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ABSTRACT 
 
The	grant	research	addressed	several	of	the	concerns	detailed	in	Recommendation	3	in	
the	National	Academy	of	Science	(NAS)	report:	Strengthening	Forensic	Science	in	the	United	
States:	A	Path	Forward.	Specifically,	we	have	developed	methods	to	statistically	quantify	1)	
the	random	match	probability	(RMP)	which	quantifies	uncertainty	in	measures	aimed	at	
validating	a	forensic	discipline’s	basic	premises	(such	as	a	uniqueness	claim)	and	2)	the	
accuracy	of	likelihood	ratio	methods	used	in	making	classification/individualization	
conclusions.		
	
The	use	of	automated	pairwise	comparisons	of	biometric	samples	in	a	database	is	a	basic	
element	of	forensic	individualization	determinations	involving	biometrics	such	as	
fingerprints,	handwriting,	tool	marks,	etc.	An	issue	that	applies	to	forensic	individualization	
is	that	while	a	database	of	samples	can	be	used	to	support	individuality,	it	does	not	
necessarily	prove	individuality.	Therefore,	the	NAS	report	calls	for	
statistically/probabilistically	based	statements	concerning	the	level	of	support	that	a	
database	of	samples	provides	for	individualization.	To	date,	much	attention	has	focused	on	
how	to	use	an	automated	comparison	methodology	applied	to	a	database	of	biometric	
samples	to	estimate	the	RMP,	which	is	defined	as	the	probability	of	selecting	two	
individuals	at	random	from	a	population	that	“match”	on	the	basis	of	some	biometric.	The	
RMP	can	be	interpreted	as	giving	the	expected	performance	of	a	comparison	methodology	
across	some	relevant	population.	Phase	I	of	this	grant	focused	on	the	RMP	as	a	measure	of	
the	validity	of	a	forensic	individualization	system.	We	developed	theoretically	sound	upper	
confidence	bounds	on	the	RMP,	which	are	estimated	using	these	automated	pairwise	
comparisons.	The	RMP	is	related	to	the	question	of	whether	or	not	we	should	use	a	given	
biometric	modality	in	general.	
	
In	Phases	II	and	III,	we	shifted	focus	to	quantifying	the	accuracy	of	given	forensic	
modalities	in	individual	applications.	The	use	of	likelihood	ratio	methods	in	DNA	analysis	is	
well	established	for	addressing	this	problem.	However,	research	into	its	use	in	other	
forensic	areas	is	not	as	well	developed.	We	investigated	the	use	of	Bayes	Factors	and	
likelihood	ratios	in	other	fields,	such	as	handwriting	and	glass	fragments,	focusing	both	on	
statistically	valid	quantifications	of	the	value	of	the	evidence.	In	Phase	II,	we	focused	on	
popular	approximate	procedures	while	in	Phase	III,	we	investigated	statistically	rigorous	
formal	techniques	with	the	main	focus	on	Bayesian	approaches	to	the	model	selection	for	
the	forensic	identification	of	source	problem.		
	
Most	of	the	methodologies	developed	in	this	grant	will	apply	to	any	field	of	forensics,	as	
RMPs	and	likelihood	ratios	are	defined	similarly	in	many	of	them.	In	Phase	I,	we	have	
quantified	the	effect	of	database	size	and	sample	quality	on	proposed	point	and	interval	
estimators.	In	Phase	II,	we	have	demonstrated	that	the	three	main	classes	of	approximate	
LRs	can	have	radically	different	quantifications	of	the	value	of	the	evidence,	suggesting	that	
these	are	not	reasonable	procedures	for	the	quantification	of	forensic	evidence.	In	Phase	
III,	we	have	rigorously	extended	the	Bayesian	Likelihood	Ratio	to	situations	where	the	
background	population	has	not	been	accurately	characterized.	Finally,	we	have	illustrated	
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the	developed	methodologies	using	a	database	of	handwriting	samples	(which	we	have	
utilized	in	previous	research)	and	on	publically	available	glass‐fragment	data.	We	are	in	the	
process	of	extending	our	work	to	databases	of	automated	comparisons	of	fingerprints.		
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EXECUTIVE SUMMARY 

 
Phase I 
 
Goal:  Study Interval Estimates of a measure of the validity of a forensic individualization 
system. 
 
Dr. Christopher Saunders motivated the research in Phase I in his 2010 AAFS presentation 
which gave an overview of the goals for this research grant.  During Phase I we focused on the 
Random Match Probability (RMP) as a measure of the validity of a forensic individualization 
procedure. Specifically, our research has been concerned with upper confidence bounds on 
measures, such as the RMP, that are estimated using automated pairwise comparisons. Pairwise 
comparison of samples is fundamental to forensic individualization systems. The validity of 
pairwise comparisons depends on the ability to effectively discriminate between samples of 
different origin and to accurately match samples of a common origin.   
 
The RMP is defined as the probability of selecting two distinct sources at random from a 
population that “match” on the basis of some biometric sample extracted from each. The RMP 
can be interpreted as giving the expected performance of a comparison methodology across some 
relevant population. The RMP addresses the question:  “In general, what is the ability of a certain 
biometric to match samples to source?”  
 
A natural point estimate of the RMP is the sample proportion of matches in all pairwise 
comparisons; this estimate is a U-Statistic of degree 2.  For their 2011 Journal of Forensic 
Sciences paper “Using Automated Comparisons to Quantify Handwriting Individuality,” 
Saunders, et al. used U-Statistics results and adjustments to the Wald interval given in Wayman2 
to yield coverage probabilities close to the nominal confidence levels to estimate RMPs.  
Research using similar approaches on subsampled data from automated systems has continued 
under this grant. A paper, written by Drs. Davis, Saunders and Buscaglia, using modern 
resampling methods to estimate the RMP as a function of the quality of the samples being 
compared by a biometric matcher is in preparation for journal submission and is included as 
Phase I, Part A in the Main Section of the Final Report.  
 
For this grant, we first completed a survey of the statistical theory for U-Statistics with zero-one 
kernels; the focus of the survey was specifically related to the behavior of U-Statistics when used 
as estimators of small probabilities.  The most recent research on RMPs that we have found is by 
Michael E. Schuckers and is summarized in his 2010 book Computational Methods in Biometric 
Authentication: Statistical Methods for Performance Evaluation.  Schuckers (and almost all 
other researchers in this area) have not put the estimation of random match probabilities into the 
context of U-Statistics.  However, Schuckers has identified the dependency structure that arises 
when performing all pairwise comparisons and has incorporated this dependency structure into 
his confidence intervals, mainly via bootstrap methods.  The non-bootstrap methods are 
                                                 
2	Wayman,	J.	L.	(2000).	Confidence	interval	and	test	size	estimation	for	biometric	data.	National	Biometric	
Center	Collected	Works	1997‐2000.	J.	L.	Wayman.	San	Jose,	CA,	National	Biometric	Test	Center:	89–99.	
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analogous to those used by Bickel and Wayman which we previously reviewed in our grant 
proposal.     
 
Besides Dr. Saunders, three researchers on this grant worked on the estimation of confidence 
bounds for the RMP.  
 
Dr. Linda Davis worked to find exact formulas for the mean and variance of the estimate of the 
RMP. Her development utilized structures and results from the theory of U-Statistics. The 
resulting exact formulas are only computationally tractable for very small sample sizes.  Dr. 
Davis’ work pointed out that assuming that all pairwise comparisons of samples are independent 
will lead to an underestimate of the variance of the estimate of the RMP.  She also showed that 
basing the statistics on only a set of independent pairwise comparisons will lead to an 
overestimate of the variance of the estimate of the RMP.  Dr. Davis introduced a scenario for 
which tighter bounds are possible for the variance of the estimate of the RMP.  
 
Two documents prepared by Dr. Davis are attached to the Final Report in Appendices 1 and 2: 
 

“Link Between U-Statistics With 0-1 Kernels and the Union/Intersection of Events” 
This document presents the exact formulas for the mean and variance of the estimate of 
the RMP in the general case and in a special case.  
 
“RMP Confidence Interval” 
 

These documents present issues associated with finding confidence interval bounds for 
estimation of the RMP and presents an approach to calculating bounds in a special case.  A list of 
references concerning relevant statistical estimation is also included in these documents.  
 
Dr. Davis intends to submit papers based on these two documents to research journals.  
 
Drs. John Miller, Donald Gantz, and Christopher Saunders have developed a general parametric 
model for studying the distribution of pairwise comparisons of an arbitrary type tailored for 
small sample sizes with possibly no observed matches.  The advantage of having a parametric 
model is that it provides an added level of structure for estimating the RMP with limited 
information. Furthermore, as long as the parametric model is chosen carefully, the resulting 
estimates appear to have a high degree of accuracy. This model is designed to incorporate the 
dependencies that arise in such studies with pairwise comparisons.   
 
We introduced the parametric model to pursue our research goal of extending our U-Statistics 
based methods for estimating the RMP to the situation of small sample sizes.  We are building 
upon the early research of Blom (1976) 3 to provide a parametric model that retains the optimal 
asymptotic properties of the U-Statistic estimate of the RMP (in the sense of being a Best Linear 
Unbiased Estimator of the RMP) but facilitates different estimation approaches, such as 

                                                 
3 Blom, Gunnar,” When is the Arithmetic Mean Blue?,”  The American Statistician, Volume 30, Issue 1, February 
1976, pages 40-42. 
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Maximum Likelihood Estimates, Restricted Maximum Likelihood Estimates4 (REML), and even 
Bayesian estimates.  
 
The parametric model we are implementing treats the joint distribution of comparisons as a 
multivariate normal distribution. This approach is conceptually analogous to applying the 
standard Wilson Interval to estimating a proportion from a binomial random variable. This 
distributional assumption is only a tool used to facilitate the estimation of the RMP and is not 
expected to actually match the joint distribution of the discrete pairwise comparisons.  
We have derived the theoretical foundation for the parametric model.  We have demonstrated the 
use of this model in the construction of REML estimates and bounds for the RMP.  We have run 
simulations that study the performance of the different estimates. 
  
At the 2011 NIJ Trace Evidence Symposium, Drs. Gantz, Miller and Saunders presented their 
initial results on using a parametric method for estimating the RMP and constructing upper 
confidence bounds through non-asymptotic methods.  They have recently completed a research 
paper on their work which has been submitted to the journal Technometrics.  This paper studies 
in detail the parametric model for pairwise comparisons used in Forensic Science.  It describes 
the eigenstructure of the covariance matrix and shows the consequences of the relations given by 
assuming normal distributions for the random components of the model.  It shows that a closed 
form for an ANOVA table is possible.  It shows that by using a method related to Fieller’s 
Theorem, one can construct confidence intervals for a fixed component of the model which can 
then be easily turned into a confidence interval for the RMP.  It also shows that two competing 
methods are either too conservative or just incorrect. The paper is included as Phase I, Part B of 
the Final Report. In the Principal Investigator’s view this is a major achievement of the research 
in this project.   
 
R. Bradley Patterson, a PhD Candidate supported by the grant, and Drs. Miller and Saunders 
authored a report that demonstrates the utility of ROC curves in forensics, where the goal is to 
measure the performance of methods that evaluate evidence. ROC curves offer several benefits 
to forensics. In contrast to the RMP, ROC curves capture the full range of error rates achievable 
with a method. They also depict the relative separation of the distributions of similarity scores 
from a given method. This then allows for comparisons of methods that produce scores on 
different scales. Additionally, an important characteristic for a method of evaluating pairs of 
evidence is the probability that a randomly selected pair from the same source would have a 
higher similarity score than a randomly selected pair from different sources, which the area 
under the curve (AUC) can estimate. To show the value of ROC curves in forensics, Patterson 
applied them to measuring the performance of methods of evaluating trace evidence in the form 
of glass fragments. The methods, based on test statistics and likelihood ratios, came from an 
article by Aitken and Lucy (2004). Test statistics and likelihood ratios both provide measures of 
association between two samples. So those values are interpreted as similarity scores, with which 

                                                 
4 Restricted maximum likelihood (REML) is a particular form of maximum likelihood estimation which does not 
base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated 
from a transformed set of data, so that nuisance parameters have no effect. (Dodge, Yadolah (2006). The Oxford 
Dictionary of Statistical Terms. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-920613-9) 
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ROC curves were created for the same data as the original article. The ROC curves provided 
measurements of the full performance of the methods across all thresholds as well as an even 
basis for comparison. All of the methods performed very well. This report is included as 
Appendix 3. 
 
Phase II and Phase III 
 
Goal:  Investigate Properties of Approximate Methods for Evidence Interpretations such as 
Score Based Likelihood Ratios  
 
The Utilization of Data Generated through Automated Systems 
 
Throughout the grant, the researchers have utilized forensic data generated by automated 
systems.  For many years, the research team has played a significant role in the development of 
automated systems for forensic handwriting and fingerprint identification. In particular, the team 
has developed the scoring algorithms that exploit quantification systems for both handwriting 
and fingerprints.  (See Saunders’ and Gantz’s Vitas for a complete list of these research 
projects.) Both Drs. Gantz and Saunders were invited presenters at the Measurement Science and 
Standards in Forensic Handwriting Analysis (MSSFHA) Conference, June 4 – 5, 2013.  The 
National Institute of Standards and Technology (NIST) hosted the MSSFHA Conference which 
was planned and organized in collaboration with the American Academy of Forensic Sciences – 
Questioned Document Section, American Board of Forensic Document Examiners, American 
Society of Questioned Document Examiners, Federal Bureau of Investigation Laboratory, 
National Institute of Justice (NIJ), and Scientific Working Group for Forensic Document 
Examination (SWGDOC).   
 
Attendees, both in person and via a live webcast, included representatives from the collaborating 
institutions as well as universities, federal agencies, forensic laboratories, and the private sector.  
Dr. Gantz presented the Forensic Language-Independent Analysis System for Handwriting 
Identification (FLASH ID) in the Advances in Measurement Science in Handwriting Session.  
He stressed the accuracy of the automated system which finds identifying power from measured 
characteristics not directly observed or addressed by examiners. Dr. Saunders spoke on 
Understanding Individuality of Handwriting Using Score-Based Likelihood Ratios in the 
Advances in Statistics for Handwriting Analysis Session-this presentation summarized research 
directly funded by this research grant that is published in two papers in Forensic Science 
International5.  His examples concerning Score-Based Likelihood Ratios are based on joint work 
of Drs. Davis, Saunders, Hepler, and Buscaglia and were generated using data from FLASH ID.  
In this presentation Dr. Saunders summarized research results (from this grant) which 

                                                 
5	Davis LJ, Saunders CP, Hepler A, Buscaglia J. Using subsampling to estimate the strength of handwriting 
evidence via score-based likelihood ratios. Forensic Sci Int. 2012 Mar 10; 216(1-3):146-57.  
Hepler AB, Saunders CP, Davis LJ, Buscaglia J. Score-based likelihood ratios for handwriting evidence. Forensic 
Sci Int. 2012 Jun 10; 219(1-3):129-40.  
 
We are including preliminary drafts of these in papers in Appendices 4 and 5.  
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demonstrated that common approaches to approximating the value of forensic evidence can lead 
to radically different values of evidence. These results are summarized in the previously 
mentioned papers in Forensic Science International. 
 
To conclude the Conference, moderators led a facilitated discussion on the future state of 
forensic handwriting analysis, specifically focusing on the following questions: What does the 
future state of handwriting analysis look like; What are the barriers to implementing the future 
state; and what does a roadmap to achieve the future state look like?  The final report 
summarizing the concluding discussion stated, “The future state of the discipline will incorporate 
the use of more quantitative analysis tools during the handwriting examination process to assess 
and compare handwriting characteristics. Forensic document examiners (FDEs) will employ the 
use of statistical models to explain the significance of their conclusions based on the uniqueness 
of observed and measured handwriting characteristics.” Further, the report stated, “It is important 
to note that automated comparison systems may be considered separate from statistical models, 
as automated systems can facilitate the matching of a known writer with questioned documents 
without necessarily generating statistics. This technology provides support during the 
examination process and may provide new information for the human examiner to consider. 
FDEs can use statistics and automated systems to complement their current practices and to 
enhance the way they review cases, but neither can replace humans.”  
  
Drs. Gantz and Saunders presented similar messages concerning fingerprint forensics in the 
Statistics in Forensic Science Topic Contributed Paper Session at the Joint Statistical Meetings in 
Montreal in August 2013.  Dr. Gantz presented his paper “A Similarity Score for Fingerprint 
Images.”  The paper co-authored with John Miller describes the scoring algorithms he developed 
for a totally automated innovative technology enabling the identification of crime scene 
fingerprints. The presentation was selected to receive an Honorable Mention in the Section on 
Physical and Engineering Sciences (SPES) Outstanding Presentation Awards indicating that it 
was among the best of the 73 talks presented in a SPES-sponsored contributed paper session.  Dr. 
Gantz made the same statement he had made concerning automated handwriting identification 
systems, namely that automated systems are differentiated from statistics and that due to their 
accuracy and use of novel information they will impact the practice of examiners.  Dr. Gantz’s 
scoring algorithms developed for a totally automated technology enabling the identification of 
crime scene fingerprints are presented in some detail in the full Final Report.  
 
In his presentation, “On Desiderata for Score-Based Likelihood Ratios for Forensic Evidence,” 
Dr. Saunders stated opinions on the desirable features of score-based likelihood ratios (SLRs) for 
interpreting and presenting forensic evidence.  Dr. Gantz is providing Dr. Saunders with latent 
print based data from automated systems for use in score-based likelihood ratio examples in 
future research. 
 
Identification of Specific Source 

The set of identification of source problems that we have studied considers two alternative and 
mutually exclusive, but non-exhaustive, propositions or models for how the forensic evidence 
has arisen.  The first model usually corresponds to the prosecution hypothesis and states that a 
given specific source is the actual source of the trace of unknown origin.  The second proposition 
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usually corresponds to the defense hypothesis and states that the actual source of the trace is not 
the one considered under the prosecution hypothesis, but that it originates from another, 
unrelated, source in a specified relevant alternative population of sources. 
 
The evidence that we have to address the validity of the two propositions takes the following 
form: 
 

1. There	is	a	specific	source	of	interest,	from	which	we	have	a	set	of	samples,	denoted	as	
E

s
.	

2. 	There	are	a	set	of	samples	of	sources	from	a	population	of	alternative	sources,	
denoted	as	 E

a
.	

3. 	A	set	of	samples	from	a	common,	but	unknown,	source	denoted	as	 E
u
.	

 
The forensic scientist and statistician are then asked to quantify how much support the evidence 
provides for the model that E

u
 arose from the specific source of interest when compared to the 

model that E
u
 arose from a source in the alternative source population.   

 
Dating back to the 1970’s, this problem has been approached within the context of subjective 
Bayesian hypothesis testing. (See Aitken and Stoney6; Lindley 19787; and Shafer8).  The 
common approach to these problems is to assume that the problem is inherently low 
dimensional, the stochastic nature of the evidence can be characterized by a common parametric 
family of distributions, and that the evidence from the alternative source population is 
sufficiently precise that it completely characterizes the stochastic nature of the alternative source 
population. With these assumptions in hand, the forensic statistician can then provide a summary 
of the scientific evidence that is logical and coherent for updating a prior belief structure 
concerning the two competing propositions.  The ‘summary’ is typically known as a Bayes 
Factor in the statistical literature (IJ Good9) and a ‘Likelihood Ratio’ in the forensic science 
literature. Traditionally this summary is presented as follows: 
 

, 

 
where E  is the evidence, H

p
 is the prosecution model for the stochastic nature of the evidence,

                                                 
6	Aitken, C. G. G., Stoney, David A., The Use Of Statistics In Forensic Science, CRC Press, Oct 31, 1991. 
7 Lindley,D.V. (1,977), A Problem in Forensic Science, Biometrika 6,4, 207-213.  
8 Glenn Shafer,  Lindley's Paradox, Journal of the American Statistical Association , Vol. 77, No. 378 (Jun., 1982) , 
pp. 325-334. 
9 Good, I.J., Weight of evidence and the Bayesian Likelihood Ratio published in The Use Of Statistics In Forensic 
Science, CRC Press, Oct 31, 1991. 
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H
d
 is the defense model for the stochastic nature of the evidence and I  is the relevant 

background information common to both models.  The prior odds summarize our relative belief 
concerning the validity of the prosecution and defense probability models.   
 
The Bayes Factor then allows us to update our belief and arrive at the Posterior odds concerning 
the relative validity of the two models. If the Bayes Factor (and the corresponding Posterior 
odds) is sufficiently high relative to the prior odds, then we conclude in favor of the prosecution 
model for the stochastic nature of the evidence; on the other hand if it is sufficiently close to 
zero, we conclude in favor of the defense model for the stochastic nature of the evidence. In 
effect the Bayes Factor is providing a numerical summary of the answer to both of these 
questions: 
 

“What do we believe the likelihood of observing the evidence under the prosecution model 
is?” 
 

 vs. 
 

“What do we believe the likelihood of observing the evidence under the defense model is?” 
 

An extremely important note is that, when constructing a Bayes Factor, it is necessary to use a 
probability measure to characterize the forensic scientist’s belief about the stochastic nature of 
how the specific source generates evidence.  The traditional default belief measure concerning 
the specific source is that the specific source is typical of the population of alternative sources.  
(Aitken and Taroni10) 
 
In the context of formal Bayesian Model selection, the goal of a statistical analysis is to 
rigorously quantify the belief concerning the validity of a given model after having observed the 
evidence.  This type of analysis is typically decomposed into various components – the first 
being the prior belief concerning the relative validity of the two competing models. The second 
is a set of priors for prosecution and defense models that characterize the belief about the 
parameters of the stochastic models.   
 
Our research program has taken two directions related to this problem of the quantification of the 
value of evidence.  The first is concerned with various aspects the development of an 
approximate value of the evidence for complex evidence forms when the actual likelihood 
structure is intractable (the main thrust of Phase II).  These approximate values of the evidence 
are commonly referred to as Score Based Likelihood Ratios (SLRs) in the statistical literature.   
 
The second direction concerns the formal development of the value of evidence when the 
forensic scientist has to estimate the background population defined by the defense proposition 
or model (the focus of Phase III). This line of work has been more narrowly focused on formal 
Bayesian methods. 

                                                 
10 Aitken, C. G. G., Taroni, F., Statistics and the Evaluation of Evidence for Forensic Scientists, Wiley, 2004, 2nd 
Edition. 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



8 

 

In February and March of 2014, Dr Saunders is giving two talks, one invited presentation at 
Pittcon and another at the Annual Meeting of the American Academy of Forensic Sciences on 
Statistical Aspects of the Forensic Identification of Source Problems. These talks are 
presentations of the results of Phase III of this research grant. This research describes how to 
incorporate incomplete information about the background population into a forensic likelihood 
ratio in a statistically rigorous manner. We will provide an overview of these results in the 
Project Narrative.  
 
In this summary we have only highlighted some of the presentations and research performed 
under this grant. Please see the Main Report for additional information and referenced 
Appendices. 
 
We would like to acknowledge the contributions made to this Final Report through the 
comments of the external peer reviewers.   
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Main Body of the Final Technical Report 
 
Introduction:  This Report is separated into five parts. Each Part summarizes the research 
endeavors performed by the grantees corresponding to the major goals of the Project. Each Part 
is formatted as a detailed technical report.  We chose to present the Report in this fashion due to 
the broad scope of this research Project.  We have not included any previously published 
material in this Report even though a number of the results are published in various forms.   
 
Phase I: (Goal)  Study Interval Estimates of a measure of the validity of a forensic 
individualization system. 
 
Dr. Christopher Saunders motivated the research in Phase I in his 2010 AAFS presentation 
which gave an overview of the goals for this research grant.  During Phase I we focused on the 
Random Match Probability (RMP) as a measure of the validity of a forensic individualization 
procedure. Specifically, our research has been concerned with upper confidence bounds on 
measures, such as the RMP, that are estimated using automated pairwise comparisons. Pairwise 
comparison of samples is fundamental to forensic individualization systems. The validity of 
pairwise comparisons depends on the ability to effectively discriminate between samples of 
different origin and to accurately match samples of a common origin.   
 
The RMP is defined as the probability of selecting two distinct sources at random from a 
population that “match” on the basis of some biometric sample extracted from each. The RMP 
can be interpreted as giving the expected performance of a comparison methodology across some 
relevant population. The RMP addresses the question:  “In general, what is the ability of a certain 
biometric to match samples to source?”  
 
A natural point estimate of the RMP is the sample proportion of matches in all pairwise 
comparisons; this estimate is a U-Statistic of degree 2.  For their 2011 Journal of Forensic 
Sciences paper “Using Automated Comparisons to Quantify Handwriting Individuality,” 
Saunders, et al. used U-Statistics results and adjustments to the Wald interval given in Wayman 
to yield coverage probabilities close to the nominal confidence levels to estimate RMPs.  
Research using similar approaches on subsampled data from automated systems has continued 
under this grant. A paper, written by Drs. Davis, Saunders and Buscaglia, using modern 
resampling methods to estimate the RMP as a function of the quality of the samples being 
compared by a biometric matcher is in preparation for journal submission and is included below 
as Phase I, Part A of this Final Report.  
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ABSTRACT 

A random match probability (RMP) of interest in handwriting analysis is the chance of randomly 

selecting two different individuals from some relevant population and then randomly selecting a writing 

sample from each individual that are declared to “match” by a specific comparison procedure.  A 

complementary probability, the random non-match probability (RNMP), is the chance of randomly 

selecting a single individual and then randomly selecting two writing samples from the selected 

individual’s body of handwriting that fail to “match.”  In handwriting analysis, the RMP and the RNMP 

are standard measures of a comparison procedure’s ability to discriminate among writers; both depend 

upon the comparison procedure used and the sizes of the writing samples being compared, as well as the 
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relevant population from which individuals are selected.  In this study, we investigate how subsampling 

from available writing samples can be used to: a) investigate the dependency of the RMP and the RNMP 

on the sizes of the writing samples being compared; b) estimate the standard error of one estimator of the 

RMP (such as might be used in constructing an upper confidence bound for the RMP); and c) provide 

information useful for planning an empirical study of handwriting individuality.   

 

KEYWORDS:  forensic science, random match probability, handwriting individuality, writer 

verification, forensic document analysis 
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1. Introduction 

One goal of a forensic document examiner (FDE) in evaluating a questioned document might be to 

determine the specific individual that wrote that specific document.  One step towards this goal is the 

comparison of features of the questioned document with features of an exemplar writing sample from a 

known source.  However, a perfect match between two writing samples written by the same individual is 

not expected.   

One reason two writing samples from the same individual will not have exactly the same features is 

the natural variations in an individual’s handwriting.  As discussed by Huber and Headrick (1999, pp. 73–

74), comparing writing samples ultimately is comparing writing habits across distinct individuals; 

characteristics of writing as measured in features or qualities are simply manifestations of habits formed 

over time.  We will refer to the totality of accumulated habits, as reflected in one’s entire body of natural 

handwriting, as an individual’s writing profile.  Note that an individual’s writing profile is more akin to a 

probability distribution across documents generated by that individual than a static characteristic of an 

individual, such as a fingerprint or DNA (Bulacu and Schomaker, 2007).  

Due to this natural variation in handwriting, a useful tool for assisting in the comparison of two 

writing samples might utilize some automated procedure to quantify this variability.  For comparing two 

writing samples, such an automated comparison procedure could take (the scanned images of) two writing 

samples, convert these writing samples to a set of quantitative features, and then compute a similarity 

score based on these features as a measure of the similarity of the writing profiles that generated the two 

writing samples.  With the introduction of a threshold value, a pair of writing samples can be declared to 

“match” (using this automated comparison procedure) if the similarity score exceeds the predefined 

threshold value.  Otherwise, two samples are declared to “not match.”  

Declaring two writing samples to match (using an automated comparison procedure) provides a 

measure of the consistency of the writing profiles generating the two samples.  However, such a match 

between two writing samples cannot be interpreted as proving that one individual wrote both writing 
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samples because there are two types of unavoidable errors associated with comparing writing samples in 

this manner.  If two writing samples generated by different individuals are declared to match, then a false 

match error has been committed.  And, if two writing samples generated by the same individual are 

declared to not match, then a false no-match error has been committed.  These errors are consequences of 

within-writer variation and between-writer similarity (Risinger and Saks, 1996), which we are 

characterizing via an individual’s writing profile.   

The rates of these two types of errors can be used to characterize a comparison procedure’s ability to 

discriminate among writers.  One measure of the false match error rate of a comparison procedure is what 

we shall refer to in this paper as the random match probability (RMP).  The RMP in this paper is defined 

as the probability of selecting two individuals at random from the relevant population and two randomly 

selected writing samples, one from each individual’s body of handwriting, that match.  It can be viewed 

as the rate of false match errors “averaged” over all relevant writing samples.  A related quantity is the 

random non-match probability (RNMP); it provides one measure of the false no-match error rate of a 

comparison procedure.  The RNMP in this paper is defined as the probability of randomly selecting an 

individual from the relevant population and then selecting two writing samples at random from the 

selected individual’s body of handwriting that fail to match.  It can be viewed as the rate of false no-

match errors “averaged” over all relevant writing samples.   

In addition to their dependence on the comparison procedure itself (i.e., the associated similarity score 

and threshold value used to declare a match or no match based on the similarity score), the RMP and the 

RNMP depend upon: 

 The relevant population of individuals (more specifically, writing profiles) generating the 

writing samples being compared.  Some individuals’ writing profiles are harder to distinguish 

between than others. 

 The sizes and content of the writing samples (such as the number of characters and distribution 

of letters) being compared.   
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Due to the potential for false match and false no-match errors, information must be available on both 

the associated RMP and RNMP for a comparison procedure to be of practical use.  The focus of this paper 

is illustrating one approach to investigating the RMP and the RNMP associated with a comparison 

procedure, and in particular, their dependencies on the sizes of the writing samples available for 

comparison as measured by the number of characters in the writing samples.  This dependency on sizes of 

writing samples is important as it relates to the ability of the comparison procedure applied to particular 

sizes of writing samples to distinguish between individual writers or individual writing profiles across 

some relevant population.  Although also of interest, in this paper we do not investigate the dependencies 

of the RMP and the RNMP on the content of the writing samples.  We assume that the content of the 

writing samples being compared reflect the frequency of letters as they appear in English writing. 

This paper is organized as follows.  First, we review the use of the RMP in other forensic settings and 

in particular, the relationship between the RMP and quantifying the degree of individuality of writing 

profiles.  Then, we turn to the main focus of this paper:  how simulated writing samples generated from a 

collection of writing samples can be used to investigate the dependency of the RMP and the RNMP on 

the sizes of writing samples being compared.  We propose generating simulated writing samples by 

subsampling characters from a single writing sample available for each individual.  A slight modification 

of this methodology is then introduced that can be used to investigate the standard error of an estimator of 

the RMP, which is an important component in constructing upper confidence bounds.  We next describe a 

specific comparison procedure under investigation by the Document Forensics Laboratory at George 

Mason University and a set of writing samples collected by the FBI Laboratory and processed by Gannon 

Technologies Group (GTG).  Using this comparison procedure and set of writing samples, we illustrate 

the methodology proposed in this paper and some of its potential applications such as providing 

information useful for designing an empirical study of handwriting individuality.  
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2. RMP and Individuality 

The RMP, as defined above, appears in the general forensic literature as the probability of non-

discrimination.  (For an overview of this topic, see Aitken and Taroni (2004, Section 4.5).)  Aitken and 

Taroni (2004) describe the RMP as a measure of how “good” a method is at distinguishing between 

biometric samples from different sources as well as a way to quantify how strong a declared match is as 

evidence that the two samples come from the same source.  The smaller the RMP, the better the 

comparison procedure is for individualization, i.e., for making a positive identification of the source of 

some biometric sample.    

As with a match itself, a small RMP in handwriting comparisons does not imply uniqueness because 

a small RMP does not exclude the possibility that two individuals have the same writing profile.  As 

mentioned in Saks and Koehler (2008), infrequency cannot be equated to uniqueness.  Balding (2005) 

uses the term “the uniqueness fallacy” to describe the fallacy in cases involving DNA evidence where a 

set of genetic markers that are expected to occur less than once in five billion (roughly the earth’s 

population) are declared to be unique.  Although a small RMP would be a consequence of unique writing 

profiles, it does not imply such even when it is smaller than one over the earth’s population. 

However, the RMP is related to the degree of individuality of writing profiles in a population.  See 

Bolle, et al. (2004) and Saunders et al. (2011a) for a detailed discussion of this relationship.  In fact, using 

the size of the RMP is one approach to the question of uniqueness, within the context of DNA profiles, 

discussed in a report from the National Research Council (1996, pp. 136–138).  This report suggests that 

identification (beyond a reasonable doubt) may mean that the probability that there is at least one match 

when the DNA profiles of individuals in the population are compared is small, say 1%, or some other 

chosen small number.  (However, the report from the National Research Council (1996) is careful to point 

out that it is up to the courts to decide just how small this probability should be to support 

individualization.)   
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The report from the National Research Council (1996) also includes a formula for an upper bound on 

this probability of at least one match (when comparing DNA profiles) using population genetics 

modeling, which depends on the population size and the number of loci compared in the typing.  

Unfortunately, to date, similar type models have not been developed to adequately characterize an 

individual’s writing profile.  In this paper, we propose an alternative approach to such modeling that 

provides information about the size of the RMP and its relationship to the sizes of the writing samples 

being compared.   

3. Estimating the RMP and the RNMP 

One approach to investigating the RMP and the RNMP associated with a specific comparison procedure 

involves estimating them from a collection of writing samples.   

Consider a collection of writing samples consisting of a single writing sample (which may be 

composed of one or more documents collected at different times or in different environments) from each 

of N  writers.  We assume that the N  writers can be considered a random sample from some relevant 

population of individuals.11  We also assume that each writing sample is “representative” of its associated 

individual’s writing profile.12  Together, these assumptions imply that the collection of writing samples is 

independent and identically distributed (iid). 

One estimator of the RMP is based on all  1 2N N   pairwise comparisons between writing 

samples in the collection.  For i j , let ( , )i js D D  denote a score that measures the similarity between 

two writing samples iD  and jD  from the thi  and thj  writers in the collection.  Let   be a threshold used 

to declare matching writing samples (via the comparison procedure).  Then, a natural estimator of the 

                                                 
11  Specifically, we assume the population of individuals is so large that it is reasonable to treat the sampled 

individuals as independent and identically distributed (i.i.d.) according to some distribution on the relevant 

population of individuals.   

12  That is, each writing sample can be viewed as randomly generated from that individual’s writing profile. 
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RMP for a given comparison procedure is the proportion of pairs of writing samples that match, i.e., for 

which ( , )i js D D  .  This proportion is an unbiased estimator of the RMP.  See Appendix A for more 

details about the properties of this estimator of the RMP, including an expression for its standard error 

which can be used to construct upper confidence bounds for the RMP. 

Suppose now that instead of a single writing sample, the collection contains two writing samples from 

each writer (represented in the collection).  Let 1 2( , )i is D D  denote the score measuring the similarity 

between two writing samples 1iD  and 2iD  from the thi  writer in the collection.  Then, a natural estimator 

of the RNMP for a given comparison procedure is the proportion of pairs of writing samples from the 

same writer that do not match, i.e., for which 1 2( , )i is D D  .  See Appendix A for more details about this 

estimator of the RNMP. 

However, these proposed estimators of the RMP and the RNMP applied to a single collection of 

writing samples are of limited use when investigating the dependency of the RMP and the RNMP on the 

sizes of the writing samples being compared.  The writing samples in a collection may be of different 

sizes.  And, even if the available writing samples are of approximately the same size, direct comparison 

will only provide information about the RMP and the RNMP for that one size of writing sample.  So, to 

investigate the dependencies of the RMP and the RNMP on sizes of writing samples being compared, one 

would need access to multiple writing samples of specific sizes from each of N  writers randomly 

selected from the relevant population.  Fortunately, as described in the next section, such writing samples 

can be “simulated” from a single collection of observed writing samples, as long as the sizes of writing 

samples of interest are smaller than the sizes of the observed writing samples. 

4. Simulated Writing Samples 

Often, one may not have access to writing samples of the types needed to study the behavior of the RMP 

and the RNMP associated with a specific comparison procedure.  If an individual’s writing profile is 

known, then one could generate any number of writing samples of any specified sizes by sampling from 
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the writing profile via Monte Carlo simulation.13  However, as mentioned previously, an individual’s 

writing profile is rarely, if ever, known.   

Alternatively, if reasonable models for writing profiles are available, one could consider estimating 

the parameters associated with such models from the available writing samples and then generating any 

number of writing samples of any specified sizes from these fitted models.  However, to date, reasonable 

models for writing profiles have not been developed. 

Instead, we propose generating simulated writing samples by subsampling characters from a single 

writing sample available for each individual.  The proposed methodology allows generation of writing 

samples of different sizes, which permits investigation of the RMP for sizes of writing samples that differ 

from those of the original samples.  Furthermore, the proposed methodology allows generation of 

multiple samples from a single writing sample.  So, it can be used to investigate the RNMP as well as the 

RMP.   

Creating replicate samples from observed samples is the key idea behind many of the current 

resampling methods being studied in statistics:  use the original data to represent the population and then 

generate samples from the “estimated population” (i.e., the original data) to create replicate samples.  

These replicate samples can then be used to estimate properties of the original population, just as if one 

had access to such samples from the actual population.   

Most resampling methodologies are examples of the plug-in principle in statistics.  Basically, the 

plug-in principle operates by estimating a property of a population using the statistic that is the 

corresponding property of the sample.  Resampling substitutes the available data for the population and 

then draws samples (i.e., resamples) to mimic the process of building the sampling distribution. 

Resampling methods still typically rely on the same Monte Carlo techniques used when the 

population distribution is known.  In principle, one could consider all possible replicate samples that 

                                                 
13  Monte Carlo simulation allows estimating properties of a distribution by generating samples from that 

distribution. 
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could be generated from the observed, but it would be too time-consuming and computer intensive.  

Instead, Monte Carlo resampling is used to restrict the number of replicate samples examined.  The 

fundamental difference between Monte Carlo simulation and resampling is that, in the former, the 

underlying distribution from which samples are selected is assumed known, whereas, in the latter, it is 

assumed unknown and thus the simulation must be based on observed data.  

