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EFFECTS OF CRIMP AND SLIP ON LAMINAR AND WOVEN FABRICS 

SUBJECTED TO BALLISTIC IMPACT 

 

Rachel Zhou and S. Leigh Phoenix 

Cornell University 2013 

 
      In the past decade, there has been growing interest and research on improving the 

performance of soft body armor materials subjected to high-speed ballistic impact. 

One “by-product” of the production process for these high strength polymer fibers, 

which are bundled into yarns, is the existence of undulation or waviness in the yarns, 

known as crimp. While this has always been treated as undesirable, few 

comprehensive studies have been done on the true effects of crimp in conjunction with 

yarn slip in ballistic fabrics.  

      We first develop an in-house Finite-Difference (FD) numerical model to study the 

post-impact but pre-failure behavior of crimped fabrics made with Dyneema® yarns. 

While there has been past literature that attempted to numerically model crimp in 

ballistic fabrics, we note that the results provided little insight regarding the strain 

profile of individual yarns, the growth and evolution of tension and cone waves, and 

the yarn de-crimping process. Our first fabric model has laminar geometry with out-

of-plane zigzag crimp, and we validate our results through comparison with previous 

analytical models developed by the Cornell Phoenix Group. We present the following 

findings: (i) the peak strain attained by yarns in the fabric is lowered with increase in 

crimp, but with small sacrifices in terms of velocity deceleration and out-of-plane 

projectile displacement, (ii) yarn strain build-up towards its maximum value can vary 
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significantly depending on projectile mass and size dimensions, (iii) tension and cone 

waves’ velocities and shapes are influenced by various parameters including  , the 

rocking viscosity coefficient, and (iv) allowing for frictional slip between the 

projectile and the yarns beneath it causes a shock wave effect, which changes the very 

early response behavior of the fabric post-impact. With our first fabric model, we also 

ensure that local strain concentrations and other dynamic artifacts resulting from the 

discretization of the structure are suppressed or smoothed.  

      Since most fabrics in reality are woven with interlaced, over-under yarn structure, 

we develop a second crimp model with woven geometry. In addition to the forces 

from our first model, we introduce six new forces to describe the contact motion 

between weft and warp yarns in-plane (viscoelastic), and out-of-plane (allowing for 

compression but imposing a “Hertzian” condition). Correspondingly, we introduce six 

new parameters to control for yarn slip, crossover forces, and restoring forces. 

Comparing our two models, we observe that the second model provides greater 

flexibility and is more realistic in its ability to accurately portray the phenomenon of 

crimp interchange. Within the woven crimp model, we find many of the same trends 

in results provided in (i)-(iv) from the laminar model. We also discover that most of 

these parametric effects are not independent of each other, and provide case studies to 

show that varying combinations of multiple parameter values can in some cases 

produce nearly identical simulation behavior, but in other cases significantly  different 

simulation behavior from one another. 
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CHAPTER 1 

INTRODUCTION 

 
      Since the beginning of recorded human history, mankind has sought protection 

from sharp objects and projectiles of combat by wearing protective clothing in the 

form of body armor, made of materials ranging from animal skins to silk to copper and 

steel. With the development of more technologically advanced weaponry, the research 

and quest for more effective forms of personal protection continues to be important 

today, especially against high-velocity bullets, which are available to not only military 

but also to civilian populations around the world, including in the United States. By 

the 1970s, new polymeric lightweight fibrous materials were invented in industrial 

laboratories and exhibited improved ballistic performance over their nylon 

predecessors.  Since then, Aramids (e.g., Kevlar®, Twaron®, Technora®) and 

UHMWPE (ultra-high-weight-molecular-polyethylene) (e.g., Dyneema®, Spectra®), 

along with their various successors from the same composition families, have been 

widely used in the body armor worn by law enforcement and military personnel across 

the globe. In tension they differ greatly from nylon, having very high stiffness, 

extremely high strength to weight ratios, and very low strains to failure (<4%). They 

are essentially elastic in tension, both at low and high rates of tensile loading, where 

stiffness differences are relatively minor. Meanwhile, they retain the advantages of 

nylon in transverse compression, undergoing large plastic deformation without a 

significant reduction in tensile load-carrying ability (unlike carbon or glass fibers, 

which shatter).  Figure 1.1 illustrates a sequence of possible events that a hypothetical 
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lightweight material system might undergo to halt an armor-piercing bullet (e.g., 

APM2). 

 

Figure 1.1. Schematic of a hypothetical layered fibrous structure envisioned to stop 
armor piercing APM2 bullets. 

       

      The last decade has seen significant increase in research interest associated with 

understanding the impact response mechanisms of existing fibrous systems, and not 

just to develop better materials through trial-and-error methods.  Analytically, the 

fundamental problem of an un-tensioned 2-D membrane impacted transversely by a 

blunt-nosed projectile was not adequately solved until 2003 by Phoenix and Porwal 

(2003). Since then, this analytical model has been updated and revised to include 

multiple bi-axial layers (Phoenix and Porwal, 2003; Phoenix et al., 2010; Phoenix et 

al., 2010; Li, 2011). The insights provided by these models are presented in Chapter 2. 

Previously, the earliest work on transverse impact of a projectile into an elastic 

membrane was done by Grigoryan (1949) for point impact, which neglected 

circumferential stresses. Galin (1949) and Rakhmatulin and Dem’vanov (1961) 
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believed that neglecting circumferential stresses would lead to unreasonable results. 

Rakhmatulin and Dem’yanov (1961) reformulated the governing partial differential 

equation include circumferential stresses and Poisson’s ratio effects. The work of 

Phoenix and Porwal (2003) used Rakhmatulin’s and dem’yanov’s mathematical 

formulation, but because of the low strain-to-failure property of the most recent fibers, 

was able to introduce rescalings and certain approximations that allowed not only 

partitioning but also particle velocity and strain matching at the edge of the transverse 

(cone) wave. This resulted in new insights into the problem as well as interpretation of 

experiments by Cunniff (1999). Vinson and Zukas (1975) adopted a static conical 

shell theory to fabric impact by a blunt cylindrical projectile and compared results to 

Roylance et al. (1973, 1980). Chocron-Benluluo et al. (1997) extended the 1-D yarn 

impact model by including a strain energy based damage variable. Scott (1999) used 

plate analysis to model the penetration of compliant composites. Walker (1999, 2001) 

developed an impact model for fabrics and flexible composites using a static 

deflection analysis for bi-axial membranes under point loading and restrained edges. 

Cheeseman and Bogetti (2003) presented a summary of relatively recent developments 

in fabric system impact up to 2003. Tabiei and Nilakantan (2008) continued with a 

summarization of key concepts relevant to the field up to 2008.   

      While analytical results can potentially provide a fast and computationally 

efficient way to solve problems, the assumptions made in their derivation often require 

the exclusion of details such as yarn slip and fiber waviness, also known as crimp. To 

track the behavior of single fibers in order to comprehend how they work together to 

provide ballistic resistance to their fabrics, various numerical models were developed, 
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especially in the last decade, where monumental increases in easily available 

computing power could be taken advantage of. With this capability, commercial 

software using the finite-element method (FEM), including but not limited to 

ABAQUS explicit, LS-DYNA, and AUTODYN, has become the most popular choice 

for numerically solving a wide variety of ballistic impact problems (Ivanov and 

Tabiei, 2004; Duan, et al., 2005; King, et al., 2005; Rao, et al., 2009; Cavallaro, 2011; 

Nilakantan et al., 2013). Gruijic et al. (2008) developed a meso-scale unit-cell based 

continuum material model for plain-woven single-ply ballistic fabric materials, which 

could predict fabric deformation and fracture behavior for various fabric edge 

boundary conditions. Shahkarami and Vaziri (2007) used FEM to simulate projectile 

impact on woven fabrics and developed a preprocessor to create a 3-D mesh of the 

unit cell using the measured fabric cross-sectional micro-images. Parsons et al. (2010) 

utilized a continuum-level modeling technique to describe fabric meso-structure 

evolution without explicitly modeling every yarn. Barauskas and Abraitiene (2007) 

modeled the central patch in the impacted fabric with yarn-level detail while the rest 

of the fabric consisted of orthotropic shell elements. Jin et al. (2010) modeled a bi-

axial warp-knitted composite and assumed perfect bonding between yarn and matrix 

where the elements of each shared the same nodes and surface in meshing. Luan et al. 

(2013) developed both a continuum model (meshed with hexahedron elements) and a 

micro-structure model (meshed with 4-node tetrahedron elements) in LS-DYNA for 3-

D angle-interlock woven composites. Gopinath et al. (2012) studied the effect of 

matrix on the performance of woven fabric composites using several commercial 
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packages and treated the Kevlar yarn bundle as a 3-D continuum, meshed with 8-node 

brick elements. 

      In addition to FEM modeling, the finite-difference method (FDM) has been 

another often-used approach to solving the ballistic impact problem (Roylance, 1980; 

Shim, et al., 1995; Cunniff, et al., 1998; Tan, et al., 2005; Zeng, et al., 2006). 

Compared to commercial software packages, most FDM codes were written separately 

by the researcher, and modeled fabrics as a nodal network of pin-jointed mass-spring-

damper systems. These simulations usually required much less computational space 

and time than software packages such as LS-DYNA. We adopt this method for this 

thesis, and present our detailed algorithm in Chapters 3 and 4.  

      Beyond the single ply or membrane problem, a more complex geometrical 

problem is that of modeling crimp in a fabric system. Crimp is defined as the 

undulation or waviness in yarns, as shown in Fig. 1.2, and is a product of the fiber-

yarn-fabric manufacturing process.  

 

Figure 1.2. Enlarged view of crimped yarn extracted from plain-woven fabric (10-3m) 
(Cavallaro, 2011). 
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      Current ballistic fabric manufacturing trends view crimp as undesirable (Van et al., 

2008; Chou et al., 2011) and seek to keep the amount to a minimum. However, the 

role crimp plays in the fabric penetration process, post- impact, has only begun to be 

appreciated and studied in recent years (Shim et al., 1995; Billon, 1998; Cunniff et al., 

1998; Kirkwood et al., 2004; Ching and Tan, 2006; Tan and Ching, 2006; Barauskas 

and Abraitiene, 2007; Atas and Liu, 2008;  Hur et al., 2008; Dong and Sun, 2009; 

Bilisik and Korkmaz, 2010), including with analytical methods (Hur et al., 2008; Ha-

Minh et al., 2011; Stig and Hallstrom, 2013). In terms of direction, for the most 

commonly adopted woven architecture, the plain-weave, yarns from two principal 

families (“warp” and “weft”) are interlaced at right angles to each other, as shown in 

Fig. 1.3. Since the yarns from each family pass periodically over and under the 

crossing family, and are bent in the process, woven fabrics are also called “crimped 

fabrics.” In standard textile terminology, warp yarns run lengthwise and parallel to the 

selvage (fabric edges) while weft (or fill) yarns run widthwise across the fabric width, 

from selvage to selvage. The points where the weft and warp yarns are in contact with 

each other are called “crossovers.” Lastly, the process with which crimp is pulled out, 

or the yarn is flattened, is known as “de-crimping.” 
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Figure 1.3. Warp and weft yarn directions for plain-woven fabric (Cavallaro, 2011). 

      

      Because warp and weft yarns are manufactured independently and then woven 

together, they often exhibit different degrees of crimp, referred to as crimp imbalance.  

Cavallaro et al. (2011) conducted extensive studies into crimp imbalance, varying the 

crimp ratio between the warp and weft yarns, and letting the projectile impact the 

fabric at oblique as well as normal angles (Cavallaro and Sadegh, 2010; Cavallaro, 

2011). Zeng et. al (2006) conducted experiments with various combinations of 

boundary conditions and used crimp imbalance to explain the different shapes of the 

pyramidal cone that appeared in the fabric post impact. Tan et al. (2005) introduced 

crimp into their fabric models via two different ways: first by including the toe region 

of the load-deflection curve in the constitutive equation describing the viscoelastic 

elements, and second by arranging the chain of linear elements that define each yarn in 

a zigzag manner. Duan et al. (2006) used LS-DYNA to show that friction at yarn 

crossovers slowed the de-crimping process, causing earlier fabric failure. More 

recently, most numerical crimp models have realized the importance of accurately 
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modeling the motion at yarn crossovers. Numerous studies have included parameters 

such as rotational spring stiffness, in-plane bending stiffness, viscous-shear stiffness, 

twist stiffness, and out-of-plane bending stiffness to describe this motion (Ivanov and 

Tabiei, 2004; King, et al., 2005; Grujicic et al., 2008; Parsons et al., 2013). Even 

within woven fabrics, experimental studies have been done on different styles of plain-

weave (Dong and Sun, 2009) and different weaves such as twill, basket, and satin 

(Cheng and Chen, 2010; Shimek and Fahrenthold, 2012).  

      For motion of yarns in woven fabrics subjected to ballistic impact, another key 

factor to consider is the presence of yarn slip, as shown in Fig. 1.4.  

 

Figure 1.4. Yarn slip seen in a deformed single layer Kevlar29 fabric that had 
successfully stopped an incoming projectile traveling at 254 m/s (Cunniff, 1992). 

 

This can be of the yarn-yarn form, where warp and weft yarns slide against each other, 

or it can be of the yarn-projectile form, where yarns in contact with the projectile slide 

against it. Many experimental and numerical studies have been done to understand the 

role of slip and/or friction in woven fabrics, some independent of crimp and ballistic 
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impact (Roylance, 1980; Briscoe and Motamedi, 1992; Cunniff, 1992; Bazhenov, 

1997; Roylance et al., 1995; Duan et al., 2005; Boubaker et al., 2007; Dong and Sun, 

2009; Barauskas and Abraitiene, 2007; Wang et al., 2010). Lim et al. (2002) and Shim 

et al. (1995) observed a third type of slip where the projectile pushed aside the yarns 

rather than breaking them, and slipped through to cause fabric failure (Fig. 1.5). This 

phenomenon can be attributed to a combination of too few crossover points, a very 

sharp and pointed impacting projectile nose, and low friction between the yarns.  

 

Figure 1.5. A schematic showing the process of a projectile slipping through a piece of 
not-so-densely woven fabric without failing/breaking the yarns. 

 

      Nilakantan and Gillespie (2012) studied the effect of five different inter-yarn 

friction levels on fabric ballistic performance, and concluded that performance was 

proportional to inter-yarn friction levels for the two-sided clamped cases and inversely 

proportional to inter-yarn friction for four-sided clamped cases. Rao et al. (2009) 

sought to couple friction with material properties and boundary conditions for a given 

fabric geometry and projectile to obtain a more comprehensive understanding of 
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ballistic performance. They concluded that friction helped improve performance of the 

fabric with higher stiffness and higher strength yarns. They also found that for low 

striking velocities below 100m/s, yarn-yarn friction was more important than 

projectile-yarn friction.  Earlier studies by Tabiei and Ivanov (2002) showed that for 

impact velocities well above the ballistic limit of the fabric (usually meant to describe 

V50, the velocity at which 50% of the impacting projectiles will be stopped by the 

target), projectile-fabric friction is more beneficial than yarn-yarn friction.  Finally, 

Shim et al. (2012) considers energy dissipation due to both types of friction in 

experimental studies of oblique impact into woven fabrics and laminates. 

      For most, if not all the literature cited on ballistic impact studies, we observe at 

least one of the following drawbacks in each study: (1) one or more of the boundaries 

of the fabric region are clamped close to the impact location, (2) single fabric layer 

used for testing, (3) small target fabric size on the order of 50-200mm per side, (4) 

spherical ball-shaped projectile impacting at very low velocities, (5) energy absorption 

analysis. (1) - (4) reduces the realistic outcomes of the model, since it does not 

resemble actual real-life impact scenarios. For humans wearing body armor, there is 

no initial tension in the fabric, and therefore clamping down on any side (1) creates 

unrealistic wave reflections and boundary effects. The same boundary effects come 

into play for (3), as tension waves propagate on the order of 8000 m/s, and using such 

small pieces of target fabric does not resemble the real size of body armor. Also, a 

piece of body armor can consist of hundreds of individual layers compressed together, 

which also work together in stopping the projectile. Using a single layer for simulation 

(i.e., a single layer with an areal density of that of just one fabric layer rather than that 
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of the entire system) practically ensures that perforation will occur right away, and 

thus, little insight can be obtained on how the fabric would behave to stop the 

projectile. On the other hand, impacting at very low velocities (4) compared to the 

ballistic limit is also not useful to understanding the mechanics of fabric behavior such 

as cone wave growth, especially with a spherical ball-shaped projectile whose shape 

and contact surface are not at all like that of a projectile’s. Finally, while there have 

been detailed comprehensive numerical models that accurately portray the geometry 

of crimp (Fig. 1.6) and the forces for various types of yarn slip, nearly all the post-

processing analysis of results are done from the perspective of energy absorption (5). 

While projectiles do have enormous kinetic energy and this energy does need to be 

absorbed for the projectile to be stopped, the shortcomings of this approach often 

involve thinking in terms of material toughness, such as ductility, fracture toughness, 

and/or energy absorbed in phase transitions. For this we take the example of nylon, a 

material no longer used in ballistic fabrics. Although nylon exhibits high strain energy 

in terms of its area under the stress-strain curve, it is not nearly as effective as stopping 

projectiles as fabrics such as polyethylene-based Dyneema or aramid-based Kevlar 

(Tabiei and Nilakantan, 2008). To understand the reasoning behind this, we often have 

to look beyond energy absorption and track the motion of individual yarns, whose 

failure criteria is based on maximum tensile strain. Phoenix and Porwal (2003) 

discusses the role of yarn elastic energy (a measure of toughness) coincidentally with 

other properties such as Young’s Modulus and maximum tensile yarn strains, but 

notably points out that increasing this energy value may not improve ballistic 

performance if tensile wave speed is reduced in the process. 
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Figure 1.6. Detailed geometry of crimp shown in numerical model (Rao et al., 2009). 

       

      In this thesis we present two numerical models to describe zigzag out-of-plane 

crimp in laminar and woven fabrics. The first model, presented in Chapter 3, was 

developed to obtain general agreement with previous Cornell Phoenix Group’s 

analytical models, which are summarized in Chapter 2. It also allowed us to 

experiment with implementing crimp as well as set parameters for controlling the 

stability of the numerical simulation. We also include the option of turning on 

projectile-yarn slip in this model for comparison with the no slip cases. 

      The second model, presented in Chapter 4, incorporates the over-under woven 

fabric geometry, with crossover points being a special focus. We define a set of new 

parameters (in addition to the ones from our first model) to account for yarn-yarn 

slip/sliding, compression at crossover points, and restoring forces.  

