is a negative number.  Even though the model with the highest log-likelihood is 
considered ‘best’, it is not an intuitive number.  Consequently, the Likelihood Ratio compares the 
log-likelihood of the regression model with the log-likelihood that would be obtained if only the 
mean number of counts was taken.  This latter log-likelihood is: 
 

 ln ∑ ∑ !         (27.22) 
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The Likelihood Ratio test is:  
 
 2             (27.23) 
 
where L is the model log-likelihood and LR is the log-likelihood of the mean count.  The 
Likelihood Ratio is twice the difference between log-likelihood values of the regression and mean 
models respectively.  It follows a χ2 distribution with K degrees of freedom (where K is the 
number of independent variables).7 
 

Adjusted likelihood ratio 
 

The Likelihood Ratio is a more intuitive index since it is a Chi-square test.  However, it is 
prone to the problem of all regression methods of over-fitting - the more independent variables are 
added to the model, the higher is the Likelihood Ratio.  Consequently, there are several methods 
that adjust for the number of parameters fit.  One is the Akaike Information Criterion (AIC) which 
is defined as: 

 
 2 2 1            (27.24) 
 
where L is the log-likelihood and K is the number of independent variables.  A second one is the 
Bayesian Information Criterion/Schwartz Criterion (BIC/SC), which is defined as: 
 
 BIC/SC		 		‐2L K 1 ln N                           (27.25) 
 

These two measures penalize the number of parameters added in the model, and reverse the 
sign of the log-likelihood (L) so that the statistics are more intuitive.  The model with the lowest 
BIC/SC value is ‘best’. 

 
R-square Test 

 
The most familiar test of an overall model is the R-square (or R2) test.  This is the percent 

of the total variance of the dependent variable accounted for by the model.  More formally, it is 
defined as: 

 

 1
∑

∑
            (27.26) 

 

                         
7  Note, in Appendix B Luc Anselin uses K for the number of parameters (coefficients + intercept) whereas we 

use it for the number of independent variables.  Readers should be aware of this difference. 
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where Yi is the observed number of events for a zone , Pi is the predicted number of events given 
a set of K independent variables, and  is the mean number of events across zones.   The R2 is a 
number from 0 to 1; 0 indicates no predictability while 1 indicates perfect predictability. 
 

R-square for OLS model 
 

For an OLS model, R2 is a very consistent estimate.  It increases in a linear manner with 
predictability and is, therefore, a good indicator of how effective one model is compared to 
another.  As with all diagnostic tests, the value of the R2 increases with more independent 
variables.  Consequently, R2 is usually adjusted for degrees of freedom:   
 

 1
∑

∑
            (27.27) 

     
where N is the sample size and K is the number of independent variables. 
 

R-square for Poisson model 
 

With the Poisson model, however, the R2 value (whether adjusted or not) is not a good 
measure of overall fit.  While the Poisson R2 varies from 0 to 1, similar to the OLS, it is not 
monotonic.  That is, the addition of a new variable to an equation often has unpredictable effects; 
sometimes it will increase substantially and sometimes it will increase only a little independent of 
how strong is a variable’s association with the dependent variable (Miaou, 1996).  This 
inconsistency comes from the decomposition of the total sum of squares: 

 

 ∑ ∑ ∑ 2∑     (27.28) 
 
The first term in the equation is the residual sum of squares (or error term) while the second term is 
the explained sum of squares.  In an OLS model, the third term is zero if an intercept is included 
(Cameron & Trivedi, 1998, 153). Hence, the total sum of squares is broken into two parts - that 
which is explained and that which is unexplained.  However, for the Poisson and other non-linear 
regression methods, the last term is not zero.  Consequently, a test that compares the explained 
sum of squares to the total sum of squares will not produce consistent results. 
 

Other measures have been proposed, such as the deviance R-square which measures the 
reduction in the Likelihood Ratio due to the inclusion of predictor variables (Cameron & 
Windmeijer, 1996).  It produces a slightly different R-square, one that is typically higher than the 
traditional R-square.  Nevertheless, it has problems, too.  Miaou (1996) argues that there is not a 
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single R-square index that is perfectly consistent.  The AIC, BIC/SC and Deviance statistics 
(discussed in Chapter 16) are better indicators of goodness of fit. 
 

Dispersion Parameter 
 

Finally, in the Poisson model only, the dispersion parameter indicates the extent to which 
the variance is different from the mean.  This was defined in equation 27.7 above. 
 

Coefficients, Standard Errors, and Significance Tests   
 
The second type of diagnostic test is those for the individual predictors in the model.  In 

both the OLS and Poisson models, there are three tests: 
 

1. The coefficient.  This indicates the change in the dependent variable associated with 
the change in the independent variable.  In the case of the OLS, it is a linear term 
(i.e., the value of the dependent variable is multiplied by the coefficient) while in 
the Poisson model, the change in the dependent variable is estimated by 
exponentiating the coefficient (i.e., eβX). 

 
2. The standard error.  Each estimated coefficient in a model accounts for some of the 

variance in the dependent variable.  This variance is the contribution of the 
particular independent variable to the variance of the dependent variable.  The 
square root of that variance is the standard error. 

 
3. The significance level.  The ratio of the coefficient to the standard error produces a 

significance test of the coefficient.  In the OLS model, it is a t-test with N-K-1 
degrees of freedom whereas in the Poisson model it is an asymptotic t-test, which is 
effectively a Z-test.  The appropriate tables (t-test or standard normal) produce 
approximate probability levels of a Type I error (the likelihood of falsely rejecting a 
true null hypothesis of no relationship). 

 
Testing for Multicollinearity 

 
One of the major problems with any regression model, whether OLS or Poisson, is 

multicollinearity among the independent variables.  In theory, each independent variable should be 
statistically independent of the other independent variables.  Thus, the amount of variance for the 
dependent variable that is accounted for by each independent variable should be a unique 
contribution.  In practice, however, it is rare to obtain completely independent predictive variables.  
More likely, two or more of the independent variables will be correlated.  The effect is that the 
estimated standard error of a predictor variable is no longer unique since it shares some of the 
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variance with other independent variables.  The greater communality of shared variance, the more 
ambiguous will be the predicted effects.  If two variables are highly correlated, it is not clear what 
contribution each makes towards predicting the dependent variable.  In effect, multicollinearity 
means that variables are measuring the same effect. 
 

Multicollinearity among the independent variables can produce very strange effects in a 
regression model.  Among these effects are: 1) If two independent variables are highly correlated, 
but one is more correlated with the dependent variable than the other, the stronger one will usually 
have a correct sign while the weaker one will sometimes get flipped around (e.g., from positive to 
negative, or the reverse); 2) Two variables can cancel each other out; each coefficient is significant 
when it alone is included in a model but neither are significant when they are together; 3) One 
independent variable can inhibit the effect of another correlated independent variable so that the 
second variable is not significant when combined with the first one; and 4) If two independent 
variables are virtually perfectly correlated, many regression routines break down because the 
matrix cannot be inverted. 
 

All these effects indicate that there is non-independence among the independent variables.  
Aside from producing confusing coefficients, multicollinearity can overstate the amount of 
predictability in a model. Since every independent variable accounts for some of the variance of 
the dependent variable, with multicollinearity the overall model will appear to improve when it 
probably has not. 
 

Tolerance test 
 

A user has to be aware of the problem of multicollinearity and seek to minimize it.  The 
simplest solution is to drop variables that are co-linear with other independent variables already in 
the equation.  A relatively simple test for assessing this is called tolerance.  Tolerance is defined as 
lack of predictability of each independent variable by the other independent variables, or: 

 
 1 …             (27.29) 

 
where (Rjk..)

2 is the R2 of an OLS equation where independent variable, , is predicted by the other 
independent variables, j, k, l, and so forth.  That is, each independent variable in turn is regressed 
against the other independent variables in the equation.  The R2 associated with that model is 
subtracted from 1.  The higher the tolerance level, the less a particular independent variable shares 
its variance with the other independent variables.   
 

Note that the tolerance test uses an OLS model; it assumes the dependent variable in the 
test (i.e., one of the independent variables) is normally distributed, which may or may not be true.  
Thus, in a Poisson or other non-linear model, one has to be careful about interpretation based on 
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the tolerance test.  Nevertheless, the test can be a good indicator of whether two variables are 
collinear.  As a rough guideline, a tolerance value of 0.7 or less usually indicates substantial 
multicollinearity. This level means that there is overlap of 50% or more in the variance of the 
tested variable with the other independent variables.  A more strict and conservative approach uses 
a tolerance level of 0.8 or less as indicating multicollinearity.  This level means that there is 
overlap of 36% or more in the variance of the tested variable with the other independent variables.  
An even stricter criterion is to use a tolerance level of 0.9 or less, essentially allowing 18% overlap 
in the variance of the tested variable with the other independent variables.  In general, it is better to 
have a stricter model that has little multicollinearity.  The interpretation of the coefficients will be 
cleaner and the model will generally be more reliable with other data sets. 

 
Fixed model v. stepwise variable selection 

 
There are several strategies designed to reduce multicollinearity in a model.  One is to start 

with a defined model and eliminate those variables that have a low tolerance.  The total model is 
estimated and the coefficients for each of the variables are estimated at the same time.  This is 
sometimes called a fixed model.  Then, variables that are co-linear are removed from the equation, 
and the model is re-run. 
 

Another strategy is to estimate the coefficients a step at a time, a procedure known as 
stepwise regression (Der & Everitt, 2002, 88-89). There are several standard stepwise procedures.  
In the first procedure, variables are added one at a time (a forward selection model).  The 
independent variable having the strongest linear correlation with the dependent variable is added 
first.  Next, the independent variable from the remaining list of independent variables with the 
highest correlation with the dependent variable, controlling for the one variable already in the 
equation, is added next and the model is re-estimated.  In each step, the independent variable with 
the highest correlation with the dependent variable controlling for the variables already in the 
equation is added to the model, and the model is re-estimated.  This proceeds until either all the 
independent variables are added to the equation or else a stopping criterion is met.  The usual 
criterion is only variables with a specified significance level are allowed to enter (called a p-to-
enter). 
 

A backward elimination procedure works in reverse.  All independent variables are initially 
added to the equation.  The variable with the weakest coefficient (as defined by the significance 
level) is removed, and the model is re-estimated.  Next, the variable with the weakest coefficient in 
the second model is removed, and the model is re-estimated.  This procedure is repeated until 
either there are no more independent variables left in the model or else a stopping criterion is met.  
The usual criterion is that all remaining variables pass a specified significance level (called a p-to-
remove).  
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There are combinations of these procedures, for example adding variables in a forward 
selection but then removing any that are no longer significant or using a backward elimination 
procedure but allowing new variables to enter the model if they suddenly become significant. 
 

There are advantages to each approach.  A fixed model allows defined variables to be all 
included.  If either theory or previous research has indicated that a particular combination of 
variables is important, then the fixed model allows that to be tested.  A stepwise procedure might 
drop one of those variables.  On the other hand, a stepwise procedure usually can obtain the same 
or higher predictability than a fixed procedure (whether predictability is measured by a log-
likelihood or an R-square).   
 

Within the stepwise procedures, there are also advantages and disadvantages to each 
method, though the differences are generally very small. A forward selection procedure adds 
variables one at a time.  Thus, the contribution of each new variable can be seen.  On the other 
hand, a variable that is significant at an early stage could become not significant at a later stage 
because of the unique combinations of variables.  Similarly, a backward elimination procedure will 
ensure that all variables in the equation meet a specified significance level.  But, the contribution 
of each variable is not easily seen other than through the coefficients.  In practice, one usually 
obtains the same model with either procedure, so the differences are not that critical. 

 
A stepwise procedure will not guarantee that multicollinearity will be removed entirely.  

However, it is a good procedure for narrowing down the variables to those that are significant.  
Then, any co-linear variables can be dropped manually and the model re-estimated. In the 
CrimeStat trip generation, both a fixed model and a backward elimination procedure are allowed. 

 
Available Regression Models 
 

CrimeStat has 10 different regression models that can be used for trip generation and which 
can be estimated with either maximum likelihood (MLE) or Markov Chain Monte Carlo (MCMC): 

 
MLE Normal (OLS) 
MCMC Normal 
MCMC Normal-spatial autocorrelation component (CAR or SAR) 
MLE Poisson 
MLE Poisson with Linear Correction (NB1) 
MLE Negative Binomial (Poisson-Gamma) 
MCMC Poisson-Gamma 
MCMC Poisson-Gamma-spatial autocorrelation component (CAR or SAR) 
MCMC Poisson-Lognormal 
MCMC Poisson-Lognormal-spatial autocorrelation component (CAR or SAR) 
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Users should consult Chapters 16 and 17 for details of these models. There are other 
methods for estimating the likely value of a count given a set of independent predictors.  Among 
these are the zero-inflated Poisson (or ZIP; Hall, 2000), the Weibul function, the Cauchy function, 
and the lognormal function (see NIST 2004 for a list of common non-linear functions).  There are 
also other spatial regression type models that correct for spatial autocorrelation in the dependent 
variable, such as geographically-weighted regression using a Poisson function (Fotheringham, 
Brunsdon, & Charlton, 2002).  These are not included in this version of CrimeStat. 
 
Adding Special Generators 
 

In a travel demand model, there are special generators.  These are unique land uses or 
environments that produce an extra large number of trips.  For regular travel demand modeling, 
stadiums, airports, train stations, large parks, and mega-malls generate more than their share of 
trips, or at least than what would be predicted by the amount of permanent employment at those 
locations.  They are usually attractors, not producers.  In a normal transportation travel demand 
model, these zones are excluded from the cross-classification and independent estimates are made 
of them.  
 

For crime trips, there are also special generators. Typically, these are zones that have more 
crimes being attracted to them than are expected on the basis of the population and employment at 
those locations. Since we are using a regression model to estimate the productions and attractions, 
a simple way to model a special generator is to create a simple dummy variable.  This is a variable 
where zones with the special generator get a value ‘1' and zones without the special generator get a 
‘0'.  Essentially, the variable is a cross-classification of the special generator versus every other 
zone. 
 

One has to be cautious is doing this, however.  Typically, special generators are identified 
by having a greater number of crimes being attracted to a zone than is predicted by the model.  In 
other words, they have a greater positive residual error (observed - predicted) and are ‘outliers’ in 
the residual error distribution.  By adding a variable to explain those cases, the residual error 
decreases.  But, in doing so, we are not really explaining why the zone has more crimes than 
expected, but simply accounting for it by putting in an empirical variable.  In re-running the model, 
there will be, usually, new outliers that have a greater positive residual error.  If this logic is to be 
repeated, then we would create new special generators for those zones and re-estimate the model.  
If continued without limits, eventually there would not be a model anymore but just a collection of 
dummy variables, one for each zone.  
 

Therefore, a user should be cautious in introducing special generators. It is generally alright 
to introduce a few for the truly exceptional zones. These are zones where it is logical to treat them 
as special generators and where one would expect continuity over time.  In other words, they 
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should be used if the special generator status is expected to last over time.  For example, a stadium 
or an airport or a train station is liable to remain at its location for many years.  A particular 
shopping mall, on the other hand, may attract crimes at one particular point in time but not 
necessarily in the future.  Unless a mall is so much larger than other malls in the region (a mega-
mall), it should not be assigned a special generator status. 
  
Adding External Trips 
  

External trips are, by definition, trips that come from outside the region.  They are part of 
the origin/production model in that these are trips that are not accounted for by the model.  There 
are also trips that originate within the study area, but end outside the area; however, those are 
usually not modeled since the focus will be on the study area itself. In the usual travel demand 
framework, external trips are those coming from major corridors into the region.  Estimates of the 
travel on these corridors are obtained by cordon counts, counts of vehicles coming into the region 
and leaving the region (net inflow).  Estimates of future growth of those external trips has to based 
on expectations of future population growth the metropolitan region and in nearby regions. 
 

For crime trips, external trips are defined as trips that originate outside the study area.  But 
they must be estimated by the difference between the total number of crimes occurring in the 
destination study area and the total originating in the origin zones.  That is, of all the crimes 
occurring in the study area, the origin zones are modeled.  Those trips that originate from outside 
the origin zones are external trips.  They must be added to the predicted number of origin trips to 
produce an adjusted estimate of total origins, or: 
 
              (27.30) 
 
where Oj is the total number of crime origins for crimes committed in study area, , Opi is the total 
number of crimes originating in the origin zones, ,  and  Oe is the total number of crimes 
originating outside the region, e.  
 

In other words, for the production (origin) model only, we add an external zone to account 
for crime trips that originated outside the modeled region. If that is not done, in the balancing step 
the number of crimes originating in each zone will be overestimated because the predicted origins 
will be multiplied by a factor to ensure that the total number of origins equals the total number of 
destinations. 
 

Not including the external trips can lead to bias in the model.  If the number of external 
trips is a sizeable percentage of all crime origins occurring in the study area, then the coefficients 
of the origin model could be misleading.  In practice, most travel demand modelers assume that if 
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the percentage of external trips is not greater than 5%, there usually is little bias introduced 
(Ortuzar & Willumsen, 2001).  If it is greater than 5%, then origin zones from adjacent 
jurisdictions need to be included in the origin model. 
 

Balancing Predicted Origins and Predicted Destinations 
 
  The trip generation ‘model’ is actually two separate models: 1) a model of trips produced 
by every zone and 2) a model of trips attracted to every zone.  Since a trip has an origin and a 
destination (by definition), then the total number of productions must equal the total number of 
attractions, 
 
 ∑ ∑             (27.31) 

  
where O is a trip origin, D is a trip destination, and  and  are zone numbers.  Note that in equation 
27.31, there are M origin zones and N destination zones.  This implies that M and N do not have to 
be equal. In fact, including an external zone guarantees that M and N will not be equal (M will be 
at least 1 greater than N).  If an entire metropolitan area is being modeled, the M and N will be 
almost identical (differing only in the external zone).  However, if the study area being modeled is 
a sub-set of the metropolitan region, then M will be much greater than N.  For example, in 
modeling crime trips in Baltimore County, there are 532 origin zones (including those from 
Baltimore County and from the City of Baltimore) and only 325 destination zones (only those in 
Baltimore County).  
 

To ensure that this equality is true, a balancing operation is conducted.  Essentially, this 
means multiplying either the number of predicted origins in each origin zone or the number of 
predicted destinations in each destination zone by a constant which is the ratio of either the total 
destinations to the total origins (to multiply the number of predicted origins) or the ratio of the total 
origins to the total destinations (to multiply the number of predicted destinations). 
 

With crime analysis, the number of destinations would generally be considered a more 
reliable data set than the number of origins.  Because crimes are enumerated where they occur, the 
number of crimes occurring at any one location is more accurate than the location of the offenders.  
Thus, we adjust the predicted origins so that they equal the predicted destinations.8 
  

                         
8  In the usual travel demand modeling, on the other hand, modelers usually adjust the predicted destinations 

since the origin data is more reliable.  These numbers are obtained from the census or from the sample of 
households who are interviewed to produce a sample from which data on destinations are obtained. 
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Summary of the Trip Generation Model 
 

In summary, the trip generation model is estimated in four steps: 
 

1. A model of the predictors of the number of crimes origins (a crime production 
model); 

2. A model of predictors of the number of crime destinations (a crime attraction 
model); 

3. External trips are estimated and added to the number of predicted origins as an 
external zone; and 

4. The total number of predicted crime origins is balanced to be equal to the total 
number of predicted crime destinations. 

 
The CrimeStat Trip Generation Model 
 

In this section, we describe the trip generation model implemented in CrimeStat. As 
mentioned above, this step involves calibrating a regression model against the zonal data.  Two 
separate models are developed, one for trip origins and one for trip destinations.  The dependent 
variable is the number of crimes originating in a zone (for the trip origin model) or the number of 
crimes ending in a zone (for the trip destination model).  The independent variables are zonal 
variables that may predict the number of origins or destinations. 
 

There are three steps to the model, each corresponding to a separate tab in CrimeStat: 
 

1. Calibrate the model 
2. Make a prediction 
3. Balance the predicted origins and the predicted destinations 

 
Figure 27.5 shows an image of the trip generation model page within CrimeStat.  The trip 

generation model is made up of three separate pages (or tabs): 
 
1. A Calibrate model page in which a regression model can be run to estimate either 

an origin (production) model or a destination (attraction) model; 
 
2. A Make prediction page in which the estimated coefficients can be applied to the 

same or a different data set and in which the external trips can be added to the 
predicted origins; and 



Figure 27.5:

Trip Generation Module
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3. A Balance predicted origins & destinations page in which the total predicted 
origins can be adjusted to equal the total predicted destinations. 

 

Calibrate Model 
 

In the first step, models are calibrated using the input data.  There is a model for the origin 
zones and another model for the destination zones. The user should indicate what type of model is 
being run in order to make the output more clear. 
 

Data File 
 

The data file is input as either the primary or secondary file.  Specify whether the data file 
is the primary or secondary file.  
 

Type of Model  
 

Specify whether the model is for origins or destinations.  This will be printed out on the 
output header. 
 

Dependent Variable 
 

Select the dependent variable from the list of variables.  There can be only one dependent 
variable per model. 
 

Skewness Diagnostics 
 

If checked, the routine will test for the skewness of the dependent variable.  The output 
includes: 
 

1. The ‘g’statistic 
2. The standard error of the ‘g’ statistic 
3. The Z value for the ‘g’ statistic 
4. The probability level of a Type I error for the ‘g’ statistic  
5. The ratio of the sample variance to the sample mean 

 
Error messages indicate whether there is probable skewness in the dependent variable.  If 

there is skewness, use a Poisson regression model. 
 
 
 



27.35 

Independent variables 
 

Select independent variables from the list of variables in the data file.  Up to 15 variables 
can be selected. 
 

Missing values 
 

Specify any missing value codes for the variables.  Blank records will automatically be 
considered as missing.  If any of the selected dependent or independent variables have missing 
values, those records will be excluded from the analysis. 
 

Type of Regression Model 
 

Specify the type of regression model to be used.  The default is a Poisson regression with 
over-dispersion correction (NB1).  Other alternatives are: 

 
1. Ordinary Least Squares regression; 
2. Poisson regression; 
3. MLE Poisson-Gamma (negative binomial; NB2); 
4. MCMC Poisson-Gamma; 
5. MCMC Poisson-Lognormal; and 
6. MCMC Conway-Maxwell Poisson. 

 
Each of the MCMC models can be run with a spatial autocorrelation component added, 

either a CAR or a SAR.  See Chapters 16 and 17 for more details. 
 
Type of Regression Procedure 

 
If the model being run is an MLE routine (Poisson, Poisson with linear correction (NB1), 

or Poisson-Gamma (NB2), specify whether a fixed model (all selected independent variables are 
used in the regression) or a backward elimination stepwise model is used.  The default is a fixed 
model.  If a backward elimination stepwise model is selected, choose the P-to-remove value 
(default is .01).  The backward elimination starts with all selected variables in the model (the fixed 
procedure).  However, it proceeds to drop variables that fail the P-to-remove test, one at a time.  
Any variable that has a significance level in excess of the P-to-remove value is dropped from the 
equation.   

 
With MCMC routines, however, only fixed models can be run. 
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Save Estimated Coefficients/Parameters 
 

The estimated coefficients of the final model can be saved as a ‘dbf’ file.  Specify a file 
name.  This would be useful in order to repeat the regression while adding in external trips to the 
predicted origins (see Make trip generation prediction below) or to apply the coefficients to 
another dataset (e.g., future values of the independent variable). 
 

Save Output 
 

The output is saved as a ‘dbf’ file under a different file name.  The output includes all the 
variables in the input data set plus two new ones: 1) the predicted values of the dependent variable 
for each observation (with the name PREDICTED); and 2) the residual error values, representing 
the difference between the actual /observed values for each observation and the predicted values 
(with the name RESIDUAL). 
 

Poisson output 
 

The output of the Poisson regression routines includes 13 fields for the entire model: 
 

1. The dependent variable 
2. The type of model 
3. The sample size (N) 
4. The degrees of freedom (N - # dependent variables B 1) 
5. The type of regression model (Poisson, Poisson with over-dispersion 

correction) 
6. The log-likelihood value 
7. The Likelihood Ratio 
8. The probability value of the Likelihood Ratio 
9. The Akaike Information Criterion (AIC) 
10. The Bayesian Information Criterion/Schwartz Criterion (BIC/SC) 
11. The Dispersion Multiplier 
12. The approximate R-square value 
13. The deviance R-square value 

 
and 5 fields for each estimated coefficient: 

 
14. The estimated coefficient 
15. The standard error of the coefficient 
16. The pseudo-tolerance value of the coefficient (see below) 
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17. The Z-value of the coefficient 
18. The p-value of the coefficient. 

 
OLS output 

 
The output of the Ordinary Least Square (OLS) routine includes 9 fields for the entire 

model: 
 

1. The dependent variable 
2. The type of model 
3. The sample size (N) 
4. The degrees of freedom (N - # dependent variables B 1) 
5. The type of regression model (Norma/Ordinary Least Squares) 
6. Squared multiple R 
7. Adjusted squared multiple R 
8. F test of the model 
9. p-value of the model 

 
and 5 fields for each estimated coefficient: 
 

10. The estimated coefficient 
11. The standard error of the coefficient 
12. The tolerance value of the coefficient (see below) 
13. The t-value of the coefficient 
14. The p-value of the coefficient. 

 
Multicollinearity Among Independent Variables 

 
To test multicollinearity, a tolerance test is run (see equation 27.29 above).  There is not a 

simple test of whether a particular tolerance is meaningful or not.  In CrimeStat, several qualitative 
categories are used and error messages are output: 
 

1. If the tolerance value is 0.80 or greater, then there is little multicollinearity (No 
apparent multicollinearity); 

 
2. If the tolerance is between 0.60-0.79, there is some multicollinearity (possible 

multicollinearity); 
 

3. If the tolerance is between 0.25-0.59, there is probable multicollinearity (probable 
multicollinearity.  Eliminate variable with lowest tolerance and re-run); and 
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4. If tolerance is less than 0.25, there is definite multicollinearity (Definite 

multicollinearity.  Results are not reliable.  Eliminate variable with lowest tolerance 
and re-run). 

 
Graph 

 
While the output page is open, clicking on the graph button will display a graph of the 

residual errors (on the Y axis) against the predicted values (on the X axis). 

 
Make Trip Generation Prediction 
 

This routine applies an already-calibrated regression model to a data set. This would be 
useful for several reasons: 1) if external trips are to be added to the model (which is normally 
preferred); 2) if the model is applied to another data set; and 3) if variations on the coefficients are 
being tested with the same data set.  The model will need to be calibrated first (see Calibrate Trip 
Generation Model) and the coefficients saved as a parameters file.  The coefficient parameter file 
is then re-loaded and applied to the data. 
 

Data File 
 

The data file is input as either the primary or secondary file.  Specify whether the data file 
is the primary or secondary file.  
 

Type of Model 
 

Specify whether the model is for origins or destinations.  This will be printed out on the 
output header. 
 

Trip Generation Coefficients/Parameters File 
 

This is the saved coefficient parameter file.  It is an ASCII file and can be edited if 
alternative coefficients are being tested (be careful about editing this without making a backup).  
Load the file by clicking on the Browse button and finding the file.  Once loaded, the variable 
names of the saved coefficients are displayed in the ‘Matching parameters’ box. 
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Independent Variables 
 

Select independent variables from the list of variables in the data file.  Up to 15 variables 
can be selected. 
 

Matching parameters 
 

The selected independent variables need to be matched to the saved variables in the trip 
generation parameters file in the same order.  Add the appropriate variables one by one in the order 
in which they are listed in the matching parameters box.  It is essential that the order by the same 
otherwise the coefficients will be applied to the wrong variables. 
 
 
 
 

Missing Values 
 

Specify any missing value codes for the variables.  Blank records will automatically be 
considered as missing.  If any of the selected dependent or independent variables have blank 
values, those records will be excluded from the analysis. 
 

Add External Trips 
 

External trips are those that start outside the modeled study area.  Because they are crimes 
that originate outside the study area, they were not included in the zones used for the origin model.  
Therefore, they have to be independently estimated and added to the origin zone total to make the 
number of origins equal to the number of destinations.  Click on the ‘Add external trips’ button to 
enable this feature. 

 
Origin ID 

 
Specify the origin ID variable in the data file.  The external trips will be added as an extra 

origin zone, called the ‘External’ zone. Note: the ID’s used for the destination file zones should be 
the same as in the origin file.  This will be necessary in subsequent modeling stages. 

 
Number of external trips 

 
Add the number of external trips to the box.  This number will be added as an extra origin 

zone (the External zone). 
 

Hint: With your cursor placed in the list of independent variables, typing the first 
letter of the matching variable name will take you to the first variable that starts with 
that letter.  Repeating the letter will move down the list to the second, third, and so 
forth until the desired variable is reached. 
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 Type of Regression Model 
 

Specify the type of regression model to be used. The default is a Poisson regression and the 
other alternative is an Ordinary Least Squares regression. 
 

Save Predicted Values  
 

The output is saved as a >dbf= file under a different file name.  The output includes all the 
variables in the input data set plus the predicted values of the dependent variable for each 
observation (with the name PREDICTED).  In addition, if external trips are added, then there 
should be a new record with the name EXTERNAL listed in the Origin ID column.  This record 
lists the added trips in the PREDICTED column and zeros (0) for all other numeric fields. 
 

Output 
 

The tabular output includes summary information about file and lists the predicted values 
for each input zone. 
 

Balance Predicted Origins & Destinations 
 

Since, by definition, a ‘trip’ has an origin and a destination, the number of predicted origins 
must equal the number of predicted destinations.  Because of slight differences in the data sets of 
the origin model and the destination model, it is possible that the total number of predicted origins 
(including any external trips) may not equal the total number of predicted destinations.  This step, 
therefore, is essential to guarantee that this condition will be true.  The routine adjusts either the 
number of predicted origins or the number of predicted destinations so that the condition holds.  
The trip distribution routines will not work unless the number of predicted origins equals the 
number of predicted destinations (within a very small rounding-off error). 
 

Predicted Origin File 
 

Specify the name of the predicted origin file by clicking on the Browse button and locating 
the file. 

Origin variable 
 

Specify the name of the variable for the predicted origins (e.g., PREDICTED). 
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Predicted Destination File 
 

Specify the name of the predicted destination file by clicking on the Browse button and 
locating the file. 

 
Destination variable 

 
Specify the name of the variable for the predicted origins (e.g., PREDICTED). 

 
Balancing Method 

 
Specify whether origins or destinations are to be held constant.  The default is >Hold 

destinations constant=. 
 

Save Predicted Origin/Destination File 
 

The output is saved as a ‘dbf’ file under a different file name.  The output includes all the 
variables in the input data set plus the adjusted values of the predicted values of the dependent 
variable for each observation. If destinations are held constant, the adjusted variable name for the 
predicted trips is ADJORIGIN.  If origins are held constant, the adjusted variable name for the 
predicted trips is ADJDEST.  
 

Output 
 

The tabular output includes file summary information plus information about the number of 
origins and destinations before and after balancing.  In addition, the predicted values of the 
dependent variable are displayed. 
 

Example of the Trip Generation Model 
 
To illustrate this model, an example from Baltimore County.  In the case of Baltimore 

County, MD, will be used.  The zonal geography is traffic analysis zones (TAZ).  Two data sets 
were produced, one for the crime origins and one for the crime destinations.  For Baltimore 
County, the origin data set had 532 zones covering both Baltimore County and the City of 
Baltimore with the total number of crime origins for each zone (sub-divided into different crime 
types - robberies, burglaries, vehicle theft) and a number of possible predictor variables 
(population, retail and non-retail employment, median household income, poverty levels, and 
vehicle ownership).   Similarly, the destination data set had 325 zones with the number of crime 
destinations for each zone (again, sub-divided into different crime types) and number of possible 
predictor variables (population, retail and non-retail employment, median household income, and 
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several land use categories - acreage allocated for retail, residential, office space, and conservation 
uses).  Sample data sets are provided on the CrimeStat download page. 
 

Setting Up the Origin Model 
 

In the first step, an origin model is created.  Figure 27.6 shows the selection of the 
dependent variable and some possible independent variables.  The type of model is an ordinary 
Poisson regression.  The dependent variable is the number of crimes occurring between 1993 and 
1997 in each origin zone (BCORIG).  Eight possible independent variables have been selected:  

 
1. 1996 population of each zone (POPULATION) 
2. 1990 median household income of the zone relative to the zone with the highest median 

household income (INCOME EQUALITY) 
3. Number of 1996 non-retail employees in each zone (NON-RETAIL EMPLOYMENT) 
4. Number of 1996 retail employees in each zone (RETAIL EMPLOYMENT) 
5. Total linear miles of arterial roads in each zone (ARTERIAL ROADS) 
6. A dummy variable for whether the Baltimore Beltway (I-695) passed through the zone 

or not (BELTWAY) 
7. Linear distance of the zone from Baltimore harbor in the CBD (DISTANCE FROM 

CENTER); and  
8. 1990 Number of households without automobiles (HOUSEHOLDS WITH NO 

AUTOMOBILES) 
 

The model is set up to run an ordinary Poisson regression (without an adjustment to the 
dispersion). It is a fixed model in which all independent variables are included. The coefficients 
are saved under ‘Save estimated coefficients’ dialogue box and the output (the predicted values) 
are saved under the ‘Save output’ dialogue box.  Both boxes ask for a file name. 
 

Table 27.2 shows the results.  The format is simplified from that shown in Chapter 16. Key 
statistics are highlighted.  The overall model is highly significant.  The log likelihood is shown as 
are the AIC and BIC/SC adjusted log likelihood.  The deviance and Pearson are highly significant, 
indicating that the model predicts significantly better than chance.  The coefficients for each of the 
variables are all significant.  
 

However, there are two major problems.  First, the dispersion multiplier (parameter) is very 
large (36.09) and significant, indicating that the conditional variance is more than 36 times greater 
than the conditional mean.  Second, while all of the coefficients are significant, several show 
sizeable multicollinearity as evidenced by the pseudo-tolerance value (POPULATION, 
DISTANCE, HOUSEHOLDS WITH NO AUTOMOBILES as well as INCOME EQUALITY).  
This indicates that these variables are essentially measuring the same thing. 
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Table 27.2: 

Full Origin Model: Poisson 
 
Model result: 
Data file:                           BaltOrigins.dbf 
Type of model:                       Origin 
DepVar:                              BCORIG 
N:                                      532 
Df:                                    522 
Type of regression model:    MLE Poisson 
 Likelihood statistics 
Log Likelihood:                      -10,678.05 
AIC:                                  21,376.10 
BIC/SC:                                  21,418.87 
Deviance:    18,547.38 p≤.0001 
Pearson Chi-square:   19,396.48 p≤.0001 
 Model error estimates 
Mean absolute deviation:  38.70 
Mean squared predicted error:  3,920.66 
 Dispersion tests  
Dispersion multiplier:            36.09  p≤.01 
---------------------------------------------------------------------------------------------------------------------- 
Predictor      Coefficient   Stand Error  Tolerance      Z-value       p-value 
CONSTANT        4.1890      0.0202          .    207.03     0.001 
POPULATION   0.0003      0.000003      0.46     121.13     0.001 
INCOME 
EQUALITY       -0.0330      0.0007      0.61    -48.85     0.001 
NON-RETAIL 
EMPLOYMENT      -0.0002      0.000005      0.84    -36.87     0.001 
RETAIL 
EMPLOYMENT  -0.0004      0.00002      0.96     -18.91     0.010 
ARTERIAL ROAD -0.1083      0.0059      0.77     -18.49     0.001 
BELTWAY         0.1510     0.0193      0.96         7.84     0.001 
DISTANCE   
FROM CENTER   0.0343      0.0016      0.49       21.09     0.001 
HOUSEHOLDS 
WITH NO 
AUTOMOBILES    -0.0005      0.00002      0.36      -18.95   0.010 
---------------------------------------------------------------------------------------------------------------------- 
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Restructuring the Origin Model  
 
Consequently, the model was restructured in three ways (Figure 27.7).  First, to correct for 

over-dispersion, an MLE Poisson-Gamma (negative binomial) model was run.  This is the most 
common approach to handling over-dispersion (see Chapter 16). Second, two co-linear variables - 
DISTANCE and ZEROAUTO, were dropped from the model.  Third, a stepwise backward 
elimination procedure is used with the probability for keeping a variable in the equation (p-to-
remove) being 0.01; that is, unless the probability that a coefficient could be obtained by chance is 
less than 1 in 100, the variable was dropped.   
 

Table 27.3: 

Reduced Origin Model: Poisson-Gamma 
 
Model result: 
Data file:                           BaltOrigins.dbf 
Type of model:                       Origin 
DepVar:                              BCORIG 
N:                                      532 
Df:                                    526 
Type of regression model:    MLE Poisson-Gamma 

Likelihood statistics 
Log Likelihood:                      -2,627.65 
AIC:                                  5,267.30 
BIC/SC:                                  5,292.96 
Deviance:    623.49  p≤.0001 
Pearson Chi-square:   500.59  p≤.0001 
 Model error estimates 
Mean absolute deviation:  57.28 
Mean squared predicted error:  18,143.78 
 Dispersion tests  
Dispersion multiplier:            0.74  n.a. 
--------------------------------------------------------------------------------------------------------------------- 
Predictor      Coefficient   Stand Error  Tolerance    Z-value       p-value 
CONSTANT         3.4832      0.131          .    26.61      0.001 
POPULATION        0.0004      0.00003      0.95     17.10      0.001 
INCOME 
EQUALITY       -0.0178     0.003      0.91   -5.46      0.001 
NON-RETAIL 
EMPLOYMENT  -0.0001  0.00002  0.87  -6.71  0.001 
RETAIL 
EMPLOYMENT      -0.0002      0.0001      0.96    -2.17     0.05 
---------------------------------------------------------------------------------------------------------------------



Figure 27.6:

Origin Poisson Model Setup



Figure 27.7:

Origin Poisson-Gamma Model Setup
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 The result is a model with four significant variables.  Note that the full Poisson model 
(Table 27.3) has a greater negative log likelihood and a much greater AIC and BIC/SC value than 
the reduced model.  This is because the reduced model was tested with a Poisson-Gamma mixed 
function and has a different probability structure.  To properly compare it, the full model was run 
as a Poisson-Gamma (not shown).  In the reduced model, the log likelihood was -2,627, which is 
even stronger than -2,618 for the full model, while the AIC was 5,267 and the BIC/SC was 5,293, 
compared to 5,526 and 5,299 for the full model respectively.  In other words, the reduced model 
produced likelihood values very similar to the full model.  More importantly, the overall fit of the 
model was almost as good as the full model.  The mean absolute deviation was 57, compared to 55 
for the full model, while the mean squared predicted error was 18,144, compared to 17,881 for the 
full model.  Most importantly, the dispersion parameter is now less than 1.0.9   
 
 In other words, we have a simpler model that predicts almost as well as the full model but 
with coefficients that are less ambiguous.  Such a model is liable to be more stable because the 
Poisson-Gamma has adjusted for over-dispersion in the Poisson while collinear and less significant 
variables have been removed. 

 
Looking at the model, we see four variables that significantly predict the number of crime 

origins.  Population is the strongest, as indicated by its Z-test.  Non-retail employment is the next 
strongest with a negative coefficient (i.e., zones with less non-retail employment generate more 
crime trips).  This is followed by relative income equality is the next strongest, also with a negative 
coefficient (i.e., zones with low relative income equality produce more crime origins).  The fourth 
variable is retail employment and, like non-retail employment, the coefficient is also negative. In 
other words, zones with less overall employment produce more crime trips. 
 

Residual Analysis of Origin Model 
 

The CrimeStat output includes a graph of the residual errors (actual values minus the 
predicted values) on the Y-axis by the predicted values on the X-axis.  It is important to examine 
the residual errors as these can indicate outliers, problems in the data, and violation of 
assumptions.  Figure 27.8 shows an image of the residual graph screen.  As seen, the errors 
increase with the value of the predicted dependent variable.  With the Poisson model, this is 
expected and does not indicate the violation of the independent errors assumption, as it does with 
the OLS.  The errors are reasonably symmetrical and do not indicate differences in over- and 
under-estimation across the band of the predicted values.  
 

There are some outliers.  There are two zones in which the predicted number of crimes 
originating from the zones substantially exceeded the number that actually originated from those  
 

 
                         
9  A test of the dispersion parameter is not appropriate since it only tests for over-dispersion, not under-

dispersion.   



Figure 27.8:

Plot of Residual Errors and Predicted Values
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zones and there is one zone that had more crimes originate from it than was predicted by the 
model.  But, in general, the model appears to be reasonably balanced. 
 

Setting Up the Destination Model 
 

The same logic was applied for the destination model.  In this case, the destination file has 
data on 325 zones within Baltimore County only.  Similar possible predictor variables are included 
in the file.  Aside from population, retail and non-retail employment, and the roadway variables, 
more detailed analysis on land uses were included (acreage of commercial, residential, office 
space, recreational, and conservation lands).  The model that was run was a Poisson-Gamma 
(negative binomial) because the simple Poisson showed very high over-dispersion. Again, a 
backward elimination procedure was adopted.  Once a final model was selected, it was re-run as a 
fixed model to ensure that the coefficients were consistently estimated.  Table 27.4 presents the 
results. 
 

Four variables ended up in the final model.  Again, population was significantly related to 
the number of crimes attracted to a zone, but was not the strongest predictor as indicated by the Z-
test.  The strongest relationship was for the number of retail employees.  This suggests that 
retail/commercial areas attract many crimes.  Two other variables are in the equation.  Relative 
income equality was, again, negatively related to crime destinations/attractions; zones with low 
income tend to attract more crimes.  Also, there was a negative association with distance from the 
CBD.  The farther away from the CBD was the zone, the lower the number of crimes.  Overall, the 
model suggests that zones with commercial activities, which are closer to the city center, and 
which have households with relatively lower incomes are those that attract the most crimes. 

 
The overall model was highly significant, as indicated by the Deviance and the Pearson 

Chi-square.  The amount of multicollinearity is very low, which is ideal.  Even though a model 
with more negative log likelihood (and more positive AIC and BIC/SC) could be produced by 
adding more variables, the amount of multicollinearity would be substantial.  The philosophy 
expressed here is that a simpler model, but with little multicollinearity, is to be preferred over a 
more complex model but where the coefficients are less stable and more ambiguous.  Generally, 
simpler models hold up better with new data sets (Radford, 2006; Nannen, 2003). 
 

Residual Analysis of Destination Model 
 

As with the origin model, an analysis was conducted of the residual errors.  This time, the 
output >dbf= file was brought into Excel and a nicer graph created (Figure 27.9).   Unlike the best 
origin model, the dispersion of the residuals is not symmetrical.  There are several major outliers, 
both on the negative end of the residuals (over-estimation of crime attractions) and on the positive 
end (under-estimation of crime attractions).  In particular, there are two zones that seem to stand 
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out.  Both of them have shopping malls (Golden Ring Mall and Eastpoint Mall) but the amount of 
crime in those zones was much greater than the model predicted.   This is seen as high positive 
residuals (i.e., there were more actual crimes than predicted). They both are older malls, but are 
located in relatively high crime areas.  Golden Ring Mall was demolished some years ago, but 
after the data used in this example were collected. 
 

Table 27.4: 
Reduced Destination Model: Poisson-Gamma 

 
Model result: 
Data file:                           BaltOrigins.dbf 
Type of model:                       Origin 
DepVar:                               BCDEST 
N:                                      325 
Df:                                     319 
Type of regression model:    MLE Poisson-Gamma 

Likelihood statistics 
Log Likelihood:                      -1,697.01 
AIC:                                  3,406.03 
BIC/SC:                                  3,428.73 
Deviance:    350.74  p≤.0001 
Pearson Chi-square:   379.87  p≤.0001 

Model error estimates 
Mean absolute deviation:  167.43  
Mean squared predicted error:  2,893,931.60 
 Dispersion tests  
Dispersion multiplier:            0.43  n.a. 
--------------------------------------------------------------------------------------------------------------- 
Predictor      Coefficient   Stand Error  Tolerance    Z-value       p-value 
CONSTANT        4.5208      0.153                 .    29.53      0.001 
POPULATION        0.0003      0.00003      0.94     12.06      0.001 
INCOME 
EQUALITY       -0.0213     0.003      0.90    -7.87     0.001 
RETAIL 
EMPLOYMENT   0.0020      0.0001      0.94    17.49     0.001 
DISTANCE 
FROM CENTER  -0.0714      0.010      0.88      -7.46     0.001 
--------------------------------------------------------------------------------------------------------------- 

 
  



Figure 27.9:
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Adding in Special Generators 
 
Since the number of crime incidents (attractions) in those two zones was much higher than 

expected, they were treated as ‘special generators’.  Keeping in mind the caution that one does not 
want to over-use this category, a demonstration of how it works will be illustrated. Two new 
variables were created for the data set.  One was for the Golden Ring Mall and one was for the 
Eastpoint Mall.  For the Golden Ring Mall, the zone that included it received a ‘1' for this variable 
while all other zones received a ‘0'.  Similarly, for the Eastpoint Mall variable, the zone in which it 
occurred received a ‘1' while all other zones received a ‘0'.  These dummy variables were then 
included in the model (Table 27.5). 
 

Adding the two special generators produces a model that, on the face of it, has not 
improved the predictability..  The log likelihood value is less negative than without the special 
generators and the AIC and BIC/SC statistics are also lower.  The deviance values are about the 
same.  

 
However, the Pearson Chi-square is quite a bit higher with the special generators.  Also, the 

Mean Absolute Deviation (MAD) and the Mean Squared Predictive Error (MSPE) are 
substantially better with the special generators.  This indicates that the new model which includes 
the special generators fit the data much better.   

 
The coefficients for the two zones, treated as special generators, are both significant though 

not as strongly as the other variables.  All other variables have the same relationships as in the first 
run.  There is little multicollinearity.  In other words, adding dummy variables for the two zones 
with higher than expected numbers of crime committed has produced a closer fitting model than 
not including the dummy variables. 
 

This brings up an issue over the status of a special generator.  In this example, the two 
zones were treated as special generators in the model.  While the model fit increased substantially, 
one has to wonder whether this was a meaningful operation or not?  That is, if this model were 
applied to data for a later time period (e.g., 2010-2012 crime data), would the relationships still 
hold?  In the case of the Golden Ring Mall, it would not since that mall has since been demolished 

 
The value of a special generator is that it identifies a land use that would be expected to be 

relatively permanent (e.g., a stadium or a train station or an airport).  If it is a high visibility 
‘regional’ mall, then treating it as a special generator is probably a good idea.  If it is a smaller, 
older mall, on the other hand, the analysis is guessing that the mall will maintain its status as a high 
crime attraction location.  Clearly, judgment and knowledge of the particular mall is essential. 
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Table 27.5: 

Destination Model with Special Generators: Poisson-Gamma 
 
Model result: 
Data file:                           BaltOrigins.dbf 
Type of model:                       Origin 
DepVar:                              BCDEST 
N:                                      325 
Df:                                    319 
Type of regression model:    MLE Poisson-Gamma 

Likelihood statistics 
Log Likelihood:                      -1,688.30 
AIC:                                  3,392.60 
BIC/SC:                                  3,422.87 
Deviance:    350.89  p≤.0001 
Pearson Chi-square:   398.73  p≤.0001 
Model error estimates 
Mean absolute deviation:  116.54 
Mean squared predicted error:  1,017,064.23 
 Dispersion tests  
Dispersion multiplier:            0.40  n.a. 
------------------------------------------------------------------------------------------------------------------------------- 
Predictor      Coefficient   Stand Error  Tolerance    Z-value       p-value 
CONSTANT        4.4625      0.149                 .    29.91      0.001 
POPULATION    0.0004      0.00003      0.93     12.72      0.001 
INCOME 
EQUALITY       -0.0205     0.003      0.90    -7.84     0.001 
RETAIL  
EMPLOYMENT   0.0018      0.0001      0.90    16.44     0.001 
DISTANCE    
FROM CENTER  -0.0686      0.009      0.87      -7.30     0.001 
GOLDEN RING 
MALL   1.5163  0.645  0.98    2.35  0.05 
EASTPOINT 
MALL   1.6111  0.648  0.97    2.49  0.05 
------------------------------------------------------------------------------------------------------------------------------- 

 
Comparing Different Crimes Types 

 
With or without special generators, a trip generation model is an ecological model that 

predicts crime origins and crime destinations.  A point was made in Chapter 25 that these models 
are not behavioral, but are correlates of crimes.  That is, the variables that end up predicting the 
number of crimes are not reasons (or explanations) for the crimes.  Population almost always 
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enters the equation because, all other things being equal, zones with larger numbers of persons will 
have more crimes, both originating and ending in them.  Similarly, low income status is frequently 
associated with high crime areas.  It does not follow that low income persons will be more prone to 
commit crimes; it may be true but these models do not test that proposition (Ratcliffe, 2008).  
These are only correlates with crime in those environments.  As was mentioned earlier, these 
variables are often correlated with many specific conditions that may be predictors of individual 
crime - poverty, drug use, substandard housing, and lack of job opportunities. 
 

To see this, three separate models of specific crime types were run for robbery, burglary, 
and vehicle theft.  For each crime type, the general model was tested for both the origin and the 
destination models.  If a variable was not significant, it was dropped and the model was re-run.   

 
Table 27.6: 

Models for Specific Crime Types: Poisson-Gamma Origin Model 
 

          Vehicle 
          All Crimes    Robbery Burglary Theft 

 CONSTANT    3.483    1.1165 1.1165  -1.4994 
 
POPULATION  0.0004   0.0004  0.0004   0.0005 
 
INCOME 
EQUALITY  -0.0178      -      -  -0.0214 
 
NON-RETAIL 
EMPLOYMENT -0.0001  -0.0002 -0.0002 -0.0001 
 
RETAIL 
EMPLOYMENT -0.0002      -      -      - 
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Table 27.7: 

 Models for Specific Crime Types: Poisson-Gamma Destination Model 
 

Vehicle 
All Crimes   Robbery   Burglary Theft 

CONSTANT      4.5208   2.7489    0.7977  2.2903 
 
POPULATION    0.0003   0.0003    0.0004  0.0004 
 
INCOME 
EQUALITY    -0.0213  -0.0295  -0.0220 -0.0131 
 
RETAIL 
EMPLOYMENT   0.0020   0.0019          -   0.0009 
 
DISTANCE 
FROM CBD    -0.0714  -0.0965  -0.0365 -0.1013 
 

The population variable appears in every single model.  As mentioned, all other things 
being equal, the larger the number of persons in a zone, the more crime events will occur whether 
those events are crime productions (origins) or crime attractions (destinations).   Similarly, relative 
income equality appears in four of the six crime-specific models with the coefficient always being 
negative. In general, zones with relatively lower incomes will have more robberies, burglaries, and 
vehicle thefts. The only model for which income equality did not appear was as an origin variable 
for burglaries; apparently, burglars come from zones with various income levels, at least in 
Baltimore.   
 