Simulating samples via resampling from the original sample can be applied to many complicated 

statistical analyses.  However, regardless of the application, it is very important that the simulated 

samples mimic the distribution of actual samples so that properties of the simulated samples provide valid 

estimators of the population characteristics of interest.   

In generating our simulated writing samples, subsampling, i.e., sampling characters without 

replacement, is crucial because it produces writing samples that are distributed according to the associated 

underlying writing profile.  Sampling characters with replacement from the observed writing sample 

produces writing samples distributed according to a slightly different writing profile as described in 

Appendix B.  In particular, estimators based on simulated writing samples generated by sampling 

characters with replacement are not necessarily consistent as the number of writers goes to infinity while 

the size of writing sample remains small (i.e., contain a small number of characters).14   

In the following sub-sections, we describe the specific details of the subsampling we propose for 

estimating the RMP, the RNMP, and the standard error associated with the estimator of the RMP 

described in Appendix A.  As in Section 3, we assume the availability of an iid collection of writing 

samples consisting of a single writing sample from each of N  writers.   

                                                 
14  To say that an estimator is consistent in this case means that for sufficiently large number of writers, it is 

expected that the estimator is very close to the value for the entire population. 
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4.1 Estimating RMP 

To investigate how the RMP varies as a function of sizes of writing samples, we propose the following 

algorithm for estimating the RMP associated with comparing two writing samples of specified (common) 

size.   

 

Analysis of the set of between-writer similarity scores created by this algorithm provides information 

about the distribution of the similarity score when applied to two writing samples, each of size n , from 

different individuals.   

For a specified threshold  , the proportion of pairs of simulated samples that match, i.e., for which 

*( ) *( )
1 2( , )k ks D D  , is an unbiased estimator of the RMP when comparing two writing samples each of 

size n .  This estimator of the RMP is consistent as the number of writers increases for fixed sizes of 

writing samples being compared.   

Note that this algorithm as stated does not allow investigating the dependency of the RMP on the 

content of the writing samples being compared.  To do this, the algorithm would have to be modified to 

perform some type of stratified sampling by letter, or to select a systematic sample from the original 

Algorithm 4.1 

1. Randomly select two writers without replacement.  (This is equivalent to random 

sampling from all possible pairs of writers.) 

2. For each selected writer, construct a simulated writing sample by selecting, without 

replacement, a pre-specified number, say n , of characters from that writer’s total writing 

sample. 

3. Calculate the score * *
1 2( , )s D D  where *

1D  and *
2D  are the two simulated writing samples 

from Step 2. 

Repeat Steps 1, 2, and 3 a total of K  times, for fixed size n  of writing samples, resulting in a set 

of K  scores:   *( ) *( )
1 2( , ) : 1,2,...,k ks D D k K .   
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writing sample instead of a random sample across characters.  Both of these modifications to the 

algorithm (i.e., stratified and systematic sampling) are currently under investigation as techniques for 

investigating the dependency of the RMP on the content of the writing samples being compared.  

4.2 Estimating RNMP 

A similar algorithm can be used to investigate how the RNMP varies as a function of the sizes of writing 

samples being compared.  This algorithm differs from that for estimating the RMP because it involves 

pairs of simulated writing samples from a single writer, instead of simulated writing samples from a pair 

of writers.  

 

Analysis of the set of within-writer similarity scores created by this algorithm provides information 

about the distribution of the similarity score when applied to two writing samples, each of size n , from 

the same individual.   

For a specified threshold  , the proportion of pairs of simulated samples that do not match, i.e., for 

which *( ) *( )
1 2( , )k ks D D  , is an unbiased estimator of the RNMP when comparing two writing samples 

each of size n .  This estimator of the RNMP is consistent as the number of writers increases for fixed 

Algorithm 4.2 

1. Randomly select a writer. 

2. For the selected writer, construct two independent simulated writing samples by selecting, 

without replacement, a pre-specified number, say n , of characters from that writer’s total 

writing sample.   

3. Calculate the score * *
1 2( , )s D D  where *

1D  and *
2D  are the two simulated writing samples 

from Step 2. 

Repeat Steps 1, 2, and 3 a total of K  times, for fixed size n  of writing samples, resulting in a set 

of K  scores:   *( ) *( )
1 2( , ) : 1,2,...,k ks D D k K .   
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sizes of writing samples being compared.  As mentioned in the previous section, this algorithm as stated 

does not allow investigating the dependency of the RNMP on the content of the writing samples being 

compared; the criterion used in selecting the characters to make up the simulated samples would need to 

be modified.   

4.3 Estimating Standard Error 

As detailed in Appendix C, the standard error of the estimator of the RMP described in Section 3 

(with details in Appendix A) depends both on the RMP and upon the probability of randomly selecting 

three writing samples from different individuals such that the writing sample from the first individual 

matches both the writing samples from the second and third individuals.  We will refer to this latter 

probability as the tri-match probability (TMP). The form of the variance of the estimator of the RMP is 

given in expressions A.2 and A.3 of Appendix A. The dependence of this variance on the TMP is derived 

in expression C.3 of Appendix C.  

As its definition suggests, estimating the TMP requires comparison of three simulated writing 

samples instead of two.  We propose the following algorithm to investigate the TMP as a function of the 

sizes of writing samples being compared.   
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Analysis of the set of pairs of scores created by this algorithm provides information about the TMP 

and subsequently, the standard error of an estimator of the RMP.  Specifically, for a specified threshold 

, the proportion of triplets of simulated samples that match, i.e., for which *( ) *( )
1 2( , )k ks D D   and 

*( ) *( )
1 3( , )k ks D D  , is an unbiased estimator of the TMP when comparing three writing samples each of 

size n .  This estimator of the TMP is consistent as the number of writers increases for fixed sizes of 

writing samples being compared.   

5. Applications  

In this section, we illustrate how the algorithms described in the previous section can be used in a variety 

of applications associated with automated comparisons of writing samples.  To do so, we use a specific 

comparison procedure under investigation by the Document Forensics Laboratory at George Mason 

University and a collection of research writing samples collected by the FBI Laboratory and processed by 

Algorithm 4.3 

1. Randomly select three writers without replacement.  (This is equivalent to random 

sampling from all possible triplets of writers.) 

2. For each selected writer, construct a simulated writing sample by selecting, without 

replacement, a pre-specified number, say n , of characters from that writer’s total writing 

sample. 

3. Calculate the score * *
1 2( , )s D D  comparing the first simulated writing sample *

1D  vs. the 

second *
2D .  Calculate the score * *

1 3( , )s D D  comparing *
1D  vs. the third simulated sample 

*
3D . 

Repeat Steps 1, 2, and 3 a total of K  times, for a fixed size n  of writing samples, resulting in a 

set of K  pairs of scores:    *( ) *( ) *( ) *( )
1 2 1 3( , ), ( , ) : 1,2,...,k k k ks D D s D D k K .     
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Gannon Technologies Group (GTG).  However, the algorithms themselves are “generic” — applicable to 

any comparison procedure and collection of writing samples. 

The collection of writing samples we use was constructed from documents collected by the FBI 

Laboratory from volunteers at the FBI, training classes, various forensic conferences, and from friends 

and family members over a two-year period.  These documents form a convenience sample, not a random 

sample representative of some relevant population.  They are used in this study only to illustrate the 

algorithms described in the previous section, not to make a statement about properties of any specific 

population.   

Each volunteer was asked to provide ten samples (five in cursive and five in hand printing) of a 

modified London Business Letter (Osborn, 1929), which we will refer to in this paper as the modified 

“London Letter”.  The modifications to the London Business Letter, which were made by a FDE, 

consisted of the addition of two sentences at the end of the London Business Letter in order to incorporate 

some occurrences of specific letter combinations (e.g., “ch,” “qu,” “ll”).  The text of the modified 

“London Letter” is shown in Figure 1 along with an example of a cursive writing sample.  The particular 

text of the modified “London Letter” was selected because it gives a reasonable representation of the 

frequencies of lowercase letters in English writing and contains at least one instance of each uppercase 

letter and each of the digits 0 through 9.   

Following is a brief description of how the writing samples were quantified; more details about the 

processing can be found in Walch and Gantz (2004).  Subsequent to manual character segmentation of 

each document, a proprietary automated process was used to represent each segmented character by a 

mathematical graphic isomorphism whose internal structure can be enumerated by a code, which for 

simplicity we refer to as an isocode.  This process ultimately reduces each document to the frequency of 

isocodes used to write each letter, which can be represented as a cross-classified table of letter by isocode 

(Saunders et al., 2011b). 
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Most cursive documents and some printed documents from each of 100 volunteers were processed for 

use in this study, resulting in a total of 503 documents after processing15.  In this study, the documents 

from a single writer were combined, so each individual has a single writing sample in the resulting 

collection of writing samples. 

The similarity score we consider for comparing two writing samples, the Chi-Squared Classifier, is 

based on Pearson’s chi-squared statistic (Saunders et al., 2011b).  This similarity score is calculated as 

follows: 

1. Conditional on each letter, calculate Pearson's chi-squared statistic on a two-way table of counts 

with two rows.  The two rows represent the two writing samples being compared.  The columns 

represent the various isocodes used to write a given letter in at least one of the two writing 

samples being compared. 

2. Sum these chi-squared statistics across all letters that appear in both writing samples.  Also, 

because the writing samples may use a different number of isocodes to represent different letters, 

sum the degrees of freedom associated with the different chi-squared statistics. 

3. Calculate the probability that a chi-squared random variable with the summed degrees of freedom 

exceeds the observed value of the summed statistic.  This probability is the similarity score 

associated with the comparison.16   

5.1 Determining an Appropriate Threshold Value 

The RMP and the RNMP play a role in the selection of an appropriate threshold to use with a comparison 

procedure for declaring a match between two writing samples.  One method for selecting a threshold 

                                                 
15		Not all individuals participating in the study provided all requested copies.  Also, not all of the available 

documents had been processed at the time of this study. 

16  The chi-squared statistic itself could be used as the similarity score.  However, conversion to a chi-squared 

probability at least partially normalizes comparison of writing samples for different sizes and different content. 
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value is to choose the threshold such that the rate of false match errors equals the rate of false no-match 

errors.  The resulting rate, called the equal error rate (EER), is a standard method for comparing the 

“matching” accuracy among comparison procedures, particularly those designed for biometric 

authentication systems.   

Alternatively, one can select the threshold to give a pre-specified rate of no-match errors, say 1%.  

This is more typical in forensic settings where there is an asymmetry in the severity of the two types of 

errors, with the false match error usually being considered the more severe. 

As an application of our proposed algorithms, consider determining the threshold value that will give 

a RNMP of 1%.  If the individual processed characters can be considered a random sample from an 

individual’s writing profile, the similarity score associated with the Chi-Squared Classifier is related to an 

approximate p-value.  So, assuming independence across characters, (theoretically) the similarity score 

has approximately a uniform distribution when applied to two randomly selected writing samples from 

the same individual, regardless of the sizes and content of the two writing samples being compared.  This 

suggests that the 1% RNMP threshold for the Chi-Squared Classifier should be 0.01 assuming 

independence across characters.   

However, the independence assumption is questionable.  Thus, the actual 1% RNMP threshold may 

not be 0.01 and may vary with the sizes and content of writing samples being compared.  Using 

Algorithm 4.2, this choice of threshold and its dependence on sizes (but not necessarily its dependence on 

content) of writing samples being compared can be investigated empirically by estimating the RNMP for 

a variety of sizes of writing samples.   

We applied Algorithm 4.2 with 1,000K  .  Specifically, we ran the algorithm five times with 

simulated writing samples of (common) sizes varying between n = 100 and n = 900 by increments of 200.  

This resulted in five sets of 1,000 scores, one set for each (common) size of writing sample.   
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Figure 2 shows the empirical cumulative distribution function (ECDF)17 of the 1,000 within-writer 

similarity scores from Algorithm 4.2 for each of the five sizes of writing samples investigated.  Each plot 

is overlaid with a 45-degree line, which is the cumulative distribution function (CDF) for the uniform 

distribution.   

As seen in Figure 2, the behavior of the EDCF is very similar for all of the five sizes of writing 

samples.  Specifically, the EDCF and CDF (for a uniform distribution) are not close for all values 

suggesting the distribution of within-writer similarity scores is not uniform.  In fact, for values larger than 

0.10, the ECDF is much greater than the uniform CDF.  This suggests that for all five sizes of writing 

samples, the within-writer similarity scores tend to be more concentrated toward small values than would 

be expected if the similarity scores followed a uniform distribution.   

However, in each of the plots in Figure 2, the ECDF is close to or below the uniform CDF for score 

values less than 0.10.  And, the EDCF appears to be getting closer to the CDF (for score values less than 

0.10) as the common size of writing sample increases.  This suggests that even though the uniform 

approximation is not good across the entire range of values of the similarity score, the 1% RNMP 

threshold is close to 0.01, or perhaps slightly larger than 0.01.  So, based on the simulated writing samples 

generated using Algorithm 4.2, 0.01 appears to be a reasonable choice (although conservative, especially 

for smaller sizes of writing samples) for the threshold for use with the Chi-Squared Classifier to create a 

comparison procedure with a pre-specified rate of no-match errors of no more than 1%.  In general, using 

a conservative value for the RNMP threshold will result in overestimating the RMP associated with the 

actual 1% RNMP threshold.  However, this appears to be less of an issue as the common size of writing 

samples being compared increases. 

                                                 
17  The ECDF is a plot of a score value versus the proportion of values in the set of scores that are less than or equal 

to the specified score value.   

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



28 

 

5.2 Estimating the RMP as a Function of Size of Writing Samples 

Another application of our proposed algorithm is the investigation of the RMP associated with the Chi-

Squared Classifier and a threshold of 0.01  .18   

We applied Algorithm 4.1 (with 100K )19 41 times with simulated writing samples of (common) 

size varying between 50n   and 450n  20 by increments of 10.  This resulted in 41 sets of 100 scores, 

one set for each common size of writing samples.  For each set of scores, we calculated the proportion of 

the scores that exceeded 0.01; these proportions are shown in Figure 3. 

Figure 3 illustrates the dependency of the RMP on the size of the writing samples being compared.  

The RMP approaches zero as the common size of writing samples gets large.  We used a logistic 

regression model cubic in size of the writing sample, which provides a reasonable fit to the observed 

proportions, to provide a smooth curve representing the relationship between the RMP and size of writing 

samples.  The resulting fit is summarized in Table 1 and shown as a solid line in Figure 3.  Based on the 

fitted logistic curve, the RMP associated with the Chi-Squared Classifier with threshold 0.01 is less than 

10% when comparing writing samples each with at least 280 characters, and less than 1% for comparing 

writing samples each with at least 400 characters. 

                                                 
18  As suggested by the results in the previous sub-section, this threshold corresponds to a rate of non-match errors of 

at most 1%.   

19  A smaller K is used here than was used in the previous section when investigating the RNMP.  The small number 

of writers represented in the database of writing samples limits the study of between-writer variability.  With only 

100 writers, sampling of more pairs results in many pairs involving the same writer; this results in additional 

simulations much beyond 100 providing little additional information.  The reduction in size of K does increase the 

variability in the estimated RMP. 

20  With 100K , it is not possible to accurately estimate very small RMP.  Thus, we considered common size of 

writing samples of at most 450 instead of 900 as when investigating the RNMP. 
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5.3 Estimating the TMP and Standard Error 

One approach to constructing upper confidence bounds on the RMP is to use a Wald-type upper 

confidence bound21 as described in Appendix A.  This approach requires knowledge of the standard error 

of the estimated RMP, which in our case is unknown.  However, as discussed in Appendix C, the standard 

error of the RMP estimator is related to the TMP, which can be estimated using Algorithm 4.3.   

We applied Algorithm 4.3 with 100K  22, a threshold of 0.01  , and common size of writing 

samples n  varying between 50 and 450 by increments of 10.  This resulted in 41 sets of 100 score pairs, 

one set for each size of writing samples.  For each set of score pairs, we calculated the proportion of the 

pairs for which both scores exceeded 0.01; these proportions are shown in Figure 4. 

Figure 4 illustrates the dependency of the TMP on the size of the writing samples being compared.  

The TMP approaches zero as the common size of writing samples gets large.  As with the RMP, we used 

a logistic regression model cubic in size of the writing samples, which provides a reasonable fit to the 

observed proportions, to provide a smooth curve representing the relationship between the TMP and the 

size of writing samples.  The resulting fit is summarized in Table 2 and shown as a solid line in Figure 4.   

To simplify comparison, we have also included in Figure 4 the logistic fit (Table 1) to the estimated 

RMP.  Comparing the two curves, note that for smaller sizes of writing samples, the estimated RMP and 

estimated TMP are similar.  However, the estimated TMP drops off more rapidly with increased 

(common) size of writing samples.  For example, based on the fitted logistic curve, the TMP associated 

with the Chi-Squared Classifier with threshold 0.01 is approximately 10% when comparing writing 

                                                 
21  A Wald-type upper confidence bound is one based on a normal approximation to the sampling distribution of an 

estimator.  It is typically of the form of point estimator plus some number of standard errors, where the number of 

standard errors added to the point estimate depends on the desired confidence coefficient.  For example, for a 95% 

upper confidence bound, one would add 1.645 times the standard error to the point estimate. 

22  We used the same value of K and maximum common size of writing samples as for the RMP investigation in 

Section 5.2. 
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samples each with 190 characters while the corresponding RMP is 26.0%.  The estimated TMP is 1% for 

comparing writing samples with 300 characters while the corresponding RMP is 7.1%. 

Finally, Figure 5 shows estimates of the standard error of the estimated RMP as a function of number 

of writers for several different sizes of writing samples.  These estimates combine the two logistic curves 

shown in Figure 4, along with an additional logistic model23, using the equation for the variance of the 

estimated RMP given in Appendix A.24  For illustrative purposes, we have included one extrapolated 

value for the size of writing samples, namely 600n  , which is outside the range of values used in the 

associated logistic model fits.  Note that the standard error is more sensitive to the sizes of writing 

samples than to the number of writers represented in the sample, although clearly affected by both.   

The plots of the standard error in Figure 5 suggest that for a small size of writing samples (i.e., 150), 

the standard error of the estimated RMP is between 0.01 and 0.1 for up to 2000 writers.  Thus, such small 

sizes of writing samples are probably of limited use in trying to precisely bound a very small RMP.  

Doubling the size of writing samples to 300 does not provide much of a reduction in the standard error.  

Even with writing samples of size 450 characters, the standard error is only reduced to between 0.0001 

and 0.001.  Only with larger sizes of writing samples, such as 600 characters, does the standard error 

become small enough (between 710  and 610 ) to accurately bound a very small RMP. 

                                                 
23  The logistic model for the RMP shown in Figure 3 (and repeated in Figure 4) is fit to the proportion of pairs of 

simulated samples that match when comparing the first and second simulated samples in the output from Algorithm 

4.3.  The estimates shown in Figure 5 also use the same type of logistic model, also cubic in size of writing sample, 

fit to the proportion of pairs of simulated samples that match when comparing the first and third simulated samples 

in the output from Algorithm 4.3.   

24  We are not suggesting that the best estimator of the standard error from such data is to combine fitted logistic 

models for the RMP and the TMP.  This estimator is shown here to illustrate one approach to estimating the standard 

error.  See Appendix C for a more detailed discussion of this issue. 
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5.4 Designing a Study of Handwriting Individuality 

Selecting the number of observations is a critical part of planning a study.  One procedure for selecting 

the number of observations is to specify a desired margin of error associated with estimating a parameter 

of interest and then selecting the number of observations to produce such a margin of error.   

In a study of handwriting individuality, one parameter of interest is the RMP, which is related to the 

degree of individuality of writing profiles in a population.  As mentioned in Section 2 and discussed in 

detail in Bolle et al. (2004) and Saunders et al. (2011a), an upper bound on the RMP is also an upper 

bound on the rarity of matching writing profiles.  Thus, one might consider selecting the number of 

writers for an empirical study of the individuality of handwriting within a specific population to produce a 

desired upper bound on the RMP (assuming that the “true” RMP is very close to zero).   

The ideal setting for obtaining a small upper bound is when there are zero observed matches.  In fact, 

the smallest possible upper bound on the RMP (when writing samples are compared pairwise) occurs 

when there are no observed matches in a collection of writing samples from a large number of writers.   

One could use a Wald-type upper bound (Appendix A) with an estimated standard error such as 

described in Section 5.3.  However, a standard error estimator based on simulated samples, such as 

proposed in Section 5.3, requires writing samples from a large number of writers to be very precise; and 

typically, such a large set of writing samples is not available at the planning stages of a study.  

Alternatively, one can use one of the proposed estimators of the standard error based directly on an 

observed set of writing samples without subsequent subsampling.  However, most of these proposed 

estimators, such as those suggested by Sen (1960), Arveson (1969), Schucany and Bankson (1989), and 

Wayman (2000), cannot be used when there are zero observed matches. 

For interval estimation of a proportion, Agresti and Coull (1998) illustrate that an adjusted Wald 

interval obtained after adding two “successes” and two “failures” to the sample yields coverage 

probabilities close to the nominal confidence levels.  We have conducted a small simulation study to 

investigate the coverage probability of a Wald-type upper confidence bound on the RMP when a similar 
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type adjustment of adding one match and one no match25 is made to Wayman’s (2000) estimate of 

standard error.  Our preliminary investigations suggest that this adjustment yields coverage probabilities 

close to the nominal confidence levels.   

In the case of no observed matches and adding one match and one no match, the formula for the 95% 

upper confidence bound using Wayman’s (2000) estimate of standard error simplifies to 

4.65 /[( 1)( 2)]N N  , where N  is the number of writers.  So, the larger the number of writers in the 

study, the smaller the upper bound when there are no observed matches.  For example, assuming no 

observed matches, a sample of 963 writers would yield a 95% upper confidence bound on the RMP of 5 

in one million and a sample of 2,154 writers would yield a 95% upper confidence bound on the RMP on 

the order of 1 in one million. 

Either of these upper bounds, however, assumes the ideal scenario that there are no matches observed 

when the collected writing samples are compared pairwise.  And, for a fixed (common) size of writing 

samples and fixed RNMP threshold, the probability of observing a match (provided the “true” RMP is not 

zero) goes up as we compare writing samples from more writers.  However, as shown in Figure 3, the size 

of the writing samples affects the RMP and thus also affects the chance of observing no matches.  

Therefore, the size of writing samples, in addition to the number of writers, must be considered in order to 

obtain a small upper bound.  In other words, there must be a balance between the number of characters in 

the writing samples and the number of writers providing writing samples in the study.  

Using the result from probability theory that the probability of a union of events is less than or equal 

to the sum of the probabilities of the individual events, a simplistic lower bound on the probability of no 

observed matches is 1 ( 1) / 2N N   .  So for a specified “chance” 1   of observing no matches and a 

                                                 
25  More specifically, the adjustment involves adding one sample that matches exactly one observed and one sample 

that does not match any of the other observed samples.  In other words, there is exactly one match out of 

( 2)( 1) / 2N N   comparisons.   
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given number of writers N , the RMP must be at most 2 / [ ( 1)]N N  .  For example, suppose the desired 

95% upper confidence bound on the RMP is 1 in one million.  Then, using the formula 

4.65 /[( 1)( 2)]N N  , the smallest number of writers we could use to achieve this bound is 2,154.  

However, one then needs to determine how large a writing sample is needed to have at least a 1   

chance of achieving no matches in the 2,318,781 pairwise comparisons.  In particular, for a 90% chance 

of observing no matches, the RMP must be at most 2 / [ ( 1)]N N   2(0.1) / [(2154)(2153)]  

84.31 10  .  Using the parameter estimates in Table 1, such a RMP is associated with a writing sample 

of size 590. 

6. Conclusion 

The National Research Council (2009, p. 122) states: 

The assessment of the accuracy of the conclusions from forensic analyses and the 

estimation of relevant error rates are key components of the mission of forensic science.  

This suggests that information concerning the RMP and the RNMP associated with a comparison 

procedure contributes to its practical utility in forensic science.  In forensic DNA analysis, population 

genetics allow modeling the RMP and the RNMP as a function of population size and number of loci 

compared.  Currently, in handwriting analysis, no comparable modeling exists.   

In this paper, we have illustrated one alternative to modeling for investigation of the RMP and the 

RNMP associated with a comparison procedure applied to comparing writing samples.  The proposed 

approach involves investigating the RMP and the RNMP using simulated writing samples.  Specifically, 

we have presented algorithms for subsampling from available writing samples in a data set that can be 

used to consistently estimate the RMP and the RNMP as a function of the sizes of the writing samples 

being compared.  The consistency of the subsampling estimators is dependent only on the number of 

writers, not the size of the writing samples.  We have also described an algorithm involving subsampling 
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that can be used to estimate the standard error associated with an estimator of the RMP based on all 

pairwise comparison of samples within a data set.   

All of these algorithms have been stated in terms of a common size of writing samples being 

compared.  However, they can be trivially adapted to scenarios where the sizes of writing samples being 

compared are not the same for all writing samples.  Such an application might arise when studying match 

probabilities associated with comparing very short notes, such as might be associated with bank robberies, 

to very large writing samples collected from potential suspects.  The algorithms can also be adapted to 

investigate the dependency of match probabilities on criteria other than sizes of writing samples being 

compared.  For example, the effect of content on match probabilities can be studied by changing from 

random sampling to stratified or systematic sampling when selecting characters to generate the simulated 

writing samples. 

Although the main objective of this paper was to introduce this subsampling methodology, we have 

also shown some applications using the results of applying subsampling-based algorithms to a set of 

actual writing samples.  For example, we have shown how the information about the RMP and how it 

varies with sizes of writing samples can be used when planning an empirical study of handwriting 

individuality within a relevant population.  However, the actual values of the resulting estimates and 

recommendations concerning an empirical study of handwriting individuality presented in this paper must 

be viewed with caution.  The set of writing samples used for illustrative purposes is small, including 

samples from only 100 individuals.  This limits the ability to accurately estimate very small match 

probabilities.  Also, the set of writing samples is a convenience sample and thus is not necessarily 

representative of a specific population. 

Finally, although the main focus of this paper has been on match probabilities, the algorithms 

presented in this paper potentially have other applications in forensics.  Match probabilities are utilized in 

studies of individuality and in validating the use of specific forensic techniques for individualization; they 

may not be the relevant measures for use in court (Stoney, 1984).  Recently, focus has been on using the 
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likelihood ratio as one way to extend to other areas of forensics, such as handwriting, the DNA practice of 

reporting profile frequencies.  The match probabilities are related to the probability that needs to be 

estimated for the denominator of the likelihood ratio.   We are currently in the process of exploring the 

use of subsampling techniques detailed in this paper to estimate a likelihood ratio for handwriting.   
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Appendix A:  Estimating the RMP and the RNMP 

Consider an independent and identically distributed (iid) collection of writing samples 

{ : 1,2,..., }iD i N .  For i j , let ( , )i js D D  denote the similarity score (associated with the comparison 

procedure) that compares the writing samples iD  and jD  of the thi  and thj  writers in the collection.  Let 

  be the threshold used to declare matching writing samples (via the comparison procedure).   

One natural estimator of the RMP, which will be denoted as  , for a given comparison procedure is 

the proportion of pairs of writing samples that match: 

 
1 1

1 1

ˆ
2

N N

ij
i j i

N
m

 

  

 
  
 

   (A.1) 

where ijm  equals one if iD  and jD  match, and equals zero if they do not.  Using { }I A  to denote the 

indicator function that equals one if the event A  is true and zero otherwise,  ( , )ij i jm I s D D    for 

i j .  This estimator of the RMP is unbiased because in this notation,  ( , )i jP s D D    so that 

( )ijE m  . 

This estimator of the RMP is a member of the class of U-statistics of degree 2 (Serfling, 1980).  So, 

under the assumption that the collection of writing samples { : 1,2,..., }iD i N  are iid, ̂  has a variance 

of the form: 

 
 
     24 2 2ˆVar( ) 1

1 1c
N

N N N N
   


  

 
  (A.2) 

where  

 2 Var[ ( )]c ij iE m D   for any j i .   (A.3) 

Note that c  does not depend on i or j because { : 1,2,..., }iD i N  are assumed to be iid.  Also, the “bar” 

in ( )ij iE m D  denotes conditional expectation.  So, ( )ij iE m D  can be viewed as a conditional match 
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probability — namely, the probability that a randomly selected writing sample matches a specific 

(evidentiary) writing sample iD .  Note that the first term in (A.2) involving c  dominates ˆVar( ) , at 

least for large values of N . 

Based on the asymptotic distribution of a U-statistic, an approximate 100(1 )%  Wald-type upper 

confidence bound on the RMP is: 

 ˆ ˆ ˆVar( ) 2 cz z N        for large N  (A.4) 

where ˆVar( )  (or c ) can be replaced by a consistent estimator, such as the one due to Bickel that is 

presented in Wayman (2000), and z  is the 1   quantile of the standard normal distribution.  Note that 

this upper bound depends on the sizes of the writing samples through its dependency on c  and also on 

the number of writers N .  

Suppose now that instead of a single writing sample, the collection contains two writing samples from 

each writer (represented in the collection).  In other words, consider an iid collection of pairs of writing 

samples 1 2{( , ) : 1,2,..., }i iD D i N .  Let 1 2( , )i is D D  denote the similarity score (associated with the 

comparison procedure) that compares the two writing samples 1iD  and 2iD  from the thi  writer in the 

collection.  Let   be the threshold used to declare matching writing samples (via the comparison 

procedure).   

One natural estimator of the RNMP, which will be denoted as  , for a given comparison procedure is 

the proportion of pairs of writing samples from the same writer that do not match: 

   1
1 2

1

ˆ ,
N

i i
i

N I s D D 


  . (A.5) 
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Appendix B:  Subsampling vs. Resampling 

In this appendix, we show that simulated writing samples generated by sampling without replacement 

(i.e., via subsampling) have the same distributional properties as the original writing samples, whereas 

those generated by sampling with replacement (i.e., via resampling) do not.   

Suppose the original writing sample with V  characters is represented as  1 2, ,..., VC C C  where iC  

denotes the features of the ith character in the writing sample.  (In our case, the features consist of the 

letter being written and the isocode representing its shape.)  Assume that this vector is an iid sample from 

a multinomial distribution with r  categories and associated probability vector 1 2( , ,..., )rp p pp , which 

we represent as:   1 2, ,..., Mult(1, )~
iid

VC C C p .  Let Y j  #{Ci  in jth category}, 1,2,...,j r .  Then, the 

random vector of counts  1 2, ,..., rY Y Y  has a multinomial distribution with parameters V  and p , which 

we represent as:   1 2, ,..., Mult( , )~rY Y Y V p . 

First, suppose the simulated writing sample  * * *
1 2, ,..., nC C C  is generated by sampling n V  

characters at random without replacement from the original writing sample  1 2, ,..., VC C C .  Since 

   * * *
1 2 1 2, ,..., , ,...,n VC C C C C C ,  * * *

1 2, ,..., Mult(1, )~
iid

nC C C p .  So, if * *#{  in th category}j iY C j , 

1, 2,...,j r , then  * * *
1 2, ,..., Mult( , )~rY Y Y n p .  Thus, simulated writing samples generated by sampling 

without replacement have the same distributional properties as the original writing sample, i.e., both are 

multinomial with the same probability vector p .  

Next, suppose the simulated writing sample  * * *
1 2, ,..., nC C C  is generated by sampling n V  

characters at random with replacement from the original writing sample  1 2, ,..., VC C C .  Let 

 * * * *
1 2, ,..., rY Y YY , where * *#{  in th category}j iY C j , 1, 2,...,j r .  Now, sampling with replacement 
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corresponds to using the observed proportions in each category from the original sample as estimates of 

p  and then sampling from the “fitted” model ˆMult(1, )p .  So, conditional on the observed writing 

sample,    * * *
1 2 1 2 ˆ, ,..., , ,..., Mult(1, )~

iid

n VC C C C C C p  and  *
1 2 ˆ, ,..., Mult( , )~VC C C nY p  where 

1 2ˆ ˆ ˆ ˆ( , ,..., )rp p pp  and ˆ /j jp Y V , 1, 2,...,j r .  

What is the unconditional distribution of *Y ?  For any 1 2( , ,..., )rx x xx  with {0,1,..., }jx n  and 

1

r
jj

x n  , 

* *( ) ( | ) ( )P P P    
y

Y x Y x Y y Y y   

where the sum is over all  1 2 1
( , ,..., ) : {0,1,..., },

r
r j jj

y y y y V y V  y .  Substituting the multinomial 

probabilities,  

  

But, 
1 1

j j
r r

x xn
j j

j j

V E Y p

 

 
  
  
   for all x .  For example, for ( ,0,...,0)nx , 

1 1
1
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

 
       

  by Jensen’s inequality (unless 1 1p  ).  Thus, *Y  does not have a 

multinomial distribution with parameters n  and p .  That is, a simulated sample generated by random 

sampling with replacement does not have the same distributional properties as the original writing 

sample. 
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Appendix C:  Estimating the TMP and Standard Error 

Both the variance in (A.2) of the point estimator of the RMP defined in (A.1) and the associated 

Wald-type upper confidence bound on the RMP defined in (A.4) are functions of the RMP as well as c  

defined in (A.3).  

Unlike the RMP, c  involves comparison of three writing samples instead of two.  To understand 

why, recall the assumption that the collection of writing samples { : 1,2,..., }iD i N  are iid.  Under this 

assumption, ( | )ij iE m D 26 does not depend on j and [ ( | )] ( )ij i ijE E m D E m    for any j i .   

So, for any j k i  , 

 

2

2

2

2

Var[ ( | )]

[ ( | ) ( | )] { [ ( | )]}

[ ( | )]

( )

Cov( , )

c ij i

ij i ik i ij i

ij ik i

ij ik

ij ik

E m D

E E m D E m D E E m D

E E m m D

E m m

m m









 

 

 



 (C.1) 

Since  

     ( , ) ( , ) ( , )  and ( , )ij ik i j i k i j i km m I s D D I s D D I s D D s D D         , 

the term ( )ij ikE m m  in (C.1) is just the probability of randomly selecting three individuals and then 

sampling one writing sample from each individual such that the writing sample from the first individual 

matches both the writing samples from the second and third individuals.  As shown in (C.1), this 

probability, which we refer to as the tri-match probability (TMP), when combined with the RMP, 

determines c . 

As discussed at the end of Section 4.3, the output from Algorithm 4.3 can be used to estimate the 

TMP.  Specifically, consider the output from Algorithm 4.3: 
                                                 
26  Using { }I A  to denote the indicator function that equals one if the event A  is true and zero otherwise, 

 ( , )ij i jm I s D D    for i j .    
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  *( ) *( ) *( ) *( )
1 2 1 3( , ), ( , ) : 1,2,...,k k k ks D D s D D k K .  For a fixed threshold  , this data set can be converted 

into a set of pairs that flag whether each of the pairs of documents match.  Defining 

 * * *
12 1 2( , )m I s D D    and  * * *

13 1 3( , )m I s D D   , the output from Algorithm 4.3 can be viewed as: 

 *( ) *( )
12 13( , ) : 1,2,...,k km m k K , which provides information about the dependence of the TMP and c  on 

the sizes of the writing samples.   

For example, the proportion of triplets for which both match, i.e.,  

  *(n)  K 1 m12
*(k )m13

*(k )

k1

K

  (C.2) 

is a consistent and unbiased estimator of the TMP as the number of writers increases for fixed sizes of 

writing samples.  This is just the estimator described at the end of Section 4.3. 

The generated data from Algorithm 4.3 can be used in several ways to estimate c .  For example, 

using the relationship in equation C.1 that 2 Cov( , )c ij ikm m  , the correlation coefficient computed on 

  *( ) *( )
12 13, : 1,2,...,k km m k K , i.e.,  

 v*(n)  (K 1)1 m12
*(k )  m12

*  m13
*(k )  m13

* 
k1

K

 
K

K 1







 *(n) m12
* m13

*



   (C.3) 

where *
12m  is the proportion of pairs of simulated samples that match when comparing the first and 

second simulated samples, i.e.,  

 *( )* 1
12 12

1

K
k

k

m K m


    (C.4) 

and *
13m  is the proportion of pairs of simulated samples that match when comparing the first and third 

simulated samples, i.e.,  
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 *( )* 1
13 13

1

K
k

k

m K m


    (C.5) 

is a consistent estimator of c  as the number of writers increases for fixed sizes of writing samples.   

Alternatively, one can estimate c  using the relationship in equation C.1 that 2 2( )c TMP RMP   .  

If one has some other consistent estimator of the RMP, or some other information about the behavior of 

the RMP as a function of size of writing samples, say A(n), then  *(n) [ A(n)]2  is also a consistent 

estimator of c .  One such consistent estimator of the RMP is available from the same output from 

Algorithm 4.3 that is used to estimate the TMP.  Note that (C.4) and (C.5) are of the same form as the 

resulting estimator of the RMP from Algorithm 4.1.  So, *
12m  and *

13m  both provide consistent estimators 

of the RMP; and one could combine the two generated sequences  *( )
12 : 1,2,...,km k K  and 

 *( )
13 : 1,2,...,km k K  to give a sequence of 2K  values with which to estimate the RMP.  However, for 

each k , *( )
12

km  and *( )
13

km  are correlated and thus the combined sequence is not equivalent to a sequence 

generated by 2K  applications of Algorithm 4.1. 