     In presenting our simulation results, we aim to study the changes in strain, velocity, 

and displacement fields over time, as well as the yarn de-crimping process. We write 

our code in MATLAB and do not use any commercial software packages, which has 

cut-down significantly on running time. Our simulation uses material properties of 
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Dyneema®, a UHMWPE fiber developed by DSM, a Netherlands-based company, 

with which we have collaborated on various ballistic impact-related research topics 

since 2009.  

  

 
 
 
 
 
 
  

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

14 
 

CHAPTER 2 

REVIEW OF CORNELL GROUP ANALYTICAL MODELS 

 

2.1 Introduction 

      The Cornell Group under the direction of Prof. S. L. Phoenix has been conducting 

research on the ballistic impact problem since 2003 (Phoenix and Porwal, 2003; 

Phoenix et al., 2010; Phoenix et al., 2010). Before we present our newest numerical 

models which include features such as crimp, woven biaxial fabrics, and yarn slip, we 

first review the setup of the ballistic impact problem. Important findings are presented, 

taken from our group’s various analytical models including the 1-D tape model, the 2-

D membrane model, and the 2-D bi-axial model. In subsequent chapters, we will 

validate our analytical findings through numerical simulations, which will also provide 

further insight on details not observable due to simplifying assumptions made by the 

analytical derivations. For convenience, Table 2.1 summarizes the notations used for 

key quantities in the analytical derivations presented in this chapter.  
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Table 2.1: Summary of key quantities involved in analytical models 

Notation Definition 

pM  Mass of the projectile 

ph  Length of the projectile 

pV  Velocity of the projectile prior to impact 

pD  Projectile nose width and tape width  

h  Effective thickness of a 1-D tape 

E Young’s modulus of impact tape/membrane/fabric 

  Poisson’s ratio of impact tape/membrane/fabric 
  Density of impact tape/membrane/fabric 

t  Strain of fabric/target element 

t  Stress of fabric/target element 
  Cone angle 

0a  In-plane tension wave velocity 

pr  Projectile nose radius 

cr  Cone wave radius 

p  Strain in fabric/target in contact with projectile edge 

max  Highest strain (over time) occurring in fabric/target 

ult  Ultimate tensile strength in single yarn (obtained experimentally)

0  Membrane to projectile areal density ratio, also the mass ratio 
  Normalized cone wave front radius 

fh  Membrane thickness  

pm  Mass of fabric/target in contact with the projectile 

pA  Area of projectile in contact with the target  

0fa  In-plane tension wave velocity in the fabric/membrane 

0ya  In-plane tension wave velocity in the yarn/fiber 

SCK  Ratio to define strain concentration due to tension wave collision 

SC  Strain value due to tension wave collision underneath projectile 
  Steady state strain value at long times  
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2.2 Governing equations for 1-D tape impact analytical model 

      We consider the deformation of a 1-D tape illustrated in Fig. 2.1 with the 

following assumptions. The tape is linearly elastic, subject to transverse impact by a 

projectile of mass pM and length ph , traveling at velocity pV  prior to impact. The 

projectile is idealized as a flat rectangular nose with width, pD , transverse to the tape 

axis and span, pd , along it. It has tensile modulus E, Poisson’s ratio , material 

density ρ, and rectangular cross-section with width pD and effective thickness h. We 

also assume no rounding at the projectile edge, no deformation of the projectile over 

time, and that the tape is long enough so that no boundary effects need to be 

considered.  We note that unlike classical 1-D wave theory of string motion, the tape 

from our model is initially un-tensioned and infinite in length. 

 
Figure 2.1. Schematic showing variables and geometry of tape impact problem. 

Material flows towards the projectile at velocity u  and lowers triangle wave speed c  
(ground coordinates) compared to c (material coordinates). 

 
      Using Cartesian coordinates ( ,x y ) and assuming symmetric impact deformation 

of the tape with respect to the y-axis, we consider just the right half the plane ( 0x  ) 

in our analysis. At time 0t  , the tape lies on the line 0y  , and x represents the 

initial location of a tape material points. After impact, we define u and v to be the axial 
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and transverse components of the displacement of this point, with new coordinates

( , )x u v . We mostly follow the approach provided by Rakhmatulin and Dem’yanov 

(1961) in the development and solution of two governing partial differential equations 

for tape displacement.  

      We start our analysis with a conservation of mass during deformation: 

 t1Adx A dx    ,       (2.1) 

where Adx is the initial volume of a tape element, pA D h  is its initial cross-sectional 

area and  its initial density. After deformation,  , A  and  t1 dx  are, respectively, 

the element material density, cross-sectional area and length, and t  is the element 

strain, given by: 

2 2

t 1 1
u v

x x
               

.       (2.2) 

      For a tangentially aligned element shown in Fig. 2.2, at any given instant the 

forces acting on it are  t A  and   t tA A x dx     where t  is true stress.  

 

 

Figure 2.2. Element forces acting on a tangentially aligned material element. 
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      We resolve these forces parallel to and perpendicular to the tape line and use 

conservation of momentum to obtain: 

 
2

t2
cos

u
Adx A dx

t x
   


 

      (2.3) 

and 

 
2

t2
sin

v
Adx A dx

t x
   

 
 

,      (2.4) 

where γ is the inner angle (positive) between the tangent to the element surface and the 

tape axis, as shown in Fig. 2.1. We let t  be the engineering stress corresponding to 

t  and from force balance get 

 t tA A   .        (2.5) 

      We now substitute Eq. (2.5) into Eqs. (2.3) and (2.4) to obtain the governing 

partial differential equations (PDEs) 

 
2

t2
cos

u

t x
   


 

        (2.6) 

and 

 
2

t2
sin

v

t x
   

 
 

,       (2.7) 

where 

   2 2

1
cos

1

u x

u x v x
   


    
      (2.8) 

and 
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   2 2
sin

1

v x

u x v x
  
 

    
 .       (2.9) 

      We aim to write Eqs. (2.5) and (2.6) in terms of the 1-D tensile wave speed, which 

is  

0a E  .         (2.10) 

      Since stress t  and strain t  are related by 1-D Hooke’s Law t tE  in this case, 

we can now use this and Eq. (2.10) to write Eqs. (2.5) and (2.6) as  

 
2

t2 2
0

1
cos

u

a t x
  


 

       (2.11) 

and 

 
2

t2 2
0

1
sin

v

a t x
  

 
 

.       (2.12) 

      We do not include detailed derivations of the solutions to these PDEs here, but 

note that there are two distinct solutions, one representing the longitudinal tension 

wave and one representing the transverse, triangle-shaped cone wave. To obtain the 

final results presented in Section 2.4, it is crucial to implement the boundary condition 

which states that tension and cone wave fronts both coincide with the projectile radius 

at the instant of impact, or t = 0.   

 

2.3 Governing equations for 2-D membrane impact analytical model 

      We now extend the ballistic impact problem to a thin 2-D isotropic membrane and 

present the process for determining its governing partial differential equations. We 

assume impact by a flat-nosed projectile with cylinder radius pr , diameter p p2D r , 
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and mass pM . It travels at velocity pV  perpendicular to the membrane, and contact 

occurs over an area 2 2
p p p 4A r D   . Similar to the 1-D tape, the membrane is 

initially un-tensioned and extends outwards infinitely with tensile modulus E, 

Poisson’s ratio  , thickness h, and density   per unit volume. We neglect 

compressive hoop stresses because tensile stresses are very large and the membrane is 

assumed to be thin and fibrous, and fibers and yarns will locally buckle to relieve 

them. Corresponding Poisson effects are also neglected. 

      The membrane deformation is assumed to be axisymmetric, therefore the analysis 

is done in cylindrical coordinates (r, ,y), as illustrated in Fig. 2.3. At time 0t  , r and 

  represent the initial radial and circumferential location of a fabric point in the 

membrane lying at rest at 0y  . After impact at time t, we define u and v  to be the in-

plane and normal (out-of-plane) components, respectively, of the displacement of this 

point, with the cylindrical angle   remaining the same. We note that the new 

coordinates of this point now become (r + u, , 0 + v ), as shown in Fig. 2.3. We now 

follow the same procedure as presented in the previous section for obtaining the two 

governing partial differential equations. 
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Figure 2.3. Cylindrical coordinate system (r, ,y) and displacements (u, v ) in a 2D 
membrane impact system where the cone has large angles and curvature. 

 

      We now apply conservation of mass during deformation for a membrane element 

initially of volume hrdrd , thickness h, and density ρ: 

t( )(1 )hrdrd h r u drd       ,      (2.13) 

where  , h , and t(1 )dr  are the current density, thickness and length. Also, t  is 

the local in-plane strain oriented radially, given by 

2 2

t 1 1
u v

r r
               

.       (2.14) 

The circumferential hoop strain   is 

/u r   .         (2.15) 

      For any given time instant, the forces acting on the element locally in plane but 

radially oriented are t ( )h r u d    and t t( ) [ ( ( )) / ]h r u d h r u r drd         

where t  is the true stress. It is also necessary to consider the resultant force from 
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circumferential stresses resolved in the radial direction given by t(1 )h drd     

where   is the true hoop stress. We resolve these forces parallel and perpendicular to 

the ground plane and use momentum conservation to obtain: 

2

t t t2
( )cos (1 )

u
hrdrd h r u drd h drd

t r
               

  (2.16) 

and 

2

t2
( )sin

v
hrdrd h r u drd

t r
          

,     (2.17) 

where   is the angle between the local tangential surface to the membrane element 

and the ground plane. We now express the ‘engineering’ stresses t  and t  in terms 

of the true stresses t  and t , and compare areas before and after deformation to 

obtain 

t
t

( )h r u d

hrd

 



         (2.18) 

and 

t(1 )h dr

hdr




 



 .        (2.19) 

      We now substitute Eqs. (2.18) and (2.19) into Eqs. (2.16) and (2.17) to obtain 

2
t

2

( cos )1 ru

t r r r
  

 
 

       (2.20) 

and 

2
t

2

( sin )1 rv

t r r

  
 

 
,       (2.21) 

where  
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   2 2

1
cos

1

u r

u r v r
   


     
      (2.22) 

and 

   2 2
sin

1

v r

u r v r
  
 

    
.      (2.23) 

      The stresses and strains are related by 2-D Hooke’s Law, where 

t t2
( )

1

E
  


    

       (2.24) 

and 

t2
( )

1

E
   


    

.       (2.25) 

      The speed of tensile waves in the membrane propagating outward but in-plane is 

given by 0a , where 2 2
0 [ (1 )]a E    . We note that since this is the only place where 

  appears in the governing equations, and since neglecting   in 0a  results in less than 

5% error (for ballistic materials), we do not include Poisson effects in our analysis, 

and the tensile wave speed thus reduces to its 1-D form, given by Eq. (2.10). 

      We initially keep the hoop stress term from Eq. (2.20) to see what role it might 

play in results, but since all hoop stresses prove to be compressive, we will ultimately 

neglect them. We observe that membranes and fabrics cannot support significant in-

plane compressive stresses due to buckling of yarns.  Eqs. (2.20) and (2.21) now 

become: 

2
t

2 2 2
0

( cos )1 1 ru u

a t r r r

          
      (2.26) 
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and 

2
t

2 2
0

( sin )1 1 rv

a t r r

 


 
,       (2.27) 

where   indicates that the quantity only exists if it is positive. These equations, 

together with Eqs. (2.22) and (2.23), are the governing PDEs for the 2-D isotropic 

membrane impact problem.  

 

2.4 Comparison of 1-D and 2-D model results 

      We present several important findings from the 1-D and 2-D analytical models, 

which are relatable to numerical simulation results from later sections. These 

analytical findings have been published and compared with experimental curves 

(Phoenix and Porwal, 2003), so we quote them on the premises that they have been 

verified already.  

      After impact, an initial tensile strain is generated at the projectile edge pr , which is 

the fabric region where the highest strains occur over time, especially in the 2-D 

problem. Based on the 1-D tape model, we approximate this to be 

4 3

p

02

V

a


 
   
 

 .        (2.28) 

      We also observe that since 0a  depends on fabric material properties and is 

constant throughout the impact, and pV  is always decreasing after impact. Thus in the 

1-D problem   would therefore be highest initially and decrease over time. This 

means that in the 1-D impact case, the highest strain max  is also the initial strain. 
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Since max  is often compared with ult , the ultimate tensile strength in a single yarn 

(obtained experimentally), we can conclude that for a 1-D tape yarn failure, if it 

occurs, would occur at the beginning, or the instant right after impact, for a 1-D tape 

impact.  

      We now look at the same strain, but for the 2-D membrane impact case, given by 

2/34/3

pp 1/3
p

0 p

( 1)

2 ln(1 ( 1))

V

a

  
 

  

  
          

,     (2.29) 

where  , a function of time, is the normalized cone wave front radius c p/ 1r r  in 

terms of material coordinates. Example plots of Eq. (2.29) are shown in Fig. 2.4 

(Porwal and Phoenix, 2005), where θ is a parameter ( 1 ) to account for the 

possibility of an effective impact radius larger than the nominal projectile radius pr .  

 

Figure 2.4. Plot of strain at the projectile edge p  versus normalized cone wave front

 , which is a function of time. 
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     The quantity, 0 , is the membrane to projectile areal density ratio, which is also 

the mass ratio, given by 

pf
0

p p p( )

mh

M A M


   ,       (2.30) 

where fh  is the membrane thickness, pm is the mass of the fabric/target (in this case 

membrane) in contact with the projectile, and pA is the area of the projectile in contact 

with the target, given by 2
pr . 

      From Fig. 2.4, we first observe that the p  values for various 0  all increase 

beyond their initial values (at 0t   or 1  ) to a certain peak before decreasing for 

the remainder of time. (This decrease is the result of the projectile decelerating due to 

the out-of-plane membrane forces acting on it, the rate depending on 0 . Otherwise it 

would continue to rise indefinitely or until the material failed.) This differs 

significantly from what Eq. (2.28) describes for the 1-D case, where the initial strain 

  is also the peak strain for all time. We explain this from a physical perspective by 

comparing the way material flows into the cone region between the two cases. In the 

1-D case, no matter how far out the tension wave front has propagated, the amount of 

material suddenly pulled towards the center at velocity u  is the same. In the 2-D case, 

the initial increase in strain is attributed to a rapid in-flow of material towards the 

impact center to create the cone wave and decelerate the projectile. However, after 

some time, as the tension amplitude decreases with increased circumference and there 

is also more material to be pulled in towards the center. Thus it becomes increasingly 

more difficult for material to be pulled in at the same velocity u , as before. From this 
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we can see that, in the 1-D case, yarn failure will either occur right away or not at all, 

whereas in the 2-D case, if yarn failure does not occur right away, it still may occur 

sometime later. 

      Another important insight, which we draw from Fig. 2.4 is the significant 

difference in the times when maximum strains occur between curves of different 0  

and combined with altering the impact velocity pV  to maintain the same peak strain. 

This shows that for projectiles of different mass (recall Eq. 2.30), such as the FSP and 

9mm used in Chapters 3 and 4, the subsequent time of yarn failure can be drastically 

different. Fig. 2.4 shows that the greater the projectile mass, the longer it takes for p  

to reach its peak. This makes sense physically, as it will take more time for the fabric 

to decelerate a heavier projectile versus a lighter one. (We should note here that   is 

not quite the same as time but the difference is modest because the transverse wave-

speed is fairly insensitive to the parameters being varied in the plots.) 

      From the 2-D model, we also seek to distinguish yarn (or fiber) properties 

(subscript “y”) from fabric (or membrane) properties (subscript “f”). The effective 

modulus of the fabric is f y 2E E  due to crossing yarns adding extra mass and cross-

sectional area but not contributing stiffness in the direction of wave propagation. 

Nevertheless, the fabric and yarn densities are identical, i.e., f y  . With this we 

calculate the actual longitudinal wave speed for the fabric along principal yarn 

directions as 

y 0yf
0f

f y

2

2

E aE
a

 
   .      (2.31) 
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      This reduced tensile wave velocity in fabrics is well-documented in literature 

(Roylance et al., 1973; Figucia et al., 1982; Parga-Landa et Al., 1995). While we don’t 

typically consider individual yarns in the analytical membrane model, the value of 0fa

as some factor of 0ya will be interesting to track in our numerical model with yarn slip 

in Chapter 4.  

 

2.5 Ongoing analytical studies on allowing slip to occur underneath projectile 

      For the 2-D membrane model presented in Section 2.4, we assumed a RCC (right-

circular-cylinder) projectile with a flat nose but did not allow any slip to occur in yarns 

underneath the projectile. However, unlike the 2-D case, the 1-D case shows no 

sensitivity to projectile radius. Nonetheless, recent access to experimental data from 

DSM, the manufacturer of Dyneema®, has shown that the critical velocity for yarn 

failure (made from UHMWPE fibers) differed significantly between two projectile 

types: a flat-nosed reversed FSP projectile and a saddle projectile, both shown in Fig. 

2.5. 
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Figure 2.5. Comparison of FSP and saddle projectiles used in DSM’s yarn shooting 
experiments. 

 

      In this section we quote several insights and findings from a pending journal paper 

(Phoenix, submitted). To explain why the critical velocity of the flat-nosed reversed 

FSP projectile was about 18% lower than the saddle projectile’s critical velocity 

(which translates to a 25% difference in yarn strength), a wave-propagation model was 

developed that incorporates tension wave collision under blunt impact by a flat-faced 

projectile, in contrast to the simpler outward wave propagation in the classical model. 

However, we do not include equation derivations nor discuss all the findings from this 

paper, other than to select certain important results that relate to the results from our 

numerical models presented in subsequent chapters. 

     The reduction in yarn strength observed after shooting yarns with the two types of 

projectiles (Fig. 2.5) suggested that immediately following impact, the opposing 
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tension waves emanating from the two edges of the flat-nosed projectile collide under 

the middle of the projectile, as shown in Fig. 2.6. As a result, symmetrically expanding 

tension wave is generated, which causes an increase in strain amplitude, which 

constitutes a strain concentration compared to the initial strain of the fabric in contact 

with the projectile edge right at the moment of impact.  

 

Figure 2.6. Evolution over time of the colliding tension waves and subsequent 
reflections under a flat-faced projectile impacting a frictionless yarn.  Also shown is 

the direction of particle flow. 

 

      To quantify the effect of the shock wave on strain in yarns around the projectile 

edge, we define the variable SCK  to represent the strain concentration caused by 
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tension wave collision under the projectile, SC , as compared to steady state behavior 

 , for the 1-D impact case: 

SC
scK




 ,         (2.32)  

which becomes 

4/3 2/32/3 1/3
p p3

sc
0 0

2 1 2
2 1

3 2 3 2

V V
K

a a

                  
.    (2.33)  

      We note that typically p 0 20V a , so  p 02 1 40V a  . Therefore 

4 3 2 32 3 1 32 1 1 2 1
0.00367 0.0359 0.0322                                        

3 40 3 40

            
    

 

      Hence 3
SC 2K   has an error of about 3%.  This is a major result from the paper 

and will be revisited in Chapter 3. While there has been work done to derive an 

expression for SCK  like Eq. (2.33) for the 2-D case, we note that the 1-D expression is 

sufficient for comparison purposes with numerical results.  