The other general variables have more limited applicability.  Retail employment predicts 
both total crime origins and total crime destinations, but only predicts specifically robbery 
destinations and vehicle theft destinations; the latter tend to occur more in commercial areas than 
not.  On the other hand, non-retail employment appears to be important only as a crime origin 
variable; zones with less non-retail employment tend to produce more offender trips.  Distance 
from the CBD only appears as a destination variable; the closer a zone is to the metropolitan 
center, the higher the number of crimes being attracted to that zone; this variable was not important 
in the origin model. 
 

In other words, these models are measuring general conditions associated with crime, not 
causes per se.  They capture the general contextual relationships associated with crime productions 
and attractions.  But, they do not necessarily predict individual behavior.  Nevertheless, the models 
can be used for prediction since the conditions appear to be quite general. 
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Adding External Trips to the Origin Model 
 

After an origin and destination model has been developed, the next step is to add any crime 
trips that came from outside the modeling area (external trips).  In this case, these would be trips 
that came from areas that were not in either Baltimore County or the City of Baltimore (the 
modeling area).   
 

A simple estimate of external trips is obtained by taking the difference between the total 
number of crimes occurring in the study area (Baltimore County destinations) and the total number 
of crimes originating in the modeling area (Table 27.8). 
 

The difference between the number of crime enumerated within Baltimore County and that 
originating from both Baltimore County and the City of Baltimore is 1,627.  This is 3.9% of the 
total Baltimore County crimes. In general, it is important that the external trips be as small as 
possible.  Ortuzar and Willumsen (2001) suggest that this percentage be no greater than 5% in 
order to minimize potential bias from not including those cases in the origin model.  It is not an 
absolute percentage, but more like a rule of thumb; in theory, any external trips could bias the 
origin model.  But, in practice, the error will be small if external crime trips are a small percentage 
of the total number enumerated in the destination county.  

 
In this case, the condition holds.  For the three types of crime modeled, the percentage of 

external trips was also less than 5%: robbery (4.0%), burglary (4.5%), and vehicle theft (1.4%). On 
the other hand, if the percentage of external trips is greater than approximately 5%, a user would 
be advised to widen the origin study area to include more zones in the model.  

 
Predicting External Trips 

 
If a model is being applied to another data set from which it was initially estimated, a 

problem emerges about how to estimate the number of external trips.  It is one thing to apply 
simple arithmetic in order to determine how many trips originated outside the modeling area (as in 
Table 27.8).  It is another to know how to calculate external trips when the model is being applied 
to other data.  For the modeled zones, the coefficients are applied to the variables of the model (see 
‘Make Prediction’ below).  But, the external trips have to be estimated independently. 

 
There is not a simple way to estimate external crime trips.  Unlike regular trips that can be 

estimated through cordon counts, crime trips are not detectable while they are occurring (i.e., one 
cannot stand by a road and count offenders traveling by).  Thus, they have to be estimated. 
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Note: external trips are only added to the origin model since they are 
crime trips that originate outside the modeling area.  They are not 
relevant for the destination model. 

Table 27.8: 

Estimating External Crime Trips in Baltimore County 
 

Number of       
crimes ending 
in 325 Baltimore 
County zones:   41,969 

 
Number of 
crimes originating 
in 532 Baltimore 
County/City zones:  40,342 

 
Crimes from 
outside the 
modeling area:     1,627   

 
 
 
 

 
 
A simple method is to calculate the number of external trips for two time periods.  For 

example, external trips could be calculated from a 2010 data set by subtracting the total number of 
crimes occurring in the modeling region from the total number of crimes occurring in the study 
area (e.g., as in Table 27.8 above).  If a similar calculation was made for, say, 2012, then the 
difference (the ‘trend’) could be extrapolated.  To take our example, between 1993 and 1996, there 
were 1,627 external trips.  If the number of external trips turned out to be 1,850 for 1997-2000, 
then the difference (1,850 - 1,627 = 223) could be applied for future years.  Essentially, a slope is 
being calculated and applied as a linear equation: 

 
 1850 223             (27.32) 
 
where Yi is the number of crime origins during a four year period, I, and Xi is an integer for a four 
year period starting with the next period (i.e., the base year, 1997-2000, has integer value of 0).  In 
other words, a linear trend is being extrapolated. 
 

How realistic is this?  For short time periods, linear extrapolation is probably as good a 
method as any.  But for longer time periods, it can lead to spurious conclusions (e.g., crime trips 
from outside the region will always increase).  Short of developing a sophisticated model that 
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relates crime trips to the growth of the metropolitan area and to other metropolitan areas within, 
say, 500 miles, a linear extrapolation is one of the few methods that one can apply.10 
 

Make Prediction 
 

In CrimeStat, external trips are added on the second page of the trip generation - Make 
prediction.  This is a page where the modeled coefficients and any external trips are applied to a 
data set.   There are two reasons why this is a separate page from the ‘Calibrate model’ page where 
the model was calibrated.  First, the coefficients might be applied to another data than that from 
which it was calibrated.  For example, one might calibrate the model with a data set from 2008-
2010 and then apply to a data set covering 2011-2013. Similarly, one might take future year 
forecasts (e.g., 2025) and apply the model.  In effect, the model would be predicting the number of 
future crimes if the same conditions hold over the time frame. 
 

A second reason for separating the calibration and application pages is to add external trips 
to the origin zones. As mentioned above, external trips are, by definition, those that were not 
modeled in the calibration.  They have to be calculated independently of the model and then added 
to the estimates. 
 

Thus, the ‘Make prediction’ page allows these operations to occur.  Figure 27.10 shows the 
page.  There are several steps that have to be implemented for this page to be operative. 
 

1. The data file has to be input as either the primary or secondary file (not shown in 
the image).  In this example, the same data set is being used as was used for the 
calibration.  But, if it is a different data set, that will need to be input in the Data 
Setup section.  Whether the input data set is a primary file (the usual occurrence) or 
a secondary file needs to be specified.  Also, indicate whether the applied model is 
to be an origin or destination model.  In Figure 27.10, it is defined as an origin file. 

 
2. A trip generation coefficients file needs to be input.  These were the estimated 

coefficients from the calibration stage.  Inputting this file brings in the coefficients 
in the order in which they were saved.  They are listed in the ‘Matching parameters’ 
dialogue box on the right side of the page. 

                         
10  An alternative might be to use cordon counts from major highways coming into the region and assume that 

crime trips represent a constant proportion of those trips.  Thus, if the total number of estimated external 
highway trips increases by 5%, one could assume that the external trips also increase by 5%.  While this is 
plausible, it is not necessarily an accurate estimate.  Talk to your Metropolitan Planning Organization or the 
State Department of Transportation if you are interested in developing this type of model as you will need 
their estimates of external trips. 



Figure 27.10:

“Make Prediction” Setup Page
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3. On the left side of the page are listed all the variables in the input data set (primary 
or secondary file).  In the middle box, the variables are added in the same order as 
in the matching parameters box.  That is, each independent variable needs to be 
matched to the variable from the coefficients file, one for one.  This is very 
important.  The names do not have to be the same (e.g., if the model was calibrated 
with data set and applied to another, the variable names may not be identical).  But 
the content and order of the variables needs to be the same.  In the example, the first 
variable in the coefficients file is INCEQUAL.  The selected variable in the middle 
box has to be the income equality variable (whatever its name).  In the example, the 
same data set is being used so the names are identical.  This is repeated for each of 
the independent variables in the coefficients file. 

 
4. Next, any missing value codes are specified in the missing values box.  Any records 

with a missing value for any of the selected independent variables will be dropped 
from the calculation.  In the example, there are no missing value codes applied 
other than the default blank field. 

 
5. If external trips are to be added, the external trips box must be checked. External 

trips could be applied in an origin model, but not in a destination model.  If they are 
to be added, the number of trips should be specified in the ‘Number of external 
trips’ box and the zone ID field for the file indicated; in the example, 1627 is added 
as external trips and the TAZ field is specified as the ID variable (TZ98). 

 
6. The type of model to be applied is indicated in the AType of regression model@ box.  

There are only two choices: Poisson (the default) and Normal (OLS).  Since the 
coefficients are being applied to the data, no over-dispersion correction is necessary 
(since it was probably used in calibrating the model). 

 
7. Finally, the output file name is defined in the ‘Save predicted values’ box.  

 
For each zone, the routine will then take the appropriate variable from the input data set 

and apply the matching coefficient from trip generation coefficients file to produce a predicted 
estimate of the number of trips. To calculate this value, for the OLS model, the routine will use 
equation 27.2 above while for the Poisson model, the routine will use equation 27.6 above.  For the 
latter, it will then raise the predicted log value to the power, e, to produce a prediction for the 
expected number of crime trips: 

 

              (27.33) 
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If external trips are added, a new zone is created called EXTERNAL in the ID field that 
was indicated on the page.  Then, the specified number of external trips is simply placed in that 
field with zeros being placed for the values of all the remaining variables in the file.  By default, 
the output name for the predicted number of crimes will be called PREDORIG for an origin model 
and PREDDEST for a destination model.  An example data set is available on the CrimeStat 
download page. 
 
 
 
 
 
 

Balancing Predicted Origins and Destinations 
 

After the origin model and destination model are calibrated and applied to a data set, the 
final step in trip generation is to ensure that the number of predicted origins equals the number of 
predicted destinations.   This is necessary for the next stage of crime travel demand modeling - trip 
distribution.  Since a trip has both an origin and a destination, the total number of origins must 
equal the total number of destinations.  This is an absolute requirement for the trip distribution 
model to work.  The routine will return an error message if the number of origins does not equal 
the number of destinations. 
 

If the Poisson model is used for calibration, the routine ensures that the number of 
predicted trips equals the number of input trips.  Further, if the calculation of external trips has 
been obtained by subtracting the total number of predicted origins from the total number of 
predicted destinations, and if the external trips are then added to the predicted origins, then most 
likely the total number of origins will equal the total number of destinations.  However, because of 
rounding-off errors and inconsistent external trip estimates, it is possible that the sums are not 
equal. 
 

Consequently, it is important to balance the predicted origins and destinations to ensure 
that no problems will occur in the trip distribution model.  There are two ways to do this in 
CrimeStat.  First, the number of predicted destinations is held constant and the number of predicted 
origins is adjusted to match this number.  This is the default choice.  Second, the number of 
predicted origins is held constant and the number of predicted destinations is adjusted to match this 
number.  
 

The calculation is essentially a multiplier that is applied to each zone.  If destinations are to 
be held constant, the multiplier is defined as the ratio of total destinations to total origins: 

Note: for a destination model, this ‘Make prediction’ operation is not 
necessarily needed if the same data set is used for calibration and 
prediction.  This step is primarily for the origin file 
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The predicted number of origins is multiplied by Mj.  If, on the other hand, the origins are to be 
held constant, the multiplier is defined as the ratio of total origins to total destinations: 
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         (27.35) 

 
The predicted number of destinations is multiplied by Mi.  The multiplication simply ensures that 
the sums of the predicted origins and predicted destinations are equal. 
 

The third page in the trip generation model is the ‘Balance predicted origins & 
destinations’ page.  Figure 27.11 shows the setup for this page.  The steps are as follows: 
 

1. The box is checked indicating that it is a balancing operation. 
 

2. The predicted origin file is input and the predicted origin variable is identified.  In 
the example, the predicted origin file is called ‘PredictedOrigins.dbf’ and the field 
with the predicted numbers was called PREDORIG.  

 
3. The predicted destination file is input and the predicted destination variable is 

identified.  In the example, the predicted destination file is called 
‘PredictedDestinations.dbf’ and the field with the predicted numbers was called 
PREDDEST. 

 
Note that these files are input on this page and not on the primary or secondary file pages. 

 
4. Next, the type of balancing is specified - Holding destinations constant (the default) 

or holding origins constant. In the example, the destinations are to be held constant. 
 

5. Finally, the output file is specified.  If the origins are to be adjusted, then only the 
origin file is saved.  If the destinations are to be adjusted, then only the destination 
file is saved.  In other words, the adjustment is applied to only one of the two 
predicted crime files.  In the example, the file was named 
‘AdjustedPredictedOrigins.dbf’ (not shown) since the origin file was adjusted. 

 
The output produces a new column with the adjusted values.  Table 27.9 shows the origin 

output for the Baltimore data of the first 11 records.  Once the balancing has been completed, the 
trip generation model is finished and the user can go on to the trip distribution model.  In other  



Figure 27.11:

Balance Predicted Origins and Destinations Setup
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words, the output file ensures that both the predicted origin file (crime productions) and predicted 
destination file (crime attractions) are balanced. 

 
Table 27.9: 

Adjusted Data Should Have These Fields 
 
 
 
 
 
 
 
 
 
 
 

 
 
Strengths and Weaknesses of Regression Modeling of Trips 
 

As mentioned earlier, the use of regression for producing the trip generation model has its 
strengths and weaknesses.  The advantages are that, first, the approach is applicable to crime 
incidents.  Unlike regular travel behavior, crime trips have to be inferred from police reports.  
Thus, starting with counts of the number of crimes occurring in each zone and the number of 
crimes that originate from each zone, a model can be constructed. 
 

Second, the use of a non-linear model, such as the Poisson, allows more complex fitting of 
crime counts.  In the early 1970s when trip generation models were starting to be implemented in 
Metropolitan Planning Organizations around the U.S., the major type of regression modeling 
available was OLS.  At that time, researchers could not demonstrate that this method was reliable 
in terms of predicting travel.  However, with the availability of software for conducting Poisson 
and other non-linear models, that criticism is no longer applicable.  The Poisson model is very well 
behaved with respect to count data.  It does not produce negative estimates.  It requires high levels 
of an independent variable to produce a slight effect in the dependent variable, but that the level 
increases as the values of the independent variable increase.  It maintains constancy between the 
sum of the input counts and the sum of the predicted counts.  Non-linear models are much more 
realistic for modeling trips than OLS. 
 
 

Zone PREDICTED ADJORIGIN
0001 225.818482 225.850955
0002 187.527819 187.554785
0003 320.877458 320.923600
0004 75.096631 75.107430
0005 44.981775 44.988243
0006 32.574758 32.579442
0007 107.334835 107.350270
0008 74.683931 74.694671
0009 76.425236 76.436226
0010 34.183846 34.188762
0011 66.975803 66.985434
etc etc etc
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Third, the use of a multivariate regression model allows multiple variables to be included.  
In our example, there were four independent variables in the reduced origin and destination 
models.  Trip tables, on the other hand, typically only have three or four independent predictors; it 
becomes too complicated to keep track of multiple conditions of predictor variables.  Thus, a more 
complex and sophisticated model can be produced with a regression framework.   
 

Fourth, and finally, a regression framework allows for complex interactions to be 
estimated.  For example, the log of an independent variable can be defined.  An interaction 
between two of the independent variables can be examined (e.g., median household income for 
those zones having a sizeable amount of retail employment).  In the trip table approach, these 
interactions are implicit in the cell means.  Thus, overall, the regression framework allows for a 
more complex model than is available with a trip table approach. 
 

On the other hand, there are potential problems associated with a regression framework.  
First, the regression coefficients can be influenced by zone size.  Since the model is estimating 
differences between zones (i.e., differences in the number of crimes as a function of differences in 
the values of the independent variables), zone size affects the level of those differences.  With 
small zone sizes, there will be substantial differences between zones in both the independent and 
dependent variables.  Conversely, large zone sizes will minimize within-zone differences, but will 
usually increase the estimate of the between-zone differences.  The result could be an exaggeration 
of the effect of a variable that would not be seen with small zone geography.  As was argued in 
Chapter 25, one should choose the smallest zone geography that is practical in order to minimize 
this problem. 
 

Second, a point that has been repeated again and again, these models are not behavioral 
explanations.  They represent ecological correlations with crime trips.  It is important to not try to 
convert these models into explanations of offender behavior.  Too often, researchers have jumped 
to conclusions about individuals based on the relationships with environments and neighborhoods.  
It is important to not do this.  This criticism, incidentally, applies both to the trip table as well as 
the regression approach to trip generation modeling.  
 

The new generation of travel demand models are specifically behavioral and involve 
modeling the behavior of specific individuals.  Probabilities are calculated based on individual 
choice and a micro-simulation routine can apply these probabilities to a large metropolitan area 
(Shifton et al, 2003; Recker, 2000).  While this approach offers some definite theoretical 
advantages and is the subject of much current research, to date there has not been a demonstration 
that this approach is more accurate at predicting trips than the tradition trip-based travel demand 
model.  For crime, such an approach would have to be simulated. 
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Conclusion 
 

In summary, the trip generation model is a valuable tool for predicting the number of 
crimes that originate in each zone and the number of crimes that end in each zone.  Even if the 
model is not behavioral, the model can be stable and useful for many years in the future. It is best 
thought of as a proxy model in which the variables in the models are proxies for conditions that are 
generating crimes, either in terms of environments that produce offenders or in terms of locations 
that attract them. 
 

In the next chapter, we will examine the second stage in the travel demand model - trip 
distribution.  In that stage, the predicted crime origins and the predicted crime destinations are 
linked to produce crime trips. 
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Chapter 28: 

Crime Trip Distribution 
 

In this chapter, the mechanics of the second crime travel demand modeling stage -trip 
distribution, is explained. Trip distribution is a model of the number of trips that occur between 
each origin zone and each destination zone. It uses the predicted number of trips originating in 
each origin zone (trip production model) and the predicted number of trips ending in each 
destination zone (trip attraction model). Thus, trip distribution is a model of travel between zones 
- trips or links. The modeled trip distribution can then be compared to the actual distribution to 
see whether the model produced a reasonable approximation. 
 

Theoretical Background 
 

The theoretical background behind the trip distribution module is presented first. Next, 
the specific procedures and tests are discussed with the model being illustrated with data from 
Baltimore County. 
 

Logic of the Model 
 

Trip distribution usually occurs through an allocation model that splits trips from each 
origin zone into distinct destinations. That is, there is a matrix which relates the number of trips 
originating in each zone to the number of trips ending in each zone. Figure 28.1 illustrates a 
typical arrangement. In this matrix, there are a number of origin zones, M, and a number of 
destination zones, N. The origin zones include all the destination zones but may also include 
additional ones. The reasons that there would be different numbers of zones for the origin and 
destination models are that crime data for other jurisdictions are not available but that many 
crimes that occurred in the study jurisdiction were committed by individuals who lived in other 
jurisdictions.  

 
For example, with crimes that occurred in Baltimore County, approximately 35% were 

committed by offenders who lived in the City of Baltimore. Thus, it is important to include the 
City of Baltimore as an originating area for Baltimore County crimes. Hence, there are 325 
destinations zones for Baltimore County while the origin zones include both the 325 in Baltimore 
County and 207 more from the adjacent City of Baltimore. If it were possible to obtain crime 
data for the City of Baltimore, then it would be possible to have the same number of zones for 
both the origin file and the destination file.  As Chapter 26 pointed out, the study area should 
extend beyond the modeling area until the origins of at least 95% of all trips ending in the study 
area are counted.   



Example Crime Origin-Destination Matrix
Figure 28.1:
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Each cell in the matrix indicates the number of trips that go from each origin zone to each 
destination zone. To use the example in Figure 28.1, there were 15 trips from zone 1 to zone 2, 
21 trips from zone 1 to zone 3, and so forth.  Note that the trips are asymmetrical; that is, trips 
in one direction are different than trips in the opposite direction. To use the table, there were 15 
trips from zone 1 to zone 2, but only 7 trips from zone 2 to zone 1. 
 

The trips on the diagonal are intra-zonal trips, trips that originate and end in the same 
zone.  Again, to use the example above, there were 37 trips that both originated and ended in 
zone 1, 53 trips that both originated and ended in zone 2. 
 

In such a model, constancy is maintained in that the number of trips originating from all 
origins zones must equal the number of trips ending in all destination zones.  This is the 
fundamental balancing equation for a trip distribution. In equation form, it is expressed as:  

 

 ∑ ∑          (28.1) 

 
where the origins, Oi, are summed over M origin zones while the destinations, Dj, are summed 
over N destination zones. To use the example in Figure 28.1, the total number of origins is equal 
to the total number of destinations, and is equal to 43,240. 
 

The balancing equation is implemented in a series of steps that include modeling the 
number of crimes originating in each zone, adding in trips originating from outside the study area 
(external trips), and statistically balancing the origins and destinations so that equation 28.1 
holds.  This was done in the trip generation stage.  But, it is essential that the step should have 
been completed for the trip distribution to be implemented. 
 

Observed and Predicted Distributions 
 

There are two trip distribution matrices that need to be distinguished.  The first is the 
observed (or empirical) distribution.  This is the actual number of trips that are observed 
traveling between each origin zone and each destination zone.  In general, with crime data, such 
an empirical distribution would be obtained from an arrest record where the residence (or arrest) 
location of each offender is listed for each crime that the offender was charged with.  In this 
case, the residence/arrest location would be considered the origin while the crime location would 
be considered the destination.   
 

In Chapter 26, it was mentioned that there is always uncertainty as to the true origin 
location of a crime incident, whether the offender actually traveled from the residence location to 
the crime location or even whether the offender was actually living at the residence location.  
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But absent any alternative evidence, a meaningful distribution can still be obtained by simply 
treating the residence location as an approximate origin. 
 

The observed distribution is calculated by simply enumerating the number of trips by 
each origin-destination combination.  This is sometimes called a trip link (or trip pair). The 
second distribution, however, is a model of the trip distribution matrix.  This is usually called 
the predicted distribution. In this case, a simple model is used to approximate the actual 
empirical distribution. The trips originating in each origin zone are allocated to destination zones 
usually on the basis of being directly proportional to attractions and inversely proportional to 
costs (or impedance). 
 

Thus, a model of the trip distribution is produced that approximates the actual, empirical 
distribution.  There are a number of reasons why this would be useful - to be able to apply the 
model to a different data set from which it was calibrated, to use the model for evaluating a 
policy intervention, or to use the model for forecasting future crime trip distribution.  But, 
whatever the reason, it has to be realized that the model is not the observed distribution.  There 
will always be a difference between the observed distribution from which a model is constructed 
and the resulting predicted distribution of the model.  It is useful to compare the observed and 
predicted model because this allows a test of the validity of the impedance function.  But, 
rarely, if ever, will the predicted distribution be identical to the empirical distribution.   
 

Another way to think of this is that the actual distribution of crime trips is complex, 
representing a large number of different decisions on the part of offenders who do not 
necessarily use the same decision logic.  The model, on the other hand, is a simple allocation on 
the basis of three or, sometimes, four variables.  Almost by definition, it will be much simpler 
than the real distribution. Still, the simple model can often capture the most important 
characteristics of the actual distribution.  Hence, modeling can be an extremely useful analytical 
exercise that allows other types of questions to be asked that are not possible with just the 
observed distribution. 
 

The Gravity Model 
 

A model that is usually used for trip distribution is that of the gravity function, an 
application of Newton=s fundamental law of attraction (Oppenheim, 1980; Field & MacGregor, 
1987; Ortuzar & Willumsen, 2001). Much of the discussion below is also repeated in Chapter 13 
on journey-to-crime modeling since there is a common theoretical basis.  In the original 
Newtonian formulation, the attraction, F, between two bodies of respective masses M1 and M2, 
separated by a distance D, will be equal to  
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           (28.2) 

 
where g is a constant or scaling factor which ensures that the equation is balanced in terms of the 
measurement units (Oppenheim, 1980).  As we all know, of course, g is the gravitational 
constant in the Newtonian formulation. The numerator of the function is the attraction term (or, 
alternatively, the attraction of M2 for M1) while the denominator of the equation, d2, indicates 
that the attraction between the two bodies falls off as a function of their squared distance. It is an 
impedance (or resistance) term. 
 

Social Applications of the Gravity Concept 
 

The gravity model has been the basis of many applications to human societies and has 
been applied to social interactions since the 19th century.  Ravenstein (1895) and Andersson 
(1897) applied the concept to the analysis of migration by arguing that the tendency to migrate 
between regions is inversely proportional to the squared distance between the regions. Reilly=s 
>law of retail gravitation= (1929) applied the Newtonian gravity model directly and suggested that 
retail travel between two centers would be proportional to the product of their populations and 
inversely proportional to the square of the distance separating them: 

 

           (28.3) 

 
where Iij is the interaction between centers I and j, Pi and Pj are the respective populations, dij is 
the distance between them raised to the second power and α is a balancing constant.  In the 
model, the initial population, Pi, is called a production while the second population, Pj, is called 
an attraction.   
 

Stewart (1950) and Zipf (1949) applied the concept to a variety of phenomena (migration, 
freight traffic, information) using a simplified form of the gravity equation: 
 

           (28.4) 

 
where the terms are as in equation 28.3 but the exponent of distance is only 1.  Given a 
particular pattern of interaction for any type of goods, service or human activity, an optimal 
location of facilities should be solvable.  
 

In the Stewart/Zipf framework, the two P=s were both population sizes. However, in 
modern use, it is not necessary for the productions and attractions to be identical units (e.g., Pi 
could be population while Pj could be employment).   
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Trips as Interactions 
 

It should be obvious that this interaction equation can be applied to trips from one area 
(zone) to another.  Changing the symbols slightly, the total volume of trips from a particular 
origin zone, i, to a single location, j, is directly proportional to the product of the productions at i 
and the attractions at j, and inversely proportion to the impedance (or cost) of travel between the 
two zones: 
 

           (28.5) 

 
where Pi are the productions for zone I, Aj are the attractions zone j, α is a production constant, β 
is an attraction constant, and dij is the impedance (cost) of travel between zone ii and zone j. 
 

Over time, the concept has been generalized and applied to many different types of travel 
behavior.  For example, Huff (1963) applied the concept to retail trade between zones in an 
urban area using the general form of: 
 

           (28.6) 

 
where Aij is the number of purchases in location j by residents of location , Sj is the 
attractiveness of zone  (e.g., square footage of retail space), dij is the distance between zones  
and , α is a constant, λ is the exponent of Sj, and ρ is the exponent of distance (Bossard, 1993).  
Dij

-ρ is sometimes called an inverse distance function. This differs from the traditional gravity 
function by allowing the exponents of the production from location , the attraction from 
location , and the distance between zones, , to vary.   
 

Equation 28.6 is a single constraint model in that only the attractiveness of a commercial 
zone is constrained, that is the sum of all attractions for j must equal the total attraction in the 
region.  Again, it can be generalized to all zones by, first, estimating the total trips generated 
from one zone, i, to another zone, j, 
 

           (28.7) 

 
where Tij is the interaction between two locations (or zones), Pi is productions of trips from zone 
, Aj is the attractiveness of zone , dij is the distance between zones  andj , λ is the exponent 

of Pi, τ is the exponent of Aj, ρ is the exponent of distance, and α is a constant.   
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Second, the total number of trips generated by a single location, , to all destinations is 
obtained by summing over all destination locations, 	 : 
 

 ∑          (28.8) 

 
and generalizing this to all zones, we get: 
 

           (28.9) 

 
where α is a constant for the productions, Pi

λ and β is a constant for the attractions, Aj
τ.  This 

type of function is called a double constraint model because the equation has to be constrained 
by the number of units in both the origin and destination locations; that is, the sum of Pi over all 
locations must be equal to the total number of productions while the sum of Aj over all locations 
must be equal to the total number of attractions.  Adjustments are usually required to have the 
sum of individual productions and attractions equal the totals (usually estimated independently). 
 

Negative Exponential Distance Function 
 

One of the problems with the traditional gravity formulation is in the measurement of 
travel impedance (or cost).  For locations separated by sizeable distances in space, the gravity 
formulation can work properly.  However, as the distance between locations decreases, the 
denominator approaches infinity.  Consequently, an alternative expression for the interaction 
uses the negative exponential function (Hägerstrand, 1957; Wilson, 1970). 
 

          (28.10) 

 
where Tji is the attraction of location j for residents of location I, Aj is the attractiveness of 
location j, dij is the distance between locations i and j, β is the exponent of Aj, α is a coefficient 
of dij (and, also, an exponent) and e is the base of the natural logarithm (i.e., 2.7183...).  Derived 
from principles of entropy maximization, the latter part of the equation is a negative exponential 
function that has a maximum value of 1 (i.e., e-0 = 1; Wilson, 1970).  This has the advantage of 
making the equation more stable for interactions between locations that are close together.  For 
example, Cliff and Haggett (1988) used a negative exponential gravity-type model to describe 
the diffusion of measles into the United States from Canada and Mexico.  It has also been 
argued that the negative exponential function generally gives a better fit to urban travel patterns, 
particularly those by automobile (Bossard, 1993; Foot, 1981).  Figure 28.2 shows a typical 
negative exponential function and one recommended for home-based work trips by the 
Transportation Research Board as a default value (NCHRP, 1995). 



Figure 28.2:
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Note that by moving the distance term to the numerator, strictly speaking it no longer is 
an impedance term since impedance increases with distance. Rather it is a discount factor (or 
disincentive); the interaction is discounted with distance.  Nevertheless, the term >impedance= is 
still used primarily for historical reasons. 
 

There are other distance functions, as well.  Chapter 13 explored some of these.  For 
example, we are finding that, for crime trips, the lognormal function may produce better results 
than the negative exponential primarily because many crimes are committed at short-to-moderate 
distances.  Chapter 17 discusses the MCMC Poisson-lognormal regression model which is 
useful with a low mean (e.g., very short distance traveled) and small sample sizes. It is possible 
that the lognormal function is more useful for very localized crime trips than the negative 
exponential.   
 

Travel Impedance 
 

One of the biggest advances in the negative exponential model of equation 28.10 has 
been to increase the flexibility of the denominator.  In the traditional gravity model, the 
denominator is distance.  This is a proxy for a discount factor (or cost); the farther two zones 
are from each other, the less likely there is to be interaction between them, all other things being 
equal.  Conversely, the closer two zones are, the more likely there is to be interaction, all other 
things being equal. 

  
Distance v. Travel Time 

 
It has been realized, however, that distance is only an approximation for impedance.  In 

real travel, travel time is a much better indicator of the cost of travel in that time varies by the 
time of day, day of week, direction of travel, type of road used, and other factors.  For example, 
travel across town in any metropolitan area is generally a lot easier at 3 in the morning, say, than 
at the peak afternoon rush period.  The difference in travel time can vary as much as 
two-to-three times between peak and off-peak hours.  Using only distance, however, these 
variations are never picked up because the distance between locations is invariant. 
 

This realization has led to the concept of travel impedance which, in turn, has led to the 
concept of travel cost.  >Impedance= is the resistance (or discounting) in travel between two 
zones.  Using travel time as an impedance variable, the longer it takes to travel between two 
zones, the less likely there will be interaction between them, all other things being equal.  
Conversely, a shorter travel time leads to greater interaction between zones, again, all other 
things being equal.  Similarly, a travel route that shortens travel time will generally be selected 
over one that takes longer even if the first one is longer in distance.  For example, it has been  
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documented that people will change work locations that are farther from their home if traveling 
to the new work location takes less time (e.g., traveling in the >opposite= direction to the bulk of 
traffic; Wachs, Taylor, Levine & Ong, 1993). 

 
If travel time is a critical component of travel, why then don=t offenders commit more 

crimes at, say, 3 in the morning than at the peak afternoon travel times?  Since the impedance is 
less at 3 in the morning than at, say, 5 in the afternoon, would not the model predict more trips 
occurring in the early morning hours than actually occur in those hours? The answer has to do 
with the numerator of the gravity equation and not just the denominator.  At 3 in the morning, 
yes, it is easier to travel between two locations, at least by personal automobile (not by bus or 
train when those services are less frequent).  But the attraction side of the equation is also less 
strong at 3 in the morning.  For a street robber, there are fewer potential >victims= on the street at 
3 in the morning than in the late afternoon.  For a residential burglar, there is more likely to be 
someone at home at night than in the afternoon.  The travel time component is only one 
dimension of the likelihood of travel between two locations. The distribution of opportunities 
and other costs can alter the likelihood considerably. 
 

Nevertheless, shifting to an impedance function allows a travel model to better replicate 
actual travel conditions.  Most travel demand models used by transportation planners use an 
impedance function, rather than a distance function.1  Distance would only be meaningful if the 
standards were invariant with respect to time (e.g., a model calculated over an entire year, 24 
hours a day).  As will be demonstrated in Chapter 30 on network assignment, a travel time 
calculation leads to a very different network allocation than a distance calculation.  For 
example, if distance is used as an impedance variable, then the shortest trips will rarely take the 
freeways because travel to and from a freeway usually makes a trip longer than a direct route 
between an origin and a destination.  But as most people understand, taking a freeway to travel 
a sizeable distance is usually a lot quicker than traversing an urban arterial system with many 
traffic lights, stop signs, crossing pedestrians, cross traffic from parking lots and shopping malls, 
and other urban >obstacles=.  Today, the use of distance in travel demand modeling has virtually 
been dropped by most transportation planners.   
 

 
 

  

                         
1  Distance can be used as a rough approximation for impedance, but is rarely a good predictor of actual travel 

behavior.  For example, in the mode split mode that will be discussed in Chapter 29, the distance between 
a location and the nearest bus or rail route can be used to quickly select trip pairs that might travel by 
transit.  However, the actual prediction must be based on a network calculation of travel time or travel 
cost in traversing the system. 
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Travel Cost
 
An even better concept of impedance is that of travel cost (sometimes called generalized 

cost) which incorporates real and perceived costs of travel between two locations.  Travel time 
is one component of travel cost in that there is an implicit cost to the trip (e.g., an hourly wage or 
price assigned).  In this case, two different individuals will value the time for a trip differently 
depending on their hourly >wage=.  For example, for an individual who prices his/her travel at 
$100 an hour, the per minute cost is $1.67.  For another individual who prices his/her travel at 
$12 an hour, the per minute cost is 204.  These relative prices assigned to travel will 
substantially affect individual choices in travel modes and routes.  For instance, these two 
hypothetical individuals will probably use a different travel mode in getting from an airport to a 
hotel on a trip; the former will probably take a taxi whereas the latter will probably take a bus or 
train (if available).  
 

But cost involves other dimensions that need to be considered.  There are real operating 
costs in the use of a vehicle - fuel, oil, maintenance, and insurance.  Many travel studies have 
suggested that drivers incorporate these costs as part of their implicit hourly travel price (Ortuzar 
& Willumsen, 2001; 323-327).  But, there are also real, >out-of-pocket= costs such as parking or 
toll costs.  Parking is particularly a major expense for intra-urban driving behavior. In many 
built-up business districts, parking costs can be considerable, for example as much as $90 a day 
in major metropolitan centers.  In most busy commercial areas, there are some parking costs, if 
only at on-street parking meters.  Thus, a travel cost model needs to incorporate these real costs 
as the out-of-pocket costs may overwhelm the implicit value of the travel time.  For example, 
an offender who lives 10 minutes from the downtown area by car would probably not drive into 
the downtown to commit a robbery since that individual will have to bear the price of parking.  
There are lots of well known stories that circulate about bank robbers who are caught because 
they incur parking tickets while committing their crime.  How often this has occurred is not 
known from any study that we are aware, but the story line is cognizant of the actual costs of 
travel that must be incurred as part of travel. 
 

In addition to real costs are perceived costs.  For transit users, particularly, these 
perceived costs affect the ease and time of travel.  One of the standard questions in travel 
surveys for transit users is the time it takes to walk from their home to the nearest bus stop or 
intra-urban rail system (if available) and from the last transit stop to their final destination; the 
longer it takes to access the transit system, the less likely an individual will use it.  Similarly, 
transfers between buses or trains decrease the likelihood of travel by that mode, almost in 
proportion to the number of transfers.  The reason is the difficulty in getting out of one bus or 
train and into another.  But, the time between trains adds an implicit travel cost; the longer the 
wait between buses, the less likely that mode will be used by travelers. In short, ease of access 
and convenience are positive incentives in using a mode or a route while difficulty in accessing 
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it, lack of convenience, and even fear of being vulnerable to crime will decrease the likelihood of 
using that mode or route.2 
 

If the concept is expanded to that of an offender, there are other perceived costs that 
might affect travel.  One obvious one is the likelihood of being caught. It may be easy for one 
offender to travel to an upscale, high visibility shopping area, but if there are many police and 
security guards around, the individual is more likely to be caught.  Hence, that likelihood (or, 
more accurately, an assumption that the offender makes about that likelihood since he/she does 
not really know what is the real likelihood) is liable to affect the choice of a destination and, 
possibly, even a route. 

 
Another perceived cost is the likelihood of retaliation from other gangs.  Bernasco and 

Block (2009) showed that robbers in Chicago will usually not commit robberies in the territories 
of rival gangs even if those areas are closer to where the robbers live. 
 

Another perceptual component affecting a likely choice is the reliability of the 
transportation mode.  Many offenders are poor and do not have expensive, well maintained 
vehicles.  If the vehicle is not capable of higher speeds or is even likely to break down while an 
offence is being committed that vehicle is not liable to be used in making a trip or the choice of 
destination may be altered.  It is well known that many offenders steal vehicles for use in a 
crime.  Fears about not being identified are clearly a major factor in those decisions, but the 
reliability of their own vehicles may also be a factor. 
 

Thus, in short, a more realistic model of the incentives or disincentives to make a trip 
between two locations requires a complex function that weights a number of factors affecting the 
cost of travel - the travel time, implicit operating costs, out-of-pocket costs, and perceived costs.  
Many travel demand models used by Metropolitan Planning Organizations use such a function, 
usually under the label of >generalized cost=.  The more complex the pricing structure for 
parking and travel within a metropolitan area, the more likely a generalized cost function will 
provide a realistic model of trip distribution. 
 

Travel Utility 
 

The final concept that is introduced in defining impedance is that of travel utility.   
>Utility= is an individual concept, rather than a zonal one.  Also, it is the flip side of cost (i.e., 
higher cost is associated with less utility).  A generalized cost function calculates the objective 

                         
2  Most of the research on factors affecting use of transit were conducted in the 1960s and 1970s.  These 

assumptions are more or less assumed by travel demand modelers, rather than documented per se.  See 
Schnell, Smith, Dimsdale, & Thrasher, 1973; Roemer & Sinha, 1974; WASHCOG, 1974; Carnegie-Mellon 
University, 1975; Johnson, 1978; Levine & Wachs, 1986 for some examples. 
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and average perceived costs of travel between two zones.  But the utility of travel for an 
individual is a function of both those real costs and a number of individual characteristics that 
affect the value placed on that travel. Thus, two individuals living in the same zone (perhaps 
even living next door to each other) who travel to the same destination location may >price= their 
trip very differently.  Aside from income differences which effect the average hourly >wage=, 
there may be differences due to convenience, attractiveness, or a host of other factors. Other 
factors are more idiosyncratic.  For example, a trip by a gang member into another gang=s >turf= 
might be expected to increase the perceived costs to the individual of traveling to that location, 
above and beyond any objective cost factors.  Alternatively, a trip to a location where a close 
friend or relative is located might decrease the perceived cost of travel to that zone. In other 
words, there are both objective costs as well as subjective costs in travel between two zones.  
 

The concept of utility may be less useful for crime analysis than for general travel 
behavior.  For one thing, since the concept is individual, it can only be identified by individual 
surveys (Domencich & McFadden, 1975).  For crime analysis, this makes it virtually 
impossible to use since it is very difficult to interview offenders, at least in the United States.  
But, for completeness sake, we need to understand that the likelihood or disincentive to travel 
between two locations is a function of individual characteristics as well as objective travel cost 
components.  A mixture of aggregate and individual variables can be used to produce a 
synthetic utility model for modeling locations where individuals commit crimes (Block & 
Bernasco, 2009). 

 
The modeling of individual utility can be done with either a multinomial logit model for a 

limited number of discrete choices or a more general conditional logit model for many choices.  
Chapter 21 discusses these models while Chapter 22 presents the CrimeStat discrete choice 
module.  At this point, it is impractical to utilize either model for predicting trip distribution 
links since the number of origin-destination pairs would require an enormous data set.  So, we 
are left for the time being with the gravity function being the only practical approach to trip 
distribution. 
 

Impedance Function 
 

For a zonal type model, we can think of the gravity function as a generalized impedance 
function.  For travel between any one zone and all other zones, we have: 
 

 ∑          (28.11) 

   
where the number of trips from zone  to all other zones is a function of the productions at zone 
 and the relative attraction of any one zone, , to the impedance of that zone for , Iij.  The 
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impedance function, Iij , is some declining function of cost for travel between two zones.  It 
does not have to be any particular form and can be (and usually is) a non-linear function.  The 
costs can be in terms of distance, travel time, speed (which is converted into travel time) or 
general costs.  The greater the separation between two zones (i.e., the higher the impedance), 
the less likely there will be a trip between them. Generalizing this to all zones, we get: 
 

           (28.12)  

 
where Pi is the production capacity of zone , Aj is the attraction of zone , Iij, is a generalized 
function that discounts the interaction with increasing separation in distance, time, or cost, α and 
β are constants that are applied to the productions and attractions respectively, and λ and τ are 
>fine tuning= exponents of the productions and attractions respectively. This is the gravity 
function that we will estimate in the CrimeStat trip distribution model. 
 

Alternative Model: Intervening Opportunities 
 

There are alternative allocations procedures to the gravity model.  One well known one 
is that of intervening opportunities.  Stouffer (1940) modified the simple gravity function by 
arguing that the attraction between two locations was a function not only of the characteristics of 
the relative attractions of two locations, but of intervening opportunities between the locations.  
His hypothesis A..assumes that there is no necessary relationship between mobility and distance... 
that the number of persons going a given distance is directly proportional to the number of 
opportunities at that distance and inversely proportional to the number of intervening 
opportunities@ (Stouffer, 1940, p. 846).  This model was used in the 1940s to explain interstate 
and inter-county migration (Isard, 1979; Isbell, 1944; Bright & Thomas, 1941).  Using the 
gravity type formulation, this can be written as: 
 

 
∑

         (28.13) 

 
where Aji is the attraction of location j by residents of location , Sj is the attractiveness of zone 
,  Sk is the attractiveness of all other locations, , that are intermediate in distance between 

locations  and  (with there being O such locations), dij is the distance between zones  and 
, β is the exponent of Sj, ξ is the exponent of Sk, and λ is the exponent of distance.  While the 

intervening opportunities are implicit in equation 28.7 in the exponents, β and λ, and coefficient, 
α, equation 28.13 makes the intervening opportunities explicit. The importance of the concept is 
that travel between two locations becomes a complex function of the spatial environment of 
nearby areas and not just of the two locations. 
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In practice, in spite of its more intuitive theoretical model, the intervening opportunities 
model does not improve prediction much beyond that of the gravity model since it includes the 
attractions associated with the destination zones.  Also, it is a more difficult model to estimate 
since the attractions of all other zones must be considered for each zone pair (origin-destination 
combination).  Consequently, it is rarely used in actual practice (Ortuzar & Willumsen, 2001).  
 

Another alternative method was conducted by Porojan (2000) in applying the gravity 
model to international trade flow.  He added a spatial autocorrelation component in addition to 
impedance and obtained a slightly better fit than the pure gravity function. However, whether 
this approach would improve the fitting of intra-regional crime travel patterns is still unknown.  
Nevertheless, this and other approaches might improve the predictability of a gravity function for 
intra-urban crime travel. 
 

Method of Estimation 
 

The CrimeStat trip distribution model implements equation 28.12. The specific details are 
discussed below, but the model is iterative.  The steps are as follows: 

 
1. Depending on whether a singly constrained or doubly constrained model is to be 

estimated, it starts with aN initial guess of the values for α or β (or both for a 
doubly constrained model). Table 28.1 illustrates the three models. 

 
Table 28.1: 

Three Methods of Constraining the Gravity Model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Single constraint 
 

Constrain origins: 
 

             (28.14) 

 
Constrain destinations: 
 

             (28.15) 

 
Double constraint 

 
Constrain both origins and destinations: 
 

             (28.16) 
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2. The routine proceeds to estimate the value for each cell in the origin-destination 
matrix (see Figure 28.1 above) using the existing estimates for α and β. 

 
3. The routine then sums the rows and columns in the matrix.  Then, depending on 

whether a single- or double-constraint model is to be estimated and, if a 
single-constraint, whether origins or destinations are to be held constant, it then 
calculates the ratio of the summed values (row totals or column totals or both) to 
the initial row or column sum. The inverse of that ratio is the subsequent estimate 
for α or β (or both for a double-constrained model). 

 
4. The routine repeats steps 2 and 3 until the changes from one iteration to the next 

are very small. 
 

5. The last estimate of α or β (or both for a double-constrained model) is taken as the 
final values of these parameters. 

 
6. Once the parameters have been estimated, the model can be applied to the 

calibration data set or to another data set. Note that the parameters are row or 
column specific (or both).  That is, in the >constrain origins= model, there is a 
separate coefficient for each row.  In the >constrain destinations= model, there is a 
separate coefficient for each column.  In the >constrain both origins and 
destinations=, there is a separate coefficient for each cell (row-column 
combination). 

 
 A comparison can be made between the observed distribution and the predicted 
(modeled) distribution.  Because most origin-destination matrices are very large, the vast 
majority of cells will have zero in them.  Thus, a chi-square test would be inappropriate.  
Instead, a comparison of the trip length distribution is made using two different statistics - a 
coincidence ratio and the Komologorov-Smirnov Two-sample statistic.  Details are provided 
below. 
 

CrimeStat IV Trip Distribution Module 
 

Next, we examine the actual tools that are available in the CrimeStat trip distribution 
module.  The tools are illustrated with examples from Baltimore County. The CrimeStat trip 
distribution module includes one setup screen and five routines that implement the model: 
 

1. Calculate observed origin-destination distribution.  If there is a file available 
with the coordinates for individual origins and destinations (e.g., an arrest record), 
this routine will calculate the empirical trip distribution matrix; 
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2. Calibrate impedance function.  If there is a file available with the coordinates 
for individual origins and destinations, this routine will calibrate an empirical 
impedance function. 

 
3. Setup origin-destination model.  This screen allows the user to define the 

parameters of a trip distribution (origin-destination) model with either a 
mathematical or empirical impedance function. 

 
4. Calibrate origin-destination model.  This routine calibrates the parameters of 

the trip distribution model (equation 28.12) using the parameters defined on the 
setup page. 

 
5. Apply predicted origin-destination model.  This routine applies the estimated 

parameters to a data set.  The data set can be either the calibration file or another 
file. 

 
6. Compare observed and predicted origin-destination trip lengths.  This 

routine compares the trip lengths from the observed (empirical) trip distribution 
with that predicted by the model. Comparisons are made graphically by a 
coincidence ratio, the Komologorov-Smirnov Two-Sample test, and a Chi square 
test on the most frequent trip links. 

 
Each of these routines is described in detail below. Figure 28.3 shows a screen shot of the 

trip distribution module. 
 

Describe Origin-Destination Trips  
 

An empirical description of the actual trip distribution matrix can be made if there is a 
data set that includes individual origin and destination locations.  The user defines the origin 
location and the destination location for each record and a set of zones from which to compare 
the individual origins and destinations.  The routine matches up each origin location with the 
nearest zone, each destination location with the nearest zone, and calculates the number of trips 
from each origin zone to each destination zone. This is an observed distribution of trips by zone. 
   

The steps in running the model are as follows: 
 

1. Calculate observed origin-destination trips.  Check if an empirical 
origin-destination trip distribution is to be calculated. 

 



Trip Distribution Module
Figure 28.3:
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2. Origin file.  The origin file is a list of origin zones with a single point 
representing the zone (e.g., the centroid).  It must be input as either the primary 
or secondary file.  Specify whether the data file is the primary or secondary file. 
 
A. Origin ID. Specify the origin ID variable in the data file (e.g., 

CensusTract, Block, TAZ).   
 

3. Destination file. The destination file is a list of destination zones with a single 
point representing the zone (e.g., the centroid).  It must be input as either the 
primary or secondary file.  Specify whether the data file is the primary or 
secondary file.Specify the destination ID variable in the data file (e.g., 
CensusTract, Block, TAZ). 

 
A. Note: all destination ID=s should be in the origin zone file and must have 

the same names and both should be character (string) variables. 
 

4. Select data file.  The data set must have individual origin and destination 
locations.  Each record must have the X/Y coordinates of an origin location and 
the X/Y coordinates of a destination location.  For example, an arrest file might 
list individual incidents with each incident having a crime location (the 
destination) and a residence or arrest location (the origin).  

 
A. Select the file that has the X and Y coordinates for the origin and 

destination locations. CrimeStat can read ASCII, dbase '.dbf', ArcGIS 
'.shp' and MapInfo 'dat' files.   

 
B. Select the tab and specify the type of file to be selected. Use the browse 

button to search for the file. If the file type is ASCII, select the type of 
data separator (comma, semicolon, space, tab) and the number of columns. 

 
C. Variables. Define the file which contains the X and Y coordinates for both 

the origin (residence) and destination (crime) locations. 
 

D. Column. Select the variables for the X and Y coordinates respectively for 
both the origin and destination locations (e.g., Lon, Lat, HomeX, HomeY, 
IncidentX, IncidentY.) Both locations must be defined for the routine to 
work.   

 
E. Missing values. Identify whether there are any missing values for these 

four fields (X and Y coordinates for both origin and destination locations).  
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By default, CrimeStat will ignore records with blank values in any of the 
eligible fields or records with non-numeric values (e.g.,alphanumeric 
characters, #, *).  Blanks will always be excluded unless the user selects 
<none>.  There are 8 possible options: 

 
a. <blank> fields are automatically excluded. This is the default 
b. <none> indicates that no records will be excluded.  If there is a 

blank field, CrimeStat will treat it as a 0 
c. 0 is excluded 
d. B1 is excluded 
e. 0 and B1 indicates that both 0 and -1 will be excluded 
f. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be 

excluded.
g. Any other numerical value can be treated as a missing value by 

typing it (e.g., 99)Multiple numerical values can be treated as 
missing values by typing them, separating each by commas (e.g., 
0, -1, 99, 9999, -99). 

 
F. Type of coordinate system and data units.  The coordinate system and 

data units are listed for information.  If the coordinates are in longitudes 
and latitudes, then a spherical system is being used and data units will 
automatically be decimal degrees.  If the coordinate system is projected 
(e.g., State Plane, Universal Transverse Mercator B UTM), then data units 
could be either in feet (e.g., State Plane) or meters (e.g., UTM.). 

 
5. Table output. The full origin-destination matrix is output as a table to the screen 

including summary file information and: 
 

a. The origin zone (ORIGIN) 
b. The destination zone (DEST)= 
c. The number of observed trips (FREQ) 

 
6. Save observed origin-destination trips.  If specified, the full origin-destination 

matrix output is saved as a >dbf= file named by the user.  The file output includes: 
 

a. The origin zone (ORIGIN) 
b. The destination zone (DEST) 
c. The X coordinate for the origin zone (ORIGINX) 
d. The Y coordinate for the origin zone (ORIGINY) 
e. The X coordinate for the destination zone (DESTX) 
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f. The Y coordinate for the destination zone (DESTY) 
g. The number of trips (FREQ) 

 
 
 
 
 
 
 

7. Save links.  The top observed origin-destination trip links can be saved as 
separate line objects for use in a GIS.  Specify the output file format (ArcGIS 
'.shp', MapInfo '.mif' or Atlas*GIS '.bna') and the file name.    
 