Which estimator of c  and subsequently the standard error of the point estimator of the RMP defined 

in (A.1) is the best depends upon the ultimate use of the estimator.  For example, we are currently 

investigating estimators for use in constructing of upper confidence bounds, such as in equation A.4. 
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TABLE 1  Logistic regression coefficients from modeling the Random Match Probability (RMP) as a 

function of (common) size of writing samples (n)   

Term Coefficient Standard Error 

(Intercept) 5.52  0.52  

n  26.32 10  38.64 10

2n  42.02 10 54.34 10

3n  72.72 10  6.65108

 
 

Goodness of Fit Statistics 

Test Value 
Degrees of 
Freedom 

P-Value 

Deviance Chi-Squared 33.03 37 0.66 

Pearson Chi-Squared 35.42 37 0.54 

Hosmer and Lemeshow 7.37 8 0.50 

 
 
 
TABLE 2  Logistic regression coefficients from modeling the Tri-Match Probability (TMP) as a function 

of (common) size of writing samples (n) 

Term Coefficient Standard Error 

(Intercept) 5.35  0.64  

n  27.14 10   21.28 10  

2n  42.27 10  57.72 10  

3n  73.32 10   71.41 10  

 
 

Goodness of Fit Statistics 

Test Value 
Degrees of 
Freedom 

P-Value 

Deviance Chi-Squared 25.78 37 0.92 

Pearson Chi-Squared 23.93 37 0.95 

Hosmer and Lemeshow 0.80 8 0.999 
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FIG. 1.  Text of the modified “London Letter” and an example of a typical cursive writing sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Our London business is good, but Vienna and 
Berlin are quiet.  Mr. D. Lloyd has gone to 
Switzerland and I hope for good news.  He will 
be there for a week at 1496 Zermott St. and 
then goes to Turin and Rome and will join Col. 
Parry and arrive at Athens, Greece, Nov. 27th 
or Dec. 2nd.  Letters there should be addressed 
3580 King James Blvd.  We expect Charles E. 
Fuller Tuesday.  Dr. L. McQuaid and Robert 
Unger, Esq., left on the "Y.X. Express" 
tonight.  My daughter chastised me because I 
didn't choose a reception hall within walking 
distance from the church. I quelled my 
daughter's concerns and explained to her that it 
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FIG. 2.  Within-writer similarity scores.  Empirical cumulative distribution functions (ECDFs) of within-

writer similarity scores from Algorithm 4.2 (K = 1,000 for each common size n of writing samples).  

Diagonal (solid) line represents the theoretical cumulative distribution function (CDF) corresponding to a 

uniform distribution.  Dotted horizontal lines are at an ECDF of 0.0 and 1.0. 
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FIG. 3.  Estimated random match probability (RMP) as a function of common size of writing samples.  

The plotted points are estimates of the RMP using Algorithm 4.1 (K = 100 for each common size of 

writing samples).  The solid line is based off of a logistic fit (Table 1) modeling the RMP as a function of 

common size of writing samples being compared.   
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FIG. 4.  Estimated tri-match probability (TMP) as a function of common size of writing samples.  The 

plotted points are estimates of the TMP using Algorithm 4.3 (K = 100 for each common size of writing 

samples).  The solid line is based off of a logistic fit (Table 2) modeling the TMP as a function of 

common size of writing samples being compared.  The dashed line is based off of the logistic fit (Table 1) 

modeling the RMP as a function of size of writing samples.  This logistic model is fit to the proportion of 

pairs of simulated samples that match when comparing the first and second simulated samples in the 

output from Algorithm 4.3.   
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FIG. 5.  Estimated standard error of the RMP estimator defined in (A.1) as a function of common size of 

writing samples and number of writers.  The estimated standard errors are plotted on a log (base 10) scale 

and are based on three fitted logistic models.  Two of these models are shown in Figure 4 with 

coefficients shown in Tables 1 and 2.  The third logistic model is fit to the proportion of pairs of 

simulated samples that match when comparing the first and third simulated samples in the output from 

Algorithm 4.3.   
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Phase I Part b 
 
For this grant, we first completed a survey of the statistical theory for U-Statistics with zero-one 
kernels; the focus of the survey was specifically related to the behavior of U-Statistics when used 
as estimators of small probabilities.  The most recent research on RMPs that we have found is by 
Michael E. Schuckers and is summarized in his 2010 book Computational Methods in Biometric 
Authentication: Statistical Methods for Performance Evaluation.  Schuckers (and almost all 
other researchers in this area) have not put the estimation of random match probabilities into the 
context of U-Statistics.  However, Schuckers has identified the dependency structure that arises 
when performing all pairwise comparisons and has incorporated this dependency structure into 
his confidence intervals, mainly via bootstrap methods.  The non-bootstrap methods are 
analogous to those used by Bickel and Wayman which we previously reviewed in our grant 
proposal.     
 
Besides Dr. Saunders, three researchers (Drs. Davis, Gantz and Miller) on this grant worked on 
the estimation of confidence bounds for the RMP.  
 
Dr. Linda Davis worked to find exact formulas for the mean and variance of the estimate of the 
RMP. Her development utilized structures and results from the theory of U-Statistics. The 
resulting exact formulas are only computationally tractable for very small sample sizes.  Dr. 
Davis’ work pointed out that assuming that all pairwise comparisons of samples are independent 
will lead to an underestimate of the variance of the estimate of the RMP.  She also showed that 
basing the statistics on only a set of independent pairwise comparisons will lead to an 
overestimate of the variance of the estimate of the RMP.  Dr. Davis introduced a scenario for 
which tighter bounds are possible for the variance of the estimate of the RMP.  
 
Two documents prepared by Dr. Davis are attached to the Final Report in Appendices 1 and 2: 
 

“Link Between U-Statistics With 0-1 Kernels and the Union/Intersection of Events” 
This document presents the exact formulas for the mean and variance of the estimate of 
the RMP in the general case and in a special case.  
 
“RMP Confidence Interval” 
 

These documents present issues associated with finding confidence interval bounds for 
estimation of the RMP and presents an approach to calculating bounds in a special case.  A list of 
references concerning relevant statistical estimation is also included in these documents.  
 
Dr. Davis intends to submit papers based on these two documents to research journals.  
 
Drs. John Miller, Donald Gantz, and Christopher Saunders have developed a general parametric 
model for studying the distribution of pairwise comparisons of an arbitrary type tailored for 
small sample sizes with possibly no observed matches.  The advantage of having a parametric 
model is that it provides an added level of structure for estimating the RMP with limited 
information. Furthermore, as long as the parametric model is chosen carefully, the resulting 
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estimates appear to have a high degree of accuracy. This model is designed to incorporate the 
dependencies that arise in such studies with pairwise comparisons.   
 
We introduced the parametric model to pursue our research goal of extending our U-Statistics 
based methods for estimating the RMP to the situation of small sample sizes.  We are building 
upon the early research of Blom (1976) to provide a parametric model that retains the optimal 
asymptotic properties of the U-Statistic estimate of the RMP (in the sense of being a Best Linear 
Unbiased Estimator of the RMP) but facilitates different estimation approaches, such as 
Maximum Likelihood Estimates, Restricted Maximum Likelihood Estimates (REML), and even 
Bayesian estimates.  
 
The parametric model we are implementing treats the joint distribution of comparisons as a 
multivariate normal distribution. This approach is conceptually analogous to applying the 
standard Wilson Interval to estimating a proportion from a binomial random variable. This 
distributional assumption is only a tool used to facilitate the estimation of the RMP and is not 
expected to actually match the joint distribution of the discrete pairwise comparisons.  
We have derived the theoretical foundation for the parametric model.  We have demonstrated the 
use of this model in the construction of REML estimates and bounds for the RMP.  We have run 
simulations that study the performance of the different estimates. 
  
At the 2011 NIJ Trace Evidence Symposium, Drs. Gantz, Miller and Saunders presented their 
initial results on using a parametric method for estimating the RMP and constructing upper 
confidence bounds through non-asymptotic methods.  They have recently completed a research 
paper on their work which has been submitted to the journal Technometrics.  This paper studies 
in detail the parametric model for pairwise comparisons used in Forensic Science.  It describes 
the eigenstructure of the covariance matrix and shows the consequences of the relations given by 
assuming normal distributions for the random components of the model.  It shows that a closed 
form for an ANOVA table is possible.  It shows that by using a method related to Fieller’s 
Theorem, one can construct confidence intervals for a fixed component of the model which can 
then be easily turned into a confidence interval for the RMP.  It also shows that two competing 
methods are either too conservative or just incorrect. The paper is included as the continuation of 
Phase I, Part B.  
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On Parametric Models for Pairwise Comparisons 
 

John Millera, Donald Gantzb, Chris Saundersc 

 
Abstract:  This paper studies a parametric model for pairwise comparisons used in Forensic 
Science.  We describe the eigenstructure of the covariance matrix and show the consequences of 
the relations given by assuming normal distributions for the random components of the model.  
We show that a closed form for an ANOVA table is possible.  We show that using a method 
related to Fieller’s Theorem, we can construct confidence intervals for a fixed component of the 
model which can then be easily turned into a confidence interval for the random match 
probability.  The random match probability is a concept which is critical for Forensic Scientists.  
We also show that two competing methods are either too conservative or just incorrect. 
 

1. Introduction: 
 
Pairwise comparisons are a useful statistical tool in Forensic Science.  We will introduce a 
parametric model to show critical issues associated with statistical inference based on pairwise 
comparisons.  A common situation in forensic science is “Did two samples come from the same 
source?”  We use a similarity score to compare two samples.  Higher similarity scores are 
indicative of coming from a common source.  We assume a population of objects which can be 
sampled.  The random match probability, RMP, is the probability that two distinct objects 
selected at random from the population are erroneously judged to come from the same source.27  
We can assess the RMP by taking a random sample of ݊ objects known to have each come from 
a different source and calculating the similarity score for each pair of objects.  Figure 1 describes 
this situation. 
 

Figure 1:   Pairwise Comparison of Two Samples 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
a J. Miller, Department of Statistics, George Mason University; b D. Gantz, Department of Applied Information 
Technology, George Mason University; c C. Saunders, Department of Mathematics and Statistics, South Dakota 
State University	
27	The RMP can be thought of as the rate at which matches occur in the general population.	
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Write ݏ௜௝ for the similarity score for objects ݅ and ݆.  Based on a sample of ݊ objects, we get 
ܰ ൌ ݊ሺ݊ െ 1ሻ/2 similarity scores.  A plausible correlation structure for the similarity scores is 
1)  If we have two similarity scores for the same pair of objects, then the scores are the same; 
that is the two scores have correlation one.  2)  If we have two similarity scores with one of the 
compared samples in common, then these two similarity scores are related.  The two scores have 
a correlation which is not zero.  3)  If two similarity scores have no samples in common, then the 
scores are not related; that is, the correlation between the scores is zero.   
 
The mean of the similarity scores from all possible pairs of different source objects in the 
population is a very important quantity in calculations of the random match probability based on 
scores.  We will call this parameter ߠ.  A plausible estimate for this quantity is the mean of the ܰ 
scores from the pairwise comparisons in the sample.  It will be important to have proper 
estimates of the variability of this mean in forming confidence limits for the random match 
probability. 
 
Some researchers simply ignore the correlation structure and proceed as if there is a sample of ܰ 
independent scores.  This would yield an invalid confidence bound for the RMP.  Other 
researchers believe that the correlation structure forces one to use only uncorrelated pairs (such 
as ݏଵଶ, ݏଷସ, ݏହ଺, etc.).  They use only ݊/2 similarity scores out of the possible ܰ ൌ ݊ሺ݊ െ 1ሻ/2 
scores.  This is too conservative.  We will show that it is possible to account for the correlation 
structure in using data such as this. 
 
In Section 2 we describe the parametric model; in Section 3 we describe the model in terms of its 
normal distribution; in Section 4 we define the random match probability (RMP); in Section 5 
we describe the process of forming a confidence interval for the RMP; in Section 6 we give the 
results for a large simulation study of the methods described in Section 5; in Section 7 we 
describe two ways of forming confidence intervals based on methods which are either too 
conservative or just wrong; in Section 8 we state the conclusions of this paper. 
 

2. A Parametric Model for Similarity Scores: 
 

2.1 The Parametric Model: 
 

One parametric model that preserves the dependency between scores is implied by a simple 
random sample for the original measurements.  That parametric model for the similarity score ݏ௜௝ 
is 

௜௝ݏ ൌ ߠ ൅ ܽ௜ ൅ ௝ܽ ൅ ݁௜௝, 
 
where ߠ is an unknown population parameter, ܽ௜ is a random quantity dependent on object ݅ and 
݁௜௝ is a random error term.  We assume the ܽ௜ to be i.i.d. ሺ0, ݅ ௔ଶሻߪ ൌ 1,… , ݊, and the ݁௜௝ to be 
i.i.d. ܰሺ0, ݅ ,௘ଶሻߪ ൌ 1,…݊ െ 1; ݆ ൌ ݅ ൅ 1,…݊ and any ܽ௜ is independent of any ݁௜௝.  We will use 
this model to find a valid ANOVA table. We can rewrite this model in matrix terms by writing 
the scores (ݏ௜௝) in lexicographic order as a vector ܡ.  The errors (݁௜௝) are listed in the same order 
and the ܽ’s are listed in order of their subscripts.  There is a design matrix ۾ (for pairwise) which 
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has ܰ rows and ݊ columns. ۾ is mostly composed of zeroes but has a one in the ݅th and ݆th 
columns for the row corresponding to ݏ௜௝. 
 
Thus our model becomes 

ܡ ൌ ૚ேߠ ൅ ܉۾ ൅  ,܍
 
where ܡ and ܍ are as described above, ܉ is the vector of the ܽ௜, and ૚ே is an ܰ by 1 vector of 
ones. 
 
The ܰ by 1 expected value of the vector of scores is just ߠ૚ே.  The ܰ by ܰ covariance matrix of 
the vector of scores is ઱ ൌ ௘ଶ۷ேߪ ൅  The form of ઱ comes from the matrix formulation  .′۾۾௔ଶߪ
and the independence of the ܽ௜ and the ݁௜௝, not from normality assumptions.  Later the relative 
size of ߪ௔ଶ to ߪ௘ଶ will be important.  We can convert the covariance matrix to a correlation matrix 
if we wish.  The resulting correlation matrix contains mostly zeroes but has non-zero correlations 
of ݎ ൌ ௘ଶߪ௔ଶ/ሺߪ ൅  .௔ଶሻ in some positionsߪ2
 
In Figure 2, consider an example with ݊ ൌ 8 and ܰ ൌ 28.  Let	࢟ be the vector of similarity 
scores in lexicographic order (alphabetic order) of the subscripts ݅ and ݆.  ۾  (ܰ	 ൈ ݊) is the 
design matrix for selecting pairs of objects.  For example, the fourth line of ۾ has ones for 
selecting objects 1 and 5.  Each column has seven ones because each object is compared to the 
other seven objects. 

 
Figure 2:  Example with ݊ ൌ 8 and ܰ ൌ 28 

 
s12    1 1 0 0 0 0 0 0 
s13    1 0 1 0 0 0 0 0 
s14    1 0 0 1 0 0 0 0 
s15    1 0 0 0 1 0 0 0 
s16    1 0 0 0 0 1 0 0 
s17    1 0 0 0 0 0 1 0 
s18    1 0 0 0 0 0 0 1 
s23    0 1 1 0 0 0 0 0 
s24    0 1 0 1 0 0 0 0 
s25    0 1 0 0 1 0 0 0 
s26    0 1 0 0 0 1 0 0 
s27    0 1 0 0 0 0 1 0 
s28    0 1 0 0 0 0 0 1 
s34    0 0 1 1 0 0 0 0 
s35    0 0 1 0 1 0 0 0 
s36    0 0 1 0 0 1 0 0 
s37    0 0 1 0 0 0 1 0 
s38    0 0 1 0 0 0 0 1 
s45    0 0 0 1 1 0 0 0 
s46    0 0 0 1 0 1 0 0 
s47    0 0 0 1 0 0 1 0 
s48    0 0 0 1 0 0 0 1 
s56    0 0 0 0 1 1 0 0 
s57    0 0 0 0 1 0 1 0 
s58    0 0 0 0 1 0 0 1 
s67    0 0 0 0 0 1 1 0 
s68    0 0 0 0 0 1 0 1 
s78    0 0 0 0 0 0 1 1 

P ൌ y ൌ 
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Figure 3 is the 28 ൈ 28 correlation matrix for the vector ܡ with ݊ ൌ 8.  The correlations are:   
ݎ ൌ 1 when both similarity scores compare the same two objects; ݎ ൌ ௘ଶߪ௔ଶ/ሺߪ ൅  ௔ଶሻ whenߪ2
each of the two similarity scores have one of the compared objects in common; and ݎ ൌ 0 when  
the two similarity scores have no compared objects in common.  There are 2ሺ݊ െ 2ሻ ൌ  s in’ݎ	12
each row.  In this example there are about 43% of the matrix entries equal to ݎ.  For large ݊ there 
are about 4/݊ of the ܰଶ matrix entries equal to ݎ.  For example, if ݊ ൌ 100 there are 196 ݎ’s  out 
of 4950 elements in each row, or about 4% of the correlation entries are ݎ’s.  We will show 
below that the correlation structure must always be accounted for to get valid statistical 
inference. 
 

Figure 3:  Correlation Matrix for ܡ for ݊ ൌ ݎ) 8 ൌ ௘ଶߪ௔ଶ/ሺߪ ൅  (௔ଶሻߪ2
 

1 r r r r r r r r r r r r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
r 1 r r r r r r 0 0 0 0 0 r r r r r 0 0 0 0 0 0 0 0 0 0 
r r 1 r r r r 0 r 0 0 0 0 r 0 0 0 0 r r r r 0 0 0 0 0 0 
r r r 1 r r r 0 0 r 0 0 0 0 r 0 0 0 r 0 0 0 r r r 0 0 0 
r r r r 1 r r 0 0 0 r 0 0 0 0 r 0 0 0 r 0 0 r 0 0 r r 0 
r r r r r 1 r 0 0 0 0 r 0 0 0 0 r 0 0 0 r 0 0 r 0 r 0 r 
r r r r r r 1 0 0 0 0 0 r 0 0 0 0 r 0 0 0 r 0 0 r 0 r r 
r r 0 0 0 0 0 1 r r r r r r r r r r 0 0 0 0 0 0 0 0 0 0 
r 0 r 0 0 0 0 r 1 r r r r r 0 0 0 0 r r r r 0 0 0 0 0 0 
r 0 0 r 0 0 0 r r 1 r r r 0 r 0 0 0 r 0 0 0 r r r 0 0 0 
r 0 0 0 r 0 0 r r r 1 r r 0 0 r 0 0 0 r 0 0 r 0 0 r r 0 
r 0 0 0 0 r 0 r r r r 1 r 0 0 0 r 0 0 0 r 0 0 r 0 r 0 r 
r 0 0 0 0 0 r r r r r r 1 0 0 0 0 r 0 0 0 r 0 0 r 0 r r 
0 r r 0 0 0 0 r r 0 0 0 0 1 r r r r r r r r 0 0 0 0 0 0 
0 r 0 r 0 0 0 r 0 r 0 0 0 r 1 r r r r 0 0 0 r r r 0 0 0 
0 r 0 0 r 0 0 r 0 0 r 0 0 r r 1 r r 0 r 0 0 r 0 0 r r 0 
0 r 0 0 0 r 0 r 0 0 0 r 0 r r r 1 r 0 0 r 0 0 r 0 r 0 r 
0 0 r 0 0 0 r r 0 0 0 0 r r r r r 1 0 0 0 r 0 0 r 0 r r 
0 0 r r 0 0 0 0 r r 0 0 0 r r 0 0 0 1 r r r r r r 0 0 0 
0 0 r 0 r 0 0 0 r 0 r 0 0 r 0 r 0 0 r 1 r r r 0 0 r r 0 
0 0 r 0 0 r 0 0 r 0 0 r 0 r 0 0 r 0 r r 1 r 0 r 0 r 0 r 
0 0 r 0 0 0 r 0 r 0 0 0 r r 0 0 0 r r r r 1 0 0 r 0 r r 
0 0 0 r r 0 0 0 0 r r 0 0 0 r r 0 0 r r 0 0 1 r r r r 0 
0 0 0 r 0 r 0 0 0 r 0 r 0 0 r 0 r 0 r 0 r 0 r 1 r r 0 r 
0 0 0 r 0 0 r 0 0 r 0 0 r 0 r 0 0 r r 0 0 r r r 1 0 r r 
0 0 0 0 r r 0 0 0 0 r r 0 0 0 r r 0 0 r r 0 r r 0 1 r r 
0 0 0 0 r 0 r 0 0 0 r 0 r 0 0 r 0 r 0 r 0 r r 0 r r 1 r 
0 0 0 0 0 r r 0 0 0 0 r r 0 0 0 r r 0 0 r r 0 r r r r 1 

 
      2.2  Eigenstructure of ઱: 
 
In order to get an ANOVA table, we need to know the eigenstructure of ઱. To show what the 
eigenstructure of ઱ is, we first begin with computing ۾ᇱ۾, which turns out to be: 
 

۾ᇱ۾ ൌ ൦

݊ െ 1 1 ⋯ 1
1 ݊ െ 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ ݊ െ 1

൪ ൌ ሺ݊ െ 2ሻ۷௡ ൅ ۳௡ ൌ ሺ݊ െ 2ሻ۷௡ ൅ ૚௡૚௡ᇱ  

 

It is clear that ۳௡ ൌ ૚௡૚௡ᇱ  has one eigenvalue of ݊ with eigenvector of ૚௡/ሺ૚௡ᇱ ૚௡ሻଵ/ଶ and ݊ െ 1 
eigenvalues of zero with all eigenvectors orthogonal to ૚௡.  This leads to the following roots of 
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one root of 2ሺ݊  :۾ᇱ۾ െ 1ሻ and ݊ െ 1 roots of ሺ݊ െ 2ሻ.  Now we use the fact that the non-zero 
roots of ۾ᇱ۾ are the same as the non-zero roots of ۾۾′ to show the result below.  (See Roy, 
1954.)  This leads to the following set of roots of ۾۾′:  one root of 2ሺ݊ െ 1ሻ, ݊ െ 1 roots of 
ሺ݊ െ 2ሻ, and ܰ െ ݊ roots of zero. 
 
Therefore we can conclude that there are ܰ eigenvectors of ઱ ൌ ௘ଶ۷ேߪ ൅  :′۾۾௔ଶߪ
 

• 1 eigenvector (ܞଵ ൌ ૚ே √ܰ⁄ ) with eigenvalue λଵ ൌ ௘ଶߪ ൅ 2ሺ݊ െ 1ሻߪ௔ଶ 
• ݊ െ 1 eigenvectors (ܞଶ to ܞ௡ሻ with eigenvalue λଶ ൌ ௘ଶߪ ൅ ሺ݊ െ 2ሻߪ௔ଶ 
• ܰ െ ݊ eigenvectors (ܞ௡ାଵ to ܞே) with eigenvalue λଷ ൌ  ௘ଶߪ

 
Since ߪ௘ଶ ൐ 0, ઱ has full rank.  Because eigenvectors are orthogonal, we have ܞ௞

ᇱ ૚ே ൌ 0 for all 
݇ ൐ 1. 
 
     3.  Using the Model Based on Normal Distribution: 
 
     3.1  Normality: 
 
Under the assumption of normality for the distributions of ܽ௜’s and the ݁௜௝’s, the log-likelihood 
can be written as 

െ2݈݊ܮ ൌ ܰ ݈݊ሺ2ߨሻ ൅ ݈݊|઱| ൅ ሺܡ െ ܡ૚ேሻᇱ઱ିଵሺߠ െ  ૚ேሻߠ
 

ൌ ܰ ݈݊ሺ2ߨሻ ൅ ଵߣ݈݊ ൅ ሺ݊ െ 1ሻ݈݊ߣଶ ൅ ሺܰ െ ݊ሻ݈݊ߣଷ 
 

൅
ܰሺݕത െ ሻଶߠ

ଵߣ
൅
∑ሺ′ܡ ܡ௞′ሻܞ௞ܞ

௡
௞ୀଶ

ଶߣ
൅
∑ሺ′ܡ ܡ௟′ሻܞ௟ܞ

ே
௟ୀ௡ାଵ

ଷߣ
 

 
ൌ ܰ ݈݊ሺ2ߨሻ ൅ ଵߣ݈݊ ൅ ሺ݊ െ 1ሻ݈݊ߣଶ ൅ ሺܰ െ ݊ሻ݈݊ߣଷ 

 

൅
ܰሺݕത െ ሻଶߠ

ଵߣ
൅
ܵܵ௔
ଶߣ

൅
ܵܵ௘
ଷߣ

 

 

where ݕത ൌ ଵ

ே
૚ᇱܡ and ܵܵ௔ and ܵܵ௘ are discussed further below. 

 
Since the columns v௜ are orthogonal, we obtain the following: 

۷ ൌ ଵܞଵܞ
ᇱ ൅෍ܞ௞ܞ௞

ᇱ

௡

௞ୀଶ

൅ ෍ ௟ܞ௟ܞ
ᇱ

ே

௟ୀ௡ାଵ

. 

 
The spectral decomposition of ۾۾ᇱ yields the following: 

ᇱ۾۾ ൌ 2ሺ݊ െ 1ሻܞଵܞଵ
ᇱ ൅ ሺ݊ െ 2ሻ෍ܞ௞ܞ௞

ᇱ

௡

௞ୀଶ

൅ 0 ෍ ௟ܞ௟ܞ
ᇱ

ே

௟ୀ௡ାଵ

ൌ 2ሺ݊ െ 1ሻܞଵܞଵ
ᇱ ൅ ሺ݊ െ 2ሻ෍ܞ௞ܞ௞

ᇱ

௡

௞ୀଶ

. 
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The spectral decomposition of ઱ yields the following: 

઱ ൌ ሺߪ௘ଶ ൅ 2ሺ݊ െ 1ሻߪ௔ଶሻܞଵܞଵ
ᇱ ൅ ሺߪ௘ଶ ൅ ሺ݊ െ 2ሻߪ௔ଶሻ෍ܞ௞ܞ௞

ᇱ

௡

௞ୀଶ

൅ ௘ଶߪ ෍ ௟ܞ௟ܞ
ᇱ

ே

௟ୀ௡ାଵ

. 

 
Using the spectral decomposition of ۾۾ᇱ, we obtain the very important result, the last statement 
of which can be verified by multiplying out. 
 

෍ܞ௞ܞ௞
ᇱ

௡

௞ୀଶ

ൌ ሺ۾۾ᇱ െ 2ሺ݊ െ 1ሻܞଵܞଵ
ᇱሻ/ሺ݊ െ 2ሻ 

ൌ
1

ሺ݊ െ 2ሻ
൬۾۾ᇱ െ

4
݊
૚ே૚ே

ᇱ ൰ 

 

ൌ
ሺ݊ െ 1ሻଶ

ሺ݊ െ 2ሻ
൬

1
ሺ݊ െ 1ሻ

۾ െ
1
ܰ
૚ே૚௡ᇱ ൰ ൬

1
ሺ݊ െ 1ሻ

ᇱ۾ െ
1
ܰ
૚௡૚ே

ᇱ ൰. 

 
 
Furthermore, it can be shown that 
 

ଵ

௡ିଵ
ܡᇱ۾ ൌ

ۏ
ێ
ێ
തݕۍ

ሺଵሻ

തሺଶሻݕ

⋮
ےതሺ௡ሻݕ

ۑ
ۑ
ې
, where ݕതሺ௞ሻ ൌ ଵ

௡ିଵ
∑ 	௜௝௜ୀ௞ݏ
௢௥	௝ୀ௞

, and 
ଵ

ே
૚ᇱܡ ൌ  ,ത.  Henceݕ

ଵ

௡ିଵ
ܡᇱ۾ െ ଵ

ே
૚௡૚ே

ᇱ ܡ ൌ

ۏ
ێ
ێ
തݕۍ

ሺଵሻ െ തݕ
തሺଶሻݕ െ തݕ

⋮
തሺ௡ሻݕ െ ےതݕ

ۑ
ۑ
ې
.  Thus we see that ܵܵ௔ ൌ

ሺ௡ିଵሻమ

ሺ௡ିଶሻ
∑ ሺݕതሺ௞ሻ െ തሻଶ௡ݕ
௞ୀଵ . 

 
It is also true that 

෍ ୪ܞ௟ܞ
ᇱ

ே

௟ୀ௡ାଵ

ൌ ۷ െ ଵܞଵܞ
ᇱ െ෍ܞ௞ܞ୩

ᇱ

௡

௞ୀଶ

ൌ ۷ െ
1
ܰ
૚ே૚ே

ᇱ െ෍ܞ௞ܞ௞
ᇱ

௡

௞ୀଶ

. 

 
So if we define ܵܵ௧ ൌ ᇱሺ۷ܡ െ ଵܞଵܞ

ᇱሻܡ, we then arrive at ܵܵ௘ ൌ ∑′ܡ ௟ܞ௟ܞ
ᇱே

௟ୀ௡ାଵ ܡ ൌ ܵܵ௧ െ ܵܵ௔. 
 
Because ܵܵ௔ and ܵܵ௘ are defined using the characteristic vectors of ઱, by Cochran’s Theorem, 
we have that ܵܵ௔ and ܵܵ௘ are independent, with degrees of freedom ݊ െ 1 and ܰ െ ݊, 
respectively.  (See Cochran, 1934.)  Each of the sums of squares is independent of the sample 
mean.  It can be shown that we also have that  
 

തሻݕሺܧ ൌ തሻݕሺݎܸܽ ,ߠ ൌ ఙ೐మ

ே
൅ ସఙೌమ

௡
ሺܵܵ௔ሻܧ , ൌ ሺ݊ െ 1ሻሺߪ௘ଶ ൅ ሺ݊ െ 2ሻߪ௔ଶሻ, and ܧሺܵܵ௘ሻ ൌ ሺܰ െ ݊ሻߪ௘ଶ. 
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     3.2  The ANOVA Table: 
 
All of the above work leads to the following ANOVA table. 
 
Source df Sum of Squares Mean Square Expected Value of Mean Square

A ݊ െ 1 ܵܵ௔ ܵܯ௔ ൌ ܵܵ௔/ሺ݊ െ 1ሻ ߪ௘ଶ ൅ ሺ݊ െ 2ሻߪ௔ଶ 

Error ܰ െ ݊ ܵܵ௘ ܵܯ௘ ൌ ܵܵ௘/ሺܰ െ ݊ሻ ߪ௘ଶ 

Total ܰ െ 1 ܵܵ௧   

 
This immediately leads to unbiased estimators for all parameters in our model:  First let ܵܯ௔ ൌ
ܵܵ௔/ሺ݊ െ 1ሻ and ܵܯ௘ ൌ ܵܵ௘/ሺܰ െ ݊ሻ.  It then follows that 
 

෠ߠ ൌ  തݕ
 

ො௔ߪ
ଶ ൌ

௔ܵܯ െܵܯ௘
݊ െ 2

 

 
ො௘ߪ

ଶ ൌ  ௘ܵܯ
 
These estimates are closely related to REML estimates28.  (For future reference, let ܵܵ௧ ൌ ܵܵ௔ ൅
ܵܵ௘ and ܵܯ௧ ൌ ܵܵ௧/ሺܰ െ 1ሻ.) 
 
The variance of a randomly selected score (the similarity score for two randomly selected 
objects) is given by ߪ௦ଶ ൌ ௘ଶߪ ൅  is (തݕ) ௔ଶ.  The variance of the mean of all scores in the sampleߪ2

given by ߪ௬ത
ଶ ൌ ఙ೐మ

ே
൅ ସఙೌమ

௡
.  We can obtain unbiased estimates for each of these quantities by 

plugging in the unbiased estimates of the variance components.  These will be designated by 

“hats”.  Thus ߪො௦ଶ ൌ ො௘ଶߪ ൅ ො௔ଶߪ2 ൌ ௘ܵܯ ൅ 2ெௌೌିெௌ೐
௡ିଶ

ൌ ଵ

௡ିଶ
൫ሺ݊ െ 4ሻܵܯ௘ ൅ ො௬തߪ ௔൯ andܵܯ2

ଶ ൌ ఙෝ೐మ

ே
൅

ସఙෝೌమ

௡
	ൌ ெௌ೐

ே
൅ ସ

௡

ெௌೌିெௌ೐
௡ିଶ

ൌ ିଶ

ሺ௡ିଵሻሺ௡ିଶሻ
௘ܵܯ ൅

ସ

௡ሺ௡ିଶሻ
 .௔ܵܯ

 
4.  Random Match Probabilities: 

 
For a given cutoff ߬, the random match probability is the probability that a randomly selected ݏ௜௝ 
will exceed ߬.  That is ܴܲܯ ൌ ܲሼݏ௜௝ ൐ ߬ሽ.  For our model 

ܲ൛ݏ௜௝ ൐ ߬ൟ ൌ 1 െ ߔ ൬
߬ െ ߠ
௦ߪ

൰ ≡  ߨ

where ߔ is the standard normal CDF29. 

                                                 
28 The difference between these estimates and the REML estimates is that in the case where using the above 
formulas yields a negative result for ߪො௔

ଶ, the new results are that ߪො௔
ଶ ൌ 0 and ߪො௘

ଶ ൌ  ௧.  We can use these REMLܵܯ
rules if we wish. 
29	The CDF (cumulative distribution function) evaluated at x is area under the probability density function from 
minus infinity up to x.  
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The following statements are equivalent for any values of ܤଵ and ܤଶ (either random or not 
random). 

ଵܤ ൏ ߨ ൏ ⇔	ଶܤ ଵܤ	 ൏ 1 െ ߔ ൬
߬ െ ߠ
௦ߪ

൰ ൏ ⇔1	ଶܤ െ ଶܤ ൏ ߔ ൬
߬ െ ߠ
௦ߪ

൰ ൏ 1 െ  ଵܤ

ଵܮ⇔ ≡ ଵሺ1ିߔ െ ଶሻܤ ൏
߬ െ ߠ
௦ߪ

൏ ଵሺ1ିߔ െ ଵሻܤ ≡  .ଶܮ

 
Thus we require a random quantities ܮଵ and ܮଶ such that 

ܲ ൜ܮଵ ൏
߬ െ ߠ
௦ߪ

൏ ଶൠܮ ൌ 1 െ  .ߙ

 
It is straightforward to convert such an interval to an upper confidence bound for ߨ, the RMP. 
 
5.  Computing a Confidence Interval for RMP Using a Method Based on Fieller’s 
Theorem: 
 
If we wish to compute a confidence interval for RMP, it turns out that creating a confidence 

interval for 
ఛିఏ

ఙೞ
 is the way to go, as shown above.  We can do this by using the estimates ݕത for ߠ 

and ߪො௦ for ߪ௦.  However, there are several subtleties and approximations needed as we proceed.   
 
The first is that we need to find the expected value of the square root of a chi-square random 
variable.  If a random variable ܹ ൌ  ߥ ଶܸ, where ܸ is a chi-square random variable withߪ

degrees of freedom, then it turns out that ܧ ቂܹ
భ
మቃ ൌ ݂ where ,ߪ݂ ൌ ൫మ

ഌ
൯
భ
మ ௰൫

ഌశభ
మ ൯

௰൫ഌమ൯
.  It then follows 

that ܸܽݎ ቂܹ
భ
మቃ ൌ ଶሺ1ߪ െ ݂ଶሻ.  (It is true that ݂ is a number which is quite close to one, but never 

larger than one.) 
 
The second is that for ߪො௦ଶ as given above, ߪො௦ଶ does not have an exact chi-square distribution, it 
being the weighted sum of two chi-squares.  Fortunately, we can use an excellent approximation, 
given by Satterthwaite’s approximation for degrees of freedom.  We have that ߪො௦ଶ ൌ
ሺ೙షరሻ
ሺ೙షమሻ

ெௌ೐ା
మ

ሺ೙షమሻெௌೌ which leads to the approximate degrees of freedom for ߪො௦ଶ of ቀሺ௡ିସሻ
ሺ௡ିଶሻ

௘ܵܯ ൅

మ
ሺ೙షమሻ

௔ቁܵܯ
ଶ
/ ൭

ቀሺ೙షరሻ
ሺ೙షమሻ

ெௌ೐ቁ
మ

ሺேି௡ሻ
൅

ቀ మ
ሺ೙షమሻெௌೌቁ

మ

ሺ௡ିଵሻ
൱.  This approximation is good for large values of ݊ and 

hence of ܰ. 
 
The third is that we must have a normal distribution (or an approximation thereto) for each of ܽ 
and ܾ defined in the next paragraph.  We have directly from our model that ܽ has a normal 
distribution.  We have that a chi-square random variable with ߥ degrees of freedom is the sum of 
 independent chi-square random variables, each with one degree of freedom.  Hence ܾଶ has an ߥ
approximate normal distribution.  It turns out by looking at normal plots from the simulations 
described below, that ܾ has approximately a normal distribution for large values of ݊.  Hence, we 
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at least approximately have the normal assumptions needed to use Fieller’s Theorem described 
next. 
The fourth is that we must be able to assemble the information from our model to get a 

confidence interval for 
ఛିఏ

ఙೞ
.  This we do by using the formulations of Fieller’s Theorem.  We 

begin by defining ܽ ൌ ߬ െ ܾ ത andݕ ൌ ො௦ߪ
݂ൗ .  It then is true that ܧሾܽሿ ൌ ߬ െ ሾܽሿݎܸܽ and ߠ ൌ ఙ೐మ

ே
൅

ସఙೌమ

௡
.  It is also true that ܧሾܾሿ ൎ ሾܾሿݎܸܽ ௦ andߪ ൎ ഑ೞ

మ

೑మ
൫ଵି௙మ൯.  (The non-equal signs come from using 

Satterthwaite’s approximation for the degrees of freedom.  Again, for large values of ݊, the 
approximation works well, as we shall show below.)  Finally, it is true that ݒ݋ܥሾܽ, ܾሿ ൌ 0 

because ݕത and ߪො௦ଶ have covariance zero from our model.  If we now define ݃ ൌ
ఈݐ ଶ⁄
ଶ ොఙෝೞߪ

ଶ

ܾଶ
൘ ൌ

ఈݐ ଶ⁄
ଶ ሺ1 െ ݂ଶሻ and ݄ ൌ

ఈݐ ଶ⁄
ଶ ො௬തߪ

ଶ

ܽଶ
൘ .  (These two quantities are reciprocals of assessments of 

whether the quantities ܧሾܾሿ and ܧሾܽሿ are different from zero.  It will turn out to be critical that 
 ሾܾሿ is different from zero and to get a good confidence interval; it will turn out to be criticalܧ
that ܧሾܽሿ is different from zero as well.  Note that requiring these numbers to be significant 
means that ݃  and ݄ must be small.)   
 

If we define the fraction we want to form a confidence interval as 
ఛିఏ

ఙೞ
, then we can note that 

ܽ െ ఛିఏ

ఙೞ
ܾ has expected value approximately zero under our model.  This allows us to form a 

point estimate of ܽ ܾ⁄  and after some work, we derive a confidence interval for 
ఛିఏ

ఙೞ
 of  

௔

௕
൤
ଵേඥ௚ା௛ି௚௛

ଵି௚
൨. 