 

2.6 Summary 

     Chapter 2 is a review of selected aspects of the Cornell Group’s analytical 

modeling work in the last decade. While the focus of this thesis is on developing 

numerical models to understand crimp and yarn slip in bi-axial fabrics, it is important 

to obtain agreement with previous analytical work in order to validate numerical 

results. Because many of the details incorporated into our numerical models have no 
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corresponding place in the analytical models, we aim for qualitative agreement on 

general behavior and trends more than quantitative comparison.  

      The important analytical findings presented in this chapter are: 

(1) Behavior of strain at projectile edge over time is different between 1-D and 2-

D impact cases. 

(2) The location of the peak strain attained by yarns at the projectile edge over 

time depends on 0 . 

(3) Single yarn (1-D) properties such as tensile wave speed decreases when the 

yarns are part of a fabric.  

(4) Allowing slip to occur underneath a flat-nosed projectile causes inward 

propagating waves to collide at the impact center, which leads to a strain 

concentration at the projectile edge, which causes a decrease in critical velocity. 
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CHAPTER 3 

LAMINAR CRIMP MODEL FOR BI-AXIAL FABRICS 

 

3.1 Introduction 

      Prior to the development of our numerical model, we first present a brief history of 

the coding process that arose from collaboration between Prof. S. L. Phoenix’s Cornell 

Group and DSM, a Netherlands based company. This is followed by a review of 

several important qualitative observations from previous analytical modeling results as 

well as experimental findings that provide insight on post-ballistic fabric behavior.  

      DSM Dyneema®, a branch of DSM, is the manufacturer of Dyneema® fiber, a 

type of UHMWPE (Ultra High Molecular Weight Polyethylene) commonly used in 

personal body armor as well as military vehicles, bow strings, fishing lines, and ropes. 

Starting in 2008, the company sought to develop a relatively simple in-house code that 

could accurately model post-impact ballistic behavior without resorting to commercial 

Finite-Element Methods (FEM) such as LS-DYNA and AUTODYN, which were 

computationally demanding. Since the Finite-Difference Methods (FDM) for solving 

problems involving fabrics has been around for 30+ years and was relatively simple to 

incorporate, it was chosen for the initial version of the code, written in FORTRAN.  

      This model assumed (i) an RCC projectile where the mass of the projectile was 

evenly distributed (added) to all contact nodes, (ii) the system had no compressive 

strains, and (iii) the material behavior was linearly elastic.  Fig. 3.1 shows assumptions 

(i) and (iii). All three assumptions were retained in our laminar crimp model, 

discussed extensively in this chapter.  
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Figure 3.1. (a) Schematic showing nodes as part of projectile contact, where the 
projectile mass was evenly distributed. (b) Assumption of linearly elastic material 

behavior in mass-spring system. 

 

      Several key features from the DSM simulation results appeared promising and 

provided more useful insights into the ballistic problem (versus the analytical model): 

(i) the ability to explicitly model progression of the tension and cone waves over time 

(including shape of waves at edges), (ii) the ability to track strains, forces, and 

positions in individual yarns via nodes, (iii) its general agreement with analytical 

models in terms of qualitative ballistic behavior post-impact, and (iv) the simplicity 

with which additional features could be added, both in terms of new calculations 

within the code and new graphs to display different features.  

      The DSM code also had several key unresolved problems: (i) the jagged nature of 

the projectile edge due to the square mesh often caused “high strain concentrations” at 

certain edge locations that would not be representative of actual physical impact, (ii) 

similarly, the calculation for strain around the projectile edge would be affected by 

such concentrations and would therefore not be accurate, (iii) oscillations were 

prevalent in the plots, especially during the initial impact moments, which would often 
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not subside over time and (iv) slip underneath the projectile was not considered, 

neglecting the impact of an initial shock wave on subsequent fabric behavior. Figures 

3.2, 3.3, and 3.4 show the problems inherent in the original DSM simulation results.     

 

Figure 3.2. DSM simulation of tension wave in the fabric after impact at different 
times. We note that the wave progressions are discrete rather than continuous, and are 

thus inconsistent over the fabric material covered. 
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Figure 3.3. DSM simulation of horizontal strains in the fabric around the projectile 
after impact. The dark red point indicates where failure would occur. However, this 

may be a result of the jagged projectile edge rather than an actual physical 
phenomenon. 

 

 

Figure 3.4. DSM simulation result of maximum horizontal strains in the fabric after 
impact over time. Oscillations are prevalent throughout the graph, reducing its 

accuracy. 
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      We seek to address and resolve these problems in our numerical model described 

in this chapter, as well as implement crimp into the system. More complex features are 

implemented in the next model presented in Chapter 4. 

      Now we review several important qualitative observations from previous 

analytical modeling results as well as experimental findings that provide insight on 

post-ballistic fabric behavior. We note that qualitative and general observations are 

used for comparison rather than specific quantitative results because previous 

analytical models required many assumptions that simplify or omit certain impact 

conditions and parameters, and there has yet to be any quantitative experimental 

testing done for the cases we wish to examine in this dissertation.  

      The main observations are as follows: 

1. Immediately after impact, tension waves rapidly propagate outwards along the 

principal yarn directions, pulling fabric material into the impact zone. This 

allows for the development and growth of a pyramid-shaped cone with 

rounded edges. The cone wave travels at a much slower velocity than the 

tension wave, and its existence has been well-documented by experimental and 

numerical results, as shown in Fig. 3.5. From an overall perspective, Fig. 3.6 

shows, schematically the position, shape, and progression of the tension and 

cone waves following impact. Two distinct analytical solutions to the ballistic 

impact problem proving the existence of tension and cone waves are provided 

in previous publications from the Cornell Group (Phoenix and Porwal, 2003).  
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Figure 3.5. (a) Image taken of ballistic fabric post-impact, showing the pyramid-

shaped cone (Tan et al., 2008). (b) Simulation of cone wave through finite-element 
analysis (Chocron, et al., 2010). 

 

 
 

Figure 3.6. Top-down schematic of post-impact projectile behavior with tension and 
cone wave positions, shapes, and progressions shown relative to each other and 

projectile. 
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2. Maximum yarn strain is the failure criteria used by industry for testing ballistic 

fabrics and yarns. From previous publications (see Chapter 2), we note that out 

of all the yarns in the fabric, the ones that have the highest strain post-impact, 

and are therefore most likely to fail, are the ones in the region around the 

projectile edge. We plot the highest of the strains in this region over time, and 

observe that except for the 1-D impact case, these strains will always build up 

to a certain point before decreasing again. Figure 3.7 shows past analytical 

modeling results (2-D membrane, membrane with more than 1 layer, and bi-

axial fabric), which all agree with this observation.  

3. Fig. 3.7 also shows that depending on the dimensions of the projectile, the 

times at which yarn strains around the projectile edge reach their peak will be 

very different. In the figure, the smaller FSP’s strain reaches its maximum 

much earlier than the larger 9mm’s strain. This is important because from a 

timing and back face signature (BFS) (National Institute of Justice Standards, 

2008; NATO Standardization Agreement, 2003; Department of Defense 

Military Standard, 1997) perspective, we can conclude that if the FSP causes 

fabric failure, this will occur almost immediately. On the other hand, if the 

9mm causes fabric failure, this would occur much later, after the projectile has 

advanced farther in terms of displacement and the cone wave has grown 

considerably.  We note that the trend described holds true regardless of impact 

velocity and yarn stiffness. Later analytical work with bi-axial fabrics shows 

the trend to still hold. 
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(a) 

 

(b) 
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(c) 

Figure 3.7. Cornell Group’s analytical model results showing strain at projectile edge 
over time for (a) 2-D membrane (Phoenix et al., 2010), (b) more than 1 membrane 

layer (Phoenix et al., 2010), and (c) bi-axial fabrics where 0  is the ratio of the mass 

per unit area of the fabric to the projected mass per unit area of the projectile. 

 
3.2 Finite-difference numerical model 

      We choose a forward finite-difference (FD) method to numerically solve the 

ballistic impact into a laminar composite panel with imposed crimp problem. This 

method was chosen over the finite-element method due to its well-defined geometric 

representation of a bi-axial fabric, which allowed for straightforward spatial 

discretization into a rectangular grid. Prior to presenting our model, we lay out the 

following assumptions: 

1. A flat-nosed, steel right circular cylinder (RCC) projectile with cylinder radius 

projR , mass projm , and initial velocity projv , is assumed to impact a bi-axial 

composite panel (with out-of-plane zigzag crimp) from a 90° perpendicular 

angle. 
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2. The projectile is rigid, therefore its shape does not change during the impact 

and deceleration process, i.e. projR  is constant. 

3. At the moment of impact, the instantaneous velocity drop is calculated using 

conservation of momentum between the projectile and the square patch of 

fabric material it contacts, resulting in a new velocity, proj,0v . 

4. The fabric surface is defined such that it is large enough so that interference 

from wave reflections at the boundaries plays no role. 

5. Deformation and shape change of the fabric were considered only up until the 

possible moment of perforation. This model does not allow for actual 

perforation to occur but assumes failure when the ultimate strain 

(experimentally determined) is reached in yarns. 

6. Fabric perforation due to the projectile slipping between loosely arranged 

yarns without failing the yarns was not considered. 

      Further elaborations regarding these assumptions are presented in the subsequent 

sections of this chapter along with more specific modeling approximations. 

For the laminar case presented in this chapter, we model the fabric panel in its un-

perturbed state as a flat 2-D network of discrete, pin-jointed yarns where each node 

represents a cross-over point and has an assigned mass so that the areal density of the 

fabric is maintained fixed on a macroscopic scale. This is shown in Fig. 3.8(a). Also, 

all the masses are inter-connected by elastic spring elements representing the elastic 

properties, or stiffness, of the fabric. Fig. 3.8(b) shows this structural arrangement in 

more detail, along with how forces from neighboring springs affect each node.  
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Figure 3.8. Pin-jointed network of discrete nodal masses representing the fabric panel 

(a) in an initial un-perturbed state (Tan et al., 2003), and (b) showing the effect of 
neighboring forces on a nodal mass where i and j number the nodes in the two 

orthogonal directions (Novotny et al., 2007).  
 
 
      To start the impact process, we assign the projectile velocity proj,0v  to all the nodal 

masses covered within its quarter-circle area, as shown in Fig. 3.9. This process of 
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assigning masses and then velocities to nodes in contact with the projectile is 

explained more thoroughly in Section 3.2.4.  

 

 

Figure 3.9. Due to x-and y-axis symmetry, we simulate one quarter of the impact area 
to conserve computational space. Here, the blue nodes represent nodes in contact with 
the RCC projectile, which has smooth round edges in reality (hence the circle outline), 
but can only be represented by “step-like” jagged edges on a square grid (Novotny et 

al., 2007).  
 

      We proceed to solve the Newtonian equation of motion in all three Cartesian 

coordinates for the current nodal velocities, written here in impulse-momentum format 

for a given time t and in the x-direction: 

( ) ( ) ( )( )t t t t t
x x x

m
v v f

t
   


,       (3.1) 
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where ( )
t
xv  is the current velocity component of the node in the x-direction and ( )

t t
xf   

represents the projections in the x-direction of the tension forces applied to the node in 

the previous time step. According to Fig. 3.8(b), we can also write this as: 

( ) ( ) ( )( )t t t t t t
x x xf T P      .       (3.2) 

      We note that for the y- and z-directions, similar equations can be written. Once the 

velocity field has been determined, we use those values to solve for the nodal 

positions, written here for the x-direction at time t: 

( )
t t t t

xx x v t   .        (3.3) 

      We then proceed to use the nodal positions to determine spring element lengths tL , 

which are then used to solve for updated strains within the springs: 

( )t t t
t t t

t t

L L

L
 







  .       (3.4) 

The strains are used in calculating tension forces tT  through a linear visco-elastic 

constitutive relationship such that 

t t tT K v   ,        (3.5) 

where K  represents the tensile stiffness (dependent on Young’s modulus and cross-

sectional area), tv  represents the relative motion of the nodes at the ends of a spring 

orthogonal to the spring’s axis, and  is a rocking viscosity coefficient applied to this 

motion for dampen oscillations. As subsequent results will show, these oscillations 

appear as a result of the explicit integration scheme used for temporal discretization 

and are thus products of the numerical simulation rather than the physical process.  
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3.2.1 Flow chart of algorithm  

      To provide a “big picture” perspective on how our laminar crimp model was 

programmed, we include a flow chart of the general algorithm, or design process, of 

the numerical code here, shown in Fig. 3.8(b). The process can be summarized in 

terms of four main steps: (i) setting input parameters and using those to allocate 

computational space and time, (ii) looping through each time step, (iii) looping 

through each grid-point or node in the fabric, and (iv) graphing final results. Details 

such as theory and reasoning behind specific coding decisions are presented in 

subsequent sections.  

      The accompanying legend to the flow chart on the next page is presented here in 

Fig 3.10(a). Box shapes, border colors, border line styles, connector colors, and text 

colors are utilized in various combinations to represent portions of the code with 

different functions and purposes.  
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(a) 
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(b) 

Figure 3.10. (a) Legend to reading part (b), the flow chart describing our programming 
algorithm 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

49 
 

 

3.2.2 Initial input and calculated parameters 

      We present the list of parameters necessary to execute our numerical code in 

Tables 3.1 and 3.2, with each table representing either physical or simulation 

parameters, and each table separated into the user-defined inputs and the calculated 

dependent variables. The theory, reasoning, and possible equations behind the decision 

to use these parameters are discussed after each table. 

Table 3.1: A list of physical parameters used as initial programming values 

User-Input Parameters 

Name Notation Description 

Ex xE  Young's Modulus in the x-axis 

Ey yE  Young's Modulus in the y-axis 

rho   density of fabric material 

AD AD areal density of fabric material 

v_proj projv  projectile velocity right before impact 

m_proj projm  projectile mass 

R_proj projR  projectile radius 

alpha   crimp factor 

eta   rocking viscosity 

zeta   slip (underneath projectile) viscosity 

Calculated Parameters 

Name Notation Description 

a0 0a  tension wave velocity 

d_panel paneld  thickness of fabric panel 

ExA0 0xE A  panel tensile stiffness in x-direction 

EyA0 0yE A  panel tensile stiffness in y-direction 

v_proj0 proj,0v  projectile velocity right after impact (momentum transfer) 

m_gp gpm  mass of fabric per node 

m_proj_gp proj,gpm  mass of projectile per node 
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Alpha   ratio of extended yarn length from crimp to original length 
 

      xE  and yE represent the Young’s Modulus in the x-and y-directions, a condition of 

the bi-axial nature of the fabric. In our simulations, we use material properties of 

Dyneema® yarn and x yE E .  

       is the material density (kg/m3) of the fabric, defined conventionally as mass per 

unit volume (without void space excluded). 

      AD is the areal density (kg/m2) of the fabric, defined as mass per unit area. 

      projv  is the projectile velocity (m/s) right before impact, which is set by the user to 

be any value of choice. 

      projm  and projR  are, respectively, the projectile mass (kg) and radius (m) determined 

by the type of projectile used. Parameter values used for the two types of projectiles 

simulated and presented in this thesis are presented in Section 3.2.4. 

      Crimp factor   is discussed in Section 3.2.5. 

        is the rocking viscosity term (s/m) used for damping possible oscillations that 

occur in the nodes as a result of the nature of the FD incremental stepping scheme. It 

serves the same purpose as  from Eq. (3.5), but has different units due to the format 

we chose to write our equations in while coding.   is the slip viscosity term (s/m) 

used for damping in-plane slip for nodes in contact with the projectile. Both are 

discussed in Section 3.2.7. 
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      0a  represents the tensile wave-speed propagating along a free-standing yarn, and is 

calculated using the definition of wave velocity in a thin rod where linear elasticity is 

assumed: 

0 xa E                                                (3.6) 

      paneld is the out-of-plane thickness (Th) of the panel of fabric used in our 

simulations, calculated by: 

panel

( )

( )

AD mass area mass dl dl
d Th

mass volume mass dl dl Th


   
 

              (3.7) 

      0xE A  and 0yE A  represent the panel stiffness values in the x-and y-directions, and 

is the same as K  from Eq. (3.5). It is calculated by using Young’s Modulus and cross-

sectional area: 

0 panelx xE A dl d E   .        (3.8) 

      proj,0v  is the projectile velocity (m/s) in the instant after impact, related to projv

through a momentum transfer calculation: 

proj
proj,0 proj 2

proj proj( )

m
v v

R AD m
 

 
      (3.9)   

      gpm  is the mass of the fabric per node, calculated by: 

2
gpm AD dl           (3.10) 

      proj,gpm  is the mass of the projectile per node, calculated by dividing the projectile 

mass by the number of nodes covered by the projectile (which depends on projectile 

size) proj,gpn . Exact calculations are presented in Section 3.2.4. 
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      Alpha is a crimp-related length ratio, calculated by using  , and is discussed in 

Section 3.2.5. 

      Next, we list the key parameters that are not properties of the physical system or 

part of the ballistic impact problem described in the previous chapter, but rather 

simulation variables necessary to execute our numerical F-D program.  

Table 3.2: A list of simulation parameters used as initial programming values 

User-Input Parameters 
Name Notation Description 

c1 1c  coarseness of mesh 

c2 2c  boundary factor 

c3 3c  patch size factor 

Taccel accelT  time accelerator 
Tau   approximate time length of run 

Calculated Parameters 
Name Notation Description 

n_steps stepsn  actual number of time steps 

n_elem elemn  number of element spacings in the entire fabric square 

ne0 e0n  number of nodes stored in patch around projectile 

n_c cn  point at cone wave front 
dl dl grid size 
dt dt time step size 
k k number of projectile grid points along axis 

k1-k4 1 4k k  various fractions of k used for smoothing  
TAU   exact time length of run as a dimensionless quantity 

 

      We note that 1 3c c are all user-entered, dimensionless factors used for the 

allocation/calculation of time and space for each simulation run. 1c  determines how 

detailed the grid-meshing or spatial discretization will be, where lower values indicate 

more detail and higher values less detail. 2c  indicates how close to the boundary of the 
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fabric the tension wave will be allowed to travel, where lower values indicate greater 

proximity and higher values less proximity. Hence, it is also used to determine the 

overall size of the fabric square to be used in the simulation. 3c  is the patch size factor, 

which determines the size of the fabric square to be used in the simulation. We 

observe that 2c  values should typically be no less than 1.5 in our model to prevent 

wave reflections or other boundary effects. Since the tension wave travels very rapidly 

along the yarns, in order for its entirety to be seen in a plot, we usually set the 3c value 

to be no less than 1  . However, for larger   values, this setup was often not feasible 

due to limitations in our available computation memory. For those cases, we set the 3c  

values to be much smaller than , and as a result only a fraction of those tension 

waves showed up in plots (although the critical region around the projectile is always 

captured). Fortunately, this only affects plotting, and not the actual calculated values.  

      accelT  is the time accelerator factor that determines the coarseness of time 

discretization, where lower values indicate more detail and higher values less detail. 