8. Save top links. Because the output file is very large (number of origin zones x 
number of destination zones), the user can select a sub-set of zone combinations 
with the most observed trips.  Indicating the top K links will narrow the number 
down to the most important ones. The default is the top 100 origin-destination 
combinations.  Each output object is a line from the origin zone to the 
destination zone with an ODT prefix.  The prefix is placed before the output file 
name.  The line graphical output for each object includes: 
 

a. An ID number from 1 to K, where K is the number of links output 
(ID) 

b. The feature prefix (ODT) 
c. The origin zone (ORIGIN) 
d. The destination zone (DEST) 
e. The X coordinate for the origin zone (ORIGINX) 
f. The Y coordinate for the origin zone (ORIGINY) 
g. The X coordinate for the destination zone (DESTX) 
h. The Y coordinate for the destination zone (DESTY) 
i. The number of observed trips for that combination (FREQ) 
j. The distance between the origin zone and the destination zone. 

 
9. Save points.  Intra-zonal trips (trips in which the origin and destination are the 

same zone) can be output as separate point objects as an ArcGIS '.shp', MapInfo 
'.mif' or Atlas*GIS '.bna' file.  Again, the top K points are output (default=100).  
Each output object is a point representing an intra-zonal trip with an 
ODTPOINTS prefix.  The prefix is placed before the output file name.  The 
point graphical output for each object includes: 

 

Note: each record is a unique origin-destination combination. There are M x N 
records where M is the number of origin zones (including the external zone) 
and N is the number of destination zones. 
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a. An ID number from 1 to K, where K is the number of links output 
(ID) 

b. The feature prefix (POINTSODT) 
c. The origin zone (ORIGIN) 
d. The destination zone (DEST) 
e. The X coordinate for the origin zone (ORIGINX) 
f. The Y coordinate for the origin zone (ORIGINY) 
g. The X coordinate for the destination zone (DESTX) 
h. The Y coordinate for the destination zone (DESTY) 
i. The number of observed trips for that combination (FREQ) 

 
Example of Observed Trip Distribution from Baltimore County 

 
Figure 28.4 shows the output of the top 1000 links for the observed trip distribution from 

a sample of 41,974 records for incidents committed between 1993 and 1997. The zonal model 
used was that of traffic analysis zones (TAZ).  These were discussed in Chapter 26. Because 
there are a large number of links (532 origin zones by 325 destination zones), the top 1000 were 
taken.  These accounted for 19,615 crime trips (or 46.7% of all trips).  A larger number of 
links could have been selected, but the map would have become more cluttered. Of the 19,615 
trips that are displayed in the map, 7,913 or 40.3% are intra-zonal trips.  These were output by 
the routine as points and have been displayed as circles with the size proportional to the number 
of trips. The remaining 11,702 trip links were output by the routine as lines and are displayed 
with the thickness and strength of color of the line being proportional to the number of trips. 
 

There are several characteristics of the trip pattern that should be noted.  First, the 
intra-zonal trips tend to concentrate on the eastern part of Baltimore County.  This is an area 
that is relatively poor with a high number of public housing projects.  This suggests that there 
are a lot of intra-community crimes being committed in these locations.  Second, the 
zone-to-zone pattern, on the other hand, tends to concentrate at five different locations relatively 
close to border with the City of Baltimore.  These five locations are all major shopping malls.  
Third, the origins for those trips to the shopping mall tend to come from within the City of 
Baltimore.  Fourth, in general, the locations with high intra-zonal trips do not have a large 
number of zone-to-zone trips.  However, there is one exception in the southwest corner of the 
county.   
 

In other words, the observed distribution of crime trips is complex, but with several 
patterns being shown.  A lot of crime trips occur over very short distances.  But there is also a 
convergence of many crime trips on major shopping malls in the County. 
 



Figure 28.4:
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Calibrate Impedance Function 
 
This routine allows the calibration of an approximate travel impedance function based on 

actual trip distributions.  It is used to describe the travel impedance in distance only of an actual 
sample (the calibration sample).  Unlike the remaining routines in this section, the ACalibrate 
impedance function cannot use travel time, or cost. A file is input which has a set of incidents 
(records) that include both the X and Y coordinates for the location of the offender's residence 
(origin) and the X and Y coordinates for the location of the incident that the offender committed 
(destination.)   
 

The routine estimates a travel distance function using a one-dimensional kernel density 
method.  See the details in Chapter 13.  Essentially, for each record, the separation between 
the origin location and the destination location is calculated and is represented on a distance 
scale.  The maximum impedance is calculated and divided into a number of intervals; the 
default is 100 equal sized intervals, but the user can modify this.  For each impedance point 
calculated, a one-dimensional kernel is overlaid.  For each interval, the values of all kernels are 
summed to produce a smooth function of travel impedance.  The results are saved to a file that 
can be used for the origin-destination model.   
 

Note, however, that this is an empirical distribution and represents the combination of 
origins, destinations, and costs.  It is not necessarily a good description of the impedance (cost) 
function by itself.  Some of the mathematical functions produce a better fit than the empirical 
impedance function. 
 

The steps in calculating an empirical impedance function are as follows: 
 

1. Select data file for calibration.  Select the file that has the X and Y coordinates 
for the origin and destination locations. CrimeStat can read ASCII, dbase '.dbf', 
ArcGIS '.shp'  and MapInfo 'dat' files.  Select the tab and select the type of file 
to be selected. Use the browse button to search for the file.  If the file type is 
ASCII, select the type of data separator (comma, semicolon, space, tab) and the 
number of columns. 

 
A. Variables.  Define the file which contains the X and Y coordinates for 

both the origin (residence) and destination (crime) locations 
 

B. Columns. Select the variables for the X and Y coordinates respectively for 
both the origin and destination locations (e.g., Lon, Lat, HomeX, HomeY, 
IncidentX, IncidentY.) Both locations must be defined for the routine to 
work. 
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C. Missing values. Identify whether there are any missing values for these 
four fields (X and Y coordinates for both origin and destination locations).  
By default, CrimeStat will ignore records with blank values in any of the 
eligible fields or records with non-numeric values (e.g.,alphanumeric 
characters, #, *).  Blanks will always be excluded unless the user selects 
<none>.  There are 8 possible options: 

 
a. <blank> fields are automatically excluded. This is the default 
b. <none> indicates that no records will be excluded.  If there is a 

blank field, CrimeStat will treat it as a 0 
c. 0 is excluded 
d. B1 is excluded 
e. 0 and B1 indicates that both 0 and -1 will be excluded 
f. 0, -1 and 9999 indicates that all three values (0, -1, 9999) will be 

excluded. 
g. Any other numerical value can be treated as a missing value by 

typing it (e.g., 99)Multiple numerical values can be treated as 
missing values by typing them, separating each by commas (e.g., 
0, -1, 99, 9999, -99). 

 
D. Type of coordinate system and data units.  Select the type of coordinate 

system.  If the coordinates are in longitudes and latitudes, then a 
spherical system is being used and data units will automatically be 
decimal degrees.  If the coordinate system is projected (e.g., State Plane, 
Universal Transverse Mercator B UTM), then data units could be either in 
feet (e.g., State Plane) or meters (e.g., UTM.)  Directional coordinates are 
not allowed for this routine. 

 
2. Select Kernel Parameters.  There are five parameters that must be defined. 

 
A. Method of interpolation.  There are fives types of kernel distributions 

that can be used to estimate point density: 
 

a. The normal kernel overlays a three-dimensional normal 
distribution over each point that then extends over the area defined 
by the reference file.  This is the default kernel function.  

b. The uniform kernel overlays a uniform function (disk) over each 
point that only extends for a limited distance. 

c. The quartic kernel overlays a quartic function (inverse sphere) 
over each point that only extends for a limited distance.  
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d. The triangular kernel overlays a three-dimensional triangle (cone) 
over each point that only extends for a limited distance.  

e. The negative exponential kernel overlays a three dimensional 
negative exponential function ('salt shaker') over each point that 
only extends for a limited distance 

 
B. The methods produce similar results though the normal is generally 

smoother for any given bandwidth. 
 

3. Choice of bandwidth.  The kernels are applied to a limited search distance, 
called 'bandwidth'. For the normal kernel, bandwidth is the standard deviation of 
the normal distribution.  For the uniform, quartic, triangular and negative 
exponential kernels, bandwidth is the radius of a circle defined by the surface.  
For all types, larger bandwidth will produce smoother density estimates and both 
adaptive and fixed bandwidth intervals can be selected. 

 
A. Fixed bandwidth. A fixed bandwidth distance is a fixed interval for each 

point.  The user must define the interval, the interval size, and the 
distance units by which it is calculated (miles, nautical miles, feet, 
kilometers, meters.) The default bandwidth setting is fixed with intervals 
of 0.25 miles each.  The interval size can be changed. 

 
B. Adaptive bandwidth.  An adaptive bandwidth distance is identified by 

the minimum number of other points found within a symmetrical band 
drawn around a single point.  A symmetrical band is placed over each 
distance point, in turn, and the width is increased until the minimum 
sample size is reached.  Thus, each point has a different bandwidth size.  
The user can modify the minimum sample size.  The default for the 
adaptive bandwidth is 100 points. 

 
4. Specify Interpolation Bins.  The interpolation bins are defined in one of two 

ways: 
 

A. By the number of bins. The maximum distance calculated is divided by 
the number of specified bins.  This is the default with 100 bins. The user 
can change the number of bins. 
 

B. By the distance between bins.  The user can specify a bin width in miles, 
nautical miles, feet, kilometers, and meters. 
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5. Output (Areal) Units.  Specify the density units as points per mile, nautical 
mile, foot, kilometer, or meter.  The default is points per mile. 

 
6. Calculate Densities or Probabilities.  The density estimate for each cell can be 

calculated in one of three ways: 
 

A. Absolute densities. This is the number of points per grid cell and is scaled 
so that the sum of all grid cells equals the sample size.  

 
B. Relative densities.  For each grid cell, this is the absolute density divided 

by the grid cell area and is expressed in the output units (e.g., points per 
square mile) 

 
C. Probabilities.  This is the proportion of all incidents that occur in the 

grid cell.  The sum of all grid cells equals a probability of 1.  Unlike the 
Jtc calibration routine, this is the default.  In most cases, a user would 
want a proportional (probability) distribution as the relative differences in 
impedance for different costs are what is of interest. 

 
Select whether absolute densities, relative densities, or probabilities are to 
be output for each cell.  The default is probabilities. 

 
7. Select Output File.  The output must be saved to a file. CrimeStat can save the 

calibration output to either a dbase 'dbf' or ASCII text 'txt' file. 
 

8. Calibrate! Click on 'Calibrate!' to run the routine. The output is saved to the 
specified file upon clicking on 'Close'. 

 
9. Graphing the travel impedance function.  Click on 'View graph' to see the 

travel impedance function. The screen view can be printed by clicking on 'Print'.  
For a better quality graph, however, the output should be imported into a graphics 
or spreadsheet program. 

 
Example of Empirical Impedance from Baltimore County 
 
An example of an empirical impedance function from Baltimore County is seen in Figure 

28.5.  This was derived from the 41,974 incidents in which both the crime location and the 
offender=s origin location were known. As seen, the function looks similar to a negative 
exponential function.  But there is a little >hitch= around 3 miles where the travel likelihood  
  



Figure 28.5:
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increases, rather than decrease.  This could possibly be due to the City of Baltimore border 
which abuts much of the southern part of the County.   
 

Whatever the reason, the empirical impedance function can be used as a proxy for travel 
>cost= by offenders.  As we shall see, however, it may not produce as good a fit in the gravity 
model as some of the mathematical functions, particularly the lognormal.  The reason is that it 
is a behavioral description.  Consequently, the pattern reflects both the existence of crime 
opportunities (attractions) as well as costs.  While an empirical description is useful for 
guessing where a serial offender might live, for a trip distribution model it apparently does not 
cleanly estimate the real costs to an offender.  Nevertheless, it is a tool that can be used. 
 

Setup of Origin-Destination Model 
 

The page is for the setup of the origin-destination model.  All the relevant files, models 
and exponents are input on the page and it allows the trip distribution model to be calibrated and 
allocated.  Figure 28.6 shows the setup screen. There are a number of parameters that have to be 
defined: 
 

1. Predicted origin file.  The predicted origin file is a file that lists the origin zones 
with a single point representing the zone (e.g., the centroid) and also includes the 
predicted number of crimes by origin zone.  The file must be input as either the 
primary or secondary file.  Specify whether the data file is the primary or 
secondary file. 

 
A. Origin variable.  Specify the name of the variable for the predicted 

origins (e.g., PREDICTED, ADJORIGINS). 
 

B. Origin ID.  Specify the origin ID variable in the data file (e.g., 
CensusTract, Block, TAZ). 

 
2. Predicted destination file.  The predicted destination file is a list of destination 

zones with a single point representing the zone (e.g., the centroid) and also 
includes the predicted number of crimes by destination zone.  It must be input as 
either the primary or secondary file.  Specify whether the data file is the primary 
or secondary file. 

 
A. Destination variable.  Specify the name of the variable for the predicted 

destination (e.g., PREDICTED, ADJDEST). 
 
 



Trip Distribution Model Setup
Figure 28.6:
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B. Destination ID.  Specify the destination ID variable in the data file (e.g., 
CensusTract, Block, TAZ). 

 
 

 
 

 
 
 
 

3. Exponents.  The exponents are power terms for the predicted origins and 
destinations.  They indicate the relative strength of those variables.  For 
example, compared to an exponent of 1.0 (the default), an exponent greater than 
1.0 will strengthen that variable (origins or destinations) while an exponent less 
than 1.0 will weaken that variable.  They can be considered >fine tuning= 
adjustments. 

 
A. Origins.  Specify the exponent for the predicted origins.  The default is 

1.0. 
 

B. Destinations.  Specify the exponent for the predicted origins.  The 
default is 1.0. 

 
4. Impedance function.  The trip distribution routine can use two different travel 

distance functions:  
 
A. Use an already-calibrated distance function.  If a travel distance 

function has already been calibrated (see 'Calibrate impedance function' 
above), the file can be directly input into the routine. The user selects the 
name of the already-calibrated travel distance function.  CrimeStat reads 
dbase 'dbf', ASCII text 'txt', and ASCII data 'dat' files. 
 

B. Use a mathematical formula. A mathematical formula can be used 
instead of a calibrated distance function.  Similar to the Journey-to-crime 
module (see chapter 13), there are five mathematical functions.  They 
measure a separation between two zones and estimate a likelihood value.  
>Separation= can be in terms of distance, travel time, speed (which is 
converted into travel time), or travel costs.  

 
 

Note: with a 32 bit operating system (e.g., Windows XP, 32 bit Windows 7), there is maximum 
allowable of 4 Gb.  If M is the number of rows and N is the number of columns, then the total 
number of grid cells (M x N) cannot be greater than  where RAM is the available RAM.  
With a 64 bit operating system, on the other hand, 32 Gb are addressable. 
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5. Mathematical functions. Briefly, the five functions are: 
 

A. Linear.  The simplest type of distance model is a linear function.  This 
model postulates that the likelihood of traveling to a zone from another by 
an offender declines by a constant amount with distance from the 
offender=s home.  It is highest near the offender=s home but drops off by a 
constant amount for each unit of distance until it falls to zero. The form of 
the linear equation is; 

 

          (28.17) 

 
where f(dij) is the likelihood that the offender will travel from an origin 
zone,	 , to a destination zone, , Sij is the separation in distance, time or 
cost between the offender=s residence, , and location , α is a slope 
coefficient which defines the fall off in distance, and β is a constant.  It 
would be expected that the coefficient β would have a negative sign since 
the likelihood should decline with separation.  The user must provide 
values for A and β.  The default for A is 10 and for β is -1.  When the 
function reaches 0 (the X axis), the routine automatically substitutes a 0 
for the function. Figure 28.7 illustrates this function. 

 
B. Negative Exponential.  A slightly more complex function is the negative 

exponential.  In this type of model, the likelihood of travel also drops off 
with distance.  However, the decline is at a constant rate of decline, thus 
dropping quickly near the offender=s home until is approaches zero 
likelihood.  The mathematical form of the negative exponential is: 
 

       (28.18) 

 
where f(dij) is the likelihood that the offender will travel from an origin 
zone,	 , to a destination zone, , Sij is the separation in distance, time or 
cost between the offender=s residence, , and location , e is the base of 
the natural logarithm, α is the coefficient and β is an exponent of e. The 
user inputs values for α - the coefficient, and β - the exponent.  The 
default for α is 10 and for β is 1.  

 
 
 

   



Figure 28.7:
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a. This function is the one most used by travel demand modelers.  It 
has been recommended for use by the Federal Highway 
Administration (NCHRP, 1995). Figure 28.8 illustrates a typical 
negative exponential impedance function. 

 
C. Normal.  A normal distribution assumes the peak likelihood is at some 

optimal distance from the offender=s home base.  Thus, the function rises 
to that distance and then declines.  The rate of increase prior to the 
optimal distance and the rate of decrease from that distance is symmetrical 
in both directions.  The mathematical form is: 

 

        (28.19) 

 

√
.       (28.20) 

 
where f(dij) is the likelihood that the offender will travel from an origin 
zone,	 , to a destination zone, , Sij is the separation in distance, time or 

cost between the offender=s residence, , and location , ̅ is the mean 
distance input by the user, σd is the standard deviation of distances, e is the 
base of the natural logarithm, and α is a coefficient.  The user inputs 

values for	 ̅, σd, and α. The default values are 1 for each of these 
parameters.  

 
a. By carefully scaling the parameters of the model, the normal 

distribution can be adapted to a distance decay function with an 
increasing likelihood for near distances and a decreasing likelihood 
for far distances. For example, by choosing a standard deviation 

greater than the mean (e.g., ̅ = 1,Sd = 2), the distribution will be 
skewed to the left because the left tail of the normal distribution is 
not evaluated.  Figure 28.9 illustrates a possible normal 
impedance function. 

 



Figure 28.8:



Figure 28.9:
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D. Lognormal.  The lognormal function is similar to the normal except it is 
more skewed, either to the left or to the right.  It has the potential of 
showing a very rapid increase near the origin with a more gradual decline 
from a location of peak likelihood.  The mathematical form of the 
function is: 

 

	 	 	
√

	 	 	 	 	 (28.21)	

 
where f(dij) is the likelihood that the offender will travel from an origin 
zone,	 , to a destination zone, , Sij is the separation in distance, time or 

cost between the offender=s residence, , and location , ̅ is the mean 
distance input by the user, σd is the standard deviation of distances, e is the 
base of the natural logarithm, and α is a coefficient.  The user inputs 

values for	 ̅, σd, and α. The default values are 1 for each of these 
parameters.  Figure 28.10 illustrates a log-normal impedance function 
that had wide utility in several studies that are discussed below. 

 
E. Truncated Negative Exponential.  Finally, the truncated negative 

exponential is a joined function made up of two distinct mathematical 
functions - the linear and the negative exponential.  For the near distance, 
a positive linear function is defined, starting at zero likelihood for distance 
0 and increasing to dp, a location of peak likelihood.  Thereupon, the 
function follows a negative exponential, declining quickly with distance.  
The two mathematical functions making up this spline function are: 

 

   Linear:  0  for Sij $ 0, Sij# Sp (28.22) 

 
   Negative 

   Exponential:   for Sij $ Sp  (28.23) 

 
where f(dij) is the likelihood that the offender will travel from an origin 
zone,	 , to a destination zone, , Sij is the separation in distance, time or 
cost between the offender=s residence, , and location , β is the slope of 
the linear function (default=+1) and α is a coefficient and ξ is an exponent  

 

 
 



Figure 28.10:
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for the negative exponential function.  Since the negative exponential 
only starts at a particular distance, Sp, α, is assumed to be the intercept if 
the Y-axis were transposed to that distance.  Figure 28.11 illustrates a 
truncated negative exponential impedance function. 
 

F. Model parameters. For each mathematical model, two or three different 
parameters must be defined: 

 
1. For the negative exponential, the coefficient and exponent 
2. For the normal distribution, the mean distance, standard deviation 

and coefficient 
3. For lognormal distribution, the mean distance, standard deviation 

and coefficient 
4. For the linear distribution, an intercept and slope 
5. For the truncated negative exponential, a peak distance, peak 

likelihood, intercept, and exponent.   
 

The parameters will be obtained either from a previous analysis or from an 
iterative process of experimentation.  See the example below under 
ACompare observed and predicted trips@. 

 
G. >Fine Tuning= Exponents. In addition, for each function, exponents for 

the attraction and production terms can adjusted.  This allows a >fine 
tuning= of the impedance function to better fit the empirical distribution. 

 
5. Distance Units. The routine can calculate impedance in four ways, by: 

 
A. Distance (miles, nautical miles, feet, kilometers, and meters) 
B. Travel time (minutes, hours) 
C.  Speed (miles per hour, kilometers per hour).  Speed is then converted 

into travel time, in minutes. 
D. General travel costs (unspecified units). 

 
These must be setup under >Network Distance= on the Measurement Parameters 
page.  In the Network Parameters dialogue, specify the measurement units.  
The default is distance in miles. 

 
6. Assumed Impedance for External Zones. For trips originating outside the study 

area (external trips), specify the amount and the units that will be assumed for 
these trips.  The default is 25 miles. 



Figure 28.11:
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7. Assumed Impedance for Intra-zonal Trips. For trips originating and ending in 
the same zone (intra-zonal trips), specify the amount and the units that will be 
assumed for these trips.  The default is 0.25 miles. 

 
8. Model Constraints.  In calibrating a model, the routine must constrain either the 

origins or the destinations (single constraint) or constrain both the origins and the 
destinations (double constraint).  In the latter case, it is an iterative solution.  
The default is to constrain destinations as it is assumed that the destination totals 
(the number of crimes occurring in each zone) are probably more accurate than 
the number of crimes originating in each zone. Specify the type of constraint for 
the model. 

 
A. Constrain origins.  If >constrain origins= is selected, the total number of 

trips from each origin zone will be held constant. 
 

B. Constrain destinations. If >constrain destinations= is selected, the total 
number of trips from each destination zone will be held constant.   

 
C. Constrain both origins and destinations.  If >constrain both origins and 

destinations= is selected, the routine works out a balance between the 
number of origins and the number of destinations. 

 
Fitting the Impedance Function 

 
The impedance function is fit in an iterative manner. First, either an empirical impedance 

or a mathematical impedance is chosen. Second, the particular mathematical function is selected.  
For example, with the lognormal function, which has been found to produce the best fit for three 
different data sets, there are three parameters: 1) the mean distance; 2) the standard deviation of 
distance; and 3) the coefficient.   
 

Third, initial values of the parameters are chosen; one suggestion is to use the defaults 
available in the CrimeStat routines. The ACompare observed and predicted trips@ routine can be 
used to evaluate the fit of the model. Fourth, the parameters are adjusted in small increments, one 
at a time, on both side of the initial guess in order to improve the fit. For example, with the 
lognormal function, the mean distance is fit first because it has the greatest impact on the overall 
fit.  Then, after a Abest@ mean distance has been found, the standard deviation of distance is 
adjusted until it produces a Abest@ fit.  Then, the coefficient is adjusted until it produces a Abest@ 
fit.  Fifth, and finally, the >fine tuning= exponents of the production and attraction functions are 
adjusted.  Typically, these change the final fit only slightly.  Hence, they represent a final 
adjustment. 
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This process is illustrated below in the discussion on the comparison of the observed and 
predicted trips.  Essentially, the empirical (observed) distribution is being used as a calibration 
sample in order to find that impedance model and parameters that best approximate it. 
 

Running the Origin-Destination Model 
 

The trip distribution (origin-destination) model is implemented in two steps.  First, the 
coefficients are calculated according to the exponents and impedance functions specified on the 
setup page.  Second, the coefficients and exponents are applied to the predicted origins and 
destinations resulting in a predicted trip distribution.  Because these two steps are sequential, 
they cannot be run simultaneously.   
 

Calibrate Origin-Destination Model.  
 

In this routine, the row or column parameters (or both if double constraint is used) are 
estimated using a calibration file.  The steps are as follows: 

 
1. Check the >Calibrate origin-destination model= box to run the calibration model.  

 
2. Save Modeled Coefficients (parameters). The modeled coefficients are saved as 

a >dbf= file.  Specify a file name. 
 

Apply Predicted Origin-Destination Model 
 

In this routine, the coefficients that were calibrated in the above routine can be applied to 
a data set.  The data set can be the same as the calibration file or a different one.  The reason 
for separating the calibration from application steps is that the coefficients can be used for many 
different data sets.  The steps are as follows: 
 

1. Check the >Apply predicted origin-destination model= box to run the trip 
distribution prediction.   

 
2. Modeled Coefficients File.  Load the modeled coefficients file saved in the 

>Calibrate origin-destination model= stage. 
 

3. Assumed Coordinates for External Zone.  In order to model trips from the 
>external zone= (trips from outside the study area), specify coordinates for this 
zone.  These coordinates will be used in drawing lines from the predicted origins 
to the predicted destinations.  There are four choices: 
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A. Mean center (the mean X and mean Y of all origin file points are taken). 
This is the default. 

B. Lower-left corner (the minimum X and minimum Y values of all origin 
file points are taken). 

C. Upper-right corner (the maximum X and maximum Y values of all origin 
file points are taken). 

D. User coordinates (user-defined coordinates).  Indicate the X and Y 
coordinates that are to be used. 

 
Because an arbitrary location is taken to represent the >external zone=, any lines that are 

shown from that zone will not necessarily represent any real travel behavior.  However, if a 
very high proportion of all crime trips fall within the modeled origin zones (i.e., 95% or more), 
then it is very unlikely that any of the top trip links will come from the >external zone=.  
 

4. Table Output.  The table output includes summary file information and: 
 

A. The origin zone (ORIGIN) 
B. The destination zone (DEST) 
C. The number of predicted trips (PREDTRIPS) 

 
5. Save Predicted Origin-destination Trips. Define the output file.  The output is 

saved as a >dbf= file specified by the user.  
 

6.  File Output.  The file output includes: 
 

A. The origin zone (ORIGIN) 
B. The destination zone (DEST) 
C. The X coordinate for the origin zone (ORIGINX) 
D. The Y coordinate for the origin zone (ORIGINY) 
E. The X coordinate for the destination zone (DESTX) 
F. The Y coordinate for the destination zone (DESTY) 
G. The number of predicted trips (PREDTRIPS) 

 
Note: each record is a unique origin-destination combination and there are M x N 
records where M is the number of origin zones (including the external zone) and 
N is the number of destination zones. 

 
7. Save Links.  The top predicted origin-destination trip links can be saved as 

separate line objects for use in a GIS.  Specify the output file format (ArcGIS 
'.shp', MapInfo '.mif' or Atlas*GIS '.bna') and the file name. 
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Save Top Links 
 

Because the output file is very large (number of origin zones x number of destination 
zones), the user can select a sub-set of zone combinations with the most predicted trips.  
Indicating the top K links will narrow the number down to the most important ones.  The 
default is the top 100 origin-destination combinations.  Each output object is a line from the 
origin zone to the destination zone with an ODT prefix.  The prefix is placed before the output 
file name.   
 

The graphical output includes: 
 

A. An ID number from 1 to K, where K is the number of links output (ID) 
B. The feature prefix (ODT) 
C. The origin zone (ORIGIN) 
D. The destination zone (DEST) 
E. The X coordinate for the origin zone (ORIGINX) 
F. The Y coordinate for the origin zone (ORIGINY) 
G. The X coordinate for the destination zone (DESTX) 
H. The Y coordinate for the destination zone (DESTY) 
I. The number of predicted trips for that combination (PREDTRIPS) 
J. The distance between the origin zone and the destination zone. 

 
8. Save Points 

 
Intra-zonal trips (trips in which the origin and destination are the same zone) can be 

output as separate point objects as an ArcGIS '.shp', MapInfo '.mif' or Atlas*GIS '.bna' file.  
Again, the top K points are output (default=100).  Each output object is a point representing an 
intra-zonal trip with an ODTPOINTS prefix.  The prefix is placed before the output file name.   
 

The graphical output for each includes: 
 

A. An ID number from 1 to K, where K is the number of links output (ID) 
B. The feature prefix (POINTSODT) 
C. The origin zone (ORIGIN) 
D. The destination zone (DEST) 
E. The X coordinate for the origin zone (ORIGINX) 
F. The Y coordinate for the origin zone (ORIGINY) 
G. The X coordinate for the destination zone (DESTX) 
H. The Y coordinate for the destination zone (DESTY) 
I. The number of predicted trips for that combination (PREDTRIPS) 
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Example of the Predicted Trip Distribution from Baltimore County 
 

The predicted origins and predicted destinations from Baltimore County were input into a 
trip distribution model and a predicted trip distribution was output. The impedance function was 
a lognormal distribution, which produced a good fit to the observed (empirical) distribution (see 
discussion below). 
 

Figure 28.12 outputs the top 1000 links from the model.  The top 1000 links account for 
14,271.9 trips, or 34.0% of the total number of trips.  Compared to the observed distribution, 
the top 1000 links account for a smaller proportion of the total trips (14,272 v. 19,615).  This 
suggests that the actual distribution is slightly more concentrated than the model suggests. Like 
the observed distribution, however, a sizeable number of the top links are intra-zonal trips (5,428 
or 12.9%). The intra-zonal trips have been displayed as circles in the figure. 
 

Comparing the predicted trip distribution to the observed trip distribution, some 
similarities and differences are seen.  Figure 28.13 compares the top 1000 zone-to-zone links 
for the predicted and observed distributions. The model has captured many of the major links.  
For the five shopping malls that received a sizeable number of actual crime trips, the model has 
captured the majority of trips for three of them and some trips for a fourth.  For the mall in the 
southeast corner of the county, on the other hand, the model has not allocated a large number of 
trips.  Similarly, for a zone near the western edge of the county, the model has allocated more 
trips than actually occurred. 
 

There are, of course, only 325 intra-zonal trip links (one for each destination zone).  
Looking at a comparison of the intra-zonal trips (Figure 28.14), some similarities and differences 
are seen.  Generally, the model captured the location of many intra-zonal trips, but it did not 
capture the quantity very accurately.  Zones that had many intra-zonal trips are shown as having 
only some by the model and, conversely, the model predicts many intra-zonal trips for two zones 
which had only some.   
 

In other words, the fit between the actual distribution and the model is not perfect.  
Considering that only 1000 of the 172,900 trip links (532 origin zones x 325 destination zones) 
are shown, the model has still done a reasonable job of capturing the major links. 

 
It is not surprising that the model is not perfect.  The model is a simple analogue using 

only three variables (productions, attractions, impedance) whereas the actual distribution 
represents a very complex set of individual decisions made by offenders. What is perhaps 
remarkable is that the model has done a decent job of capturing some of these relationships at all. 

 
 



Figure 28.12:
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Figure 28.14:
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This brings up an important point, namely that a model is not reality. It is only a 
simplified set of relationships that approximates reality (in this case, the observed distribution).  
It is important in developing any model to evaluate it relative to an observed set of facts, and this 
applies no less to the trip distribution model.  One has to understand, however, that a good 
model will not capture all the relationships.  Hopefully, it captures enough of them to make the 
model useful for prediction and evaluating policy options. 
 

Comparing Observed & Predicted Trips 
 

It is important to conduct a number of tests on the predicted model to ensure that it is 
capturing the most important elements of the observed distribution. These are conducted by 
comparing the predicted distribution with the observed (empirical) distribution. Figure 28.15 
shows the setup page for comparing the observed with the prediction distribution 
 

There are a number of tests that can be used to evaluate a model by comparing the 
predicted distribution with the observed one.  CrimeStat includes three of these and the steps 
are as follows: 
 

1. Estimate the parameters of the model and apply them to the calibration data set 
 

2. Examine the intra-zonal trips to be sure that the predicted number corresponds to 
the observed number 

 
3. Compare the trip lengths of the observed and predicted distributions using two 

tests: 
 

A. The Coincidence Ratio 
 

B. The Komolgorov-Smirnov Two-sample Test 
 

4. Compare the number of trips for the top links using a pseudo-Chi square test.  
That is, the number of trips for the most frequent links in the observed distribution 
is compared to the number predicted by the model for the same links. 

 
Unfortunately, not one of these tests is sufficient to validate a model.  Further, 

minimizing the discrepancy for only one of them may distort the others.  It is very unlikely that 
there will be a model that minimizes the errors for all three tests.  Consequently, the user will 
have to choose a model that balances these factors in a desirable way (an optimum model). 
 
 



Comparing Observed and Predicted Trip Lengths
Figure 28.15:
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Estimating Impedance Parameters and Exponents of the Gravity Model 
 

 While this is not strictly an evaluation test, this step is essential in estimating the 
particular impedance parameters that are used in the first place.  Typically, an analyst will 
approximate an impedance function.  Using a comparison between the observed and predicted 
models, the parameters can be adjusted to produce a better fit.  The steps are as follows: 
 

1. The model is estimated with a calibration data set. There is a file of predicted 
origins and another file of predicted destinations; typically, these are defined as 
the primary and secondary files respectively, though the order could be reversed 
or the same file used for both origins and destinations (if the number of origins 
zones was identical to the number of destination zones). 

 
2. On the trip distribution setup page, select the type of impedance function that is to 

be used, already-calibrated (empirical) or mathematical.  For the 
journey-to-crime routine, generally the empirical function led to better results 
than the mathematical.  However, with a trip distribution function, a 
mathematical function may be as good, if not better.  This was tested with three 
data sets for Baltimore County, Las Vegas, and Chicago and, in all cases, a 
mathematical function (the lognormal) gave a much better fit than an 
empirically-derived function (see Chapters 31 and 32). 

 
3. If a mathematical function is to be used, select the type of distribution.  The 

default value is a lognormal, but the user can choose a negative exponential, a 
normal, a linear, or a truncated negative exponential function. 

 
4. For the particular mathematical function, select initial guesses for the parameters.  

For each mathematical model, two or three different parameters must be defined: 
 

A. For the negative exponential, the coefficient and exponent 
B. For the normal distribution, the mean distance, standard deviation 

and coefficient 
C. For lognormal distribution, the mean distance, standard deviation 

and coefficient 
D. For the linear distribution, an intercept and slope 
E. For the truncated negative exponential, a peak distance, peak 

likelihood, intercept, and exponent.   
 

5. In addition, there are exponents of the production and attraction side that can be 
made to >fine tune= the model.  In general, these exponents will only affect the 



28.52 

results slightly, compared to the basic choices of the type of model and the 
selection of values for the main parameters. 

 
6. Calibrate and apply the model to the calibration data set.  Examine the three 

criteria discussed below to minimize the error between the actual distribution and 
that predicted by the model.   

 
7. Modify the parameter values slightly. 

 
8. Repeat steps 4 through 7 until a good fit is found between the actual and predicted 

distribution and in which the errors are minimized and optimized.  The process 
by which this is done is discussed below. 

 
Comparing Intra-zonal Trips 

 
The first evaluation test is to compare the percentage of trips that occur within the same 

zone - intra-zonal trips. The Travel Model Improvement Program manual indicates that 
intra-zonal trips should represent typically no more than 5% of all trips for home-to-work trips; 
that is, commuting trips (FHWA, 1997, chapter 4).  However, given that most crime trips are 
quite short, the proportion of trips that are intra-zonal is liable to be much higher.  In Baltimore 
County, for example, 19.7% of all crime trips were intra-zonal.  Ideally, the predicted model 
should also have 19.7% of all crime trips being intra-zonal. 
 

The ACompare observed and predicted trip lengths@ routine is discussed below.  The 
routine outputs the number of trips that are intra-zonal in both the observed and predicted 
distributions.  A good model should produce approximately the same number of intra-zonal 
trips in the predicted distribution as what actually occurred. 
 

Illustration 
 

For example, in the Baltimore County model displayed in Figure 28.12 above, there were 
8,272 intra-zonal trips in the actual distribution (out of 41,979).  On the other hand, there were 
only 5,428 predicted intra-zonal trips in the model.  In other words, the predicted model 
assigned fewer intra-zonal trips than actually occurred.  
 

It may be necessary to modify the model to produce a closer fit for the intra-zonal trips.  
A simple way to do this to increase or decrease the relative impedance parameter in the model.  
So, to use the example, if the predicted model is assigning too few intra-zonal trips, then the cost 
function can be strengthened (i.e., making travel more expensive).  In this case, in the original 
model the lognormal function was used with a mean distance of 6.18 miles.  If the mean 
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distance of the impedance function is reduced to 3.5, then the number of predicted intra-zonal 
trips increases to 8,275, almost the same number as occurred in the observed distribution. 
 

In other words, by decreasing the mean distance for the lognormal function, the 
impedance function was strengthened (i.e., made more expensive) and a better fit was created 
between the observed and predicted distributions. 
 

In and of itself, a mismatch for intra-zonal trips between the predicted model and what 
actually occurred does not necessarily require a modification of the gravity function.  Other 
criteria must be considered, namely how well the predicted model fits the trip length distribution 
and how well the predicted models captures the most frequent inter-zonal (zone-to-zone) trip 
links. Later in the discussion, the issue of optimizing a model by balancing these different 
criteria will be described.    
 

Comparing Trip Length Distributions 
 

The second evaluation test in comparing the observed with the predicted distribution is a 
calculation of the trip length distribution (see steps below).  Because the trip distribution matrix 
will typically be very large, most cell values will be zero.  Rarely will there be enough data to 
cover all the cells and, even if there was, the skewness in a crime distribution will leave most 
cells with no data.  For example, for the Baltimore County model, with 532 origin zones and 
325 destination zones, there will be 172,900 cells (325 x 532).  The calibration data set had only 
41,974 cases.  Thus, the number of cells is more than four times the sample size and it is not 
possible to fill all cells with a number.   
 

Consequently, because of the large number of cells with zero counts, one cannot use the 
Chi square test to compare the observed and predicted distributions.  The Chi square test 
assumes that, first, the distribution is relatively normal (which it is not since the data are highly 
skewed) and, second, that there are at least 5 cases per cell. The latter condition is impossible 
given the large number of cells.   
 

Therefore, what is usually done is to compare the trip length distribution of the observed 
and predicted models.  >Trip length= is the length in distance, travel time, or cost of each trip.  
It is measured by the actual length (or separation) between two zones times the number of cases 
for that zone pair.  For example, in Figure 28.1, there were 15 trips from zone 1 to zone 2 and 7 
trips in the opposite direction (from zone 2 to zone 1).  Let=s assume that the distance between 
zone 1 and zone 2 is 1.5 miles. Thus, there are 22 trips that fall into a trip length of 1.5 miles (15 
in the direction of zone 1 to zone 2 and 7 in the direction of zone 2 to zone 1).  
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If travel time is used, the calculation uses time rather than distance.  For example, if a 
vehicle was traveling 30 miles per hour, then it would take 3 minutes to cover 1.5 miles (1.5 
miles ) 30 miles per hour = 0.05 hours x 60 minutes per hour = 3 minutes).  Thus, there are 22 
trips that fall into a trip >length= of 3 minutes.  A similar logic would apply to travel cost 
categories. 
 

This process is repeated for all cells and the distribution of trips is allocated to the 
distribution of trip lengths (in distance, travel time, or travel cost).  In general, one uses many 
intervals (or bins) for trip length (25 or more).  In CrimeStat, the default number of trip lengths 
is 25, but it is not unknown to use up to 100.  The problem in using too many is that the 
distributions become unreliable and differences that appear may not be real.   
 

Graphical fit 
 

Once the trip length distribution is calculated for both the observed and predicted 
distributions, it is possible to compare them.  CrimeStat outputs a graph showing the fit of the 
two distributions.  In general, they should be very close.  An examination of differences 
between the distributions can indicate at what trip lengths the model is failing.  This might 
allow the parameters to be adjusted in order to improve the fit on the next iteration. Examples 
will be given below of the graphing of the two distributions.  But, it is important to come up 
with a model in which the two distributions >look= similar. 

 
Coincidence ratio 

 
The coincidence ratio compares the two trip length distributions by examining the ratio 

of the total area of those distributions that coincide, that are in common (FHWA, 1997, chapter 
4).  It is defined as: 
 

 ∑ min	 ,        (28.24) 

 

 ∑ max	 ,         (28.25) 

 

 	        (28.26) 

 
The steps are as follows: 

 
1. Essentially, the two distributions are broken into K bins (or intervals). That is, the 

number of trips in each bin is enumerated (see example above).  
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2. Each of the two distributions is converted into a proportional distribution by 
dividing the bin count by the total number of trips in the distribution.  This step 
is not absolutely essential as the test can be conducted of the raw counts.  
However, by converting into proportions, the two distributions are standardized.  

 
3. A cumulative count is conducted of the minimum proportion in each interval.  

That is, starting at the lowest interval, the smaller of the two proportions is taken.  
At the next interval, the smaller of the two proportions is added to the count.  
This is repeated for all K bins. This is called the coincidence and measure the 
overlapping proportions over all intervals. 

 
4. A similar cumulative count is conducted of the maximum proportion in each 

interval. That is, starting at the lowest interval, the larger of the two proportions is 
taken. At the next interval, the larger of the two proportions is added to the count.  
This is repeated for all K bins. This is called the total and measures the unique 
proportion over all intervals. 

 
5. Finally, the coincidence ratio is defined as the ratio of the minimum count to the 

total count. 
 

The coincidence ratio is a proportion from 0 to 1. It is analogous to the R2 statistic in 
regression analysis in that it measures the >explained= (or overlapping) variance.  According to 
the Travel Model Improvement Program manual (FHWA, 1997, chapter 4), the higher the 
coincidence ratio, the better. A value of 0.9 would generally be considered good. 
 

Komolgorov-Smirnov two-sample test 
 

The Komolgorov-Smirnov Two-Sample Test is similar to the coincidence ratio, but it 
examines the maximum difference across all bins (Kanji, 1993).  For each distribution, a 
cumulative sum is created.  At each interval, the difference between the two cumulative sums is 
calculated. The maximum difference between the two distributions is taken as the test statistic: 
 
 | |          (28.27)  
 
where D is the maximum difference found, Oi is the cumulative sum of the actual (observed) trip 
lengths, and Pi is the cumulative sum of the predicted trip lengths.  There are tables of critical 
values for the Komolgorov-Smirnov Two-Sample Test which are a function of the number of 
intervals, K (Smirnov, 1948; Massey, 1951; Siegel, 1956; Kanji, 1993).   
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Illustration 
 

To illustrate the trip length comparison, figures 28.16 through 28.19 show the results for 
four different impedance models - an empirical impedance function, a negative exponential 
impedance function, a truncated negative exponential impedance function, and a lognormal 
impedance function.  As seen, the fit of the empirical impedance function is not particularly 
good, but gets progressively better with the three different mathematical functions.   
 

The best fit is clearly was with the lognormal function.  With these parameters (mean 
center = 6.0 miles, standard deviation = 4.7 miles, coefficient = 1, origin exponent = 1, and 
destination exponent = 1.06), the Coincidence Ratio was 0.93. 
 

But, again, this is just one criterion, though it fits most of the distribution matrix.  As 
with the number of intra-zonal trips, minimizing the error for a trip length distribution will not 
necessarily minimize the error for the other two criteria (intra-zonal trips and the top links).  
But, it is important that the trip length comparison be reasonably close. 
 

Comparing the Trips of the Top Links 
 

The third evaluation test focuses on the top links.  That is, it evaluates how well the 
predicted model captures the major trip links, both intra-zonal and inter-zonal.  Since crime trip 
distributions are skewed (i.e., a handful of zones contribute to most crime origins and a handful 
of zones attract many crimes), capturing the most important links is essential for a good crime 
distribution model.  This is particularly true since a model that produces the best fit for the 
overall trip length distribution may not capture the top links very well. 
 

Therefore, simply comparing the trip length distribution may not adequately capture the 
top links.  That is, on average a particular model may produce a good fit between the predicted 
and observed distributions, but may do this by minimizing error across the entire matrix of trip 
pairs without necessarily minimizing the error for the top links. 
 

Consequently, it is important to also compare the fit of the model for the top links. One of 
the lines in the dialogue for the ACompare observed and predicted trip lengths@ is ACompare top 
links@.  The user should specify the number of top links to be compared; the default is 100.  
The top links are the trip pairs that have the most number of actual trips, starting from the pair 
with the most trips and sorting in descending order. The routine calculates a pseudo-Chi square 
test on just those links.  Since the top links will all have a sufficient number of trips, it is 
possible to calculate a Chi square statistic.  However, since not all links are being considered in 
this test, a significance test of this statistic cannot be calculated since the sampling error is not 
known. 



Figure 28.16:



Figure 28.17:



Figure 28.18:



Figure 28.19:
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Using the observed (actual) links as the reference, the test calculates: 
 

 ∑        (28.28) 

 
where Oi is the observed (actual) number of trips for trip pair, , Pi is the predicted number of 
trips for trip pair, , and  is the number of trip pairs that are compared up to K comparisons, 
where K is selected by the user.  
 

Number of links to test 
 

The number of top links that are to be compared depends on how skewed is the 
distribution. One good way to look at this is to plot the rank size distribution of the observed 
trips.  Using the output >dbf= file for the observed trip distribution (see ACalculate observed 
origin-destination trips@ above), import the file into a spreadsheet.  Sort the file in descending 
order of the trip frequency and create a new variable called ARank order@, which is simply the 
descending order of the trip frequencies.  Then, plot the frequency of trips (FREQ) on the Y 
axis against the rank order of the trip pairs on the X axis.   
 

Figure 28.20 below shows the rank size distribution of the Baltimore County crime trips.  
Notice how the distribution is very skewed for the top crime trip pairs, but declines substantially 
after that. That is, the top trip link (which was an intra-zonal trip pair - zone 654 to itself) had 
278 trips.  The second top link (also an intra-zonal pair - zone 714 to itself) had 226 trips. The 
third had 223; the fourth had 205; and so forth.  As mentioned above, the top 1000 trip links 
account for about 47% of all the trips in the matrix, but the first 176 account pairs account for 
half of that.  In other words, if the top 150 to 200 trip pairs are examined, the highest volume 
links will be included and most of the skewness in the distribution will be accounted for.  The 
remaining distribution, which is not fitted, will be less skewed. 
 

Illustration 
 

An illustration of how comparing the top links can modify a trip distribution model can 
be given.  The same model as shown in Figure 28.12 was run.  The pseudo-Chi square test for 
the first 176 pairs was 5,832 (rounding-off to the nearest integer).  However, by modifying the 
mean distance of the lognormal function a lower Chi square value was obtained.  After several 
iterations, the lowest Chi square value was obtained for a mean distance of 5.2 miles (χ2 = 
5,448).  Again, the top links represents only one criterion out of the three mentioned.  A good 
model should balance all three of these. 

 



Figure 28.20:
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Optimizing the Three Evaluation Criteria     
 

The ideal solution would be to have all three evaluation criteria minimized. That is, with 
an ideal model, there should be very little error between the predicted model and the observed 
distribution for the number of intra-zonal trips, the trip length distribution, and the top links. 

  
In practice, it is unlikely that any one model will minimize all three types of errors.  

Thus, a balance (a compromise) must be obtained in order to produce an optimal solution.  
Since a balance can be obtained in different ways, there are multiple solutions possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  To illustrate the multiple criteria, Table 28.2 shows the best models for each of the three 
tests with variations on the mean distance in the model shown in Figure 28.12.  All other 
parameters were held constant. Many models were run to produce this table including testing 
other functions. These are the three best. 
 

As seen, different models produce the lowest error for each of the criteria.  For 
obtaining the closest fit to the number of intra-zonal trips, the mean distance of the lognormal 
function was 3.5 miles.  For producing the best fit to the top 176 links, the mean distance for the 
best model was 5.2 models.  For producing the best fit for the entire trip length distribution, the 
mean distance of the best model was 6.0 miles.  The question is which one to use? 
 

Hint: In CrimeStat, it is very easy to run through different models. The parameters 
are input on the ASetup origin-destination model page@. The coefficients are 
calibrated in the ACalibrate origin-destination model@ routine on the 
AOrigin-Destination Model@ page. The coefficient file which is output is then input 
into the AApply predicted origin-destination model@ routine on the same page. The 
comparison between the observed and predicted values is found in the ACompare 
observed and predicted origin-destination trip lengths@ routine. Once set up, 
iterations of the models can be run very easily. A change is made on the setup page. 
The model is calibrated. It is then applied to the calibration data set.  Finally, a 
comparison is made. Since the file names remain constant, an entire iteration will 
take less than a minute on a fast computer. 
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Table 28.2: 

Multiple Criteria in Selecting a Distribution Function 
 Lognormal function 
 Standard deviation = 4.7 miles 
 Coefficient = 1 
 Origin exponent = 1.0 
 Destination exponent = 1.06 
 

Number of  Chi square 
Mean   Intra-zonal  for top   Coincidence 
distance  Trips   176 Links  Ratio 
Observed   8272       -     - 
6.0    5463    5814   0.93 
5.2    6296    5777   0.87 

 3.5    8275    5986   0.74 
 
 

One solution for optimizing decisions 
 

One possible solution is to optimize in the following way: 
 

1. If the trip distribution matrix is highly skewed (which will occur with most crime 
data sets), then it is essential that the top links be replicated closely.  This would 
take priority over the second criterion which is minimizing the error for the trip 
length distribution, and the third criterion which is minimizing the error in 
predicting intra-zonal trips. 

 
2. Next fit the model to minimize the Chi square value for the top links. In the 

example above, this would be the top 176 pairs. Typically, the mean distance has 
the biggest impact for a lognormal or normal function and this would be adjusted 
first. For a negative exponential function, the exponent has the strongest impact.  
For a linear function, the slope has the strongest impact and for a truncated 
negative exponential, both the peak distance, for the near distance, and the 
exponent, for the far distance, has the biggest impacts (see Chapter 13). Again, 
the aim is to produce the Chi square for the top links with the lowest value. 

 
4. Then, while trying to maintain a Chi square value as close to this minimal value 

as possible, adjust the model to minimize the error in the trip length comparison.  
In this case, the model with the highest Coincidence Ratio is that which 
minimizes the error.  For lognormal and normal functions, the standard deviation 
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is the next parameter to adjust.  For a negative exponential function, the 
coefficient should be adjusted next. For a linear function, the intercept would be 
adjusted next and for a truncated negative exponential the slope would be adjusted 
next.  Again, the aim should be to obtain the highest Coincidence Ratio without 
losing the fit for the top links. 

 
5. Finally, if it is possible, adjust the exponents of the origins and destinations and 

the other parameters (e.g., the coefficient in the lognormal and normal 
distributions) to reduce the error in the total number of intra-zonal trips.  
Typically, however, these do not alter the results very much.  They can be 
thought of as Afine tuning@ adjustments. 