 
     6.  A Study of the Method Based on Fieller’s Theorem: 
 
We ran a large simulation study based on the method illustrated in the previous section.  We used 
four values of ݊:  50, 100, 500, and 1000.  These values cover what could be attempted as a real 
study.  We also used five values of ߩ ൌ  ௘ଶ:  0.1, 0.5, 1.0, 2.0, and 10.0.  These five valuesߪ/௔ଶߪ
cover situations where there is very little correlation to where there is quite a bit.  We feel that 
these values also cover what might be expected in real studies.   
 
We ran 1,000,000 simulations in each cell and report estimates of the coverage probability, the 
average lower bound, and average upper bound.  We realize that the lower limits are of little 
interest.  It is getting an upper bound on the RMP that is important.  However, it is worth 
reporting that one cannot rely on the upper intervals to have 97.5% coverage probability even 
though that is what we would like.  It turns out for these intervals that although the coverage 
probabilities are very close to 95% (which was the nominal value we used), the upper limits do 
not get very close to 97.5% coverage probability.  We are not sure why this occurs, but it surely 
does. 
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What we see is that in all the 20 cells for both an RMP of 0.001 (one in a thousand) and 
0.000001 (one in a million) the coverage probabilities are very close to 0.95.  The upper limits 
are sometimes quite far from the true values, but that is the price we pay for using a correct 
method.   
 

Estimated Coverage Probability for a Method Based on Fieller’s Theorem 
Using Correct Method Based on New Model 

(Nominal Coverage Probability 0.95; True RMP=0.001; 1,000,000 Simulations per Cell) 
(Table Cell Entries:  Coverage Probability, Average Lower Bound, Average Upper Bound) 

࣋ ൌ  ૛ࢋ࣌/૛ࢇ࣌
 

n ߩ ൌ.1 ߩ ൌ.5 ߩ ൌ1 ߩ ൌ2 ߩ ൌ10

50 .9467 
.0005 
.0022 

.9433

.0002 

.0042 

.9441

.0002 

.0055 

.9457 

.0001 

.0068 

.9475

.0001 

.0085 

100 .9475 
.0006 
.0017 

.9467

.0004 

.0027 

.9464

.0003 

.0034 

.9476 

.0002 

.0040 

.9491

.0002 

.0048 

500 .9491 
.0008 
.0012 

.9494

.0006 

.0016 

.9493

.0006 

.0017 

.9497 

.0005 

.0019 

.9497

.0005 

.0021 

1000 .9494 
.0009 
.0012 

.9498

.0007 

.0014 

.9494

.0007 

.0015 

.9495 

.0006 

.0016 

.9500

.0006 

.0017 
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Estimated Coverage Probability for a Method Based on Fieller’s Theorem 
Using Correct Method Based on New Model 

(Nominal Coverage Probability 0.95; True RMP=0.000001; 1,000,000 Simulations per Cell) 
 (Table Cell Entries:  Coverage Probability, Average Lower Bound, Average Upper Bound) 

࣋ ൌ  ૛ࢋ࣌/૛ࢇ࣌
 

n ߩ ൌ.1 ߩ ൌ.5 ߩ ൌ1 ߩ ൌ2 ߩ ൌ10

50 .9475 
.0000003 
.0000050 

.9419
.0000001
.0000232

.9425
.0000001
.0000464

.9443 
.0000001 
.0000762 

.9469
.0000000
.0001274

100 .9480 
.0000004 
.0000027 

.9458
.0000002
.0000085

.9456
.0000001
.0000148

.9470 
.0000001 
.0000224 

.9487
.0000001
.0000350

500 .9489 
.0000007 
.0000015 

.9492
.0000004
.0000025

.9490
.0000004
.0000032

.9496 
.0000003 
.0000039 

.9496
.0000003
.0000049

1000 .9493 
.0000008 
.0000013 

.9498
.0000006
.0000019

.9495
.0000005
.0000022

.9494 
.0000004 
.0000026 

.9499
.0000004
.0000031

 
     7.  Two Bad Ways to Calculate Bounds for the RMP: 
  
One way that has been suggested is to get around the correlation by only selecting comparisons 
which do not have any correlations by our model (such as ݏଵଶ, ݏଷସ, ݏହ଺, etc.).  Researchers using 
this method use only ݊/2 similarity scores out of the possible ܰ ൌ ݊ሺ݊ െ 1ሻ/2 scores.  This is 
too conservative.  We did a simulation study on this method and discovered that (as expected), 
the coverage probability had the correct value, the value of ߩ did not affect the answers, but that 
the upper limits for the intervals were quite a bit larger than those for the correct method 
illustrated in the previous section.  Please see the simulations given next. 
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Estimated Coverage Probability for a Method Based on Fieller’s Theorem 
Using a Method Based on New Model for only ࢔ ૛⁄  out of ࢔ሺ࢔ ൅ ૚ሻ ૛⁄  Observations 

(Nominal Coverage Probability 0.95; True RMP=0.001; 1,000,000 Simulations per Cell) 
(Table Cell Entries:  Coverage Probability, Average Lower Bound, Average Upper Bound) 

࣋ ൌ  ૛ࢋ࣌/૛ࢇ࣌
 

n ߩ ൌ.1 ߩ ൌ.5 ߩ ൌ1 ߩ ൌ2 ߩ ൌ10

50 .9455 
.0000 
.0142 

.9455

.0000 

.0142 

.9452

.0000 

.0142 

.9453 

.0000 

.0142 

.9458

.0000 

.0142 

100 .9480 
.0001 
.0074 

.9481

.0001 

.0074 

.9479

.0001 

.0074 

.9480 

.0001 

.0074 

.9480

.0001 

.0074 

500 .9494 
.0004 
.0026 

.9498

.0004 

.0026 

.9495

.0004 

.0026 

.9496 

.0004 

.0026 

.9500

.0004 

.0026 

1000 .9496 
.0005 
.0020 

.9492

.0005 

.0020 

.9499

.0005 

.0020 

.9499 

.0005 

.0020 

.9498

.0005 

.0020 
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Estimated Coverage Probability for a Method Based on Fieller’s Theorem 
Using a Method Based on New Model for only ࢔ ૛⁄  out of ࢔ሺ࢔ ൅ ૚ሻ ૛⁄  Observations 

(Nominal Coverage Probability 0.95; True RMP=0.000001; 1,000,000 Simulations per Cell) 
(Table Cell Entries:  Coverage Probability, Average Lower Bound, Average Upper Bound) 

࣋ ൌ  ૛ࢋ࣌/૛ࢇ࣌
 

n ߩ ൌ.1 ߩ ൌ.5 ߩ ൌ1 ߩ ൌ2 ߩ ൌ10

50 .9446 
.0000000 
.0005140 

.9447
.0000000
.0005123

.9444
.0000000
.0005124

.9445 
.0000000 
.0005137 

.9450
.0000000
.0005111

100 .9478 
.0000000 
.0001169 

.9478
.0000000
.0001168

.9477
.0000000
.0001168

.9475 
.0000000 
.0001166 

.9477
.0000000
.0001166

500 .9494 
.0000002 
.0000096 

.9498
.0000002
.0000096

.9494
.0000002
.0000096

.9497 
.0000002 
.0000096 

.9498
.0000002
.0000096

1000 .9497 
.0000003 
.0000049 

.9492
.0000003
.0000049

.9498
.0000003
.0000049

.9499 
.0000003 
.0000049 

.9498
.0000003
.0000049

 
 
Some researchers simply ignore the correlation structure and proceed as if there is a sample of ܰ 
independent scores.  This would yield an invalid confidence bound for the RMP.  The expected 

value of ܵܯ௧ is given by ߪ௘ଶ ൅ 2 ௡ିଵ

௡ାଵ
 ௦ଶ.  The expected value ofߪ ௔ଶ, which is almost the same asߪ

 ௧/ܰ is given byܵܯ
ఙ೐మ

ே
൅ ቀ ଵ

௡ାଵ
ቁ ସఙೌ

మ

௡
 which is not at all the same as ߪ௬ത

ଶ.  If we ignored the 

correlation structure in this model, we could use the same formula from the previous work but 

substituting the values of ܵܯ௧ for ߪ௦ଶ and ܵܯ௧/ܰ for	ߪ௬ത
ଶ
.  This confidence interval has some 

very bad properties.  Please see the simulation results which show that clearly, the coverage 
probability does not at all come close to 95%.  Using the incorrect formulas definitely affects the 
coverage probability in an extremely bad way. 
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Estimated Coverage Probability for a Method Based on Fieller’s Theorem 
Using an Incorrect Method Based on New Model 

(Nominal Coverage Probability 0.95; True RMP=0.001; 1,000,000 Simulations per Cell) 
(Table Cell Entries:  Coverage Probability) 

࣋ ൌ  ૛ࢋ࣌/૛ࢇ࣌
 

n ߩ ൌ.1 ߩ ൌ.5 ߩ ൌ1 ߩ ൌ2 ߩ ൌ10

50 .9895 .8294 .7315 .6617 .5923

100 .9930 .8230 .7196 .6488 .5814

500 .9953 .8162 .7106 .6392 .5702

1000 .9955 .8158 .7095 .6371 .5689

 
Estimated Coverage Probability for a Method Based on Fieller’s Theorem 

Using an Incorrect Method Based on New Model 
(Nominal Coverage Probability 0.95; True RMP=0.000001; 1,000,000 Simulations per Cell) 

(Table Cell Entries:  Coverage Probability) 
࣋ ൌ  ૛ࢋ࣌/૛ࢇ࣌

 

n ߩ ൌ.1 ߩ ൌ.5 ߩ ൌ1 ߩ ൌ2 ߩ ൌ10

50 .9733 .7438 .6302 .5566 .4879

100 .9787 .7178 .5996 .5258 .4607

500 .9838 .6909 .5705 .4984 .4334

1000 .9841 .6875 .5664 .4938 .4298

 
8.  Conclusions:   
 
This paper has attempted to illustrate a model for pairwise comparisons which can be used to 
estimate the random match probability.  The paper has shown the form of the model, ܡ ൌ ૚ேߠ ൅
܉۾ ൅  and what are the consequences of the normal distribution of the random components of ܍
the model.  It has shown that there is a closed form for an ANOVA table.  It has shown that there 

is a method for forming confidence intervals for 
ఛିఏ

ఙೞ
 which works well based on the simulation 
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results.  It has also shown that two other methods for making confidence intervals either fail by 
being too conservative or are just incorrect.  We feel that the methods described here could be 
used by researchers working in the area of studying random match probabilities.   
 
 
References: 
 
A Useful Theorem in Matrix Theory, S. N. Roy, Proceedings of the American Mathematical 
Society , Vol. 5, No. 4 (Aug., 1954), pp. 635-638. 
 
Cochran, William, “The distribution of quadratic forms in a normal system, with applications to 
the analysis of covariance”, Mathematical Proceedings of the Cambridge Philosophical Society 
30 (2): 178–191. (Apr 1934) 
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ROC Curves for Statistical Methods of Evaluating Evidence: Common 
Performance Measures Based On Similarity Scores 
 
R. Bradley Patterson, a PhD Candidate supported by the grant, and Drs. Miller and Saunders 
authored a report that demonstrates the utility of ROC curves in forensics, where the goal is to 
measure the performance of methods that evaluate evidence. ROC curves offer several benefits 
to forensics. In contrast to the RMP, ROC curves capture the full range of error rates achievable 
with a method. They also depict the relative separation of the distributions of similarity scores 
from a given method. This then allows for comparisons of methods that produce scores on 
different scales. Additionally, an important characteristic for a method of evaluating pairs of 
evidence is the probability that a randomly selected pair from the same source would have a 
higher similarity score than a randomly selected pair from different sources, which the area 
under the curve (AUC) can estimate.  
 
To show the value of ROC curves in forensics, Patterson applied them to measuring the 
performance of methods of evaluating trace evidence in the form of glass fragments. The 
methods, based on test statistics and likelihood ratios, came from an article by Aitken and Lucy 
(2004). Test statistics and likelihood ratios both provide measures of association between two 
samples. So those values are interpreted as similarity scores, with which ROC curves were 
created for the same data as the original article. The ROC curves provided measurements of the 
full performance of the methods across all thresholds as well as an even basis for comparison. 
All of the methods performed very well.  
 
This report is included as Appendix 3 to this Final Report. 
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Phase II and Phase III 
 
Goal:  Investigate Properties of Approximate Methods for Evidence Interpretations such as 
Score Based Likelihood Ratios  
 
The Utilization of Data Generated through Automated Systems 
 
Throughout the grant, the researchers have utilized forensic data generated by automated 
systems.  For many years, the research team has played a significant role in the development of 
automated systems for forensic handwriting and fingerprint identification. In particular, the team 
has developed the scoring algorithms that exploit quantification systems for both handwriting 
and fingerprints.  (See Saunders’ and Gantz’s Vitas for a complete list of these research 
projects.) Both Drs. Gantz and Saunders were invited presenters at the Measurement Science and 
Standards in Forensic Handwriting Analysis (MSSFHA) Conference, June 4 – 5, 2013.  The 
National Institute of Standards and Technology (NIST) hosted the MSSFHA Conference which 
was planned and organized in collaboration with the American Academy of Forensic Sciences – 
Questioned Document Section, American Board of Forensic Document Examiners, American 
Society of Questioned Document Examiners, Federal Bureau of Investigation Laboratory, 
National Institute of Justice (NIJ), and Scientific Working Group for Forensic Document 
Examination (SWGDOC).   
 
Attendees, both in person and via a live webcast, included representatives from the collaborating 
institutions as well as universities, federal agencies, forensic laboratories, and the private sector.  
Dr. Gantz presented the Forensic Language-Independent Analysis System for Handwriting 
Identification (FLASH ID) in the Advances in Measurement Science in Handwriting Session.  
He stressed the accuracy of the automated system which finds identifying power from measured 
characteristics not directly observed or addressed by examiners. Dr. Saunders spoke on 
Understanding Individuality of Handwriting Using Score-Based Likelihood Ratios in the 
Advances in Statistics for Handwriting Analysis Session-this presentation summarized research 
directly funded by this research grant that is published in two papers in Forensic Science 
International.  His examples concerning Score-Based Likelihood Ratios are based on joint work 
of Drs. Davis, Saunders, Hepler, and Buscaglia and were generated using data from FLASH ID.  
In this presentation Dr. Saunders summarized research results (from this grant) which 
demonstrated that common approaches to approximating the value of forensic evidence can lead 
to radically different values of evidence. These results are summarized in the previously 
mentioned papers in Forensic Science International. 
 
To conclude the Conference, moderators led a facilitated discussion on the future state of 
forensic handwriting analysis, specifically focusing on the following questions: What does the 
future state of handwriting analysis look like; What are the barriers to implementing the future 
state; and what does a roadmap to achieve the future state look like?  The final report 
summarizing the concluding discussion stated, “The future state of the discipline will incorporate 
the use of more quantitative analysis tools during the handwriting examination process to assess 
and compare handwriting characteristics. Forensic document examiners (FDEs) will employ the 
use of statistical models to explain the significance of their conclusions based on the uniqueness 
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of observed and measured handwriting characteristics.” Further, the report stated, “It is important 
to note that automated comparison systems may be considered separate from statistical models, 
as automated systems can facilitate the matching of a known writer with questioned documents 
without necessarily generating statistics. This technology provides support during the 
examination process and may provide new information for the human examiner to consider. 
FDEs can use statistics and automated systems to complement their current practices and to 
enhance the way they review cases, but neither can replace humans.”  
  
Drs. Gantz and Saunders presented similar messages concerning fingerprint forensics in the 
Statistics in Forensic Science Topic Contributed Paper Session at the Joint Statistical Meetings in 
Montreal in August 2013.  Dr. Gantz presented his paper “A Similarity Score for Fingerprint 
Images.”  The paper co-authored with John Miller describes the scoring algorithms he developed 
for a totally automated innovative technology enabling the identification of crime scene 
fingerprints. The presentation was selected to receive an Honorable Mention in the Section on 
Physical and Engineering Sciences (SPES) Outstanding Presentation Awards indicating that it 
was among the best of the 73 talks presented in a SPES-sponsored contributed paper session.  Dr. 
Gantz made the same statement he had made concerning automated handwriting identification 
systems, namely that automated systems are differentiated from statistics and that due to their 
accuracy and use of novel information they will impact the practice of examiners.  Dr. Gantz’s 
scoring algorithms developed for a totally automated technology enabling the identification of 
crime scene fingerprints are presented in some detail in the full Final Report.  
 
In his presentation, “On Desiderata for Score-Based Likelihood Ratios for Forensic Evidence,” 
Dr. Saunders stated opinions on the desirable features of score-based likelihood ratios (SLRs) for 
interpreting and presenting forensic evidence.  Dr. Gantz is providing Dr. Saunders with latent 
print based data from automated systems for use in score-based likelihood ratio examples in 
future research. 
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Phase II Part a 

Scoring Algorithm for an Automated Latent Fingerprint 
Identification System 

 
The first question commonly encountered by statisticians working in forensics science is the 
closed set identification problem.   
 

Closed Set Identification:  
In this list of k known sources, which is the source of the trace object 
found on the suspect? 
 

For closed set identification, the evidence for answering this question, traditionally denoted as  

E , can be partitioned into two categories {E
S
, E

U
} where: 

 
1. E

S
:	Information	from	sample(s)	obtained	from	a	set	of	Specific	sources.		

2. E
U
:	Information	from	sample(s)	with	an	Unknown	source.		

 
The samples from the specific sources in the watch list, E

S
, are commonly referred to as training 

samples; each of these sets of samples can be used to estimate the fixed parameters necessary to 
describe how the corresponding source of the watch list stochastically generates evidence.  Let 
the fixed but unknown parameters that are needed to characterize the ith  watch list source’s 
sampling distribution be denoted as 

s,i
, for i  1,2,,W .   

 
The evidence with an unknown source, E

U
, is usually constant (fixed) after being discovered. 

However, the stochastic nature of E
U

 is characterized by one of the set of parameters from the 

sources on the watch list; i.e. 
s,1

, 
s,2

, ...,  
s,W

. 

 
Traditionally, this class of problems falls within the domain of statistical pattern recognition with 
the goal of generating a short list of potential sources for the trace.  In most cases, an error is 
made when the actual source of the trace is not included in the returned short list for the trace.  
When the stochastic nature of the source distributions and the rates at which we encounter traces 
from each source are known, an optimal solution (in terms of minimizing the total number of 
errors made by a system) exists and is known as the Bayes Classification rule.  
 
In a situation where the length of the shortlist of possible sources is one, the Bayes Rule for 
classification says that, if we are looking at traces generated by the watch list sources over a 
period of time, the optimal rule for identifying the source of the traces is to assign each trace to 
the specific source, on the watch list, that has the greatest likelihood of generating said trace. If 
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the likelihood model for the ith  suspect source on the watch list is f e |
s,i  ,  then the Bayes Rule 

for assigning e
u
 to the ith  source on the watch list is  

	 r eu ,s   argmax
i 1,2,,W 

 i f eu |s,i , 







,	

where 
i
 is the rate at which we observe traces from the ith  source and r e

u
,

s   is a class label 

from the watch list.   
 
Unfortunately, it is extremely rare to know the exact form of r e

u
,

s  , and it is usually necessary 

to statistically estimate this rule using the training samples, E
S
.  In the more complex evidential 

forms the approaches necessary to estimate r  can become extremely sophisticated.   
 
 
Current research on Closed Set Identification 
 
Grossly speaking, it is our opinion that when exploring new types of forensic modalities or 
quantifications of forensic evidence, the best way to discover if there is any potential for the 
method to be applicable to the identification of sources problem is to construct statistical 
methods for the closed set identification problem. 
 
The primary reason for exploring the closed set identification question first is that there are well-
developed statistical tools for addressing this question.  A secondary reason is that in closed set 
identification problems for low dimensional problems there exists a gold standard, Bayes 
Classification Rule, even if the rule itself needs to be estimated.   
 
For these reasons we have pursued the development of a closed set identification algorithm with 
respect to a new quantification developed by Sciometrics LLC for fingerprint evidence. The 
system has become sufficiently accurate in terms of closed set identification error rates, and we 
will pursue presentation and interpretation of evidence analyzed with this new quantification 
procedure. The new quantification for fingerprint evidence being exploited by Drs. Saunders and 
Gantz is now described.  
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Scoring Algorithm for an Automated Latent Fingerprint Identification System 

Dr. Gantz has developed the scoring algorithms for a fully automated fingerprint technology, 
which creates an accurate invertible Warp from a latent fingerprint to each image in a reference 
database of fingerprints.  The Warp removes the locally nonlinear distortion from the latent.  The 
scoring algorithm starts with a similarity score that is an assessment of the accuracy of the 
nonlinear, invertible Warp, which yields an overlay of the latent onto a reference image.  For 
each ridge or furrow pixel in the thinned latent image, pairwise comparisons among reference 
prints are computed based on the physical agreement of corresponding pixels from the latent and 
the reference print as measured in latent space.  The pairwise comparison scores are arrayed in 
the competitive matrix structure that has previously been introduced by Gantz for scoring within 
multiple biometric modalities.  This structure yields scores that Gantz and Saunders are applying 
to score-based likelihood ratios for fingerprint evaluation.  Gantz has presented on his latent 
fingerprint scoring algorithms at the Impression and Pattern Evidence Symposium (2011), the 
European Academy of Forensic Sciences (2013) and the Joint Statistical Meetings (2013).   

Two very similar scoring derivations follow this introduction.  Each presents the scoring of a 
reference database of images against a Latent. The first is based on actual pairwise comparison 
scores between reference prints; the other is based on counts of wins from the pairwise 
comparison scores between reference prints.  Each demonstrates the full details of the scoring 
using one NIST 27 Latent and a reference set of the true matching image and 49 other images 
objectively selected from a large corpus of images to be close matches to the true matching 
image.  The limit to 49 images is only for ease of computation on a laptop computer.  
The Pairwise Comparison Score Sij(ω) between images i and j at latent pixel ω is defined as 
follows.  For each pixel in the thinned latent image, the WARP pairs a short Bezier curve in the 
latent with a Bezier curve in the reference image.  Based on this pairing, for each pixel in the 
thinned latent image, pairwise comparisons among reference prints are computed based on the 
physical agreement of the pixel’s best latent to reference image pairs of Bezier curves as 
measured in latent space.  For a single pixel ω, the Similarity Score for an image i against the 
Latent is log[di(ω)] where di(ω) is the difference between the pixel’s Latent Bezier curve and the 
Warp inversion to the Latent of the pixel’s reference image Bezier.  The pixel-based pairwise 
comparison score for images i and j is   Sij(ω) = -2log[di(ω)/ dj(ω)]   when both images have the 
required Bezier curves defined for the Latent pixel ω. Each pixel-based pairwise comparison 
yields a logarithmic pixel score sij(ω) comparing reference print i to reference print j. Initially, 
the score is anti-symmetric in that sji(ω) = -sij(ω).   
 
The stronger pixel scores have greater power for identification.  Therefore only the pixels with 
scores satisfying  sij(ω) > 3  or  sij(ω) < -3  are retained for analysis.  The following graph (Figure 
1) displays the sij(ω) scores for the pixels that meet the filtering criteria for a reference set of 50 
images, one of which is the true match to the Latent. In this graph, we also restrict log[di(ω)] < 4; 
that is, we require an accurate similarity score for image i  for the pixel ω.  
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Figure 1:  sij(ω) scores for the pixels that meet the filtering criteria for a reference set of 50 
images, one of which is the true match to the Latent. In this graph, we also restrict log[di(ω)] < 4; 
that is, we require an accurate similarity score for image i  for the pixel ω. 
 

         sij(ω)                                                                                        Cum.              Cum. 
        Midpoint                                                                             Freq     Freq  Percent  Percent 
                    ‚ 
            -9.75   ‚                                                                           0        0     0.00     0.00 
            -9.25   ‚                                                                          21       21     0.00     0.00 
            -8.75   ‚                                                                         433      454     0.01     0.01 
            -8.25   ‚                                                                         755     1209     0.02     0.04 
            -7.75   ‚                                                                         887     2096     0.03     0.07 
            -7.25   ‚                                                                        1198     3294     0.04     0.10 
            -6.75   ‚                                                                        3450     6744     0.11     0.21 
            -6.25   ‚*                                                                       7791    14535     0.24     0.45 
            -5.75   ‚*                                                                      11789    26324     0.37     0.82 
            -5.25   ‚**                                                                     22804    49128     0.71     1.54 
            -4.75   ‚****                                                                   44911    94039     1.40     2.94 
            -4.25   ‚********                                                               80420   174459     2.52     5.46 
            -3.75   ‚*************                                                         130698   305157     4.09     9.55 
            -3.25   ‚*********************                                                 212514   517671     6.65    16.19 
            -2.75   ‚                                                                           0   517671     0.00    16.19 
            -2.25   ‚                                                                           0   517671     0.00    16.19 
            -1.75   ‚                                                                           0   517671     0.00    16.19 
            -1.25   ‚                                                                           0   517671     0.00    16.19 
            -0.75   ‚                                                                           0   517671     0.00    16.19 
            -0.25   ‚                                                                           0   517671     0.00    16.19 
             0.25   ‚                                                                           0   517671     0.00    16.19 
             0.75   ‚                                                                           0   517671     0.00    16.19 
             1.25   ‚                                                                           0   517671     0.00    16.19 
             1.75   ‚                                                                           0   517671     0.00    16.19 
             2.25   ‚                                                                           0   517671     0.00    16.19 
             2.75   ‚                                                                           0   517671     0.00    16.19 
             3.25   ‚********************************************************************  680022  1197693    21.27    37.47 
             3.75   ‚****************************************************                  523426  1721119    16.37    53.84 
             4.25   ‚****************************************                              402259  2123378    12.58    66.43 
             4.75   ‚*******************************                                       311433  2434811     9.74    76.17 
             5.25   ‚**********************                                                224912  2659723     7.04    83.21 
             5.75   ‚****************                                                      163583  2823306     5.12    88.32 
             6.25   ‚************                                                          119474  2942780     3.74    92.06 
             6.75   ‚********                                                               83279  3026059     2.61    94.67 
             7.25   ‚******                                                                 56476  3082535     1.77    96.43 
             7.75   ‚****                                                                   39058  3121593     1.22    97.66 
             8.25   ‚***                                                                    28142  3149735     0.88    98.54 
             8.75   ‚**                                                                     18821  3168556     0.59    99.12 
             9.25   ‚*                                                                      11744  3180300     0.37    99.49 
             9.75   ‚**                                                                     16229  3196529     0.51   100.00 
                    ‚ 
                    Šƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒ 
                            100000    200000    300000    400000    500000    600000 
 
                                                  Frequency 
 

The following graph (Figure 2), with the same data restrictions as Figure 1, corresponds to just 
those pixel scores associated with the true matching reference print.  
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Figure 2:  This graph is similar to the graph in Figure 1; however, this graph corresponds to just 
those pixel scores associated with the true matching reference print (i = 456).  That is, the graph 
presents s456,j(ω) scores for the pixels that meet the filtering criteria for the true match (i = 456) 
to the Latent. In this graph, we restrict log[d456(ω)] < 4; that is, we require an accurate similarity 
score for image i = 456  for the pixel ω. 
 
 
 

          sij(ω)                                                                                          Cum.              Cum. 
       Midpoint                                                                                 Freq    Freq  Percent  Percent 
                   ‚ 
           -9.75   ‚                                                                               0       0     0.00     0.00 
           -9.25   ‚                                                                               0       0     0.00     0.00 
           -8.75   ‚                                                                               0       0     0.00     0.00 
           -8.25   ‚                                                                               0       0     0.00     0.00 
           -7.75   ‚                                                                               0       0     0.00     0.00 
           -7.25   ‚                                                                               0       0     0.00     0.00 
           -6.75   ‚                                                                              21      21     0.01     0.01 
           -6.25   ‚                                                                              65      86     0.04     0.05 
           -5.75   ‚                                                                              60     146     0.03     0.08 
           -5.25   ‚*                                                                            253     399     0.14     0.23 
           -4.75   ‚*                                                                            671    1070     0.38     0.61 
           -4.25   ‚**                                                                           910    1980     0.52     1.12 
           -3.75   ‚***                                                                         1552    3532     0.88     2.00 
           -3.25   ‚*******                                                                     3584    7116     2.03     4.04 
           -2.75   ‚                                                                               0    7116     0.00     4.04 
           -2.25   ‚                                                                               0    7116     0.00     4.04 
           -1.75   ‚                                                                               0    7116     0.00     4.04 
           -1.25   ‚                                                                               0    7116     0.00     4.04 
           -0.75   ‚                                                                               0    7116     0.00     4.04 
           -0.25   ‚                                                                               0    7116     0.00     4.04 
            0.25   ‚                                                                               0    7116     0.00     4.04 
            0.75   ‚                                                                               0    7116     0.00     4.04 
            1.25   ‚                                                                               0    7116     0.00     4.04 
            1.75   ‚                                                                               0    7116     0.00     4.04 
            2.25   ‚                                                                               0    7116     0.00     4.04 
            2.75   ‚                                                                               0    7116     0.00     4.04 
            3.25   ‚*************************************************************************  36528   43644    20.72    24.76 
            3.75   ‚**************************************************************             31152   74796    17.67    42.43 
            4.25   ‚*************************************************                          24675   99471    14.00    56.43 
            4.75   ‚***************************************                                    19744  119215    11.20    67.63 
            5.25   ‚*******************************                                            15373  134588     8.72    76.35 
            5.75   ‚***********************                                                    11526  146114     6.54    82.88 
            6.25   ‚******************                                                          9161  155275     5.20    88.08 
            6.75   ‚************                                                                6084  161359     3.45    91.53 
            7.25   ‚***********                                                                 5343  166702     3.03    94.56 
            7.75   ‚******                                                                      2996  169698     1.70    96.26 
            8.25   ‚*****                                                                       2384  172082     1.35    97.61 
            8.75   ‚***                                                                         1519  173601     0.86    98.48 
            9.25   ‚**                                                                           785  174386     0.45    98.92 
            9.75   ‚****                                                                        1902  176288     1.08   100.00 
                   ‚ 
                   Šƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒˆƒ 
                          4000    8000   12000   16000   20000   24000   28000   32000   36000 
 
                                                    Frequency 
 

Note that 4.04 percent of the scores in this last graph are negative, but 16.19 percent of the scores 
in the previous graph are negative.  
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The notions of a Restricted Scores and Unrestricted Scores for an image are now defined by the 
following figures. The image 456 is the true matching image to the Latent.  Scores for this image 
are used for illustration of the scoring.  
 
Figure 3:  Plot of log[dk(ω)] v. log[d456(ω)] for all 49 other reference images and all pixels ω 
satisfying  s456,k(ω) > 3  or  sk,456(ω) > 3. 
 

Both the 
Restricted_Self and 
Restricted_Others
Scores are
Based on the 
Latent pixels for 
which the 456 
image is Good.

Log
(dk(ω))

Log(d456(ω))

H‐Axis is for image 456
V‐Axis is for images k

A (Latent) Pixel‐Based obs is good for an image if the Similarity Score is less than 4  

Restricted_Self Score RS456 = Sum of (Winning Scores for 456 against all k | 456 is good)
Restricted_Others Score RO456 = Sum of (Winning Scores for  all k | 456 is good)

s456,k(ω) > 3

sk,456(ω) > 3

The Similarity Scores 
for Images 456 and 
all other images k 
are plotted in the 
graph. 
Only the pixels with 
scores satisfying  
S456,k(ω) > 3  or 
S456,k(ω) < ‐3  are 
plotted.

Blue Region = Winning (s456,k (ω) > 3) obs for 456 v. all k when 456 is good
Red Region = Winning (sk,456(ω) > 3) obs for  all k when 456 is good

Restricted_Self Score 
RS456 = Sum of the 
s456,k(ω) scores for this set 
of plotted points.

Restricted_Others Score 
RO456 = Sum of the 
sk,456(ω) scores  for this set 
of plotted points.

  
 
The Restricted_Self Score RS456 = 800,233. The Restricted_Self Scores for all 50 reference 
images are displayed in the following graph (Figure 4); the Restricted_Self Score for image 456 
is represented by the symbol ‘1’.  
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Figure 4:  Restricted_Self Scores RSj for all 50 reference images. The Restricted_Self Score for 
image 456 is represented by the symbol ‘1’.  
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The Restricted_Others Score RO456 = 26,518. The Restricted_Others Scores for all 50 reference 
images are displayed in the following graph (Figure 5); the Restricted_Others Score for image 
456 is represented by the symbol ‘1’.  
 
Figure 5:  Restricted_Others Scores ROj for all 50 reference images. The Restricted_Others 
Score for image 456 is represented by the symbol ‘1’.  
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                            Restricted_Others Score ROj 
 
We now display the ratio of the Restricted_Self Score to the Restricted_Others Score (RSj / ROj) 
for a reference image. The following graph (Figure 6) presents these ratios for the 50 reference 
images for the particular Latent.  The ratio for image 456 is represented by the symbol ‘1’.  
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Figure 6:  The ratio of the Restricted_Self Score to the Restricted_Others Score (RSj / ROj ) for 
the 50 reference images for the particular Latent. The ratio for image 456 is represented by the 
symbol ‘1’.  
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                                   Ratio RSj / ROj 

 
Note that the true reference image 456 has a very much larger Ratio score (30.2) than any of the 
other 49 reference images.  The nearest competitor image is image 487 with a Ratio Score of 
17.1.  
 
The Ratio score RSj / ROj measures how well Reference Image j competes with all of the other 
reference images when Reference Image j is good.   
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Figure 7:  Plot of log[d456(ω)] v. log[dk(ω)] for all 49 other reference images and all pixels ω 
satisfying  s456,k(ω) > 3  or  sk,456(ω) > 3. 
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We now turn attention to a second Ratio score UOj /USj  which is computed holding image j 
constant. The Ratio score UOj /USj  measures how well Reference Image j competes with all of 
the other reference images when they are good.   
 
Holding j = 456 fixed, the Unrestricted_Others Score UO456  = 130,474. The 
Unrestricted_Others Scores  for all 50 reference images are displayed in the following graph 
(Figure 8); the Unrestricted_Others Score for image 456 is represented by the symbol ‘1’.  
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Figure 8:  The Unrestricted_Others Scores  UOj  for all 50 reference images. The 
Unrestricted_Others Score for image 456 is represented by the symbol ‘1’.  
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Holding j fixed, the Unrestricted_Self Score US456  = 191,690. The Unrestricted_Self Scores for 
all 50 reference images are displayed in the following graph (Figure 9); the Unrestricted_Self 
Score for image 456 is represented by the symbol ‘1’.  
 
Figure 9:  The Unrestricted_Self Scores USj  for all 50 reference images. The Unrestricted_Self 
Score for image 456 is represented by the symbol ‘1’.  
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We now display the ratio of the Unrestricted_Others Score to the Unrestricted_Self Score,   
UOj /USj , for the set of reference images. The following graph (Figure 10) presents these ratios 
for the 50 reference images for the particular Latent.  The ratio for image j = 456 is represented 
by the symbol ‘1’.  
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Figure 10:  The ratio of the Unrestricted_Others Score to the Unrestricted_Self Score  UOj /USj 
for the 50 reference images for the particular Latent.  The ratio for image j = 456 is represented 
by the symbol ‘1’. 
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                                  Ratio UOj /USj   
 
The true reference image j = 456 has the second smallest Ratio score (0.68) among the other 50 
reference images.  The smallest Ratio score is for image j = 487 with a Ratio Score of 0.65.  
The information from all of the above scoring is summarized in the ratio of ratios: 
 
  (RSj /ROj) / (UOj /USj ) . 
 
The true reference image 456 has the value 43.3 for (RSj /ROj) / (UOj /USj ).   Reference print 
487 has the next largest value 26.2.  The following graph (Figure 11) presents these ratios for the 
50 reference images for the particular Latent.  The ratio for image 456 is represented by the 
symbol ‘1’.  
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Figure 11:  Ratios (RSj /ROj) / (UOj /USj ) for the 50 reference images for the particular Latent.  
The ratio for image 456 is represented by the symbol ‘1’.  
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Taking logarithms of (RSj /ROj) / (UOj /USj ),  we get the following graph (Figure 12).   
 
Figure 12:  Log[(RSj / ROj) / (UOj /USj )]scores for the 50 reference images. The score for the 

image 456 is represented by the symbol ‘1’.  
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The Log[(RSj / ROj) / (UOj /USj )]value for reference print 456 is 3.79 and the value for 

reference print 487 is 3.27.  Log[(RSj / ROj)] and log[ (UOj /USj )]scores are highly correlated as 

seen in Figure 13. 
 
Figure 13:  
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If we replace the actual pairwise scores sij(ω) with counts of wins, then the final ratio scores are 
given in the following graph (Figure 15).  
 
Figure 15:  Final ratio scores gotten by replacing the actual pairwise scores sij(ω) with counts of 
wins.  
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The Log[(RSj / ROj) / (UOj /USj )]value for reference print 456 is 3.60 and the value for 

reference print 487 is 3.12.  
 
Utilization of the Scoring Algorithm 
The scoring presented here is pixel-based. The individualizing power in a particular pixel 
depends on the individualizing information locally in the ridge containing the pixel. In regions 
with high individualizing information, the true matching reference print should accumulate good 
scores with more consistency than should other reference prints. In that sense, the ranking power 
in the ultimate score is inherently dependent on the quantity and quality of the Latent print pixels 
in relation to the quality regions of the true matching reference print.   
 
Sciometrics’ current technology for producing overlays of the Latent onto reference prints is 
very accurate, and the scoring presented here is very effective for closed set identification. The 
performance of the system has been thoroughly tested using standard databases such as the NIST 
27 Good, Bad and Ugly data set and also against data sets prepared by various agencies.  
 
Drs. Gantz and Saunders will soon be exploiting data from this new quantification and scoring 
procedure relative to the presentation and interpretation of evidence.  