For stability purposes, we usually set this value to 1.  

        is the user-entered dimensionless time length of run, which is an approximation 

or estimate of the actual dimensionless time quantity .  

      From the calculated listed of parameters in Table 3.2, we note that stepsn , elemn , and 

e0n  are all calculated from a combination of 1 3c c , accelT , and  . After impact, as the 

program progresses through time, it actually loops through each time step until stepsn  is 

reached. Similarly, as the program progresses through space, i.e. the x-and y-directions 

covering the fabric area, it loops through each node where the upper limit is set by 
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elemn . Since we are interested in the strain around the projectile, e0n  is used to set aside 

space in matrices intended for storing values only pertaining to that region.    

From theory, we approximate the location of the cone wave front at the end of the time 

length of run by calculating cn  as a function of 1c  and  . This value is calculated at 

the beginning and only used for reference purposes. No other values are dependent on 

it throughout the program.  

      We spatially discretize the fabric into equal-sized squares with side length dl, also 

known as the mesh or grid size (in meters). This value is determined from multiplying 

1c  by a fraction of the projectile radius for stability purposes. Similarly, the time step 

increment dt also depends on the projR , 1c , and accelT . For numerical stability, we 

require that t  be smaller than the time it takes for the tension wave to propagate 

through one element spacing dl.  

      In order to determine which nodes are impacted by the projectile, we first calculate 

k, the number of grid points (rounded down to nearest integer) along the axis covered 

by the projectile by: 

projR
k

dl

 
  
 

           (3.11) 

      Furthermore, because our mesh consists of square grids, but the actual projectile is 

round, we seek to smooth force and strain values around the projectile edge, 

particularly for plotting purposes. For purposes of strain smoothing, in order to 

determine how many grid points near the projectile edge (both inside and outside the 

projectile surface as well as in local, circumferential groupings) over which to average 
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strains or apply tapers to displacements, we set values for parameters 1k  through 4k  as 

fractions of k. More figures and explanations of this process will be presented in later 

sections. 

      Finally, because our earlier, user-defined   was an approximation, we now 

calculate the exact value of dimensionless time  , also shown as τ in graphs, by: 

steps 0

proj

n dt a

R


  ,        (3.12) 

where 0a  is the tension wave speed. This value of   represents the number of 

projectile radii traveled by a tension wave in a free standing yarn under impact. We 

note that the distance, in projectile radii, traveled by the actual tension wave observed 

in the model, will be somewhat less than  . A general summary relating 

dimensionless time   to its corresponding true time in µs is shown in Table 3.3. The 

true physical time that has passed in seconds can be obtained from stepsn dt . We note 

that 9mm simulation cases were run for longer periods of time due to its characteristic 

of reaching peak strains much later than the FSP simulation cases. 

Table 3.3: Dimensionless time corresponding real-time for two projectile types. 

FSP 

  

1 2 3 4 5 6 7 8 9 10 

time (µs) 0.38 0.76 1.14 1.52 1.90 2.28 2.66 3.04 3.42 3.80 

9mm 

  

1 2 3 4 5 10 15 20 25 30 

time (µs) 0.63 1.25 1.88 2.50 3.13 6.26 9.39 12.52 15.65 18.78
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3.2.3 Fabric layout 

      For our FD simulation, we assume axial symmetry in the x-and y-directions, which 

also correspond to the weft and warp yarn axes. Therefore, we simulate and graph 

only one quarter of the fabric, chosen as the first quadrant.  

      In the laminar crimp model, the fabric system consists of inter-connected springs 

and masses, as shown in Fig. 3.11(a). With the exception of the nodes at the 

boundaries, each node is connected to four other nodes. Fig. 3.11(b) shows the 

corresponding fabric system at rest prior to impact as yarns in an un-crimped state. 

Fig. 3.11(c) shows a single un-deformed, un-crimped 3-D element with labels. 

 

Figure 3.11. (a) Mass-spring system representing laminar geometry where each node 
is connected to 4 other nodes. (b) Schematic of (a) with yarns replacing springs and 

masses. (c) Single un-deformed, un-crimped element. 

 

      For each time step increment, nodal positions and velocities are updated using a 

forward time difference integration scheme. The nodal velocity at time t t is 

calculated by the same equation from Eq. (3.1), written in generalized vector form as: 

t t t

t

m


  v v f         (3.13) 
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where ( , , )x y zv v vv is a vector of the Cartesian nodal velocities, f is the resultant 

force acting on the node from the tensions in the 4 connected yarn elements, and m is 

the mass of the node. Following this, the nodal position is updated by the generalized 

version of Eq. (3.3): 

t t t t t t   x x v ,        (3.14) 

where ( , , )x y zx is a vector of the Cartesian nodal positions. The force f  is 

computed as a function of strains and relative velocities as given by Eq. (3.5) with 

further description in Section 3.2.7.  

 

3.2.4 Projectile properties 

      We simulated ballistic impact using two types of projectiles, the Fragment 

Simulating Projectile (FSP) and the 9mm projectile. The former has a smaller radius, 

has less mass, and has a higher V50 than the latter in the particular Dyneema® panel 

considered for each, respectively. Property values used within the program for both 

types of projectiles are outlined in Table 3.4.  

Table 3.4: Input values for two projectile types used in our simulations. 

Projectile type FSP 9mm 

Projectile mass (g)  1.1 8.0 

Projectile radius (mm) 2.73 4.5 

Initial projectile velocity (m/s) 568 406 

Dyneema® density (kg/m3) 0.98 

Areal density (kg/m2) 4.89E-03 3.00E-03 

Young's Modulus (GPa) 101.26 

Strain failure criterion  0.0281 
 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

58 
 

      We note that since the model only consists of a single structural layer, and yet we 

want to consider the behavior of a single layer as part of a multi-layer system, it was 

necessary to choose AD values that reflected a panel with many layers, perhaps 

bonded together, to yield paneld  much thicker than of a single fabric layer. Conversely, 

since real ballistic armor consists of multiple layers compressed together, with each 

layer being extremely thin, using the actual thickness of a layer would result in 

immediate failure, or penetration, upon impact.  

      Fig. 3.10 shows all the projectile edge nodes as modeled by our simulation. The 

difference between this and a perfectly smooth circular edge of a real projectile is 

evident. Even if the grid/mesh was set to be finer, similar jagged edges would still 

exist due to the square-by-square nature of our spatial discretization. 

 

Figure 3.12. Example of simulated projectile edge nodes with grid origin at (1,1). 
Special nodes indicate locations where a “step” occurs in the jagged representation of 

a quarter-circle. 
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      From trial-and-error, we observe that in nearly every variation of our numerical 

model, the special nodes from Fig. 3.10 turn out to be the problematic ones where 

huge strains occur. This often leads to numerous other unpredictable conditions, which 

may include overall instability of the simulation. More discussions of these are 

presented in Section 3.2.10. 

      To calculate how much projectile mass should be assigned to each node, i.e. the 

value of proj,gpm , we first determine the value of k from Eq. (3.6). In the case of an 

FSP, we have: 

proj

4

0.00273m
25

1.092 10 m

R
k

dl 

          
      (3.15) 

      Next, we use the value of k to set the boundaries of the projectile, and then loop 

through all the nodes within (and on) the boundary to count for the total number of 

nodes representing the surface of the projectile, i.e. proj,gpn  . Then to calculate proj,gpm , 

we have: 

proj
proj,gp

proj,gp4 9

m
m

n k



,        (3.16) 

where the factor of 4 accounts for the use of only one quadrant for our simulations, 

and the factor of 9 accounts for double-counting of the axiss nodes as well as edge 

smoothing.  

      For the nodes that are in contact with the projectile, we assign the sum of the 

projectile node mass proj,gpm  and the fabric node mass gpm  as its nodal mass.  We also 

assign proj,0v  from Eq. (3.9) as the z-direction, or out-of-plane velocity to all those 

nodes.  
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3.2.5 Crimp 

      In a fabric with interlaced yarns, crimp is the out-of-plane undulation or waviness 

of a yarn and generally occurs in the yarns traveling in both directions, and the 

magnitude of the crimp is characterized relative to that of a perfectly straight yarn.  

While crimp is typically present in a yarn as a consequence of the weaving process, 

recent studies have shown that intentionally introducing crimp in a controlled way can 

improve its ballistic performance.  In our modeling, for simplicity we assume a saw-

tooth profile for yarn crimp, as shown in Fig. 3.13.  The real path of a crimped yarn, 

however, is somewhere between a saw-tooth and a sinusoidal profile.  

 

Figure 3.13. Saw-tooth profile of a single crimped yarn with key dimensions labeled 
according to ISO-7211-3 standard. In our model, D corresponds to dl. 

 

      To quantitatively characterize the level of crimp in a yarn, there are several 

commonly used definitions. The percent increase in yarn length due to crimp is 

defined in the international standard, ISO-7211-3 (ASTM International, 2008) as 

100%
Y D

C
D

    
        (3.17) 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

61 
 

      Another intuitive way to define crimp is through the angle ϕ, in Fig. 3.13, also 

referred to as crimp angle or degree of crimp.  Our code currently uses the relation 

defined by 

tan( )           (3.18) 

as the crimp factor.  From α, we also compute crimp-related length ratio  as one of 

the initial calculated parameters listed in Table 3.5: 

 21   ,         (3.19) 

which can be rewritten as a ratio through the following steps 

 2 2 21 1 tan ( ) sec ( ) sec( )
Y

D
           .   (3.20) 

      Table 3.5 compares α, ϕ, C, and   values for the five test cases chosen for the 

simulations in our current study.  

Table 3.5: Comparison of α, φ, C, and   values to represent crimp in each yarn. 

Crimp-related parameters 
     C   

C
as

es
 

A 0 0° 0% 1.00 

B 0.10 5.71° 0.496% 1.005 

C 0.15 8.53° 1.12% 1.011 

D 0.24 13.6° 2.84% 1.028 

E 0.366 20.1° 6.49% 1.065 
 

      From the table, it can be seen that while the crimp angle ϕ can reach relatively 

steep angles such as 20.1°, the corresponding increase in yarn length is still relatively 

small at 6.49%. Also, Case A (α = ϕ = C =0) represents the perfectly straightened yarn 
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with no crimp, and we often used it as the standard to compare other cases to. The 

values used in Cases D and E were taken from previously published literature 

(Chocron, et al., 2010; Rao, et al., 2009).  

      The process in which a yarn transforms from an originally crimped state to an un-

crimped state (like Case A) is referred to as de-crimping. Physically, the yarns are 

straightened and flattened, and any angle or waviness is removed, as shown in Fig. 

3.14. From this cross-section taken of a single yarn during the de-crimping process, 

we can see the range of crimp in the yarn from the vertical span. Zone 1 represents the 

completely de-crimped segment of the yarn. Zone 2 represents the partially de-

crimped segment. Zone 3 represents the un-crimped segment.  

 

Figure 3.14. Section of a single yarn. Zone 1 is completely straightened and flattened 
by the traveling tension wave. Zone 2 is currently undergoing de-crimping. Zone 3 is 

still fully crimped, where the tension wave has yet to reach. 

 

      In our laminar crimp code, the initial definition and set-up for zigzag crimp was 

implemented by assigning either an “up” or “down” z-position for alternating nodes, 

as shown in Fig. 3.15(b).   
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Figure 3.15. (a) Case A: single yarn element with no crimp. (b) Zigzag crimp state, 
where 0z  corresponds to R/2 from Fig. 3.11. 

 

      Compared with the no crimped state where the initial z-positions 0 0z  for all i,j, 

the crimped state defines initial z-positions as 

0 2

dl
z   ,         (3.21) 

where the sign depends on the i,j permutation of that specific node. In this laminar 

crimp model, since each node is connected to 4 other nodes, an “up” node seen from 

the x-direction would also be an “up” node in the y-direction, shown in Fig. 3.16. The 

opposite condition applies for woven fabrics, as presented in the next chapter.    
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Figure 3.16. Network of nodes in crimped state for laminar model. Gray lines 
represent yarns, and colored circles represent assigned mass locations at nodes. 

 

 

 

3.2.6 Strain and relative velocity calculations 

      We outline the steps taken to compute strains between two nodes. Our notation 

uses “hori” to denote the weft yarns and “vert” to denote the warp yarns. There are 

also x-and y-axes, which denote directions. Initially before impact, the “hori” and 

“vert” yarns are located exactly along the x- and y-directions respectively, and have no 

in-plane components in the other direction. However, this changes after impact. We 

therefore define certain length quantities to characterize the yarn deformation. For 

instance, horix  describes the x-direction component of the hori yarn segments, and verty
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describes the y-direction component of the vert yarn segments. The nodes, as usual, 

are defined by their i,j location.  

 

Figure 3.17. Two-dimensional geometric deformation of an infinitesimal material 
element where blue denotes the original element at time 0t  and purple denotes the 

deformed element at time t t  . 

       

Using the length definitions in Fig. 3.17, we first define the following lengths: 

hori (1 )x xu u
x x x x

x x

 
      

 
      (3.22(a)) 

hori
yu

y x
x


 


         (3.23(a)) 

vert
xu

x y
y


 


         (3.24(a)) 
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vert (1 )y yu u
y y y y

y y

 
      

 
      (3.25(a)) 

      Since this is a 3-D problem, we also have the z-direction, or out-of-plane direction, 

which defines the z-component of the hori and vert yarns 

hori
zu

z x
x


 


         (3.26(a)) 

vert
zu

z y
y


 


         (3.27(a)) 

      We now represent the above six lengths in terms of nodal differences at a given 

time t, in the same form utilized in our code. Note that in our code, as represented by 

Fig. 3.10(b), we have two nested loops, one for time and one for space. All of our 

subsequent variable notations, which include i,j represent parameters that are stored 

for every grid-point location in space. The variables without i,j are temporary 

variables whose values are replaced with every new loop iteration. Specifically 

hori 1, ,i j i jx x x          (3.22(b))   

hori 1, ,i j i jy y y          (3.23(b))   

vert , 1 ,i j i jx x x          (3.24(b))   

vert , 1 ,i j i jy y y          (3.25(b))   

hori 1, ,i j i jz z z          (3.26(b))   

, 1 ,vert i j i jz z z          (3.27(b))   

      Using the above parameters, we also define the physical length of a hori or vert 

yarn element between two nodes by the following 
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2 2 2
hori hori hori horir x y z          (3.28(a)) 

2 2 2
vert vert vert vertr x y z          (3.28(b)) 

      For stability purposes, we also use horir  and vertr  to prevent compressive forces in 

the in-plane directions, but ensure that the nodal positions are not affected. From Fig. 

3.13, we note that Y is the yarn length between two nodes in a crimped state, and D is 

dl, the original mesh size in our simulations.  Using the crimp length ratio  , we 

impose the following conditions 

horir dl      (if horir dl  )   (3.29(a)) 

vertr dl      (if vertr dl  )   (3.29(b)) 

      We next define a strain-related parameter with units of [1/length]: 

hori
hori

1 1
ir

dl r
 


        (3.30(a)) 

vert
vert

1 1
ir

dl r
 


.        (3.30(b)) 

      To compute strains in hori and vert yarns in our code, we use the parameters above 

to get the following relations 

hori hori( )dl ir            (3.31(a)) 

vert vert( )dl ir    .        (3.31(b)) 

      These strains can also be written in the form: 
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hori hori

hori

hori

hori

hori

( )

1 1
( )

( )

1

dl ir

dl
dl r

dl

r

r dl

r

   

 
     


 

 


      (3.32) 

      In addition to calculating the strains between two nodes, we also calculate the 

relative velocities between two nodes by: 

hori 1, ,i j i jvx vx vx           (3.33(a)) 

hori 1, ,i j i jvy vy vy           (3.33(b)) 

vert , 1 ,i j i jvx vx vx           (3.33(c)) 

vert , 1 ,i j i jvy vy vy           (3.33(d)) 

hori 1, ,i j i jvz vz vz           (3.33(e)) 

vert , 1 ,i j i jvz vz vz           (3.33(f)) 

      We note that with the exception of the strains, all the variables presented in this 

section are not stored in a vector or matrix. Upon reviewing the flow chart of the code 

from Section 3.2.1, we observe that these calculations are located within the nested 

time and space loops, are re-calculated per iteration, and not stored to save 

computation space.  
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      Now we look at how positions and velocities are updated outside of that space 

loop (but still within the time loop) yet still for all i,j covering the fabric. We write Eq. 

(3.13) and Eq. (3.14) for the x-direction in the code as: 

,
, ,

,

t
i jt t t

i j i j
i j

fx
vx vx dt

massx
          (3.34) 

, , ,
t t t t
i j i j i jx x vx dt   ,        (3.35) 

where the y- and z-directions position and velocity updates take the same form.  

 

3.2.7 Force calculations 

      We summarize our process for determining forces at all nodes after impact by the 

following process:  

(i) Compute individual element forces shown in Figs. 3.8(b) and 3.11(a) 

(ii) Resolve all the element forces applied to each node with conditions based 

on the location of the node, i.e. if it’s located on the boundary or not 

(iii) Sum and redistribute z-forces for nodes in contact with the projectile 

(iv) Apply slip damping for nodes in contact with projectile 

      Similar to the length definitions and notations, we have six individual element 

forces, where a name such as horifx  represents the x-component of the force in the hori 

yarn. We model these element forces like a mass-spring-damper system, shown in Fig. 

3.18 and described generically by the equation 

0mx cx kx    ,         (3.36) 

where m is the mass, c is the damping coefficient, and k is the spring stiffness.  
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Figure 3.18. Mass-spring-damper system network used for modeling individual 
element tension forces in our simulations, which also include (but is not shown here) 

shear slip and rocking viscosity used for damping oscillations. 

 

      Our six element forces are: 

hori 0 hori hori hori( )xfx E A ir x vx            (3.37(a)) 

hori 0 hori hori hori( )xfy E A ir y vy           (3.37(b)) 

vert 0 vert vert vert( )yfx E A ir x vx           (3.37(c)) 

vert 0 vert vert vert( )yfy E A ir y vy           (3.37(d)) 

hori 0 hori hori hori( )xfz E A ir z vz           (3.37(e)) 

vert 0 vert vert vert( )yfz E A ir z vz           (3.37(f)) 

where 0 hori horixE A ir x   corresponds to the kx  term from Eq. (3.36) and 0 horixE A vx 

corresponds to the cx  term from Eq. (3.36). Since all the forces have units of N, and 

0xE A  also has units of N, horivx   must be dimensionless, making   have units of 

time/length, or seconds/meters.  