 
Notice that this hierarchy fits the highest volume trip links first, then fits the overall trip 

length distribution, and finally fits the number of intra-zonal trips.  
 

Illustration 
 

To illustrate, we first start with the model that produced the lowest Chi square.  That 
model used a lognormal function with a mean distance of 5.2 miles, a standard deviation of 4.7 
miles, a coefficient of 1, an origin exponent of 1.0 and a destination exponent of 1.06.  Varying 
the standard deviation of the lognormal function produced the following results (Table 28.3). 
 

Table 28.3: 

Minimizing the Second Criteria in Selecting a Distribution Function 
Lognormal function 

Mean distance = 5.2 miles 
Standard Deviation = 4.6 miles 

Coefficient = 1 
Origin exponent = 1.0 

Destination exponent = 1.06 
 

Number of   Chi square  
Standard  Intra-zonal  for top   Coincidence 
deviation  Trips   176 Links  Ratio 
4.5    5809    5789   0.90 
4.6    6057    5779   0.88 
4.7 (baseline)   6296    5777   0.87 
4.8    6526    5780   0.86 
4.9    6746    5788   0.84 
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As the standard deviation was increased, the Coincidence Ratio decreased while the 
number of intra-zonal trips increased.  Of these five different standard deviations, 4.5 produced 
the highest Coincidence Ratio, but also increased the Chi square statistic for the 176 top links.  
Since that criterion was set first, we do not want to loosen it substantially during the second 
adjustment.  Consequently, a standard deviation of 4.6 was selected because this increased the 
Coincidence Ratio slightly while not substantially worsening the Chi square test. 

   
Subsequent tests varying the coefficient of the lognormal function and the exponents of 

the origin and destination terms did not alter these values.  Consequently, the final model that 
was selected is listed in Table 28.4. 
 

Table 28.14: 

Baltimore County Crime Trips: 1993-1997 

Optimal Model Selected 
 

Lognormal function 
Mean distance = 5.2 miles 
Standard deviation = 4.6 
Coefficient = 1 
Origin exponent = 1.0 
Destination exponent = 1.06 

 
The model was re-run with the new parameters used. The top 176 predicted trip links 

were output and were compared to the top 179 observed trip links (which exceeded 176 because 
of tied values). The top predicted 176 links accounted for 7,241 trips, or 17.3% of the total 
number of trips. The top observed 179 links accounted for 9,900 trip, or 23.6% of the total.  
Compared to the observed distribution, the top 176 predicted links accounted for a smaller 
proportion of the total trips.    
 

However, the fit was generally better. Figure 28.21 shows the top predicted inter-zonal 
trip links and compares them to the top observed links while Figure 28.22 shows the top 
predicted intra-zonal (local) trip links and compares them to the top observed intra-zonal links.  
Comparing these maps to Figure 28.12 and 28.13 (which mapped the top 1000 links, not the top 
176), the fit is a bit better for the major links, which is what we optimized.  The fit is not 
perfect; it probably will never be.  But, it is reasonably close. 
 

Of course, this is not the only way to optimize and different users might approach it 
differently (e.g., minimizing the intra-zonal trips first, then the overall trip length distribution, 
and finally the top links).  It has to be realized that optimizing in a different order will probably 
produce varying results; there is not, unfortunately, a single optimum solution to these three  



Figure 28.21:



Figure 28.22:
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criteria.  That is why it is important to explicitly define how an optimal solution will be 
obtained.  In that way, users of the model can be cognizant of where the model is most accurate 
and where it is probably less accurate.   

 
Implementing the Comparisons in CrimeStat 

 
The mechanics of conducting the tests is fairly straightforward.  The three tests are 

implemented in the ACompare Observed and Predicted Trip Lengths@ routine on the last page of 
the Trip distribution module. 

 

Observed trip file 

  
Select the observed trip distribution file by clicking on the Browse button and choosing 

the appropriate file. 
 

Observed number of origin-destination trips 
 

Specify the variable for the observed number of trips.  The default name is FREQ. 
 

Orig_ID 
 

Specify the ID name for the origin zone.  The default name is ORIGIN. Note that the 
ID=s used for the origin zones must be the same as in the destination file and the same as in the 
predicted trip file if the top links are to be compared. 
 

Orig_X  
 

Specify the name for the X coordinate of the origin zone.  The default name is 
ORIGINX. 
 

Orig_Y 
 

Specify the name for the Y coordinate of the origin zone.  The default name is 
ORIGINY. 
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Dest_ID 
 

Specify the ID name for the destination zone. The default name is DEST. Note that all 
destination ID=s should be in the origin zone file and must have the same names and the same as 
in the predicted trip file if the top links are to be compared. 

 
Dest_X 

 
Specify the name for the X coordinate of the destination zone. The default name is 

DESTX. 
 

Dest_Y 
 

Specify the name for the Y coordinate of the destination zone. The default name is 
DESTY. 
 

Predicted trip file 
 

Select the predicted trip distribution file by clicking on the Browse button and choosing 
the appropriate file. 
 

Predicted number of origin-destination trips 
 

Specify the variable for the observed number of trips. The default name is PREDTRIPS. 
 

Orig_ID 
 

Specify the ID name for the origin zone. The default name is ORIGIN. Note that the ID=s 
used for the origin zones must be the same as in the destination file and the same as in the 
observed trip file if the top links are to be compared. 
 

Orig_X  
 

Specify the name for the X coordinate of the origin zone. The default name is ORIGINX. 
 

Orig_Y 
 
Specify the name for the Y coordinate of the origin zone.  The default name is 

ORIGINY. 
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Dest_ID 
 

Specify the ID name for the destination zone. The default name is DEST.  Note that all 
destination ID=s should be in the origin zone file and must have the same names and the same as 
in the observed trip file if the top links are to be compared. 
 

Dest_X 
 

Specify the name for the X coordinate of the destination zone.  The default name is 
DESTX. 

 
Dest_Y 

 
Specify the name for the Y coordinate of the destination zone.  The default name is 

DESTY. 
 
 

Select bins 
 

Specify how the bins (intervals) will be defined.  There are two choices. One is to select 
a fixed number of bins.  The other is to select a constant interval. 
 

Fixed number 
 

This sets a fixed number of bins.  An interval is defined by the maximum distance 
between zone divided by the number of bins.  The default number of bins is 25.  Specify the 
number of bins. 
 

Constant interval 
 

This defines an interval of a specific size.  If selected, the units must also be chosen.  
The default is 0.25 miles.  Other distance units are nautical miles, feet, kilometers, and meters.  
Specify the interval size. 
 
 

Compare top links 
 

The ACompare top <value> links@ dialogue implements a comparison of the top links.  
The user specifies the number of links to be compared.  The default is 100. The routine 
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calculates a Chi square statistic for these links.  Note that in order to make the comparison, the 
origin and destination ID's must be the same for both the observed and predicted trip files.  
 

Save comparison 
 
The output is saved as a >dbf= file specified by the user.  

 
Table output 

 
The table output includes summary information and: 

 
1. The number of trips in the observed origin-destination file 
2. The number of trips in the predicted origin-destination file 
3. The number of intra-zonal trips in the observed origin-destination file 
4. The number of intra-zonal trips in the predicted origin-destination file 
5. The number of inter-zonal trips in the observed origin-destination file 
6. The number of inter-zonal trips in the predicted origin-destination file 
7. The average observed trip length 
8. The average predicted trip length 
9. The median observed trip length 
10. The median predicted trip length 
11. The Coincidence Ratio (an indicator of congruence varying from 0 to 1) 
12. The D value for the Komolgorov-Smirnov two-sample test 
13. The critical D value for the Komolgorov-Smirnov two-sample test 
14. The p-value associated with the D value of Komolgorov-Smirnov two-sample test 

relative to the critical D value. 
15. The pseudo-Chi square test for the top links 

 
and for each bin: 
 

16. The bin number 
17. The bin distance 
18. The observed proportion 
19. The predicted proportion 

 
File output 

 
The saved file includes: 

 
1. The bin number (BIN) 
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2. The bin distance (BINDIST) 
3. The observed proportion (OBSERVPROP) 
4. The predicted proportion (PREDPROP) 

 
Graph 

 
While the output page is open, clicking on the graph button will display a graph of the 

observed and predicted trip length proportions on the Y-axis by the trip length distance on the 
X-axis.  This would produce a similar graph to that seen in Figures 28.16 through 28.19 above. 

 

Uses of Trip Distribution Analysis 
 

There are a number of uses for the trip distribution analysis.  First, for policing, an 
analysis of the actual (observed) trip distribution can be valuable.  Second, the predicted model 
has value, above-and-beyond the analysis of the actual distribution. 
 

Utility of Observed Trip Distribution Analysis 
 

This information by itself can be very useful for police. Two applications will be 
discussed. 
 

Crime prevention efforts 
 

 A major application is using the data shown in a trip distribution map to guide 
enforcement efforts.  For example, in Baltimore County, with the crimes occurring at the five 
shopping malls, the origin locations can be more easily seen. This has utility for police.  First, 
the police can intervene more effectively on the routes leading from likely origin locations.  
They can patrol those routes more heavily and, perhaps, intervene more frequently.  By using 
the information from the trip distribution analysis, they make their enforcement efforts smarter.  
Second, they can conduct crime prevention efforts more effectively.  By knowing the likely 
origin of offenders, intervention efforts in the origin zones may head off some of these incidents.  
Programs such as weed-and-seed and after-school programs depend on providing alternative 
facilities for youth, hoping to redirect them to more constructive activities. These facilities can be 
placed in locations where many crimes originate. 
 

Improved Journey-to-crime analysis 
 

A second application is in guessing the likely origin of a serial offender.  In Chapter 13, 
theories of travel behavior by a serial offender was discussed.  The resulting analysis 
(geographic profiling, Journey-to-crime analysis) utilized information on the distribution of 
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incidents committed by the offender.  On the other hand, the trip distribution pattern seen in 
Figure 28.4 provides a probability map of offender locations and gives more information than 
was evident in the Journey-to-crime model. That model assigned a likelihood of the offender 
living at a location (the origin) on the basis of the distribution of the incidents. There was no 
additional information used about likely origin locations.  This trip distribution map, on the 
other hand, points to certain zones as being the likely origin for offenses committed at the major 
destination locations.  There is more >structure= in this analysis than in the Journey-to-crime 
logic.  This is the basis for the Bayesian Journey-to-crime approach discussed in Chapter 14. 
 

One can think of this in terms of a quasi-Bayesian approach to guessing the likely origin 
of an offender. The geographic profiling/Journey-to-crime logic assumes no prior probabilities.  
The only information that is used is the distribution of crimes committed by a serial offender and 
a model of crime travel distance (essentially, an impedance function). The trip distribution map, 
on the other hand, points to certain locations as being the likely origin for incidents.  
Admittedly, this is based on a large sample of cases rather than one particular serial offender.  
But, the map points to certain prior probabilities for an origin location. The Bayesian 
Journey-to-crime routine combines those two pieces of information. As mentioned in Chapter 14, 
tests on more than 1000 serial offenders in four cities (in three countries) showed that the method 
was 10-15% more accurate than the traditional journey-to-crime approach and as precise. 
 

In other words, the empirical description of crime travel patterns is useful for policing, 
above-and-beyond any modeling that is developed.  
 

Utility of Predicted Trip Distribution Analysis 
 

The model also has a lot of utility for both policing and crime analysis.  A number of 
examples will be given.  First, it can be used for forecasting.  By calibrating the model on one 
data set, it be applied to a future data set.  As mentioned in Chapter 26, much of the population 
and employment data that form the basis of a trip generation model comes from a Metropolitan 
Planning Organization (MPO).  Most MPOs in the United States also make forecasts of future 
population and employment.  Those forecasts can be, in turn, converted into forecasts of future 
crime origins and crime destinations.  Thus, on the assumption that the distribution trends will 
remain the same over time, the trip distribution model can be applied to the forecast set of origins 
and destinations.  This could allow an examination of possible changes in the crime distribution 
(assuming that the future forecasts are correct and that the trip distribution coefficients remain 
constant).  
 

Second, a model of crime trip distribution can be useful for modeling changes in land 
uses.  For example, if a new shopping mall is being planned, one can take the existing trip 
generation model and adjust it to fit the planned situation (e.g., adding 500 retail jobs to the zone 
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in which the mall is being developed).  Then, the trip generation model is re-run with the new 
expected data, and the trip distribution model is applied to the predicted crime origins and crime 
destinations.  The result would be a model of likely crime trips to the new shopping mall.  This 
can be useful to the mall developers, to future businesses, and to the police.  If it turns out that 
the model forecasts there will be a sizeable number of crime trips to that mall, then preventive 
actions can be developed before the mall is built (e.g., improving security design in the mall; 
improving the parking lot arrangement). 
 

Third, a model of crime trip distribution can help in analyzing future interventions. For 
example, increasing police patrols in a high crime attraction area can be examined as to possible 
effectiveness before taking the trouble to reorganize deployment.  Or, adding a new drug 
treatment center or a new youth center can be modeled as to its possible effectiveness in 
changing the nature of crime trips.  Again, the input is at the data level, which affects the trip 
generation model.  But the trip distribution model is applied to the new outputs from the trip 
generation model. The advantage of a model is that it explores a set of interventions without 
having to actually having to implement them; it is a >thinking= tool for planning change. 
 

Fourth, and finally, a crime trip distribution model is helpful in developing crime theory.  
As indicated in Chapter 25, the theory of crime travel has been very elementary up to now.  The 
primary focus of analysis has been only on the destinations and on the trip lengths as measured 
by distance traveled.  A trip distribution model, on the other hand, analyzes both trip 
destinations and trip origins, and can include a more sophisticated measure of impedance than 
simple distance.  Because analysis is conducted over a larger area (a jurisdiction or a 
metropolitan area), the hierarchy of crime trips can be analyzed as an interaction between origins 
and destinations.  In short, a crime trip distribution model is a >quantum leap= in sophistication 
and complexity compared to the usual Journey-to-crime types of models.  Hopefully, it will 
generate even more sophisticated types of models.  The attachment illustrates how the crime 
travel demand model was used to examine possible interventions to reduce DWI trips ending in 
crashes in Baltimore County. 
 

The next chapter continues the travel demand model by examining how crime trip links 
are split into different travel modes.  That is, the trip distribution model estimates the number of 
trips flowing from each origin zone to each destination zone.  The mode split model then breaks 
these trips into distinct travel modes. 
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Modeling DWI Trips That End in Crashes 
in Baltimore County, MD 

 
    Ned Levine   Phil Canter   
    Ned Levine & Associates Towson University 
    Houston, TX   Towson, MD 
 
A crime travel demand study was conducted on 862 Driving While Intoxicated (DWI) motor 
vehicle crash trips that occurred in Baltimore County, Maryland between 1999 and 2001.  
Factors associated with both the residence location of the drivers and the crash location were 
identified.  The crime travel demand model was used to simulate the likely outcome of 
concentrating on a few zones with targeted interventions. It was estimated that a 7.5% reduction 
in DWI crashes could be obtained by targeting 3% of the origin zones and 6% of the destination 
zones with anti-DWI efforts. The full study can be found in Levine, N. & Canter, P. (2011), 
Linking origins with destinations for DWI Motor Vehicle Crashes: An application of crime 
travel demand modeling”. Crime Mapping, 3, 7-41. 
 

 



Targeting Crime on Public Transport:  
An Example from Greater Manchester, England 

 
Daisy Smith & Steph Winstanley 

Strategic Analytical Partnership Co-ordinators 
Greater Manchester Against Crime Central Team 

 
 
The aim of the Greater Manchester Against Crime Central Team was to provide GMPTE 
(Greater Manchester Passenger Transport Executive) with an evidence base for their 
resources to address incidents of crime and anti-social behaviour on public transport during a 
Greater Manchester Partnership Day of Action. The analysis made use of the Crimestat Crime 
Travel Demand module to map the ‘journey to crime’ (home address to offence location) 
taken by personal robbery offenders within Greater Manchester. As a result GMPTE were 
able to identify their role in the partnership operation as they could easily visualise the bus 
and Metrolink tram system routes that ran coterminous with the most frequent journeys taken 
by offenders.  
 
 
Personal Robbery: Internal Offending and Predicted Cross Border Trips 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
During the Day of Action, Gateway checks were conducted on the key public transport routes 
(bus routes and the Metrolink tram system) that were identified through Crimestat analysis. 
The Gateway checks consisted of staff from a range of agencies deployed on static and 
mobile patrols in order to identify fare evasion/ fraud and conduct intelligence checks. The 
agencies involved included Greater Manchester Police, GMPTE, Carlisle Security 
(independent enforcement agency) and the UK Border Agency. The public transport routes 
identified through Crimestat were targeted with much success and resulted in 7058 
passengers being checked, 496 buses boarded, 76 people identified without valid tickets, 28 
intelligence checks, 22 Bus Operator penalties issued and 22 arrests (including possession of 
illegal substances, robbery, fraud, outstanding warrant). The total fraud prevented through the 
Gateway Checks was estimated to be £3784.50 and extremely positive feedback was received 
from all agencies involved.  

Ex
The map shows a high number of predicted trips (10 to 
30) between Stockport and central Manchester. This 
mirrors the route of the 192 bus service, which travels 
along the A6 between Stockport and Manchester that was 
then identified as a main target for the Partnership Day of 
Action. 
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Chapter 29: 

Crime Mode Split 
 

In this chapter, the third modeling step in the crime travel demand model is discussed, 
mode split. Mode split involves separating (splitting) the predicted trips from each origin zone to 
each destination zone into distinct travel modes (e.g., walking, bicycle, driving, train, bus). 
 

This model has both advantages and disadvantages for crime analysis. At a theoretical 
level, it is the most developed of the four stages since there has been extensive research on travel 
mode choice.  For crime analysis, on the other hand, it represents the >weakest link= in the 
analysis since there is very little available information on travel mode by offenders. Since 
researchers cannot interview the general public in order to document crimes committed by 
respondents nor, in most cases, even interview offenders after they have been caught, there is 
very little information on travel mode by offenders that has been collected.1 Consequently, we 
have to depend on the existing theory of travel mode choice and adapt it intuitively to crime data.  
The approach is solely theoretical and depends on the validity of the existing theory and on the 
intuitiveness of guesses.  Hopefully, in the future, there will be more information collected that 
would allow the model to be calibrated against some real data.  But, for the time being, we are 
limited in what can be done. 
 

Theoretical Background 
 

The theoretical background behind the mode split module is presented first.  Next, the 
specific procedures are discussed with the model being illustrated with data from Baltimore 
County. 
 

Utility of Travel and Mode Choice 
 

The key aim of mode choice analysis is to distinguish the travel mode that travelers (or, 
in the case of crime, offenders) use in traveling between an origin location and a destination 
location. In the travel demand model, the choice is for travel between a particular origin zone and 

                         
1  There is no reason this data could not be collected. Typically, many police departments collect information 

on >Method of departure= from a crime scene. When a police report is taken, the victim is sometimes asked 
how the offender left the scene. In most cases, the information is not recorded on the police forms, or at 
least those that have been examined. This information is probably unreliable in any case since many 
offenders will take the bus or leave their car nearby while they walk/run to the crime scene.  Still, if police 
departments were to put more effort into collecting this information and, perhaps, to validating it with 
arrested offenders, then it is possible to build up reliable data sets that can be used to model mode split.  
Until then, unfortunately, we have to rely on theory rather than evidence. 
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a particular destination zone. Thus, the trips that are distributed from each origin zone to each 
destination zone in the trip distribution module are further split into distinct travel modes. 
 

With few exceptions, the assumption behind the mode split decision is for a two-way trip.  
That is, if an offender decides on driving to a particular crime location, we normally assume that 
this person will also drive back to the origin location. Similarly, if the offender takes a bus to a 
crime location, then that person will also take the bus back to the origin location. There are, of 
course, exceptions.  A car thief may take a bus to a crime location, then steal a car and drive 
back.  But, in general, without information to the contrary, it is assumed that the travel mode is 
for a round trip journey.   
 

Underlying the choice of a travel mode is assumed to be a utility function. Chapter 21 
discusses the economic theory of utility choice, so the discussion here will be brief.  Essentially, 
mode split utility is a function that describes the benefits and costs of travel by that mode 
(Ortuzar & Willumsen, 2001).  This can be written with a conceptual equation: 
 
 ,        (29.1) 
 
where >f= is some function of the benefits and the costs.  The benefits have to do with the 
advantages in traveling to a particular destination from a particular origin while the costs have to 
do with the real and perceived costs of using a particular mode.  Since the benefits of traveling 
to a particular destination from a particular origin are probably equal, the differences in utility 
between travel modes essentially represent differences in costs (Train, 2009).  Thus, Equation 
29.1 breaks down to: 
 
          (29.2) 
 
where ‘F’ is another function but this time of only the costs.  If different travel modes (e.g., 
driving, biking, walking) are each represented by a separate utility cost function, then they can be 
compared: 
 
 	… .     (29.3a) 
 	… .     (29.3b) 
 	… .     (29.3c) 
 . 
 . 
 	… .     (29.3l) 
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where Utility1 through UtilityL represents l distinct travel modes, cost1through costk represent k 
cost components and are variables, and F1 through Fl represent l different utility functions (one 
for each mode). 
 

There are several observations that can be made about this representation.  First, each of 
the cost components can be applied to all modes.  However, the cost components are variables 
in that the values may or may not be the same.  For example, if cost1 is the operating cost of 
traveling from an origin to a destination, the cost for a driver is, of course, a lot higher than for a 
bus passenger since the latter person shares that cost with other passengers. Similarly, if cost2 is 
the travel time from a particular origin zone to a particular destination zone, then travel by 
private automobile may be a lot quicker than by public bus. Time differences can be converted 
into costs by applying some type of hourly wage/price to the time.  To take one more example, 
for driving mode, there could be a cost in parking (e.g., in a central business district); for transit 
use, on the other hand, this cost component is zero.   In other words, each of the travel modes 
has a different cost structure.  The same costs can be enumerated, but some of them will not 
apply (i.e., they have a value of 0).  

 
Second, the costs can be perceived costs as well as real costs.  For example, a number of 

studies have demonstrated that private automobile use is seen by most people as far more 
convenient to than bus or train (e.g., see Schnell, Smith, Dimsdale, & Thrasher, 1973; Roemer & 
Sinha, 1974; WASHCOG, 1974; Carnegie-Mellon University, 1975; Johnson, 1978; Levine & 
Wachs, 1986). >Convenience= is defined in terms of ease of access and effort involved in travel 
(e.g., how long it takes to walk to a bus stop from an origin location, the number of transfers that 
have to made to reach a final destination, and the time it takes to walk from the last bus stop to 
the final destination).  While it is sometimes difficult to separate the effects of convenience 
from travel itself, it is clear that most people perceive this as a dimension in travel choice.  In 
turn, convenience can be converted into a monetary value in order to allow it to be calculated in 
a cost equation, for example how much people are willing to pay in time savings to yield an 
equivalent amount of convenience (e.g., asking how many more minutes in travel time by bus an 
individual would be willing to absorb in order to give up having to drive).   
 

Third, these costs can be considered at an aggregate as well as individual level.  At an 
aggregate level, they represent average or median costs (e.g., the average time it takes to travel 
between zone A and zone B by private automobile, bus, train, walking, or biking;  the average 
dollar value assigned by a sample of survey respondents to the convenience they associate in 
traveling by car as opposed to bus).   
 

On the other hand, at an individual level, the costs are specific to the individual.  For 
example, travel time differences between car and bus can be converted into an hourly wage using 
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the individual=s income (i.e., someone making $100,000 a year is going to price that time savings 
differently than someone making only $25,000 a year).   
 

Fourth, a more controversial point, the specific mathematical function that ties the costs 
together into a particular utility function may also differ.  Typically, most travel demand models 
have assumed that a similar mathematical function is used for all travel modes; this is the 
negative exponential function described below (Ortuzar and Willumsen, 2001; Domencich & 
McFadden, 1975). However, there is no reason why different functions cannot be used.  Thus, 
the equations above identify different functions for the modes, F1 through FL.  One can think of 
this in terms of weights.  Each of the different mathematical function weigh the cost 
components differently. 
 

It is an empirical question whether individuals apply different functions to evaluating the 
different modes.  For example, most people would not drive just to travel one block (unless it 
was pouring rain or unless a heavy object had to be delivered or picked up).  Even though it is 
convenient to get into a vehicle and drive the one block, most people see the effort involved 
(and, most likely, the fuel and oil costs) as not being worth it.  
 

In other words, it appears that a different utility function is being applied to walking as 
opposed to driving (i.e., walk up to a certain distance; drive thereafter).  A strict utility theorist 
might disagree with this interpretation saying that the per minute cost of walking the one block 
and back was less than the monetized per minute cost of operating the vehicle (which may 
include opening a garage door, getting into the vehicle, starting the vehicle, driving out of the 
parking spot, closing the garage door, and then driving the one block).  In other words, it could 
be argued that the difference in behavior has to do with the values of the different cost 
components, rather than the way they are weighed together (the mathematical function).  In 
retrospect, one can explain any difference. It is argued in this chapter, however, that crime trips 
appear to show different likelihoods by travel mode and that treating each of these functions as 
distinct allows more flexibility in the framework.  
 

Discrete Choice Analysis 
 

No matter how the utility functions are defined, they have to be combined in such a way 
as to allow a discrete choice.  That is, an offender in traveling from zone A to zone B makes a 
discrete choice on travel mode.  There may be a probability for travel by each mode, for 
example 60% by car and 40% by bus.  But, for an individual, the choice is car or bus, not a 
probability. The probabilities are obtained by a sample of individuals, for example of 10 
individuals 6 went by car and 4 went by bus. But, still, at the individual level, there is a distinct 
choice that was made. 
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Multinomial Logit Function 
 

A common mathematical framework that used is for mode choice modeling at an 
aggregate level is the multinomial logit function (Ortuzar & Willumsen, 2001; Oppenheim, 1980; 
Domincich & McFadden, 1975; Stopher & Meyburg, 1975).  Chapter 21 on discrete choice 
modeling discussed this model extensively but for individual decision makers. If there was data 
available on the individual travel mode choices made by offenders, then an individual level 
discrete choice model could be constructed.  However, till now, such data has not been 
available.  Consequently, the modeling has to occur for zone-to-zone interactions rather than for 
individuals choosing among zones. 

 
The multinomial logit model used is for aggregate zone-to-zone flows. That is, for all 

trips from zone	  to zone	 , a multinomial model can be defined as: 
 

 
∑

         (29.4) 

 
where PijL is the probability of using a mode for any particular trip link (particular origin zone 
	to particular destination ), L is the travel mode, Vni is the representative utility (that observed 

by the researcher/analyst as opposed to total utility which includes unobserved factors) for zone 
,	among 	alternative destinations. The representative utility, in turn, is seen as a linear 

combination of independent variables (predictors) for travel from origin zone	 , to destination 
zone : 
 

 ∑         (29.5) 

 
where VijL is the utility of traveling from origin zone , to destination zone , L is the travel 
mode, and βjL are coefficients.   
 
 Substituting equation 29.5 into equation 29.4, we have: 
 

 
∑

∑
∑

        (29.6) 

 
which relates the linear combination for any one mode to the sum of the linear combinations of 
all modes. 
 

Several observations can be made about this function.  First, the multinomial logit 
model relates the choice of alternatives to differences in the characteristics of the zones, both 
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origin and destination (the Xijl), rather than to the differences in the destination zones themselves.  
This is different than the more general conditional logit model which relates the choices to the 
characteristics of the alternatives (destinations) and to interactions between the origin zones and 
the destination zones (and is also discussed in Chapter 21). 

 
Second, each travel mode, L, has its own costs and benefits and can be evaluated by 

itself. That is, each origin zone have a different set of destination alternatives according to the 
characteristics of both the origin and destination zones.  That is, there is a distinct utility 
function for each mode.  This is the numerator of Equation 29.6.  However, the choice of any 
one mode is dependent on its utility value relative to other modes (the denominator of the 
equation).  The more choices that are available, obviously, the lower the probability that a 
particular origin-destination zone combination will have for that mode.  But the value 
associated with the mode (the utility) does not change.  As mentioned above, we generally 
assume that the benefit of traveling between any two zones is identical for all modes and, hence, 
any differences are due to costs.  
 

Third, the mathematical form is the negative exponential.  The exponential function is a 
growth function in which growth occurs at a constant rate (either positive - growth, or negative - 
decline).  The use of the negative exponential assumes that the costs are related to the 
likelihood as a function that declines at a constant rate.  It is actually a >disincentive= or 
>discount= function rather than a utility function, per se.  That is, as the costs increase, the 
probability of using that mode decreases, all other things being equal.  Still, for historical 
reasons, it is still called a utility function. 
 

Fourth, for any one mode, the total cost is a logarithmic function of individual cost 
components: 
 

 ∑         (29.7) 
 

 ∑        (29.8) 

 
where the cumulative cost is made up of independent predictors X1, X2 through XJ, and β1 
through βk are coefficients for the individual cost components. Thus, we see that the utility 
function is a loglinear model, as was seen in Chapter 13.  Thus, the utility function is Poisson 
distributed, declining at a constant rate with increasing cumulative costs.  Domincich and 
McFadden (1975) point out that the error term is not Poisson distributed, but skewed as a Type I 
extreme value distribution (sometimes called a Gumbel distribution; Train, 2009).  As discussed 
in Chapters 16-17, there are a variety of different Poisson models that incorporate skewed error 
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terms (Poisson-Gamma, Poisson-lognormal, COM-Poisson) and which could also be used to 
fine-tune the fit. Nevertheless, the mean utility is a Poisson-type function. 
 

Generalized Relative Utility Function 
 

One can generalize this further to allow any type of mathematical function.  While the 
Poisson has a long history and is widely used, allowing other non-linear functions allows greater 
flexibility. It is possible that individuals apply different weighting systems in evaluating different 
modes (e.g., a negative exponential for walking, but a lognormal function for driving). We 
certainly see what appear to be different functions when the actual travel behavior of individuals 
are examined (e.g., homeless individuals don=t walk everywhere even though the cost of walking 
long distances is cheaper in travel time than taking a bus2; people don=t drive or take a bus for 
very short distances, say a block or two).  Therefore, if we allow that there are different travel 
functions for different modes, then more flexibility is possible than by assuming a single 
mathematical function.   
 

We can, therefore, write a generalized relative utility function as: 
 

 
∑ ∑

        (29.9) 

 
where the terms are the same as in 29.4 except the function, FL, is some function that is specific 
to the travel mode, L.  The numerator is defined as the impedance of mode L in traveling from 
origin zone	  to destination zone  while the denominator is the sum of all impedances. 
 

Notice that the ratio of the cost function for one mode relative to the total costs is also the 
ratio of the impedance for mode L relative the total impedance.  The total impedance was 
defined in Chapter 28 as the disincentive to travel as a function of separation (distance, travel 
time, cost).  We see that the share of a particular mode, therefore, is the proportion of the total 
impedance of that mode.  This share will vary, of course, with the degree of separation.  For 
any given separation, there will usually be a different share for each mode.  For example, at low 
separation between zones (e.g., zones that are next to each other), walking and biking are much 
more attractive than taking a bus or a train and, perhaps even driving.  At greater separation 
(e.g., zones that are 5 miles apart), walking and biking are almost irrelevant choices and the 
likelihood of driving or using public transit is much greater. In other words, the share that any 
one mode occupies is not constant, but varies with the impedance function. 

                         
2  In a survey of the travel behavior of homeless persons, it was noted that most homeless walked very short 

distances over the day even though the value of their time was very low. For longer trips, they still tended 
to take the bus rather than walk.  Survey on the travel behavior of very low income individuals.  Urban 
Planning Program, University of California at Los Angeles, 1987 (with Martin Wachs). 
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Why then cannot the mode split be estimated directly at the trip distribution stage?  If 
the trip distribution function is: 

          (28.12 repeat)  

 
and if these trips, in turn, are split into distinct modes using equation 29.9, could not 28.12 be 
re-written as: 
 

          (29.10) 

 
where TijL is the number of trips traveling from origin zone	  to destination zone  by mode L, 
Pi is the production capacity of zone	 , Aj is the attraction of zone	 , α and β are constants that are 
applied to the productions and attractions respectively, λ and τ are >fine tuning= exponents of the 
productions and attractions respectively, and IijL, is the impedance of using mode L to travel 
between the two zones? The answer is, yes, it could be calculated directly.  If IijL was a 
perfectly defined impedance function (with no error), then the mode share could be calculated 
directly at the distribution stage instead of separating the calculations into two distinct stages. 
The problem, however, is that the impedance functions are never perfect (far from it, in fact) and 
that re-scaling is required both to get the origins and destinations balanced in the trip distribution 
stage and to ensure that the probabilities in equation 29.10 add to 1.0. The effect of these 
adjustments generally throws off a model such as equation 29.10. Consequently, the trip 
distribution and mode split stages are usually calculated as separate operations. 

 
Measuring Travel Costs 

 
The next question is what types of travel costs are there that define impedance? As 

mentioned above, there are real as well as perceived costs that affect a travel mode decision.  
Some of these can be measured easily, while others are very difficult requiring detailed surveys 
of individuals. Among these costs are: 
 

1. Distance or travel time.  As mentioned throughout this discussion, distance is 
only a rough indicator of cost since it is invariant with respect to time.  Actual 
travel time is a much better indicator because it varies throughout the day and can 
be easily converted into a travel time value, for example by multiplying by an 
average unit wage. 

 
2. Other real costs, such as the operating costs of a private vehicle (fuel, oil, 

maintenance), parking, and insurance.  Some of these can be subsumed under 
travel time value by working out an hourly price for travel. 
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3. Perceived costs, such as convenience, fear of being caught by an offender, ease of 
escape from a crime scene, difficulties in moving stolen goods, and fear of 
retaliation by other offenders or gangs). 

 
Some of these costs can be measured and some cannot.  For example, the value of travel 

time can be inferred from the median household income of a zone for aggregate analysis or from 
the actual household income for individual-level analysis.  Parking can be averaged by zone.  
Insurance costs can be estimated from zone averages if the data can be obtained. 
 

Many perceived costs also can be measured.  Convenience, for example, could be 
measured from a general survey. The fear of being caught can be inferred from the amount of 
surveillance in a zone (e.g., the number of police personnel, security guards, security cameras).  
Even though it may be a difficult enumeration process, it is still possible to measure these costs 
and come up with some average estimate. 
 

Other perceived costs, on the other hand, may not be easily measured.  For example, the 
fear an offender belonging to one gang has about retaliation from another gang is not easily 
measured. If one could map the ‘territory’ of a gang, then one could members of one territory 
would not commit a crime in another territory (Bernasco & Block, 2009). Similarly, the cost of 
moving stolen goods by a thief is not easily measured; one would need to know the location of 
the distributors of these goods.   
 

In practice, travel modelers make simple assumptions about costs because of the 
difficulty in measuring many of them.  For example, travel time is taken as a proxy for all the 
operating costs.  Parking costs can be incorporated through simple assumptions about the 
distribution across zones (e.g., zones within the central business district - CBD, are given an 
average high parking costs; zones that are central, but not in the CBD, are assigned moderate 
parking costs; zones that are suburban are assigned low parking costs).  It would be just too 
time consuming to document each and every cost affecting travel behavior, particularly if we are 
developing a model of offender travel. 
 

Nevertheless, theoretically, these are all potentially measurable costs.  They are real and 
probably have an impact in the travel decisions that offenders make. As researchers and analysts, 
we have to work towards articulating as many of these costs as possible in order to produce a 
realistic representation of offender travel.   
 

Aggregate and Individual Utility Functions 
 

One of the big debates in travel modeling is whether to use aggregate or individual utility 
functions to calculate mode share. The aggregate approach measures common costs for each 
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zone, assuming an average value. The disaggregate approach (sometimes called >second 
generation= models) measures unique costs for individuals, then sums upward to yield values for 
each zone pair.  Even though the end result is an allocation of costs to each zone pair, the 
articulation of unique costs at the individual level can, in theory, allow a more realistic 
assessment of the utility function that is applied to a region. 
 

The aggregate approach will measure costs by averages. Thus, a typical equation for 
driving mode might be: 
 
 	        (29.11) 

 
where Tij is the average travel time between two zones,	  and	 , and Pij is the average parking 
cost for parking in zone j.  Notice that there are a limited number of variables in an aggregate 
model (in this case, only two) and that the assigned average is for an entire zone. Notice also that 
the parking cost is applied only to the destination zone. It is assumed that any traveler will pay 
that fee in that zone irrespective of which origin zone he/she came from.   
 

A disaggregate approach can allow more cost components, if they are measured.  Thus, 
a typical equation for driving mode might be: 
 
 	    (29.12) 

 
where Tijk is the travel time for individual k between two zones,	  and	 , Pij is the average parking 
cost for parking in zone	 , Cijk is the convenience of traveling to zone	  from zone	  for 
individual , Mijk is the comfort and privacy experienced by individual k in traveling from zone 
 to zone , and Sijk is the perceived safety experienced by individual k in traveling from zone  

to zone .  Notice that there are more cost variables in the equation and that the model is 
targeted specifically to the individual, k.  Two individuals who live next door to each other and 
who travel to the same destination may evaluate these components differently.  If these 
individuals have substantially different incomes, then the value of the travel time will differ.  If 
one values privacy enormously while the other does not, then the cost of driving for the first is 
less than for the second.  Similarly, convenience is affected by both travel time and the ease of 
getting in and out of vehicle.  Finally, the perception of safety may differ for these two 
hypothetical individuals.  There are many studies that have documented the significant role 
played by safety in affecting, particularly, transit trips (Levine & Wachs, 1986). 
 

In other words, the aggregate approach applies a very elementary type of utility function 
whereas the disaggregate approach allows much more complexity and individual variability.  
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Of course, one has to be able to measure the individual cost components, a difficult task under 
most circumstances. 
 

There is also a question about which approach is more accurate for correctly forecasting 
actual mode splits.  Historically, most Metropolitan Planning Organizations have used the 
aggregate method because it=s easier.  However, more recent research (McFadden, 2002; 
Ben-Akiva & Lerman, 1985; Domincich & McFadden, 1975) has suggested that disaggregate 
modeling may be more accurate. At the very minimum, the disaggregate model is more 
amenable to policy interpretations because it is more behavioral. If one could interview travelers 
with a survey, then it is possible to explore the variety of cost factors that affect a decision on 
both destination and mode split, and a more realistic (if not unique) utility function derived.  
 

But, as mentioned above, with crime trips, this is very difficult, if not impossible, to do.  
Consequently, for the time being, we are stuck with an aggregate approach towards modeling the 
utility of travel by offenders. 

 
Tools for Estimating Mode Split in CrimeStat 
 

CrimeStat has two sets of tools for estimating the mode split model.  First, if individual 
level data on travel modes can be obtained, then the multinomial logit model in the Discrete 
Choice module can be used (see Chapters 21 and 22).  That is, if data on actual mode choices 
taken by offenders could be obtained with characteristics of both the offenders and the zones in 
which they lived or committed crimes in being associated with those choices, then the preferred 
method would be to use the multinomial logit to model the predictors of mode choice. 

 
Second, if individual level data on travel modes is not available (the usual circumstances 

in most police department), then an approximation to a utility function can be made. The 
approach, in this case, is to estimate a relative accessibility function and then apply that function 
to the predicted trip distribution. The relative accessibility function is a mathematical 
approximation to a utility function, rather than a measured utility function by itself.  Because 
the cost components cannot be measured, at least for offenders, we use an inductive approach.  
Reasonable assumptions are made and mathematical functions are found that fit these 
assumptions. 
 

Relative Accessibility 
 

The relative accessibility approach produces a plausible model, not an analytical one.  
The plausibility comes by making reasonable assumptions about actual travel behavior. One can 
assume that walking trips will occur for short trips, say under two miles.  Bicycle trips, on the 
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other hand, could occur over longer distances, but will still be relatively short (also, there is 
always the risk of traffic on the safety of bicycle trips). Transit trips (bus and train) will be used 
for moderately long distances but require an actual transit network.  Finally, driving trips are 
the most flexible because they can occur over any size distance and road network.  They are 
less likely to be used for very short trips, on the other hand, due to reasons discussed above.  
 

Hierarchical Approach to Estimating Mode Accessibility 
 
Using this approach, specific steps can be defined to produce a plausible accessibility 

model. The Mode Split tab in CrimeStat allows the estimation of a relative accessibility model. 
Figure 29.1 shows the setup page for the mode split module.  There are four tabs in the mode 
split module: 

 
1. The setup tab 
2. Calibrate mode split: I 
3. Calibrate mode split: II 
4. Calibrate mode split: III 
 
The setup tab defines the three files that are used in the module.  There is predicted 

origin file, a predicted destination file, and a predicted origin-destination trip file.  Both the 
predicted origin file and the predicted destination file have to be defined as the Primary file or 
Secondary file and ID fields have to be defined for each.  The predicted origin-destination trip 
file is input separately on this tab. The variable identifying the predicted number of trips must be 
defined. Figure 29.1 illustrates this one data set. 

 
The next three tabs define up to five separate travel modes. The first Calibrate mode split 

tab defines modes 1 and 2. The second tab defines modes 3 and 4 and the third defines mode 5. 
The user can assign any one mode to each of these available slots. For example, mode 1 could be 
walking; mode 2 could be driving; mode 3 could be bus; mode 4 could be train; and mode 5 
could be bicycle. There is no particular order to the assignment and not all five available modes 
have to be used. Figure 29.2 illustrates the defining of two modes on the ‘Calibrate mode split: I’ 
tab where mode 1 is walking and mode 2 is by bicycle. 

 
For each of the modes that are used, the user must define an impedance function.  The 

impedance function is a mathematical function that approximates the discounting of that mode 
with distance.  The user can use a pre-defined mathematical function or else estimate it using an 
already-calibrated impedance function (see Chapter 28, page 28.24). In the example in Figure 
 

 



Figure 29.1:

Mode Split Module



Figure 29.2:

The ‘Calibrate Model Split: I’ Tab
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29.2, a mathematical function is being used for both the walking mode (mode 1) and the bicycle 
mode (mode 2). For the walking mode, the following negative exponential function is used: 
 
 0.02 .          (29.13) 

 
while bicycle mode uses a negative exponential function of the following form: 
 
 0.002 .          (29.14) 

 
 Note that these are not probabilities but frequencies. That is, equation 29.13 estimates the 
number of walking trips as a function of distance between two zones,	  and	 .  Each equation 
discounts the likelihood of using that mode as a function of distance between the zones. The 
probabilities are estimated later when the frequency of all modes have been defined.   
 
 Spreadsheet for Estimating Mode Split Impedance Values 
 

To identify the parameters that produce a plausible model of mode frequency, an Excel 
spreadsheet has been developed for making these calculations (Mode Split Impedance 
Defaults.xls). It is part of the “Crime Travel Demand Sample Data.zip” file and can be 
downloaded from the CrimeStat download page. Figure 29.3 shows part of the spreadsheet. 

 
The spreadsheet has been defined with distance, but it can be adapted for travel time or 

travel cost as well. A spreadsheet has been used because it is more flexible than incorporating it 
as a routine in CrimeStat to estimate the parameters. There is not a single solution to the 
parameters estimates and the different choices can be seen more easily. 
 

 Define travel modes 
 
The following provides instructions on estimating the impedance values with the 

spreadsheet. In the CrimeStat mode split routine, up to five different modes are allowed.  First, 
the user should define the travel modes to be modeled. In the spreadsheet, these have default 
names of AWalk@, ABike@, ADrive@, ABus@, and ATrain@. The user is not required to use these 
names nor all five modes.  Clearly, if there is not a train system in the study area, then the 
ATrain@ mode does not apply.  Travel modelers use variations on these, such as Adrive 
alone@,@carpool@, Aautomobile@, Amotorcycle@, and so forth. 

 
 

 



Figure 29.3:

Estimating Mode Split Impedance Valuesg p p
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Define target proportions 
 

Second, define the target proportions. These are the expected proportions of travel for 
each mode. Where would such proportions come from?  There have been many studies of 
driving and transit behavior, but relatively few studies of bicycle and pedestrian use (Schwartz et 
al, 1999; Porter, Suhrbier & Schwartz, 1999; Turner, Shunk, & Hottenstein, 1998). There are not 
simple tables that one can look up default values. 

 
Other studies 

 
To solve this problem, examples were sought from different size metropolitan areas.  

Estimates of travel mode share for all trip purposes (work and non-work) were obtained from 
Ottawa (McCormick Rankin, 2011; Ottawa, 2008), Portland (Portland, 1998); and Houston3. 
Table 29.1 shows the estimated shares.  The Houston data does not include walking and biking 
shares, and transit trips are not distinguished by mode in the Portland and Ottawa data. 
 

Table 29.1: 

Estimated Mode Share for Three Metropolitan Areas 

All Trip Purposes 
 

Ottawa  Portland  Houston 
 
Population:   725 thousand  2.0 million  4.6 million 
     (1995)   (2001)   (2000) 
 
Percent of trips by:  (1995)   (1994)   (2025 forecast) 
Driving   73.5%   88.6%   98.3% 
Transit    15.2%    3.0    1.7%  

(bus 1.1%; rail 0.6%)  
Walking     9.6%    4.6%      - 
Bicycle     1.7%    1.0%      - 
Other      -    2.8%      - 
 

While it is difficult to generalize, walking is very much dependent on both the 
compactness of the city and the existence of an extensive transit system. In Houston, the transit 
system is primarily a commuter system whereas in Portland and Ottawa, it serves multiple 
purposes. Clearly, the more compact is the urban area, the more likely that trips will occur by 
transit, walking or biking.  But, even in the case of Ottawa where almost 10% of trips are by 

                         
3  Houston-Galveston Area Council. Personal communication. 2004. 
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walking, the majority of trips are by private vehicle.  In the United States and Canada, for 
metropolitan areas with extensive transit facilities (New York, Chicago, Boston, Montreal), a 
majority of regional trips are still by automobile. 

 
Based on this, some default values were selected and put into the spreadsheet. The 

spreadsheet requires that they are entered as proportions (not percentages). The defaults values 
were (Table 29.2): 
 

The user can modify these in the spreadsheet.  It is important that a user contact the 
local Metropolitan Planning Organization to find out what would be reasonable values for the 
urban area.  The default values are guesses based on a limited amount of data.  

 
Table 29.2: 

Default Mode Share Values 

Proportions 
Mode  Share 
Driving     .90 
Bus     .04 
Train     .01 
Walk     .04 
Bicycle     .01 

 
  Journey to work census 

 
An alternative approach is to use the Journey to Work data of the U.S. Census Bureau 

(2004).  During every census, the Census Bureau documents home-to-work >commute= trips and 
breaks down these data by mode share. They release these data under the title AJourney to Work@. 
The 2010 Journey to Work data set has not been released.  However, in 2000 in the United 
States, 87.9% of all home-to-work trips were by private vehicle (automobile, van, truck), 4.7% 
were by public transit (bus 2.5%; rail 2.1%; other 0.1%), 2.9% were by walking, 0.4% were by 
bicycle, 0.1% were by motorcycle, 0.7% were by other means, and 3.3% worked at home. 
 

National journey to work statistics for 1990 and 2000 and for metropolitan areas in 1990 
can be found at U.S. Census, 2009). Data on metropolitan areas for 2000 can be found in 
McGuckin and Srinivasan (2003).  In 2000, the home-to-work mode share for a sample of large 
metropolitan (including the 15 largest) areas is shown in Table 29.3.  They are rank-ordered by 
the 2000 population of the metropolitan area. 
 

As can be seen, the larger metropolitan areas generally have a higher share of transit use 
and walking than smaller metropolitan areas, but the differences are not that dramatic.  Further,  
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Table 29.3: 

Mode Share of Journey to Work Trips: 2000 
(From McGuckin & Srinivasan, 2003) 

 
Greater      Mode Share 
Metropolitan 2000  
Area Pop (M) Walk  Bicycle Drive Bus Rail Other* 
New York 21.1 5.6%     0.3% 65.7%   6.8% 17.1% 4.5% 
Los Angeles 16.4 2.6%     0.6% 87.6% 4.3% 0.3% 4.6% 
Chicago  9.2 3.1%     0.3% 81.5% 4.6% 6.6% 3.9% 
Washington DC  7.6 3.0%     0.3% 83.2% 4.1% 5.0% 4.4% 
San Francisco  7.0 3.3%     1.1% 81.0% 5.7% 3.5% 5.4% 
Philadelphia  6.2 3.9%     0.3% 83.6% 5.3% 3.3% 3.6% 
Detroit  5.5 1.8%     0.2% 93.4% 1.7% 0.0% 2.9% 
Boston  5.8 4.1%     0.4% 82.7% 3.2% 5.5% 4.1% 
Dallas  5.2 1.5%     0.1% 92.7% 1.6% 0.1% 4.0% 
Houston  4.7 1.6%     0.3% 91.3% 3.1% 0.0% 3.7% 
Atlanta  4.1 1.3%     0.1% 90.6% 2.4% 1.1% 4.5% 
Miami  3.9 1.8%     0.5% 90.1% 3.2% 0.5% 3.9% 
Seattle  3.6 3.2%     0.6% 84.4% 6.2% 0.0% 5.6% 
Phoenix  3.3 2.1%     0.9% 90.0% 1.9% 0.0% 5.1% 
Minneapolis/ 
St Paul   3.0 2.4%     0.4% 88.4% 4.4% 0.0% 4.4% 
Cleveland  2.9 2.1%     0.2% 91.1% 3.1% 0.3% 3.2% 
San Diego  2.8 3.4%     0.6% 86.9% 3.1% 0.2% 5.8% 
St Louis  2.6 1.6%     0.1% 92.5% 2.1% 0.2% 3.5% 
Denver  2.6 2.4%     0.7% 87.1% 4.2% 0.1% 5.5% 
Pittsburgh  2.4 3.6%     0.1% 87.1% 6.0% 0.1% 3.1% 
Portland  2.3 3.0%     0.8% 85.2% 5.1% 0.5% 5.4% 
Cincinnati  2.0 2.3%     0.1% 91.4% 2.8% 0.0% 3.4% 
Sacramento  1.8 2.2%     1.4% 88.9% 2.4% 0.3% 4.8% 
Kansas City  1.8 1.4%     0.1% 93.2% 1.2% 0.0% 4.1% 
Milwaukee  1.7 2.8%     0.2% 90.0% 3.9% 0.0% 3.1% 
Indianapolis  1.6 1.7%     0.2% 93.3% 1.2% 0.0% 3.6% 
Orlando  1.6 1.3%     0.4% 92.7% 1.6% 0.0% 4.0% 
San Antonio  1.6 2.4%     0.1% 90.9% 2.8% 0.0% 3.8% 
Norfolk  1.6 2.7%     0.3% 91.0% 1.7% 0.0% 4.3% 
Las Vegas  1.6 2.4%     0.5% 89.5% 3.9% 0.0% 3.7% 
Charlotte  1.5 1.2%     0.1% 93.8% 1.3% 0.0% 3.6% 
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Table 29.3: (continued) 
 
Greater      Mode Share 
Metropolitan 2000  
Area Pop (M) Walk  Bicycle Drive Bus Rail Other* 
New Orleans  1.3 2.7%     0.6% 87.7% 5.2% 0.0% 3.8% 
Salt Lake City  1.3 1.8%     0.4% 90.3% 2.7% 0.3% 4.5% 
Memphis  1.1 1.3%     0.1% 93.9% 1.6% 0.0% 3.1% 
Rochester  1.1 3.5%     0.2% 90.9% 1.9% 0.0% 3.5% 
Oklahoma City  1.1 1.7%     0.2% 93.8% 0.5% 0.0% 3.8% 
Louisville  1.0 1.7%     0.2% 92.9% 2.2% 0.0% 3.0% 
---------------------------------------------------------------------------------------------------------------------   
* Includes taxi, ferry, and working at home 
 
for even the largest metropolitan areas, the majority of the home-to-work trips are by private 
vehicle. 