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



85 

 

Identification of Specific Source 

The set of identification of source problems that we have studied considers two alternative and 
mutually exclusive, but non-exhaustive, propositions or models for how the forensic evidence 
has arisen.  The first model usually corresponds to the prosecution hypothesis and states that a 
given specific source is the actual source of the trace of unknown origin.  The second proposition 
usually corresponds to the defense hypothesis and states that the actual source of the trace is not 
the one considered under the prosecution hypothesis, but that it originates from another, 
unrelated, source in a specified relevant alternative population of sources. 
 
The evidence that we have to address the validity of the two propositions takes the following 
form: 
 

1. There	is	a	specific	source	of	interest,	from	which	we	have	a	set	of	samples,	denoted	as	
E

s
.	

2. 	There	are	a	set	of	samples	of	sources	from	a	population	of	alternative	sources,	
denoted	as	 E

a
.	

3. 	A	set	of	samples	from	a	common,	but	unknown,	source	denoted	as	 E
u
.	

 
The forensic scientist and statistician are then asked to quantify how much support the evidence 
provides for the model that E

u
 arose from the specific source of interest when compared to the 

model that E
u
 arose from a source in the alternative source population.   

 
Dating back to the 1970’s, this problem has been approached within the context of subjective 
Bayesian hypothesis testing. (See Aitken and Stoney30; Lindley 197831; and Shafer32).  The 
common approach to these problems is to assume that the problem is inherently low 
dimensional, the stochastic nature of the evidence can be characterized by a common parametric 
family of distributions, and that the evidence from the alternative source population is 
sufficiently precise that it completely characterizes the stochastic nature of the alternative source 
population. With these assumptions in hand, the forensic statistician can then provide a summary 
of the scientific evidence that is logical and coherent for updating a prior belief structure 
concerning the two competing propositions.  The ‘summary’ is typically known as a Bayes 
Factor in the statistical literature (IJ Good33) and a ‘Likelihood Ratio’ in the forensic science 
literature. Traditionally this summary is presented as follows: 

                                                 
30	Aitken, C. G. G., Stoney, David A., The Use Of Statistics In Forensic Science, CRC Press, Oct 31, 
1991.	
31	Lindley,D.V. (1,977), A Problem in Forensic Science, Biometrika 6,4, 207-213. 	
32	Glenn Shafer,  Lindley's Paradox, Journal of the American Statistical Association , Vol. 77, No. 378 
(Jun., 1982) , pp. 325-334.	
33	Good, I.J., Weight of evidence and the Bayesian Likelihood Ratio published in The Use Of Statistics In 

Forensic Science, CRC Press, Oct 31, 1991.	

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



86 

 

, 

where E  is the evidence, H
p
 is the prosecution model for the stochastic nature of the evidence,

H
d
 is the defense model for the stochastic nature of the evidence and I  is the relevant 

background information common to both models.  The prior odds summarize our relative belief 
concerning the validity of the prosecution and defense probability models.   
 
The Bayes Factor then allows us to update our belief and arrive at the Posterior odds concerning 
the relative validity of the two models. If the Bayes Factor (and the corresponding Posterior 
odds) is sufficiently high relative to the prior odds, then we conclude in favor of the prosecution 
model for the stochastic nature of the evidence; on the other hand if it is sufficiently close to 
zero, we conclude in favor of the defense model for the stochastic nature of the evidence. In 
effect the Bayes Factor is providing a numerical summary of the answer to both of these 
questions: 
 

“What do we believe the likelihood of observing the evidence under the prosecution model 
is?” 

 vs. 
“What do we believe the likelihood of observing the evidence under the defense model is?” 
 

An extremely important note is that, when constructing a Bayes Factor, it is necessary to use a 
probability measure to characterize the forensic scientist’s belief about the stochastic nature of 
how the specific source generates evidence.  The traditional default belief measure concerning 
the specific source is that the specific source is typical of the population of alternative sources.  
(Aitken and Taroni34) 
 
In the context of formal Bayesian Model selection, the goal of a statistical analysis is to 
rigorously quantify the belief concerning the validity of a given model after having observed the 
evidence.  This type of analysis is typically decomposed into various components – the first 
being the prior belief concerning the relative validity of the two competing models. The second 
is a set of priors for prosecution and defense models that characterize the belief about the 
parameters of the stochastic models.   
 
Our research program has taken two directions related to this problem of the quantification of the 
value of evidence.  The first, is concerned with various aspects the development of an 
approximate value of the evidence for complex evidence forms when the actual likelihood 
structure is intractable (the main thrust of Phase II).  These approximate values of the evidence 
are commonly referred to as Score Based Likelihood Ratios (SLRs) in the statistical literature.   

                                                 
34	Aitken, C. G. G., Taroni, F., Statistics and the Evaluation of Evidence for Forensic Scientists, Wiley, 
2004, 2nd Edition.	
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ABSTRACT:  Score-based approaches for computing forensic likelihood ratios are becoming more 

prevalent in the forensic literature. When two items of evidential value are entangled via a score-function, 

several nuances arise when attempting to model the score behavior under the competing source-level 

propositions.  Specific assumptions must be made in order to appropriately model the numerator and 

denominator probability distributions.  This process is fairly straightforward for the numerator of the 

score-based likelihood ratio, entailing the generation of a database of scores obtained by pairing items of 

evidence from the same source.  However, this process presents ambiguities for the denominator database 

generation – in particular, how best to generate a database of scores between two items of different 

sources. 

Three alternatives have appeared in the literature. Denominator databases have been generated by 

pairing (1) the item of known source with randomly selected items from a relevant database; (2) the item 

of unknown source with randomly generated items from a relevant database; or (3) two randomly 

generated items. When the two items differ in type, perhaps one having higher information content, these 

three alternatives can produce very different denominator databases.  While each of these alternatives has 

appeared in the literature, the decision of how to generate the denominator database is often made without 

calling attention to the subjective nature of this process.  

In this paper, we compare each of the three methods (and the resulting score-based likelihood ratios), 

which can be thought of as three distinct interpretations of the denominator proposition.  Our goal in 

performing these comparisons is to illustrate the effect that subtle modifications of these propositions can 

have on inferences drawn from the evidence evaluation procedure. The study was performed using a data 

set composed of cursive writing samples from over 400 writers. We found that, when provided with the 

same two items of evidence, the three methods often would lead to differing conclusions (with rates of 

disagreement ranging from 0.005 to 0.48). Rates of misleading evidence and Tippet plots are both used to 

characterize the range of behavior for the methods over varying sized questioned documents. The 

appendix shows that the three score-based likelihood ratios are theoretically very different not only from 
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each other, but also from the likelihood ratio, and as a consequence each display drastically different 

behavior.  

KEYWORDS:  forensic science, likelihood ratio, handwriting evidence, statistical evidence 

evaluation, forensic statistics, questioned documents 

 

1. Introduction 
The likelihood ratio paradigm has been proposed as a means for quantifying the strength of evidence 

for a variety of forensic evidence, including handwriting, speech, earmarks, glass fragments, fingerprints, 

footwear marks and DNA [1-9]. A body of evidence can be evaluated by calculating the likelihood ratio, 

which compares the probability of the “evidence” under two competing propositions (or hypotheses), 

often denoted as the prosecution proposition (ܪ௣) and the defense proposition (ܪௗ). Consider the scenario 

where two items of evidence are found over the course of a forensic investigation, and the following 

source-level hypotheses are of interest: 

 ,௣: The two items came from the same sourceܪ  

 .ௗ: The two items came from different sourcesܪ 

Let  ݔ denote36 a measurement obtained from the source, or the sample with a known source (e.g., 

suspect’s known writing samples, crime scene window). Let ݕ denote a measurement obtained from the 

trace, or the sample with an unknown source (e.g., bank robbery note, glass fragment obtained from the 

suspect). If one assumes that ݔ and ݕ are realizations from continuous random variables ܺ andܻ, the 

likelihood ratio is defined by 

LR ≡
݂൫ݔ, ,௣ܪหݕ ൯ܫ
݂ሺݔ, ,ௗܪ|ݕ ሻܫ

, 

where ܫ represents background information, and ݂ denotes the probability distribution associated with the 

random variables ܺ and ܻ. When ݔ and ݕ are discrete measurements, ݂ is a probability; when ݔ and ݕ are 

                                                 
36 Throughout this manuscript, the following conventions are used: uppercase bold letters denote random matrices or 
vectors; lowercase bold letters denote observed or known matrices or vectors; lowercase letters denote observed or 
known scalars.   
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continuous measurements, ݂ is a continuous probability density function. As stated in [10], the numerator 

and denominator densities might be very different due to the differing conditioning arguments, but it is 

common practice to allow the generic symbol ݂ to represent both functions.  

In many cases (e.g., when the evidence is represented using a high-dimensional quantification 

technique[11]), the numerator and denominator of LR are not obtainable directly, without making 

(perhaps) unfounded assumptions about the underlying processes that generate the evidence [12]. A 

promising surrogate, which can be applied to virtually any evidence type, is a score-based approach [10, 

12-18]. 

In this article, we critically examine three methods appearing in the literature for estimating the score-

based likelihood ratio (SLR) in the specific context of natural handwriting evidence. While our 

illustrations focus on this modality, the concepts apply broadly to the application of these methodologies 

to any type of evidence for which a meaningful paired score can be defined.  

Each methodology makes very different assumptions about the nature of the random variables ܺ and 

ܻ, specifically in the denominator (under the defense’s proposition). Often these are listed either as 

assumptions [18], an (often unstated) byproduct of database generation [10,12,16]. The intent of this 

paper is to illuminate, for both the statistical and non-statistical audience, the assumptions underlying the 

three different methodologies and how they are in fact subtle changes to the interpretation of ܪௗ. The 

hope is that once these interpretations are laid bare, the forensic community can then appropriately weigh 

their merits and applicability. This is particularly important since, as shown in Section 5 and in Appendix 

A, the three methods can yield drastically different results when given the exact same evidence. It is our 

belief that these three score-based methods cannot gain mainstream acceptance until this denominator 

specification problem is resolved by the forensic community. 

The outline for this paper is as follows. Section 2 presents each method in a unified notation, while 

making explicit each of the underlying assumptions and their associated ܪௗ interpretation. Section 3 

briefly details the quantification technique used to quantify handwritten documents (more detailed 
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descriptions appear elsewhere [13,19]). Also, Section 3 details the algorithms used to obtain estimates for 

each	SLR, denoted throughout as	SLRଵ, 	SLRଶ, and	SLRଷ. Finally, Sections 4 and 5 detail the design and 

results of a comparison study showing the impact that selecting one SLR over another (i.e. one set of 

assumptions over another) has on the estimated SLRs. 

2. Score-Based Likelihood Ratios 

For many types of forensic evidence, obtaining the likelihood ratio, as defined above, has proved 

difficult, if not impossible [12]. For some types of evidence, it is rare that the underlying process which 

generates ܺ and ܻ is sufficiently understood to make the assumption that the distribution is an element of 

some common family of distributions. For example, with certain quantifications of the elemental 

composition of glass fragments it is not necessarily reasonable to make the blanket assumption that ܺ and 

ܻ follow a normal distribution [20], as is often done [21]. Even for the most basic forms of DNA evidence 

there were many years of research and academic discussions before reasonable distributional assumptions 

were known to an adequate degree of certainty that might be required in a court of law [8]. Even if the 

distribution is known or can reasonably be assumed, true parameter values are rarely known and are likely 

difficult to estimate for the more complex quantifications of the evidence. When ݔ and ݕ represent high 

dimensional measurements, as would be the case if one considers the multifaceted attributes that make up 

one’s full body of handwriting (or writing profile), the problem is exacerbated as now we are faced with 

1) how to probabilistically characterize each attribute individually and 2) how to capture probabilistic 

dependencies sure to exist among the attributes. 

Score-based approaches seem able to overcome at least some of these challenges. If one can capture 

similarities or differences between two items via a univariate score function that illuminates as to whether 

or not the items have a common source, then dimensionality of the problem is greatly reduced [12,15,16]. 

Determining (or estimating) the probability distribution of this score function remains a challenge 

however, as will be highlighted throughout the remaining sections of this paper.  
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A brief introduction to score-based likelihood ratios is provided here. A more detailed discussion, 

within the context of handwritten documents can be found in [13]. Let the function which assesses the 

dissimilarity between ݔ and ݕ be denoted by	Δሺݔ,  ሻ. The score-based likelihood can then be described asݕ

a proxy of sorts to the LR,  

LR ൌ 	
݂൫ݔ, ,௣ܪหݕ ൯ܫ
݂ሺݔ, ,ௗܪ|ݕ ሻܫ

ൎ
݃൫Δሺݔ, ,௣ܪሻหݕ ൯ܫ
݃ሺΔሺݔ, ,ௗܪ|ሻݕ ሻܫ

,      (1)  

where ݃ denotes the probability distribution associated with the random variable ∆ሺܺ, ܻሻ. Often in the 

literature the rightmost quantity is also denoted by LR [10, 12]. In the interest of transparency and clarity, 

in this work this quantity is denoted by SLR. Another impetus to keep these quantities distinct is that, as 

noted by [19], the suitability of the approximation	LR ൎ SLR has not been investigated thoroughly. It is 

shown in Appendix A for a simplified scenario (where the probability distributions of ܺ, ܻ,  and	∆ሺܺ, ܻሻ 

are all known) that the three SLRs under consideration here often do not well approximate the LR. 

The numerator of the leftmost expression in Equation (1) can be interpreted in layman’s terms as: the 

likelihood of observing these two measurements if the items come from the same source. Similarly the 

denominator can be interpreted as the likelihood of observing these two measurements if the items come 

from different sources. In order to compute this quantity, statisticians typically make the assumptions 1) 

the marginal distribution of ܺ is independent of whether or not ܪ௣ or ܪௗ is true, and 2) measurements on 

ܺ and ܻare independent if ܪௗ is true. Under assumptions 1) and 2), the LR	reduces to:  

																													LR ൌ
݂൫ݔ, ,௣ܪหݕ ൯ܫ
݂ሺݔ, ,ௗܪ|ݕ ሻܫ

ൌ
݂൫ݕห	ݔ, ,௣ܪ ,௣ܪ	หݔ൯݂൫ܫ ൯ܫ
݂ሺ|ݕ	ܪௗ, ,ௗܪ	|ݔሻ݂ሺܫ ሻܫ

ൌ
݂൫ݕห	ݔ, ,௣ܪ ൯ܫ
݂ሺ|ݕ	ܪௗ, ሻܫ

.	     (2)  

The simplification achieved in Equation (2) is what drives all DNA likelihood ratio calculations, and 

most non-score based approaches [8,22]. Unfortunately, an analogous development for the SLR (right side 

of Equation (1)) is not possible since measurements from the trace and the known source are now tied 

together via the score function and cannot be disentangled. Conditioning on ݔ is of no use here, since:  

																													SLR ൌ
݃൫Δሺݔ, ,௣ܪ	ሻหݕ ൯ܫ
݃ሺΔሺݔ, ,ௗܪ	|ሻݕ ሻܫ

ൌ
,ݔ൫Δሺ݃׬ ,ݔ	ሻหݕ ,௣ܪ ,௣ܪหݔ൯݂൫ܫ ݔ൯݀ܫ

,ݔሺΔሺ݃׬ ,ݔ	|ሻݕ ,ௗܪ ,ௗܪ|ݔሻ݂ሺܫ ݔሻ݀ܫ
,     (3)  
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and, in general, Equation (3) cannot be simplified in a straightforward manner, if at all. The 

simplifications leading to Equation (2) no longer hold – the conditioning on ݔ must remain in the 

denominator, and the marginal distribution of	ݔ no longer cancels out as it appears inside separate 

integrals in the numerator and denominator.  

Despite the fact that the SLR cannot be simplified in any meaningful way to facilitate computation, 

several score-based methods have emerged in the literature. Many make, either explicitly or implicitly, 

simplifying assumptions in order to estimate the SLR. The body of literature here is growing, and we 

restrict our attention to three such methods which serve as a continuation of our work in [13]. Each SLR 

method makes use of a similar numerator estimation technique previously reviewed in [13], while 

differing in their approach to estimating the denominator.  

The numerator of the simplified LR appearing in Equation (2) can be interpreted in layman’s terms as: 

the likelihood of observing the trace measurement if it came from the known source. The denominator 

can be interpreted as: the likelihood of observing the trace measurement if it came from a different source. 

To compute the denominator directly, an additional assumption must be made regarding the alternate 

source. The most common, often referred to as the “random man” assumption, is that the source of the 

trace is randomly selected from some “relevant population” of sources [22]. This leads to the following 

statistical interpretation of the denominator: the likelihood that the trace measurement came from a 

random source in a relevant population. 

The interpretation of the numerator for the SLR is slightly different from that of the	LR: the likelihood 

of observing this score between the trace and the known source if they came from the same source. The 

interpretation of the denominator is: the likelihood of observing this score between the trace and the 

known source if they came from different sources. When one tries to be more specific about the 

denominator in order to obtain probability distributions, ambiguity arises. As above, some notion of 

“random source” must come in, but there is subjectivity in how to proceed. Distinct interpretations of ܪௗ 

motivate the three SLRs under consideration in this paper.  The first method contends that the known 
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source is a random selection from the relevant population; the second contends that the source of the trace 

is a random selection from the relevant population; and the third contends that both the trace and the 

known source are randomly selected from the relevant population. 

2.1 Score-based Numerator 

All three methods we consider here have considered the following interpretation of the SLR 

numerator: the likelihood of observing this score if the known source measurement is paired with 

measurements taken from traces randomly drawn from the known source population. The new 

specification of the hypothesis being entertained is: 

,ݔ௣: Δሺܪ  with a randomly generated ݔ ሻ arises from the distribution of scores obtained by pairingݕ

ܻ,	where both ݔ and ݕ arise from the same distribution. 

While this hypothesis is not necessarily reasonable from the perspective of a prosecution attorney, it 

is in fact the hypothesis under consideration when one reports one of the three SLRs in court. For clarity, 

we will refer to the type of proposition, which fully specifies the desired probability distribution as a 

statistical proposition, whereas forensic propositions refer to those of direct interest to the courts. We 

prefer this approach over relegating these specifications to the background information or enumerating 

them as assumptions because we feel those approaches lack transparency and/or clarity, particularly for 

non-statisticians.   

This new specification introduces conditioning upon ݔ the numerator of the SLR, that is 

݃൫Δሺݔ, ,௣ܪ	ሻหݕ ൯ܫ ൎ 	݃൫Δሺݔ, ,ݔ	ሻหݕ ,௣ܪ  ൯. From Equation (3) it is clear that this is indeed anܫ

approximation. The impact this type of approximation has on the resultant score-based likelihood ratios is 

investigated in Appendix A for a simplified scenario where all distributions are known. 

 ૚: Trace-anchored܀ۺ܁ 2.2

Some researchers [14-16] have considered the following interpretation of the SLR denominator: the 

likelihood of observing this score if the trace measurement is paired with measurements taken from 

random sources in some relevant population. The statistical proposition being entertained is: 
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,ݔௗଵ: Δሺܪ  ݔ with a randomly selected	ݕ ሻ arises from the distribution of scores obtained by pairingݕ

from the relevant population. 

This new interpretation of the denominator of the SLR actually changes the specification of the SLR 

denominator, ݃ሺΔሺݔ, ,ௗܪ	|ሻݕ ሻܫ ൎ 	݃ሺΔሺݔ, ,ݕ	|ሻݕ ,ௗܪ  in Equation (3) ݕ ሻ. Noting that conditioning onܫ

(rather than ݔ) would also not lead to any simplification, it is clear that these two quantities are not in fact 

equal. Using this approximation, the first score-based likelihood ratio under consideration is 

	SLRଵ ൌ 	
݃൫Δሺݔ, ,ݔ	ሻหݕ ,௣ܪ ൯ܫ
݃ሺΔሺݔ, ,ݕ	|ሻݕ ,ௗܪ ሻܫ

. 

Whether or not SLRଵ serves as a reasonable proxy for LR is an open question. The example in Appendix 

A is aimed at informing this debate.    

 One issue with conditioning on ݕ in the denominator is that it is asymmetric, in the sense that the 

numerator and denominator are conditioning on different quantities. Another conceptual issue with SLRଵ 

is that, in the case of glass evidence (or any type of evidence where the item of unknown source is taken 

from the suspect), the conditioning in the denominator is on measurements taken from the suspect. 

Specific properties of the crime scene window are ignored entirely, and it is therefore less informative 

than if those characteristics had been accounted for [19]. However, in the case of handwriting this type of 

conditioning seems more plausible, as specific properties of the bank robbery note are informing the 

denominator probability distribution.  

One also might consider the recommended conditioning rules provided in [23]. They advocate 

conditioning on the sample with greater information content, which in the case of handwriting would be	ݕ 

(the suspect’s known writing samples).  However, for glass the desired conditioning would be ݔ (the 

window at the scene) which again leads to ambiguous notions of the “correct” conditioning. It should be 

noted that in [23] this conditioning strategy was aimed at simplifying the computation (much like the 

arguments in Equation (2)). This computational advantage is lost for the SLR, as illustrated above in 

Equation (3).  
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 ૛: Source-anchored܀ۺ܁	2.3

Others [10] have proceeded with following interpretation of the SLR denominator: the likelihood of 

observing this score if trace measurements taken from randomly selected sources from a relevant 

population are paired with the measurement taken from the known source. This is somewhat analogous to 

the LR denominator interpretation in that the trace measurement now comes from a random source. This 

interpretation again changes the specification of the SLR denominator:  

	SLRଶ ൌ 	
݃൫Δሺݔ, ,ݔ	ሻหݕ ,௣ܪ ൯ܫ
݃ሺΔሺݔ, ,ݔ	|ሻݕ ,ௗܪ ሻܫ

. 

We now have symmetric conditioning, on ܺ in both the numerator and denominator. Again, whether or 

not this quantity serves as reasonable proxy for LR is considered in Appendix A. This development leads 

to the following denominator proposition: 

,ݔௗଶ: Δሺܪ  ܻ with a randomly selected	ݔ ሻ arises from the distribution of scores obtained by pairingݕ

from the relevant population. 

This approach succumbs to some of the same criticisms as	SLRଵ, but in reverse: for glass evidence 

this conditioning seems reasonable in that specific characteristics of the crime scene evidence are directly 

relevant to the denominator distribution, but for handwriting specific characteristics of the bank robbery 

note are ignored (i.e. the writer used all capital letters). 

 ૜: General Match܀ۺ܁	2.4

The final SLR approach considered in this work, often used in biometrics [24], applies the following 

interpretation of the denominator: the likelihood of observing this score if a trace measurement taken 

from a randomly selected source from a relevant population is paired with a measurement taken from a 

different source randomly selected from a relevant population. This makes no changes to the SLR 

denominator:  

	SLRଷ ൌ 	
݃൫Δሺݔ, ,ݔ	ሻหݕ ,௣ܪ ൯ܫ
݃ሺΔሺݔ, ,ௗܪ	|ሻݕ ሻܫ

. 
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Again, whether or not this serves as a reasonable proxy for LR is considered in Appendix A. This 

development leads to the following denominator proposition: 

,ݔௗଷ: Δሺܪ  ሻ arises from the distribution of scores obtained by pairing a randomly selected ܺ from theݕ

relevant population with a randomly selected ܻ from that same relevant population. 

 This SLR is far less informative in that the denominator distribution depends neither on specific 

characteristics trace nor on characteristics of the known source [19]. That is, the denominator distribution 

would remain unchanged if a different trace were observed, or if a different known source is considered.  

The next section of the paper shows how to generate each SLR for a specific quantification of 

handwritten documents.  

3. Estimating SLRs in handwriting. 

Handwriting-specific definitions of the evidence (following the notation introduced in [13]) are as 

follows: ܧௌ denotes a collection of writings known to have originated from the suspect (henceforth 

suspect’s template) and ݔ represents some quantification obtained from those writings. ܧ௎ denotes a 

handwritten questioned document (QD) found at the scene of unknown source, and ݕ represents some 

quantification obtained from that document. ܧ஺ denotes a collection of writing samples taken from 

alternative sources.  

3.1 Handwriting Quantification  

Selection of an appropriate score will depend heavily on the numeric representation, or quantification 

technique used to describe a handwritten document. The quantification method used here, developed by 

Gannon Technologies Group, first scans and skeletonizes the document, which has been manually parsed 

into characters, as shown for the word “London” in Figure 1. Subsequent to this segmentation, a 

proprietary, automated process was used to represent each parsed character’s skeleton by an isomorphic 

class of graphs (a geometric form that remains invariant under certain transformations, e.g. bending or 

stretching), referred to as an isocode. Details of this process are described at length elsewhere [13,25] 

however a schematic depicting the method appears in Figure 1.
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Define a writing profile as the entire body of writing that a writer has written or will ever write. 

Define a writer’s template as a collection of writing samples from an individual assumed to be sufficiently 

rich for characterizing an individual’s writing profile. Using this quantification method, ܧௌ is reduced to 

the matrix of counts computed by combining counts over a large collection of known writing samples 

obtained from a suspect (suspect’s template), represented by the random variable	.ࢄ  	ܧ௎	is reduced to the 

matrix of counts computed from a questioned document, represented by the random variable	ࢅ.  

 
3.2 Estimating the SLR 

3.2.1 Dissimilarity Score 

We first define a dissimilarity statistic (or score) that can be computed for two documents (or 

collection of documents). We selected the Kullback-Leibler divergence [26] to capture the difference 

between the observed matrices of counts for two writing samples, row by row (i.e. letter by letter). These 

divergences are combined over letters using a weighted average, ensuring that frequently observed letters 

(across both documents) contribute more to the dissimilarity score. Details appear in Appendix B. 
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Figure 1. Schematic of the Quantification Process 
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At this point, it is important to emphasize that the procedure that follows does not depend on the 

selection of this particular score. A multitude of scoring methods can be used in its place (e.g. see [13] for 

a similar analysis using a similarity score based on Pearson’s chi-squared statistic).  

3.2.2 Database Generation 

To estimate the numerator and denominator densities of the SLRs we need to obtain databases of 

scores generated in several ways. For the numerator, we need a database of scores where both ݔ and ݕ 

were obtained from documents written by the suspect. This is a fairly straightforward matter in our case, 

and the reader is referred to [13] for specific details. For the denominator, we need a database of scores 

where ݔ and ݕ are generated from different sources, according to the conditioning assumptions of SLRଵ, 

SLRଶ, and SLRଷ.  

Numerator Database 

Ideally, a database would exist consisting of scores obtained by comparing “QD-like” documents to the 

suspect’s template. It is unreasonable to expect a large number of “QD-like” documents to be discovered 

over the course of the investigation. For example, if the QD is a bank robbery note, only in extremely rare 

cases would, a priori, a collection of such bank robbery notes exist. One might suggest requesting the 

generation of a collection of “QD-like” documents from the suspect; however, this might not result in the 

most representative sample, especially in cases where the suspect is indeed the culprit, as there is 

motivation to disguise his or her writing style.  In addition, the number of samples needed to accurately 

estimate the distribution of scores would be prohibitive.  

In light of these challenges, [25] proposed a method of obtaining an arbitrarily large database (size 

denoted by N) of ‘within’ scores using a subsampling algorithm. Noting that ݊௎ represents the number of 

characters in QD and ݊ denotes the total number of characters in the suspect’s template, the details of the 

slightly modified37 algorithm employed appears below:  

                                                 
37 In [25], a random selection of Un characters was chosen, whereas here Un consecutive characters were chosen. 

We feel that the use of consecutive characters best aligns with the natural writing that might appear in a QD. 
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Denominator Databases 

Before the detailed algorithms are presented, we first must address the challenge of obtaining a 

representative collection of writing templates from potential alternate sources. Recall, above we denoted 

this collection of templates by	ܧ஺	 as it is considered part of the evidence collected which may differ from 

case to case and which, especially when 	ܧ஺	is of limited size, will have a significant impact on the 

estimation of the score-based likelihood ratio. We make the simplifying assumption that a large, 

representative collection of templates exists. In future work, we intend to examine more practical 

scenarios, and investigate the impact typical violations of these assumptions have on the estimation 

procedure.  

Once a large, representative collection of templates	ܧ஺	is established, the mechanics of generating 

between scores for each of the three denominator SLR interpretations can be detailed.  

 ௗ, tailored to handwriting evidence, is “the evidenceܪ ૚:  The trace-anchored interpretation of܀ۺ܁

score arises from the distribution of scores obtained by pairing the QD with a template written by a 

random individual.”  A detailed illustration of an adaptation of this method for the analysis of handwriting 

Subsampling Algorithm for Generating Numerator Database 

For	݅ ൌ 1…ܰ, where	ܰ denotes a sufficiently large number of iterations, 

1. Randomly divide the suspect’s template into two subsets, with character counts 	݊௎ and  

	݊ െ ݊௎ respectively.  This is done by randomly selecting a (starting) character from the 

first ݊ െ ݊௎ characters.  The selected character along with the next ݊௎ െ 1 characters is 

defined as the pseudo-QD and from it we obtain the matrix of counts ࢟௜ .  The 

remaining characters form a pseudo-template, from which we obtain the matrix of 

counts	࢞௜.   

2. Compare the two simulated writing samples, recording the resultant score: Δሺ࢞௜,  .௜ሻ࢟

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



101 

 

evidence can be found in [13].  The specific algorithm appears below.  

 

 ૛:  The source-anchored interpretation is “the evidence score arises from the distribution of܀ۺ܁

scores obtained by pairing a QD written by a random individual with the template written by the suspect.” 

The specific algorithm appears below.   

 

It should be noted that while [10] does hold ࢞ௌ fixed, they do not proceed with their database 

generation in exactly the same manner. They introduce an extra layer of complexity by generating (what 

would be the equivalent of) multiple pseudo-QDs from every writer in ܧ஺ in order to generate 

஺ܰ	different writer-specific databases. Here, due to computational constraints, only one pseudo-QD is 

generated per writer.  

 ૜: The final interpretation considered, which avoids anchoring all together, is “the evidence score܀ۺ܁

arises from the distribution of scores obtained by pairing a QD written by a random individual with a 

template written by a different random individual.” The specific algorithm appears below.   

Trace-anchored Algorithm for Generating Denominator Database 

Obtain a matrix of counts from the QD, denoted by ࢟௎. Then, for ݅ ൌ 1… ஺ܰ, where ஺ܰ 

represents the number of writers in ܧ஺, 

1. Select the ݅௧௛	writer from ܧ஺ and obtain a matrix of counts from that individual’s 

template, denoted by	࢞௜. 

2. Compare the two writing samples, recording the resultant score: Δሺ࢞௜,  .௎ሻ࢟

Source-anchored Algorithm for Generating Denominator Database 

Obtain a matrix of counts from the suspect’s template, denoted by	࢞ௌ. Then, for ݅ ൌ 1…ܰ, 

where 	ܰ denotes a sufficiently large number of iterations, 

1. Randomly select a writer from ܧ஺, and randomly select 	݊௎ characters to serve as the 

pseudo-QD. Obtain the matrix of counts, denoted by ࢟௜. 

2. Compare the two writing samples, recording the resultant score: Δሺ࢞ௌ,   .௜ሻ࢟
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3.2.3 Distribution Estimation 

Assuming one of the three denominator algorithms is selected, two collections of scores have been 

obtained, one under the prosecution’s hypothesis and one under the selected defense hypothesis. The 

probability densities of those scores are rarely known exactly and must be estimated. Denote those 

estimated densities by	 ො݃.  Normal probability plots of the “numerator scores” and the three sets of 

“denominator scores” indicated a normal approximation was reasonable (results not shown). After 

obtaining the sample mean and variance of our ܰ (or ஺ܰ for the trace-anchored approach) generated 

observations,	 ො݃ is defined to be a normal distribution centered at the sample mean, with variance equal to 

the sample variance estimate. Other methods were considered (e.g. kernel density estimation, as 

employed in [13] and histogram estimators) but both methods have been shown to poorly model the tail 

behavior, leading to unwarranted extreme values for the estimated SLR, denoted by	SLR෢ , both when ܪ௣ is 

true and when ܪௗ is true. The true distributions of scores appear to have light left tails and heavy right 

tails. Thus, the normal approximation seems the choice of least harm, as it tends to arrive at 

conservative38 estimates for	SLR෢ . Again, it is important to emphasize that the procedure which follows 

does not depend on the selection of this particular estimation technique for the probability distribution of 

the scores. 

                                                 
38 Conservative in the sense that it protects against Type I errors (errs on the side of innocence) as the estimated 
SLRs tend to be smaller than the true SLRs.  

General Match Algorithm for Generating Denominator Database 

For ݅ ൌ 1…ܰ, where	ܰ denotes a sufficiently large number of iterations, 

1. Randomly select writer 1 from ܧ஺ and randomly select a document of size	݊௎from 

his/her template to obtain a pseudo-QD. Obtain the matrix of counts, denoted by ࢟௜. 

2. Randomly select writer 2 (distinct from writer 1) from ܧ஺, and obtain a matrix of 

counts from his/her template, denoted by ࢟௜. 

3. Compare the two writing samples, recording the resultant score: Δሺ࢞௜,  .௜ሻ࢟
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3.2.4 Computing 	SLR෢  

The evidence score, ߜ, is obtained by comparing the actual QD (specifically the observed matrix of 

counts denoted by ࢟௎), with the suspect’s template (specifically the observed matrix of counts denoted 

by	࢞ௌ), using the modified Kullback-Leibler divergence as detailed in Appendix B, Δሺ࢞ௌ, ௎ሻ࢟ ൌ  The  .ߜ

final step is to evaluate the estimated distributions at that score: ො݃൫ߜหܪ௣,  ൯ and the correct correspondingܫ

denominator, ො݃൫ߜหݔ, ,௣ܪ ,ݕหߜ൯, ො݃൫ܫ ,௣ܪ ,௣ܪหߜ൯, or ො݃൫ܫ  ൯, and then taking their ratio to obtain theܫ

estimated score-based likelihood ratio, SLR෢ . The next section illustrates that, as expected from the results 

shown in Appendix A, very different results are obtained for each method. 

4. Comparative Study   

In summary, three methods have been presented for obtaining denominator databases used to estimate 

the SLR: trace-anchored, source-anchored, and general match. These three databases will necessarily 

result in three different estimates of SLR, denoted39 by SLRଵ, SLRଶ, and SLRଷ. It seems prudent to 

investigate whether or not, given the exact same evidence, the three estimates would differ substantially. 

To that end, a comparative study was performed. 

4.1 Writing Samples 

The set of writing samples used in the comparative study are those described in detail in [25], 

collected by the FBI Laboratory over a two-year period.  Samples were collected from about 500 different 

writers. Each writer was asked to provide 10 samples (5 in print and 5 in cursive) of a modified “London 

Letter” [27] paragraph (533 characters long). In this study, only writing samples in which the writer 

submitted all five cursive paragraphs were included.  This restriction results in 424 writers for a total of 

2,120 London Letter paragraph writing samples.  

4.2 Simulation Design 

We performed the following simulation: 

                                                 
39  The ‘hat’ notation is suppressed for ease of presentation; however the reader should be mindful that these are 
estimates of the true values of SLR1, SLR2, and SLR3. 
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1. Randomly select two of the 424 writers, denoted by ݓଵ and ݓଶ. Define ܧ஺  to be the remaining 

422 writers in the database. 

2. Obtain SLRଵ, SLRଶ, and SLRଷ for two scenarios. 

 ࢖ࡴ True: The suspect is the culprit40 (ݓଵ= suspect = culprit). One of the five 

paragraphs written by ݓଵ is randomly selected, from which a string of size ݊௎ is 

randomly extracted to serve as QD. We varied ݊௎ to be 20, 40, 60, 80, 100, and 150. The 

number of scores, ܰ, generated to estimate the numerator distribution was set to 500. 

 ࢊࡴTrue: The suspect is not the culprit (ݓଵ= suspect, ݓଶ = culprit). QD is obtained in 

the same manner as the first scenario, except taken from ݓଶ’s template rather than ݓଵ’s. 

The number of scores, ܰ, generated to estimate the denominator distribution for SLRଶ 

and SLRଷ was set to 500. 

Repeat steps 1 & 2, 200 times, a computationally feasible number of repetitions. 

5. Results and Discussion 

The estimates obtained for the three methods were highly variable. To illustrate, for one iteration of 

the above simulation where ܪ௣ is true, values obtained were SLRଵ = 1858, SLRଶ = 1701, SLRଷ = 15. 

Another iteration resulted in the values SLRଵ = 2370, SLRଶ = 6, SLRଷ = 19.   

This trend continues over many runs, which are summarized for the ܪ௣ true scenario in Table 1. To 

facilitate the discussion, we arbitrarily assigned a cutoff so that any SLR estimate greater than 100 leads to 

the conclusion “supports	ܪ௣”41. Similarly for any SLR estimate less than 1/100, we conclude 

“supports	ܪௗ”. Finally, for any intermediate values, no conclusion is reached. Results are presented in 

Table 1. For a QD with 80 characters, we observed a high rate (0.43) of disagreement among the three 

methods. That is, 43% of the time at least one of the three methods disagreed with the others as to 

whether or not the evidence supports ܪ௣, supports	ܪௗ, or is inconclusive.   

                                                 
40 Throughout, culprit refers to the individual who actually wrote the QD.  
41 The authors are not implying that this is, in any way, a meaningful cutoff. 
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 Agreement  Disagreement 
      
 Supports ܪ௣ Inconclusive Supports ܪௗ   

݊௎ SLR > 100 1/100 < SLR ≤ 100 SLR ≤ 1/100   

20 0.000 0.830 0.005  0.165 
40 0.070 0.610 0.005  0.315 
60 0.125 0.395 0.000  0.480 
80 0.200 0.370 0.000  0.430 

100 0.240 0.305 0.000  0.455 
150 0.330 0.215 0.000  0.455 

 Correct     
Table 1. Rates of agreement and disagreement for the three SLR estimates when ܪ௣	is 
true. To disagree, at least one of the three reached a different conclusion.  Rates sum to 
1 across each row of the Table.  