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

71 
 

      We then resolve all the element forces per direction using the equations above at 

each i,j node location. For most nodes, which are not located on the projectile or fabric 

boundaries, we use the following summation scheme (shown here for the x-direction 

and within loops that update over time): 

, , hori vert
t t t
i j i jfx fx fx fx          (3.38(a)) 

1, 1, hori
t t t
i j i jfx fx fx
           (3.38(b)) 

, 1 , 1 vert
t t t
i j i jfx fx fx

           (3.38(c)) 

      Each i+1 and j+1 node includes a subtraction of the same force added at the i,j 

node because every force applied at a node is equal in magnitude and opposite in sign 

to the same force applied to its direct neighboring node. For the y- and z-directions, we 

assign the same set of boundaries as Eq. (3.38).  

      Nodal force calculation at boundaries is discussed in the next section. 

      Next, we identify the nodes in contact with the projectile and loop through all of 

them, and in the process sum up the corresponding ,i jfz  forces into a single total value

proj,gp,totfz . We divide this number by proj,gpn  to obtain proj,gpfz , the new, evenly 

distributed, z-force to be assigned per node (in contact with the projectile).  

      Within another loop, we assign ,i jfz  to be equal to proj,gpfz  for all nodes in contact 

with the projectile. The physical reasoning behind this equal redistribution in our 

simulation is that since we have an RCC projectile with a flat nose, all nodes in 

contact with the projectile should move as one entity, as shown in Fig. 3.19. 

Therefore, the z-forces acting on those nodes are assumed to be the same for any given 

time.  
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Figure 3.19. Fabric yarn positions at some arbitrary time t after impact but before 
failure. Black lines represent weft or “hori” yarns. Red lines represent warp or “vert” 

yarns. 
 

      Finally, for the in-plane x- and y-directions, we apply slip damping to the forces in 

the nodes (in contact with the projectile) through the computations (as part of an 

updating scheme):  

, , , ,min( ,0)t t t t t
i j i j i j i jfx fx fz vx             (3.39(a)) 

, , , ,min( ,0)t t t t t
i j i j i j i jfy fy fz vy    .         (3.39(b)) 

      Here, we are modeling frictional slip as proportional to the out-of-plane force ,i jfz

but still dependent on the in-plane velocity. The ,min( ,0)i jfz  shows that only when 

,i jfz  is negative should its value be used, since that means the z-force is a compressive 

force, which causes the projectile to be in contact with the fabric. When ,i jfz  is 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

73 
 

positive, there is no contact between projectile and fabric, and therefore no slip is to be 

considered, hence the 0 value.   is the slip viscosity factor, and is used as a damping 

term similar to  , and also has units of seconds/meters. We note that in cases where 

we assume no slip to occur underneath the projectile, the value of  plays no 

noticeable role in simulation results. More discussion of this topic can be found in 

Section 3.2.9. 

 

3.2.8 Boundary conditions 

      As mentioned in Section 3.2, we always set our fabric size to a large-enough value 

so that we do not need to consider interference from wave reflections at the fabric 

boundaries. This is also the assumption made in all of our previous analytical models, 

which is unlike many experimental setups where a rectangular layer of ballistic fabric 

is clamped on two or four sides prior to being shot at by a projectile.  

      Since we only use one quarter of the actual-sized fabric to save computational 

space, but want the calculated results to represent the entire piece of fabric, we impose 

boundary conditions to describe and account for the x- and y-axial symmetries. Fig. 

3.20 shows the three types of boundary conditions present in our code. Non-boundary 

nodal force calculations were presented in Eq. (3.38) from Section 3.2.7.     
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Figure 3.20. Location of critical boundaries in our simulation.     

 

      The 3 types of boundary conditions in Fig. 3.18 are: 

(i) Nodes on x-axis 

(ii) Nodes on y-axis 

(iii) Origin node.  

      For (i), we impose the following conditions for nodal forces in the x-direction: 

, , hori vert2t t t
i j i jfx fx fx fx           (3.40(a)) 

1, 1, hori
t t t
i j i jfx fx fx
           (3.40(b)) 

, 1 , 1 vert
t t t
i j i jfx fx fx

           (3.40(c)) 

      We observe that compared with Eq. (3.38(a)) from Section 3.2.7, Eq. (3.40(a)) 

multiplies vertfx  by a factor of two. This is because for nodes located on the x-axis, the 
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x-component of the vert yarn’s force should be included twice to account for the axial 

symmetry. 

      For (i), we impose the following conditions for nodal forces in the y-direction: 

, , hori
t t t
i j i jfy fy fy          (3.40(d)) 

1, 1, hori
t t t
i j i jfy fy fy
           (3.40(e)) 

, 1 , 1 vert
t t t
i j i jfy fy fy

           (3.40(f)) 

      We observe that for Eq. (3.40(d)), there are no y-component of vert forces present 

for nodes located on the x-axis.  

      Finally for (i), we impose the following conditions for nodal forces in the z-

direction: 

, , hori vert2t t t
i j i jfz fz fz fz           (3.40(g)) 

1, 1, hori
t t t
i j i jfz fz fz
           (3.40(h)) 

, 1 , 1 vert
t t t
i j i jfz fz fz

           (3.40(i)) 

      Similar to the nodal forces in the x-direction, for Eq. (3.40(g)) we have vertfz

multiplied by a factor of two to reflect axial symmetry along the x-axis.  

      Condition (ii) is written similar to condition (i), except to reflect symmetry about 

the y-axis.  

      For the origin located at (1,1), we impose conditions which are significantly 

different from the DSM version of the code. Previously, all in-plane x- and y-direction 

forces were set to zero and only z-forces were nonzero. For our more general version 

but with no fabric slip underneath the projectile, such conditions were not problematic, 
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since there was no motion in-plane for those nodes. However, for cases where slip 

occurred between projectile and fabric, such conditions created zero strain at a single 

node point amidst nonzero strains all around it, thus causing a non-physical singularity 

at the origin in the strain plots. 

      We therefore impose a set of different boundary conditions for (iii), with the x-

direction nodal forces being 

, , vert2t t t
i j i jfx fx fx           (3.41(a)) 

1, 1, hori
t t t
i j i jfx fx fx
   ,        (3.41(b)) 

 and the y-direction nodal forces being 

, , hori2t t t
i j i jfy fy fy           (3.41(c)) 

, 1 , 1 vert
t t t
i j i jfy fy fy

   .        (3.41(d)) 

      We note that, like the equations listed above for symmetry about the x- and y-axes, 

at the origin, when we consider x-axis symmetry, we multiply by a factor of two for 

the vert yarn force, and vice versa for y-axis symmetry. We also purposely do not 

define z-direction nodal forces here, thus allowing previously defined z-conditions to 

apply themselves depending on other conditions such as crimp and/or slip.  

      For each time step iteration, we impose a separate set of conditions for the two 

outer edges of the fabric that do not include the x- or y-axes. To make sure these 

boundaries are kept in their original positions, we define the following for nodes there: 

, , , 0t t t
i j i j i jfx fy fz   .       (3.42)  
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3.2.9 Slip underneath the projectile 

      For our laminar crimp model, we include in our studies of post-impact behavior 

the effects of slip vs. no slip underneath the projectile.  While there is more than one 

way to impose a no-slip condition, we chose to implement this by setting the in-plane 

x- and y-direction nodal masses, which are in contact with the projectile, to an 

extremely large value M. This is done before looping through time increments: 

,i jmassx M          (3.43(a)) 

,i jmassy M ,         (3.43(b)) 

where M was given a relatively high value of 100, which is three to four orders of 

magnitude greater than regular nodal masses defined by gpm  and proj,gpm . With a large 

M in Eq. (3.13), the in-plane velocities are thus restricted for nodes in contact with the 

projectile.  

      At each time step iteration, we also restrict any changes in position for these nodes 

by resetting its in-plane positions to their original values prior to impact: 

, ( 1)i jx i dl           (3.44(a)) 

, ( 1)i jy j dl   .        (3.44(b)) 

      We note that for slip cases, we omit Eqs. (3.43) and (3.44).  

      Although slip underneath the projectile is not considered in our analytical 

membrane model, we anticipate the following scenario, shown in Fig. 3.21.  
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Figure 3.21. Sequential diagram showing wave propagation and particle flow post-
impact for cases with slip allowed between projectile and fabric (looking at cross-

sectional cut through the x-z plane). 

 

      The first diagram at the top in Fig. 3.21 shows two outward bound (towards fabric 

edge) as well as two inward bound (underneath the projectile) waves (all in yellow). 

At this initial stage, the outward bound waves bring particles inwards towards the 

projectile edge, while the inward bound waves bring particles outwards towards the 

projectile edge. Interestingly, we note that between the first and second diagrams, the 

inward bound waves (yellow) have collided at the projectile center, and are now also 

outward bound waves (red). This trend continues in the rest of the diagrams, although 

as more waves become outward bound, much more particle or material is drawn into 

the center, forming the cone wave. 
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      For the no-slip case, because the in-plane velocities for the nodes in contact with 

the projectile are low, Eq. (3.39) determines that the term with   in it would also be 

small, which diminishes the influence of .  However, in the case of slip,   directly 

controls how much projectile-yarn friction is modeled in our system. The effects of   

are presented in the results section of this chapter. 

      Despite our comparison of slip vs. no slip underneath the projectile, we observe 

that neither of the two cases’ results would be completely representative of impact 

with real projectiles, which typically have conical shaped noses, as shown in Fig. 3.22. 

Due to its nose shape, there would most likely be no observable wave collision at the 

projectile center that could impact the post-impact fabric behavior. There would be 

slip present between projectile and yarns, but the magnitude of the contact surface area 

would be quite different from what our model assumes.   

 

Figure 3.22. Comparison of various types of projectiles shapes. 
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3.2.10 Smoothing mechanisms 

      One key distinction between our model and the original DSM version is the 

addition of smoothing mechanisms in our code. After many trial-and-error runs, the 

two areas that needed smoothing were projectile edge z-positions and strains. 

      As discussed in Section 3.2.4, due to the nature of the square grid, the projectile 

edge in our simulation consists of a series of square or rectangular steps (Fig. 3.12), 

which is quite different from the perfectly circular edge of a real projectile. These 

protruding edges caused strain concentrations in those nodes in the original DSM 

code, which we discovered were results of the simulation’s geometry, not actual 

physical behavior. Hence we seek to alleviate this effect by tapering down the 

projectile edge nodes, or giving them new z-positions that are smaller than their 

initially designated ones.    

      From Fig. 3.23, we first separate the projectile edge nodes into two types: regular 

or special. For the regular nodes, we use the z-position at the origin as the starting 

value, subtracting from it a percentage of the distance from the origin to the specific 

edge node by the following equation: 

2 2
proj 2,1 1,1

, 1,1

0.65 [0.9997 ( 1) ( 1) (( )]t t t t
k kt t t

i j

R i j dl z z
z z

dl

 
          

  . 

(3.45) 

      For the special nodes, we use a similar scheme but with the node’s own initial 

position ,i jz  as the starting value since these points may actually lie outside a perfectly 

circular edge, and therefore should not use the origin as its starting value: 
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2 2
proj 2,1 1,1

, ,

0.07 [0.9997 ( 1) ( 1) (( )]t t t t
k kt t t

i j i j

R i j dl z z
z z

dl

 
          

  . 

(3.46) 

      The constants used in Eqs. (3.45) and (3.46) were chosen through trial and error, 

and slight adjustments can be made to the values to obtain similarly acceptable results, 

which were based on scaling back strain values around the projectile edge that were 

over 1.5 times that of the average strain value in that region.  

 

Figure 3.23. Tapering up of projectile edge nodes. Note that node locations shown in 
the figure do not necessarily represent actual node locations. For exact node locations, 

see Fig. 3.12. 

 

      We next discuss the smoothing of strains, which is necessary due to the network-

of-discrete-masses nature of our model. In reality the yarns are continuous entities 
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with mass relatively evenly distributed along their lengths. With our model, space and 

time are both looped through in finite increments, and one extremely high value at a 

certain node may render the program unstable. Even if it doesn’t, such occurrences are 

most often products of the simulation set-up and not of the physical impact behavior. 

Hence in addition to the standard methods of computing strains from Eq. (3.31), we 

smooth, or recalculate the strains at each node to be a combination of those of its 12 

neighbors.  

      First we revisit the values 1 4k k  described in Section 3.2.4, which are fractions of 

k and all smaller than k. Their locations relative to k on the grid are shown on Fig. 3.24 

for the x-direction. By symmetry, the same values apply in the y-direction.  

 

Figure 3.24. Locations of 1 4k k  in relation to k, shown in the x-direction. 
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      Next we consider patches of fabric material whose i,j coordinates are defined by 

1 4k k and the fabric boundary node number uppern . As we loop through those patches, 

we smooth the strains using relationships such as the following (with nodes shown in 

Fig. 3.25(a)): 

hori hori hori hori

hori hori hori

hori hori hori

hori hori hori

( , ) [ ( 1, ) ( 1, 1) ( 1, 2)

( 1, 3) ( , ) ( , 1)

( , 2) ( , 3) ( 1, )

( 1, 1) ( 1, 2) ( 1, 3)] /12

i j i j i j i j

i j i j i j

i j i j i j

i j i j i j

   
  
  
  

       
     
     
        

   

(3.47) 

      We repeat strain smoothing calculations similar to Eq. (3.47) a total of six times, 

three times for hori yarn strains and three times for vert yarn strains, each over a 

different patch. Fig. 3.25 provides two examples showing the neighboring nodes 

which were used for this “averaging” process. 

      Hence we suppress the extremely high strain values resulting from singular-like 

protrusions occurring along the projectile edge (due to the square mesh) generated by 

the original DSM code, shown in Figs 3.2 and 3.3. 
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Figure 3.25. Two examples of the 12 nodes which are used in (a) hori  and (b) vert

averaging calculations. 
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3.3 Guide to reading graphs 

      We present a condensed tutorial for reading several types of graphs which are 

presented in the results section. The plots with only two axes are simple and 

straightforward to read, and are therefore not included for explanation in this section. 

 

3.3.1 Horizontal strain around projectile edge over time  

      Since we know that the highest strain(s) in the fabric material post-impact occur in 

the vicinity of the projectile edge, we plot all the strains in this region over time to see 

how they develop. The result is a 3-D surface plot shown in Fig. 3.26 with axis labels. 

The color bar and third (strain) axis both show the magnitude of hori ; hence in graphs 

which derive from this original surface plot, no color key is provided as long as the 

third axis is visible and clearly labeled.     

 

Figure 3.26. 3-D surface plot of hori strain around projectile edge over time. 
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      Besides the 3-D version shown in Fig. 3.26, we can also take a 2-D cross-section 

of this plot, looking at either the Y-Z plane or the X-Z plane. Fig. 3.27 presents the 

two types of 2-D cross-sections made into plots.  

 

Figure 3.27. 2-D perspectives of 3-D surface strain plot shown in Fig. 3.26. 
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      To understand what the variable N  refers to, we look at Fig. 3.28. This number 

represents the number of nodes around the projectile edge, but starts counting at zero 

where 90    . As a result, 38N   is located at the middle of Fig. 3.27(b), but 

represents 0   , or the node point which lies on the x-axis. N  and   are related, 

approximately, by the linear equation 

2.3684 90N    .        (3.48) 

 

Figure 3.28. Schematic of half of actual circular projectile edge showing relationship 
between N  and  . 
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3.3.2 Horizontal slopes  

      Because the main focus of this dissertation is on crimp, it is crucial to be able to 

visualize the amount of crimp in the fabric material. Since our crimp is defined to be 

in the out-of-plane z-direction and has an up-down zigzag shape, we can calculate 

crimp in the x-direction by calculating horizontal slopes: 

hori ( , ) [ ( 1, ) ( , )]Slope i j z i j z i j dl         (3.49) 

     Shortly after impact, the removal of yarn crimp in certain areas can be seen from a 

3-D surface plot like the example shown in Fig. 3.29. 

 

Figure 3.29. 3-D surface plot of horizontal slopes across the fabric material. 

 

      To be able to see what happens in both x- and y-directions clearly, we often prefer 

to look at the top-down view, or bird’s eye-view of Fig. 3.29, shown in Fig. 3.30(a).  
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      However, neither Fig. 3.29 nor Fig. 3.30(a) provide enough detail on specific, 

single yarn crimp behavior, and so we zoom in on a single yarn, anywhere within the 

fabric, to observe its de-crimping process, as shown in Fig. 3.30(b). 

 

Figure 3.30. 2-D perspectives of 3-D surface slope plot shown in Fig. 3.29. 
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3.3.3 Cone wave features 

      We track the location of the cone wave front by plotting out-of-plane, or z-

direction forces. At that cone wave front, material particles rapidly make the transition 

from moving in-plane to moving out-of-plane into the pyramid-shaped cone; hence in 

conjunction with this sudden change in material particle momentum, the z-direction 

forces show a sharp rise at the wave front, as shown in Fig. 3.31.   

 

Figure 3.31. Z-direction, out-of-plane forces showing cone wave font post-impact. 

 

      Additionally, it is possible to see the evolution or growth of the cone wave over 

time as it slowly transforms from a circle like the shape of the projectile nose to a 

pyramid with rounded edges. We plot the out-of-plane position ,i jz  to observe this 

process in Figure 3.32. 
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Figure 3.32. Fabric out-of-plane, z-positions with (a) top view and (b) 3-D-view. 
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3.3.4 In-plane velocities and displacements  

      From our mass-spring-damper modeling system, we know that forces are caused 

by changes in velocity and position. Since our rocking viscosity parameter,  , 

multiplies all the v  terms in Eq. (3.37), and we can track its effects in the out-of-

plane direction by Fig. 3.31, we now track its effects in-plane by plotting ( , )vx i j  as a 

3-D surface plot, shown in Fig. 3.33.  

 

Figure 3.33. 3-D surface plot of in-plane x-velocities ( , )vx i j  post-impact. 

 

      Fig. 3.33 can also be analyzed in more detail by looking at its various cross-

sections, including views of the X-Y plane and Y-Z plane, as shown in Fig. 3.34. In-

plane displacements can be calculated by subtracting initial positions from current 

ones and plotted in similar fashion as Figs. 3.33 and 3.34. 
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Figure 3.34. (a) Top view and (b) side view of 3-D plot of in-plane velocities shown in 
Figure 3.33. 
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3.3.5 In-plane tension waves  

      We observe the location of the tension wave front as well as its magnitude and 

shape by plotting tension strains in-plane. Plotted separately, hori ( , )i j ’s 3-D surface 

profile is of the same type as Fig. 3.33. Occasionally we would like to see both hori 

and vert strains, and so we compute  

2 2
hori vert( , ) ( , ) ( , )StrainSqrt i j i j i j   ,     (3.50) 

with the resulting graph in Fig. 3.35. 