 
The problem with these data, however, is that they only examine work trips. Nationally, 

home-to-work trips represent only about 15% of all daily trips (BTS, 2002). On the other hand, 
45% of daily trips are for shopping and errands and 27% are social and recreational. Further, 
non-work trips are even more likely to occur by automobile, and are generally shorter. For 
example, in Houston, for home-based non-work trips, only 1% of trips were by transit compared 
to 3.1% for home-to-work trips in 2004. These home-based non-work trips may be a better 
analogy to crime trips than work trips since they tend to be of similar trips lengths as crime trips. 

 
 

Thus, unless the user is willing to assume that a crime trip is like a work trip (which is 
questionable), then the Journey to Work tables are probably not the best guide for the target 
proportions.  Nevertheless, an examination of them is valuable to see how work trips are split 
among the various travel modes. 
 

Select mode functions 
 

Third, select mathematical functions that approximate accessibility utility.  Again, some 
plausible assumptions need to be made.  In CrimeStat, the user can select among five different 
mathematical functions (linear, negative exponential, normal, lognormal, truncated negative 
exponential).  The default functions are shown in Table 29.4 below. 
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Table 29.4: 

Default Mode Share Functions 
 

Mode  Function 
Walk  Negative exponential 
Bicycle  Negative exponential 
Driving  Lognormal 
Bus  Lognormal 
Train  Lognormal 

 
The reasoning behind this is that walking and biking are relatively short trips whereas 

transit modes involve intermediate length trips. Finally, driving can be used for any length trip 
other than very short trips (e.g., less than one or two blocks).  Thus, it is unlikely that an 
automobile will be used for very short trips (less than a quarter mile) and it is very unlikely that 
transit will be used for short trips (less than a half mile or more).  Nevertheless, the user can 
modify these choices and examine the appropriate column in the spreadsheet. 

 
Select model priorities 

 
Fourth, select the priorities for modeling the target. Unfortunately, there may not be a 

single solution that will yield the target proportions. Therefore, a decision needs to be made on 
which order the spreadsheet will be calculated. The default order is shown Table 29.5. 
 

Table 29.5: 

Default Mode Share Functions 
  

Order of 
Mode  Iteration 
Walk  1 
Bicycle  2 
Driving  3 
Bus  4 
Train  5 

 
The reasoning is that the offender first makes a decision on the length of the trip (short, 

medium, long, or the equivalent in travel time). Then, within each category, the offender makes a 
decision on which mode to choose. For very short trips, the default mode is walking.  For 
intermediate to long trips, the default choice is driving.  However, the user can change this 
order.   
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Iteratively estimate parameters 
 

Fifth, in the spreadsheet, iteratively adjust the parameters until the target proportion is 
reached.  Do this in the order selected in the above step.  Again, there is not a single solution 
that will produce the target proportion. For example, each of the mathematical functions has two 
or three parameters that can be adjusted: 
 

1. For the negative exponential, the coefficient and exponent 
2. For the normal distribution, the mean distance, standard deviation and coefficient 
3. For lognormal distribution, the mean distance, standard deviation and coefficient 
4. For the linear distribution, an intercept and slope 
5. For the truncated negative exponential, a peak distance, peak likelihood, intercept, 

and exponent.   
 

The target proportion can be achieved by adjusting any or all of the parameters.  For 
example, to achieve a target proportion of 0.05 (i.e., 5%) using the negative exponential, an 
infinite number of models can yield this, for example coefficient=0.0366, exponent=-2.63; 
coefficient=0.0459 or exponent=-5; coefficient=0.01966, exponent=-1; and so forth.  Therefore, 
there must be additional criteria to constrain the choices. 
 

One criterion is to set an approximate mean distance.  For example, with walking trips, 
the mean distance can be set to a half mile or for driving, the mean distance can be set to 6 miles.  
Then, check the approximate mean distance of the selected function. Though rarely will the exact 
mean distance be replicated, the calculated mean distance should be close to the ideal.  The one 
exception is for very short trips.  Since the intervals in the spreadsheet are a half mile each, 
there is considerable error for very short distances. 

 
Examine the graphs in the spreadsheet 

 
Another diagnostic tool is to examine the graph of the function in the spreadsheet (below 

the calculations).  Does the typical trip approximate the expected mean distance?  Does the 
selected function produce something that looks intuitive?  Admittedly, these are subjective 
decisions.  But, if the function looks strange, it can be caught and re-calculated. 
 

In short, the aim should be to produce a function that not only captures the target 
proportion, but looks plausible.  Several examples are shown below.  Figure 29.4 shows the 
default walking model using a negative exponential.  Figure 29.5 shows the default biking 
model, also using a negative exponential.  Figure 29.6 shows the default driving mode using a 
lognormal function. Figure 29.7 shows the default bus mode, also using a lognormal function, 
and Figure 29.8 shows the default train mode using a lognormal function. 



Figure 29.4:

Negative Exponential Function: Walk Mode

0.020

g p

0.015

0.010

an
ce

 p
ro

po
rt

io
n

0.005Im
pe

d

0.000
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

Distance (miles)



Figure 29.5:

Negative Exponential Function: Bike Mode
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Figure 29.6:

Lognormal Function: Drive Mode
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Figure 29.7:

Lognormal Function: Bus Mode
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Figure 29.8:

Truncated Negative Exponential  Function: Train Modeg p
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Figure 29.9 shows the cumulative results of the default values.  This is also graphed in 
the spreadsheet, starting in cell I1. Notice how the relative accessibility function works. As 
distance increases, the mode proportions change. At very short distances, walking trips 
predominate with biking trips also getting a moderate share. As the distance increases, the 
proportions increasingly shift toward driving. Even though the likelihood of driving declines 
with distance, the other modes decline even faster. In other words, the relative accessibility 
function is estimating the relative shares of each mode as a function of the impedance (in this 
case, distance). Note also the relative differences in the frequency of trips.  Driving trips are far 
more frequent than any other mode.  Thus, compared to the individual graphs (figure 
29.4-29.8), the other modes are more muted than driving. 
 

Adapting spreadsheet for travel time or travel cost 
 

The illustrations to this point have used distance as an impedance unit.  However, other 
impedance units, such as travel time and generalized travel cost, can also be used.  These 
generally require a network (see below) in that weights have to be assigned to segments.  
Nevertheless, the same logic applies.  For each travel mode, a specific impedance function is 
estimated and then applied to the trip distribution matrix. 
 

Empirically Estimating the Mode-specific Impedance 
 

As mentioned at the beginning of this chapter, the lack of information about offender 
travel modes has necessitated the use of mathematical >guesses= about travel behavior.  
However, if it were possible to obtain actual information on travel modes by offenders, then this 
information could be utilized directly to estimate a much more accurate impedance function.  
The multinomial logit model in the Discrete Choice module could be used for this purpose (see 
Chapters 21 and 22).  The advantage would be enormous. Instead of guesses about likely 
impedance functions of specific travel modes, the user would have a function that was based on 
real data.  There should be a substantial improvement in modeling accuracy. However, these 
data have to be first collected. 

 
CrimeStat IV Mode Split Tools 
 

The CrimeStat mode split module allows the relative accessibility function to be 
calculated.  The following provides detailed instructions on running the model.  Figure 29.2 
above showed the setup page for the mode split routine and Figure 29.3 showed the setup for 
modes 1 and 2, in the example AWalk@ and ABicycle@.  The setup for modes 3, 4, and 5 are 
similar.   
 



Figure 29.9:

Relative Accessibility by Modey y
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Mode Split Setup 
 

On the mode split setup page, the predicted origin and predicted destination files must be 
input as the primary and secondary files.  If the origin and destination files are identical (i.e., all 
the origin zones are included in the destination zones), then the file must be input as the primary 
file.   
 

In addition, the user must input a predicted origin-destination trip file from the trip 
distribution module.  Finally, an assumed impedance value for trips from the AExternal zone@ 
must be specified.  The default is 25 miles. Choose a value that would represent a >typical= trip 
from outside the study region. 

For each mode, the user must provide a label for the name and define the mathematical 
function which is to be applied and specify the parameters.  The first time the routine is opened, 
the default values are listed. However, the user can change these. 
 
 
 
 
 

Constrain Transit Trips to Network 
 

The impedance will be calculated either directly or is constrained to a network.  The 
default impedance is defined with the type of distance measurement specified on the 
Measurement Parameters page (under Data setup). On the other hand, if the impedance is to be 
constrained to a network, then the network has to be defined.   
 

Default 
 

The default impedance is that specified on the Measurement parameters page.  If direct 
distance is the default distance (on the measurement parameters page), then all impedances are 
calculated as a direct distance. If indirect distance is the default, then all impedances are 
calculated as indirect (Manhattan) distance. If network distance is the default, then all 
impedances are calculated using the specified network and its parameters; travel impedance will 
automatically be constrained to the network under this condition. 
 

Constrain to network 
 

An impedance calculation should be constrained to a network when there are limited 
choices.  For example, a bus trip requires a bus route; if a particular zone is not near an existing 
bus route, then a direct distance calculation will be misleading since it will probably 

Hint: Once the parameters are entered, they can be saved on the Options 
page.  Then, they can be re-entered by loading the saved parameters file. 
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underestimate true distance.  Similarly, for a train trip, there needs to be an existing train route. 
Otherwise, the routine will assign transit trips where those are not possible (i.e., it will assign 
train trips where there are no train stations and it will assign bus trips where there are no bus 
routes).  The routine does not >know= whether there are transit routes and must be told where 
they are.  Even for walking, bicycling and driving trips, an existing network might produce a 
more realistic travel impedance than simply assuming a direct travel path.   
 

If the impedance calculation is to be constrained to a network, then the network must be 
defined. A more extensive discussion of a network is provided in Chapter 3 (under Type of 
distance measurement on the Measurement Parameters page) and in Chapter 30 in the discussion 
of the Trip Assignment module.  Essentially, a network is a series of connected segments that 
specify possible routes. Each segment has two end nodes (in CrimeStat, they are called 
>FromNode= and AToNode).  Depending on the type of network, the segments can be 
bi-directional (i.e., travel is allowed in either direction) or single directional (i.e., travel is 
allowed only from the AFromNode@ to the AToNode@).   
 

A critical component of a network for the mode split routine is that travel can only pass 
through nodes.  This means that two segments that are connected can allow a trip to pass over 
those two segments whereas two segments that are not connected cannot allow a trip to pass 
directly from one to the other. From outside the network, a trip connects to it at a node.  For a 
transit network, this can be critical.  For a bus route, it may or may not be important.  A 
precise bus network defines nodes by bus stops so that a trip can >enter= or >leave= the bus system 
at a real stop.  A less precise bus network defines nodes by the ends of segments (e.g., the end 
nodes of a TIGER segment). The routine will not know whether the node it enters or leaves from 
is a real bus stop or not. In the case of bus routes, it probably does not matter since they generally 
make very regular stops (every two or three blocks).  
 

Accurately defined transit networks 
 

For train networks, however, it is absolutely critical that the network be defined 
accurately.  The nodes must be legitimate stations; a trip can only enter or leave the train system 
through a station (i.e., it cannot enter or leave a train network at the end of an arbitrary segment 
node).  Most travel demand models use very precise bus and train networks that have been 
carefully checked; where errors occur, the networks are edited and updated.  

 
  Utility for creating transit network 
 
If the user does not have an edited transit network, one can be made in the trip 

assignment module.  There is a ACreate a transit network from primary file@ routine that will 
draw segments between input primary file points; the user inputs the station or bus stop locations 
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as the primary file and the routine creates a network from one point to the next in the same order 
as in the primary file (i.e., the primary file needs to be properly sorted in order to travel).  See 
Chapter 30 for more information about creating a transit network. 
 

Entering the network parameters 
 

The network is input by selecting AConstrain to network@ and click on the >Parameters= 
button.  A dialogue is brought up that allows the user to specify the network to be used.  The 
network file can be either a shape line or polyline file (the default) or another file, either dBase 
IV >dbf=, Microsoft Excel ‘xls/xlsx’,Microsoft Access >mdb=, Ascii >dat=, or an ODBC-compliant 
file.  If the file is a shape file, the routine will know the locations of the nodes.  All the user 
needs to do is identify a weighting variable, if used, and possible one way routes (>flags=).  For a 
dBase IV or other file, the X and Y coordinate variables of the end nodes must be defined. These 
are called the AFrom@ node and the AEnd@ node, though there is no particular order.   
 

An optional weight variable is allowed for both a shape or dbf file. The routine identifies 
nodes and segments and finds the shortest path.  By default, the shortest path is in terms of 
distance though each segment can be weighted by travel time, travel speed, or generalized cost; 
in the latter case, the units are minutes, hours, or unspecified cost units.  
 

Finally, the number of graph segments to be calculated is defined as the network limit.  
The default is 50,000 segments.  This can be changed, but be sure that this number is greater 
than the number of segments in your network.  

 
Minimum absolute impedance 

 
If a mode is constrained to a network, an additional constraint is needed to ensure 

realistic allocations of trips.  This is the minimum absolute impedance between zones. The 
default is 2 miles.  For any zone pair that is closer together than the minimum specified (in 
distance, time interval, or cost), no trips will be allocated to that mode.  This constraint is to 
prevent unrealistic transit trips being assigned to intra-zonal trips or trips between nearby zones. 
 

CrimeStat uses three impedance components for a constrained network:  
 

1. The impedance from the origin zone to the nearest node on the network (e.g., 
nearest rail station);  

 
2. The impedance along the network to the node nearest to the destination; and  

 
3. The impedance from that node to the destination zone. 
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Since most impedance functions for a mode constrained to a network will have the 
highest likelihood some distance from the origin, it=s possible that the mode would be assigned 
to, essentially, very short trips (e.g., the distance from an origin zone to a rail network and then 
back again might be modeled as a high likelihood of a train trip even though such a trip is very 
unlikely).   
 

For each mode that is constrained to a network, specify the minimum absolute 
impedance. The units will be the same as that specified by the measurement units. The default is 
2 miles. If the units are distance, then trips will only be allocated to those zone pairs that are 
equal to or greater in distance than the minimum specified.  If the units are travel time or speed, 
then trips will only be allocated to those zone pairs that are farther apart than the distance that 
would be traveled in that time at 30 miles per hour.  If the units are cost, then the routine 
calculates the average cost per mile along the network and only allocates trips to those zone pairs 
that are farther apart than the distance that would be traveled at that average cost.  
 

Applying the Relative Accessibility Function 
 
To apply the relative accessibility function, the parameter choices for each mode are 

entered into the mode split routine. All transit modes are then constrained 
Once the mode split setup has been defined and all transit modes have been constrained to a 
proper network, the mode split routine can be run.  
 

Figure 29.10 shows the top 300 walking crime trips in Baltimore County estimated with 
the default accessibility functions.  As seen, the vast majority of walking trips are intra-zonal 
(local).  There are only a couple of inter-zonal walking trip links shown.  The default 
impedance function assigned approximately 4% of the trips to this mode and the result is many 
intra-zonal trips. 
 

Figure 29.11 shows the top 300 bicycle crime trips in Baltimore County. There are fewer 
trips by bicycle and they also tend to be quite local.  The impedance function used for bicycle 
trips allocated approximately 1% of all trips to this mode.  Thus, it=s less frequent than walking 
mode.  There are proportionately more inter-zonal trips among the top 300 than for walking 
trips, but these tend to be quite short (travel between adjacent zones). 
 

On the other hand, driving is the predominant travel mode for the crime trips (Figure 
29.12).  The impedance function used allocated approximately 90% of the trips to driving.  
Among the top 300 links, there were no intra-zonal driving trips. The use of a lognormal function 
minimized intra-zonal travel.  
 



Figure 29.10:Figure 29.10:



Figure 29.11:Figure 29.11:



Figure 29.12:
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To allocate bus and train trips, however, it was necessary to constrain them to a network.  
Separate bus and train networks were obtained from the Baltimore Metropolitan Council.  
Figure 29.13 shows the Baltimore bus network and Figure 29.14 shows the predicted bus trips 
superimposed over the bus network. Overall, about 4% of the total trips were allocated to the bus 
mode by the accessibility function. As seen, the trips tend to be moderate distances and tend to 
be close to the bus network. Constraining these trips by the network decreased the likelihood that 
the routine would assign a particular trip link that was far from the bus work to a bus trip.  
 

Finally, train crime trips were constrained to the train network. Figure 29.15 
superimposes the assigned train trips over the intra-urban rail network.  Overall, only 1% of the 
total trips were allocated to train mode.  Therefore, the number of trips for any zone pair is quite 
small.  The trips are generally longer than the bus trips, as might be expected, and they also 
tend to fall along the major rail lines. Some of the trips start quite far from the rail lines, so it=s 
possible that these are not realistic representations. Keep in mind that this is a mathematical 
model and is far from perfect. 
 

Overall, the mode split routine has produced a reasonable approximation to travel modes 
for crime trips.  Since there was no data upon which to calibrate the functions, reasonable 
guesses were made about the accessibility function.  The mathematical model produced a 
plausible representation of these assumptions, generally fitting into what we know about crime 
travel patterns. 
 

Usefulness of Mode Split Modeling of Crime Trips 
 

The mode split model is a logical extension of the travel demand framework.  For 
transportation planning, it is an important step in the process.  But, it also is important for crime 
analysis.  First, it addresses the complexity of travel by separating the trips from specific origins 
to specific destinations into distinct modes. In this sense, it adds more realism to our 
understanding of criminal travel behavior. The Journey-to-crime literature, which has been used 
by crime analysts and criminal justice researchers to Aunderstand@ criminal travel behavior, is 
simplistic in this respect. It assumes a single mode, though that is rarely articulated by the 
researchers.  By pointing out typical travel distances by offenders circumvents the critical 
question of how they made the trip.   This was, perhaps, not as critical 50-60 years ago when 
most crimes were committed within a smaller community and it could be assumed that most 
offenders walked to the crime location.  But in the post- World War era, automobile travel has 
become increasingly dominate.  This model assumes that the vast majority of crime trips are 
taken by automobile.  While there is currently no data to prove that assertion, it follows from 
the transportation patterns that have become widespread in the U.S. and elsewhere. 
 
  



Figure 29.13:
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There is a second reason why an analysis of crime travel mode can be important.  If the 
limitations of travel mode information could be improved through better and more careful data 
collection by police and other law enforcement agencies, this type of analysis could be very 
useful for policing. For one thing, it could allow more focused police deployment.  For 
neighborhoods with a predominance of walking crime trips, then a police foot patrol could be 
most effective. Conversely, for neighborhoods with a predominance of driving crime trips, then 
patrol cars are probably the most effective. Police intuitively understand these characteristics, but 
the crime mode split model makes this more explicit. 

 
For another thing, a mode split analysis of crime can better help crime prevention efforts. 

As the Baltimore data suggest, many of the local (intra-zonal) crime trips are committed around 
housing projects and in very low income communities. Most likely, this is a by-product of 
poverty, lack of local employment opportunities, deteriorated housing, and even poor 
surveillance. Since teenagers are more likely to not own vehicles, it might be expected that the 
majority of these local crime trips are committed by very young offenders (see Levine & Lee, 
2012).  This can be useful in crime prevention. Again, AWeed and Seed@ and after-school 
programs are generally targeted to youth from very low income neighborhoods. What is shown 
by the mode split analysis is probably the crime patterns associated with these neighborhoods.  
Even though it is intuitively understood, the mode split analysis quantifies these relationships in 
an explicit manner. 
 

In short, a mode split analysis of crime trips is an important tool for crime analysts and 
criminal justice researchers. If correctly calibrated, it can help focus police enforcement and 
crime prevention efforts more specifically and can improve the theory of criminal travel 
behavior. 
 

Hopefully, police departments will start to improve the quality of data in capturing likely 
travel modes while taking incident reports.  Even though most police departments have an item 
similar to AMethod of departure@, there has not been a lot of emphasis on this information and 
most crime data sets are deficient on this information.  However, with improved data will come 
more accurate accessibility functions and, hopefully, even real utility functions where actual 
costs are measured.  The expectation is that this will happen and we should work towards 
accelerating the process. 

 
Limitations to the Mode Split Methodology for Crime Analysis 
 

There are also limitations to the method, particularly the aggregate approach.  First, the 
aggregate approach does not consider individuals, only properties associated with zones (e.g., 
average travel time between two zones).  As mentioned earlier, the accessibility function used 
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(or the underlying utility theory) is much simpler for zones than for individuals. Consequently, 
the analysis is cruder at an aggregate level than at an individual level. Policy scenarios are much 
more limited with aggregate mode split than with individual-level models.  For example, if an 
analyst wanted to explore what was the likely effect of increased public surveillance on walking 
behavior by pickpockets, it is more difficult to do with aggregate data than with individual data.  
For example, it could be hypothesized that actual pickpockets are more sensitive to increased 
public surveillance than, say, car thieves, but this cannot be tested at the aggregate level.  
Instead, some general characteristics are assigned to all individuals (e.g., the number of security 
personnel in a zone). 

Second, the zonal model for mode split (as with trip distribution) cannot explain 
intra-zonal travel. For intra-zonal trips, it is inaccurate and generally defaults to simple choices 
(e.g., walking, biking or driving).  For example, bus or train mode can rarely be applied at an 
intra-zonal level because there are usually too few network segments that traverse a zone and the 
segments rarely stop within the zone.  While this deficiency also applies to the trip distribution 
model, the dependence on a network for transit modes, particularly, leads to underestimation of 
transit use for very short trips. 
 

Third, the zonal mode split model cannot explain individual differences. This goes back 
to the first point that a single utility function is being applied at the zonal level. Thus, the value 
of time to different individuals living in the same zone cannot be examined; instead, everyone is 
given the same value. 
 

Fourth, the aggregate mode split model does not analyze time of day very well.  The 
probabilities are assigned to all trips, rather than to trips taken at particular times of the day.  To 
conduct that analysis, an analyst has to break down crimes by time of day and model the 
different periods separately.  Aside from being awkward, the summed trips need to be balanced 
to ensure that they sum to the total number of trips. 
 

Fifth, and finally, the mode split model, both aggregate and disaggregate, cannot explain 
linked trips (sometimes called trip chaining).  An offender might leave home one day, go out to 
eat, visit a friend, commit a street robbery, go to a >fence= to distribute the goods, buy drugs from 
a drug dealer, and then finally go home.  The mode split model treats each of these as separate 
trips; in the case of crime mode split, there are three distinct crime trips - committing the 
robbery, selling the stolen goods to the >fence=, and buying the drugs from the drug dealer.  The 
model does not understand that these are related events, but instead assigns separate mode 
probabilities to each trip.  Thus, it is possible to produce absurd choices, such as driving to the 
crime scene, taking the bus to the drug dealer, and then biking home.  In this respect, the 
disaggregate approach is equally flawed as the aggregate since both treat each trip as 
independent events.  The solution to this lies in a >third generation= of travel modeling in which 
individual trip makers are simulated over a day; activity-based modeling, as it is known, is still in 
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a research stage (FHWA, 2009; Culp & Lee, 2005; Miller & Salvini, 1999). But, it will 
eventually emerge as the dominant travel demand modeling algorithm.  
 

Conclusions 
 

Nevertheless, mode split modeling can be a very useful analysis step for crime analysis.  
It represents a new approach for crime analysis and one with many useful possibilities.  It will 
require building more systematic databases in order to document travel modes.  But, the 
possibilities that it offers up can be important for crime analysts and criminal justice researchers 
alike. 
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Chapter 30: 

Crime Network Assignment 
 

In this chapter, the fourth, and last, component of the crime travel demand model will be 
described. Network assignment involves the assigning of predicted trips to particular routes. The 
predicted trips are those that are either predicted from the trip distribution stage or from the mode 
split stage.  In the former case, all trips from each origin zone to each destination zone are 
assigned to a particular travel route, usually on the assumption that they all travel with the same 
mode of travel (usually walking, biking or driving).  In the latter case, the predicted trips from 
each origin-destination zone pair by specific travel modes are assigned to a particular route 
which is mode specific.  Thus, bus trips are assigned to bus routes; train trips are assigned to 
train routes; driving trips are assigned to a road network; walking trips are assigned to a more 
limited road network; and biking trips are assigned to a mixture of roads and bike paths.  In 
other words, the assignment of travel modes is specific to a particular network. 
 

Once the trips are assigned to routes, several statistics can be calculated. First, the 
predicted path from an origin zone to a destination zone can be displayed.  This can very useful 
for police who could increase their patrol on high crime routes.  Second, the entire trip load on 
road segments can be calculated.  Since many crime trips pass over the same network segments 
(e.g., freeways, major arterial roads), the total number of predicted trips on individual segments 
can be enumerated. The result is a map of the most heavily traversed segments in the network.  
Again, this can be very useful for police. 
 

Thus, the network assignment completes the four stage modeling process of the crime 
travel demand framework. To summarize, in the first stage - trip generation, separate models of 
the number of crimes originating in each zone and the number of crimes ending in each zone are 
developed. In the second stage - trip distribution, the predicted number of crimes originating in 
each zone are allocated to each destination zone; the result is a prediction of the number of trips 
that occur between each origin-destination zone pair.  In the third stage - mode split, each 
predicted origin-destination trip pair is separated (split) into distinct travel modes (e.g., walking, 
biking, driving, bus, train) with the result being a mode-specific origin-destination zone pair.  
Finally, the fourth stage - network assignment, assigns these trips to specific routes. 
 
Theoretical Background 
 

To understand the background, we need to look, first, at the nature of networks and 
second, at types of routing algorithms. 
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Networks 
 

The most fundamental element of assignment is, of course, a network.  The network can 
be a road network, a bus network (e.g., bus routes with stops), a train network (e.g., train lines 
with stations), or even a bicycle network (e.g., a mixture of roads and bicycle paths). Other kinds 
of networks can also be considered, for example telecommunication lines or even trade routes.  
We will concentrate on urban transportation networks, however. 
 

The mathematical properties of networks are known as graph theory (Sedgewick, 2002).  
A network (or graph) is a set of nodes (or vertices) and a set of segments (or edges) that connect 
pairs of nodes. If there are V nodes (vertices), then there are V2 pairs of nodes, including the 
distance from a node to itself. A graph with V nodes has, at most, V(V-1)/2 segments (edges); if 
multiple segments share nodes, then there will be even fewer. 
 

Figure 30.1 illustrates a simple network. Travel occurs along the segments through the 
connecting nodes. A path is a sequence of nodes in which each successive node is connected to 
its predecessor in the path.  hus, in the figure, there cannot be direct travel between node A and 
node C, but must go through an intermediate node (e.g., through B or through a path from D to E 
to C). 
 

Impedance of a Network 
 

There are several properties of a network that are important for travel modeling.  First, 
the length of a segment is proportional to its impedance (see Chapters 28 and 29).  The simplest 
kind of impedance is distance in which each unit length of the network corresponds to some unit 
of distance in the real world (e.g., one inch = 1 miles; one centimeter = 5 kilometers).  This is 
analogous to the scale used in mapping systems.  More complex types of impedance involve 
travel time, speed, or even generalized cost (a collection of several cost elements).  Thus, to use 
the example in Figure 30.1, node A is connected to nodes B and D.  The path from A to B is 50 
units long; similar lengths are found for the other segments in the example.  This could 
represent distance (e.g., 50 miles), travel time (e.g., 50 minutes), or generalized cost (e.g., $50).1  
To a graph, the units are irrelevant. As long as the user is explicit about these and consistent, 
path calculations will work properly.   
 

                         
1  Speed could be used, but it is inversely proportional to impedance (i.e., the higher the speed, the less the 

impedance).  Most shortest path algorithms treat the weight as proportional.  However, speed can be 
converted into travel time by dividing distance by speed.  To use the example, if the length is 1 mile long 
and the speed is 50 miles per hour, then the travel time is 1/50 hours (or 1.2 minutes). 
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Bi-directional and Single Directional Networks 
 

Bi-directional networks 
 

Second, typical transportation networks are either bi-directional or single directional.  
In a bi-directional network, travel can occur in either direction.  Again, using Figure 30.1, if the 
network is bi-directional, then travel can occur from A to B or from B to A. A well known 
example of a bi-directional network is the TIGER system of the U.S. Census Bureau (2011).  
This is a representation of all major urban lines, including streets, railroad lines, census 
geography boundaries, jurisdictional boundaries, Congressional boundaries, and other features.  
It is used to map out census areas for the purpose of collecting the decennial Census. Virtually 
the entire United States is now mapped in the TIGER system.  Depending on how carefully 
each jurisdiction updates the database for new roads and changes in existing roads, the TIGER 
system can be a very accurate spatial representation of the an urban road system. It is a widely 
available system and is often the first network that most police departments use when they create 
a crime mapping system. Figure 30.2 shows a TIGER network for Baltimore County and the 
City of Baltimore. There are 49,015 road segments in the TIGER map shown in the figure. 
 

Problems with the TIGER system for travel modeling 
 

On the other hand, for travel modeling, there are substantial problems with bi-directional 
networks and with TIGER in particular. A major problem is that connectivity is often not tested.  
Since the aim of the TIGER system is to represent a metropolitan area for the purpose of 
collecting the Census, connectivity is not guaranteed since it is irrelevant for that purpose.  It is 
not clear that all roads are properly represented, a feature that could substantially alter a shortest 
path algorithm.  For example, in Figure 30.1, if the segment from A to B was not connected, 
then travel from A to C would have to take a circuitous path from A to D to E to C. Having an 
accurate and edited network is critical for modeling travel behavior. With a large number of 
segments in a TIGER system, it is often not clear where in a file connectivity is not properly 
linked. 
 

Another problem is that TIGER is typically less accurate with respect to rail lines and has 
virtually no information about bus routes, which are local in nature.  Depending on how diligent 
the local government is in updating the database, the representation may not be as accurate as 
possible (though, in general, it is getting better over time).   
 

Another major deficiency of the TIGER system is the lack of information about travel 
time or travel cost.  Travel along a TIGER network is defined by distance, which does not 
change by time of day.  It does not have cost information either, which makes it less flexible for 
examining alternative routes as a function of additional cost factors (e.g., an analysis of travel 
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through an area with high surveillance compared to travel through an area with low security 
presence even if travel through the first area is shorter in time than through the second area).  
The TIGER system does have information about functional class of road (interstate, state 
highway, collector road) and it is possible to assign a priori speeds to the different segments 
based on these classes (e.g., 35 miles per hour for Interstate highways, 25 miles per hour for 
principal arterial roads).  But, because the network is bi-directional, it is impossible to assign 
speeds for travel in opposite directions; in reality, there are usually differences in travel speeds in 
opposite directions (e.g., travel into the central business district in the morning might be at 15 
miles per hour whereas travel in the opposite direction might be at 35 miles per hour). 
 

Another major problem with TIGER and with a bi-directional network in general is in the 
representation of one-way streets.  The TIGER system does not provide this information.  
Consequently, in using a TIGER file for modeling travel, a shortest path could easily travel up a 
one-way street in the wrong direction. To make the system work properly, there needs to be an 
additional field in the database that identifies a segment as one-way.  
 

Single directional networks 
 

A single directional (or uni-directional) network, on the other hand, allows travel in only 
one direction.  This has the advantage of keeping travel consistently defined.  Two-way travel 
is represented by two segments, one in each direction (e.g., one for travel from A to B and one 
for travel from B to A). One-way streets can be characterized by only one of the paired 
directions.  Most transportation modeling networks are single directional since an accurate 
representation of travel is critical. Travel times, speeds or costs can be assigned to the different 
directions of travel between two nodes and can be further assigned to different times of the day 
(e.g., 20 miles per hour in the morning peak period, 15 miles per hour in the afternoon peak 
period, 30 miles per hour in the off-peak daytime period, and 45 miles per hour at nighttime).  
 

An example of a single directional network is that used for travel demand modeling by 
most Metropolitan Planning Organizations (MPO).  These are used to model travel over an 
entire metropolitan area (regional travel) and are generally updated regularly; connectivity is 
continuously tested and errors are few in number. The travel modeling network is usually a 
>skeleton= network, covering all the major roads - freeways, principal arterial roads, minor 
arterial roads, and some collector roads.  They usually do not include much information about 
local or neighborhood streets since these are not very relevant for regional travel modeling.  
Figure 30.3 shows a modeling network used by the Baltimore Metropolitan Council for their 
travel demand model.  There are only 11,045 road segments in the file, less than one fourth the 
size of the corresponding TIGER network. Considering that each segment in a single direction, 
effectively only about 5,000-6,000 actual roads are being represented in the file.  
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Most importantly, modeling networks usually include information about travel time or 
travel speed (which can be converted to travel time by dividing distance by speed) and are 
usually broken down into different time periods.  Thus, it becomes possible to analyze travel at 
different times of the day to account for the major congestion effects that occur at the peak travel 
periods, particularly the afternoon peak.  Some modeling networks also include information on 
travel costs, which include parking, toll roads, and other costs that impact a trip.  As mentioned 
in Chapter 26, any analyst wishing to develop a crime travel demand model should contact the 
local MPO about obtaining a copy of the modeling network used. 

 
 
 
 

 
 
 
 

 
Problems with modeling networks 

 
Modeling networks also have their problems.  The biggest one is that they do not 

include all roads, but only the more important regional ones. This can lead to unrealistic paths 
being modeled in a neighborhood (e.g., entering or leaving a neighborhood from a centroid, 
rather than from a real street; taking circuitous routes to travel a short distance in space when, in 
fact, there are connecting local roads that actually exist but are not included in the file). 
However, neighborhood roads can usually be added to the network to provide more detail at the 
neighborhood level and to correct modeling errors.  It is a tedious process, but a police 
department could slowly update such a system over time and improve its accuracy.  Care must 
be taken in doing this, however, to ensure that connectivity is correctly portrayed. 
 

Another problem, which may or may not be critical, is that the representation of roads in 
a modeling network is spatially simplified.  Road segments are straight lines, rather than having 
curvature.  In the TIGER system, the basic record of a segment is a straight line connecting two 
nodes, but also includes up to 10 intermediate >shape grammar= nodes that define curvature 
(integrated with spatially more accurate information from the U.S. Geological Survey).  Thus, a 
modeling network looks a little >unreal= at a neighborhood level since there are only straight 
lines.  But additional segments can be added to the file to improve local connectivity as well as 
familiarity. 
 
 
 

Hint: A single directional network can also be treated as bi-directional.  In 
this case, all the trips on that roadway will generally be assigned to only one 
of the paired segments (for a two-way pair).  For the network load output, 
particularly, this can be useful for showing the total number of trips on a road 
segment, independent of direction.  Otherwise, if defined as a single 
directional network, the loads in each direction will be displayed separately. 
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Transportation Networks 
 

The third property of a network for travel modeling is the type of network.  Road 
networks were mentioned above. But there are also transit networks (e.g., bus routes, train 
routes) and even bicycle networks (e.g., bike paths). If a trip distribution matrix of trips from 
origins to destinations is analyzed by travel mode, then it is critical to have a mode-specific 
network.  Using TIGER or a simple modeling network will imply that all trips occur by the 
existing road system.  For transit trips (bus and rail) particularly, but also for biking trips and 
possibly walking trips, features that are specific to the travel mode must be included.  Bus 
routes will use the existing road system, but they do not use all roads, typically only the major 
arterial roads.  Train systems rarely use the existing road system, but usually have dedicated 
tracks.  There are exceptions.  Some light rail systems do run on arterial roads.  Other rail 
systems will run on an arterial road, but with a grade separation.  Depending on how the MPO 
conceptualizes this, there may be separate lines for the rail or not. 
 

Thus, it is very important to check and edit all networks that are used.  For transit 
networks, in particular, the lines need to be connected and thoroughly tested.  Figure 30.4 
repeats the Baltimore bus network map from Chapter 29 (figure 29.13).  Each of the lines on 
the map represent bus routes; there can be (and usually are) more than one bus route running on 
any one line. Typically, these are drawn as separate line objects and are overlaid on each other.  
This particular network does not have information about bus stops.  Consequently, a shortest 
path algorithm will choose the end nodes of segments to allow a trip to Aenter@ or Aleave@.  
Thus, it is possible that a bus trip would start at a location where there is not a bus stop.  
However, given that buses in Baltimore and elsewhere stop very frequently (every two or three 
blocks on average), the amount of error introduced is quite small. 
 

With trains, however, it is absolutely critical that station locations be used to define the 
rail lines; people cannot enter or leave a train between stations. Figure 30.5 shows each of the 
four intra-urban rail lines with the station locations.  Later in this chapter, there will be a 
discussion of a utility for creating rail lines from station locations.  But a critical point is that 
each of the end points of the rail segments be associated rail stations. In the figure, each of the 
four rail lines is shown in separate color.  For modeling in CrimeStat, however, the individual 
lines need to be merged into a single file in order for the shortest path routine to be able to move 
between rail lines (i.e., if there are separate line objects for each line, the routine will not know 
how to move from one line to another).  Figure 30.6 shows the full rail line network. 
 

Shortest Path Algorithms 
 

Once a network has been created, edited and thoroughly tested for accurate connectivity, 
it can be used for a shortest path analysis.  In a shortest path for a single trip (from an origin  
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zone to a destination zone), the route with the lowest overall impedance is selected. As 
mentioned, impedance can be defined in terms of distance, travel time, speed, or generalized 
cost. 

 
There are a number of shortest path algorithms that have been developed (Sedgewick, 

2002).  They differ in terms of whether they are breadth-first (i.e., search all possibilities) or 
depth-first (i.e., go straight to the target) algorithms and whether they examine a one-to-many 
relationship (i.e., from a single origin node to many nodes) or a many-to-many relationship (All 
pairs; from each node to every other node). 
 

The algorithm that is most commonly used for shortest path analysis of moderate-sized 
data sets (up to a million cases) is called A*, which is pronounced AA-star@ (Nilsson, 1980; Stout, 
2000; Rabin 2000a, 2000b; Sedgewick, 2002).  It is a one-to-many algorithm but is an 
improvement over another commonly-used algorithm called Dijkstra (Dijkstra, 1959). Therefore, 
I will start first by describing the Dijkstra algorithm before explaining the A* algorithm. 
 

Dijkstra Algorithm 
 

The Dijkstra algorithm is a one-to-many search strategy in which a shortest path from a 
single node to all other nodes is calculated. The routine is a breadth-first algorithm in that it 
searches all possible paths, but builds the path one segment at a time.  Starting from an origin 
location (node), it identifies the node that is nearest to it and which has not already been 
identified on the shortest path. After each node has been identified to be on the shortest path, it is 
removed from the search possibilities. The algorithm proceeds until the shortest path to all nodes 
has been determined.  In terms of a matrix of origin nodes (on the vertical) and destination 
nodes (on the horizontal - see figure 28.1 in Chapter 28), the search algorithm estimates the 
shortest path for any one row (i.e., from a particular origin to all destinations). 
 

The algorithm can also be structured to find the shortest path between a particular origin 
node and a particular destination node. In this case, it will quit once the destination node has 
been identified on the shortest path. The algorithm can also be structured to find the shortest path 
from each origin node to each destination node.  It does this one path at a time (e.g., it finds the 
shortest path from node A to all other nodes; then it finds the shortest path from node B to all 
other nodes; and so forth). 
 

The network in Figure 30.1 will be used as an example.  Figure 30.7 presents the 
network in terms of a particular origin node (A = Start) and a particular destination node (G = 
Finish). In the first step (not shown), the algorithm finds the node that is closest to A that has not 
already been put on the shortest path.  In this case, it is to itself (i.e., A to A is the shortest path 
at this point).  It thus removes A from the list of possible nodes and puts it in a shortest path 
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node list.  Next, the routine finds the node that is closest to A that has not already been put on 
the shortest path list.  This will be node B, which is 50 units distance from A (Figure 30.8).  
Thus, the shortest path now goes from A to B.  Subsequently, node B is removed from the list 
of possible new nodes and is put on the shortest path list. 
 

In step 2, the routine finds the node that is closest to one of the existing nodes on the 
shortest path list but which has not already been put on that list. This will be node D, which is 70 
units from A (Figure 30.9).  That is, if A and B have already been put on the shortest path list, 
then only two nodes are connected to these - C and D.  The distance from A to C is 120 (50 + 
70) while the distance from A to D is 70.  Thus, the routine selects node D next.  
Subsequently, node D is removed from the list of possible new nodes and is put on the shortest 
path list. 
 

In step 3 (Figure 30.10), the routine determines the node that is closest to A and which 
has not yet been put on the shortest path.  There are two possibilities - C and F; both are 120 
units distance from A.  In the case of a tie, the routine >flips a coin= and chooses one, in this case 
node F.  Subsequently, node F is removed from the list of possible new nodes and is put on the 
shortest path list. 
 

In step 4 (Figure 30.11), the routine adds node C to the shortest path.  Note that had the 
>coin flip= in step 3 chosen node C instead of F, in this stage node F would have been selected; 
thus, the routine produces the same solution, just in a different order.  Both nodes C and F are 
120 units distance from node A.  Node C is now removed the list of possible new nodes and is 
put on the shortest path list. 
 

In step 5 (Figure 30.12), the routine adds node E to the shortest path list because the 
distance to E through B is shorter than any other route that has not yet been determined (130 
units from A).  Notice that the path to E through C or D would have been longer than through B 
(180 and 140 units respectively).   
 

Finally, in step 6 (Figure 30.13), the routine goes to the finish, node G.  The path 
through B and E is shorter than by any other path to G (180 total units).  Thus, the Dijkstra 
algorithm has searched every node in the network and determined a shortest path from node A to 
each of them (Figure 30.14).  Even though we are only interested in the path from A to G, the 
algorithm solves all shortest paths from A to all nodes. 
 

A* Algorithm 
 

The biggest problem with the Dijkstra algorithm is that it searches the path to every 
single node.  If the purpose were to find the shortest path from a single node to all other nodes, 
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then this would produce the best solution.  However, with an origin-destination matrix, we 
really want to know the distance between a pair of nodes (one origin and one destination).  
Consequently, the Dikjstra algorithm is very, very slow compared to what we need. It would be a 
lot quicker if we could find the distance from each origin-destination pair but quit the algorithm 
as soon as that distance has been determined. 
 

This is where the A* algorithm comes in.  A* was developed within the artificial 
intelligence research area as a means for developing a heuristic rule for solving a problem 
(Nilsson, 1980).  In this case, the heuristic rule is the remaining distance from a solved node to 
the final destination.  That is, at every step in the Dijkstra routine, an estimate is made of the 
remaining distance from each possible choice to the final destination.  The node that is chosen 
for the shortest path is that which has the least total combined distance from the previously 
determined node to the final goal.  Thus, for any step, if Di1 is the distance to a node,	 , which 
has not already been put on the shortest path and Di2 is an estimate of the distance from that node 
to the final destination, the estimated total distance for that node is: 

 
           (30.1) 
 

Of all the nodes that could be chosen, the node,	 , which has the shortest total distance is 
selected next for the shortest path.  There are two caveats to this statement.  First, the node,	 , 
cannot have already been selected for the shortest path; this is just re-stating the rules by which 
we search for nodes which have not yet been put on the shortest path list.  Second, the estimate 
of the remaining distance to the final destination must be less than or equal to the actual distance 
to the final destination.  In other words, the estimated distance, Di2, cannot be an overestimate 
(Nilsson, 1980). However, the closer the estimated distance is to the real distance, the more 
efficient will be the search.  
 

How then do we determine a reasonable estimate for Di2?  The answer is a straight line 
from the possible node to the final destination since the shortest distance between two points is a 
straight line (or, on a sphere, a Great Circle distance since the shortest distance between two 
points is an arc).  If we simply calculate the straight-line (or straight arc if spherical distance is 
being used) from the node that we are exploring to the final node, then the heuristic will work. 
 

Figure 30.15 displays the example network again.  Like the Dijkstra algorithm, the 
routine first finds a node closest to A, which is itself.  Next, it finds a node that has the least 
total distance from A to the final destination, G (Figure 30.16).  There are two possibilities, go 
through B or go through D. The distance from A to B is 50 and the remaining distance from B to 
G is 130.  Thus, the total distance through B would be 180.  On the other hand, the distance 
from A to D is 70 and the remaining distance from D to G is 120.  Thus, the total distance 
through D would be 190.  Since 180 is smaller than 190, we choose node B. 
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In step 2 (Figure 30.17), three possibilities are explored for reaching G from A -  
through B and E; through B and C; and through D. The total distance through B and E is 180 (50 
+ 80 + 50) while the total distance through B and C is 200 (50 + 70 + 80) and through D is 190 
(70 + 120).  Thus, the routine chooses through B and E. 
 

In step 3 (Figure 30.18), it is but a short path from E to the final destination G. The total 
distance through B and E to G is 180 while the total distance through B and C is 200 and through 
D is 190.  Thus, the A* algorithm has determined a shortest path in three steps, rather than the 6 
it took the Dijkstra algorithm (Figure 30.19). 
 

In general, if V is the number of nodes in the network, the Dijkstra algorithm requires V2 
searches whereas the A* algorithm requires only V searches (Sedgewick, 2002).  As can be 
seen, this is much more efficient than having to search every single possible node, which is what 
Dijkstra requires. 
 

Applying A* to multiple origins 
 

As with the Dijkstra algorithm, A* can be applied to multiple origins. It does it one 
origin-destination combination at a time. If an origin-destination matrix is represented by the 
origins as rows and the destinations as columns, then the A* algorithm takes each 
origin-destination combination and finds the shortest path. Since it does not search all possible 
nodes (only those in which the total distance to the destination is shortest), it cannot determine in 
one step the distance from an origin to all possible destinations. However, it is so quick as an 
algorithm that it can be applied to each cell of the origin-destination matrix and still come out 
much faster than a Dijkstra search. 
 

Weighting of Segments 
 

As mentioned above, the units of the network can be any type of impedance - distance, 
travel time, or cost.  These can be thought of as weights applied to a segment.  The A* 
algorithm does not really care what are the units of the segments as long as they are consistent 
and proportional to cost. The algorithm will determine the path with the shortest total cost (or 
total weight).   
 

Thus, this algorithm can be applied to a trip distribution or mode split matrix of 
origin-destination pairs.  It will determine the shortest path from each origin zone to each 
destination zone and can do this in the measurement units that are selected for weighting. 
 

The advantages for travel demand modeling are enormous.  It means that if the 
weighting variable is travel time, then the algorithm will find the shortest time path through the  
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network for each origin-destination pair.  If the weighting variable is generalized cost, then the 
algorithm will find the shortest cost path through the network.  Finally, if the weighting variable 
is speed, then this must be converted into an impedance weight by dividing the distance of the 
segment by the speed to yield travel time. In short, the A* algorithm is an amazing one and 
allows the building of a routing algorithm.2 
 

Routing Algorithms 
 

In applying a shortest path analysis to a network assignment, several assumptions have to 
be made.  As mentioned earlier, network assignment involves assigning trips to particular 
routes.  Given a network of segments (e.g., road segments, train segments), a routing algorithm 
allocates the predicted number of trips to one or more routes.  In other words, the network 
assignment is done through a routing algorithm.  What makes this complex is that there are a 
number of different routing algorithms of which a shortest path is only one.  Most of them are 
based on the assumption of travel cost relative to network capacity (Ortuzar & Willumsen, 
2001). 

 
The simplest type of routing algorithm is an All or None assignment.  For each 

origin-destination pair (either for all trips or trips by specific travel mode), the algorithm 
calculates the shortest path through the network and assigns all trips to that path. This is the most 
rational model in that the cost of travel (whether measured by distance, travel time, or some cost 
measure) is minimized. 
 

A second routing algorithm is a stochastic path in which each route has a certain 
probability of being selected.  Multiple paths can be selected, but with a probability inversely 
proportional to their cost. The shortest path will be selected most often; the second shortest path 
next most often; the third shortest path third most often; and so forth.  This type of algorithm 
attempts to capture the variability in travel behavior that can come from traveler=s perceptions or 
incomplete information about the choice of path.   
 

A third routing algorithm is a congested assignment in which there is feedback from the 
capacity of the network to the choice of route.  In the classic case, as travel volumes increase on 
network segments, the capacity of the segment to absorb traffic is approached. The higher the 
ratio of the volume-to-capacity (V/C), the slower traffic becomes on the segment.  In other 
words, the cost of travel increases. Eventually, if the volume keeps increasing, the speed slows 
so much as to eventually reduce the amount of traffic that can enter the segment (ITE, 2010).  
In theory, if there is so much traffic volume relative to the capacity, traffic comes to a complete 

                         
2  For larger databases greater than, say, 1 million records, however, A* is too slow. An algorithm that is 

appropriate for very large databases can be found in Shekhar and Chawla (2003). 
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halt (gridlock).  However, in practice this does not happen as drivers take other routes. 
Consequently, with high V/C ratios, other routes become more desirable and some traffic spills 
over on to those segments.  his type of model is frequently used in metropolitan travel demand 
models for transportation since congestion is a major factor in most urban areas. 

 
There are advantages and disadvantages to each of these approaches.  The AAll or none@ 

assignment is the closest to a rational choice model; the route with the lowest total cost is chosen.  
On the other hand, this algorithm will continue to assign trips to a route even if the road segment 
becomes extremely congested, which is not realistic.  A stochastic model has the advantage of 
accounting for variability.  If individual-level data could be obtained that measured individual 
choices and perceptions of routes, then it is possible that a realistic proportional split among 
routes could be detected. More often, however, such information is lacking and a variation on the 
mode split model is used to proportion the trips among the different possible routes (see Ortuzar 
& Willumsen, 2001, Chapter 10 for more information). 

 
The ACongested assignment@ algorithm can be seen as a more realistic variation on the 

AAll or none@ in that the costs of travel change as the network capacity is reached.  Most 
transportation models use that type of model because it is a more realistic representation. 
 