 
 

Disagreement rates generally increase as the QD gets larger, an indication that most of the agreement 

that does occur for smaller QDs is due to the majority of values falling in the inconclusive range.  More 

agreement occurs when ܪௗ	is true as seen in Table 2, although there is still some disagreement (3% for 

݊௎	= 80). From the results in Table 1, it is clear the methods are differing substantially in terms of the 

conclusions one would draw in cases where ܪ௣ is true, and a more detailed analysis of the results is 

warranted.  
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 Agreement  Disagreement 
      
 Supports ܪ௣ Inconclusive Supports ܪௗ   

݊௎ SLR > 100 1/100 < SLR ≤ 100 SLR ≤ 1/100   

20 0.000 0.760 0.200  0.040 
40 0.000 0.515 0.450  0.035 
60 0.000 0.395 0.600  0.005 
80 0.000 0.240 0.750  0.010 

100 0.000 0.205 0.765  0.030 
150 0.000 0.120 0.865  0.015 

   Correct   
Table 2. Rates of agreement for the three SLR estimates when ܪௗ is true. To disagree, 
at least one of the three reached a different conclusion.  Rates sum to 1 across each row 
of the Table. 

 
 

Tippet plots (following the conventions described in [28] are shown for all three SLRs, on the natural 

log scale, in Figure 2. The three methods can be compared by the measurement of two “error rates” 42 as 

described in [12]: RMEP ≡ the rate of misleading evidence in favor of the prosecution, i.e., when ܪ௣ is 

true (|݈݊ሺSLRሻ| ൏ 0) and RMED ≡ the rate of misleading evidence in favor of the defense, i.e., when ܪௗ 

is true (|݈݊ሺSLRሻ| ൐ 0).  

                                                 
42 One common critique of likelihood methods is that there is no “error rate” one can report for a given case, as is 
required by the Daubert standard. This is due to the fact that source attribution is not typically reported when LRs 
are employed. However, in a simulated setting overall error rates can be computed by selecting interval values 
between which match (or no match) statements might be made. 
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Before proceeding, the reader is reminded that samples were obtained by convenience, all consisting 

of the exact same cursive text, and under particularly mundane circumstances. These facts most certainly 

prohibit generalization of results. In addition, the reader must be mindful that selection of a different score 

or a different distribution estimation technique may lead to very different performances of the three 

methods. The authors are currently investigating the robustness of the three approaches to alternate 

scoring and estimation methods. 

For each scenario considered, the rates of misleading evidence for SLRଵ were far lower than the other 

two methods. A full listing of the error rates appears in Table 3. Rates for SLRଶ and SLRଷ are nearly 

indistinguishable. As expected, the rates decrease as the size of QD increases. 

  

 Figure 2. Tippet Plots for three SLR approaches, under two scenarios: � true (black lines) or �  true (grey lines). Rates of 

misleading evidence are reported for SLR , the method exhibiting the smallest rates.  

� ൌ 20 � ൌ 40 � ൌ 60  

� ൌ 80 � ൌ 100 � ൌ 150 P
ro

ba
bi

lit
y 

RMEP1 = 0.09 
RMED1 = 0.24 

RMEP1 = 0.02 
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 RMEP RMED 
݊௎ SLRଵ SLRଶ SLRଷ SLRଵ SLRଶ SLRଷ 

20 0.090 0.200 0.150 0.240 0.290 0.330 
40 0.015 0.105 0.095 0.160 0.180 0.220 
60 0.025 0.095 0.075 0.090 0.105 0.130 
80 0.010 0.045 0.045 0.105 0.115 0.125 

100 0.015 0.095 0.105 0.055 0.070 0.080 
150 0.015 0.055 0.055 0.045 0.050 0.045 
Table 3. Rates of misleading evidence in favor of the prosecution 
(RMEP) and in favor of the defense (RMED). 

 
 

The reporting of this type of error rate is less than ideal, as the possibility of an inconclusive 

determination is fully ignored. An approach that is more representative of the realities of forensic 

casework is to impose symmetric cutoffs (e.g., η and – η on the natural log scale) so that three intervals 

are created (e.g. (-∞,-η], (-η, η), and [η, ∞)), corresponding to the three common conclusions: exclusion, 

inconclusive, and source attribution (or match). For a QD with 80 characters, these rates for all three 

methods and both scenarios are presented in Table 4, for η = 4.61 (corresponding to SLR ൎ 100).  

 

 ௗ trueܪ ௣trueܪ 

 
Exclusion 
(-∞,-4.61] 

Inconclusive
(-4.61, 4.61) 

Match 
[4.61, ∞)

Exclusion 
(-∞,-4.61] 

Inconclusive 
(-4.61, 4.61) 

Match 
[4.61, ∞)

SLRଵ 0.000 0.415 0.585 0.760 0.240 0 
SLRଶ 0.000 0.710 0.290 0.750 0.250 0 
SLRଷ 0.000 0.715 0.285 0.750 0.250 0 

   Correct Correct   
Table 4. Rates of exclusion, inconclusive, and match conclusions. 
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The results in Table 4 illustrate that additional information is gained from looking at all three 

intervals, compared to simply reporting RMEP and RMED.  The results show that when ܪ௣ is true, both 

SLRଶ and SLRଷ tend toward the inconclusive range far more often than	SLRଵ
 43.  

6. Conclusions 

Several methods for obtaining a score-based likelihood ratio for handwriting evidence were 

illustrated, based on a categorical representation of the feature data produced by the proprietary 

quantification method developed by Gannon Technologies Group. Regardless of the method selected, the 

results from Table 4 indicate extremely low false match and false exclusion rates are attained when a 

moderate conclusion threshold is set (|݈݊ሺSLRሻ| ൑ 4.61). Since the categorical representation is an 

extreme simplification of the entire set of feature data generated by Gannon’s quantification method 

(which includes more detailed information, e.g. segment lengths, angles, etc.), it may be that 

incorporating this additional information would lead to improved performance. However, preliminary 

investigations indicate that generating a score that makes use of the full set of high-dimensional data and 

is also highly discriminating is an elusive task (results not shown).  While we feel that these types of 

quantitative analyses may prove fruitful for document examiners at some point, they should only be 

employed after careful consideration of the inherently subjective decisions the statistical analyst must 

make in order to calculate such quantities.  

Indeed, the primary purpose of this work is to highlight to the forensic community at large, through 

an empirical study, that score-based likelihood ratios are not the same as, and cannot be interpreted as, the 

likelihood ratio. Although one should also note that the comparison of equations (2) and (3) suggest that 

there is a more basic conflict between the two approaches for calculating the “value” of the evidence. This 

point has been largely ignored in existing literature.  Their interpretations must differ as SLRs are 

considerably more subjective than LRs, in that an analyst must select and defend 1) the similarity (or 

                                                 
43 This trend can also be gleaned from careful consideration of the Tippet plots in Figure 1. The authors are simply 
cautioning against reporting RMEP and RMED as the “error rate” for any likelihood ratio method and illustrating a 
more meaningful alternative. 
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dissimilarity) score, 2) the appropriate interpretation of the denominator, and 3) the technique relied upon 

to estimate the numerator and denominator distributions. Due to these points of subjectivity, SLR values 

must be interpreted with far more caution than the LR based on a well-defined and known probability 

model (e.g., simple one-contributor DNA LRs)44. 

Some conclusions could be drawn from the various results presented above as to the best SLR 

technique to use; however, the authors resist as varying any of the subjective factors enumerated above 

may affect the outcome. Also, innovative score-based approaches have appeared in the literature since 

this work was undertaken that also should receive consideration [18]. Due to the nature of density 

estimation, the performance of all methods will heavily depend on the size and representativeness of the 

database ܧ஺. To date, no such handwriting database exists. The samples used here are not representative 

of the general population and the simulated evidence documents are not typical of QDs and templates that 

might be obtained in real casework. As mentioned earlier, our intention is to simply illustrate the 

feasibility of obtaining an SLR for handwriting evidence, and to emphasize the ambiguities that arise 

when calculating this value. 
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Appendix	A:	Score‐based	LRs	with	known	distributions	

In this segment, we intend to illustrate the theoretical differences between the three SLRs 

and the LR by way of a simple illustration. Suppose we have two items of evidence: ݔ, a sample 

of known source (e.g., suspect’s writing template, crime scene window) and ݕ, a sample of 

unknown source (e.g., bank robbery note, glass fragment obtained from the suspect). Suppose it 

is known, as a general rule, that samples of this type follow a normal distribution with some 

mean parameter. Assume the variance parameter representing the within source variability for 

samples of this type, denoted by ߪ௪ଶ , is fixed and known. Also, assume the variance parameter for 

representing the between source variability for samples of this type, denoted by ߪ௕
ଶ, is fixed and 

known.  

In this example, we consider the sample ݔ to be one observation from a random process. Let 

ܺ denote the random variable associated with samples of this type, arising from this specific 

known source (e.g., writing samples obtained from the suspect, fragments obtained from the 

crime scene windows).  For this illustration, suppose ܺ follows a normal (Gaussian) distribution 

with mean ߤ௑, denoted ܺ~ܰሺߤ௑,  .ሻ	௪ଶߪ
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We also consider the sample ݕ to be one observation from a random process. Let ܻ denote 

the random variable associated with samples of this type, arising from this specific unknown 

source (e.g., writing samples the culprit could have left at the scene, fragments from a specific, 

but unknown, window found on the suspect). Suppose ܻ~ܰሺߤ௒,  .ሻ	௪ଶߪ

One final distribution must be defined, that of samples of this type taken from some broader, 

‘relevant’ population denoted by	ܣ. For this illustration, suppose these arise from a normal 

distribution: ܰሺߤ஺, ஺ߪ
ଶሻ where ߪ஺

ଶ ൌ ௕ߪ
ଶ ൅ ௪ଶߪ . 

Suppose we are interested in evaluating the evidence in relation to the following two 

hypotheses: 

 arise from the same source ݕ and	ݔ :௣ܪ 

 arise from different sources ݕ and	ݔ :ௗܪ 

Likelihood Ratio 

The likelihood ratio, assuming ݔ and ݕ are continuous measurements, is defined by 

LR ≡ 	
݂൫ݔ, ௣൯ܪ|ݕ
	݂ ሺݔ, ௗሻܪ|ݕ

, 

where ݂ denotes the joint probability density function for the random variables ܺ and ܻ. The 

assumptions above imply this will be a bivariate normal density. Thus, in this scenario, we can 

obtain a closed-form solution for the likelihood ratio. 

Numerator	

Under the numerator hypothesis	ܪ௣, the source of ݔ and ݕ are the same (e.g., the suspect 

wrote the bank robbery note, the fragment found on the suspect is from the crime scene window). 
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Thus ݔ and ݕ are random (independent) draws from the same distribution, so that ߤ௒ ൌ   .௑ߤ

Therefore, 

ܺ~ܰሺߤ௑, ሻ	௪ଶߪ
ܻ~ܰሺߤ௑, ௪ଶߪ 	ሻ

 

Noting that the joint density for two independent normal random variables is simply the product 

of their respective densities, we have 

݂൫ݔ, ௣൯ܪ|ݕ ൌ
1
௪ଶߪ

߶ ൬
ݔ െ ௑ߤ
௪ߪ

൰߶ ൬
ݕ െ ௑ߤ
௪ߪ

൰, 

where ߶ denotes the standard normal probability density function. 

 

 

Denominator	

Under the denominator hypothesis	ܪௗ, the source of ݔ and ݕ are different (e.g., someone else 

wrote the bank robbery note, the fragment found on the suspect is from another window). A 

common assumption made in the forensic literature is that the source of ݕ is a random individual 

selected from some relevant population, so that ߤ௒ ൌ ,஺ߤ஺. Therefore, ܻ~ܰሺߤ ஺ߪ
ଶ	ሻ. 

Typically ܺ and ܻ are assumed to be independent – that is, information about the known 

source provides no additional information about the unknown source. Therefore, the joint density 

is again the product of their respective densities, 

݂ሺݔ, ௗሻܪ|ݕ ൌ
1

௪ߪ஺ߪ
߶ ൬

ݔ െ ௑ߤ
௪ߪ

൰߶ ൬
ݕ െ ஺ߤ
஺ߪ

൰. 

Taking the ratio of ݂൫ݔ, ,ݔ௣൯ and ݂ሺܪ|ݕ  ௗሻ, and noting the second term of each cancel, weܪ|ݕ

find 
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ܴܮ ൌ
߶஺ߪ ቀ

ݕ െ	ߤ௑
௪ߪ

ቁ

߶௪ߪ ቀ
ݕ െ	ߤ஺
஺ߪ

ቁ
. 45 

Score-Based Likelihood Ratios 

We now would like to compare the behavior of this likelihood ratio with that of the three 

SLRs in the ideal case, where we have databases that were of sufficiently large as to completely 

characterize the relevant probability distributions. Before defining a (dissimilarity) score we first 

note desired properties: 

 If ݔ and ݕ are measurements from the same source, we expect the score to be close to zero. 

 If ݔ and ݕ are measurements from different sources, we expect the score to be large. 

One reasonable such score for two normal random variables, ܺ and ܻ, is the square of their 

differences. Thus define the random variable	Δሺܺ, ܻሻ ൌ ሺܺ െ ܻሻଶ. Another added advantage of 

this particular score is that we can exploit the following relationship between squared normal 

distributions and a chi-squared ሺ߯ଶሻ distribution to obtain exact expressions each	ܴܵܮ.  

                                                 
45 This is a true likelihood ratio when the nuisance parameters are known under each of the competing propositions. 
See Chapter 6 of Asymptotic Statistics by A. W. van der Vaart (2000, Cambridge University Press) for details. 
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To evaluate the evidence, now reduced to	Δሺݔ, ሻݕ ൌ ሺݔ െ ሻଶݕ ൌ  via likelihood ratio, in ,ߜ

light of the two hypotheses defined above, ܪ௣ and	ܪௗ, we are interested in 

ܴܮܵ ≡ 	
݃൫ܪ|ߜ௣൯
݃ሺܪ|ߜௗሻ

, 

where ݃	denotes the probability density function for the random variable Δሺܺ, ܻሻ ൌ ሺܺ െ ܻሻଶ.  

Numerator	

All three SLRs make the exact same assumption regarding the numerator probability 

distribution, namely ܻ	represents an additional independent draw from the distribution associated 

with the known source. Thus to evaluate the numerator, we need to derive the distribution of 

ሺܺ െ ܻሻଶ conditional on ܺ ൌ ,௑ߤwhere ܻ follows a ܰሺ ,ݔ  ሻ distribution. For the difference we	௪ଶߪ

find: 

ሾሺܺ െ ܻሻ|ܺ ൌ ݔሿ~ܰሺݔ െ ,௑ߤ ௪ଶߪ 	ሻ. 

Per Property 1, the numerator is then 

ܶଶ

ଶߪ
~߯ଵ,ఒ

ଶ  

்݂మሺݐሻ ൌ
1
ଶߪ

߯ଵ,ఒ
ଶ ൬

ݐ
ଶߪ
൰, 

Property 1. Squared Normal Distributions 
If ܶ~ܰሺߤ,   ଶሻ, thenߪ

where ߯ଵ,ఒ
ଶ  denotes a non-central chi-squared distribution with one degree of freedom and 

non-centrality parameter ߣ ൌ ఓమ

ఙమ
. It is also true that for any random variable ܴ with 

probability density function (pdf) ோ݂ and scalar ܿ ൐ 0, the random variable ܵ ൌ ܴܿ has pdf  

ௌ݂ ൌ
ଵ

௖ ோ݂ ቀ
௦

௖
ቁ. Therefore 

with non-centrality parameter  ߣ ൌ ఓమ

ఙమ
. 
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݃୼|௑൫ݔ|ߜ, ௣൯ܪ ൌ
1
௪ଶߪ

߯ଵ,஛
ଶ ൬

ߜ
௪ଶߪ
൰, 

where λ ൌ
ሺ௫ିఓ೉ሻమ

ఙೢ
మ .  The denominator of SLR will vary, depending on which method you choose 

(SLRଵ, SLRଶ, SLRଷ). 

 ૚ Denominator܀ۺ܁

The method used to arrive at	SLRଵ assumes ݔ is a randomly selected sample from some 

relevant population. That is,	

ܺ~ܰሺߤ஺, ஺ߪ
ଶ	ሻ. 

The method of SLRଵ also assumes sample ݕ is fixed and known. Therefore we need to find the 

distribution ݃୼|௒ሺݕ|ߜ,  .ௗሻܪ

We find 

ሾሺܺ െ ܻሻ|ܻ ൌ ஺ߤܰሺ	~	ሿݕ െ ,ݕ ஺ߪ
ଶ	ሻ. 

Per Property 1, we find the denominator for 	SLRଵ is 

݃୼|௒ሺݕ|ߜ, ௗሻܪ ൌ
1
஺ߪ
ଶ ߯ଵ,ఒభ

ଶ ቆ
ߜ
஺ߪ
ଶቇ, 

where ߣଵ ൌ
ሺఓಲି௬ሻమ

ఙಲ
మ . Thus, 

SLRଵ ൌ
஺ߪ
ଶ	߯ଵ,஛

ଶ ൬
ߜ
௪ଶߪ
൰

߯ଵ,ఒభ	௪ଶߪ
ଶ ൬

ߜ
஺ߪ
ଶ൰
. 

 

 ૛ Denominator܀ۺ܁

The method used to arrive at	ܴܵܮଶ assumes sample ݕ is a randomly selected sample from 

relevant population. That is,	
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ܻ~ܰሺߤ஺, ஺ߪ
ଶ	ሻ. 

The method of ܴܵܮଶ also assumes sample ݔ is fixed and known. Therefore we need to find the 

distribution ݃୼|௑ሺݔ|ߜ,  .ௗሻܪ

We find, 

ሾሺܺ െ ܻሻ|ܺ ൌ ݔሿ~ܰሺݔ െ ,஺ߤ ஺ߪ
ଶ	ሻ. 

Per Property 1, we find the denominator for 	ܴܵܮଶ is 

݃୼|௑ሺݔ|ߜ, ௗሻܪ ൌ
1
஺ߪ
ଶ ߯ଵ,஛మ

ଶ ቆ
ߜ
஺ߪ
ଶቇ. 

where λଶୀ
ሺ௫ିఓಲሻమ

ఙಲ
మ . Thus, 

ଶܴܮܵ ൌ
஺ߪ
ଶ߯ଵ,஛

ଶ ൬
ߜ
௪ଶߪ
൰

߯ଵ,ఒమ	௪ଶߪ
ଶ ൬

ߜ
஺ߪ
ଶ൰
. 

 Denominator	૜܀ۺ܁

Here, we neither condition on ݔ or	ݕ, and assume that ݔ and ݕ	 are independent draws from 

the distribution associated with the relevant population. Thus, both	ܺ and ܻ follow ܰሺߤ஺, ஺ߪ
ଶሻ	

, with ܺ and ܻ independent. Therefore, their differences are distributed as: 

ܺ െ ܻ~ܰሺ0, ஺ߪ2
ଶሻ. 

Per Property 1, we find the denominator for 	ܴܵܮଷ is 

݃୼ሺܪ|ߜௗሻ ൌ
1
஺ߪ2

ଶ ߯ଵ
ଶ ቆ

ߜ
஺ߪ2

ଶቇ. 

where ߯ଵ
ଶ denotes the central chi-squared distribution (λଷ ൌ 0). Therefore,  

SLRଷ ൌ
஺ߪ2

ଶ߯ଵ,஛
ଶ ൬

ߜ
௪ଶߪ
൰

௪ଶ߯ଵߪ
ଶ ൬

ߜ
஺ߪ2

ଶ൰
. 
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It is very important to note that each of the SLRs have a different functional form. While here 

we are making many simplistic and unrealistic assumptions, it stands to reason that the different 

methods will necessarily provide different answers, providing some insight into the results found 

in this work. SLRଵ and SLRଶ differ only in their non-centrality parameters in the denominator. 

We have laid out a framework where we can easily compare the three SLRs to the	LR, a 

luxury that is not possible in most realistic applications. To help the reader comprehend the 

differences among the SLRs themselves, and to highlight the deviations of each from the LR (in 

this contrived example), a graphical illustration is provided below.  

Comparison	

Rather than inspect the rather complex functional forms of each ratio, we have deferred to 

illustrating their differences graphically. In Figure A1, we have plotted the values of SLRଵ, SLRଶ, 

SLRଷ	and LR given by the formulas above, for various values of ߪ௕
ଶ and ߪ௪ଶ , and for different ߤ஺ 

and ߤ௒. The ݔ-axis represents a range of possible measurements on sample ݕ. For clarity, we 

have eliminated one source of variability by making the (unrealistic) assumption	ݔ always 

equals	ߤ௑ (i.e., the measurement taken from the known source is always equal to the true mean 

of its distribution).   

Consider the first plot appearing in Figure A1. Here, the mean of the distribution from which 

the known source sample arises is 0 (i.e.,	ߤ௑ ൌ 0).  The mean of the distribution from the 

relevant population is -8 (i.e. ߤ஺ ൌ െ8).  The black line represents the likelihood ratio. As 

expected, the likelihood ratio takes on positive values as the measurement from the unknown 

sample (ݕ) approaches the mean of the known source. It continues to increase as the value of ݔ 

increases, up until it becomes less and less likely to have come from the known source.  
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Moving on to the SLRs, it is important to note that the functional form of SLRଵ is changing along 

with ݕ, as the non-centrality parameter in the denominator changes with	ݕ. This is stated here to 

emphasize that we are not looking at the functional form of SLRଵ, just the evaluation of SLRଵ at 

each point ݕ. Each of the SLRs peak at	ݕ ൌ 0, which is a marked deviation from the LR. There is 

one segment (ݕ ൏ െ5) where both SLRଵ and SLRଷ are in fact larger than the LR implying that 

under these conditions, those SLRs are overstating the value of the evidence in favor of the 

prosecution (though all values are extremely small, thus providing very strong support the 

defense hypothesis). However, in most other places where log	ሺLRሻ ൐ 0 (LR ൐ 1) the SLRs are 

understating the value of the evidence, in some cases drastically so. For example, when ݕ ൌ 2.5, 

we find LR ൌ 3.05	x	10ଵଷ (logሺLRሻ ൌ 13.48) whereas SLRଵ ൌ 1.23	x	10଻ , SLRଶ ൌ 1.60	x	10ଶ, 

and SLRଷ ൌ 1.34	x	10ିଶ. This shows that, at least in this contrived situation, some amount of 

evidential value is not being adequately captured by these three methods. It is interesting to note 

that SLRଶ closely approximates (although slightly overestimating) the LR when ݕ ൏ 0, and this 

property is evident in each graph. 

The properties displayed in the first graph are certainly the most extreme. In most cases, the 

SLRs are fairly well behaved in comparison to the LR, particularly so when the between 

variability is much larger than the within variability (looking down the rows in Figure A1). The 

approximations are also well behaved when the alternate population mean approaches the mean 

of the known source (looking across the columns in Figure A1). In general, SLRଷtends to 

underestimate the value of the evidence, very rarely producing log values greater than zero.  

Several additional interesting features can be observed in these plots, and rather than enumerate 

them here, the reader is encouraged to study them closely.  
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 Appendix	B:	Dissimilarity	Score	
In this segment, we describe in detail the dissimilarity score used in this study.  Suppose we have 
observed matrices of counts for two writing samples, denoted by ࢞ and ࢟. For a given letter ݈ (or 
a given row of	࢞ and ࢟), define  

௟௜ߥ ൌ
௟௜ݔ ൅	

1
௟ܫ

⋅௟ݔ ൅ 1
and ߬௟௜ ൌ

௟௜ݕ ൅	
1
௟ܫ

⋅௟ݕ ൅ 1
		, 

 
where ݔ௟⋅ ൌ ∑ ௟௜ݔ

ூ೗
௜ୀଵ ⋅௟ݕ , ൌ ∑ ௟௜ݕ

ூ೗
௜ୀଵ , and ݅ ൌ 1,… ௟ indexes the distinct isocodes used to write the thlܫ

letter in either ࢞ or ࢟. Then the dissimilarity score for a given letter ݈ is defined as 

	Δሺ࢞௟, ௟ሻ࢟ ≡෍߬௟௜ ln ൬
߬௟௜
௟௜ߥ
൰

ூ೗

௜ୀଵ

, 

 except when	ܫ௟ ൌ 1 (i.e., when only one isocode is used to write letter ݈ in either ࢞ or ࢟), in which case 

Δሺ࢞௟, ௟ሻ࢟ ≡ 0. 

To combine across all letters, ݈ ൌ 1, …   ,define a set of weights ,ܮ

l 

1

1
xl �


1
yl �

, min xl �, yl �   1

0, otherwise ,











 

 

such that ∑ ௟ߣ
௅
௜ୀଵ ൌ 1.  Thus, a letter only receives weight when it appears at least once in both ࢞ and ࢟. 

The combined score over all letters is then 

Δሺ࢞, ሻ࢟ ൌ෍ߣ௟Δሺ࢞௟, ௟ሻ࢟
௅

௜ୀଵ

. 
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Phase III 
 
Identification of Specific Source (Continued) 
 
Our second direction concerns the formal development of the value of evidence when the 
forensic scientist has to estimate the background population defined by the defense proposition 
or model (the focus of Phase III). This line of work has been more narrowly focused on formal 
Bayesian methods. 
 
In	February	and	March	of	2014,	Dr	Saunders	is	giving	two	talks,	one	invited	presentation	at	
Pittcon	and	another	at	the	Annual	Meeting	of	the	American	Academy	of	Forensic	Sciences	
on	Statistical	Aspects	of	the	Forensic	Identification	of	Source	Problems.	These	talks	are	
presentations	of	the	results	of	Phase	III	of	this	research	grant.	This	research	describes	how	
to	incorporate	incomplete	information	about	the	background	population	into	a	forensic	
likelihood	ratio	in	a statistically rigorous manner. We provide an overview of these results in 
the following materials based, in part, on a poster presentation at the Joint Statistical Meetings in 
2012.  Dr. Saunders has been continuing this research activity through the end of the grant.  
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Investigation	into	Formal	Bayesian	Methods	for	incorporating	
Uncertainty	about	the	Background	Population	
 

The Effect of Uncertainty About the Alternative Source 
Population on the Assessment of the Value of Forensic 
Evidence46 

Christopher P. Saunders, PhD 

	
Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007 

	

A	goal	in	the	forensic	interpretation	of	scientific	evidence	is	to	make	an	inference	about	the	
source	of	a	trace	of	unknown	origin;	the	inference	usually	concerns	two	propositions.	The	
first	proposition	is	usually	referred	to	as	the	prosecution	hypothesis	and	states	that	a	given	
specific	 source	 is	 the	 actual	 source	 of	 the	 trace	 of	 unknown	 origin.	 The	 second,	 usually	
referred	to	as	the	defense	hypothesis,	states	that	the	actual	source	of	the	trace	of	unknown	
origin	is	randomly	selected	from	a	relevant	alternative	source	population.		The	evidence	a	
forensic	scientist	 is	given	for	deciding	between	these	two	propositions	 is:	(a)	the	trace	of	
unknown	 origin,	 (b)	 a	 sample	 from	 the	 specific	 source	 specified	 by	 the	 prosecution	
hypothesis,	 and	 (c)	 a	 collection	 of	 samples	 from	 the	 alternative	 source	 population.	 One	
common	approach	is	to	assume	that	the	alternative	source	population	is	completely	known	
and	 rely	 on	 a	 Bayes	 Factor	 for	 deciding	 between	 the	 competing	 hypotheses.	 	 In	 this	
presentation	we	will	relax	this	assumption	and	explore	some	of	the	resulting	 issues	from	
the	estimation	of	the	alternative	source	population.		We	will	illustrate	the	resulting	effects	
on	the	calculation	of	the	Bayes	Factors	with	a	well‐studied	collection	of	samples	relating	to	
glass	fragments	described	above.		

Background	and	Conventions	

Let E {E
s
, E

u
, E

a
} be a random element that represents the evidence available in a specific case 

for distinguishing between the defense proposition and the prosecution proposition; where E
s
 is 

the evidence about a specific source, E
u
 is the evidence from an unknown source, and E

a
 is the 

evidence from possible alternative sources.  We assume that E
s
, E

u
, and E

a
 are three 

independent samples drawn in the following way: 

                                                 
46 This section is based, in part, on a poster presentation at the Joint Statistical Meetings in 2012.  Dr. Saunders is 
continuing this research activity through the end of the grant; he will deliver an invited talk at Pittcon in 2014 and a 
presentation at the 2014 AAFS Annual Meeting.  
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1. E
s
	is	a	simple	random	sample	from	a	given	specific	source	determined	by	H

p
.	Let	


s0
	denote	the	fixed	parameters	necessary	to	describe	this	sampling	induced	

distribution.	
2. E

a
	is	constructed	by	first	taking	a	simple	random	sample	of	sources	from	a	given	

relevant	population	of		possible	sources;	then	from	each	sampled	source	we	have	a	
simple	random	sample.	This	collection	of	samples	is	 E

a
.	Let	

a0
	denote	the	fixed	

parameters	necessary	to	describe	this	sampling	induced	distribution.	
3. E

u
	is	a	simple	random	sample	from	a	single	source.	It	is	unknown	whether	the	

source	of	 E
u
	is	the	specific	source	determined	by	H

p
	or	if	the	source	of	 E

u
	is	

randomly	selected	from	the	given	relevant	population	of	the	possible	sources	in	 (2) .	

The	sampling	distribution	of	 E
u
	is	characterized	by	either	the	parameters	

s0
	or	

a0
.	

 
We will follow these conventions for distinguishing between sampling-induced probability and 
probability used as a measure of belief: 
 

1. Latin	letters	denote	sampling	induced	probability	measures;	for	example,	 f (e
s
|

s0
)	

denotes	the	likelihood	of	observing	the	realized	value	of	the	sample	from	the	
specific	source	given	the	actual	value	of	the	specific	source	distribution	parameters.	

2. Greek	letters	denote	a	probability	measure	that	is	a	measure	of	belief;	for	example,	
 (

s
| e

s
) 	denotes	the	posterior	density	of	

s
| e

s
,	which	describes	our	belief	about	

the	value	of	
s0
	after	observing	a	sample	 E

s
|

s0
.	

3. When	combining	a	belief	with	a	sampling	induced	probability	through	Bayes	
theorem,	we	end	up	with	another	belief	that	is	informed	or	updated	by	the	observed	
sample.	We	denote	the	resulting	distribution	with	a	 .			

 
In this setting, the stochastic nature of the evidence E  is characterized by an unknown but fixed 
parameter 

0
.  However, 

0
 is usually of interest only in so far as knowledge of its value 

facilitates the quantification of support that E  provides for either the prosecution model of 
define of the evidence. In this sense, having to estimate 

0
 is a nuisance, and hence in the 

statistical nomenclature these parameters in this situation are known as a ‘nuisance parameters’.  
To deal with these nuisance parameters in a formal a Bayesian manner, we need to characterize 
our belief concerning their likely values (and hopefully, eventually update that belief with 
empirical evidence!).  In these situations we have studied, we typically will need two sets of 
prior beliefs; one summarizing our belief about how the specific source generates evidence (

s0
) 

and another summarizing our prior belief about how the alternative source population 
stochastically generates evidence (

a0
).  Unfortunately, to be statistically rigorous in our 

application of Bayesian methods to this problem we need to specify these priors before we look 
at the evidence, including the evidence from the alternative source population.   
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As an example of (3), say I am interested the “likelihood of observing e

u
, if is from the same 

source distribution as e
s
”.  Using a Bayesian method would provide the following answer “I 

believe the likelihood of observing e
u
, if it is from the same source distribution as e

s
is … ”.  This 

posterior belief is known as the posterior predictive distribution for e
u
 given e

s
and is calculated 

as follows: 

 e
u

e
s   ( eu ,es )

( e
s

)


f ( eu ,es |s )(s )d s

f (e
s
|

s
)(

s
)d 

s


f ( e

u
|

s
) f ( e

s
|

s
)(

s
)d 

s

f ( es |s )(s )d s

 f ( e
u

|
s

)
f ( es |s )(s )

f (es |s )(s )d s

d 
s

 f ( eu |s )(s |es )d s .

 

	

 
 
Known Alternative Source Population Parameters 
 
In this section we are assuming that we have a well-studied alternative source population with 
known parameters, i.e. 

a0
 is known.  The only unknown parameters that are contributing to the 

uncertainty about the value of the evidence are the ones associated with the specific source, 
s0

. 

 
Let  e {e

s
,e

u
,e

a
} represent the realization of the random element E  for a specific case at hand. 

Since 
a0

 is known, e
a
 is irrelevant to the value of the evidence. Let 

0
{

s0
,

a0
} and 

 ( )   (
s
)  be a probability distribution used to describe our prior belief about 

0
. 

 
Following [1], define the value of the evidence as  

	 V 
 (e | H

p
, I )

 (e | H
d
, I )

, 	

where  
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 e | H

p
, I   f (e

s
|

s
) f (e

u
|

s
) f (e

a
|

a0
)d ( )

 f (ea |a0
) f (eu |s ) f (es |s )d (s ),

	

and  

	
 (E H

d
, I )  f (e

s
|

s
) f (e

u
|

a0
) f (e

a
|

a0
)d ( )

 f (e
u

|
a0

) f (e
a

|
a0

) f (e
s
|

s
)d (

s
).
	

Now we can rewrite V  as 

	

  

V 
 (e | H p , I )

 (e | Hd , I )


f (eu |s ) f (es |s )d (s )

f (e
u

|
a0

) f (e
s
|

s
)d (

s
)


 (e

u
| e

s
, H

p
, I )

f (e
u

|
a0

)
.

	

 
By assuming we know (or we are just certain that we know) the value of 

a0
, the denominator 

reduces to evaluating the sampling distribution at e
u
; in effect the denominator does not contain 

any belief measures when is 
a0

 is known.   

 
Unknown Alternative Source Population Parameters 
Let  e {e

s
,e

u
,e

a
} represent the realization of the random element E  for a specific case at hand. 

Let 
0
{

s0
,

a0
} and  ( )   (

s
) (

a
) be a probability distribution used to describe our prior 

belief about 
0
.  We are choosing to restrict ourselves to priors on 

s0
 and 

a0
 that are 

independent of each other. 
The value of the evidence is now 

	 V 
 (e | H

p
, I )

 (e | H
d
, I )

, 	

where  

	
 (e H p , I )  f (es |s ) f (eu |s ) f (ea |a )d ( )

 f (ea |a )d (a ) f (eu |s ) f (es |s )d (s ),
	

and  

	
 (e Hd , I )  f (es |s ) f (eu |a ) f (ea |a )d ( )

 f (e
u

|
a
) f (e

a
|

a
)d (

a
) f (e

s
|

s
)d (

s
).
	

Now we can rewrite V  as  
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V 
 (e | H

p
, I )

 (e | Hd , I )


f (ea |a )d (a )

f (e
u

|
a
) f (e

a
|

a
)d (

a
)


f (eu |s ) f (es |s )d (s )

f (e
s
|

s
)d (

s
)


 (e

u
| e

s
, H

p
, I )

 (e
u

| e
a
, H

d
, I )

.

	

 
 
Glass Data Example: 
 
In [3] a collection of glass fragments is analyzed. This dataset consists of three classes of 
windows, with 16, 16, and 30 windows in each class.  There are 5 glass fragments per window.  
Following [3], we consider the logarithm of measurements of elemental ratios on each glass 
fragment: log(Ca / K ) (V2), log(Ca / Si) (V3), and  log(Ca / Fe)  (V4).   
 
As an illustrative example, we consider the first group of windows, letting the 4th  window take 
the role of the hypothesized specific source.  The first three fragments from window 4  will serve 
as e

s
 and the last two fragments from window four will serve as e

u
.  A second example will be 

constructed where two fragments from the 2nd  window serve as e
u
. The remaining 70 glass 

fragments divided among the 14 windows will serve as e
a
. 

 
Model H

p
 

We will assume that the glass fragments composing e
s
 are an i.i.d. sample from a multivariate 

normal with a mean vector 
s
 and covariance 

s
. Let X

i
 denote the vector of measurements on 

the ith  fragment for   i  1,2,3, then X
i
~ MNV 

s
,

s . 
We will use a normal prior on 

s
, centered at the zero vector with a diagonal covariance matrix 

with diagonal elements equal to 103 and an inverse gamma prior for 
s
 centered at a diagonal 

covariance matrix with diagonal elements equal to .05, .00005, .0005 and one degree of freedom.  
The marginal 95%  credible intervals for the mean vector of the specific source are 


s(v2)

:(2.7428,6.0518), 
s(v3)

:(0.3736,0.2305), and 
s(v3)

:(2.3399,2.9879) .  The numerators 

of the values evidence are  

	
Exp1 Exp2

 e
u

e
s   62760.38 1942.637
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Model H
d
 

 
We assume that the glass fragments composing e

a
 follow a hierarchical multivariate normal 

model with the assumption that all windows in the alternative source population have a common 
within-covariance matrix, 

w
, and a between source mean   and covariance 

b
.  

 Let Y
ij
 denote the vector of measurements on the jth  fragment, for i  1,2,m

i
 fragment 

from the ith  window, for   i  1,2,n .  The hierarchical multivariate model in this case is the 

same as a simple random effects model: Y
ij
   a

i
 w

ij
, where a

i
 are i.i.d. multivariate normal 

random vectors with a mean vector of zero and a covariance matrix of 
b
.  The w

ij
 are assumed 

to be i.i.d. multivariate normal vectors with a mean vector of zero and a covariance matrix of 


w

.   

 Our prior for 
w

 is the same that is used for 
s
 and the prior for   is the same as that 

used for 
s
. We use an inverse gamma prior for 

b
centered at the identity covariance matrix 

with one degree of freedom.  
  
 To calculate the denominator likelihood under the assumption that the alternative source 

population is known, we used the estimates suggested in [3] as plug-in values for the parameters.  

All posterior predictive distributions are fit using [6]. The denominators of the value of evidence 

being  

  

	

  

Exp1 Exp2

 eu ea  445.65 592.1348

f eu ̂a0
  556.35 10931.68
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Figure 1: Pairwise Scatter Plots of Glass Data for v2 versus v3, v2 versus v4, and v3 versus v4. The 

gray points are ݁௔; the samples from the background population with the source (window) 
sample means denoted in black. The yellow diamonds are the 3 glass fragments from the 
specific source, ݁௦. The blue and red *’s are the glass samples from an unknown source, ݁௨, 
under two different conditions. The red *’s are fragments that are actually from the specific 
source. The blue *’s are fragments for ݁௨ that are from a window that is not the specific source. 