 

Figure 3.35. Top view of square root of hori and vert strains squared. 

 

      We note that the “star” shape of the tension waves propagating outwards in Fig. 

3.35 resembles the schematic we use for understanding the “big picture” in Fig. 3.6. 
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3.4 Results and discussion 

      We present the results for our laminar crimp model in this section along with 

analysis and discussion. First, we discuss the influence of crimp on ballistic 

performance. Next, we discuss the roles of   and  and what, if any, of their effects 

depend on whether slip is allowed to occur underneath the projectile. Comparisons 

with analytical findings presented in Chapter 2 are interspersed throughout. 

 

3.4.1 Key parameter and value combinations 

      The values we used in our simulations for   and   are listed in Table 3.6. We 

note that for each one of the cases there, all five crimp cases from Table 3.5 were run, 

as well as both projectile cases from Table 3.4. Selected plots of interest from the 

cases listed below are presented in the next section.  

Table 3.6: Initial input values for parameters   and   in the laminar crimp model. 

Parameters 

Type Case     

No Slip

1a 1.60E-05 0.08 

1b 2.00E-05 0.08 

1c 2.00E-06 0.08 

1d 8.00E-06 0.08 

2a 2.00E-05 0.0004

2b 8.00E-06 0.0004

Slip 

3a 1.60E-05 0.08 

3b 2.00E-05 0.08 

3c 8.00E-06 0.08 

4a 2.00E-05 0.0004

4b 8.00E-06 0.0004

4c 8.00E-06 0.2 
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3.4.2 Effects of varying crimp on strain profiles 

      The most significant result of adding more crimp into a fabric system is the 

reduction in the maximum, average, and axis strains (strain in the most central yarn 

where  = 0) around the projectile edge regardless of projectile size, as shown in Figs. 

3.36 and 3.37.  Because maximum allowable yarn strain max  is used as the failure 

criterion when interpreting experimental data, any change in its value will also directly 

impact the V50.   

 

Figure 3.36. Comparison of average strain around the FSP for five cases of crimp 
using the laminar model. Results for Case 3c from Table 3.6 is shown here. 

 

      However, we also realize that failing one or two yarns may not necessarily result 

in failing the entire fabric and allowing the projectile to pass through.  Therefore, we 

include average strain plots rather than maximum strain plots in our analysis of 
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whether or not the fabric will fail. If the yarn strains around the projectile exceed the 

average strain, there is a much greater likelihood that failure will occur and the 

projectile will pass through. 

 

Figure 3.37. Comparison of average strain around the 9mm projectile for five cases of 
crimp using the laminar model. Results for Case 3c from Table 3.6 is shown here. 

 

      Figs. 3.36 and 3.37 clearly indicate that avg  varies inversely with the crimp factor, 

independent of fabric geometry and projectile dimensions. Hence, we predict that 

fabrics made with higher crimp in the yarns will have lower strains and higher V50 

than fabrics with lesser and/or no crimp in their yarns (all other things being equal, 

particularly overall areal density).  Increasing V50 is a top priority in the ballistic fabric 

making process, and crimp appears to play a beneficial role. 
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      We note that results here agree with analytical prediction (2) from Section 2.6, 

where the 9mm average strain peaks at a much later time than the FSP average strain. 

 

3.4.3 Effects of varying crimp on projectile velocity and displacement 

      From Fig. 3.38, we first observe that although having more crimp lowers overall 

strain in the yarns, its disadvantage is in causing slower deceleration of the projectile.  

 

(a) 
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(b) 

Figure 3.38. Comparison of velocity deceleration around the (a) FSP and (b) 9mm 
projectile for five cases of crimp using the laminar model. 

 

      Slower deceleration results in higher projectile velocities at the same points in 

time, which also means a greater distance/displacement that the projectile has traveled, 

as shown in Fig. 3.39. 
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(a) 

 

(b) 

Figure 3.39. Comparison of out-of-plane displacement for the (a) FSP and (b) 9mm 
projectile for five cases of crimp using the laminar model. 
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      Although projectile displacement is not a commonly used failure criterion for 

ballistic fabrics and experiments have shown scenarios where the projectile has 

advanced a significant distance into the fabric and was still completely stopped, such 

scenarios are not ideal.  This is due to blunt trauma, where the human target’s organs 

are still damaged to a life-threatening degree even though the projectile has stopped, 

illustrated in Fig. 3.40.  

 

Figure 3.40. Blunt trauma resulting from excessive back face deflection, a.k.a. 
displacement from Fig. 3.39. 

 

      The maximum allowable BFS (back face signature) as defined by NIJ standards is 

44mm. Because we assume the velocity and displacement profiles in Figs. 3.38 and 

3.39 are linear, we do a quick estimate by extrapolating the velocity to 0 m/s and first 

look at the corresponding final displacement for the most extreme case of α = 0.366. 

For the FSP, displacement at V = 0 approximates to no more than 11mm, which is 
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well below the BFS limit given by the NIJ. However, for the 9mm, which decelerates 

much slower, displacement at V = 0 approximates to 56mm, which is definitely above 

the NIJ’s BFS limit. This suggests that α = 0.366 is not a viable amount of crimp to 

have in a fabric panel of this areal density. Luckily, for the second extreme case of α = 

0.24, the 9mm displacement approximates to 36mm, which is safely under the BFS 

limit. Overall, we believe the disadvantage in BFS caused by increasing crimp is small 

compared to the benefit from lowering strains. We summarize our findings from these 

two sections in Fig. 3.41 and note that although we only include data from Case 3c - 

FSP, the trends shown are representative of all the cases from Table 3.6. 

 

 

Figure 3.41. Bar graph comparing gains (lower strains) and losses (higher velocities 
and displacements) for ballistic performance due to crimp. 
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3.4.4 Effects of varying crimp on tension and cone wave propagation 

      From Figs. 3.42 and 3.43, we see that the tension and cone wave speeds are 

inversely proportional to the crimp factor α. This makes physical sense, because the 

more crimp in the yarns, the longer it takes to straighten them out, which slows down 

the waves. The decreasing intensity of color in the waves from 0   (dark red) to 

0.366   (light blue) agrees with the trend shown in Fig. 3.36.  

 

Figure 3.42. Top view of tension strain surface profile showing how far the tension 
wave has traveled at 10   for Case1d – FSP. 
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Figure 3.43. Top view of out-of-plane z-forces at 10   for Case1d – FSP. 

 

      Compared to the tension wave, which experienced a 60% decrease in waves speed 

from 0   to 0.366  , the cone wave speed only decreased about 17%. This is 

expected, as the cone wave relies on in-flow material from the tension wave to grow 
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and the lower distance traveled by the tension wave is compensated by the increased 

in-flow from de-crimping the yarns discussed next. 

 

 

3.4.5 The de-crimping process 

      From Fig. 3.44, we see a similar trend as that of Fig. 3.36, indicating that the 

amount of de-crimped, or flattened out yarns, is proportional to how far the tension 

wave has traveled. Another point of interest is that although we are plotting horizontal 

slopes, we see that yarns along the vertical, or warp direction, are simultaneously 

being de-crimped. We attribute this to the way the nodes are connected to each other 

for the laminar model, illustrated in Fig. 3.11(a).  
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Figure 3.44. 3-D view of the fabric de-crimping process for all five crimp cases at 
10   for Case1b – FSP. 

 

 
      In order get a better glimpse at how specific yarns within the fabric de-crimp, we 

take different cross-sections of Fig. 3.44 and plot them in Fig. 3.45. 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

107 
 

 

Figure 3.45. 2-D views of hori slopes along different x-axis yarns for three crimp cases 
at 10   for Case1b – FSP. 

 

      Fig. 3.45 shows several features of the de-crimping process. First, we see that just 

like Fig. 3.44, principal weft yarns are de-crimped along with other secondary weft 

yarns, chosen to be located at Y=30 for the figure. However, the principal weft yarn 

experienced de-crimping before all the secondary weft yarns, hence the difference in 

shape between the two columns. For example, in the 0.1   case, at X = 150, the 
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principal yarn has been fully de-crimped and flattened out to have zero slope, but the 

secondary weft yarn is still partially crimped.  Finally, we observe that for all three 

crimp cases, the distance it takes to fully de-crimp a yarn is the same along the same 

yarns.  

 

3.4.6 Effects of varying   on ballistic performance 

      From Section 3.2.7, we know that   is the rocking viscosity term used to dampen 

oscillations. While   is included in force calculations for all three directions, it has the 

most effect on the z-direction oscillations. We first look at Fig. 3.46 to compare the 

effects of varying   on average strain at 10  .  

 

Figure 3.46. Bar graph showing effects of varying   on average strain for all five 
crimp cases at  =10 for Cases1a-1d – FSP. 
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      While Fig. 3.46 shows that average strains at 10   (and probably for longer 

times) are slightly higher as   decreases, we realize that 10   is a somewhat late 

time for the FSP, whose strains peak around 5  . We now plot Fig. 3.47 to see the 

effects of varying   on average strain at earlier times for the case of 0.15  .  

 

Figure 3.47. Comparison of average strain around the FSP for all four cases of   
using the laminar model. Results include Cases1a-1d – FSP – 0.15  . 

 

      With Fig. 3.47, it is very clear which oscillations would occur before   = 4 in the 

case of a low   value.  To see the very large effect   has on out-of-plane z-forces, we 

plot the two extreme cases of   = 2e5 and   = 2e6 in Fig. 3.48.  
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      After looking at the effect of   in the z-direction, we would also like to see what 

effects, if any,   has in the in-plane directions.   

 

 

Figure 3.48. 3-D view of the out-of-plane z-forces for two extreme   values. Results 
include Cases1b and 1c – FSP – 0.24  . 

 

      We now plot the in-plane velocities, for the two cases in Fig. 3.49. From this 

figure, we see that the edges of the in-plane velocity profile for the higher   is round 

and smooth, while the profile for the lower   is sharp and jagged. This makes sense 

because a higher   means more damped motion, and although the velocity rapidly 

changes from 0 m/s (flat blue region) to 136.5 m/s (red region), it cannot do so in a 

sharp, sudden manner because it is limited by the higher  .  
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Figure 3.49. 3-D view of the out-of-plane z-forces for two different   values. Results 
include Cases3b and 3c – FSP – α = 0.24. 

 

 

 

3.4.7 Effects of varying  on ballistic performance 

      From Section 3.2.7, we know that   is the slip viscosity term used to determine 

how much slip or sliding occurs between the projectile and the yarns in contact with it 

underneath. When this slip is allowed to occur, we observe a wave collision within the 

impact region very soon after impact, as described by the schematic in Fig. 3.21. This 

event is also discussed in Section 2.5. We now track this event in real-time from a 

sequence of images produced from our simulation in Fig. 3.50.  
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Figure 3.50. Plot of Eq. (3.45) in real-time as a sequence of (1) – (8), showing the 
inward wave collision and the outward propagating waves. 

 

      To see the impact of this wave collision (shock) on the projectile edge strain over 

time, we plot Fig. 3.51 for two extreme cases of  . 
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Figure 3.51. Plot of strain around the projectile edge over time for two extreme  .  
Results include Cases4c and 4b – FSP –  = 0.10. 

 

      We first conclude that   is proportional to friction force and inversely 

proportional to slip. When 0.2   (higher value), barely any slip occurs between the 

projectile and yarns underneath it. Hence we hardly see much of a shock wave effect 
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in the upper plot. However, when there is low friction and lots of slip ( 0.0004  ), 

we see the shock wave effect very clearly in the lower plot. There is a jump in strain 

(i) starting around Timestep = 30, (ii) reaching its peak around Timestep = 48, and (iii) 

ending at Timestep = 84. These coincide with the times when (i) the fringes of the 

inner propagating waves are in contact with one another, (ii) the waves collide at the 

origin point, (iii) the waves propagate outwards past the projectile edge.  Nevertheless, 

if we look closely at the upper plot, we notice that these events still occurred since 

there is a minor dip in strain at Timestep = 84.  

      Another very fascinating aspect of this strain jump is its agreement with the 

analytical prediction from Section 2.5, namely Eq. (2.33).  For the   = 0.0004, 

0.1   case shown in Fig. 3.51, we track the peak strain to be 0.1781 and take the 

strain at the end of the simulation to be 0.1469. Substituting these values into Eq. 

(2.32) gives 

0.1781
1.21

0.1469
SC

scK



   ,       (3.51) 

which yields a remarkable 3% error when compared with 3
SC 2K  ! This result is 

remarkable because (i) the analytical model does not account for crimp, (ii) the 

analytical result was derived for a 1-D impact case, and (iii) the time we picked for 

reading  occurred at  =10, which is not really a long time. At very long times, the 

value of  would actually be a bit smaller than the value we used in Eq. (3.51), which 

would make the agreement even closer.  
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3.5 Summary 

      We developed a FD-numerical model which incorporated laminar crimp to study 

fabric performance (esp. the de-crimping process) under the impact of a flat-nosed 

cylindrical projectile. We modeled the yarns as a network of pin-jointed nodes (where 

each node was connected to its four surrounding neighbors) with mass-spring-damper 

characteristics. The following conclusions can be made from our simulation results: 

(1) Increasing crimp in yarns has the benefit of lowering yarn strains, which would 

in turn increase critical velocities (V50). The tradeoff with lower strains is 

slower projectile deceleration and more BFS. However, we show with our 

results that for most impact cases where the crimp factor is not excessively 

high, the BFS does not exceed the limit set by NIJ.  

(2) Increasing crimp lowers the velocity of the tension waves, since now the waves 

have to straighten out the crimp, before it can move forward. 

(3)  The de-crimping process for our laminar model is unique in the sense that 

when crimp is pulled out in one direction, the in-plane perpendicular 

direction’s crimp is pulled out as well.  

(4) The parameter   is important to our simulations because it dampens out large 

oscillations in the system, especially in the out-of-plane z-direction. 

(5) The parameter   is important to our model because it controls the amount of 

projectile-yarn slip that can occur. For small  , friction is also small, and we 

observe a wave collision underneath the projectile, which has significant 

effects on strain.   
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CHAPTER 4 

WOVEN CRIMP MODEL FOR BI-AXIAL FABRICS 

 

4.1 Introduction 

      After the development of our laminar crimp model, presented in Chapter 3, we 

observed that (i) most ballistic fabrics are made from weaving yarns one over another, 

which did not resemble the geometry of our model, (ii) the crimp interchange 

phenomenon was not observed in our modeling results, and (iii) our model did not 

include many features such as out-of-plane compression and in-plane yarn-yarn slip.  

 

4.2 Finite-difference simulation 

      We still use the forward finite-difference (FD) method to numerically solve the 

single-layer ballistic impact problem with woven crimp. The assumptions we make are 

the same as in our previous model, listed in Section 3.2. We also follow the same 

general algorithm as shown in Fig. 3.8. The main differences between our two models 

are: (i) interlaced geometry of the yarn and (ii) force definitions. While the boundary 

conditions remain unchanged from a physical perspective, the resolving of forces at 

each node is different between the two models due to the change in geometry.   

 

4.2.1 Initial input and calculated parameter values 

      We present a list of additional physical parameters necessary to execute our 

numerical code in Table 4.1, which supplements Table 3.1. Table 3.2 remains the 

same for our woven crimp model.  

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

117 
 

Table 4.1: A list of additional physical parameters used as initial programming values 

Additional User-Input Parameters 

Name Notation Description 

mu_x_inter ,interx  yarn-yarn slip viscosity constant in the x-direction 

mu_y_inter ,intery  yarn-yarn slip viscosity constant in the y-direction 

kx_inter ,interxk  shear spring stiffness in the x-direction 

ky_inter ,interyk  shear spring stiffness in the y-direction 

kz_inter ,interzk  out-of-plane tension-compression spring stiffness 

etaz z  stretch viscosity constant 
Additional Calculated Parameters 

Name Notation Description 

AD_alpha AD  adjusted areal density due to extra material from crimp 

m_gp_alpha gp,m   adjusted mass of fabric due to change in AD  

v_proj0_a proj,0,v   adjusted velocity right after impact due to change in AD  

 

      We show a visual of the forces influenced by ,interx , ,intery , ,interxk , ,interyk , ,interzk , 

and z  in relation to other forces in Section 4.2.2. Their use in specific force 

calculations is presented in Section 4.2.4. 

      AD  is the adjusted areal density due to the presence of extra material once yarns 

are crimped in the fabric. We calculate it by 

2( )AD AD    ,        (4.1) 

where the crimp-related length ratio  is given by Eq. (3.14). From Table 3.5, we note 

that   values are just slightly above unity for crimped cases, and when squared and 

multiplied by AD, they cause the adjusted AD to be no higher than 14% more than 

the original AD. This change in AD has been observed previously (Shim, et al., 1995). 
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      Due to this adjustment, we also have corresponding adjustments for gp,m   and

proj,0,v  , given by 

2
gp,m AD dl           (4.2) 

proj
proj,0, proj 2

proj proj( )

m
v v

R AD m


 
 

.      (4.3) 

We should note that, in principle, these same adjustments apply to the laminar crimp 

model of Chapter 3, but were not exploited there. 

 

4.2.2 Fabric layout and crimp 

      To model the over-under interlacing of woven yarns in the fabric, we must double 

the number of mass nodes (one set for each yarn orientation, hori and vert), and 

change the way our nodes are connected to each other. In contrast to the laminar crimp 

model in Fig. 3.9(a), where each node was connected to four other nodes, we now 

have each node connected to two other nodes along the same yarn, as shown in Fig. 

4.1(a) and (b). Fig. 4.1(c) shows the un-crimped state of woven yarns, and Fig. 4.2 

shows the fabric in a crimped state with yarns represented by the network of nodal 

masses. Our model’s resulting fabric layout with hori and vert yarns is shown in Fig. 

4.3. 
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Figure 4.1. Mass-spring system representing woven geometry where each node is 
connected to two other nodes for (a) vert yarns and (b) hori yarns. (c) Schematic of 

interlaced vert and hori yarns, represented in (a) and (b), respectively, by springs and 
masses. 

 

 

Figure 4.2. Network of nodes in crimped state for woven model (Zeng et al., 2006). 
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Figure 4.3. Graphical output from our model showing fabric yarn positions at some 
arbitrary time t  after impact but before failure. Black lines represent weft or “hori” 

yarns. Red lines represent warp or “vert” yarns. 