Lack of Information about Crime Trips 
 

The problem with crime trips, however, is that the number of trips is liable to represent 
only a very small proportion of the total trips on any segment of a network. Thus, there is not 
liable to be any feedback from the capacity limits of segments to crime trips per se. Any 
feedback is liable to apply to all trips, of which the crime trips are a sub-set.  It might be 
possible to link a crime trip route choice algorithm to a general congested assignment in order to 
approximate this situation, but the amount of information that would be necessary to be obtained 
and the complexity of the modeling algorithm would probably not produce much tangible 
benefits beyond what a simple model predicts. 
 

Further, there could be feedback from surveillance and other policing practices that might 
increase the cost to an offender of traveling along a particular route.  However, without any 
detailed information about perceived costs of particular routes, it is difficult to postulate any type 
of model for choosing alternatives. This would be a very valuable area of research in 
understanding the travel behavior of offenders.  At the end of this chapter, there is a brief 
discussion of an article that modeled the likely escape routes taken by bank robbers in Baltimore 
County, MD (Levine, 2007). 
 

But, short of that information, an AAll or none@ assignment routine is probably the easiest 
to implement for allocating the predicted crime trips to routes.  



30.32 

The CrimeStat Network Assignment Module 
 

The CrimeStat network assignment routine implements an AAll or none@ assignment 
based on the A* shortest path algorithm. Figure 30.20 shows the setup page for network 
assignment.  On the page, there is a network assignment routine and there are some network 
utilities.   
 

Network Used 
 

The first input that needs to be made is which network is to be used.  The choices are the 
network specified on the Measurement parameters page (the default) or an alternative network.  
 

Network on measurement parameters page 
 

Check the >Network on Measurement parameters page= box to use that network.  All the 
parameters will have been defined for that setup (see Measurement parameters page).   
 

Alternative network 
 

If an alternative network is to be used, it must be defined.  Check the >Alternative 
network= box and click on the >Parameters= button.  Figure 30.21 shows the dialogue box for the 
alternative network. 
 
 
 
 
 
 
 
 

Type of network 
 

Network files can be bi-directional (e.g., a TIGER file) or single directional (e.g., a 
transportation modeling file).  In a bi-directional file, travel can be in either direction.  In a 
single directional file, travel is only in one direction.  Specify the type of network to be used. 
 

Input file 
 

The network file can either be a shape file (line, polyline, or polylineZ file) or another 
file, either dBase IV >dbf=, Microsoft Excel ‘xls/xlsx’, Microsoft Access >mdb=, Ascii >dat=, or an  

Note: if a network is also used on the Measurement Parameters page, then it must be 
defined there as well. CrimeStat will check whether that file exists; if it does not, the 
routine will stop and an error message will be issued.  Therefore, if an alternative 
network is used, the user should probably change the distance measurement on the 
Measurement Parameters page to direct or indirect distance. 

 



Network Assignment Module
Figure 30.20:



Alternative Network Dialogue
Figure 30.21:
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ODBC-compliant file.  The default is a shape file.  If the file is a shape file, the routine will 
know the locations of the nodes.  For a dBase IV, Excel or another file type, the X and Y 
coordinate variables of the end nodes must be defined. These are called the AFrom@ node and the 
AEnd@ node.  An optional weight variable is allowed for both a shape or dbf file. The routine 
identifies nodes and segments and finds the shortest path.   If there are one-way streets in a 
bi-directional file, the flag fields for the AFrom@ and ATo@ nodes should be defined. 

 
Weight field 

 
By default, each segment in the network is not weighted.  In this case, the routine 

calculates the shortest distance between two points using the distance of each segment.  
However, each segment can be weighted by travel time, speed or travel costs.  If travel time is 
used for weighting the segment, the routine calculates the shortest time for any route between 
two points.  If speed is used for weighting the segment, the routine converts this into travel time 
by dividing the distance by the speed.  Finally, if travel cost is used for weighting the segment, 
the routine calculates the route with the smallest total travel cost.  Specify the weighting field to 
be used and be sure to indicate the measurement units (distance, speed, travel time, or travel 
cost) at the bottom of the page.  If there is no weighting field assigned, then the routine will 
calculate using distance. 
 

From one-way flag and To one-way flag 
 

One-way segments can be identified in a bi-directional file by a >flag= field (it is not 
necessary in a single directional file). The >flag= is a field for the end nodes of the segment with 
values of >0= and >1=.  A >0= indicates that travel can pass through that node in either direction 
whereas a >1= indicates that travel can only pass from the other node of the same segment (i.e., 
travel cannot occur from another segment that is connected to the node).  The default 
assumption is for travel to be allowed through each node (i.e., there is a >0= assumed for each 
node). There is a >From one-way flag= field and a >To one-way flag= field. For each one-way 
street, specify the flags for each end node.  A >0= allows travel from any connecting segments 
whereas a >1= only allows travel from the other node of the same segment. Flag fields that are 
blank are assumed to allow travel to pass in either direction. 
 

FromNode ID, ToNode ID 
 

If the network is single directional, there are individual segments for each direction. 
Typically, two-way streets have two segments, one for each direction. On the other hand, 
one-way streets have only one segment.  The FromNode ID and the ToNode ID identify from 
which end of the segment travel should occur. If no FromNode ID and ToNode ID is defined, the 
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routine will chose the first segment of a pair that it finds, whether travel is in the right or wrong 
direction.  To identify correctly travel direction, define the FromNode and ToNode ID fields. 
 

Type of coordinate system 
 

The type of coordinate system for the network file is the same as for the primary file. 
 

Measurement unit 
 

 By default, the shortest path is in terms of distance.  However, each segment can be 
weighted by travel time, travel speed, or travel cost.   
 

1. For travel time, the units are minutes, hours, or unspecified cost units. For speed, 
the units are miles per hour and kilometers per hour.  In the case of speed as a 
weighting variable, it is automatically converted into travel time by dividing the 
distance of the segment by the speed, keeping units constant. 

   
2. For travel cost, the units need to be defined as cost per unit distance (e.g., per 

mile, per kilometer). The routine will then indentify routes by those with the 
smallest total cost. 

 
Network Utilities 

 
There are two network utilities that can be used.   

 
Check for one-way streets 

 
First, there is a routine that will identify one-way streets if the network is single 

directional. In a single directional file, one-way streets do not have a reciprocal pair (i.e., a 
segment traveling in the opposite direction).  This is indicated by a reciprocal pair of ID=s for 
the AFrom@ and ATo@ nodes. If checked, the routine identifies those segments that do not have 
reciprocal node ID=s.  The network is saved with a new field called AOneway@.  One-way 
segments are assigned a value of >1= value and two-way segments are assigned a value of >0=.  
The output is saved as an ArcGIS '.shp', MapInfo '.mif' or various Ascii file types. 
 

Create a transit network from primary file 
 

Second, there is a routine that will create a transit network from the primary file.  This is 
useful for creating a transit network from a collection of bus stops (bus network) or rail stations 
(rail network).  If checked, the routine will read the primary file and will draw lines from one 
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point to another in the order in which the points appear in the primary file. Note, it is essential to 
order the points in the same order in which the network should be drawn (otherwise, an illogical 
network will be obtained).  It is easy to do this in a spreadsheet program. 
 

Transit Line ID 
 

The routine can handle multiple lines, for example different rail lines or bus routes (e.g., 
Line A, Line B, Route 1, Route 2). In the primary file, the points must be grouped by lines, 
however, and must be classified by a Transit Line ID field.  Within each group, the points must 
be arranged in order of occurrence; the routine will draw lines from one point to another in that 
order. In the Transit Line ID field, indicate which variable is the classification variable. The 
output is saved as an ArcGIS '.shp', MapInfo '.mif' or various Ascii file types. 
 

Figure 30.5 above showed the effect of creating four separate rail lines from the station 
locations while Figure 30.6 showed the merged four lines implemented with the Group ID.  
 

Network Output 
 

There are three types of output for the network assignment routine.  First, the most 
frequent inter-zonal routes (i.e., trips between different zones) can be output as polylines.  
Second, the most frequent intra-zonal routes (i.e., trips within the same zone) can be output as 
points.  Third, the entire network can be output in terms of the total number of trips that occur 
on each segment (network load). 
 

Save inter-zonal routes 
 

The shortest routes can be saved as separate polyline objects for use in a GIS.  Specify 
the output file format (ArcGIS '.shp', MapInfo '.mif' or various Ascii file types) and the file name. 
 

Save top inter-zonal routes 
 

Because the output file is very large (number of origin zones x number of destination 
zones), the user can select a zone-to-zone route with the most predicted trips.  The default is the 
top 100 origin-destination combinations.  Each output object is a line from the origin zone to 
the destination zone with a Route prefix.  The prefix is placed before the output file name.  
The graphical output includes: 
 

1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (ROUTE) 
3. The origin zone (ORIGIN) 
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4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of trips on that particular route (FREQ) 
10. The distance between the origin zone and the destination zone (DIST). 
 
Figure 30.22 shows the top 300 routes calculated with the modeling network.  The 

assignment was weighted by travel time and the thickness and color of the line is proportional to 
the number of predicted trips.   
 

To see how this differs from the trip distribution matrix, Figure 30.23 zooms into a high 
volume route in eastern Baltimore County.  The modeling streets are displayed as are the 
predicted links from the trip distribution for that area.  As seen, the trip distribution simply 
produces straight-line links between origins and destinations.  In this case, the crime trips come 
into to the centroid of the Traffic Analysis Zone (TAZ) in the middle of this hot spot of crimes 
(TAZ 610).  The actual routes, on the other hand, follow the streets (in this case, the modeling 
network) and are more circuitous.  Several of the streets are used much more heavily than 
others, according to the assignment.  
 

An additional point should be noted, however.  Since the modeling network was used 
rather than the TIGER network, the trips into and from the centroid of the TAZ do not follow 
any particular road; the algorithm simply draws a straight line from the centroid to the nearest 
road segment.  In subsequent modeling, it might be worthwhile to digitize additional streets in 
this neighborhood since there are many crimes being attracted to it.  A crime mapping analyst 
can easily add the additional features to improve resolution.  The model would have to re-run, 
however, to get a more accurate display. 

 
Save intra-zonal routes 

 
Intra-zonal routes (trips in which the origin and destination are the same zone) can be 

output as separate point objects as an ArcGIS '.shp', MapInfo '.mif' or various Ascii file types. 
Again, the top K points are output (default=100). Each output object is a point representing an 
intra-zonal trip with a RoutePoints.  The prefix is placed before the output file name.  
 

The graphical output for each includes: 
 

1. An ID number from 1 to K, where K is the number of links output (ID) 
2. The feature prefix (ROUTEPoints) 



Figure 30.22:



Figure 30.23:
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3. The origin zone (ORIGIN) 
4. The destination zone (DEST) 
5. The X coordinate for the origin zone (ORIGINX) 
6. The Y coordinate for the origin zone (ORIGINY) 
7. The X coordinate for the destination zone (DESTX) 
8. The Y coordinate for the destination zone (DESTY) 
9. The number of trips on that particular route (FREQ) 

 
These are not illustrated in this chapter because they are identical to the intra-zonal output 

of the trip distribution module (see Chapter 28). 
 
Save network load 

 
It is also possible to save the total network load as an ArcGIS '.shp', MapInfo '.mif' or 

various Ascii file types. This is the total number of trips on each segment of the network.    
The routine takes every origin zone to destination zone combination and sums the number of 
trips that occur on each segment of the network. Click on the ASave output network@ box and 
specify a file name for the output. 
 

Figure 30.24 shows the entire crime trip volume on the network (network load). The 
assignment was weighted by travel time. Notice how there are many trips on the circular 
Baltimore Beltway (I-695). Because the road is a freeway, travel is generally much faster than on 
most arterial roads. Consequently, there are many crime trips being assigned to the freeway even 
though it is longer than many direct links.   
 

To see how this differs from a shortest distance assignment, the routine was re-run using 
only distance as the weighting variable. Figure 30.25 displays the results.  As seen, the routine 
does not use the Beltway very much, but instead uses the arterial roads more, particularly the 
diagonal arterial roads coming out of the City of Baltimore. Since the routine was determining 
the shortest path on the basis of distance only, it will inevitably find the most direct routes in 
terms of distance.  In terms of travel time, however, many of those routes will be much slower 
because of traffic lights, cross-traffic, drivers pulling in and out of parking spaces, and so forth. 
Thus, the freeway is almost always quicker for travel than an arterial road except at peak rush 
hour conditions. This points out the importance of using travel time and, better yet, travel cost as 
an impedance variable. Distance is much too simple an indicator of it. 
 

The network load routine can even be used for specific travel modes (and usually is for 
transportation travel demand modeling).  Figure 30.26, for example, shows the network 
volumes (load) of bus crime trips, again weighted by travel time.  According to the model, 
many of these trips originate in the City of Baltimore.  But at the high crime locations, multiple  
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bus routes tend to converge producing a high bus trip volume on the adjacent streets.  Because 
of the very small number of bus crime trips predicted by the mode split model, the volumes are 
not high, even for the highest volume links.  Also, notice how the Beltway is not used very 
much for bus trips, compared to the total network load in Figure 30.24.  The reason is that most 
bus routes do not use the freeway but stay on arterial roads (express buses would be an 
exception, but those tend to be used primarily for commuting). 
 

Figure 30.27 shows the network volumes of train trips.  Since there was no data on 
travel times along each train segment, the volumes are weighted only by distance. The number of 
crime trips by train, of course, are limited as was noted in Chapter 29. Also, notice how most of 
the crime trips taken by train occur on two lines, the Metro line to the west and the MarcP line to 
the east.  In both cases, the train trips start in the City of Baltimore and travel to Baltimore 
County.  These, of course, are predictions of crime travel volumes on the rail network, not 
empirical verifications. 
 

Modeling Network Assignment of Crime Types 
 

The network assignment routine can be applied to specific crime types. In general, it is a 
good idea to calibrate a general assignment for all crimes before analyzing specific crimes.  The 
reason is that there are volume dimensions that assign most crime trips to the same segments.  
Still, some differences can be observed.  Figure 30.28 shows the likely routes for vehicle thefts 
(in blue) and compares it to the likely routes for all crimes (in red).  There are similarities and 
differences.  There is overlap in the predicted routes in the southeast and southwest edges of the 
County with the City of Baltimore, and there is some overlap at the northwest border with the 
City of Baltimore. At the same time, though, some differences are visible, particularly at the 
western border with the City of Baltimore.  
 

In other words, the network assignment model shows different routes for vehicle thefts 
than for crimes in general.  This difference, of course, represents differences in the trip 
distribution matrix of the vehicle thefts compared to all crimes.3 
 

Uses of Network Assignment of Crime 
 

A network assignment routine is the culmination of the crime travel demand modeling 
process.  Essentially, it assigns predicted trips (whether for entire origin-destination trip pairs or 
for mode-specific trip pairs) to an actual network and usually on the basis of least cost.  The  

                         
3  The differences could be due to the mode split routine as well as the trip distribution matrix.  However, in 

the case of vehicle thefts, the travel mode is not very relevant since the return trip is always by vehicle - the 
stolen vehicle, at least to the disposal location.   
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algorithm used in the CrimeStat network assignment routine calculated the shortest path (in 
terms of distance, travel time, or cost) and assigned all the trips for each origin-destination pair to 
this route.  The representation is more complex than a simple trip link (which is a straight line) 
since it uses information on the actual network used.  The result is a prediction of routes that are 
taken to commit crimes and a prediction of the total crime trip volume on each network segment.  
This is clearly an advance on the geographic profiling/journey-to-crime approach, which has 
simply analyzed travel distance as an explanatory variable. 
 

Network assignment also has many uses for police.  First, it can point out where police 
need to focus their deployment. In this sense, the progression of the four modeling stages 
represents adding information to the knowledge of the crime events. Simply mapping the crime 
events tells a police department where the crimes are occurring. Analyzing the trip distribution 
tells the department from where the crimes might be originating. 

 
Splitting the distribution by travel model provides information about the likely travel 

mode used. Finally, assigning the predicted trips to actual routes gives information about how 
offenders may have traveled to the crime location. The model provides a lot more information 
than a simple description of a high crime area. 
 

Second, knowing the likely routes of offenders can allow for increased surveillance= and 
target hardening. Not only can police patrol the likely routes in a more focused manner, but other 
surveillance tools can be used, too. For example, surveillance cameras that monitor traffic can be 
used for a variety of purposes. In the U.S., they have tended to be used for monitoring traffic 
signals for red-light running (IIHS, 2012).  However, in Europe they are widely used for a 
variety of traffic monitoring purposes - speed enforcement, bus lane enforcement, entering the 
London congestion zone, as well as monitoring traffic signals.  In London, for example, the 
entire monitoring process is automated. For a vehicle making a violation, the camera takes a 
picture and a software package identifies the license plate. The license number is then matched 
against a database of vehicles and a traffic citation is sent to the owner. There is no reason why 
this type of technology could not be structured to also look for stolen vehicles or vehicles 
belonging to individuals for which outstanding citations have been issued.  In short, knowing on 
which roads high crime trips volumes are likely to occur can help police focus a range of 
surveillance tools on those locations. 
 
Conclusion 
 

In short, network assignment is a logical step in the modeling of crime trips and one that 
brings the trips down to actual routes that are used.  It is a more realistic representation of travel 
behavior and one that can allow focused deployment by police. 
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Modeling Bank Robbery Trips in Baltimore County, MD 
 

Ned Levine 
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 A study was conducted of 258 bank robberies that occurred in Baltimore County, MD, 
from 1993 to 1997. The crime travel demand model showed that the bank robbery trips tended to 
originate in poorer, denser neighborhoods and, in general, rob banks that were close to the 
offender’s residence. Possible travel routes to the banks were modeled as well as escape routes 
on the assumption that the impedance of using the same routes would be higher after the 
robberies than before. The alternative routes can provide insights to the police for surveillance 
after bank robberies have occurred. The full study can be found at Levine, N. (2007). Crime 
travel demand and bank robberies: Using CrimeStat III to model bank robbery trips. Social 
Science Computer Review, 25(2), 239-258. 
  



 

Chapter 31: 
Case Studies in 

Crime Travel Demand Modeling:  
I - Travel Patterns of Chicago Robbery Offenders 

 

Richard Block 
Professor Emeritus 

Loyola University Chicago 
Chicago, IL 

 
  



 

Table of Contents 
 

Case Study I: Travel Patterns of Chicago Robbery Offenders  31.1 
 Two Models: Econometric and Opportunistic     31.1 
 Crime Travel Demand Modeling in Chicago      31.3 
Data for the Chicago Study        31.4 
 Incident and Arrest Files        31.4 
 Traffic Analysis Zones         31.5 
 Chicago’s Road Network        31.5 
Trip Generation          31.6 
Trip Distribution          31.9 
 Gravity Model of Chicago Robbers         31.11 
 Predicting 1998 Trips from 1997 Trips        31.14 
 Predicting Overnight Robbery Trips         31.14 
Mode Split            31.17 
Network Assignment          31.17 
 Shortest Time or Shortest Distance?         31.19 
  Overnight robbery trip load         31.19 
Conclusions           31.22 
 Feasibility & Advantages of Crime Travel Demand Modeling     31.22 
 Limitations to Crime Travel Demand Modeling       31.23 
References           31.26 
 
 



31.1 

Chapter 31: 

Case Studies in 
Crime Travel Demand Modeling: 

I - Travel Patterns of Chicago Robbery Offenders 
 

In this chapter, a case study of the crime travel demand model for Chicago, IL, robbery is 
discussed.  Originally written in 2004, it is presented to illustrate the application of the model to 
a compact city with substantial transit services. 

 

Travel Patterns of Chicago Robbery Offenders 
 

Some neighborhoods are dangerous others are safe.  Crime clusters in specific areas.  
So too do criminals. Criminologists, police, and civilians have known this for nearly 150 years. 
However, relatively little research has been done on the travel patterns of offenders.  Using a 
modification of standard transportation models, CrimeStat IV allows police and researchers to 
describe and predict travel patterns based on four sequential models. 
 

The object of research presented here is to test the usefulness and feasibility of 
CrimeStat=s Crime Travel Demand model utilizing police reports of all robberies occurring in 
Chicago in 1997 and 1998 that had at least one known offender who lived in the city.  In sum, 
the objectives of this study of robbery in Chicago are: 
 

1. To test the CrimeStat IV crime travel demand model in a mature central city; 
 

2. To describe the travel patterns of robbery offenders based upon offenders home 
and location of incident;   

 
3. To predict the travel patterns of robbers in 1998 based upon characteristics of the 

offender's resident neighborhood and the incident neighborhood and a gravity 
model of the relationship between the two; 

 
4. To predict the travel patterns of robbers in 1998 based upon the patterns of 1997; 

and 
 

5. To assess the quality of the predictions and their value to the police. 
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 Two Models: Econometric and Opportunistic 
 

As outlined in Chapter 25, a travel demand model is a four-step sequential model.  The 
first stage is trip generation, whereby the number of crimes originating in a neighborhood and the 
number of crimes ending in a neighborhood are modeled.  The second stage is trip distribution 
which summarizes the number of trips that go from each origin zone to each destination zone.  
The third stage is mode split, which models the number of trips for each zone pair (origin zone 
and destination zone) that travels by a particular mode of travel.  The fourth, and final stage, is 
network assignment which models the likely routes taken by offenders in traveling between 
particular zone pairs. 
 

 This mapping of links assumes that travel decisions are based upon minimizing costs to 
get to a valued destination. When I go to work, I weigh costs and benefits.  I choose the route 
that will get me there quickest with the fewest problems.  Early theories of criminology 
assumed that criminal activity was no different than other behavior.  It was determined 
rationally. By extension, travel routes and crime locations are also determined rationally.  
 

Trips of offenders are similar to any repeated activity.  Most of our activities occur near 
where we live or work or on the path in between. This is our knowledge space. Trips within it 
maximize our efficiency and minimize costs. Daily purchases occur close to home with a rapid 
fall off with distance. But major purchases are an exception. They may occur far away. This 
distance decay can be generalized to travel cost decay.  The more expensive in time, money, 
and distance, the less likely a trip will occur. Applied to robbery, most incidents occur close to 
home, but a bank robber might incur greater costs to find a good target.  In addition most 
previous research has found that predatory criminals avoid incidents too close to home for fear 
that they will be recognized.  Combined with distance decay, this creates a buffer zone of few 
criminal incidents (Rossmo, 2000). 
 

Environmental criminology assumes that most activity occurs in a knowledge space that 
includes nodes of residence work and play and the routes between these (Brantingham & 
Brantingham, 1984; 1990).  However, the components of travel for criminals may not be the 
same as other people. For example, for someone with a full time job, getting to work as quickly 
as possible is important; time is money. For a jobless criminal, time may be less important.   
 

Routine activities theory assumes that both targets and offenders choose their activities 
based on a weighing of costs and benefits. Offenders seek out targets in locations where they are 
likely to congregate (e.g. bars at closing time, rapid transit stations).  A crime occurs when an 
offender and a target converge in the absence of a capable guardian (Felson, 2002). The routine 
activities of offenders may mostly be hanging out rather than rationally seeking targets. What is 
the basis of convergence?  Chance or the decisions of offenders?  Any potential robber’s 
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decision is effected by both chance and cost.  Time and distance are both measures of cost.  
However, within a short distance of home time and distance costs are near to zero. 
 

An alternative hypothesis is that robbers do not weigh costs and benefits of travel.  
Rather, they may see an opportunity for crime and take it.  Because much of their day to day 
activity is near home, many incidents occur near the robber’s home.  Travel patterns are 
irrelevant for these crimes.  The number of robberies decline with distance from the offender's 
home because fewer of the robber's daily activities occur far from home. On the other hand, more 
professional robbers may seek out specific areas or locations where lucrative targets are found 
and may be willing to travel great distances.  
 

In Chicago, an opportunistic robber=s knowledge of good targets may be limited to the 
isolated area around his residence. In addition, trips within the area cost almost nothing, although 
other costs, such as risk of capture may be relatively high. The difference between Chicago and 
Baltimore County (or between Chicago and its suburbs) has to do as much with knowledge of the 
distribution of opportunities as with the cost of travel.  Chicago=s neighborhoods are so isolated 
that some offenders may have little knowledge of opportunities outside their resident area. The 
crime travel demand model holds that in the aggregate offenders appear to weigh costs and 
benefits.  However, the data analyzed here says nothing about individual decisions. Decisions 
may be made with other factors not captured by shortest distance or time.   
 

In one of the few studies of non-arrested robbers Wright and Decker (1997) found that 
most St. Louis robbers are opportunistic and rob close to home. Rationality and careful cost 
calculation have little to do with their decisions.  These are people who have a need for quick 
money.  If they saw an opportunity near home, they would take it.  Opportunities were most 
likely to occur as the potential offender and victim went about their daily routine activities.  
Most of these happened close to home. Therefore, robbery occurred close to home. 
 

The closer to an offender's home that an incident occurs, the more likely the incident has 
resulted from a chance meeting.  The further away that it occurs the more likely that it was 
planned.  Part of the planning is transportation costs.    It is difficult to calculate this for 
offenders.  The best we can do is estimate travel time.  
 

Crime Travel Demand Modeling in Chicago 
 

The Offender Travel Model is a new application of the Travel Demand Model. The travel 
demand model has been in development since the 1950's.  It is used in every metropolitan area 
in the United States. CrimeStat's crime travel demand model was outlined in Chapter 25.   

 As applied to robbery in Chicago, description is as important as prediction.  While the 
Chicago Police Department (CPD) has long collected information on the location of the incident 
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and residence of the offender, these were not linked in any systematic way. In meetings with the 
department, credible descriptive maps proved to be the most convincing reason to use the new 
CrimeStat travel demand module.  Before a new technique is tested, its potential credibility 
must be demonstrated.  Therefore, the last phase, in the Chicago Travel Demand Model 
emphasized both the predicted travel demand model and the observed travel of offenders.  
 

Analysis of Chicago's Crime Travel Demand proceeds in three stages.  The first step 
(trip generation) is a prediction of variables associated with the number of crimes originating in 
each zone and the number of crimes ending in each zone.   
 

The second step is the prediction of links between zones based on zonal characteristics of 
incident locations and offender residences and a measure of the attraction between the two zones. 
These predictive models are compared to the observed links and trips and the previous year=s 
trips used as a prediction. 
 

The mode split step was not run because of the lack of data. Unfortunately, the Chicago 
police data does not permit an analysis by different modes of transportation (see Chapter 29).  
Data on whether the offender drove, walked, or rode rapid transit to the incident are not 
collected. 
 

The final step is the description of probable travel routes from the offender=s home zone 
to the incident zone based on shortest time or distance along a transportation network.  The 
links modeled in the second step can be converted to a probable route between home and 
incident zones over a road network or a summary network load which aggregates travel of all 
offenders along a transportation network. 
 

Data for the Chicago Study  
  

Incident and Arrest Files 
 

The analysis presented here merged information from many sources.  This research is 
based on incident and arrest records from the CPD.  Excluding O=Hare Airport, the city of 
Chicago is divided into 946 traffic analysis zones.  Incidents are assigned to these zones for 
both residence location (the origin) and the crime location (the destination). These include all 
Chicago robberies in 1997 and 1998 that had at least one known offender who lived in Chicago.  
These were geocoded by the address of the incident and the home address of all known 
offenders.  Offenders who traveled longer distances were probably under-represented (Block, 
2007).  About 20% of all reported robberies were included.  In 1997, there were 25,000 
robberies reported to the police.  Of these robberies, 4,636 resulted in the arrest of at least one 
Chicago resident. Including robberies with multiple offenders, there were 6,643 crime trips. 
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Traffic Analysis Zones 
 

These incidents and offenders are counted in 946 Traffic Analysis Zones (TAZ).  
O=Hare Airport is excluded.  Chicago's traffic analysis zones are mostly based on a uniform grid 
of 1/2 mile squares.  These are not based on census tracts or other city divisions.  However, 
some census data was available for these zones along with information on employment.  About 
100 of them had no census population and therefore were unlikely to include the residence of an 
offender.  Land use, employment, population, and robbery incident and offender residence 
counts were available for all zones.  Land use goes beyond the standard census measures to 
include characteristics from many data sources that might be related to crime.  Among these are 
code violations, vacant parcels, fires, liquor licenses, pawn shops, entertainment venues, distance 
from the central business district and other potentially criminogenic characteristics.1 These 
traffic analysis zones were the unit of analysis.  Trips were defined from the center of a zone. 
 

Chicago=s Road Network 
 

The base of Chicago's road network is a grid with 1/8 mile between blocks, a feeder street 
every half mile, and a main street every mile.  Layered on top of this grid is a series of diagonal 
streets that tend to be major shopping streets and a relatively small number of expressways that 
converge at the edge of the central city.  A semi-expressway, Lake Shore Drive, runs along the 
lakefront for 25 miles.  Chicago has a well developed rapid transit system that, unfortunately, 
could not be included in the current analysis. 
 

Two street networks were available for analysis: 
 

1. Modified TIGER Line File:  A mostly complete map of all streets and rail 
lines.  Following police practice, the modified TIGER file allows for geo-coding 
in non-addressed areas, such as parks, by extending the base grid.  All public 
streets are included, but one-way streets are not taken into account and the 
shortest distance may be on a route that no one would travel.  Some areas of the 
city were not well mapped. 

 
2. Modeling network: This includes Expressways, principal arterials and collector 

roads. Each road segment is uni- (or single-) directional; that is, it expresses travel 
in only one direction.  Thus, for a two-way road, there will be two records for 
every segment, one in each direction.  This has the advantage that one-way 
streets can examined since there will not be an opposite direction pair.  On the 

                         
1  In contrast to many cities, Chicago has a large population living in the central business district and lacks a 

ring of impoverished communities surrounding downtown. 
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other hand, a modeling network is less complete since minor streets are ignored.  
This type of map is useful for capturing trips that occur over a mile or more, but is 
not very useful for the many trips of less than 1/2 mile that occur in Chicago.  It 
does take into account one-way streets. Using distance, the network will 
over-emphasize surface diagonal streets and will under-emphasize expressways. 

 
One of the advantages of the modeling network is that street segments can be weighted 

by speed or travel time, rather than just distance.  There are eight distinct time periods with the 
travel time on each segment by period being indicated. Each street segment can be weighted by 
its travel time in minutes during a specific time period (e.g.; 7- 9 AM) to allow a more realistic 
description of travel behavior.  Further, travel in opposite directions can be treated differently 
since travel times can be different for each direction.  During rush hour, travel in one direction 
may be much quicker than travel in the other direction.  Weighting by travel time will allow 
larger arterial roads and expressways to be chosen more because travel speeds will generally be 
faster on the larger capacity roads. This network tends to be most realistic for longer trips but, 
again, is not useful for very short >local= trips since the local, neighborhood road network is not 
included.  A greater percentage of the travel is on expressways.  
 

Trip Generation 
 

Using the arrest data, events were aggregated to the TAZ=s for both the origins and the 
destinations.  As expected, the distribution of crimes by origin zone and by destination zone 
were highly skewed.  For example, 419 zones had no robberies originate in them while one 
zone had 27 and another had 24 originate in them.  A similar condition held for the number of 
crimes by destination. For example, no robberies occurred in 409 zones while one zone had 24 
robberies and two had 23. 
 

Separate models of these incident were developed at the zone level.  The regression 
analysis tools in CrimeStat are excellent, but choosing regression predictors requires both skill 
and theory. Many explanatory variables were tested.  The independent variables chosen for 
analysis were based on those previously found to be important predictors of violent crime in 
Chicago.  Significant variables were: 
 

1. POP2000 The most important was the 2000 population because the dependent 
variable was a predicted count of origins or destination.  Other variables that 
were included were: 

 
2. ETHNICPER The percentage of the dominant racial or ethnic group within the 

TAZ. Recent research (Sampson & Raudenbush, 2001) has found that racial 
isolation and poverty predicted high community levels of violence. 
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3. POVPERCENT The percent of the households below the poverty level.  

Sampson and Raudenbush (2001) found this to be a dominant variables 
explaining community disorder.  

 
4. VENUE The number of entertainment venues (clubs, theaters, bowling allies) in a 

TAZ.  This is information gathered from the MetroMix and the Reader in 2002.  
It was negatively related to the residence of the offender and was probably more a 
measure of perceived neighborhood safety than availability of targets.  

 
5. PAWNSHOP The number of pawnshops is included in several regressions.  A 

pawnshop is both a focus for potential targets and a good place to get cash.  
 
6. VACANT: Count of vacant buildings in the TAZ.  Perhaps this is an indicator of 

general neighborhood dilapidation (Broken Windows). 
 

The variables that were not significantly related to origins or destinations included many 
that are typically related to travel demand including employment and distance from the central 
business district.  In addition, variables that are often associated with robbery, such as counts of 
drug arrests, convenience stores, liquor licenses, banks and currency exchanges were unrelated to 
origins or destinations after poverty and population were accounted for. Few TAZ characteristics 
that might attract an offender to commit a crime were significantly related to the number of 
robbery incidents in a TAZ.  In general the results of the regression models and the resulting 
travel demand matrix supported the depiction of robbery in Chicago as occurring in or near the 
offender=s relatively isolated home neighborhood. 
   

Poisson regression models for origin and destination zone counts for overnight trips were 
similar in 1997 and 1998. Table 31.1 presents the final Poisson regression model for the resident 
zone of robbers in 1998.  
 

The Likelihood Ratio was good and an analysis of the residual errors did not reveal any 
major outliers. Given the large number of zones (n=946) the regression predicted variations in 
the count of origins fairly well.  
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Table 31.1: 

Overnight 1998 Robbery Origin Model 
 
 Data file:                 Chicago TAZ with Time.dbf 
 Type of model:                Origin 
 DepVar:                         Robbery Origins 8PM-5:59AM 
 N:                               946 
 Df:                              940 
 Type of regression model:    Poisson with over-dispersion correction 
 Log Likelihood:              -2,011.35 
 Likelihood ratio(LR):         2,962.73 P-value of LR:  0.0001 
 AIC:                            4,034.71 
 SC:                              4,063.82 
 Dispersion multiplier:       1.00 
 
----------------------------------------------------------------------------- 
Predictor DF  Coefficient  Stand Error   Tolerance   z-value      p-value 
  CONSTANT  1    -2.072610     0.170828            .   -12.132746    0.001 
   POP2000  1     0.000235     0.000011     0.876420    22.156415    0.001 
 ETHNICPER  1     0.015786     0.001746     0.909463     9.042151    0.001 
POVPERCENT  1     0.037134     0.002144     0.872974    17.321707    0.001 
    VACANT   1     0.016970     0.002528     0.835809     6.712064    0.001 
     VENUE   1    -0.115182     0.033458     0.933336    -3.442566    0.001 
---------------------------------------------------------------------------- 

 
 

Similarly with the destination model (Table 31.2), the Likelihood Ratio of the destination 
model was reasonably good, though not as strong as with the origin model.  There were not any 
apparent major outliers. Given the large number of zones (n=946) the regression predicted 
variations in the count of destinations fairly well.  

 
In both regression models, population had a positive relationship to the number of crimes.  

Similarly, the poverty variable and the ethnic homogeneity variable were positively related to the 
number of crimes, both origins and destinations.  
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Table 31.2: 

Overnight 1998 Robbery Destination Model 
 
 
 
 Data file:                      Chicago TAZ with Time.dbf 
 Type of model:                 Destination 
 DepVar:                         Robbery Destinations 8PM-5:59AM 
 N:                                946 
 Df:                               941 
 Type of regression model:   Poisson with over-dispersion correction 
 Log Likelihood:                -2,041.56 
 Likelihood ratio(LR):        2,661.30 P-value of LR: 0.0001 
 AIC:                             4,093.11 
 SC:                              4,117.37 
 Dispersion multiplier:       1.00 
----------------------------------------------------------------------------- 
Predictor  DF  Coefficient  Stand Error   Tolerance   z-value      p-value 
  CONSTANT  1    -1.946591     0.032370            .   -60.135432    0.001 
   POP2000  1     0.000218     0.000008     0.898680    26.418877    0.001 
 ETHNICPER  1     0.015913     0.000874     0.944910    18.201093    0.001 
  PAWNSHOP  1     0.335678     0.029184     0.954563    11.501940    0.001 
POVPERCENT  1     0.035707     0.001888     0.989400    18.913079    0.001 
----------------------------------------------------------------------------- 
 

Trip Distribution 
 

After the two predicted models were developed, the trip distribution was predicted, in 
other words the modeled number of trips that went from each origin zone to each possible 
destination zone was estimated (trip distribution).  The inputs were the predicted origins and 
predicted destinations for robberies in 1998 from Tables 31.1 and 31.2.  
  

The test of CrimeStat=s crime travel demand module began with an analysis of 1997.  
Preparatory analysis indicated that 29% of robbery trips occurred in the offender=s home zone. 
While the number of intra-zonal trips can be mapped and predicted, travel within a zone cannot 
be described.   
 

Using observed crime trips, the actual number of trips from each zone to every other zone 
was calculated. Figure 31.1 depicts the volume of observed inter- and intra-zonal trip links in 
1997. The zone shadings indicate the number of intra-zonal trips. The width of the links indicates 
the frequency of trip links for zones with 3 or more links. 

 
 



 
Figure 31.1: 
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Impoverished areas of the west and south side dominate this analysis.  Most inter-zonal 
links are quite short (Figure 31.2).  Many begin in zones that also have many intra-zonal trips. 
In Las Vegas and Baltimore County many links are associated with specific sites such as 
shopping malls or entertainment areas. Within the City of Chicago, the links lack a clear focal 
zone for incidents.  However, few robbery trips are made to the central business district.  

 
From a police perspective, even the distribution of crime trips can be of value for tactical 

purposes and for planning interventions. However, the description of 1998 night time robberies  
south side dominate this analysis. Most inter-zonal links are quite short.  Many begin in zones 
that also have many intra-zonal trips.  In Las Vegas and Baltimore County many links are 
associated with specific sites such as shopping malls or entertainment areas.  Within Chicago, 
the links lack a clear focal zone for incidents.  However, few robbery trips are made to the 
central business district.   
 

A trip distribution analysis includes both inter- and intra-zonal trips in a single analysis.  
The analysis is not of travel from home to destination, but from a home zone to a destination 
zone.  For transportation planners inter-zonal trips are more important than intra-zonal trips 
because these predict changing transportation needs.  The volume of within zone travel can be 
predicted but not specific routes.  However, many Chicago robberies (29% in 1997, 26% in 
1998) are intra-zonal. 
 

Therefore, two techniques were tested to account for the many intra-zonal trips.  First, 
both inter- and intra-zonal overnight robberies trips were included in the same model.  Second, 
to see whether different variables were predicting incidents close to the offender=s home address 
from those further away, inter- and intra-zonal trips were analyzed separately.  Ultimately, I 
concluded that there was little to be gained by separating the two types of trips.  
 
 Gravity Model of Chicago Robbers 
 

The gravity model that underlies CrimeStat=s trip distribution model assumes that travel 
between or within zones is dependent upon the offender pool, opportunities, and costs.  
Conceptually, this can be written as: 
 

           (31.1) 

 
where  is the number of trips from zone	  to zone	 , Pi is the number of offenders in zone	  

(the offender pool), Aj is the number of attractions or opportunities in zone	 ,  is cost of travel 

from zone	  to zone	 , α and β are coefficients and λ is an exponent.  The impedance (or >cost=)  
    



Figure 31.2: 
 
 
 
 
 



31.13 

component is modeled with a mathematical function.  After experimentation, I found that the 
best impedance function was a lognormal distribution with a mean of 2 miles and a standard 
deviation of 5. The resulting model fit the actual trip length distribution quite well.  
 

Predicting 1998 Trips From 1997 Trips 
 

Can the 1998 distribution be successfully predicted from the 1997 model?  In time series 
analysis, the best prediction of one period is generally the period that immediately preceded it. In 
spatial analysis, this is also likely to be true, especially in a mature city.  However, while 
neighborhood characteristics change slowly in Chicago, they do change.  During the late 1990's 
many public housing projects were emptied and most were torn down.  While few 
neighborhoods deteriorated, many gentrified.  Any of these might cause a change in the 
distribution of robbery trips.   
 

Nevertheless, to test the model, the 1997 observed robbery travel matrix was used to 
predict observed travel in 1998 (Figure 31.3).  CrimeStat IV, in conjunction with a GIS and a 
statistical package, provides several comparison tools.  Comparing 1997 and 1998, the fit was 
quite good. Including street segments that had no trips in either year, 55% of the trip links in 
1998 were predicted by the trip links in 1997. The coincidence ratio of .86 for 1998 and the 
distance distribution in Figure 31.2 above indicated a high degree of similarity.  However, a 
comparison of the top 300 trip links illustrated that, while zones with many intra-zonal incidents 
were fairly well predicted, inter-zonal trips were not as well predicted.  Mapping these made 
clear that 1997 inter-zonal links did not accurately predict specific 1998 links (Figure 31.4).  
However, specific links may be less important from a police perspective than knowledge of the 
frequency of offender travel on specific streets. The coincidence ratio was about the same for 
both the 1997 and 1998 comparisons (Figure 31.2 for night time robbery trips).  
 

In figure 31.3, predicted and observed overnight robbery trips in 1998 are pictured. To 
graphically indicate the trips, straight lines are used to indicate links between zones and widths to 
indicate volume. An inspection of Figure 31.3 shows that many specific links were not well 
predicted. In general, the prediction underestimated very short trips but overestimated middle 
distance trips (2-4 miles). 

 
Predicting Overnight Robbery Trips 

 
After selecting only those 1998 robberies that occurred from 8 PM to 5:59 AM, a zone to 

zone matrix was constructed.  This matrix included both intra-zonal (31.5% of the total) and 
inter-zonal trips.  As shown in Figure 31.5, zones with many intra-zonal overnight trips also had 
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many inter-zonal trips.  Intra-zonal links were widely dispersed throughout the city with an area 
of concentration on the west side, but there was no clear pattern.   
 

Mode Split 
 

Because of the lack of information about travel mode, the mode split model was not run.  
It is hoped that, with better information, this type of model could be run in the future. 
 

Network Assignment 
 

The third, and final, step in the analysis was to examine the likely routes taken as well as 
the total demand placed on the road network.  Network assignment is an especially useful tool 
for police work because it can suggest possible locations for intervention.  Because it is based 
on the actual street network, it is more concrete than a depiction of links.  Therefore, I tested 
several ways to depict network assignment for 1997 robbery travel before proceeding to the 1998 
analysis. 
 

  The network assignment routine in CrimeStat IV outputs two results: 
 

1. The shortest routes on a street network. For each zone-to-zone pair, the shortest 
path was calculated. 

 
2. The Network load. Network load counts the number of trips over each street 

segment regardless of origin or destination and sums these. 
 

Both the shortest routes and the total network load can be based on time or cost rather 
than distance.   

 
First, all inter-zonal robberies in 1997 were mapped along Chicago=s street network by 

shortest distance (Figure 31.6).  The 4000 trips were counted along each of Chicago=s 51,000 
street segments and mapped as a network load (see Chapter 30).  As the width and color 
changes from blue to red in Figure 31.6, the number of trips that passed over a segment 
increased.  However, this map is difficult to interpret and lacks credibility.  Much of the load 
is along small side-streets.  Diagonal streets are emphasized and expressways are ignored 
because they usually are not the shortest route in terms of distance.  Also, travel in the wrong 
direction on a one-way street is possible since only distance was used to calculate the shortest 
path.  The CPD did not believe this to be a useful map.   
 
 



Figure 31.6: 
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The same inter-zonal links were mapped again along using the Chicago modeling 
network, but weighting segments only by distance (Figure 31.7).  While this resulted in a 
greatly simplified map, it still lacked some credibility. Expressways are rarely the shortest 
distance, therefore, their use is under emphasized.  The algorithm resulted in an over emphasis 
on diagonal main streets.  Some connected segments looked like a stair case following along 
Chicago=s grid of main and secondary streets from one high incident neighborhood to another on 
the west and southwest sides.   
 

Distance did not seem to be a good representation of travel routes.  Given that police 
records include time of incident and travel time along Chicago=s road network is available, and 
that CrimeStat allows for analysis by travel time, I re-conceptualized travel cost as shortest time 
rather than distance. 
 

Shortest Time or Shortest Distance? 
 

What does distance measure?  Traveling ten miles during Chicago's evening rush is 
quite different than at midnight.  However, the two blocks from my house to the nearest 
convenience store is unaffected by the time of day and little effected by the mode of 
transportation.  While distance appears to be a straightforward measure, it is not.  For close 
distances, it specifies knowledge space or the location of routine activities.  Further from home, 
it is related to a lack of knowledge but is also an inaccurate measure of the cost of travel.  Better 
measures than distance are often available.  All U.S. major metropolitan areas map travel time 
by time of day on major streets, feeder streets, and expressways using modeling networks (see 
chapter 30).  These maps along with police data on time of incident can be combined to 
realistically describe shortest travel time rather than shortest distance. 
 

The Chicago Area Transportation Survey (CATS) divides the day into eight time periods 
based on travel demand.  Whether a crime trip was intra- or inter-zonal was unaffected by time 
of day (χ2=7.07 sig=.421 in 1998).  Not surprisingly, the robber's daily travel cycle was 
different than the general population.  In 1998, robbers showed little demand for travel in the 
morning rush hour period (6 AM to 10 AM).  Of the remaining trips, about half (46% in 1998) 
occurred from 8 PM and 5:59 AM.  These overnight trips are the subject of the analysis 
presented here. 
 

Overnight robbery trip load 
 

 Overnight network load was mapped on Chicago's arterial roads and expressways 
according to both shortest distance (Figure 31.8 left) and shortest time (Figure 31.8 right).   
 
 



 
Figure 31.7: 



Figure 31.8 
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The two maps are very different.  Expressways are rarely included in the shortest 
distance between zones.  Much of the travel is on diagonal surface streets.  However, if travel 
time is taken into account, many of the trips are on expressways and on Lake Shore Drive. This 
is probably a more realistic description of longer distance trips.   
 

In moving from a complete street network to a simplified network using distance as an 
impedance to a time-based network, the description moves from an unrealistic and probably 
un-interpretable map to one that probably corresponds to the routes taken by offenders.  Does 
this add to police knowledge? Of the 10,763 mapped segments in the network, 65.1% had no 
predicted trips assigned to them.  Two percent of the road segments, those with 15 or more 
trips, contributed 20.2% of the 16,162 robber's movements across road segments.  These were 
typically arterial roads or expressways. By identifying these streets as those most likely to carry 
crime trips, these >hot street= segments could become a focus for police patrol or for intervention 
to prevent crime. 

 
Conclusions 
 

Feasibility & Advantages of Crime Travel Demand Modeling 
 

The police already collect information on the location and time of incidents and the home 
address of arrested offenders. Can this information be utilized to describe and predict the travel 
patterns of Chicago robbers?  CrimeStat's trip distribution module was used to describe zonal 
patterns of travel for all known 1997 Chicago robbery offenders.  Around 30% of Chicago 
robberies were committed near to the offender's home.  For these a zonal model cannot predict 
travel patterns.  For other robberies, a time-weighted travel pattern resulted in a more credible 
description than one based on distance.   

 
The key to analyzing the robber's travel pattern is to reconsider the meaning of distance.  

Close to home or work, distance represents a knowledge space and an opportunity space, a place 
the offender knows in which he or she spends a lot time.  This is an area where the benefits of 
knowledge may outweigh the costs of possible capture or it may simply be where the offender 
hangs out..  Further away, shortest distance is a poor representation of travel cost.  In major 
metropolitan areas, a better representation is shortest travel time.  Combining travel time of day 
with time of incident, results in a more realistic travel pattern. 

 
These intra- and inter-zonal links are a new way to look at the relationship between 

offender and incident.  However, they need some representation before they are useful to the 
police for tactical analysis or crime prevention.  In my discussion with the Chicago Police 
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Department, a network load map seemed to be most useful.  Network load summarizes the 
number of crime trips that passed over each segment in a road network. 
 

Limiting analysis to robberies occurring overnight (8PM to 5:59 AM), 1997 travel 
patterns were a good predictor of travel distances, intra-zonal robberies, and network load in 
1998.  However, 1997 travel patterns only weakly predicted specific links between traffic 
analysis zones.  For 1998 incidents, a trip distribution model (using Poisson regression of the 
zonal count of robbers' homes and incident locations, and an impedance function) modeled the 
overnight travel links between home and incident. Substituting a lognormal impedance function 
that better matched the observed overnight robbery pattern resulted in predictions that were 
nearly as good as the 1997 observed travel patterns.  A combination of these predictions with 
analysis of travel patterns over several years might eventually result in an excellent zonal 
prediction of crime travel patterns.   
 

Crime travel demand analysis is complex and time consuming and requires a relatively 
powerful PC with a large memory capacity.  Is it worth it?  Yes.  Information on crime trips 
is automatically gathered by the police, but it is not fully utilized.  However, unlike 
transportation planners, police are generally concerned with the short term and with acute rather 
than chronic problems.  They work on an existing street network rather than planning for the 
future.  Crime travel demand models may better serve the police as short term descriptions 
rather than long term predictions and can probably be used to describe the effect of specific 
police interventions such as road blocks or drug interdictions.  The crime travel demand model 
along with a GIS can identify hot street segmentsBthose segments that are most likely to be on 
the travel routes of offenders and most useful for intervention to prevent crime.   
 

For researchers, on the other hand, a crime travel demand model is a good way to ask 
long-term, structural questions.  If the travel patterns remain relatively constant over time, then 
these relationships can be modeled using a limited number of variables.  The result is a way to 
compare different metropolitan areas as well as a way to look at the same metropolitan area over 
different time periods.  It is a framework for analysis that is broader than just a 
journey-to-crime type of description. 
  

Limitations to Crime Travel Demand Modeling 
 

There are also limitations to the model: 
 

1. Only crimes with at least one known offender are analyzed.  To the extent that 
offender travel patterns in unsolved crimes are different than those with known 
offenders, travel patterns will be misrepresented.   
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2. The model works best if records are gathered in such a way that the address of an 
offender home can be linked to the address of an incident. 
 

3. The travel demand model assumes that the offender=s home address is accurate.  
Offenders may not have a stable address or may give a false address. 

 
4. The travel demand model assumes that offenders travel directly from home 

neighborhood to incident neighborhood; many probably do not. 
 
5. The crime travel demand model is an aggregate model, not a individual one. It 

predicts travel from the center of one zone to the center of another.  It cannot 
predict specific trips or the behavior of specific offenders and cannot predict 
travel within a zone. 

 
6. The model must be crime and city specific.  Chicago robbers were much more 

likely to attack close to home than those in Baltimore County (Chapter 28) or Las 
Vegas (Chapter 32).  Because these homes were distributed throughout the city, 
the travel patterns of Chicago robbers were much less focused on single target 
zones than in the other test sites. 

 
7. The study of Chicago was limited to incidents that occurred in the city of 

Chicago.  It does not model travel patterns of incidents occurring outside the city 
and can say nothing about them.  

 
8. The data available from the Chicago Police Department did not allow for a test of 

travel mode used.  It cannot be assumed that criminal trips use the same modes 
of transportation as non-criminal trips. 