 
 
Conclusions and Current Research 
In the two examples we have worked with a traditional forensic dataset, we have found that there 
can be a rather dramatic effect in the value of evidence when we incorporate the uncertainty 
about the background population.  
 
It should be noted that the priors we have used are not the ideal choice in forensic science. The 
common approach in forensic statistics, dating back to [8] and covered in great detail in [1], for 
determining a prior for 

s0
 is to rely on the ``random man distribution''.  The basic idea is that 

before we observe anything from the specific source, we believe that the specific source is 
similar to a source that is randomly selected from the alternative source population.  Our current 
research is focused on using this type of prior while incorporating E

a
.  The difficulty is that we 

would like to use part of the evidence to suggest the prior for the specific source parameters, 
which leads to an empirical Bayes approach.  
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Conclusions and Impact 
 
The research performed during the Phase I, Part A of this project has provided two statistically 
rigorous methodologies for estimating the Random Match Probabilities of a forensic matching 
system.  As is noted in The National Research Council (2009, p. 122): 

The assessment of the accuracy of the conclusions from forensic analyses and the 
estimation of relevant error rates are key components of the mission of forensic 
science. 

This suggests that information concerning the RMP and the RNMP associated with a comparison 
procedure contributes to its practical utility in forensic science. In this section we have illustrated 
one alternative to modeling for investigation of the RMP and the RNMP associated with a 
comparison procedure applied to comparing writing samples.  We have also described an 
algorithm involving subsampling that facilitates the studying of various properties of the RMP as 
a function of the size of the documents being compared.   All of these algorithms have been 
stated in terms of a common size of writing samples being compared.  However, they can be 
trivially adapted to scenarios where the sizes of writing samples being compared are not the 
same for all writing samples.  Such an application might arise when studying match probabilities 
associated with comparing very short notes, such as might be associated with bank robberies, to 
very large writing samples collected from potential suspects.  The algorithms can also be adapted 
to investigate the dependency of match probabilities on criteria other than sizes of writing 
samples being compared.  For example, the effect of content on match probabilities can be 
studied by changing from random sampling to stratified or systematic sampling when selecting 
characters to generate the simulated writing samples. Finally, although the main focus of this 
section has been on match probabilities, the algorithms have other applications in 
forensics.  These algorithms have facilitated the development of new strategies for the 
interpretation and presentation of forensic handwriting evidence discussed in Phase II. 
 
In addition to the nonparametric methods described in Part A of Phase I, we have also developed 
in Phase I, Part B a parametric methodology for estimating the RMP. This approach hinges on 
the modeling the dependency structure among a set of pairwise comparisons. The parametric 
methods facilitate the estimation of RMPs when there are no ‘matches’ between pairwise 
comparisons; a situation that commonly occurs when there are a small number of samples to 
compare. It has been shown that there is a closed form for an ANOVA table.  It has been shown 
that there is a method for forming confidence intervals for RMPs, which works well based on the 
simulation results.  It has also been shown that two other methods for making confidence 
intervals either fail by being too conservative or are just incorrect.  We feel that the methods 
described here could be used by researchers working in the area of studying random match 
probabilities.  We also expect that these models will support the development of new statistical 
methods for the interpretation and presentation of forensic evidence for which it is only possible 
to compare pairs of objects. 
 

In Part A of Phase II, we discussed the development of a novel quantification system for 
fingerprint evidence. In this section, our focus was on the closed set identification problem, 
where it was quickly discovered that there was need to have a sophisticated statistical algorithm 
to extract the relevant information. The resulting approach allows for a comparison between 
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pairs (or sets) of fingerprints.  When this quantification is applied to forensic evidence, the 
resulting scores will naturally require a score based likelihood ratio approach.  Extending the 
research performed in this section will be one of the main focuses of our ongoing research 
program. 
 

In Part B of Phase II, several methods for obtaining a score-based likelihood ratio for 
handwriting evidence were illustrated and explored using the subsampling approaches developed 
in Phase II. All of the methods explored with the available research data set indicate that 
extremely low false match and false exclusion rates are attained when a moderate conclusion 
threshold is set (|ln(SLR)|≤4.61).  While we feel that these types of quantitative analyses may 
prove fruitful for document examiners at some point, they should only be employed after careful 
consideration of the inherently subjective decisions the statistical analyst must make in order to 
calculate such quantities.  
 

The main achievement of this work has been to demonstrate, both empirically and 
theoretically, that score-based likelihood ratios are not the same as, and cannot be interpreted as, 
a traditional forensic likelihood ratio. This point has been largely ignored in the existing 
literature.  Their interpretations must differ as SLRs are considerably more subjective than LRs, 
in that an analyst must select and defend 1) the similarity (or dissimilarity) score, 2) the 
appropriate interpretation of the denominator, and 3) the technique relied upon to estimate the 
numerator and denominator distributions. Due to these points of subjectivity, SLR values must 
be interpreted with far more caution than the LR based on a well-defined and known probability 
model (e.g., simple one-contributor DNA LRs). Our current research focus in this area has been 
to develop a set of reasonable standard properties that a SLR should possess. The preliminary 
results of this research were discussed at the Joint Statistical Meetings in 2013. This research is 
ongoing, with a PhD Candidate at South Dakota State University developing the embryonic 
stages of the research to date. Due to the complexity of modern forensic techniques, we do 
expect that score-based likelihood ratios will be one of the main tools available for the 
presentation and interpretation of complex evidence forms.  
 

In final section, Phase III, of this report we have summarized our preliminary work on a 
statistically rigorous Bayesian approach to the specific source identification problem when the 
background population is not known with certainty.  We have used a traditional data set 
concerning glass fragments and worked two examples. As expected, we have found that there 
can be a rather dramatic effect in the value of evidence when we incorporate the uncertainty 
about the background population.  
 
It should be noted that the priors we have used are not the ideal choice in forensic science. It is 
common practice to choose the prior for the specific source distribution parameters by thinking 
of the specific source as typical of the population of alternative sources specified by the defense 
proposition. The basic idea is that before we observe anything from the specific source, we 
believe that the specific source is similar to a source that is randomly selected from the 
alternative source population.  The difficulty is that we would like to use part of the evidence to 
suggest the prior for the specific source parameters, which leads to an empirical Bayes approach. 
This is of concern because empirical Bayesian methods do not possess the properties normally 
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associated with formal Bayesian methods.  Phase III is active research, with Dr. Saunders 
presenting a series of talks in the winter and early spring of 2014.  After these presentations are 
complete, the researchers will submit the resulting papers to the appropriate journals. A master’s 
student at South Dakota State University is currently exploring computational issues associated 
with this research. The resulting work will become her Master’s thesis.  
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Christopher Saunders, PhD, George Mason University, Document Forensics Lab, 4400 
University Drive, Fairfax, VA 22033  
 

 

Abstract 2:  New Results for Addressing the Open Set Problem in Automated Handwriting 
Identification 

 
Authors:  Donald T. Gantz, PhD*, John J. Miller, PhD*, and Christopher Saunders, PhD, 
Intelligence and Security Research Center (MS 1G8), George Mason University, Fairfax, VA 
22030; Mark A. Walch, March, MPH, The Gannon Technologies Group, 7600 Colshire Drive, 
McClean, VA 22102; and JoAnn Buscaglia, PhD, FBI Laboratory, Counterterrorism & Forensic 
Science Research Unit, Quantico, VA 22135 
 

 

Abstracts of Presentations delivered at the NIJ 2011 Trace Evidence Symposium 

 

Abstract 1:  ROC Curves for Methods of Evaluating Evidence: A Common Performance 
Measure Based on Similarity Scores 

 

Authors:  R. Bradley Patterson, John Miller, Christopher P. Saunders 

Video and Slides Available at http://projects.nfstc.org/trace/2011/agenda.htm  

 
Abstract 2:  Predictive modeling for determining the discriminative power of trace glass 

evidence as a function of the number of sampled glass fragments. 

 

Authors:  Eric Kalendra, Christopher P. Saunders 

Video and Slides Available at http://projects.nfstc.org/trace/2011/agenda.htm  

 

Abstract 3:  On Parametric Models for Pairwise Comparisons with Applications to the 
Estimation of Random Match Probabilities. 

Authors:  Donald Gantz, Christopher P. Saunders 
Video and Slides Available at http://projects.nfstc.org/trace/2011/agenda.htm  

 
Abstracts of Presentations delivered at the NIJ 2012 Impression and Pattern Evidence 
Symposium 

 
 Abstract 1 (Poster): Automated Statistically Ranked Latent-to-Reference Print Overlays  

 
Authors:  Donald T. Gantz, George Mason University, JoAnn Buscaglia, Federal Bureau of 
Investigation Laboratory Division, Mark A. Walch, The Gannon Technologies Group,  
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Maria Antonia Roberts, Federal Bureau of Investigation Laboratory Division, Daniel T. Gantz, 
The Gannon Technologies Group 
 

Abstract 2: (Poster) A Note on the Value of Forensic Evidence for Sparse Categorical Tables 

 

Authors: Krista M. Heim, George Mason University, Christopher P. Saunders, South Dakota 
State University, and JoAnn Buscaglia, Federal Bureau of Investigation Laboratory Division.   
 

Abstract 3:  The Effect of the Order of Suspect and Background Population Samples on the 
Assessment of the Value of Evidence 
 
Authors:  Eric Kalendra, George Mason University, Christopher P. Saunders, South Dakota State 
University, JoAnn Buscaglia, Federal Bureau of Investigation Laboratory Division.   
 

Abstract 4 in the Workshop: Guidelines for a Successful Research Project:  The story of an 
Academic/Commercial Partnership developing a product for the Forensic Community 

Panelists & Presenters: Donald Gantz, George Mason University, and Mark Walch, The Gannon  

 
Abstracts of Presentations delivered at the 2012 Joint Statistical Meetings, August 2012 

 

Abstract 1:  (Poster) “The effect of uncertainty about the Alternative Source population on 
the value of Forensic evidence.”  

 

Author:   Christopher P. Saunders, South Dakota State University 

 
Abstracts of Presentations delivered at EAFS 2012, The Hague, August 20-24, 2012 
 

Abstract 1: The Effect of Uncertainty About the Background Population on the Forensic 
Value of Evidence 
 
Author: Christopher P. Saunders, South Dakota State University 

Abstract 2: Ridge Specific Markers for Latent Fingerprint Identification  
 
Authors:  Donald T. Gantz, George Mason University, JoAnn Buscaglia, Federal Bureau of 
Investigation Laboratory Division, Mark A. Walch, The Gannon Technologies Group,  
Maria Antonia Roberts, Federal Bureau of Investigation Laboratory Division, Daniel T. Gantz, 
The Gannon Technologies Group 
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Abstracts of Presentations delivered at The Measurement Science and Standards in 
Forensic Handwriting Analysis (MSSFHA) Conference, June 4 – 5, 2013 at NIST. 
 

Abstract 1:  The Forensic Language-Independent Analysis System for Handwriting 
Identification (FLASH ID) 

 
Authors:  Mark Walch, Gannon Technologies Group and Donald Gantz, George Mason 
University 
 

Abstract 2:  Understanding Individuality of Handwriting Using Score-Based Likelihood 
Ratios  

 
Author:  Christopher Saunders, PhD, Mathematical Statistician, South Dakota State University  
 
Abstracts of Presentations delivered at The 2013 Joint Statistical Meetings, August 6, 2013, 
Sponsor: Committee of Representatives to AAAS 
 

Abstract 1:  A Similarity Score for Fingerprint Images 
 

Authors:  Donald T. Gantz, PhD, John J, Miller, PhD, George Mason University, Fairfax, VA;  
Mark A. Walch, Daniel T. Gantz, Gannon Technologies Group, Alexandria, VA 
 

Abstract 2:  On Desiderata for Score-Based Likelihood Ratios for Forensic Evidence  
 
Authors: Christopher Saunders, South Dakota State University and John J. Miller, PhD, George 
Mason University  
 
 
 
Abstracts of Presentation to be delivered at Pittcon 2014 (Application: Homeland 
Security/Forensics, Primary Focus: Methodology) 
The Pittcon talk is an overview of the Statistical methods used in the identification of source 
problems. 
 

Abstract 1:  Statistical Aspects of the Forensic Identification Source Problem 
 

Author: Christopher Saunders, South Dakota State University  
 
 
 
Abstracts of Presentation to be delivered at AAFS 2014 Annual Meeting 
The AAFS 2014 presentation is mainly focused on current research related to Phase III of the 
grant proposal. 
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Abstract 1:  Statistical Aspects of the Forensic Identification Source Problem  
 
Author: Christopher Saunders, South Dakota State University, Joshua R. Dettman and JoAnn 
Buscaglia, Federal Bureau of Investigation Laboratory Division 
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Abstracts of Presentations delivered at the AAFS 2010 Annual Meeting 
 

Abstract 1:  A Comparison Between Different Likelihood Ratios for Assessing Handwriting 
Evidence 
 
Authors:  Amanda Hepler, PhD*, George Mason University, Document Forensics Lab, 
Department of Applied Information Technology, 4400 University Drive, Fairfax, VA 22030; and 
Christopher Saunders, PhD, George Mason University, Document Forensics Lab, 4400 
University Drive, Fairfax, VA 22033  
 

After attending this presentation, attendees will understand how sometimes subtle changes to the 
prosecution and defense propositions can have a large effect upon the corresponding likelihood 
ratio. These impacts will be illustrated using an automated handwriting system developed and 
applied to handwriting samples collected by the FBI laboratories.  This presentation will impact 
the forensic science community by illustrating the effects of modifying the prosecution and 
defense propositions when interpreting handwriting evidence.  The ultimate goal of the court 
(and/or jury) is to make a decision concerning a specific suspect’s guilt given the evidence, 
which in the likelihood ratio paradigm for presenting evidence is usually expressed as the 
posterior odds in favor of the suspect’s guilt. In this paradigm, the court (and/or jury) is usually 
responsible for prior beliefs about guilt while the forensic scientist is responsible for providing 
the likelihood of the evidence when the suspect is guilty (the prosecution proposition) vs. when 
the suspect is not guilty (the defense proposition).  In this presentation, various sets of 
prosecution and defense propositions (and the resulting likelihood ratios), which have appeared 
in the literature, will be compared and contrasted. The goal in performing these comparisons is to 
illustrate the effect that subtle modifications of these propositions can have on the resulting 
likelihood ratios. In addition, the practical and logical implications of each variation will be 
discussed.  This study will be performed using a dataset of bank robbery notes and a reference 
database composed of writing samples from over 400 writers.  

 

Abstract 2:  New Results for Addressing the Open Set Problem in Automated Handwriting 
Identification 

 
Authors:  Donald T. Gantz, PhD*, John J. Miller, PhD*, and Christopher Saunders, PhD, 
Intelligence and Security Research Center (MS 1G8), George Mason University, Fairfax, VA 
22030; Mark A. Walch, March, MPH, The Gannon Technologies Group, 7600 Colshire Drive, 
McClean, VA 22102; and JoAnn Buscaglia, PhD, FBI Laboratory, Counterterrorism & Forensic 
Science Research Unit, Quantico, VA 22135 
 

The Open Set Problem involves making a two-stage decision when attempting to ascertain 
whether a questioned document was written by some individual in a reference collection (for 
which training material exists for each writer in the reference collection).  The first step is to 
decide whether the document was written by any writer in the reference collection and the 
second step is to decide which writer in the reference collection is the most likely writer of the 
questioned document (or to give a “short list” of likely writers), presuming that the decision is 
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that some writer in the reference collection was the writer of the questioned document.  At AAFS 
2009, we presented some results for this problem that were generated using the FLASH ID 
software system.  Those results used the difference between the aggregated score (totaled overall 
graphemes in the questioned document) for the first place writer and the aggregated score for the 
second place writer as the basis for the “in the reference collection” decision.  In this paper, we 
will give some results for an improved open set decision based on a combination of the original 
criterion with a new criterion based on a “Vector of Counts” (VOC) methodology described 
below. 
 
The VOC methodology is a way to obtain categorical type feature data by using the FLASH ID 
system with continuous feature data.  It works in the following manner.  First, we obtain a “base 
set” of writers, who are not in the reference collection or likely to be among writers of any 
questioned documents we observe.  We obtain writing samples from these individuals and using 
FLASH ID create a trained system of the same sort as is used for the reference collection.  We 
use this base set to analyze any document by recording for each grapheme in that document, 
which writer in the base set is most likely to have written that grapheme.  In this way, a vector of 
counts for the document can be developed by counting how many graphemes are assigned to 
each writer in the base set. 
 
Next, we take the training writings for each writer in the reference collection and obtain a VOC 
for each of those writers.  When a questioned document is analyzed, we obtain its VOC as well.  
Then, we can compare the VOC for the questioned document with the VOC for the first place 
writer when writers in the reference collection are assigned questioned document scores by 
FLASH ID.  One way to do this comparison of VOCs is using a chi-squared statistic.  Since large 
values of chi-squared would indicate a relative mismatch between the questioned document and 
the first place writer and since small values of the previously used difference of first and second 
place writer scores would also indicate a poor match, taking the ratio of these two criteria can be 
an effective tool for improvement of the open set decision.  We give numerical results based on 
extensive simulations to illustrate the improvement. 
 

 

 

Abstracts of Presentations delivered at the NIJ 2011 Trace Evidence Symposium 

 

Abstract 1:  ROC Curves for Methods of Evaluating Evidence: A Common Performance 
Measure Based on Similarity Scores 

 

Authors:  R. Bradley Patterson, John Miller, Christopher P. Saunders 

Video and Slides Available at http://projects.nfstc.org/trace/2011/agenda.htm  

 

Many forensic methods produce a numerical value that indicates the degree of association 
between two pieces of evidence. We may treat such a number as a similarity score providing a 
univariate measure of association between two observations.  High similarity scores support the 
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hypothesis that the observations come from the same source; low similarity scores support the 
hypothesis that they come from different sources. A method’s performance depends on its 
capability of supporting the hypothesis that corresponds to the truth. In measuring the 
performance of such methods, most often single values (e.g., the 0.05 significance level for test 
statistics and the number one for likelihood ratios) serve as fixed cutoffs on the similarity scores. 
These fixed values lead to single sets of errors (i.e., false positives and false negatives) as 
measures of performance. Comparing sets of just two numbers may make interpreting 
performance ambiguous. However, techniques that consider all possible cutoffs and thus the full 
range of performance exist. 

In this work, we demonstrate the use of receiver operating characteristic (ROC) curves in 
measuring the performance of methods that evaluate trace evidence and discuss the benefits of 
ROC curves to forensics. An ROC curve is a plot of the true positive rate (the complement of the 
false negative rate) versus the false positive rate for all possible thresholds on similarity scores. 
ROC curves present a complete picture of error rates achievable with a method. Each point on an 
ROC curve gives the true positive and false positive rate for a particular threshold on similarity 
scores. So instead of choosing arbitrarily, we could pick a threshold based on the error rates. 
Furthermore, because the relative ordering of similarity scores for pairs of observations from 
different sources and for pairs from the same source determines the ROC curve, we may use 
ROC curves to compare methods of evaluating evidence which generate similarity scores on 
different scales. 

In addition, the area under the ROC curve (AUC) provides more insight into performance. 
The empirical AUC estimates the probability that a randomly selected pair from the same source 
would have a higher similarity score than a randomly selected pair from different sources. It also 
gives the mean true positive rate averaged uniformly across the false positive rate. 

To show the value of ROC curves in forensics, we applied them to comparing the 
performance of four methods of evaluating trace evidence in the form of glass fragments. The 
forensic question was whether fragments recovered from a suspect had the same source as 
fragments found at a crime scene. The methods, based on test statistics and likelihood ratios, 
come from an article by Aitken and Lucy (2004, JRSS-C, vol. 53(1), pp. 109-122) in which the 
authors reported false positives and false negatives at nominal cutoffs. Test statistics and 
likelihood ratios both provide measures of association between two samples. So we interpreted 
those values as similarity scores. 

The data set utilized in this study is the same as reported on in the article by Aitken and Lucy 
(2004) and is publicly available on The Royal Statistical Society Website. It includes elemental 
composition measurements for each of five fragments from 62 windowpanes. We applied the 
methods of evaluating trace evidence with different allotments of fragments to the control and 
recovered samples.  By depicting all possible error rates for the methods, the ROC curves made 
comparisons of performance easier and allowed for the choice of threshold based on error rates. 

The results for the glass data evaluated with methods from Aitken and Lucy (2004) indicate 
that all methods perform very well. All four methods had very high accuracy. The AUC values 
were all above 0.988 and within less than 0.002 across the methods for a given allotment of 
window fragments. In regard to choosing a threshold, nearly overlapping ROC curves showed 
that test-statistic and likelihood ratio methods could achieve comparable error rates. 
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In summary, ROC curves offer a common measure of performance for methods of evaluating 
forensic evidence. We noted that the false positive and false negative rates at nominal thresholds 
on output from the methods made assessing their performance unclear. Treating the output from 
the methods as similarity scores allowed us to analyze the methods with ROC curves. The ROC 
curves showed the methods’ capability of discriminating between true positives and true 
negatives more completely. They also allowed for different thresholds on similarity scores for 
achieving error rates with each method. The results for the glass data evaluated with methods 
from Aitken and Lucy (2004) indicated that all methods perform very well. Applying ROC 
curves to different methods of evaluating trace evidence or to the same methods but with 
different data would provide very interesting future research. 

 

 

Abstract 2:  Predictive modeling for determining the discriminative power of trace glass 
evidence as a function of the number of sampled glass fragments. 

 

Authors:  Eric Kalendra, Christopher P. Saunders 

Video and Slides Available at http://projects.nfstc.org/trace/2011/agenda.htm  

 

The four elements silicon (Si), potassium (K), calcium (Ca), and iron (Fe) are typically used 
to characterize the composition of glass for forensic trace evidence. As a byproduct of the 
manufacturing process, panes of glass will inherently have some small amount of variation of the 
elemental constituents.  

Using the composition from glass shards from multiple locations, a common hypothesis is 
that the shards came from the same window versus the shards came from different windows. In 
general the glass shards are collected from two locations, the control (crime scene) and the 
recovered data (glass fragment(s) on the suspect). The competing hypotheses are: the recovered 
glass fragments came from the same window as the control and the recovered glass fragments 
did not come from the same window as the control. 

To evaluate the hypothesis, multiple methods have been proposed.  

However, in this presentation we use a full Bayesian predictive model to estimate the 
discriminative power of the trace evidence as a function of the number of sampled glass 
fragments. The model we use is a multivariate two level normal model with various priors for the 
within and between window covariance structures. Using the two level normal model allows for 
the proper characterization of the sources of variability under the hypotheses that the two 
samples of glass fragments arise from different randomly selected windows. 

We use the glass data studied in Aitken and Lucy (2004) as a collection of glass fragments to 
estimate the within and between window covariances. Using a Bayesian approach we simulate 
new glass fragments from random windows with the posterior predictive distribution. By 
simulating new glass fragments from the posterior predictive distribution, we can estimate the 
discriminative power for any sample size of the control and recovered data while taking into 
account uncertainty in the within and between window covariance structures. In effect by 
drawing samples from the posterior predictive distribution and applying the matching criteria to 
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these samples we are able to draw a sample from the posterior distribution of the discriminating 
power given our empirical data. 

This approach provides a useful Monte Carlo tool for deciding on the number of observations 
that should be used to achieve a desired level of discriminating power for a given comparison 
methodology. 

 

 

Abstract 3:  On Parametric Models for Pairwise Comparisons with Applications to the 
Estimation of Random Match Probabilities. 

Authors:  Donald Gantz, Christopher P. Saunders 
Video and Slides Available at http://projects.nfstc.org/trace/2011/agenda.htm  

 

This presentation concerns Recommendation 3 in the National Academy of Science (NAS) 
report: Strengthening Forensic Science in the United States: A Path Forward. Specifically, we 
present a new of class of methods to statistically quantify the uncertainty in measures aimed at 
validating a forensic discipline’s basic premises (such as a uniqueness claim).  

An issue that applies to forensic individualization is that while a database of samples can be 
used to support individuality, it cannot directly prove individuality. Therefore, the NAS report 
calls for statistically/probabilistically based statements concerning the level of support that a 
database of samples provides for individualization. To date, much attention has focused on how 
to use an automated comparison methodology applied to a database of samples to estimate the 
random match probability (RMP), which is defined as the probability of selecting two 
individuals at random from a population that “match” on the basis of some biometric. The RMP 
can be interpreted as giving the expected performance of a comparison methodology across some 
relevant population. During phase I of our NIJ Grant award we have focused on the RMP as a 
measure of the validity of a forensic individualization procedure. Specifically, our research has 
been concerned with upper confidence bounds on measures, such as the RMP, that are estimated 
using these automated pairwise comparisons. 

The use of automated pairwise comparisons of biometric samples in a database is a basic 
element of forensic individualization determinations involving biometrics such as fingerprints 
and handwriting.  In this presentation, we introduce a general parametric model for studying the 
distribution of pairwise comparisons of an arbitrary type.  The advantage of having a parametric 
model is that it provides an added level of structure for estimating the RMP with limited 
information. Furthermore, as long as the parametric model is chosen carefully, the resulting 
estimates appear to have a high degree of accuracy. This model is designed to incorporate the 
dependencies that arise in such studies.   

The common method to estimate the random match probability (or discriminating power) of a 
comparison procedure is to take a large simple random sample and perform all pairwise 
comparisons between the sample observations.  The proportion of these comparisons that 'match' 
with respect to the comparison procedure is an estimate the random match probability. In most 
situations the resulting estimate is a U-statistic of degree 2.  (See Saunders et al. (2011) for an 
overview.)   

A common problem with the above methods is that, due to the non-parametric nature of the 
estimators, they are unable to accurately be used with a small sample size (where small is 
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determined relative to how close the true RMP is to zero or one). One of the ongoing goals of our 
research group at GMU is the extension of U-statistic based methods for estimating the RMP to 
the situation of small sample sizes.   

In this presentation we build upon the early research of the Blom (1976) to provide a 
parametric model that retains the optimal asymptotic properties of the U-statistic estimate of the 
RMP but facilitates different estimation approaches, such as Maximum Likelihood Estimates, 
Restricted Maximum Likelihood Estimates, and Bayesian estimates.   

The parametric model we implement treats the joint distribution of comparisons as a 
multivariate normal distribution. This approach is conceptually analogous to applying the 
standard Wilson Interval to estimating a proportion from a binomial random variable. This 
distributional assumption is only a tool used to facilitate the estimation of the RMP and is NOT 
expected to actually match the joint distribution of the discrete pairwise comparisons.  

We will demonstrate the use of this model in the construction of REML and Bayesian 
estimates and bounds for the RMP.  We will also present the results of simulations that study the 
performance of the different estimates. We will apply these results to the glass data studied in 
Aitken and Lucy (2004). 
 
Aitken, C.G.G and Lucy, D., 2004. "The evaluation of trace evidence in the form of multivariate 
data." Applied Statistics, 53, 109-12 
 
Saunders, C.P., Davis, L.J., Buscaglia, J. (2011).  "A Comparison between Biometric and 
Forensic Handwriting Individuality".  Accepted for publication in Journal of Forensic Sciences. 
 
Blom, G. (1976). "When is the Arithmetic Mean Blue?". The American Statistician, Vol.30, No. 
1, pp.40-42.  
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Abstracts of Presentations delivered at the NIJ 2012 Impression and Pattern Evidence 
Symposium 

 
 Abstract 1 (Poster): Automated Statistically Ranked Latent-to-Reference Print Overlays  

 
Authors:  Donald T. Gantz, George Mason University, JoAnn Buscaglia, Federal Bureau of 
Investigation Laboratory Division, Mark A. Walch, The Gannon Technologies Group,  
Maria Antonia Roberts, Federal Bureau of Investigation Laboratory Division, Daniel T. Gantz, 
The Gannon Technologies Group 
 

Many latent fingerprints confound conventional means of automated identification because they 
lack sufficient minutiae (ridge bifurcations and endings) to support matching by existing AFIS 
technology. Poorly recorded/captured exemplar prints, due to the collection method and/or 
limitations in the friction ridge skin, may exhibit many of the same problems as latent prints. 
Even in the absence of traditional minutiae, these problematic prints contain very important 
information in their ridges that permit the automated matching by a new approach described 
herein. This approach creates surrogates for minutiae by using ridge geometry to create a new 
class of feature that supplements the lack of bifurcations and ridge endings. These new “ridge-
specific features” can be reliably associated with a specific section of a ridge using the geometric 
information available from the ridge. A stable ridge feature should be functionally equivalent to 
a traditional minutiae point. A method for capturing ridges is found in Bezier-based curve 
descriptors, a particular type of smooth mathematical curves that can be used to approximate the 
path of a ridge. Because they can be precisely fitted into the curvature of ridges, Bezier 
descriptors can be used to “mark” positions on the ridges creating "minutiae" where traditional 
minutiae do not exist. The resultant Bezier approximations of ridge curvature and the use of this 
information to “mark” specific positions on ridges create a new set of reference points for 
fingerprints. As is the case with minutiae, the power of these new ridge-based reference points is 
derived when they are taken in concert. By using Bezier curves as ridge descriptors, our 
automated process produces very accurate overlays of the latent onto a reference print. No print 
orientation or information beyond the Bezier ridge descriptors is required for the overlays. The 
latent-to-reference print overlays are the basis for a scoring algorithm that statistically ranks the 
reference prints according to the likelihood of being a true match to the latent print. The overlay 
is an invertible nonlinear mapping that associates a Bezier curve in the latent print to a Bezier 
curve in the reference print. The nonlinearity accounts for local distortions in the images. Beziers 
in the reference print are inverse mapped to latent space where corresponding Beziers are 
compared. Bezier-based scores yield a ranking of reference prints in the database relative to the 
accuracy of the latent overlays onto the database reference prints.  
 

 

Abstract 2: (Poster) A Note on the Value of Forensic Evidence for Sparse Categorical Tables 

 

Authors: Krista M. Heim, George Mason University, Christopher P. Saunders, South Dakota 
State University, and JoAnn Buscaglia, Federal Bureau of Investigation Laboratory Division.   
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We focus our attention on evaluating forensic handwriting evidence under two competing 
hypotheses in the context of a high dimensional quantification of handwritten documents. The 
first hypothesis, which is usually referred to as the prosecution hypothesis, states that a suspected 
writer is the actual writer of the document of unknown origin (henceforth referred to as the 
questioned document). The second hypothesis, usually referred to as the defense hypothesis, 
states that that a randomly selected writer from a relevant alternative population of writers is the 
actual writer of the questioned document.  In particular, we discuss the issues surrounding the 
evaluation of count data that is in the form of sparse categorical tables, using Bayesian 
estimation methods to handle nuisance parameters.  

In Bayesian estimation methods, the value of evidence is typically measured by calculating the 
likelihood of observing the questioned document if it was written by the suspected writer and 
comparing it with the likelihood of observing the questioned document if it was written by a 
randomly selected writer.  In this context, the standard evidence statement used for presentation 
of the value of evidence in a likelihood ratio format is: the likelihood of observing the evidence 
(which includes the questioned document and the samples known to come from the suspect 
writer) is k times more likely if the suspect writer actually wrote the questioned document than if 
a randomly selected writer (from the population of alternative writers) wrote the questioned 
document. When using Bayesian methods to account for nuisance parameters, the resulting value 
of the evidence usually takes the form of a Bayes Factor; in the forensic science literature, a 
Bayes Factor is sometimes referred to as a likelihood ratio. Unfortunately, in problems where the 
evidence has a high dimensional quantification, it is usually technically difficult to calculate a 
Bayes Factor that is meaningful for distinguishing between the two competing hypotheses. 

One strategy for dealing with high dimensional sparse categorical tables is to use the table of 
counts associated with the smaller document, which is usually the questioned document, to 
reduce the dimensionality of the problem. We discuss the impact this dimension reduction 
strategy has on the interpretation of evidence; in effect, by using part of the evidence to 
determine the dimensionality of the problem, we will need to use an alternative evidence 
statement in place of the standard one mentioned above. The new evidence statement is with 
respect to the smaller of the documents (which we will assume is the questioned document) and 
is as follows: the likelihood of observing the questioned document is k times more likely if the 
suspected writer actually wrote the questioned document than if a randomly selected writer from 
the population of alternative writers wrote the questioned document. The new evidence statement 
suggests an estimation problem in place of the standard inference problem that usually arises in 
forensic statistics.  We will discuss this difference between the estimation and inference 
approaches in assessing the value of forensic pattern evidence. Finally, point estimates and 
credible intervals of the likelihood ratio from the alternative evidence statement are calculated 
for a collection handwriting data collected from over 400 writers for research purposes.   In this 
presentation, we focus on evaluating forensic evidence under two competing hypotheses with 
respect to handwriting evidence. This is measured by calculating the likelihood that the suspect 
is the source of a questioned document. In particular, we discuss the issues surrounding the 
evaluation of count data that is in the form of sparse categorical tables. We use Bayesian 
estimation to handle nuisance parameters and discuss the choice of prior and the effect on our 
probability model under this construct. We show the impact of reducing the dimensionality by 
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fixing on the number of categories of the questioned document, which will require an alternative 
statement of the hypotheses.  
 
 

Abstract 3:  The Effect of the Order of Suspect and Background Population Samples on the 
Assessment of the Value of Evidence 
 
Authors:  Eric Kalendra, George Mason University, Christopher P. Saunders, South Dakota State 
University, JoAnn Buscaglia, Federal Bureau of Investigation Laboratory Division.   
 
Categorical based pattern evidence is commonly available, such as in handwriting. In this 
presentation we focus on the interpretation of the evidence when the rate of only a single feature 
is available. For example, how the probability of a coin observing heads or the probability of the 
letter “e” taking a particular graph structure.  Our goal is the forensic interpretation of the 
evidence with respect to the prosecution hypothesis, the suspect gave rise to the evidence, and 
defense hypothesis, a random member of the population gave rise to the evidence. In addition to 
the collected sample, we will typically have a sample from the suspect and samples from the 
background population. Using all the available information, Bayes Factors can be calculated for 
the competing hypotheses using a simultaneous or a two-stage procedure. The simultaneous 
method would typically be used in instances where the suspect’s sample and background 
population samples are available concurrently, and the two-stage procedure would be used if the 
samples become available sequentially. Either the suspect’s sample or the background population 
may be available first. The difference in calculation arises from the information available when 
inference is conducted. For example, in the two-stage calculation when the suspect’s sample is 
available first, the prior distribution does not include information from the background 
population as no information is known about the background population in the first stage. By 
changing the order of the information used, the assessment of the value of the evidence is also 
affected. We will illustrate the resulting effects of information order on the calculation of the 
Bayes Factors with an example using a population of coins with varying probabilities of 
observing heads. While simple in design, the illustrated effects of information order hold in 
general. Although the evidence itself remains the same, the assessed forensic value will change 
depending on how inference is conducted. 
 

Abstract 4 in the Workshop: Guidelines for a Successful Research Project:  The story of an 
Academic/Commercial Partnership developing a product for the Forensic Community 

Panelists & Presenters: Donald Gantz, George Mason University, and Mark Walch, The Gannon 
Technologies Group. 

A vision that a “lights out” automated system for handwriting identification is possible was kick-
started by Mark Walch’s experience with Intelligent Character Recognition.  For several years, 
Walch had used a special method for quantifying writing for purposes of character recognition. It 
was believed by Walch and his sponsors that this method would be relevant as the foundation for 
a writer identification system.  He had unsuccessfully approached a number of premier statistics 
departments with the proposition of exploiting his handwriting quantification for writership 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



150 

 

identification.  However, his overture to Don Gantz at the George Mason University (GMU) 
Applied & Engineering Statistics launched a successful partnership. Walch and Gantz began the 
development of FLASH ID by exploiting Gannon Technologies’ considerable experience in the 
quantification of handwriting—originally developed for handwriting recognition. This ability to 
segment and quantify handwriting into a graph-based data structure became the foundation of the 
handwriting biometric capability. Initially, the handwriting biometric researched focused on 
individual characters as the basic units for biometric analysis. Ultimately, these characters were 
replaced by graphemes which made possible a totally language independent system.  Encoded 
graphemes are converted into numeric data suitable for statistical analysis. The Gannon/GMU 
Alliance flourished through nurturing mutually beneficial opportunities. Gannon’s sponsors 
funded a multi-year research effort in document forensics at GMU that has supported the 
development and application of the Forensic Language-Independent Analysis System for 
Handwriting Identification (FLASH ID). This research partnership continues and has branched 
into the area of latent fingerprint identification.  
 

 

Abstracts of Presentations delivered at the 2012 Joint Statistical Meetings, August 2012 

 

Abstract 1:  (Poster) “The effect of uncertainty about the Alternative Source population on 
the value of Forensic evidence.”  

 

Author:   Christopher P. Saunders, South Dakota State University 

A goal in the forensic interpretation of scientific evidence is to make an inference about the 
source of a trace of unknown origin; the inference usually concerns two propositions. The first 
proposition is usually referred to as the prosecution hypothesis and states that a given specific 
source is the actual source of the trace of unknown origin. The second usually referred to as the 
defense hypothesis, states that the actual source of the trace of unknown origin is randomly 
selected from a relevant alternative source population. The evidence a forensic scientist is given 
for deciding between these two propositions is: (a) the trace of unknown origin, (b) a sample 
from the specific source specified by the prosecution hypothesis, and (c) a collection of samples 
from the alternative source population. One common approach is to assume that the alternative 
source population is completely known and rely on a Bayes Factor for deciding between the 
competing hypotheses. In this presentation we will relax this assumption and explore some of the 
resulting issues from the estimation of the alternative source population. We will illustrate the 
resulting effects on the calculation of the Bayes Factors with a well-studied collection of samples 
relating to glass fragments.  
 
 
Abstracts of Presentations delivered at EAFS 2012, The Hague, August 20-24, 2012 
 

 
Abstract 1: The Effect of Uncertainty About the Background Population on the Forensic 

Value of Evidence 
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Author: Christopher P. Saunders, South Dakota State University 

A goal in the forensic interpretation of scientific evidence is to make an inference about the 
source of a trace of unknown origin; the inference usually concerns two propositions. The first 
proposition is usually referred to as the prosecution hypothesis and states that a given specific 
source is the actual source of the trace of unknown origin. The second usually referred to as the 
defense hypothesis, states that the actual source of the trace of unknown origin is randomly 
selected from a relevant alternative source population; i.e. the background population.  The 
evidence that a forensic scientist is given for deciding between these two propositions is: (a) the 
trace of unknown origin, (b) a sample from the specific source specified by the prosecution 
hypothesis, and (c) a collection of samples from the alternative source population. One common 
approach is to assume that the collection of samples from the alternative source population is 
sufficiently large as to completely specify the alternative source population and to rely on a value 
of evidence for deciding between the competing hypotheses, as described in Lindley (1977).   