       

      We note from Fig. 4.2 and 4.3 that in this woven crimp model, since each node is 

connected to only two other nodes, an “up” node on a hori yarn at location i,j would 

correspond to a “down” node on a vert yarn at that same location, and vice versa.  This 

is the opposite of the laminar crimp model shown in Fig. 3.14, where the “up” node 

for a hori yarn at location i,j would also be an “up” node for a vert yarn at that 

location. Nevertheless, we still define the z-positions of crimped nodes by Eq. (3.16).  

An additional yet crucial condition of this geometrical change is the relative motion 

between the hori and vert yarn at every cross-over i,j location. There can be out-of-

plane tension and/or compression, as well as in-plane sliding due to nodal relative 

position and velocity differences, once deformation begins, as shown in Fig. 4.4.     
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Figure 4.4. Schematic of a cross-over node point where there are various forces which 
describe the “inter” yarn motion between hori and vert yarns. 

 
     We observe from Fig. 4.4 that due to the existence of the “inter” yarn forces, if we 

attempt to de-crimp or flatten out one yarn, it would actually cause the other yarn to 

become more crimped, and vice versa. This is a property of woven fabrics known as 

crimp interchange, and has been well-documented in the literature since the 1970s 

(Cavallaro, 2011; Grujicic et al., 2008; King et al., 2005; Parsons, et al., 2013).  

 

4.2.3 Strain and relative velocity formulations 

      We retain the set of various length differences and strain definitions given by Eq. 

(3.17) – (3.26) from Section 3.2.6.  However, since we now have the inter-yarn forces 

in our woven crimp model, it is necessary to define six new length differences: 
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inter,vert HORI VERT( , ) ( , )x x i j x i j         (4.4(a)) 

inter,hori VERT HORI( , ) ( , )x x i j x i j        (4.4(b)) 

inter,vert HORI VERT( , ) ( , )y y i j y i j        (4.5(a)) 

inter,hori VERT HORI( , ) ( , )y y i j y i j        (4.5(b)) 

inter,vert HORI VERT( , ) ( , )z z i j z i j        (4.6(a)) 

inter,hori VERT HORI( , ) ( , )z z i j z i j  .      (4.6(b)) 

      We do not model rotations between spring/damping elements, representing out-of-

plane, inter-nodes between vert and hori yarns, since these elements act as virtual 

‘spacers’ keeping the yarns separated at cross-overs (which of course is always the 

case since yarns cannot inter-penetrate each other). Thus we do not have a need for the 

equivalent of Eqs. (3.23) and (3.24). However, we still define the strain-related 

parameters with units of [1/Length] similar to Eq. (3.25) particularly to reflect yarn 

squishing and the Hertzian contact effects that bring the centers of the crossing yarns 

vertically closer together. To calculate x-and y-direction shear strains between 

crossover nodes, we define: 

inter,vert
inter,vert 2( )

x
ix

dl 



        (4.7(a)) 

inter,hori
inter,hori 2( )

x
ix

dl 



        (4.7(b)) 

inter,vert
inter,vert 2( )

y
iy

dl 



        (4.8(a)) 

inter,hori
inter,hori 2( )

y
iy

dl 



.        (4.8(b)) 
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      For the out-of-plane z-direction tensile driver between crossover nodal masses, we 

define the following: 

inter,vert

inter,vert

1 1
iz

dl z
 


       (4.9(a)) 

inter,hori

inter,hori

1 1
iz

dl z
 


,       (4.9(b)) 

where the absolute value sign is used to ensure that the interiz  terms are appropriately 

positive when the element separating two nodes is in tension (which rarely occurs) or 

negative in compression. 

      For relative velocities, we retain Eq. (3.2.8) but define additional terms to describe 

the motion between hori and vert nodes at crossover points:     

inter,vert HORI VERT( , ) ( , )vx vx i j vx i j         (4.10(a)) 

inter,hori VERT HORI( , ) ( , )vx vx i j vx i j         (4.10(b)) 

inter,vert HORI VERT( , ) ( , )vy vy i j vy i j         (4.11(a)) 

inter,hori VERT HORI( , ) ( , )vy vy i j vy i j         (4.11(b)) 

inter,vert HORI VERT( , ) ( , )vz vz i j vz i j         (4.12(a)) 

inter,hori VERT HORI( , ) ( , )vz vz i j vz i j   .      (4.12(b)) 

      To update the positions for each time step increment, we modify Eq. (3.8) for the 

x-direction in the simpler laminar crimp version of the code to now read 

VERT
VERT VERT

VERT

( , )
( , ) ( , )

( , )

t
t t t fx i j

vx i j vx i j dt
massx i j

       (4.13(a)) 
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HORI
HORI HORI

HORI

( , )
( , ) ( , )

( , )

t
t t t fx i j

vx i j vx i j dt
massx i j

   .    (4.13(b)) 

      We also update the velocities per time step increment by writing Eq. (3.9) for the 

x-direction in simpler laminar crimp version of the code as 

VERT VERT VERT( , ) ( , ) ( , )t t t tx i j x i j vx i j dt        (4.14(a)) 

HORI HORI HORI( , ) ( , ) ( , )t t t tx i j x i j vx i j dt   .     (4.14(b)) 

 

4.2.4 Force formulations 

      We retain the set of force definitions given by Eq. (3.32) from Section 3.2.7 and 

add six more forces to model inter-yarn motion. In the x- and y-directions we have: 

inter,vert x,inter inter,vert x,inter inter,vertfx vx k ix dl           (4.15(a)) 

inter,hori x,inter inter,hori x,inter inter,horifx vx k ix dl           (4.15(b)) 

inter,vert y,inter inter,vert y,inter inter,vertfy vy k iy dl           (4.16(a)) 

inter,hori y,inter inter,hori y,inter inter,horify vy k iy dl       ,    (4.16(b)) 

 
 where inter inter,horikx ix dl    corresponds to the kx  term from Eq. (3.31) and 

x,inter inter,vertvx   corresponds to the cx  term from Eq. (3.31) in the previous laminar 

crimp code. Since all the forces have units of N, and inter,horiix dl    is dimensionless, 

we find that interkx  has units of N and x,inter  has units of 2mass length time   , or 

2kg m s   .  
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      For the out-of-plane z-direction inter-motion, we allow for compression to occur 

by not putting any restrictions on Eq. (4.6). However, we realize that within the 

simulation it would be possible for the masses to get close and mathematically 

interpenetrate and pass through one another, as shown in Fig. 4.5. Obviously, such an 

occurrence is physically impossible. 
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Figure 4.5. Series of diagrams showing too much compression between nodes at a 
cross-over point leading to non-physical switching of over-under positions for the two 

yarns. 
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      To prevent the phenomenon in Fig. 4.5 from occurring in our simulation, we 

define the position-related term in our force calculations such that it resembles a 

“Hertzian” force: 

 
inter inter,vert inter,vert

inter,vert inter,vert

inter,vert inter,vertmin 1 ,1
z

kz iz z
fz vz

iz z


 
  

 
   (4.17(a)) 

 
inter inter,hori inter,hori

inter,hori inter,hori

inter,hori inter,horimin 1 ,1
z

kz iz z
fz vz

iz z


 
  

 
.   (4.17(b)) 

 
      Fig. 4.6 shows the qualitative concept of a “Hertzian”-like force applied to our 

geometry. As interz  gets smaller, the two nodal masses get closer, and the force 

increases rapidly to infinity, thus making it impossible for the nodes to go through 

each other.  

 

Figure 4.6. Graph of “Hertzian”-like force interfz  as a function of interz . 
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      We then resolve all the element forces per direction using the equations above at 

each i,j node location, similar to Eq. (3.33), listed here for the x-direction:   

VERT VERT vert inter,vert( , ) ( , )t t tfx i j fx i j fx fx        (4.18(a)) 

VERT VERT vert( , 1) ( , 1)t t tfx i j fx i j fx         (4.18(b)) 

HORI HORI hori inter,hori( , ) ( , )t t tfx i j fx i j fx fx        (4.18(c)) 

HORI HORI hori( 1, ) ( 1, )t t tfx i j fx i j fx    .     (4.18(d)) 

      We follow the same process outlined in Section 3.2.7 for summing and 

redistributing z-forces for nodes in contact with the projectile and for applying slip 

damping to those nodes.  Our equations for incorporating frictional forces due to slip 

in the x-direction are the following: 

HORI HORI HORI HORI( , ) ( , ) min( ( , ),0) ( , )t t t t tfx i j fx i j fz i j vx i j        (4.19(a)) 

VERT VERT VERT VERT( , ) ( , ) min( ( , ),0) ( , ))t t t t tfx i j fx i j fz i j vx i j      (4.19(b)) 

      Finally, we note that forces at the boundaries are treated in the same fashion as 

described in Section 3.2.8, and the two types of smoothing mechanisms were applied 

in the same fashion as described in Section 3.2.10.  
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4.3 Guide to reading graphs 

      In addition to the graphs shown for the laminar crimp model in Chapter 3, we 

present two types of new graphs unique to the woven crimp model here. 

 

4.3.1 Yarn contact compression  

      To determine how much compression between nodes at crossover points, we 

define: 

VERT HORI( , ) ( , )
( , )

z i j z i j
Compression i j

dl 





 ,    (4.20) 

with the corresponding plot shown in Fig. 4.7(a). We use dl   as the standard for 

comparison because it is the z-distance between the two nodes initially before impact 

and in a fully crimped state. When this compression value crosses over the 0z   line 

from positive to negative or vice versa, we know that the nodal masses have gone 

through each other, which is physically impossible, signifying that the simulation 

needs to be redone with different parameter values (see Fig. 4.5). However, it is 

difficult to determine whether this unrealistic event occurred without zooming into 

Fig. 4.7(a), so we define its absolute value 

VERT HORI
ABS

( , ) ( , )
( , )

z i j z i j
Compression i j

dl 





    (4.21) 

and graph it in Fig. 4.7(b) to get an easier reading. For general scenarios where the 

nodal masses have not gone through each other, we can still look at graphs like Fig. 

4.7 to see how much compression has occurred at the cross-over points, and relate this 

to the magnitude of certain parameter values.     
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Figure 4.7. Graph of (a) the amount of compression between hori and vert nodes at 
cross-over points, and (b) its absolute value. 
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4.3.2 Yarn contact sliding  

      To determine how much sliding occurs between nodes at crossover points, we 

define: 

VERT HORI( , ) ( , )
( , )

x i j x i j
Sliding i j

dl





,     (4.22) 

with the plot shown in Fig. 4.8. Sliding(i,j) is a dimensionless ratio representing the 

current in-plane distance between the two nodes at a crossover point relative to the 

original distance between two adjacent nodes lying on the same yarn.  In our results, 

we observe the shape of this surface profile to see the effects of varying the 

coefficients x,inter , y,inter , x,interk , and y,interk . Note in this example plot (representing a 

fairly extreme case) that the maximum amount of sliding is one or two node spacings 

along a yarn.  

 

Figure 4.8. Graph of showing amount of sliding between hori and vert nodes at cross-
over points. 
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4.4 Results and discussion 

      We present the results for our woven crimp model in this section along with 

analysis and discussion. First, we discuss the influence of crimp on post-ballistic 

fabric behavior. Next, we compare our results from this model to the laminar crimp 

model results (from Chapter 3), followed by discussion of compression (out-of-plane) 

and slip (in-plane) effects involving the role of various coefficients. Comparisons with 

analytical findings presented in Chapter 2 are interspersed throughout. 

 

4.4.1 Key parameter value combinations 

      The values we used in our simulations for the additional user-input parameters 

from Table 4.1 are listed in Table 4.3. We also provide a summary in Table 4.2 of 

which coefficients were applied to which relative displacement and velocity terms in 

the force calculations from Section 4.2.4.  

 

Table 4.2: Summary of which position or velocity term each coefficient controls 

Parameter Applied to (·) for nodes at crossover points 

,interx  x-component of relative hori and vert velocities 

,intery  y-component of relative hori and vert velocities 

,interxk  x-component of relative hori and vert positions 

,interyk  y-component of relative hori and vert positions 

,interzk  z-component of relative hori and vert positions 

z  z-component of relative hori and vert velocities 
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Table 4.3: Initial input values for additional parameters in the woven crimp model, 

where   = 8E-06 and   = 0.08 for all cases. 

Simulation Input Parameter Values 

Case z  , -interx y   , -interx yk   -interzk  

1a 2 0.02 0 100 

1b 0.5 0.02 0 100 

1c (*) 0.8 0.02 0 100 

1d 2 0.02 0 50 

1e (**) 0.8 0.02 0 50 

2a 0.8 0.02 0 10 

2b 0.8 0.02 0 125 

2c Same as above (**) case 

2d (*) Same as above (*) case 

3a 0.8 0.2 0 100 

3b 0.8 0.002 0 100 

3c 0.8 0.08 0 100 

3d (*) Same as above (*) case 

4a 0.8 0.2 200 50 

4b 0.8 0.2 0.5 50 

4c 0.8 0.002 200 50 

4d 0.8 0.002 0.5 50 
 

      We note that for each one of the cases in Table 4.3, all five crimp cases from Table 

3.5 were run, as well as both projectile cases from Table 3.4. Selected plots of interest 

from the cases listed above are presented in the next section.  
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4.4.2 Effects of varying crimp on strain 

      Although the woven crimp model presented in this chapter has very different 

geometry than the laminar crimp model, it can be seen from Figs. 4.9 - 4.12 that the 

general trends in (i) lower strains with higher crimp, (ii) slower velocity deceleration 

with higher crimp, and (iii) more out-of-plane displacement with higher crimp all still 

apply. However, we explore the differences between the two models in the next 

section. We keep in mind that although the two models may yield similar average 

strain or velocity values, the process of de-crimping or arriving at those values may 

yet be vastly dissimilar, so from that perspective the close similarity in behavior is 

quite surprising.   

 

Figure 4.9. Comparison of average strain around the FSP for five cases of crimp using 
the woven model. Results for Case 3a from Table 4.3 are shown here. 
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Figure 4.10. Comparison of average strain around the 9mm for five cases of crimp 
using the woven model. Results are for Case 3a from Table 4.3. 

 

      It is also interesting to see that, compared with the curves Figs. 3.34 and 3.35, 

Figs. 4.9 and 4.10’s curves are much smoother, especially for higher α cases. We 

believe that the geometry of the woven fabric allows for greater flexibility in 

movement for the yarns, which in turns relieves some of the oscillations in strain 

present at the beginning of the simulation. Like our previous predictions and findings, 

the 9mm strains peak at a much later time than the FSP’s, and within Fig. 4.9 and 

4.10, we observe that the time when the strain peaks is later for cases of higher crimp. 

This makes sense because we know that more crimp causes slower tension waves, so 

the whole process of strain building up to a maximum and then going down is delayed.  
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Figure 4.11. Comparison of velocity decay over time for the (a) FSP and (b) 9mm 
projectile for five cases of crimp using the woven model. 

 

(a) 

(b) 
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Figure 4.12. Comparison of out-of-plane displacement for the (a) FSP and (b) 9mm 
projectile for five cases of crimp using the woven model. 

 

(a) 

(b) 
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Figure 4.13. Bar graph comparing gains (lower strains) and losses (higher velocities 
and displacements) for ballistic performance due to crimp. 

 

      Similar to the laminar crimp model results from Fig. 3.39, Fig. 4.13 shows that the 

gains achieved by adding crimp outweigh the losses. We do not compare exact values 

with Fig. 3.39 because there are more parameters involved in this model, and adjusting 

one or more may cause slight variations in resulting values. Compared to the laminar 

crimp model, the general trend however, remains unchanged regardless of how we 

adjust our new parameters. 
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4.4.3 Comparison of laminar and woven model results 

      In order to compare our laminar model (two parameters) to our woven model (8 

parameters) without attempting to compare “apples and oranges,” we looked at our 

simulation results for all the cases from Table 4.3 to find one which was most similar 

to our laminar model’s results.  We were looking specifically for agreement between 

0  cases where there was no crimp in the fabric, and we ended up selecting Case 

3a. All the figures (except Fig. 4.18) from the woven model’s results in this section are 

made from Case 3a simulation results.   

      Likewise, we needed to select a case for comparison from the laminar model’s 

cases listed in Table 3.6. Since we did not include slip underneath the projectile for the 

woven model, we would not consider Cases 3a-4c. This only left Case 1d, as it is the 

only case whose   and   values were the same between the two models. All the 

figures from the laminar model’s results in this section are made from Case 1d 

simulation results.   

Fig. 4.14 plots the velocity deceleration for the two extreme cases of crimp: 

0   and 0.366  . From it, we observe that even though the velocity decay 

profiles for the two models are nearly identical in the no crimp case, the differences 

between the two models do in fact grow as the crimp factor increases. This can be 

attributed to the effect of crimp interchange in the woven model, which provides a 

secondary stiffening effect as the yarn strain profiles around the edge of the projectile 

are quite different between the two cases. This is also evident in Fig. 4.15, since with 

no crimp, the two strain profiles appear nearly identical.   
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Figure 4.14. Comparison of velocity decay for a 9mm showing two cases of crimp 
using the laminar model and the same two cases of crimp using the woven model. 

 

      Both figures show a trough near the center where 38N   and 0   , where the 

horizontal axis lies.  Also both show the lowest strains along the two sides, where 

0N   and 76, 90     and 90°, which is where the vertical axis lies. Both have the 

highest peaks around 19N   and 57N  , which is very close to 45    . However, 

as crimp is increased, although the overall strains for both models decrease, the 

laminar model retains its original shape, with its peaks and valleys at the same node 

points.  On the other hand, the woven model’s middle trough and two sides flatten out, 

and approach the same strains as its other nodes. This indicates that the woven model 

allows for greater flexibility in movement along the yarn axes when more crimp is 

introduced, hence evening out the strain around the entire projectile.  By contrast, the 
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laminar model does not allow for such a process to occur. Fig. 4.15 also illustrates this 

point by comparing axis strains for two projectile types, two fabric models, and five 

crimp cases. As the crimp increases, the axis strains decrease in the two models, but 

the models exchange places in terms of which model provides the highest axial strain. 

 

Figure 4.15. 3-D surface plots comparing strain profiles around projectile edge post-
impact by an FSP using the two models (laminar vs. woven) for five cases of crimp 

(continued on next page). 
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Figure 4.15 (cont). 

 

      Following the trends established by velocity decay profiles and strain surface 

profiles along the projectile edge over time, tension wave profiles for the no crimp 

case looks nearly identical for the laminar and woven models in Fig. 4.16, as one 

might expect. The distances traveled, magnitude of strains, and shapes of the waves 

themselves are nearly identical. However, once crimp is introduced, even in the case 

of 0.1  , the differences begin to appear between the two models. First, we see the 

effect of the woven model’s tension wave on the strains in crossing yarns as it 

propagates, forming a visible region of light blue color, which indicates the presence 

of strain. The laminar model’s tension wave seems to have no effect on crossing yarns, 
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and generates no such milder tension waves in the transverse direction. Also, the 

woven model’s tension wave travels farther than the laminar model’s tension wave, 

and this distance gap increases as crimp increases, again due to the stiffening effect of 

crimp interchange. At the nose or front of the tension wave, the woven model shows 

greater dispersion than the laminar model.  