 
Chicago is a city of isolated neighborhoods.  Even nearby neighborhoods may be terra 

incognita.  Crime travel follows the pattern of neighborhoods.  In Chicago, many robberies 
occur very close to the home address of the offender.  The crime travel demand model cannot 
analyze these crime trips because each zone is represented by a single point.  In some 
impoverished neighborhoods, robbery is very common.  An offender can opportunistically 
attack on any block. Even when offenders travel they tend to stay nearby their home 
neighborhood.  The isolation of robbery in the a few neighborhoods results in a downtown that 
is relatively free of incidents and crime trips that are relatively short. 
 

Chicago is a mature city. Neighborhoods change slowly.  Large scale changes in 
housing, poverty, or attractors do occur and include the destruction of public housing, 
widespread gentrification and the replacement of rail yards with upscale housing.  With these 
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changes come new opportunities for crime and changing crime travel patterns. These may be 
predicted with the crime travel demand module. 
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Chapter 32: 

Case Studies in 
Crime Travel Demand Modeling: 

II - Application of Travel Demand Behavior Model on 
Crime Data from Las Vegas, Nevada 

 
In this chapter, a case study of crime travel demand in Las Vegas, NV is discussed.  

Originally written in 2004, it is presented in order to illustrate how crime travel demand 
modeling can be applied to a primarily auto-oriented city. 
 
Introduction 
 

Strategic crime forecasting has for many years relied on a limited and simplistic suite of 
methods to predict approximately where future events may occur in broad strokes. Extrapolation 
of percentile change is probably the most commonly used means of forecasting future crime 
frequencies, based on the notion fundamental to all predictions, that the future will resemble the 
past. Unfortunately, this method is completely unable to cope with changes in the demographics, 
population, and social makeup of a jurisdiction.  
 

For a number of years, innovative crime analysts and criminologists have looked to other 
disciplines outside the study of criminal behavior for methods of predicting how the future will 
unfold. Economics, epidemiology, meteorology, and biology have all offered significant 
contributions as their more sophisticated and creative methods for foretelling future frequencies 
have been adapted to criminology with varying degrees of success. 
 

Transportation modeling is the most recent external science to suggest potential means of 
predicting criminal behavior. The success of travel demand modeling in the civilian world of 
transportation behavior has presented us with another possible technique which could be adapted 
to forecasting crime. Travel demand modeling offers a set of algorithms for estimating not only 
how much activity will occur in a given region, but also how offenders will travel across the 
jurisdiction to commit their crimes. This model has been implemented in the CrimeStat software 
application for use against crime data. 
 

In this study, we will review the application of this model against data from the 
metropolitan Las Vegas area over a period of three years. 
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The Las Vegas Metropolitan Area 
 

The Las Vegas metropolitan area is comprised of Clark County, Nevada, and several 
independent municipalities within it. The Las Vegas Metropolitan Police Department (LVMPD) 
serves Clark County (in the capacity of a Sheriff's Office) as well as the City of Las Vegas (in 
the capacity of a municipal police department).  Although the vast majority of the land area, 
population, and businesses within this area are policed by the LVMPD, there are three other 
significant jurisdictions - the City of North Las Vegas, the City of Henderson, and the City of 
Boulder City, each having their own police department. 

 
In addition to these important sibling agencies, several other law enforcement agencies 

have overlapping jurisdiction within areas principally policed by the LVMPD - the Paiute Tribal 
Police, the Southern Pacific Railway Police, the Nevada Highway Patrol, U. S. Air Force 
Security Police, U. S. Air Force Office of Special Investigations, Federal Bureau of 
Investigation, Veteran's Administration Police, and others. Although these agencies perform 
valuable police functions, the LVMPD unquestionably deals with the vast majority of crime in 
the area, making it an attractive candidate for offender travel research. 
 

In many ways, Las Vegas resembles an island. Surrounded by barren desert, with very 
few roads entering or leaving the city, it is an urban oasis in a sparsely populated desert 
wilderness consisting of largely impassable terrain. This geographic position and isolation make 
Las Vegas highly interesting from the perspective of a transportation (or crime trip movement) 
modeler.  
 

Another unique feature of the Las Vegas area is the highly transient nature of the 
population, which falls into three discrete categories: 
 

1. First, the resident population consists of some one million persons, approximately 
880,000 of which live in the jurisdiction of the LVMPD (the remainder being 
served primarily by Henderson and North Las Vegas). These permanent residents 
are the mainstay of the community and the source for demographic data used by 
the census bureau and planning agencies. 

 
2. Second, we must consider the visitor population, consisting of some 

35,000,000 - 40,000,000 persons per year. On any given day, between 100,000 
and 500,000 visitors will be staying in the Las Vegas area, a critical factor in 
transportation, demography, and crime! These tourists sometimes act as crime 
importers (e.g., criminal street gangs from neighboring Californian cities often 
visit Las Vegas for weekend mayhem or more professional criminal purposes); in 
most instances, however, they serve as a pool of prey for local criminals. 
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3. Third, and finally, there is a substantial homeless population in Las Vegas, drawn 
by the seasonally warm climate and the ease with which this city can be reached 
as a destination. Although not famous for a "friendly" attitude toward the 
homeless, these persons are protected by law enforcement in Las Vegas and are 
well served by many charitable social institutions and services. Because Las 
Vegas is also an easy place to sin, homeless individuals with drug, alcohol, and 
gambling addictions often gravitate there; the possibility of "winning big" and 
instantly reversing a life of misfortune also weighs in the consideration of many 
homeless who choose to make their base in Las Vegas. However, due to the 
inability to accurately measure a "home" location for these persons when they do 
commit crimes, few of these have been represented in this study. 

 
This study will focus on the criminal movement behavior of the resident population of the 

greater Las Vegas metropolitan area. 
 
Source Data Provenance and Organization 
 

Data concerning the Las Vegas metropolitan area was provided by the Las Vegas 
Metropolitan Police Department's Investigative Division. Often, researchers underestimate the 
severe difficulties and chronic shortcomings of law enforcement data. Thanks to a first-rate 
records management system (RMS) and a voluminous tactical database repository, the Las 
Vegas Metropolitan Police Department's data presented relatively few problems; however, 
geocoding accuracy issues, missing data fields from modus operandi tables, and erroneous 
arrestee home locations result in sources of error that can contaminate analysis. These had to be 
overcome before any analysis or testing of new methods was possible. 
 

Crime report data for the LVMPD is maintained in an SQL-Server 7.0 database 
constructed by the Printrak (now owned by Motorola) company, makers of the Law RMS 
(LRMS) police records management system used by Las Vegas, among others. This repository 
currently houses many hundreds of thousands of crime reports, field interviews, and other critical 
police data in a well-organized, relational database. 
 

Crime reports are filled out by either sworn officers (when taken in the field) or by station 
personnel (when reported in person at an LVMPD substation or city hall). These paper reports 
include ample MO detail and descriptive information in compartmentalized, "force-choice" 
fields, as well as substantial expository narratives. "Forced-choice" fields are also typically 
supplemented by "Other" options which can then be individually explained, to deal with very 
unusual crime behaviors, descriptions, or details. 
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At the end of each shift, officers submit their reports to their sergeant for review. After a 
quick check to ensure the most basic levels of data quality and integrity, the reports are then 
placed in a mailbox for pickup, which occurs several times each day and night.  Reports are 
transferred by intradepartmental couriers to city hall where they are collected by the Records 
Section.  Professional data entry specialists then meticulously type each report into the LRMS 
database.  
 

The data entry process includes several validation and error trapping elements. These 
usually greatly enhance the completeness and accuracy of each report, but are sometimes 
bypassed by busy clerks. Perhaps the most significant validity check which can be bypassed is 
the address verification system which performs a ‘brute force’ match against a geofile of known, 
valid locations. When a matching address is entered into the system, geographic coordinates and 
other useful data is automatically propagated into the file. Because many crimes do not occur at 
valid, documented physical street addresses (crimes in remote or desert areas or in new 
construction zones or on buses or in taxi cabs, for example), however, data entry clerks have 
grown accustomed to overriding the address verification module. This is also sometimes done in 
the interests of speed and expediency, even when a valid, matchable address is provided in the 
crime report. When this happens, the resulting address must be cleaned using a data cleaning 
application prior to successfully matching in a geocoding operation. Once entered into the LRMS 
database, crime report information may be extracted through a variety of standard methods. 
 

The LVMPD routinely downloads crime reports on a daily basis into an ATAC analytical 
database where crime analysts and investigators can examine and study the data without creating 
any drag on the primary server. The ATAC database is streamlined for analysis, and is much 
easier to query and analyze than the LRMS repository itself. The ATAC databases are 
Microsoft-compliant relational databases very similar to the MS Access database. 
 

Data used for the Next-Generation Offender Crime Travel Model project were derived 
from records stored in several ATAC analytical databases created and maintained by the 
LVMPD Crime Analysis Section. These databases are archived by calendar year and by crime 
category. The archive dates for calendar year are assigned based on the year of occurrence. 
Crime categories are: auto crimes (including motor vehicle thefts, burglaries from motor 
vehicles, and criminal damage to automobiles); burglaries (including all burglary statutes); 
Larcenies (including all Larceny/Theft statutes); and personal crimes (including all sexual 
offenses, assaults and aggravated assaults, robberies and home invasions, kidnappings, and 
homicides). 
 

These databases contain MO, Persons, and Vehicles tables related by event number. The 
MO table contains all information pertinent to the location, timing, category, and methods of 
each crime event; the Persons table all information on personal identification, description, and 
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histories, not only for suspect and arrestees, but also victims, witnesses, reporting parties, etc.; 
the Vehicle table all information concerning any vehicles which may be involved in the offense, 
including descriptive and identification information, whether the vehicle relates to the criminals, 
victims, or has some other relationship to the crime. 
 

For purposes of this project, the LVMPD authorized access and transmission of the 
contents of the complete ATAC database inventory for the Crime Analysis Section. Of the 
fifty-odd databases provided, the Personal crimes databases for the years 1996 - 2002 were 
initially selected. 
  

Data Screening 
 

Three broad categories were selected from the complete data inventory provided: 
 

1. Confrontational 
2. Burglary, and  
3. Vehicular crimes. 
 
These intentionally disparate data were selected in the interests of increasing the latitude 

of the study. It was hypothesized that travel behavior would vary between these categories of 
events. Confrontational crimes included sexual assaults, robberies, kidnappings, and murders. 
These crimes were included in a single group as part of this initial appraisal of the effectiveness 
of travel demand modeling on criminal behavior even though it is obvious that the behaviors 
exhibited by offenders across these crime types are likely to vary. These crimes were grouped in 
spite of these likely differences because similarities in targeting behavior across these crimes 
might make them amenable to collective analysis; a hypothesis which can be tested using the 
techniques built into the travel demand module. 
 

Burglaries used in this analysis included both residential and commercial burglaries, but 
not burglaries from motor vehicles. Only crimes in which a building or property was illegally 
entered for the purpose of theft were included in this study, thereby eliminating the prolific 
larceny category. 
 

Vehicular crimes included both auto thefts and burglaries from motor vehicles. 
"Carjackings" were not specifically included, but some auto thefts in which the modus operandi 
followed the confrontational "carjacking" pattern may have been included when specifically 
statutory designations were missing to differentiate these from more typical auto thefts. 
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Some operational definitions of these crimes are in order: 
 

1. Sexual assaults used in this analysis included forcible rapes with victims of either 
sex, as well as any other physical, sexual abuse of another person of either 
sex - such as digital or objective penetration, fondling, etc. - and also open and 
gross lewdness (e.g., "flashing"). Statutory sexual seduction ("statutory rape") was 
excluded. 

 
2. Robberies used in this analysis included all robbery-related statutes in the Nevada 

Revised Statutes as of 2002 including home invasions (see State of Nevada, 
2012). 

 
3. Kidnappings were included in confrontational crimes, but the application of 

kidnapping as a statutory offense by law enforcement in Las Vegas (and 
elsewhere) may be counter-intuitive to some readers. Kidnapping is often attached 
as an additional offense to other crimes, such as robberies or sexual assaults, in 
any case in which the victim is forcibly moved from one location to another. This 
practice is used primarily as an adjunct to prosecution because kidnapping (unlike 
either robbery or sexual assault) is a federal crime and, in some cases, may be 
easier to prove in court. 

 
4. Homicides used in this analysis included all murder statutes, as well as all 

manslaughter statutes. No justified homicides were included. 
 

Once the target crime categories had been defined, separate databases for each of the 
three categories were compiled. Although data for several years was made available, all but three 
years of data were excluded from the study. Data prior to 1997 was often relatively poorly 
maintained and prepared and sometimes contained serious omissions which made it unreliable. 
Data for the year 2002 was incomplete when this study was commissioned. Although crime data 
for the years 1997 and 1998 was functionally reliable, socio-economic and transportation data for 
these years was not readily obtainable at the time this study commenced; since these data were 
necessary for implementation of this model, these years, too, were excluded from analysis. 
Therefore, only the years 1999, 2000, and 2001 were included in this study. 
 

Because this study focuses on spatial relationships between crime event locations and 
criminal home locations, only solved crimes could be used. Crimes were included as "Solved" 
when an arrest was made - unfortunately, difficulties in obtaining data from the justice system 
and the long delays inevitable in the prosecutorial process made it impossible to identify crimes 
in which a conviction had been obtained; an arrest was the closest approximation to a reliable 
solution possible for this research. 



32.7 

Of those "solved" crimes in which an arrest was made, only those in which the offender's 
home address and the precise location of the crime itself were both known could be used. Even 
when crimes were closed by arrest and adequate data was available to geographically plot and 
analyze the case, some have still been excluded. Instances in which the offender and victim both 
live at the scene of the crime have been excluded from these analyses since no travel was 
involved.  However, instances in which either party lived at the scene of the crime but the other 
did not have been retained. The reasoning behind this decision is that the decision to commit a 
crime at a given place does include the decision to commit a crime in one's own home. 
Therefore, the spatial travel (none) component of this decision should still be reflected in the 
model if we hope to eventually derive a valid statistical representation of offender travel 
behavior. 
 

Also, crime in which the offender lived outside the study area (Clark County, Nevada) 
have been excluded in most cases, but not all. In some cases, "tourist" offenders may have been 
included when their temporary "base of operations" (i.e., local lodgings) had been recorded. In 
these instances, the hotel, motel, resort, or private dwelling they lived in has been used as a 
"home" location for purposes of originating a crime trip. 
 

The number of cases usable for each category of crime varied significantly from year to 
year (Table 32.1). 
 

Table 32.1: 

Confrontational Crimes Available for Analysis 
 

Year  Total Offenses  Usable Offenses 
1999        5,272   1,080 
2000        7,560   1,643 
2001        3,588     991 

 
The large increase in number of offenses from 1999 to 2000 is difficult to explain; the 

following substantial drop from 2000 to 2001 (52%!) is even more troubling. A similar, but 
inverted, discrepancy emerges in the frequency of burglaries reported during those years (Table 
32.2). 
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Table 32.2: 

Burglary Crimes Available for Analysis 
 

Year  Total Offenses  Usable Offenses 
   1999       17,234   2,520 
   2000       12,899   2,040 
   2001       16,403   2,733 
 

A final enigma, most significant of all, is obvious when we look at the frequency of auto 
crimes over the same three-year period (Table 32.3). 
 

Table 32.3: 

Vehicular Crimes Available for Analysis 
 

Year  Total Offenses  Usable Offenses 
1999      6,871     646 
2000     15,025   1,219 
2001      8,349     894 

 
These disparities are hard to account for. On the whole, 1999 had a middling number of 

auto thefts and confrontations but a high number of burglaries; in 2000, on the other hand, the 
confrontations and auto thefts radically increased (auto crimes more than doubled!), but 
burglaries dropped notably. Finally, in 2001, confrontational crimes dropped to the lowest levels 
as did auto crimes while burglaries leaped to nearly 1999 levels! 
 

How can we explain these strange fluctuations? Given the large percentages involved, it's 
tempting to imagine some change in counting or reporting procedures in 2000; however, a 
scrutiny of the policies and procedures for the LVMPD does not seem to bear this out. Previous 
years (1996 - 1999) did not evince a similar wide degree of variation. The reason for these crime 
reporting changes remains unknown.  

 
Is there reason, therefore, to distrust these data? For purposes of this study, the answer 

appears to be, "No." That is, the data used for these analyses should, even allowing for as 
yet-unexplained vagaries in reporting, comprise a representative sample of the reported crime 
activity in Las Vegas over these years. 
 

Since forecasting the frequency of crime is a relatively minor component of the travel 
demand model, these numeric variations should not cause too much concern. Instead, since the 
focus of this model is the effective explanation and representation of the distribution of crime 
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trip generators and crime trip destinations (and, as a function thereof, of the crime trip paths 
between them), the frequencies themselves should matter little. 
 

Reference Data 
 

The Traffic Analysis Zone (TAZ) file for Las Vegas was selected as the optimum 
polygonal reference theme for this study (Figure 32.1). This file was provided by the 
Metropolitan Planning Office for Las Vegas, the Regional Transportation Commission. The data 
provided included historical data for 1999, 2000, and 2001 enabling more accurate modeling of 
the importance of various factors longitudinally across time. The TAZ dataset was provided in 
ESRI shapefile format, which is intrinsically legible to the CrimeStat application on which the 
model is to be built. 
 

The TAZ shapefile includes information on housing, employment, income, population, 
road mileage, and a variety of subset data specific to particular types of employment (e.g., 
"Strip" jobs, Nellis Air Force Base employment, entertainment-related jobs, vacant properties, 
number of pawn shops, etc.). 
 

An additional reference theme was needed to apply the final step in the travel demand 
model, the network assignment method. The Major Street Centerline file (LVMAJSCL.shp) in 
ESRI shapefile format was selected (Figure 32.2). Although only including arterial streets, 
freeways, and major thoroughfares, this transportation network layer is all that is needed to 
describe the vast majority of trips (of any sort) in Las Vegas. The addition of bus route 
information may prove a useful supplementary network to future analyses using this model. 
 

Assignment of Crime Trips 
 

Data from each year, by category, was assigned to a simple tabular database consisting of 
an identifying variable (Event Number as primary key), origination coordinates (coordinates of 
the offender's home address, or local base of operations in the case of external offenders), and 
destination coordinates (coordinates of the crime scene). These data were then combined into an 
MS Access 977 database for analysis using CrimeStat.  Figures 32.3 and 32.4 show the assigned 
origins and destinations. 
 

Each origin-destination pair is termed a "Crime Trip." Following the reasoning of 
transportation modelers, it is understood that offenders to not leave their homes, travel directly to 
a crime scene to commit an attack, and then return home. Instead, each "sortie" is likely to 
consist of several stages. 
 



Traffic Analysis Zones in Las Vegas
Figure 32.1:

Traffic Analysis Zones in Las Vegas



Las Vegas Major Street Centerline Network
Figure 32.2:

Las Vegas Major Street Centerline Network



Trip Origins: All Confrontational Crimes 1999-2001
Figure 32.3:

Trip Origins: All Confrontational Crimes, 1999-2001
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Trip Destinations: All Confrontational Crimes 1999-2001
Figure 32.4:

Trip Destinations: All Confrontational Crimes, 1999-2001
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For example, a sexually predatory offender may get up in the morning, leave home, drive 
to work (stopping for coffee along the way), then go out to lunch before returning to the office, 
then on his way home depart from his usual route to drive through a residential neighborhood, 
looking for targets for potential victims. If a promising target is observed, he may then commit 
an attack, then drive back toward his home area, stopping off for gas or at a drive-through 
restaurant on the way, before parking at his house. Although this round-trip from home to home 
consists of multiple destinations, some of which are repeated throughout the day, the whole 
journey is considered to be a single "Crime Trip@. 
 

In some cases, a single offender was responsible for many crimes. When this happens, 
the single origin is paired with multiple destinations, resulting in separate Crime Trips.  In other 
cases, one crime may be perpetrated by multiple offenders. When this happens, each offender's 
origin is paired with the single destination, again resulting in separate Crime Trips. 
 

While it is possible to distinctly model each Crime Trip based on precise spatial 
locations, the type of model used is an aggregate one.  Thus, both origins and destinations of 
each crime trip were aggregated to the centroid of each Traffic Analysis Zone. This enables the 
spatial assignment of TAZ variables such as income and population to the aggregate frequencies 
of both origins and destinations. 
 

This assignment is performed in CrimeStat by centroid allocation - the nearest TAZ 
centroid is used to assign the TAZ data to each origin and destination. This method is faster and 
simpler than "point-in-polygon" spatial aggregation and assignment, but should result in 
comparatively few mistaken assignments due to unusual TAZ polygon shape or distribution. 
Since crime trip data is aggregated to the zonal level, therefore, the resulting analyses and 
forecasts are only applicable to this level and cannot meaningfully disaggregated to a more 
refined resolution. 
 

The accepted travel demand model framework contains a built-in "error factor" for 
external trips - that is, crime trips originating outside the study area but having internal 
destinations. These "external trips" were culled from the crime database during the data 
screening process; therefore, "External Zone" data is inapplicable to the trip generation stage of 
the analysis. 
  
Trip Generation 
 

Each origin/destination pair having been aggregated to the TAZ polygon layer, it is now 
possible to evaluate the relationship between socio-economic variables available in the TAZ 
database with the frequency of crime origins and destinations. This is accomplished through 
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regression modeling and may prove one of the most useful single features in the new modeling 
capabilities of the CrimeStat application. 
 

There are two main regression options available in the software at present: Ordinary 
Least Squares (OLS) and Poisson.1 The Poisson estimation also includes a separate option which 
allows backward elimination of variables. This option, Poisson Regression with backward 
elimination, was the most effective of the techniques evaluated resulting in consistently better 
visual fits to the data and lower residuals. This very useful step examines each variable element 
suggested by the analyst for its predictive value as a coefficient in estimating the frequency of 
either origins or destinations by TAZ. 
 

In every case, three variables within the TAZ database for Las Vegas proved consistently 
useful as predictive measures:  
 

1. Income,  
2. Population, and  
3. Total Employment.  

 
The measurable successfulness of these variables to account for the predictable 

distribution of both origins and destinations was somewhat counter-intuitive. It was suspected 
prior to the application of this model that other variables would be critical predictors of crime, in 
particular the number of pawn shops, the number of Strip employment opportunities, and the 
number of Nellis AFB employment opportunities. In fact, however, all of these variables 
demonstrated strong multicolinearity with the three primary variables listed above. When these 
other, extraneous factors were excluded from the regression process, the effectiveness of the 
model's predictive capabilities was substantially improved. 
 

A suggested and accepted travel demand modeling techniques widely implemented by 
transportation planners is the adoption of Aspecial generator@ variables to explain unusual or 
unique factors implicit in some areas. It was expected that Nellis AFB, the Las Vegas Strip itself, 
and some other seemingly significant factors would likely fill the role of "special generator;" 
however, results indicated that none of these were as effective in a predictive or explanatory role 
as income, population, and total employment. 
 

Latitudinal forecasting of crime trip origins and destinations performed fairly well; 
comparison of expected versus observed trip numbers did not match particularly well but the 
relative distribution by TAZ was a very close match (Figures 32.5 through 32.8). 
                         
1  Since this was first written, the regression capabilities have been expanded to include a variety of 

Poisson-type models including Poisson-Gamma, Poisson-lognormal, and Conway-Maxwell Poisson all 
with a spatial component.  See Chapter 20.  



Relative Distribution of Observed Crime Trip Origins
Figure 32.5:

Relative Distribution of Observed Crime Trip Origins



Relative Distribution of Observed Crime Trip Destinations
Figure 32.6:

Relative Distribution of Observed Crime Trip Destinations



Relative Distribution of Predicted Crime Trip Origins
Figure 32.7:

Relative Distribution of Predicted Crime Trip Origins



Relative Distribution of Predicted Crime Trip Destinations
Figure 32.8:

Relative Distribution of Predicted Crime Trip Destinations
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Longitudinal forecasting of crime trip frequency by data from one year to the next year 
performed very poorly; this is probably an artifact of the still-unexplained drastic variation in 
frequency between the three years considered in this study. Results from other years may 
exemplify very different findings. 

 
Side-by-side comparisons of observed and predicted crime trip origins reveal some 

persuasive similarities, but significant discrepancies, also (Figure 32.9 and Figure 32.10).  In 
general, relative proportions are very accurately described, but smaller producing zones are 
somewhat underestimated (the model seems to perform better on zones with higher productions). 
 

A side-by-side comparison of observed and predicted crime trip destinations suggests 
that, proportionally, the model again performs very well, particularly on zones with higher 
production scores. Zones with very weak crime trip destination productions (of one or two 
crimes) are not as accurately depicted. 

 

Trip Distribution 
 

Assignment of trip links between TAZ polygons performed very well (Figure 32.11). 
Originally, some concern was felt that the assignment of crime events to TAZ centroids (rather 
than using the actual crime scene and home address coordinates) might result in significant 
distortion; however, this does not appear to have occurred. Compare the raw (actual) crime trip 
lines with the centroid-corrected trip lines to see how neatly they match (Figure 32.12). The 
resulting distance decay and impedance functions perform perfectly well. There are almost no 
discrepancies visible to the naked eye. 
 

Various impedance function calculations were attempted in the course of this study. 
Eventually, an adaptive (100-bin) normal interpolation with 100 minimum samples was selected 
as the best fit. However, a negative exponential impedance function also fit well, similar to the 
Baltimore County and Chicago models. 
 

Intra-zonal crime trips - those having both origin and destination within the same TAZ, 
cannot be displayed as lines since they have no length. Instead, they can be represented by points 
(Figure 32.13). Inter-zonal crime trips, on the other hand, are better displayed by lines (Figure 
32.14). 
 

Overall, intra-zonal crime trips accounted for 42% of all crime trips but only 12% of 
robberies, indicating a much longer "hunting range" for robbers; this may be in keeping with the 
hypothesis that the tourist corridors draw robbery crime trips as destinations which originate in 
other neighborhoods. More than 50% of sexual assaults were intra-zonal, indicating a  
 



Comparison of Observed and Predicted Crime Trip Origins
Figure 32.9:

Comparison of Observed and Predicted Crime Trip Origins

Observed Predicted



Comparison of Observed and Predicted Crime Trip Destinations
Figure 32.10:

Comparison of Observed and Predicted Crime Trip Destinations

Observed Predicted



Observed Crime Trips
Figure 32.11:

Observed Crime Trips



Comparison of Observed and Predicted Crime Trip Links
Figure 32.12:

Comparison of Observed and Predicted Crime Trip Links

Observed Predicted



Predicted Intra-zonal Crime Trips
Figure 32.13:

Predicted Intra-zonal Crime Trips
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Figure 32.14:

Top 100 Predicted Inter zonal Crime TripsTop 100 Predicted Inter-zonal Crime Trips
Allocated to All Streets
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shorter-than-usual hunting range for sexual attackers, who seem to prefer striking in their home 
neighborhoods. 

 

Mode Split 
 

Unfortunately, the mode split portion of the travel demand model is the weakest element 
for the Las Vegas data. Transportation modes across metropolitan Las Vegas are varied. Typical 
of a western city, the overwhelming majority of residents rely on private automobiles for 
transportation as do many tourist visitors. However, this mainstay is supplemented by a robust 
bus system as well as alternate personal transportation for short trips (i.e., walking, bicycling, or 
scooters). The picture of automobile transportation is somewhat muddled by the higher than 
usual dependency on taxi-cabs and limousines for transportation by out-of-state visitors. 
 

Data provided by the LVMPD included a field called "Method of Departure" which was 
intended to contain information about how the offender departed the scene of the crime which, in 
turn, would have been an effective way of calculating probable mode split for crime trips 
sampled. Unfortunately, this data field was blank in the overwhelming majority of cases 
(approximately 4% contained entries, and only 75% of these - 3% overall - contained apparently 
valid data). 
 

Therefore, any empirical estimation of mode split for these data requires inference from 
other data. For example, auto theft crimes may safely be assumed to use a car to provide 
transportation for at least some portion of the crime trip. In other cases, the plain-text narrative 
includes vehicle descriptions or statements about how the offender moved that were not distilled 
into the correct field. Unfortunately, the large volume of cases makes recovering information 
from these free narratives impractical for the small number of cases in which mode split 
information can beneficially be derived. 
 

Due to this lack of reliable data, only two mode split options were included in this 
analysis: Walking and Driving. Default impedance functions proved very acceptable for both 
modes: Inverse Exponential for walking trips and Lognormal for driving. 
 
Network Assignment 
 

The complete street centerline (SCL) file for the metropolitan Las Vegas area was 
available in a routable format (topologically rectified ESRI Shapefile); however, this file proved 
prohibitively large and unwieldy for the A* shortest-path/least-cost algorithm implemented in 
CrimeStat.  Instead of the complete SCL data layer, a layer consisting only of arterial streets 
and freeways was used instead. This major roads file proved adequate to neatly explaining the 
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probable transportation path choices made by the top 100 and top 300 inter-zonal crime trips 
(Figures 32.15 and 32.16). 
 

In general, the visual goodness-of-fit for predicted crime trips improved as the category 
of crime was narrowed. Predictions from one year to the next remained weak, probably as a 
result of the as-yet-unexplained radical variance in crime frequencies across all study categories. 
However, within discrete crime categories predictive capabilities were sometimes visually 
impressive. 
 
Modeling Different Crime Types 
 
 Auto Theft Site to Recovery Site 
 

In the case of auto thefts, an attempt was made to isolate the movement from vehicle theft 
site to vehicle recovery site rather than use the theft site and offender home location as the 
destination and origin, respectively, of the crime trip. It was hoped that this variation of the travel 
demand model for crime trip analysis might prove more useful for this type of data than 
home-based crime trips partly because more accurate location information was available for 
recovery sites than for home locations. Also, it was hypothesized that the theft/recovery "trip" 
segment might prove more representative than the home/theft trip. 
 

Results for auto thefts appeared weak with predicted crime trips much longer than the 
observed (Figure 32.17). While the observed trips focused tightly on the central core areas and 
densely-populated residential zones, the predicted trips seemed to skirt the edges of the 
metropolitan area. This is possibly due to an implied overemphasis on freeway travel which may 
be correctible with better network allocation parameters. The median distance for observed crime 
trips was 2.3 miles. 
 

Residential Burglaries 
 

Differentiation of residential from commercial or auto burglaries was accomplished by 
three filtering criteria: Statute, Premise, and Zoning.  Some specific Nevada Revised Statutes 
have been reserved for residential burglaries; burglaries in which these statues were cited were 
therefore accepted as residential in nature. Categorical Premise type data was provided in the 
MO data for each crime; when this data explicitly noted a residential site, these cases were also 
accepted as residential. 
 

Some burglaries did not specifically include a residential statue or explicitly residential 
premise code; but were spatially located in areas of the jurisdiction reserved for residential rather  
 



Top 100 Predicted Inter zonal Crime Trips
Figure 32.15:

Top 100 Predicted Inter-zonal Crime Trips
Allocated to Freeways and Major Streets



Top 300 Predicted Inter and Intra zonal Crime Trips
Figure 32.16:

Top 300 Predicted Inter- and Intra-zonal Crime Trips
Allocated to Freeways and Major Streets
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Top 100 Observed & Predicted Auto Theft Crime Trips
Figure 32.17:

Top 100 Observed & Predicted Auto Theft Crime Trips
Allocated to Freeways and Major Streets

Observed Predicted



32.32 

than commercial, industrial, or other zoning purposes. These cases were therefore also accepted 
as residential in character. 

 
Results for analysis of residential burglaries was more promising than for auto thefts, or 

for burglaries overall (Figure 32.18). While, again, observed crime trips focused on the most 
densely-populated residential neighborhoods and predicted crime trips were much longer and 
spread more far afield, this spread was much smaller than that seen in auto thefts and more 
closely conformed to the observed distribution. The median distance for residential burglary 
crime trips was 1.1 miles. 
 

Sexual Assaults 
 

The spatial distribution of sexual assault crime trips in many ways seemed to invert the 
problems seen in the predicted crime trips for auto thefts and residential burglaries. In the 
previous examples, an observed tendency toward centrality seemed to be confused with a 
predicted tendency toward dispersion toward outlying areas. In this case, however, a very 
nebulous, outlying distribution of observed crime trips (centering in three faint clusters around 
the perimeter of the central metropolitan region) was observed. The predicted crime trip 
distribution mistakenly emphasized central areas, and seemed to completely fail to predict the 
southeastern-most "cluster" of crime trips (Figure 32.19). 
 

The large median crime trip length for sexual assaults - 3.2 miles, may help explain the 
relatively poor predictions of these results. Different impedance functions will probably help 
improve the reliability of this model against these types of crimes. 
 

Robberies 
 

Robbery crime trips in Las Vegas appear to closely parallel the major gaming and 
transportation corridors running north to south through the center of the metropolitan area 
(Figure 32.20). The visual fit of predicted against observed crime trips was most impressive 
against these cases. Although the predicted crime trip distribution appears more compact and 
centralized than the observed, the directionality and polarity of the two parallel nicely, and make 
a striking visual match. The median crime trip distance for robberies was 2.3 miles. 
 
Conclusions 
 

Overall, the model appeared to perform well for some crime types but weaker for others. 
One of the most troubling problems facing the evaluation of the network assignment stage of the 
model is the lack of any good final metric other than visual approximation for determining the  
 



Top 100 Observed & Predicted Residential Burglary Crime Trips
Figure 32.18:

Top 100 Observed & Predicted Residential Burglary Crime Trips
Allocated to Freeways and Major Streets

Observed Predicted



Top 100 Observed & Predicted Sexual Assault Crime Trips
Figure 32.19:

Top 100 Observed & Predicted Sexual Assault Crime Trips
Allocated to Freeways and Major Streets

Observed Predicted



Top 100 Observed & Predicted Robbery Crime Trips
Figure 32.20:

Top 100 Observed & Predicted Robbery Crime Trips
Allocated to Freeways and Major Streets

Observed Predicted
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value of the resulting prediction. Some measurement of congruence is needed to make the 
determination of usefulness reliable and valid. 

 
The first stage of the model - crime trip generation, is arguably the most useful to law 

enforcement. This elegantly simple model can readily be adapted to different types of data, and 
with the inclusion of additional regression methods (specifically the negative binomial 
distribution model) to supplement the existing ordinary least squares (OLS) and Poisson variants, 
this feature is likely to remain useful for the foreseeable future.2 
 

The second stage of the model - crime trip distribution, is also potentially highly useful. 
The analysis not merely of where offenders live or where crimes are committed but of the travel 
and transportation decisions linking the two locations, may have significant repercussions for 
crime analysts. This type of analysis will be particularly useful for strategic and administrative 
analysts when recommending manpower allocation, beat boundaries and precinct/district 
configuration schemes, and assessing the impact of major developments such as transportation 
corridors, shopping malls, or sports complexes on the distribution of crime. 
 

The mode split stage of the model was difficult to apply meaningfully to the Las Vegas 
data in this study because of deficiencies in the data itself. Either transportation choice values 
were not recorded, or were recorded in irretrievable formats, making an empirical evaluation of 
offenders' transportation choice proclivities impractical. Failing the availability of empirical data, 
falling back on overall trends in public transportation choice are all that is possible for the 
analyst. Since it is possible that crime trips may be qualitatively different than other types of trips 
on which these statistical models have been based, further research is required to assess whether 
or not these standards will be applicable to criminal behavior. 
 

The final stage of the model - network assignment, functioned mechanically as expected, 
but did result in some potentially weak results (such as overemphasis on the speed of freeways 
apparent in some results) which may be overcome with better mode split and network choice 
parameters. 
 

One aspect of the model that caused for initial concern, the aggregation of crimes to the 
Traffic Analysis Zone polygon level, proved to have no significant impact on the resulting 
analysis. The TAZ structure seems admirably suited to analysis of this sort of movement - as 
indeed one might expect from its provenance. 

 
The most successful predictive variables for estimating crime trip production, whether of 

origins or destinations, were infallibly total population, total employment, and income. Inclusion 

                         
2  This has been implemented since this chapter was initially written. 
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of additional variables distorted rather than improved the predictive value of the model, most of 
the time with measurable multicolinearity which was not always apparent a priori. 
 

With the mechanical aspects of the model - as implemented in the latest version of 
CrimeStat, complete and functioning correctly, it remains to be learned how to better calibrate 
and implement the model to make it an effective tool for law enforcement analysis and planning. 
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Appendix A: 

Some Notes on the 
Statistical Comparison of Two Samples 

By 

Ned Levine 
Ned Levine & Associates 

Houston, TX 
 

The following presents methods for testing the spatial differences between two 
distributions.  At this point, CrimeStat does not include routines for testing the differences 
between two or more samples.  The following is provided for the reader=s information.  
Chapter 4 discussed the calculation of these statistics as a single distribution. 
 

Differences in the Mean Center of Two Samples 
 

For differences between two samples in the mean center, it is necessary to test both 
differences in the X coordinate and differences in the Y coordinates.  Since CrimeStat outputs 
the mean X, the mean Y, the standard deviation of X, and the standard deviation of Y, a simple 
t-test can be set up.  The null hypothesis is that the mean centers are equal 
 

H0: μXA = μXB         (A.1) 
μYA = μYB         (A.2) 

 
and the alternative hypothesis is that the mean centers are not equal 
 
 H1: μXA =/  μXB         (A.3) 

μYA =/  μYB         (A.4) 
 

Because the true standard deviations of sample A, σXA and σYA, and sample B, σXB and σYB, 
are not known, the sample standard deviations are taken, SXA, SYA, SXB and SYA.  However, 
since there are two different variables being tested (mean of X and mean of Y for groups 1 and 
2), the alternative hypothesis has two fundamentally different interpretations: 
 
 Comparison I:  That EITHER μXA =/  μXB OR μYA =/  μYB is true  (A.5) 
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 Comparison II: That BOTH μXA =/  μXB AND μYA =/  μYB are true  (A.6) 
 
In the first case, the mean centers will be considered not being equal if either the mean of 

X or the mean of Y are significantly different.  In the second case, both the mean of and the 
mean of Y must be significantly different for the mean centers to be considered not equal.  The 
first case is clearly easier to fulfill than the second.   
 

Significance levels 
 

By tradition, significance tests for comparisons between two means are made at the α#.05 
or α#.01 levels, though there is nothing absolute about those levels.  The significance levels are 
selected to minimize Type 1 Errors, inadvertently declaring a difference in the means when, in 
reality, there is not a difference. Thus, a test establishes that the likelihood of falsely rejecting the 
null hypothesis be less than one-in-twenty (less strict) or one-in-one hundred (more strict).  
 

However, with multiple comparisons, the chances increase for finding >significance= due 
to the multiple tests.  For example, with two tests - a difference in the means of the X 
coordinate and a difference in the means of the Y coordinate, the likelihood of rejecting the first 
null hypothesis (μXA =/  μXB) is one-in-twenty and the likelihood of rejecting the second null 
hypothesis (μYA =/  μYB) is also one-in-twenty, then the likelihood of rejecting either one null 
hypothesis or the other is actually one-in-ten. 
 

To handle this situation, comparison I - the >either/or= condition, a Bonferoni test is 
appropriate (Anselin, 1995; Systat, 1996).  Because the likelihood of achieving a given 
significance level increases with multiple tests, a >penalty= must be assigned in finding either the 
differences in means for the X coordinate or differences in means for the Y coordinates 
significant.  The Bonferoni criteria divides the critical probability level by the number of tests.  
Thus, if the α#.05 level is taken for rejecting the null hypothesis, the critical probability for each 
mean must be .025 (.05/2); that is, differences in either the mean of X or mean of Y between two 
groups must yield a significance level less than .025. 
 

For comparison II - the >both/and= condition, on the other hand, the test is more stringent 
since the differences between the means of X and the means of Y must both be significant.  
Following the logic of the Bonferoni criteria, the critical probability level is multiplied by the 
number of tests.  Thus, if the α=.05 level is taken for rejecting the null hypothesis, then both 
tests must be significant at the α#.10 level (i.e., .05*2).1 

                                                
1  There are limits to the Bonferoni logic. For example, if there were 10 tests, having a threshold significance 
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Tests 
 

The statistics used are for the t-test of the difference between means (Kanji, 1993). 
 

a. First, test for equality of variances by taking the ratio of the variances (squared 
sample standard deviations) of both the X and Y coordinates: 

 

           (A.7) 

 

           (A.8) 

 
with (NA - 1) and (NB - 1) degrees of freedom for groups A and B respectively.  
This test is usually done with the larger of the variances in the numerator.  Since 
there are two variances being compared (for X and Y, respectively), the logic 
should follow either I or II above (i.e., if either are to be true, then the critical α 
will be actually α/2 for each; if both must be true, then the critical α will be 
actually 2*α for each). 

 
b. Second, if the variances are considered equal, then a t-test for two group means 

with unknown, but equal, variances can be used (Kanji, 1993; 28).  Let 
 

 
∑ ∑

      (A.9) 

 

 
∑ ∑

      (A.10) 

 
where the summations are for i=1 to N within each group separately.  Then the 
test becomes 

 

                                                                                                                                                       
level of .005 (.05 / 10) for the >either/or= conditions and a threshold significance level of .50 (.05 * 10) for 
the >both/and= would lead to an excessively difficult test in the first case and a much too easy test in the 
second.  Thus, the Bonferoni logic should be applied to only a few tests (e.g., 5 or fewer). 
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         (A.11) 

 

         (A.12) 

 
with (NA + NB - 2) degrees of freedom for each test.   

 
c. Third, if the variances are not equal, then a t-test for two group means with 

unknown and unequal variances should be used (Kanji, 1993; 29). 
 

 
∑

        (A.13) 

 

 
∑

        (A.14) 

 

 
∑

        (A.15) 

 

 
∑

        (A.16) 

 

         (A.17) 

 

         (A.18) 

 
with degrees of freedom  
 

 2       (A.19) 



 

 
 A.5

 2       (A.20) 

 
for both the X and Y test. Even though this latter formula is cumbersome, in 
practice, if the sample size of each group is greater than 100, then the t-values for 
infinity can be taken as a reasonable approximation and the above degrees of 
freedom need not be tested: 
 

i. t=1.645 for α=.05; t=2.326 for α=.01 for a one-tail test 
 
ii. t=1.645 for α=.10; t=1.960 for α=.05; t=2.327 for α=.02; t=2.576 

for α=.01 for a two-tail test 
 

d. The significance levels are those selected above.  For comparison I - that either 
differences in the means of X or differences in the means of Y are significant, the 
critical probability level is α/2 (e.g., .05/2 = .025; .01/2 = .005).  For comparison 
II - that both differences in the means of X and differences in the means of Y are 
significant, the critical probability level is α*2 (e.g., .05*2 = .10; .01*2 - .02). 

 
e. Reject the null hypothesis if: 

 
Comparison I: Either tested t-value (tx or ty) is greater than the Critical t 

for α/2 
 

Comparison II: Both tested t-values (tx and ty) are greater than the critical t 
for α*2 

 
Example 1: Burglaries and Robberies in Baltimore County 

 
To illustrate, compare the distribution of burglaries in Baltimore County with those of 

robberies, both for 1996.  Figure A.1 shows the mean center of all robberies (blue square) and 
all residential burglaries (red triangle). As can be seen, the mean centers are located within 
Baltimore City, a property of the unusual shape of the county (which surrounds the city on three 
sides). Thus, these mean centers cannot be considered an unbiased estimate of the metropolitan 
area, but unbiased estimates for the County only. When the relative positions of the two mean 
centers are compared, the center of robberies is south and west of the center for burglaries.  Is 
this difference significant or not? 



Figure A.1:

Mean center of burglaries

Mean center of robberies
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To test this, the standard deviations of the two distributions are first compared and the 
F-test of the larger to the smaller variance is used (equations A.1 and A.2).  CrimeStat provides 
the standard deviation of both the X and Y coordinates; the variance is the square of the standard 
deviation.  In this case, the variance for burglaries is slightly larger than for robberies for both 
the X and Y coordinates.  

 

 
.

.
1.058        (A.21)  

 

 
.

.
2.007        (A.22)  

 
Because both samples are fairly large (1180 robberies and 6051 burglaries respectively), 

the degrees of freedom are also very large.  The F-tables are a little indeterminate with large 
samples, but the variance ratio approaches 1.00 as the sample reaches infinity.  An approximate 
critical F-ratio can be obtained by the next largest pair of values in the table (1.22 for p#.05 and 
1.32 for p#.01). Using this criterion, differences in the variances for the X coordinate are 
probably not significant while that for the Y coordinates definitely are significant.  
Consequently, the test for a difference in means with unequal variances is used (equations A.17 
and A.18).   
 

 
‐ . 	 	 ‐ .

. .

.

.
3.21	 .005   (A.23) 

 

 
. 	 	 .

. .

.

.
7.36	 .005   (A.24) 

 
Therefore, whether we use the >either/or= test (critical α#.025) or the >both/and= test 

(critical α#.1), we find that the difference in the mean centers is highly significant.  Burglaries 
have a different center of gravity than robberies in Baltimore County. 

 
Differences in the Standard Distance Deviation of Two Samples 
 

Since the standard distance deviation, SXY (equation 4.6 in Chapter 4) is a standard 
deviation, differences in the standard distances of two groups can be compared with an equality 
of variance test (Kanji, 1993, 37), 
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           (A.25) 

 
with (NA - 1) and (NB - 1) degrees of freedom for groups A and B, respectively.  This test is 
usually done with the larger of the variances in the numerator.  Since there is only one variance 
being compared, the critical α are as listed in the tables. 
 
 

Baltimore County Burglary Example (continued) 
 
From CrimeStat, we find that the standard distance deviation of burglaries is 8.44 miles 

while that for robberies is 7.42 miles.  The F-test of the difference is calculated by 
 

 
.

.
1.29        (A.26) 

  
with 6050 and 1180 degrees of freedom respectively.   Again, the F-tables are slightly 
indeterminate with respect to large samples, but the next largest F beyond infinity is 1.25 for 
p#.05 and 1.38 for p#.01.  Thus, it appears that burglaries have a significantly greater 
dispersion than robberies, at least at the p#.05 level.   
 

Differences in the Standard Deviational Ellipse of Two Samples 
 

Figure A.2 shows the standard deviational ellipse of all robberies (light blue) and all 
residential burglaries (light red). As can be seen, the dispersion of incidents, as defined by the 
standard deviational ellipse, is greater for burglaries than for robberies.  In a standard 
deviational ellipse, there are actually six variables being compared: 
 

1. Mean of X 
2. Mean of Y 
3. Angle of rotation 
4. Standard deviation along the transformed X axis 
5. Standard deviation along the transformed Y axis 
6. Area of the ellipse 

  



Figure A.2:

SDE of burglaries

SDE of robberies
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Differences in the mean centers 
 

Comparisons between the two mean centers can be tested with equations A.9 through 
A.12 if the variance test of equations A.7 and A.8 show equality or equation A.13 through A.20 
if the variances are unequal. 
 

Differences in the angle of rotation 
 

Unfortunately, to our knowledge, there is not a formal test for the difference in the angle 
of rotation.  Until this test is developed, we have to rely on subjective judgment. 
 
 

Differences in the standard deviations along the transformed axes 
 

The differences in the standard deviations along the transformed axes (X and Y) can be 
tested with an equality of variance test (Kanji, 1993, 37), 
 

           (A.27) 

 

           (A.28) 

 
with NA.1 and NB-1 degrees of freedom for groups A and B respectively.  This test is usually 
conducted with the larger of the variances in the numerator.  The example above for comparing 
the mean centers of Baltimore County burglaries and robberies illustrated the use of this test.  
 

Differences in the areas of the two ellipses 
 

Since an area is a variance, the differences in the areas of the two ellipses can be 
compared with an equality of variance test (Kanji, 1993, 37), 
 

           (A.29) 

 
with NA.1 and NB-1 degrees of freedom for groups A and B respectively.  This test is conducted 
with the larger of the variances in the numerator.  
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Significance levels 
 

The testing of each of these parameters for the difference between two ellipses is even 
more complicated than the difference between two mean centers since there are up to six 
parameters which must be tested (differences in mean X, mean Y, angle of rotation, standard 
deviation along transformed X axis, standard deviation along transformed Y axis, and area of 
ellipse).  However, as with differences in mean center of two groups, there are two different 
interpretations of differences. 
 

Comparison I:  That the two ellipses differ on ANY of the parameters (A.30) 
 

Comparison II:  That the two ellipses differ on ALL parameters  (A.31) 
 

In the first case, the critical probability level, α, must be divided by the number of 
parameters being tested, α/p.  In theory, this could involve up to six tests, though in practice 
some of these may not be tested (e.g., the angle of rotation).  For example, if five of the 
parameters are being estimated, then the critical probability level at α#.05 is actually α# .01 
(.05/5). 
 

In the second case, the critical probability level, α, is multiplied by the number of 
parameters being tested, α*p, since all tests must be significant for the two ellipses to be 
considered as different. For example, if five of the parameters are being estimated, then the 
critical probability level, say, at α#.05 is actually α#.25 (.05*5). 
 

Differences in the Mean Direction Between Two Groups 
 

Statistical tests of different angular distributions can be made with the directional mean 
and variance statistics.  To test the difference in the angle of rotation between two groups, a 
Watson-Williams test can be used (Kanji, 1993; 153-54).  The steps in the test are as follows: 
 

1. All angles, θi, are converted into radians 
 

Radiani = Anglei * π/180        (A.32) 
 

2. For each sample separately, A and B, the following measures are calculated 
 

∑ , 		 ∑        (A.33) 
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∑ , 	 ∑       (A.34) 

 
where θj and θk are the individual angles for the respective groups, A and A. 

 
3. Calculate the resultant lengths of each group 

 

         (A.35) 
 

         (A.36) 
 
4. Resultant lengths for the combined sample are calculated as well as the length of 

the resultant vector. 
 

          (A.37) 
 

          (A.38) 
 

         (A.39) 

 
           (A.40) 
 

 ∗           (A.41) 

 
5. An F-test of the two angular means is calculated with 

 

2
∗
        (A.42) 

 
where 
 

 1           (A.43) 

 
with k being identified from a maximum likelihood Von Mises distribution by referencing R* 
with 1 and N-2 degrees of freedom (Gaile & Burt, 1980; Mardia, 1972).  Some of the reference 
k=s are given in Table A.1 below (from Kanji, 1993, table 38; Mardia, 1972). 
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6. Reject the null hypothesis of no angular difference if the calculated F is greater 
than the critical value F1, N-2.   

 
Example 2: Angular comparisons between two groups 

 
A second example is that of sets of angular measurements from two different groups, A 

and B. Table A.2 provides the data for the two sets. The angular mean for Group A is 144.830 
with a directional variance of 0.35 while the angular mean for Group B is 258.950 with a 
directional variance of 0.47.  The higher directional variance for Group B suggests that there is 
more angular variability than for Group A. 