 

Figure 4.16. Comparison of tension waves post-impact by FSP for the two models 
(laminar vs. woven) and five cases of crimp at 10   (continued on next page).
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Figure 4.16 (cont). 

 

      For the corresponding cone wave profiles in Fig. 4.17, similar observations can be 

made. Initially with no crimp, both cone waves have the same rounded pyramid shape 

and travel the same distance. Nevertheless, it is clear from the difference in colors that 

the laminar model’s cone is steeper and with a sharper transition (or corner) at the 

cone base. As crimp increases, the difference between the distances traveled by the 

cone wave for the two models increases as well.  For the most extreme crimp case, we 

note three interesting details: (i) the development of out-of-plane force concentrations 

along the cone edge for the laminar model (causing sudden redirection of the particle 

velocity from in-plane to out of plane motion – approximately at the velocity of the 
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projectile), (ii) the rounded shape of the cone for the woven model despite its having 

traveled farther, and (iii) the presence of small forces disturbances that form two 

“arms” extending out from the cone edge in the laminar model.   

 

Figure 4.17. Comparison of cone waves post-impact by FSP for the two models 
(laminar vs. woven) and five cases of crimp at 10   (continued on next page). 
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Figure 4.17 (cont). 

 

      We now examine Fig. 4.19 to see the crucial differences in the de-crimping 

process between the two models.  In the laminar crimp model, a horizontal tension 

wave causes de-crimping along both the horizontal/weft axis and along the 

vertical/warp axis.  In the woven crimp model, a horizontal tension wave only causes 

de-crimping along the horizontal/weft axis, and furthermore, it actually causes greater 

crimping along the vertical/warp axis.  This is known as “crimp-interchange” (also 

shown in Fig. 4.18), which has been discussed in previous sections and chapters. Even 

along the horizontal axis, the degree to which crimp is pulled out in the de-crimping 

process is significantly different between the two models. The laminar model 
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essentially pulls out all the crimp in both directions, to the point where the horizontal 

slope of the yarns is zero. It also manages to do so in the maximum range out to 45 

grid-points. On the other hand, the woven model does not pull out crimp completely, 

and from the example shown in Fig. 4.19, we see that the horizontal slope still has a 

magnitude of 0.025 even after the tension wave has passed through those yarns.  Even 

then, it still takes approximately 125 grid-points to complete its de-crimping process. 

Finally, we note that material length is preserved in the woven model. Along the 

horizontal x-axis, de-crimping causes horizontal slope to decrease from the original 

0.15 to 0.025 and while this is a large change, some crimp remains (though very little 

additional length will be gained from the remaining crimp).  Along the y-axis, crimp 

interchange causes the horizontal slope to increase from the original 0.15 to 0.26, 

almost exactly the same amount that was decreased along the other axis.  

 

Figure 4.18. 3-D plot of hori yarn de-crimping process in the woven model with crimp 
interchange. Results are for Case 2b – 0.15  from Table 4.3 
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Figure 4.19. Fabric and yarn de-crimping process comparison between laminar and 
woven models. 
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4.4.4 Effects of varying out-of-plane ‘interference’ contact spring stiffness 

      Fig 4.20 shows the effects of varying the out-of-plane contact spring stiffness: 

,interzk . This parameter controls how strongly the centers of the top and bottom yarns 

are forced towards each other, which of course requires yarn flattening or void 

removal. When this stiffness is high, the connection is strong and the two yarns are 

more likely to stay locked into position and move as one entity in and out of plane. 

When low, the stiffness is weak and the two yarns (i.e., the masses are likely to move 

towards each other.  

      From the figure, we see that similar to the crimp effect, lowering ,interzk  also lowers 

the average strain, but increases the final velocity and therefore displacement and 

BFS. However, all the cases shown had strains that were very close to each other, and 

practically identical at   = 10 (for the FSP) and   = 30 (for the 9mm). This brings up 

the question of whether more differences could be seen on the plot if we used a wider 

range of ,interzk  values than the 10-125 here. Past studies where ,interzk  values ranged 

from 0.1-1000 did show somewhat more difference.  However, we noticed that in 

order to accommodate the no crimp case (let α get as close to 0 as possible) and 

prevent it from going unstable during the simulation, we could not vary the ,interzk  as 

much as we did in past studies.  If we neglect that case or use a slightly higher α such 

as 0.02 to represent the no crimp case, we could vary ,interzk  much more than the range 

presented here. Nevertheless, actual yarns used in ballistic fabrics are likely to be 

sufficiently incompressible and void free for such cases not to be realistic in the first 

place. 
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Figure 4.20. Graph comparing average strain around (a) FSP and (b) 9mm edge for 
four cases of ,interzk  at 0.15   and time up to 10  . Results are for Cases 2b, 1c, 

1e, and 2a from Table 4.3. 
 

 

(a) 

(b) 
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4.4.5 Effects of varying inter-yarn sliding slip viscosity 

      Fig. 4.21 shows the effects of varying the inter-yarn slip viscosities: ,interx  and

,intery , which have been set to be equal to each other for all our simulations, and 

therefore abbreviated as simply inter  on some plots. This parameter controls how 

much viscous slip occurs between yarns due to yarn force imbalance at the nodes 

driving shear effects at the yarn crossovers. In practice, slip also tends to be inversely 

proportional to the amount of friction existing between yarns as amplified by crimp.  

Looking at Fig. 4.21, we see that for both the FSP and 9mm cases, the differences in 

average strain around the projectile between the various inter  continues to exist over 

time, rather than just at the initial phases. As noted before, where there is benefit of 

slip to reducing average strain, there is disadvantage in velocity decay and BFS.   

      Fig. 4.22 compares the two extreme inter  cases from Fig. 4.21 in terms of amount 

of sliding in-plane. We see that when the value of inter  is relatively large, the friction 

prevents most of the sliding from occurring. However, the opposite happens when 

inter  is relatively small. 
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Figure 4.21. Graph comparing average strain around (a) FSP and (b) 9mm edge for 
four cases of inter  at 0.15   and time up to 10  . Results are for Cases 3a, 3c, 1c, 

and 3b from Table 4.3. 
 

(a) 

(b) 
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Figure 4.22. 3-D view of the in-plane sliding for two extreme 9mm inter  values. 

Results include Cases3a and 3b – FSP- 0.15  . 

 

4.4.6 Effects of varying inter-yarn in-plane shear spring (coupling) stiffness 

      Fig 4.23 shows the effects of varying the inter-yarn shear spring stiffness, ,interxk

and ,interyk , which have been set to be equal in our simulations. This parameter 

controls how much elastic restoring force there is between the yarns when they try to 

slip over one another.  Three of the four curves (blue, red, brown) in the figure follow 

the same patterns with very similar values, with the 3rd case (brown) needing more   

to dampen initial oscillations. However, the 4th case (green) is very different from the 

other three.  

      We note that in order for the ,interxk  values to have a significant impact on the 

strain, two conditions need to be met: very low inter  values and low ,interxk values.  The 

extremely low (and almost nonexistent) inter  is analogous to a spring-mass system 

with no damper, where the yarns are free to slide. The low ,interxk  ensures that yarns at 
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crossover points are not bound tightly together (say with a flexible matrix), and are 

therefore likely to slip permanently. However, since the ,interxk  value is still influential, 

it will pull the yarns back a certain amount each time the tension wave tries to move it 

forward. Although the yarns may slip and slide easily during early times post-impact, 

resulting in lower strains, a certain amount of material is always needed to build the 

cone and slow down or stop the projectile, prompting the eventual and hurried 

“catching up” effect later on, and hence the strain overshoot around  7   in Fig. 4.23 

(green line). 

 

Figure 4.23. Graph comparing average strain around edge of FSP for two cases of 

,interxk  and two cases of inter  at 0.15   and 10  . Results are for Cases 4a, 4b, 4c, 

and 4d from Table 4.3. 
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Summary of the thesis 

      In this thesis, we presented two models for numerically simulating the mechanical 

response of crimped fibrous targets impacted by rigid, high-velocity projectiles with 

the shape of a right circular cylinder. Projectile-yarn slip was incorporated into our 

laminar model, and yarn-yarn slip was incorporated into our woven model.  

     First, our laminar crimp numerical model was developed for projectile impact into 

a Dyneema® panel modeled as a network of pin-jointed nodal masses with each mass 

linked to four neighboring masses. A linear viscoelastic relationship described the 

forces between the nodal masses, as well as the panel’s simulation-generated 

oscillations. Out-of-plane crimp was introduced into the system by assigning 

alternating over-under initial z-positions to the nodes to create a zigzag geometric 

configuration. The amount of crimp was user-controlled, and could vary from as little 

as zero crimp (completely flat panel) to as high as necessary. Our model also allowed 

for user flexibility in setting properties such as Young’s modulus, density, projectile 

mass and velocity, and projectile dimensions. Each individual yarn was assumed to 

fail when its strain reached a critical value, although we predicted the likelihood of 

overall fabric failure using the average strain in all the yarns around the region with 

the highest strain. In our results, we analyzed ballistic performance of the fabric by 

focusing on performance measures such as strain profiles over time, the rate of 

velocity deceleration, and the amount of BFS (back-face signature). We also studied 
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the behavior of tension and cone waves over time, and most importantly, the sequence 

and manner in which the yarns de-crimped. Finally, parametric studies were done on 

the effects of varying the rocking viscosity coefficient   and the slip viscosity 

coefficient   on the ballistic performance measures stated above. A few general 

conclusions can be drawn from our simulation results: 

(1) In agreement with the Cornell Phoenix Group’s previous analytical modeling 

results, our simulation results show that in a post-impact 2-D target system, the 

strains first rise to a climax before slowly decreasing, signifying that failure 

may occur instantaneously or slightly later at the point of maximum strain. 

Once the strain starts to decrease, the projectile will not have failed enough 

yarns to penetrate or go through the fabric or panel, although it will continue to 

travel perpendicular to the fabric for a period of time (while the cone grows) 

until its velocity eventually reaches zero and it is stopped completely. 

(2) Also in agreement with previous analytical findings, our simulation results 

show that the post-impact strain behavior between projectiles of different sizes 

such as the FSP and 9mm is very different. We observe that in the FSP, strain 

builds up to its peak location almost immediately following impact, while this 

process takes much longer for the 9mm. Hence we conclude that if the target 

fabric can prevent failure from occurring right away at the moment of impact 

for lighter projectiles, it will eventually stop the projectile. However, for 

heavier projectiles, failure can occur later, even after the cone has grown by a 

significant amount. Experimental studies have also determined that for the 
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same fabric and using the same critical strain as failure criteria, the FSP has a 

much higher critical velocity than the 9mm.  

(3) Increasing crimp in a fabric system causes a significant decrease in strains (by 

up to 45% from our test cases). While this is immensely beneficial, we also 

note that its disadvantage is in the corresponding increase in BFS due to the 

slower rate of projectile velocity decay and hence allowing for the projectile to 

travel farther. We compared both FSP and 9mm cases to NIJ’s standards for 

BFS and conclude that under our simulation conditions, only the most extreme 

crimp cases would not pass the limiting 44mm requirement.  

(4) Increasing crimp lowers the velocity of the tension waves by up to 55%, since 

the waves now need to straighten out the crimp before moving forward. 

Because the tension wave brings material into the impact region, thus forming 

the pyramid-shaped cone, the cone also grows more slowly with more crimp 

although the retardation is not nearly prominent as seen with the tension wave.  

(5) Increasing the rocking viscosity coefficient   also lowers the strains, but only 

on the order of approximately 1% (corresponding to a ten-fold increase in  ) 

for the no crimp case. This difference increases to 5% for the case of highest 

crimp factor 0.366  , since the overall strains are lower for higher crimp. 

While increasing   has the benefits of lowering strains and removing system 

oscillations (especially in the z-direction), its disadvantage in more BFS is also 

similar to that of increasing crimp, but once again, is not nearly as significant. 
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(6) Due to the way each nodal mass in our fabric model is connected to its four 

neighbors, the de-crimping of any yarn along an in-plane axis causes an equal 

amount of de-crimping in a yarn along the other in-plane axis.  

(7) The slip viscosity coefficient   is relevant to our simulation only when sliding 

is allowed to occur between the projectile and the yarns in contact with it 

underneath. Since   is proportional to normal contact force and inversely 

proportional to slip, we vary its value to see the effects of the tension wave 

collision, which is most significant at lower  . For those cases, we observe an 

initial delay in strain-buildup, followed by a sudden jump in strain caused by 

the wave collision, with peak strains reaching 1.2 times that of the cases with 

high friction or no sliding. We define the SCK  as the ratio of the peak strain 

value attained as a result of the wave collision over its steady-state value at 

long times, and quantitatively compare this against analytical predictions to 

obtain an excellent agreement with less than 3% error. 

      Our second numerical model, the woven crimp model, used similar Finite-

Difference numerical techniques, fabric and projectile properties, and zigzag crimp 

configuration as the laminar crimp model. However, this model allowed the yarns 

to be interlaced in an over-under geometry, with each nodal mass connected to 

only two of its neighbors, which lie on the same yarn. We further defined the force 

relations governing the motion between the nodal masses (in all three Cartesian 

directions) by incorporating six new parameters. Contrary to the previous model 

where all compressive motion was restricted, this model permitted two nodal 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

159 
 

masses both at crossover points but belonging to different yarns to compress, or 

move closer towards each other, although with the limiting condition that they 

would never “go through” each other and switch places.  

      From the woven crimp model, the following conclusions were drawn: 

(1) In describing the general strain behavior over time of the fabric and the 

difference between the FSP and 9mm impact cases, (1) and (2) of the 

laminar crimp model’s results also hold for this model. 

(2) For the effect of varying crimp on strain behavior, projectile velocity decay, 

and amount of BFS, the woven crimp model exhibits the same general 

patterns as the laminar crimp model. However, at the same point in time, 

the average strains in the woven crimp model are often lower than in the 

laminar crimp model, differing by as much as 10%. We also compare the 

rate of projectile velocity decay between the two models, where there is 

little noticeable difference in the case of no crimp, but in the laminar case 

the projectile decelerates about 3% slower than in the woven case. Hence 

we conclude that increasing the amount of crimp exacerbates the 

differences between the two models, with the differences becoming more 

pronounced over longer periods of time.  

(3) The differences mentioned above in (2) are attributed to the completely 

opposite natures of the de-crimping process between the two models. In the 

woven model, we observe the well-documented phenomenon present in 

fabrics and textiles known as “crimp interchange,” where pulling out the 

crimp in a yarn along an in-plane axis causes more crimp to accumulate in 
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a yarn along the other in-plane axis. Additionally, the rate of de-crimping is 

vastly different between the two models, where yarns in the laminar model 

de-crimp almost three times faster than yarns in the woven model. 

Furthermore, yarns in the laminar model de-crimp “completely,” to the 

point of zero slopes between two neighboring masses; however, yarns in 

the woven model only de-crimp to around 15% of their original slopes, 

most likely due to the stiffening effect between top and bottom nodal 

masses at crossovers, which prevents “complete” de-crimping.     

(4) The crimp interchange effect can also be observed in the tension wave 

profiles, where there are visibly higher strains in the region of crossing 

yarns for the woven crimp model, even though its overall strains are lower 

than the laminar crimp model. 

(5) We observe the following general trends for varying the new parameters 

introduced into the woven crimp model: the effects of increasing or 

decreasing ,interzk  and inter  values are correspondingly proportional to 

average strain values in the target fabric, although there are several key 

differences. First, the differences in strain observed for the various ,interzk  

values are evident at earlier times, but become nearly non-existent later on. 

In contrast, the differences in strain observed for the various inter  are much 

greater in magnitude, and continue to exist in later times. We believe that 

while the general trends are realistic, the details regarding differences in 

strain over time would require a more thorough study at much longer times, 
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as well as a greater range of values for ,interzk , which is not possible with 

the current code. 

(6)  The effects of shear spring stiffness ,interxk  and ,interyk  are noticeable only 

in cases where both of those values, along with ,interx  and ,intery , are 

relatively small. This is because whether ,interxk  is large, causing yarns at 

crossovers to be bound tightly together, or ,interx  is large, representing 

large frictional forces in-plane, the yarns would have some restrictions on 

its sliding motion. However, when both are small, the yarns are free to 

slide with no inhibitors, and the result is too much sliding initially, causing 

low strains, which seem ideal until the system pushes itself to bring much 

more material necessary to slow down the projectile into the impact zone. 

By then, there is too much catch up work to do, and strains shoot up far 

past their steady-state values and then dip down low again, creating an 

oscillating effect that continues for long periods of time without stabilizing.  
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5.2 Suggestions on future work 

      Although we don’t anticipate large changes to the general qualitative trends 

discussed in this thesis, we seek to make future progress in the following areas:  

(1) Incorporate crimp effects into our bi-axial analytical model by methods 

such as quantitatively relating its effects to that of varying the elastic 

modulus of the yarns (using the numerical model). 

(2) Reduce noise/ringing caused by the projectile edge nodes (due to the 

square mesh) when crimp is extremely low and approaching zero. 

(3) Model the projectile nose as the realistic smooth rounded shape, rather than 

the flat shape used currently. 

(4) Include realistic yarn counts in ballistic fabrics into our mesh for 

discretization. 

(5) Extend the woven crimp model to account for multiple layers.  

      Lastly, we realize that one aspect that will potentially degrade performance is the 

possibility of the projectile sliding through between yarns due to yarn slip at 

crossovers. One possible counter measure stems from the fact that ballistic panels 

usually have many fabric layers, so that the first few layers impacted by the projectile 

should be designed not to allow slip, or if limited slip is allowed, they should have fine 

low-denier yarns so that the projectile hits many yarns at once and is less likely to 

separate them and pass through. Close to the panel’s ballistic limit, these early layers 

are much more likely to be penetrated by the projectile, but in doing so, they typically 

blunt the projectile as well as form a plug of fabric that effectively broadens the 

projectile nose as experienced by later layers, which are the ones that halt the 
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projectile. The later layers can then be designed to allow slip and take advantage of the 

strain reducing benefits.  Finally as we have learned previously, a single layer model, 

with areal density ratio mimicking multiple layers, provides a surprising amount of 

insight into a tightly spaced multiple layer panel, so the results are immediately useful. 

Nevertheless, since much previous work from the Cornell Phoenix Group has been 

devoted to understanding and characterizing the effects of layer gaps on multi-layer 

bi-axial fabrics’ ballistic impact response, it would be logical as a next step to combine 

that with the woven geometry and crimped yarns presented in this thesis.  
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