 
Table A.1: 

Maximum Likelihood Estimates for Given R* in the Von Mises Case 
(Kanji, 1993, table 38; Mardia, 1972) 

 
R*   k 
0.00   0.00000 
0.05   0.10013 
0.10   0.20101 
0.15   0.30344 
0.20   0.40828 
0.25   0.51649 
0.30   0.62922 
0.35   0.74783 
0.40   0.87408 
0.45   1.01022 
0.50   1.15932 
0.55   1.32570 
0.60   1.51574 
0.65   1.73945 
0.70   2.01363 
0.75   2.36930 
0.80   2.87129 
0.85   3.68041 
0.90   5.3047 
0.95   10.2716 
1.00    infinity 
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Using the Watson-Wheeler test, we compare these two distributions. 
 

1. All angles are converted into radians (equation A.32). 
 

2. The cosines and sines of each angle are taken and are summed within groups 
(equations A.33 and A.34). 

 
CA =  -3.1981 SA = 2.2533 
CB =  -.8078 SB =  -4.1381 

 
 

Table A.2: 

Comparison of Two Groups for Angular Measurements 

Angle of Deviation From Due North 
 
  Group A      Group B 
 
  Measured      Measured 
  Incident  Angle    Incident  Angle 
 
  1   160        1      196 
       2      184        2      212 
       3   240        3      297 
       4   100        4      280 
       5    95        5      235 
       6   120        6      353 
      7   190 
      8      340 
 
 

3. The resultants are calculated (equations A.35 and A.36). 
 

RA = 3.9121 
RB = 4.2162 
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4. Combined sample characteristics are defined (equations A.37 through A.41). 
 

C = -4.0059 
S = -1.8848 
R = 4.4271 
N = 14 
R* = 0.5806 

 
5. Once the parameter, k, is obtained (approximated from Table A.1 or obtained 

from Mardia, 1972 or Kanji, 1993), g is calculated, and an F-test is constructed 
(equations A.42 and A.43). 

 
k = 1.44 
g = 0.7396 
F = 5.59 
 

6. The critical F for 1 and 12 degrees of freedom is 4.75 for p#.05 and F=9.33 for 
p#.01.  Since F=5.59 is between these two critical F values, the test is significant 
at the p#.05 level, but not at the p#.01 level.  Nevertheless, we reject the null 
hypothesis of no angular differences between the two groups. Group A has a 
different angular distribution than Group B. 
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Appendix B: 

Ordinary Least Squares and  
Poisson Regression Models 

by 
Luc Anselin 

Arizona State University 
Tempe, AZ 

 
This note provides a brief description of the statistical background, estimators and 

model characteristics for a regression specification, estimated by means of both Ordinary 
Least Squares (OLS) and Poisson regression.  

  
Ordinary Least Squares Regression 

 
With an assumption of normality for the regression error term, OLS also 

corresponds to Maximum Likelihood (ML) estimation. The note contains the statistical 
model and all expressions that are needed to carry out estimation and essential model 
diagnostics.  Both concise matrix notation as well as more extensive full summation 
notation are employed, to provide a direct link to “loop” structures in the software code, 
except when full summation is too unwieldy (e.g., for matrix inverse). Some references 
are provided for general methodological descriptions. 
 

Statistical Issues 
 

The classical multivariate linear regression model stipulates a linear relationship 
between a dependent variable (also called a response variable) and a set of explanatory 
variables (also called independent variables, or covariates). The relationship is stochastic, 
in the sense that the model is not exact, but subject to random variation, as expressed in 
an error term (also called disturbance term). 
 

Formally, for each observation i, the value of the dependent variable, Yi, is related 
to a sum of K explanatory variables, Xih, with h=1,...,K, each multiplied with a regression 
coefficient, βh, and the random error term, i:  
 
 ∑           (B.1) 

 
Typically, the first explanatory variable is set equal to one, and referred to as the 

constant term. Its coefficient is referred to as the intercept, the other coefficients are 
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slopes. Using a constant term amounts to extracting a mean effect and is equivalent to 
using all variables as deviations from their mean.  In practice, it is highly recommended to 
always include a constant term. 

 
In matrix notation, which summarizes all observations, i=1,...,N, into a single 

compact expression, an N by 1 vector of values for the dependent variable, y is related to 
an N by K matrix of values for the explanatory variables, X, a K by 1 vector of regression 

coefficients, β, and an N by 1 vector of random error terms,  :   
 
 	            (B.2) 

 
This model stipulates that on average, when values are observed for the 

explanatory variables, X, the value for the dependent variable equals Xβ, or:   
         
 |            (B.3) 

 
where E[ | ] is the conditional expectation operator.  This is referred to as a specification 
for the conditional mean, conditional because X must be observed.  It is a theoretical 
model, built on many assumptions.  In practice, one does not know the coefficient vector, 
β, nor is the error term observed.   

 
Estimation boils down to finding a “good” value for the β, with known statistical 

properties.  The statistical properties depend on what is assumed in terms of the 
characteristics of the distribution of the unknown (and never observed) error term.  To 
obtain a Maximum Likelihood estimator, the complete distribution must be specified, 
typically as a normal distribution, with mean zero and variance, σ2.  The mean is set to 
zero to avoid systematic under- or over-prediction.  The variance is an unknown 
characteristic of the distribution that must be estimated together with the coefficients, β.  
The estimate for β (Greek letter) will be referred to as b (Latin letter with bh as the 
estimate for the individual coefficient, βh).  
 

The estimator is the procedure followed to obtain an estimate, such as OLS, for 
bOLS, or ML, for bML. The residual of the regression is the difference between the 
observed value and the predicted value, typically referred to as e.  For each observation, 

 
 ∑           (B.4) 

 

or, in matrix notation, with 	as short hand for the vector of predicted values,  
 

            (B.5) 
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Note that the residual is not the same as the error term, but only serves as an 
estimate for the error.  What is of interest is not so much the individual residuals, but the 
properties of the (unknown) error distribution.  Within the constraints of the model 
assumptions, some of the characteristics of the error distribution can be estimated from 
the residuals, such as the error variance, σ2, whose estimate is referred to as s2. 

 
Because the model has a random component, the observed y are random as well, 

and any “statistic” computed using these observed data will be random too.  Therefore, 
the estimates b will have a distribution, intimately linked to the assumed distribution for 
the error term.  When the error is taken to be normally distributed, the regression 
coefficient will also follow a normal distribution.  Statistical inference (significance tests) 
can be carried out once the characteristics (parameters) of that distribution have been 
obtained (they are never known, but must be estimated from the data as well).  An 
important result is that OLS is unbiased.  In other words, the mean of the distribution of 
the estimate b is β, the true, but unknown, coefficient, such that “on average,” the 
estimation is on target.  Also, the variance of the distribution of b is directly related to the 
variance of the error term (and the values for the X).  It can be computed by replacing σ2 
by its estimate, s2. 

 
 
An extensive discussion of the linear regression model can be found in most texts 

on linear modeling, multivariate statistics, or econometrics, for example, Rao (1973), 
Greene (2000), or Wooldridge (2002). 
 

Ordinary Least Squares Estimator 
 
In its most basic form, OLS is simply a fitting mechanism, based on minimizing 

the sum of squared residuals or residual sum of squares (RSS). Formally, bOLS is the 

vector of parameter values that minimizes  
 

 ∑ ∑ ∑        (B.6) 

 
or, in matrix notation,  
 
         (B.7) 

 
The solution to this minimization problem is given by the so-called normal 

equations, a system of K equations of the form:   
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 ∑ ∑ 0        (B.8) 
 
for h=1 to K, or, in matrix notation,  
 
 0          (B.9) 
 
 	            (B.10) 
 

The solution to this system of equations yields the familiar matrix expression for 
bOLS:    
 
           (B.11) 

 
An estimate for the error variance follows as  

 

 
∑ ∑ ,          (B.12) 

 
or, in matrix notation,  
 

            (B.13) 

 

It can be shown that when the X are exogenous1 only the assumption that E[]=0 is 
needed to show that the OLS estimator is unbiased. With the additional assumption of a 
fixed error variance, s2, OLS is also most efficient, in the sense of having the smallest 
variance among all other linear and unbiased estimators. This is referred to as the BLUE 
(Best Linear Unbiased Estimator) property of OLS.  Note, that in order to obtain these 
properties, no additional assumptions need to be made about the distribution of the error 
term.  However, to carry out statistical inference, such as significance tests, this is 
insufficient, and further characteristics of the error distribution need to be specified (such 
as assuming a normal distribution) or asymptotic assumptions need to be invoked in the 
form of laws of large numbers (typically yielding a normal distribution). 
 

 

                                                           
1  In practice, this means that each explanatory variable must be uncorrelated with the error term.  The 

easiest way to ensure this is to assume that the X are fixed.  But even when they are not, this property 

holds, as long as the randomness in X and  are not related. In other words, knowing something about 
the value of an explanatory variable should not provide any information about the error term.  

Formally, this means that X and  must be orthogonal, or E[X’]=0.  Failure of this assumption will lead 
to so-called simultaneous equation bias. 
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Maximum Likelihood Estimator  
 
When the error terms are assumed to be independently distributed as normal 

random variables, OLS turns out to be equivalent to ML. 
 

Maximum Likelihood estimation proceeds as follows.  First, consider the density 
for a single error term:   
 
 ~ 0,             (B.14) 
 
or 
 

 f([]i|s
2)= 

1

 2Aσ2
e-(1/2)(i2/σ2)       (B.15) 

    
A subtle, but important, point is that the error itself is not observed, but only the 

“data” (y and X) are.  We move from a model for the error, expressed in unobservables, to 
a model that contains observables and the regression parameter by means of a standard 
“transformation of random variables” procedure.  Since Yi is a linear function of ε it will 
also be normally distributed.  Its density is obtained as the product of the density of ε and 

the “Jacobian” of the transformation, using i = yi – xiβ  (with xi as the i-th row in the X 

matrix). As it turns out, the Jacobian is one, so that  
  

f([yi |β]i|s
2)= 

1

 2Aσ2
e-(1/2)((yi-xiβ)2/σ2)      (B.16) 

  
The likelihood function is the joint density of all the observations, given a value for 

the parameters β and σ2. Since independence is assumed, this is simply the product of the 
individual densities from equation B.16. The log-likelihood is then the log of this product, 
or the sum of the logs of the individual densities.  The contribution to the log likelihood of 
each observation follows from equation B.16:  
 

 | , 0.5 log 2 0.5 log 0.5    (B.17) 

 
 The full log-likelihood follows as:   
 

 ∑ log 2 log ∑   (B.18) 
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or, in matrix notation,  
 

 log 2 log      (B.19) 

   
A Maximum Likelihood estimator for the parameters in the model finds the values 

for β and σ2 that yield the highest value for equation B.19.  It turns out that minimizing 
the residual sum of squares (or, least squares), the last term in equations B.18 and B.19, is 
equivalent to maximizing the log-likelihood.  More formally, the solution to the 
maximization problem is found from the first-order conditions (setting the first partial 
derivatives of the log-likelihood to zero), which yield the OLS estimator for b and  
 

 ∑            (B.20) 

 
or, in matrix notation,  
 

            (B.21) 

 
Inference  
 
With estimates for the parameters in hand, the missing piece is a measure for the 

precision of these estimates, which can then be used in significance tests, such as t-tests 
and F-tests.  The estimated variance-covariance matrix for the regression coefficients is  
 
           (B.22) 
 
where s2 is either sOLS

2 or sML
2.  The diagonal elements of this matrix are the variance 

terms, and their square root the standard error.  Note that the estimated variance using 
sML

2 will always be smaller than that based on the use of sOLS
2.  This may be spurious, 

since the ML estimates are based on asymptotic considerations (with a “conceptual” 
sample size approaching infinity), whereas the OLS estimates use a “degrees of freedom” 
(N-K) correction.  In large samples, the distinction between OLS and ML disappears (for 
very large N as N and N-K will be very close). 

 
Typically, interest focuses on whether a particular population coefficient (the 

unknown bh) is different from zero, or, in other words, whether the matching variable 
contributes to the regression.  Formally, this is a test on the null hypothesis that bh = 0.  
This leads to a t test statistic as the ratio of the estimate over its standard error (the square 
root of the h,h element in the variance-covariance matrix), or  
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            (B.23) 

 
This test statistic follows a Student t distribution with N-K degrees of freedom.  If, 

according to this reference distribution, the probability that a value equal to or larger than 
the t-value (for a one-sided test) occurs is very small, the null hypothesis will be rejected 
and the coefficient deemed “significant.”2  

 
Note that when sML

2 is used as the estimate for s2, the t-test is referred to as an 
“asymptotic” t-test.  In practice, this is a standard normal variate.  Hence, instead of 
comparing the t test statistic to a Student t distribution, its probability should be evaluated 
from the standard normal density. 

 
A second important null hypothesis pertains to all the coefficients taken together 

(other than the intercept). This is a test on the significance of the regression as a whole, or 
a test on the null hypothesis that, jointly, bh = 0, for h=2,...,K (note that there are K-1 
hypotheses).  The F test statistic for this test is constructed by comparing the residual sum 
of squares (RSS) in the regression to that obtained without a model.  The latter is referred 
to as the “constrained” (i.e., with all the β except the constant term set to zero) residual 
sum of squares (RSSC).  It is computed as the sum of squares of the yi in deviation from 

the mean, or   
 

 ∑          (B.24) 
 
where  / .  The F statistic then follows as: 
 

            (B.25) 

 
It is distributed as an F-variate with K-1,N-K degrees of freedom. 

 
Model Fit  
 
The most common measure of fit of the regression is the R2, which is closely 

related to the F-test.  The R2 departs from a decomposition of the total sum of squares, or 
the RSSC from equation BError! Reference source not found., into the “explained” sum of 

                                                           
2  Any notion of significance is always with respect to a given p-value, or Type I error.  The Type I 

error is the chance of making a wrong decision, i.e., of rejecting the null hypothesis when in fact it 
is true. 
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squares (the sum of squares of predicted values, in deviations from the mean), and the 
residual sum of squares, RSS.   

The R2 is a measure of how much of this decomposition is due to the “model.”  It 
is easily computed as:3   

 

 R2=1-RSS/RSSC   (B.26) 

 
In general, the model with the highest R2 is considered best.  However, this may 

be misleading since it is always possible to increase the R2 by adding another explanatory 
variable, irrespective of whether this variable contributes “significantly.”  The adjusted R2 
(Ra

2) provides a better guide that compensates for “over-fitting” the data by correcting for 
the number of variables included in the model. It is computed by rescaling the numerator 
and denominator in equation B.26, as  
 

 1           (B.27) 

 
For very large data sets, this rescaling will have negligible effect and the R2 and Ra

2 will 
be virtually the same.  

 
When OLS is viewed as a ML estimator, an alternative measure of fit is the value 

of the maximized log-likelihood.  This is obtained by substituting the estimates bML and 
sML

2  into expression B.18 or B.19.  With e = y - XbML as the residual vector and sML
2 = 

e'e/N, the log-likelihood can be written in a simpler form:   
 

 log 2 log 0.5       (B.28) 

 

 log 2 log	         (B.29) 

 
Note that the only term that changes with the model fit is the last one, the 

logarithm of the average residual sum of squares.  Therefore, the constant part is not 
always reported.  To retain comparability with other models (e.g., spatial regression 
models), it is important to be consistent in this reporting.  The model with the highest 
maximized log-likelihood is considered to be best, even though the likelihood, as such, is 
technically not a measure of fit. 
                                                           
3  When the regression specification does not contain a constant term, the value obtained for the R2 

using equation 26 will be incorrect.  This is because the constant term forces the residuals to have 
mean zero.  Without a constant term, the RSS must be computed in the same waysameway as *in 
equation Error! Reference source not found. by subtracting the average residual ê = Σ ei/N.  
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Similar to the Ra
2, there exist several corrections of the maximized log-likelihood 

to take into account potential over-fitting.  The better-known measures are the Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion (BIC)/Schwartz 
Criterion (SC), familiar in the literature on Bayesian statistics. They are easily constructed 
from the maximized log-likelihood. They are, respectively:   
 
 2 2           (B.30) 
 
 / 2          (B.31) 

 
The model with the lowest information criterion value is considered to be best. 
 

Poisson Regression 
 
 Next, the Poisson regression model is examined. 
 

Likelihood Function 
 

In the Poisson regression model, the dependent variable for observation i (with 
i=1,...,N), Yi is modeled as a Poisson random variate with a mean 8i that is specified as a 
function of a K by 1 (column) vector of explanatory variables xi, and a matching vector of 

parameters β. The probability of observing yi is expressed as:   

 

 
!

          (B.32) 

 
The conditional mean of yi, given observations on xi is specified as an exponential 

function of x:   
 

 |           (B.33) 
 
where xi' is a row vector. Equivalently, this is sometimes referred to as a loglinear model, 

since  
 
 ln            (B.34) 
 

Note that the mean in B.33 is nonlinear, which means that the effect of a change in 
Xi will depend not only on β (as in the classical linear regression), but also on the value of 
Xi. Also, in the Poisson model, the mean equals the variance (equidispersion) so that there 
is no need to separately estimate the latter. 
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There is a fundamental difference between a classical linear regression model and 
the specification for the conditional mean in the Poisson regression model in that the latter 
does not contain a random error term (in its “pure” form). Consequently, unlike the 
approach taken for the linear regression, the log-likelihood is not derived from the joint 
density of the random errors, but from the distribution for dependent variable itself, using 
B.32.  Also, there is no need to estimate a residual variance, as in the classical regression 
model. 

 
Assuming independence among the count variables (e.g., excluding spatial 

correlation), the log-likelihood for the Poisson regression model follows as:   
 

 ∑ !        (B.35) 
 
Note that the third term is a constant and does not change with the parameter values. 
Some programs may not include this term in what is reported as the log-likelihood. Also, 
it is not needed in a Likelihood Ratio test, since it will cancel out. 

 
The first order conditions, ∂L/∂β=0, yield a system of K equations (one for each β) 

of the form:   
 


i=1

N
 (yi-e

xi'b)xi=0          (B.36) 

 
Note how this takes the usual form of an orthogonality condition between the “residuals” 

(yi-e
xi'b) and the explanatory variables, Xi. This also has the side effect that when X 

contains a constant term, the sum of the predicted values, exi'b equals the sum of the 
observed counts.4  The system B.36 is nonlinear in β and does not have an analytical 
solution.  It is typically solved using the Newton-Raphson method (see below). 

  
 Once the estimates of β are obtained, they can be substituted into the log-
likelihood (equation B.36) to compute the value of the maximum log-likelihood. This can 
then be inserted in the AIC and BIC information criteria in the usual way. 

 
 
 

                                                           
4   A different way of stating this property is to note that the sum of the residuals equals zero.  As for 

the classical linear regression model, this is not guaranteed without a constant term in the 
regression. 
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 Predicted Values and Residuals 
 

The predicted value, , is the conditional mean or the average number of events, 
given the Xi. This is also denoted as 8i and is typically not an integer number whereas the 
observed value Yi is a count.  The use of the exponential function guarantees that the 
predicted value is non-negative.  Specifically:   
 

            (B.37) 
 
The “residuals” are simply the difference between observed and predicted:   

 

          (B.38) 
 

 Note that, unlike the case for the classical regression model, these residuals are not 
needed to compute estimates for error variance (since there is no error term in the model).  
 

Estimation Steps 
 

The well known Newton-Raphson procedure proceeds iteratively.  Starting from a 

set of estimates β̂t the next value is obtained as:   

 

 β̂t+1=β̂t - Ĥt
-1ĝt          (B.39) 

 

where ĝt is the first partial derivative of the log-likelihood, evaluated at β̂t and Ĥt is the 

Hessian, or second partial derivative, also evaluated at β̂t. 

 
In the Poisson regression model,  

 

g= 
i=1

N
 xi(yi-8î)           (B.40) 

 

 H= - 
i=1

N
 8îxixi'           (B.41) 

 
In practice, one can proceed along the following lines. 
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1. Set initial values for parameters, say b0[h], for h=1,...,K. One can set 
1 , the overall average count as the constant term, and the other 

[h]=0, for h=2,...,K. 
 

2. Compute predicted values for each i, the value of 8î=exi'b0. 
 
3. Compute gradient, g, using the starting values.  Note that g[h] is a K by 1 

vector.  Each element of this vector is the difference between:   
 

∑           (B.42) 
 

 ∑           (B.43) 
 
            (B.44) 

 
Note that B.42 does not contain any unknown parameters and needs only to be 

computed once (provided there is sufficient storage).  As the Newton-Raphson iterations 
proceed, the values of g will become very small. 

 
4. Compute the Hessian, H, using the starting values. H is a K by K matrix 

(B.41) that needs to be inverted at each iteration in B.39. It is not the X'X 
of the classical model, but rather more like X' Σ X, where Σ is a diagonal 
matrix.  One way to implement this is to multiply each row of the X matrix 

by 8̂i, e.g., xs[i][h]=x[i][h]*sqrt(8̂[i]), where xs is the new matrix (X*), i 

is the observation (row) and h the column of X. The Hessian then becomes 
the cross product of the new matrices, or, H=X*' X*.  This needs to be done 
in each iteration.  There is no need to take a negative since the negative in 
B.41 and in B.39 cancel. 

 
5. Update the estimate for the b[h], say b1[h] is obtained using the updating 

equation B.39 except that the product H-1g is added to the initial value.  In 
general, for iteration t, the new estimates are obtained as bt+1.  After 
checking for convergence, the old bt is set to bt+1 and inserted in the 
computation of the predicted values, in step 2 above. 

 
6. Convergence.  Stop the iterations when the difference between bt+1 and bt 

becomes below some tolerance level.  A commonly used criterion is the 
norm of the difference vector or Σh (bt+1[h] - bt[h])2.  When the norm is 
below a preset level, stop the iterations and report the last bt as the result.  
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The reason for not using bt+1 is that the latter would require an extra 
computation of the Hessian needed for inference. 

 
Inference 

 
 The asymptotic variance matrix is the inverse Hessian obtained at the last iteration 
(i.e., using bt). The variance of the estimates are the diagonal elements, the standard errors 
their square roots.  The asymptotic t-test is constructed in the usual way, as the ratio of the 
estimate over its standard error.  The only difference with the classic linear regression 
case is that the p-values must be looked up in a standard normal distribution, not a 
Student t distribution. 

 
Likelihood Ratio Test 

 
 A simple test on the overall fit of the model, as an analogue to the F-test in the 
classical regression model is a Likelihood Ratio test on the “slopes”. The model with only 
the intercept is nothing but the mean of the counts, or  
 
 œ           (B.45) 
 

with ∑ / .  
  
 The corresponding log-likelihood is:  
 

 ln ∑ ∑ ln !       (B.46) 
 
where the R stands for the “restricted” model, as opposed to the “unrestricted” model with 
K-1 slope parameters.  The last term in B.46 can be dropped, as long as it is also dropped 
in the calculation of the maximized likelihood (B.35) for the unrestricted model (LU), 

using li=exi'bt.  The Likelihood Ratio test is then:   

 
 LR=2(LU-LR),       (B.47) 

 
and follows a P2 distribution with K-1 degrees of freedom. 
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This appendix presents the characteristics of Negative Binomial regression models and 

discusses their estimating methods. 
 

Probability Density and Likelihood Functions 
 

The properties of the negative binomial models with and without spatial intersection are 
described in the next two sections. 
 

Poisson-Gamma Model 
 

The Poisson-Gamma model has properties that are very similar to the Poisson model 

discussed in Appendix B, in which the dependent variable iy  is modeled as a Poisson variable 

with a mean i where the model error is assumed to follow a Gamma distribution. As its name 

implies, the Poisson-Gamma is a mixture of two distributions and was first derived by 
Greenwood and Yule (1920). This mixture distribution was developed to account for over-
dispersion that is commonly observed in discrete or count data (Lord et al., 2005).  It became 
very popular because the conjugate distribution (same family of functions) has a closed form and 
leads to the negative binomial distribution. As discussed by Cook (2009), “the name of this 
distribution comes from applying the binomial theorem with a negative exponent.” There are two 
major parameterizations that have been proposed and they are known as the NB1 and NB2, the 
latter one being the most commonly known and utilized.  NB2 is therefore described first. Other 
parameterizations exist, but are not discussed here (see Maher and Summersgill, 1996; Hilbe, 
2007). 
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NB2 Model 
 

Suppose that we have a series of random counts that follows the Poisson distribution: 
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where iy  is the observed number of counts for 1, 2,i     n ; and i  is the mean of the Poisson 

distribution.  If the Poisson mean is assumed to have a random intercept term and this term enters 
the conditional mean function in a multiplicative manner, we get the following relationship 
(Cameron and Trivedi, 1998): 
 

 

 
 

 
1 0

0 1

0 1
exp

K
ij jj i

K
ij jj i

K

i ij j ij

x

i

x

i

i i i

x

e e

e e

  

  

   




 







 



  









         (C.2) 

 

where  0exp i   is defined as a random intercept;  0 1
exp

K

i ijj j
x  


  is the log-link 

between the Poisson mean and the covariates or independent variables xs ; and the s  are the 

regression coefficients.  As discussed in Appendix B, the relationship can also be formulated 

using vectors, such that )exp( βx'
ii  .  

 

The marginal distribution of iy  can be obtained by integrating the error term, i , 
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where  ih   is a mixing distribution.  In the case of the Poisson-Gamma mixture,  ; ,i i ig y    is 

the Poisson distribution and  ih   is the Gamma distribution.  This distribution has a closed 

form and leads to the NB distribution. 
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Assume that the variable i follows a two-parameter Gamma distribution: 
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,       0  , 0  , 0i        (C.4) 

 

where,  iE    and   2iVAR   .  Setting   gives us the one-parameter Gamma 

where   1iE    and   1
iVAR   . We can transform the Gamma distribution as a function of 

the Poisson mean, which gives the following probability density function (PDF; Cameron and 
Trivedi, 1998): 
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Combining equations C-1 and C-5 with equation C-3 yields the marginal distribution of
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Using the properties of the Gamma function, it can be shown that equation C-6 can be 

expressed as: 
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The PDF of the NB2 model is therefore the last part of Equation C-7: 
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Note that the PDF has also been defined in the literature as: 
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The first two moments of the NB2 are the following:  
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The next step consists of defining the log-likelihood function of the NB2.  It can be 

shown that: 
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By substituting equation C-12 into C-8, the log-likelihood can be computed using the 

following equation: 
             (C.13) 
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Note also that the log-likelihood has also been expressed as: 
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Recall that )exp( βx'
ii  . 

 
In the statistical literature, the Poisson-Gamma model has also been defined as:  
 

)(| iii Poissony    i = 1, 2, …, I       (C.15) 

 
where the mean of the Poisson is structured as: 
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)exp()exp();( iiii f   βX        (C.16) 

 
and where, (.)f  is a function of the covariates, X  (Miaou and Lord, 2003).  As before, β  is a 

vector of coefficients and i  is the model error independent of all the covariates with mean equal 

to 1 and a variance equal to1 . 

 
 NB1 Model 
 

The NB1 is very similar to the NB2, but the parameterization of the variance (the second 
moment) is slightly different than in equation C-11. 
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The log-likelihood of the NB1 is given by: 

 
             (C.19) 
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The NB1 is usually less flexible in capturing the variance and is not used very often by 

analysts and statisticians.  Interested readers are referred to Cameron and Trivedi (1998) for 
additional information about this parameterization. 
 

Poisson-Gamma Model with Spatial Interaction 
 

The Poisson-Gamma (or negative binomial model) can also incorporate data that are 
collected spatially.  To capture this kind of data, a spatial autocorrelation term needs to be added 
to the model. Using the notation described in Equation C-15, the NB2 model with spatial 
interaction can be defined as: 

 

 )(| iii Poissony                                 (C.20) 

 
with the mean of Poisson-Gamma organized as: 
 

 )exp( iiii   βx'               (C.21) 
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The assumption on the uncorrelated error term i  is the same as in the Poisson-Gamma 

model described above; same as before, namely )exp( βx'
ii  .  The third term in the expression, 

i , is a spatial random effect, one for each observation.  Together, the spatial effects are 

distributed as a complex multivariate normal (or Gausian) density function.  In other words, the 
second model is a spatial regression model within a negative binomial model. 
 

There are two common ways to express the spatial component, either as a Conditional 
Autoregressive (CAR) or as a Simultaneous Autoregressive (SAR) function (De Smith et al., 
2007).  The CAR model is expressed as: 
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where μi is the expected value for observation i, wij is a spatial weight between the observation, i, 
and all other observations, j (and for which all weights sum to 1.0), and ρ is a spatial 
autocorrelation parameter that determines the size and nature of the spatial neighborhood effect.  
Note that there are different weight factors that have been proposed, such as the inverse distance 
weight function, exponential distance decay weight function and the Gaussian weighting 
function among others.  The summation of the spatial weights times the difference between the 
observed and predicted values is over all other observations (i≠j).  The reader is referred to 
Haining (1990) and LeSage (2001) for further details. 
 

The SAR model has a simpler form and can be expressed as: 
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i j

ij

E y y w y  
             (C.23) 

 

where the terms are as defined above.  Note that in the CAR model the spatial weights are 
applied to the difference between the observed and expected values at all other locations whereas 
in the SAR model, the weights are applied directly to the observed value.  In practice, the CAR 
and SAR models produce very similar results. Additional information about the Poisson-
Gamma-CAR is described below. 

 
Estimation Methods 
 

This section describes two methods that can be used for estimating the coefficients of the 
regression NB models. The two methods are the maximum likelihood estimates (MLE) and the Monte 
Carlo Markov Chain (MCMC). 
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Maximum Likelihood Estimation 
 

The characteristics of the MLE method were described in Appendix B for the normal and Poisson 
regression.  The same characteristics apply here. The coefficients of the NB regression model are 
estimated by taking the first-order conditions and making them equal to zero. There are two first-order 
equations, one for the model’s coefficients and one for the dispersion parameter (Lawson, 1987). The two 
for the NB2 are as follows: 
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where ix  is a vector of covariates. 

 
Similar to the Poisson model, the series of equations can be solved using the Newton-Raphson 

procedure or the scoring algorithm.   The confidence intervals on the 1ands     can be calculated 

using the covariance matrix that is assumed to be normally distributed: 
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It should be pointed out that the NB2 with spatial interaction model (Poisson-Gamma-CAR) 

cannot be estimated using the MLE method.  It needs to be estimated using the MCMC technique, which 
is described next. 
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Monte Carlo Markov Chain Estimation 
 
This section discusses how to draw samples from the posterior distribution of the Poisson-

Gamma model and Poisson-Gamma-Conditional Autoregressive (CAR) model using the MCMC 
technique. 
 

MCMC Poisson-Gamma Model 
 

The Poisson-Gamma model can be formulated from a two-stage hierarchical Poisson model: 
 

(Likelihood) )(~| iii Poissony        (C.27a) 
(First-stage) )(~|  i       

 (C.27b) 
(Second-stage) )(~ 

       
(C.27b) 

 

where )(  is the prior distribution imposed on the Poisson mean, i , with a prior parameter  , and 

)(  is the hyper-prior on   with known hyper-parameters (a, b, for example). 

 

In Equations C-27a and C-27b, if we specify iii   (where ),(~)(   Gammae i
i   in the 

first stage and ),(~ baGamma in the second stage), these result in exactly the NB2 regression model 

described in the previous section.  With this specification, it is also easy to show that i  in the first stage 

follows )/,( iGamma   as shown in Equation C-5.  Note that )exp( βx'
ii  as described above. 

 

For simplicity, if a flat uniform prior is assumed for each j  ( Jj ,,1,0  ) and the 

parameters  s and  are mutually independent, the joint posterior distribution for the Poisson-Gamma 

model is defined as: 
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The parameters of interest are ),,,(),,( 101 Jn    βλ  and the inverse dispersion 

parameter   (or the dispersion parameter γ=1/ ).  Ideally, samples need to be drawn of each parameter 

from the joint posterior distribution.  However, the form in Equation C-28b is very complex and it is 
difficult to draw samples from such a distribution.  Consequently, samples are drawn from the full 
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conditional distribution sequentially (that is, one at a time). This iterative process is called the Gibbs 
sampling method.  

 
Therefore, once the full conditionals are known for each parameter, Gibbs sampling can be 

implemented by drawing samples of each parameter sequentially. The full conditional distributions for 
each parameter for the Poisson-Gamma model can be easily derived from Equation C-28b and are given 
as (Park, 2010): 
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However, unlike Equation C-29a, the full conditional distributions for the  s and   (Equations 

C-29b and C-29c) do not belong to any standard distribution family so it is not easy to draw samples 
directly from their full conditional distributions.  While there are several approaches to sampling from 
such a complex distribution, the particular sampling algorithm used in CrimeStat is a Metropolis-Hastings 
(or MH) algorithm with slice sampling of individual parameters.  
 

The MCMC sampling procedure using the slice sampling algorithm within Gibbs sampling, 
therefore, can be summarized as follows: 
 

1. Start with initial values )0(λ , )0(β  and )0( .  Repeat the following steps for

TTTt  00 ,,,,1  . 

2. Step 1: Conditional on knowing )1t-(β  and )1t-( , draw )(tλ  from Equation C-29a 

independently for ni ,,2,1  .  

3. Step 2:  Conditional on knowing )(tλ  and )1(t- , draw )(tβ  from Equation C-29b 

independently for Jj ,,1,0  using the slice sampling method. 

4. Step 3:  Conditional on knowing )(tλ  and )(tβ , draw )(t  from Equation C-29c using the 

slice sampling method. 
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5. Step 4:  Store the values of all parameters (i.e., )(tλ , )(tβ  and )(t ). Increase  t  by one and 

return to Step 1. 
6. Step 5:  Discard the first k draws as a burn-in period, where k is defined by the user. 

 
After equilibrium is reached at the kth iteration, sampled values are averaged to provide the 

consistent estimates of the parameters: 
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where  denotes any parameter of interest in the model.  
 

MCMC Poisson-Gamma-CAR Model 
 

For the Poisson-Gamma-CAR model, the only difference from the Poisson-Gamma model is the 

way i  is structured. The mean of Poisson-Gamma-CAR is organized as: 

 

)exp( iiii   βx'           (C.31) 

 

where i  is a spatial random effect, one for each observation. As in the Poisson-Gamma model, we 

specify ),(~  Gammae i  to model the independent error term. To model the spatial effect, i , we 

assume the following: 
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where )|( iip Φ  is the probability of a spatial effect given a lagged spatial effect, 


 
ji

iji ww which 

sums all over  all records, j  (i.e., all other zones) except for the record of interest, i .  This formulation 

gives a conditional normal density with mean = 
 ij

j
i

ij

w

w
  and variance =

iw

2
 .  The parameter   

determines the direction and overall magnitude of the spatial effects. The term ijw  is a spatial weight 

function between zones  i  and j .  In the algorithm, the term for the variance is   /12  and the same 

variance is used for all observations.  
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We define the spatial weight matrix W with the entries ijw and the diagonal entries 0iiw .  The 

matrix D  is defined as a diagonal matrix with the diagonal entries, iw .  Sun, Tsutakawa, and Speckman 

(1999) show that if 1
max

1
min

    where min  and max are the smallest and largest eigenvalues of 

1WD  respectively, then Φ  has a multivariate normal distribution with mean 0 and nonsingular 

covariance matrix 12 )(  WD  .  
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where )( WDA   and 1
max

1
min

   . 

 
  Prior Distributions for MCMC Poisson-Gamma-CAR 
 

For the prior distributions, we assume the following distributions for each parameter: 
 
Parameter Prior distribution 

j ),,1,0( Jj   ),( Uniform  

  ),(  baGamma  

)( 2    ),(  baGamma  

  ),( 1
max

1
min

 Uniform  

 
 

The parameters in the Poisson-Gamma-CAR model are ),,,(),,( 101 Jn    βλ  , 

),( 1 n Φ  ,   and  . Then, the random samples can be drawn from the full conditional 

distributions of each parameter. It can be shown that the full conditional distributions for each parameter 
are given as follows: 
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where n ,,1  are the eigenvalues of 1WD . 

 
Since the full conditional distributions were specified, the Gibbs sampling method can be applied 

sequentially.   It is easy to generate random samples from Equations C-34a and C-34e.  The other full 
conditional distributions are not of closed form, so the slice sampling method should be applied. 
 
 Likelihood Statistics 
 

There are many measures that can be used for estimating how well the model fits the data. Some 
of them have already been discussed in Appendix B but are also included here for the sake of 
completeness.  They fall into three groups.  First, there are statistics for indicating the likelihood level of a 
model, that is, how well the model maximizes the likelihood function.  Among these statistics are: 
 

Akaike Information Criterion (AIC) 
 

The AIC is another measure of fit that can be used to assess models. This measure also uses the 
log-likelihood, but add a penalizing term associated with the number of variables. It is well known that by 
adding variables, one can improve the fit of models. Thus, the AIC tries to balance the goodness-of-fit 
versus the inclusion of variables in the model. The AIC is computed as: 
 

2 ln 2AIC L p            (C.37) 

 
where p  is the number of unknown parameters included in the model (this also includes the inverse 

dispersion parameter   and random spatial effect if ) and ln L  is the log-likelihood described in 

Equations C-13 or C-14.  Smaller values are better. 
 

Bayes Information Criterion (BIC) 
 
Similar to the AIC, the BIC also employs a penalty term associated with the number of 

parameters ( p ) and the sample size ( n ). This measure is also known as the Schwarz Information 

Criterion. It is computed the following way: 
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2ln lnAIC L p n             (C.38) 

 
 Again, smaller values are better. 
 
  Deviance Information Criterion (DIC) 

 
When the Bayesian estimation method is used, the DIC is often used as a goodness-of-fit 

(GOF) measure instead of the AIC or BIC. The latter ones are generally used for the maximum 
likelihood method. The DIC is defined as follows: 

 

)ˆ(2ˆ DDDDIC          (C.39) 

 

where D  is the average of the deviance ( Lln2 ) over the posterior distribution, and D̂  is the 
deviance calculated at the posterior mean parameters. As with the AIC and BIC, the DIC uses 

DDpD
ˆ  (effective number of parameters) as a penalty term on the goodness of fit.  Differences in 

DIC from 5-10 indicate that one model is clearly better (Spiegelhalter et al., 2002). 
 

Deviance 
 

The deviance is a measure of goodness of fit that can be used to assess models.  It is defined as 

twice the difference between the maximum likelihood achievable ( ˆi iy  ) and the likelihood of the 

fitted model (the ^ refers to the estimate of the variable that is based on the data): 
 

      ˆ, 2D L L y u y μ           (C.35) 

 
For the NB2 model, the deviance can be computed as: 
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Smaller values mean that the model fits the data better. 
 
  Pearson Chi-Square 
 

Another useful likelihood statistic is the Pearson Chi-square and is defined as  
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If the mean and the variance are properly specified, then    2

1

n

i i ii
E y VAR y n


     

(Cameron and Trivedi, 1998).  Values closer to n (the sample size) show a better fit. Recall that the 

variance for the NB2 model is   2ˆ ˆi i iVAR y     .  

 
 Model Error Estimates 
 
 Second, there are statistics for estimating how well the model fit the data and the converse, how 
much error was in the model.  Two error statistics are particularly useful. 
 

Mean Absolute Deviation (MAD)  
 

This criterion has been proposed by Oh et al. (2003) to evaluate the fit of models. The Mean 
Absolute Deviance (MAD) calculates the absolute difference between the estimated and observed values 
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Mean Squared Prediction Error (MSPE) 

 
The Mean Squared Prediction Error (MSPE) is a traditional indicator of error and calculates the 

difference between the estimated and observed values squared. 
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           (C.39) 

 
A value closer to 1 means the model fits the data better.  
 
 Over-dispersion Tests 
 
 Third, there are statistics for indicating the degree of over-dispersion in the model, including: 
 
  Adjusted Deviance 
 

The adjusted deviance is defined as the deviance divided by the degrees of freedom (N-K-1).  A 
value closer to 1 indicates a satisfactory GOF. Usually, values greater than 1 indicate signs of over-
dispersion, while values below 1 show signs of under-dispersion.   

 
  Adjusted Pearson Chi-Square 
 

The adjusted Pearson Chi-square is defined as the Pearson Chi-square divided by the degrees of 
freedom.  A value closer to 1 indicates a satisfactory goodness-of-fit.   
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  Dispersion Multiplier 
 
The dispersion multiplier, γ, measures the extent to which the conditional variance exceeds the 

conditional mean (conditional on the independent variables and the intercept term) and is defined by 
2( )i i iVar y     

 
  Inverse Dispersion Multiplier 

 

The inverse dispersion multiplier )( is simply the reciprocal of the dispersion multiplier

)/1(   ; some users are more familiar with it in this form. 

 
It should be pointed out that many GOF measures are not useful when a single model is 

evaluated. The measures are therefore relevant when several models are compared with each other (i.e., 
different functional forms or when different variables are included in the models).  

 
There are other measures that can be used for estimating the goodness-of-fit and the amount of 

error in models, but are not presented here.  Readers can find additional measures in Mitra and 
Washington (2007) and Lord and Park (2008). 
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	3. Bayesian Jtc Sample Data.zip.  There are six files of simulated data for use with the Bayesian Journey-to-crime routine (Chapter 14). The data should be stored in the same directory:
	A. Bayesian_calibration_file.dbf – A simulated data set of 963 crimes committed by 88 serial offenders.  Each record has an offender ID, the UCR code, and the crime location and residence location of the offender.
	B. Observed_OD_Distribution.dbf – A simulated matrix of crime trips from 533 origin zones in Baltimore County (MD) and the City of Baltimore (MD) to 325 destination zones in Baltimore County.  Each record includes the location of the origin zone, the ...
	C. Jtcfull.txt – A journey-to-crime calibration file that can be used to estimate the travel distance of offenders from each origin zone to each destination zone.
	D. S14A.dbf – the crime locations of an offender who committed 14 offences before being caught.  Each record includes the UCR code and the crime location and residence location of the offender.
	E. TS15A.dbf – the crime locations of an offender who committed 15 offences before being caught.  Each record includes the UCR code, the date, the time, and the crime location and residence location of the offender.
	F. Test_Bayesian_Jtc_routine.param – a CrimeStat parameters file for loading these data into CrimeStat to run the routine.

	4. Correlated Walk Analysis Sample Data.zip.  These are three files of simulated data for use with the Correlated Walk Analysis routine (Chapter 12):
	A. PredictableOffender1.dbf - A simulated data set for an algorithmic offender who committed 13 incidents.
	B. PredictableOffender2.dbf -A simulated data set for an algorithmic offender who committed 12 incidents.
	C. RealOffender1.dbf - A data set for a real offender who committed 12 incidents - 10 larceny thefts, 1 robbery and 1 burglary.
	D. RealOffender2.dbf - A data set for a real offender who committed 15 incidents - 10 larceny thefts, 2 assaults, 2 burglaries and 1 robbery.
	A. HoustonWeaponUse.dbf - A data set of weapon use during robberies in Houston ,TX. Each record contains an offender ID, a randomly assigned crime location, the type of weapon used during the robbery (WEAPON) and 11 predictive variables. See the attac...
	B. Run MNL model of Houston robberies.param – A CrimeStat parameters file for loading the multinomial logit model from these data.
	C. TheHagueBurglars.dbf – A file of 548 cleared burglaries from The Hague, Netherlands. The file contains information on the characteristics of the burglars and neighborhood identifiers.  This will be combined with the data set on neighborhoods in The...
	D. TheHagueNeighborhoods.dbf – a file of 89 neighborhoods in The Hague for the years 1996-2001.The data set is for use an alternatives files in creating a data set for the conditional logit model.  This will be combined with the data set on burglars i...
	E. TheHagueNeighborhoodsXBurglars.dbf – this file is the result of matching the file TheHagueBurglars.dbf with TheHagueNeighborhoods.dbf using the ‘Create dataset for conditional discrete choice model’ routine under Discrete Choice I module.  It is us...
	A. Weekly crimes by Tract.dbf – A data set of weekly robberies by 140 census tracts in Pittsburgh, PA, between 1990 and 1999.
	B. Monthly crimes by Tract.dbf – A data set of monthly robberies by 140 census tracts in Pittsburgh, PA, between 1990 and 1999.

	1. Create a data directory using Windows Explorer and copy the files to that directory.
	2. In Windows Explorer, double-click on its name and then follow the instructions.
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	1. STAC lays out a 20 x 20 grid structure (triangular or rectangular, defined by the user) on the plane defined by the area boundary (defined by the user on the Measurement Parameters page).
	2. At each intersection of grid lines, there is a node.  STAC places a circle on every node of the grid with a radius equal to 1.414 (the square root of 2) times the specified search radius. Thus, the circles overlap.
	3. STAC counts the number of points falling within each circle, and ranks the circles in descending order. Multiple events can be counted at the same location.
	4. STAC records all circles with at least two data points along with the number of points within each circle up to a maximum of 25 circles,. The X and Y coordinates of any node with at least two incidents within the search radius are recorded along wi...
	5. These circles are then ranked in descending order according to the number of points and the top 25 search areas are selected.
	1. STAC requires a primary file and a reference file (see Chapter 3).  Optionally, STAC will use coverage area (on the Measurement Parameters tab) for simulation runs.  Note: while STAC runs quite quickly, it runs more quickly with a Euclidean coordin...
	2. Define the reference file (see Chapter 3).  While CrimeStat does not include a data base manager or query system, a user can carry out analysis of different areas of a jurisdiction by using the boundaries of several reference areas.  For example, d...
	3. Define the search radius.  Generally, a two-stage analysis is best.  Start with a larger search radius and then analyze Hot Spot Areas with a smaller search radius. A search radius of more than one mile may not yield useful results in an area the s...
	4. Set the output units to miles or kilometers.
	5. Specify the file output name for the ellipses or convex hulls.
	6. Click on the STAC parameters button.
	The search radius is the key setting in STAC.  In general, the larger the search radius, the more incidents that will be included in each Hot Cluster and the larger the ellipse that will be displayed.  Smaller search radii generally result in more ell...
	A good strategy is to initially use a larger radius and then re-analyze areas that are ‘hot’ with a smaller radius.  In Chicago, we have found that a 0.5 mile radius is appropriate for the city as a whole and a 0.25 mile search radius for one of the ...

	Specify the units for the search radius.  The default is miles and the default search radius is 0.5 miles.
	Specify the minimum number of points to be included in a Hot Cluster.  The limit for the minimum points in a Hot Cluster is two.  The usual choice is to use a minimum of 10.
	Select the reference file to be used for the analysis.  The user can choose the boundary from the data set (i.e., the minimum and maximum X/Y values) or from the reference boundary.
	In our opinion, the choice of the reference boundary is best.  If the data set is used to define the reference boundary, the rectangle defined by the minimum and maximum X and Y coordinates will be used.
	Select the scan type for the grid.  Choose Rectangular if the analysis area has a mostly grided street pattern.  Chose Triangular if the analysis area generally has an irregular street pattern.
	Select whether the graphical output will be displayed as standard deviational ellipse or as convex hulls, or both (see Chapter 4).  For ellipses, select the number of standard deviations for the ellipses. One (1X), 1.5X, and 2X standard deviational el...
	One standard deviational ellipse should be sufficient for most analysis.  While 1X standard deviational ellipses rarely overlap, 1.5X and 2X standard deviational ellipses often do.  A larger ellipse will include more of the Hot Cluster points; a smal...
	Specify whether any simulation runs are to be made. To test the significance of STAC clusters, it is necessary to run a Monte Carlo simulation (Dwass, 1957; Barnard, 1963).  CrimeStat includes a Monte Carlo simulation routine that produces approximate...
	By running the simulation many times, the user can assess credible intervals for the particular number of clusters and density of clusters.  The default is zero simulation runs..  If a simulation run is selected, the user should identify the area of ...
	To compare the STAC output with the Monte Carlo simulation, there are two criteria that can be used – the number of clusters and cluster density (incidents per unit area).  However, these tend to have contrary trends which depend on the search circle...
	1. The first section of the output documents parameter settings and file size. Sample size indicates the number of points in the file specified in the setup.

	2. Measurement Type indicates the type of distance measurement, direct or Indirect (Manhattan).
	3. Scan Type indicates a rectangular or triangular grid specified in the setup.
	4. Input Unit indicates the units of the coordinates specified in the setup, degrees (if latitude/longitude) or meters or feet (if projected).
	5. Output Units indicate the unit of density and length specified in the setup for the output and ellipses. Output Units are generally, miles or kilometers.
	7. Boundary identifies the coordinates of the lower left and upper right corner of the study area.
	9. Simulation Runs indicate the number of runs, if any specified in the setup.
	10. Finally, STAC printed output provides summary statistics for each Hot Spot Area:
	A. Cluster identification number for each ellipse.  This corresponds to their order in a table view in ArcGIS or the browser in MapInfo.
	B. Mean X and Mean Y - Coordinates of the mean center of the ellipse.
	C. Rotation- the degrees the ellipse is rotated (0 is horizontal; 90 is vertical).
	D. X-axis and Y-axis - the length (in the selected output units) of the x and y axis.  In the example, the length of the x axis of ellipse 1 is 1.04768 miles.
	E. Area - the area of the ellipse in square units.  Ellipses are ordered according to their size.  In the example, Ellipse 1 is 0.8246 square miles.
	F. Points - the number of points in the Hot Cluster.  In the example, there are 61 points in cluster 3.
	G. Cluster Density - the number of points per square unit.   The largest cluster is not necessarily the densest.  In this output, cluster eight is the smallest, but its density is higher than two other clusters.
	H. The distribution of the simulations (if specified).
	Note that the number of actual clusters in the example (8) is smaller than the number that would be expected if the data were randomly distributed at the 95 percentile (19).  The reason for this is that STAC aggregates smaller clusters that are close...

	𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛=𝑡∗0.5,,𝐴-𝑁..            (8.2)
	A. A 100 x 100 grid is overlaid on the point distribution; the dimensions of the grid are defined by the minimum and maximum X and Y coordinates.
	B. A separation distance is defined, which is:
	𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛=𝑡∗0.5,,𝐴-𝑁..
	C. For each grid cell, the number of incidents found are counted and then sorted in descending order.
	D. The cell with the highest number of incidents found is the initial seed for cluster 1.
	E. The cell with the next highest number of incidents is temporarily selected.  If the distance between that cell and the seed 1 location is equal to or greater than the separation distance, this cell becomes initial seed 2.
	F. If the distance is less than the separation distance, the cell is dropped and the routine proceeds to the cell with the next highest number of incidents.
	G. This procedure is repeated until K initial seeds have been located thereby selecting the remaining cell with the highest number of incidents and calculating its distance to all prior seeds.  If the distance is equal to or greater than the separatio...
	H. After the K initial seeds have been selected, all points are assigned to the nearest initial seed location.  These are the initial cluster groupings.
	I. For each initial cluster grouping in turn, the center of minimum distance is calculated.  These are the second seed locations.
	J. All points are assigned to the nearest second seed location.
	K. For each new cluster grouping in turn, the center of minimum distance is calculated.  These are third seed locations.
	L. Steps J and K are repeated until no more points change cluster groupings.  These are the final seed locations and cluster groupings.
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