In this presentation, we present our construction of a Bayes Factor for deciding between the 
prosecution and defense hypotheses when the collection of samples from the alternative source 
population is not sufficiently large to completely characterize the alternative source population. 
We argue that the resulting Bayes Factor should be considered the Value of the Evidence and 
discuss its relationship to the standard value of evidence as developed by Lindley and presented 
in Aitken and Taroni (2004). We conclude with a discussion of some of our concerns about the 
effect of prior choice for the nuisance parameters in the alternative and specific source 
distributions on the resulting Bayes Factor.  

We will illustrate the construction of the Bayes Factors with a well-studied collection of samples 
relating to glass fragments under the assumption of a hierarchical normal model. 

Lindley, D. V. (1977). A problem in forensic science. Biometrika. 64 (2): 207-213. 

Aitken,  C. G. G. and Taroni, F. (2004), F. Statistics and the Evaluation of Evidence for 
Forensics Scientists. 2nd Edition, John Wiley and Sons.                

 
Abstract 2: Ridge Specific Markers for Latent Fingerprint Identification  

 
Authors:  Donald T. Gantz, George Mason University, JoAnn Buscaglia, Federal Bureau of 
Investigation Laboratory Division, Mark A. Walch, The Gannon Technologies Group,  
Maria Antonia Roberts, Federal Bureau of Investigation Laboratory Division, Daniel T. Gantz, 
The Gannon Technologies Group 
 
Many latent fingerprints confound conventional means of automated identification because they 
lack sufficient minutiae (ridge bifurcations and endings) to support matching by existing AFIS 
technology. Poorly recorded/ captured exemplar prints, due to the collection method and/or 
limitations in the friction ridge skin, may exhibit many of the same problems as latent prints. 
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Even in the absence of traditional minutiae, these problematic prints contain very important 
information in their ridges that permit the automated matching by a new approach described 
herein. This approach creates surrogates for minutiae by using ridge geometry to create a new 
class of feature that supplements the lack of bifurcations and ridge endings. These new “ridge-
specific features” can be reliably associated with a specific section of a ridge using the geometric 
information available from the ridge. A stable ridge feature should be functionally equivalent to 
a traditional minutiae point. A method for capturing ridges is found in Bezier-based curve 
descriptors, a particular type of smooth mathematical curves that can be used to approximate the 
path of a ridge. Because they can be precisely fitted into the curvature of ridges, Bezier 
descriptors can be used to “mark” positions on the ridges creating "minutiae" where traditional 
minutiae do not exist. The resultant Bezier approximations of ridge curvature and the use of this 
information to “mark” specific positions on ridges create a new set of reference points for 
fingerprints. As is the case with minutiae, the power of these new ridge-based reference points is 
derived when they are taken in concert. By using Bezier curves as ridge descriptors, our 
automated process produces very accurate overlays of the latent onto a reference print. No print 
orientation or information beyond the Bezier ridge descriptors is required for the overlays. The 
latent-to-reference print overlays are the basis for a scoring algorithm that statistically ranks the 
reference prints according to the likelihood of being a true match to the latent print. The overlay 
is an invertible nonlinear mapping that associates a Bezier curve in the latent print to a Bezier 
curve in the reference print. The nonlinearity accounts for local distortions in the images. Beziers 
in the reference print are inverse mapped to latent space where corresponding Beziers are 
compared. Bezier-based scores yield a ranking of reference prints in the database relative to the 
accuracy of the latent overlays onto the database reference prints.  
 
 
Abstracts of Presentations delivered at The Measurement Science and Standards in 
Forensic Handwriting Analysis (MSSFHA) Conference, June 4 – 5, 2013 at NIST. 
 

Abstract 1:  The Forensic Language-Independent Analysis System for Handwriting 
Identification (FLASH ID) 

 
Authors:  Mark Walch, Gannon Technologies Group and Donald Gantz, George Mason 
University 
 
FLASH ID is a fully functional software application that automatically identifies writers by their 
handwriting. FLASH ID works by maintaining a database of information derived from reference 
handwriting and determining whether a new, unidentified writing specimen such as a questioned 
document matches any of the writings in the database. FLASH ID operates on a conventional 
personal computer platform—including laptops.  Questioned documents subjected to biometric 
analysis are scanned and passed to FLASH ID as image files. Once the image has been captured, 
FLASH ID distills the biometric content from the handwriting, compares this content to 
reference samples stored in a database, computes scores representing biometric similarity and 
compiles the results in a ranked list of all writers from the database. The writer at the top of this 
list bears the strongest similarity to the writer of the captured specimen.  

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



153 

 

Functionally, FLASH ID finely segments the writings within the loaded images. Adjacent 
segments are combined into graphemes, which are the bases for analysis. Graphemes may be 
parts of characters, whole characters or groups of characters. Graph-matching algorithms at the 
core of the technology classify the graphemes, first, by their topology and, second, by their 
geometric features. Topology includes the structure of graphs in terms of their edges and 
vertices—links and nodes—and their quantity and connectivity.  Geometric features address the 
shapes of curves. Physical measurements on the graphemes make up associated feature vectors. 
The power to distinguish an individual's writing from that of other writers is derived from 
statistical analysis of the topological and geometric characteristics of the individual’s writings as 
well as from the statistical analysis of feature vectors within each particular topology and 
geometry combination.     
FLASH ID consists of two modules: (1) the Database Builder and (2) the Matcher. The FLASH 
ID Database Builder pre-processes reference writing samples and builds an identification 
database from statistical analyses of the topology, geometry and features of graphemes. The 
FLASH ID Matcher uses this database to process questioned documents and identify the writer 
in the database who best matches a questioned document. Both FLASH ID modules are designed 
to scale across multiple computers to handle higher volumes. 
There are two operational versions of FLASH ID. The document examiner version provides 
specific visual grapheme level feedback concerning similarities of writings and supports 
exporting of annotated images and reports. The web services version can be integrated into other 
systems for the analysis of handwriting and provides writer identification results for submitted 
writing samples.  
 

Abstract 2:  Understanding Individuality of Handwriting Using Score-Based Likelihood 
Ratios  

 
Author:  Christopher Saunders, PhD, Mathematical Statistician, South Dakota State University  
 
Recent studies in automated forensic handwriting identification have shown that for a given 
value of the evidence, subtle changes in conditioning arguments regarding the defense 
proposition can often lead to radically different values of the so called Score-Based-Likelihood- 
Ratios (SLR). Within the forensic literature there are three general classes of SLR’s. While each 
of the proposed SLRs has advantages and disadvantages; they are at best only approximations to 
a true LR in a Bayesian decision theoretic sense. In our estimation, it is best to resist the idea of a 
“universally correct” SLR. This presentation will review the different types of SLR’s currently 
being used in forensic science, discuss strategies for implementing them for forensic handwriting 
analysis, and review some of the problems related to the interpretation of the resulting SLRs.  
 
Abstracts of Presentations delivered at The 2013 Joint Statistical Meetings, August 6, 2013, 
Sponsor: Committee of Representatives to AAAS 
 

Abstract 1:  A Similarity Score for Fingerprint Images 
 

Authors:  Donald T. Gantz, PhD, John J, Miller, PhD, George Mason University, Fairfax, VA;  
Mark A. Walch, Daniel T. Gantz, Gannon Technologies Group, Alexandria, VA 
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This talk presents a similarity score for a pair of fingerprint images that is based on a novel 
quantification of the images.  The processes presented are those used in an automated system that 
provides a latent fingerprint examiner with an accurate overlay of a latent (crime scene) print to 
each of the fingerprints that have been returned by an AFIS (Automated Fingerprint 
Identification System) search of a database.  The similarity score is an assessment of the 
accuracy of the nonlinear, invertible Warp which yields the overlay of the latent onto each 
returned print.  The similarity score provides a prioritized ranking of all AFIS returned prints.  
This process is also applied independently to small snippets from a latent fingerprint and the 
resulting similarity scores are fused to yield an overall score for the latent fingerprint.  In support 
of latent print examination, the system makes possible a much greater number of AFIS returned 
prints and provides a substantial starting point for latent to reference print examination.   
In order to create a Warp between two fingerprint images, a new concept of Ridge Specific 
Markers (RSMs) is introduced to serve as landmarks for constructing a Warp.  High contrast 
images are created with black ridges and white furrows.  The boundaries between black and 
white are covered redundantly with cubic Bezier curves of multiple lengths to “mark” specific 
positions in the image.  These Bezier curves are the RSMs.  A Warp between images is grown 
incrementally from a seed of RSMs.  Hundreds of Warps are generated between the latent and 
each reference print, and a best Warp for each reference print is selected.  Given the best Warp, 
an algorithm symmetrically associates RSMs in the latent with RSMs in a reference print.   For 
each pixel in an image there is a best pair of associated Bezier Curves.  The Similarity Score 
measures how accurately the Warp associates the pixel-based pairs of Bezier Curves.   
 
 

Abstract 2:  On Desiderata for Score-Based Likelihood Ratios for Forensic Evidence  
 
Authors: Christopher Saunders, South Dakota State University and John J. Miller, PhD, George 
Mason University  

This presentation offers some opinions on the desirable features of score-based likelihood ratios 
(SLRs) for interpreting and presenting forensic evidence. Let E denote all of the available 
evidence, with decomposition ܧ ൌ ሼ	ܧ௦,  ௦ denotes the evidence sample(s) obtainedܧ ௨ሽ whereܧ
from a suspect, ܧ௨ denotes the evidence sample of unknown source obtained. We consider an 
arbitrary, but fixed score function, ݏ, serving to reduce the evidence to the following form 
′ܧ ൌ ሼݏሺܧ௦,  ௨ሻሽ. Several score-based interpretations of the likelihood ratio have appeared in theܧ
literature providing a method for evaluating the weight of ܧ′ in light of two competing 
hypotheses, ܪ௣ and ܪௗ. Recent studies in writer identification have shown that when E' is held 
constant, subtle changes in conditioning arguments regarding the defense proposition often lead 
to radically different values of the SLR. Each proposed SLR has advantages and disadvantages 
and, in our estimation, it is best to resist the idea of a "universally correct" SLR. We instead have 
concentrated our efforts on enumerating desirable theoretical properties for SLRs in general and 
the evaluation of proposed SLRs against each property.  
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Abstracts of Presentation to be delivered at Pittcon (Application: Homeland 
Security/Forensics, Primary Focus: Methodology) 
 

Abstract 1:  Statistical Aspects of the Forensic Identification Source Problem 
 

Author: Christopher Saunders, South Dakota State University  
 
In 1977, Lindley and Evett, introduced modern Bayesian methods for forensic evidence 
interpretation to the forensic science community. This and related approaches have dominated 
the academic research related to the interpretation and presentation of forensic evidence. 
However, in recent years there have been number debates, in both academic and forensic 
communities, related to the applicability of these methods in the U.S. judicial system.  
 
Broadly speaking, these methods require the explicit statement of two mutually exclusive, but 
non-exhaustive, models about how the evidence in a given situation has arisen; one usually 
corresponding to a defense model and one corresponding to a prosecution model. Once these 
models have been defined and the evidence collected, the forensic science expert is then required 
to present the evidence in a concise and transparent manner so that a decision maker can 
ultimately decide between the two proposed models of how the evidence has arisen.  
 
The evidence that a forensic scientist has available to evaluate between the two models is 
generally composed of the following components: (1) a trace of unknown origin; (2) a sample 
from the specific source specified by the prosecution model and (3) a collection of samples from 
the alternative source population specified by the defense model. In certain applications, the 
choice of the alternative source population will be mandated by available databases or, in 
extreme situations, there will be no such samples available. 
 
We will review some of the common sets of probability models and statistical approaches that 
forensic scientists use to characterize the support that the evidence provides for deciding between 
the prosecution and defense models. We will also discuss how the various sets of competing 
models can be addressed with the commonly available evidence. The general approach will be 
illustrated with an example of the trace element analysis of high purity copper evidence. 
 
 
 
Abstracts of Presentation to be delivered at AAFS 2014 Annual Meeting 
 

Abstract 1:  Statistical Aspects of the Forensic Identification Source Problem  
 
Author: Christopher Saunders, South Dakota State University, Joshua R. Dettman and JoAnn 
Buscaglia, Federal Bureau of Investigation Laboratory Division 
 
It is expected that the attendees will have a greater understanding of the current trends in 
statistical evidence interpretation, which will foster better communication between statisticians, 
evidence interpretation experts, and the broader forensic science community. Improving 
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communication between these experts should assist in the development of statistically sound, 
rigorous methods of interpretation that are appropriate to the diverse needs of the U.S. forensic 
science and legal communities. 
 
In 1977, Dennis Lindley, with Ian Evett, introduced modern Bayesian methods for forensic 
evidence interpretation to the forensic science community. This and related approaches have 
dominated the academic research related to the interpretation and presentation of forensic 
evidence. However, in recent years there have been number debates, in both academic circles 
and forensic communities, related to the applicability of these methods in the U.S. judicial 
system.   
 
Broadly speaking, these methods require the explicit statement of two mutually exclusive, but 
non-exhaustive, propositions about how the evidence in a given situation has arisen; one usually 
corresponding to a defense proposition and one corresponding to a prosecution proposition. 
Using this approach, once these propositions have been defined and the evidence has been 
collected, the forensic science expert is then required to present the evidence in a concise and 
transparent manner so that a decision maker can ultimately decide between the two proposed 
models of how the evidence has arisen.   
 
Commonly, the evidence that a forensic scientist has available to evaluate between the two 
propositions is generally of one of the following forms: (1) a trace of unknown origin; (2) a 
sample from the specific source specified by the prosecution hypothesis and (3) a collection of 
samples from the alternative source population specified by the defense proposition. In certain 
applications, the choice of the alternative source population will be mandated by available 
databases or, in extreme situations, there will be no such samples available. 
 
In this presentation, we will review some of the common sets of propositions and statistical 
approaches that forensic scientists use to characterize the support that the evidence provides for 
deciding between the prosecution and defense propositions. We will also discuss how the various 
sets of competing propositions can be addressed with the commonly available evidence. The 
general approach will be illustrated with an example of the trace element analysis of high purity 
copper evidence. 
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Key Personnel and CVs 

 Donald T. Gantz, PhD (PI from 2012 to end date of Grant, Vita Attached) 

Director, Document Forensic Laboratory 
Chair, Department of Applied Information Technology, George Mason University 
Full Professor of Statistics, George Mason University 

Under his direction, George Mason partnered with Gannon Technologies Group to develop 
cutting edge methodologies for the quantification and analysis of handwriting.  This 
effort continues in CTAF, which has been applying these methodologies to multi-
language document exploitation and biometric identification.  CTAF has government 
funding and is staffed by five statistics professors, one research professor, one 
postdoctoral research fellow, and graduate research assistants.   

Member of the IEEE Certified Biometric Professional Exam Specifications Committee.   

 

 Christopher P. Saunders, PhD  (Initial PI 2009-2012, Ongoing Collaborator, Vita 
Attached) 

Department of Mathematics and Statistics, South Dakota State University 

Dr. Saunders received his Ph.D. in statistics from the University of Kentucky in 2006 under 
the direction of Dr. Constance L. Wood.  The focus of his dissertation was the application 
of statistical approximation theory to the testing of the distribution assumption of 
multivariate normality.  While working on his Ph.D., he was a member of the Microarray 
Research Center at the University of Kentucky Medical Center, and was also awarded 
and completed an NIH training grant with Professor Thomas Getchell’s Laboratory in the 
Sanders-Brown Center on Aging.  

Since completing his dissertation, Dr. Saunders has focused on providing statistical support 
to the Intelligence Community (IC) — first as an Intelligence Community Post Doctoral 
Research Fellow and then as a Research Assistant Professor with the Document Forensics 
Research Laboratory at George Mason University, Assistant Professor of Statistics at 
South Dakota State University, and Visiting Scientist at the FBI Laboratory. 

 Linda J. Davis, PhD  (Co-PI) 

Document Forensic Laboratory & Department of Statistics, George Mason University 

Worked as a member of the technical staff at TRW Inc. and Northrup Grummen for over 
twenty years before transitioning to a faculty position at George Mason University.  
While working for TRW Inc. and Northrup Grummen, she supported a number of 
projects for a variety of government agencies.  She also assisted in development of 
program performance evaluation and quantification databases. 

Experienced with comparative analysis of handwriting samples using discrete features. 

Current research interests include categorical data analysis and biometric identification. 

 Amanda B. Hepler, PhD 

Document Forensic Laboratory, George Mason University 
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Experienced consultant with extensive training and expertise in forensic statistics, 
statistical genetics, population genetics, and computational statistics.   

Current Research Interests:  (1) Statistics and the law;  (2) Use of Bayesian belief networks 
(probabilistic expert systems) to present genetic evidence in court;  (3) Incorporating 
population relatedness into forensic genetic calculations.  

 John J. Miller, PhD 

Document Forensic Laboratory & Department of Statistics, George Mason University 

Experienced with using handwriting as a biometric and with computational statistics. 

Has general experience in litigation (not necessarily involving forensics), which gives him 
perspectives on the use of statistics in the legal arena. 

 
Students Associated with the Grant -South Dakota State University 

- Under the Supervision of Dr. Saunders 
 
Danica M. Ommen- Pursuing a Master’s in Statistics- Master’s Thesis is focused on 
computational issues associated with forensic likelihood ratios. (Not directly funded from grant.) 
 
Austin F. O'Brien- Pursuing a Ph. D. in Computational Statistics, Directly supported. Has 
provided computational support for various aspects of Phase I and III of the research program. 
 
 Douglas Armstrong- Pursuing a Ph.D. in Statistics, His Ph.D. dissertation proposal will focus on 
various aspects of the score based Likelihood Ratios. 
 
Students Associated with the Grant -South Dakota State University 

- Under the Supervision of Dr. Gantz and Miller 
 
Krista Heim- Pursuing a PhD in statistics. Provided support on computational aspects of Phase 
III of the research program. 
 
R. Brad Patterson- Completed a PhD in statistics. Provided support for data analysis and 
developed new methods for assessing the accuracy of LRs. His dissertation was funded in part by 
a separate NIJ award directly to Dr. Patterson for research started under this award.  
 
VITAS 
DONALD T. GANTZ, PhD 

Education 

Fordham University, Bronx, N.Y. Mathematics A.B., 1966 
University of Rochester, Rochester, N.Y. Mathematics M.A., 1971 
University of Rochester, Rochester, N.Y. Mathematics Ph.D., 1974 

Appointments 

1974 - Present: Professor, George Mason University, Fairfax, VA. 
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2004 - Present: Chair of the Department of Applied Information Technology, Volgenau School 
of Engineering, George Mason University, Fairfax, VA 

 
Dr. Gantz is the founding Chair of the Applied Information Technology (AIT) Department. 
AIT’s Bachelor of Science in Applied Information Technology Degree enrolls more than 1,300 
students and the Master of Science in Applied Information Technology Degree enrolls close to 
200 students.  Dr. Gantz was Interim Associate Dean for Undergraduate Studies in the Volgenau 
School during the Spring 2003 and Fall 2003 semesters.  He is the Director of the Document 
Forensics Laboratory.   
 
He is a Full Professor of Statistics.  As an applied statistician, Dr. Gantz has developed cutting 
edge methodologies for the quantification and analysis of handwriting and is applying these 
methodologies to multi-language document exploitation and biometric identification.  He has 
developed a new technology for the analysis of latent fingerprints; he has lectured internationally 
on this technology. He has used statistical and geographic information system methods to 
analyze the relationship between TB incidence and socioeconomic factors, in particular the 
patient’s national origin.  He has lectured on statistical methods for surveillance systems to 
detect levels of infection due to a natural epidemic or bioterrorism threat.  He has been an active 
researcher and practitioner in the application of geographic information systems, modeling 
systems and decision support systems to transportation demand management and traffic 
mitigation.  He has done considerable work, research, and lecturing in computer performance 
evaluation and capacity planning. He has worked on the application of estimation and control 
methods to the analysis of flight test data.  Throughout his years as an applied statistician, he has 
been involved with survey design, analysis and reporting.  He has considerable experience in the 
development of management decision systems and in litigation related analyses.   
 
Document Forensics: Dr. Gantz directs the Document Forensics Laboratory (DFL), 
which has partnered with Gannon Technologies Group to develop cutting edge methodologies 
for the quantification and analysis of handwriting.  They are applying these methodologies to 
multi-language document exploitation and biometric identification.  The DFL has government 
funding and is staffed by statistics professors, research professors, postdoctoral research fellows 
and graduate research assistants.  DFL research has been reported at the 1st ACM Workshop on 
Hardcopy Document Processing 2004; the FBI Laboratories Forensics Lecture Series 2005; 
SDIUT 2005 The 2005 Symposium on Document Image Understanding Technology; SACH06 
Summit on Arabic and Chinese Handwriting; AAAS 2006 Annual Meeting; EAFS 2006, EAFS 
2009 and EAFS 2012 European Academy of Forensic Science Meetings; AAFS 2008, 2009 and 
2010 Annual Meetings of the American Academy of Forensic Sciences, IAFS 2008 Triennial 
Meeting of the International Association of Forensic Sciences; ICFIS08 The Seventh 
International Conference on Forensic Inference and Statistics; and ROBUST2008 Robust 
Biometrics: Understanding Science & Technology held in Honolulu, Hawaii, November 2-5, 
2008.  DFL researchers have a three-year grant (2010-2013) from the National Institute of 
Justice:  Quantifying the Effects of Database Size and Sample Quality on Measures of 
Individualization Validity and Accuracy in Forensics.  DFL researchers gave three presentations 
on statistical methods at the National Institute of Justice (NIJ) Trace Evidence Symposium, 
Kansas City, August 2011.  The presentations were:  “Predictive Modeling for Determining the 
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Discriminative Power of Trace Glass Evidence as a Function of the Number of Sampled Glass 
Fragments”; “ROC Curves for Methods of Evaluating Evidence: A Common Performance 
Measure Based on Similarity Scores”; and “On Parametric Models for Pairwise Comparisons 
with Applications to Estimation of Random Match Probabilities.”  DFL researchers gave four 
presentations on statistical methods at the National Institute of Justice (NIJ) Impression and 
Pattern Evidence Symposium (IPES 2012), Clearwater, FL, August 2012.  The presentations 
were:  “The story of an Academic/Commercial Partnership: developing a product for the 
Forensic Community”; “The Effect of the Order of Suspect and Background Population Samples 
on the Assessment of the Value of Evidence”; “Automated Statistically Ranked Latent-to-
Reference Print Overlays”; and “A Note on the Value of Forensic Evidence for Sparse 
Categorical Tables.”  Dr. Gantz was an invited presenter at the Measurement Science and 
Standards in Forensic Handwriting Analysis (MSSFHA) Conference, June 4 – 5, 2013.  The 
National Institute of Standards and Technology (NIST) hosted the MSSFHA Conference which 
was planned and organized in collaboration with the American Academy of Forensic Sciences – 
Questioned Document Section, American Board of Forensic Document Examiners, American 
Society of Questioned Document Examiners, Federal Bureau of Investigation Laboratory, 
National Institute of Justice (NIJ), and Scientific Working Group for Forensic Document 
Examination (SWGDOC).   

  
 
Latent Fingerprint Research:  Dr. Gantz has been working with the Gannon Technologies 
Group since 2009 on FBI-sponsored research projects to apply graph-based technologies to latent 
fingerprint examination.  The goal of the research has been to provide an Examiner with a 
prioritized ranking of each AFIS returned print based on a Warp of the latent onto each returned 
print.  This research makes possible a greater number of AFIS returned prints and provides a 
substantial starting point for latent to reference print examination.  This research introduced 
Ridge Specific Markers (RSMs) as landmarks for constructing a Warp.  The Warp is an 
invertible nonlinear mapping that transforms any point within the Latent to an associated point in 
a reference print.  Latent-to-reference print Warps provide a visual frame for an examiner and 
also are the basis for a scoring algorithm that ranks the reference prints according to the accuracy 
of the match to the latent print.  This research has been reported at the National Institute of 
Justice (NIJ) Impression and Pattern Evidence Symposium (IPES 2012), Clearwater, FL, August 
2012 (poster  “Automated Statistically Ranked Latent-to-Reference Print Overlays”); at the 
EAFS 2012 European Academy of Forensic Science Conference, The Hague, The Netherlands, 
August 2012 (“Ridge Specific Markers for Latent Fingerprint Identification”); and at the 
USACIL RTD+E Working Group, Atlanta, GA, November 2012 (“Fingerprint Fragment 
Fusion”). Dr. Gantz presented his algorithms for fingerprint forensics in the Statistics in Forensic 
Science Topic Contributed Paper Session at the Joint Statistical Meetings in Montreal in August 
2013.  Dr. Gantz presented his paper “A Similarity Score for Fingerprint Images.” The paper co-
authored with John Miller describes the scoring algorithms he developed for a totally automated 
innovative technology enabling the identification of crime scene fingerprints. The presentation 
was selected to receive an Honorable Mention in the Section on Physical and Engineering 
Sciences (SPES) Outstanding Presentation Awards indicating that it was among the best of the 
73 talks presented in a SPES-sponsored contributed paper session. 
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Selected Publications and Presentations 
“Structuring and analyzing competing hypotheses with Bayesian networks for intelligence 
analysis,” Karvetski, C. W, Olson, K. C., Gantz, D. T., Cross, G. A., 2013. Accepted to EURO 
Journal on Decision Processes, Special Issue on Risk Management. 
 
“The Forensic Language-Independent Analysis System for Handwriting Identification (FLASH 
ID),” presented at the Measurement Science and Standards in Forensic Handwriting Analysis 
Conference & Webcast,” National Institute of Standards and Technology, U.S. Department of 
Commerce, June 4-5, 2013, Gaithersburg, MD. 
 
“Ridge Specific Markers for Latent Fingerprint Identification,” Presentation at the triennial 2012 
European Academy of Forensic Science (EAFS) Conference, The Hague, The Netherlands, 
August 20-24.  
 
“An Academic/Commercial Partnership: developing a product for the Forensic Community,” 
presented in a Workshop on Guidelines for a Successful Research Project at the 2012 National 
Institute of Justice Impression and Pattern Evidence Symposium, Recognize, Develop, and 
Implement: Building on our Foundations, August 5-9, 2012, Clearwater, FL.  
 
“Construction and Evaluation of Classifiers for Forensic Document Analysis,” Christopher P. 
Saunders, Linda J. Davis, Andrea C. Lamas, John J. Miller, and Donald T. Gantz, Annals of 
Applied Statistics, 2011, Vol. 5, No. 1, 381–399.   
 
“On Parametric Models for Pairwise Comparisons with Applications to Estimation of Random 
Match probabilities,” presented at the 2011 National Institute of Justice Trace Evidence 
Symposium, August 8-11, 2011, Kansas City, MO.  
 
 “New Results for Addressing the Open Set Problem in Automated Handwriting Identification,” 
Donald T. Gantz, John J. Miller, Christopher P. Saunders, Mark A. Walch and JoAnn Buscaglia, 
Proceedings of the American Academy of Forensic Sciences Annual Scientific Meeting, Seattle, 
WA, February 22-27, 2010, pages 431-432.   
 
“Training the Architects of the Networked Future: How a public/private partnership is benefiting 
students, an institution, and the local economy” University Business, September, 2010.   
 
“An Approach to a Capstone Curriculum,” Robert T. Quinn and Donald T. Gantz, Proceedings 
of the 2009 ACM Information Technology Education Conference, Fairfax, Virginia, October 22-
24, 2009, pages 150-154. 

“Combining Academic Studies with IT Certifications:  Becoming a Cisco Regional Academy,” 
Louis R. D’Alessandro and Donald T. Gantz, Proceedings of the 2009 ACM Information 
Technology Education Conference, Fairfax, Virginia, October 22-24, 2009, pages 209-214. 
 
 “Evaluation of the Language-Independent Process in the FLASH ID System for Handwriting 
Identification,” Mark A. Walch, Donald T. Gantz, John J. Miller and JoAnn Buscaglia, 
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Proceedings of the American Academy of Forensic Sciences Annual Scientific Meeting, Denver, 
CO, February 16-21, 2009, pages 381-382.   
 
 “Statistical Characterization of Writers for Identification,” Donald T. Gantz, John J. Miller, 
Christopher P. Saunders, Mark J. Lancaster and JoAnn Buscaglia, Proceedings of the American 
Academy of Forensic Sciences Annual Scientific Meeting, Washington, DC, February 18-23, 
2008, pages 390-391.   
 
 
 
Christopher P. Saunders, Ph.D. 
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California State University, Chico Mathematics  B.S., 1996-2000 
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George Mason University Intelligence Community  Fellow, 2006-2008 
Visiting Scientist with the FBI Labs Forensic Science Research Summer 2013 

Appointments 
Assistant Professor of Statistics, Department of Mathematics and Statistics, South Dakota State 

University, 2012–Present. 
Lead Signal Processing Engineer, Washington Signal Processing Department, The MITRE 

Corporation, 2011–Present.  
Associate Research Professor, Applied Information Technology, George Mason University,  

effective August 2012. (Left GMU before promotion.) 
Assistant Research Professor, Document Forensics Laboratory, George Mason University,  

2008– June 2012. 
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Research Assistant, Department of Statistics, University of Kentucky, 2003–2006. 
Teaching Assistant/Instructor, Department of Statistics, University of Kentucky, 2001–2003. 
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Publications 
Mallory, J.C., Crudden, G., Oliva, A., Saunders, C., Stromberg, A., and Craven, R.J. (2005).  

A novel group of genes regulate susceptibility to anti-neoplastic drugs in highly 
tumorigenic breast cancer cells.  Mol Pharmacol. Sep 8. 

Ebersole, J., Meka, A., Stromberg, A., Saunders, C., and Kesavalu, L. (2005).  Host Gene 
Expression in Local Tissues in Response to Periodontal Pathogens.  Oral Biosciences & 
Medicine 2 (2/3), 175–184.  

Liu, H., Saunders, C.P., Borders, A.S., Getchell, T.V., Getchell, M.L., Bathke, A., and 
Stromberg, A.J.  (2006).  Statistical and graphical identification of functional gene 
categories in microarray experiments. Proceedings of the 2006 Joint Statistical Meetings, 
Alexandria, VA. American Statistical Association, 262–269. 

Getchell, T. V., Kwong, K., Saunders, C. P., Stromberg A. J., and Getchell M. L. (2006). 
Leptin regulates olfactory-mediated behavior in ob/ob mice. Physiol Behav. 30; 87(5):848-
56. Epub 2006 Mar 20. 
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Balko, J.M., Potti, A., Saunders, C., Stromberg, A., Haura, E.B. and Black, E.P. (2006).  Gene 
expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine 
kinase inhibitors in lung cancer cell lines and human lung tumors. BMC Genomics 7, 289.  

Huang, L. Zhu, W., Saunders, C.P., MacLeod, J.N., Zhou, M., Stromberg, A.J. and Bathke, 
A.C. (2008).  A novel application of quantile regression for identification of biomarkers 
exemplified by equine cartilage microarray data. BMC Bioinformatics 9, 300. 

Saunders, C.P., Davis, L.J., Lamas, A.C., Miller, J.J., Gantz, D.T.  Construction and 
Evaluation of Classifiers for Forensic Document Analysis. Annals of Applied Statistics. 
2011. 5-1. 

Saunders, C.P., Davis, L.J., Buscaglia, J., Using Automated Comparisons to Quantify 
Handwriting Individuality. J	Forensic	Sci. 2011. May; 56-3. 

Davis LJ, Saunders CP, Hepler A, Buscaglia J. Using subsampling to estimate the 
strength of handwriting evidence via score-based likelihood ratios. Forensic Sci Int. 
2012 Mar 10; 216(1-3):146-57.  

Hepler AB, Saunders CP, Davis LJ, Buscaglia J. Score-based likelihood ratios for 
handwriting evidence. Forensic Sci Int. 2012 Jun 10; 219(1-3):129-40. 

Scott L. Rosen, Christopher P. Saunders, Samar K. Guharay, Metamodeling of 
simulations consisting of time series inputs and outputs. Proceedings of the Winter 
Simulation Conference 2012, 211. 

Rosen, S.L.; Saunders, C.P.; Tierney, M.; Guharay, S.K., Configuration of a standoff 
detection system via rapid, model-based systems engineering, System of Systems 
Engineering (SoSE), 2013 8th International Conference on, vol., no., pp.52,57, 2-6 
June 2013. 

 

Published Abstracts 
Saunders, C.P., Hepler, A.B., Davis, L. J.,  Buscaglia, J. (2010).  Estimation of likelihood 

ratios for forensic handwriting analysis. Science & Justice, Volume 50, Issue 1, March 
2010, Page 32. 

Hepler,  A.B. and Saunders, C.P. (2010).  A Comparison between different likelihood ratios 
for assessing handwriting evidence.  2010 Proceedings of American Academy of Forensic 
Sciences, Extended Abstract. 

Gantz, D., Miller, J., Saunders, C., Walch, M, and Buscaglia, J. (2010). New results for 
addressing the open set problem in automated handwriting identification. 2010 
Proceedings of American Academy of Forensic Sciences, Extended Abstract.  

Saunders, C., Buscaglia, J., Davis, L., and Lancaster, J. (2009). Handwriting Individuality: 
Probability Models, Subsampling Routines, and Implications. 2009 Proceedings of 
American Academy of Forensic Sciences, Extended Abstract. 

Saunders, C., Davis, L., Lamas, A., and Buscaglia, J. (2008). A Comparison Between 
Biometric and Forensic Handwriting Individuality. 2008 Proceedings of American 
Academy of Forensic Sciences, Extended Abstract. 

Walch, M., Gantz, D., Miller, J., Davis, L., Saunders, C., Lancaster, M., Lamas, A., and 
Buscaglia, J. (2008). Evaluation of the Individuality of Handwriting Using FLASH ID –A 
Totally Automated, Language Independent System for Handwriting Identification. 2008 
Proceedings of American Academy of Forensic Sciences, Extended Abstract. 
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Gantz, D., Miller, J., Saunders, C., Lancaster, M., and Buscaglia, J. (2008). Statistical 
Characterization of Writers for identification. 2008 Proceedings of American Academy of 
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Service 

 Referee for the Journal of Forensic Science, Forensic Science International, Annals of Applied 
Statistics, Journal of Statistical Computation and Simulation, and various IEEE publications.   

 Provides support to the FBI Research Laboratory as well as the broader Intelligence Community by 
 reviewing and commenting on the statistical components of various research projects. 

 Provides support to the Latent Fingerprint Unit of the FBI Research Laboratory by reviewing courses 
 and literature relevant to the interpretation of latent fingerprint evidence and ensuring this 
 information is relevant to the National Academy of Science (NAS) report entitled: Strengthening 
 Forensic Science in the United States: A Path Forward.  

 Served as an instructor in a statistical course for the Latent Print unit at the FBI Laboratory Division. 

Serves as a member of a panel for the Division Mathematical Sciences at the National Science 
Foundation. 

Served as a discussant for the Scientific Working Group for Shoeprint and Tire Tread Evidence 
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Serves as a Technical Advisor to the IARPA. 
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Currently serving on the ad-hoc Advisory Committee on Forensic Science for the American 
Statistical Society. This includes additional support to the FBI labs with respect to statistical 
aspects of forensic science. 

Provided statistical and engineering support to the Veteran’s Administration as part of a team of 
MITRE engineers prototyping software and algorithms that support situational awareness for 
crisis management and disaster preparedness. I received a commendation for my contribution 
to this effort. 

 
Presentations 
Jan., 2005 “The Weak Convergence of Empirical Processes from Multivariate Normal 

Vectors,” Hawaii International Conference on Statistics, Honolulu, HI., 
Contributed Talk. 

 
Aug., 2005 “The Weak Convergence of Empirical Processes from Multivariate Normal Vectors 

for Goodness-of-fit Tests,” Joint Statistical Meeting, Minneapolis, MN., 
Contributed Talk. 

 
Jan., 2006  “Transcriptional profiling of equine chondrocytes under hypoxic culture 

conditions,”    Plant and Animal Genome XIV.  2006.1, Contributed Poster, with 
Miura N. (Presenter),    Huang L, Stromberg AJ, MacLeod JN.  
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Mar., 2006 “The Asymptotic Distribution of Modified Shapiro-Wilk Statistics for Testing 
Multivariate Normality,” The Eastern North American Region of the International 
Biometric Society Spring Meeting, Tampa, FL., Contributed Talk. 

 
Jan., 2007 “Identification of genes with a cartilage-restricted pattern expression.” Plant and 

Animal Genome XV.  2007.1, Contributed Poster, with Zhu W (Presenter), Huang 
L, Saunders CP, Bathke A, Stromberg AJ, MacLeod JN. 

 
Mar., 2007  “Empirical Processes for Estimated Projections of Multivariate Normal Vectors 

with    Applications to E.D.F. and Correlation type Goodness-of-Fit tests,” George 
Mason    University, Statistics Department, Invited Talk. 

 
April, 2007 “A Categorical Based Approach to Biometric Handwriting Identification,” Seventh    

Annual IC Postdoctoral Research Fellowship Colloquium, Chantilly, Va., Invited 
Poster. 

 
April, 2007 “FDR-Based Ensemble Learners for High Dimensional Data,” Seventh Annual IC    

Postdoctoral Research Fellowship Colloquium, Chantilly, Va., Invited Poster, 
with Mark    J. Lancaster (Presenter). 

 
Aug., 2007 “Classifiers from Categorical Data for Forensic Document Analysis,” 2007 Joint 

Statistical Meetings, Salt Lake, UT, Contributed Poster, with Andrea C. Lamas, 
Linda J. Davis, and John J. Miller. 

 
Aug., 2007  “A Novel Application of Quantile Regression for Identification of Cartilage 

Biomarkers in Equine Microarray Data,” 2007 Joint Statistical Meetings, Salt 
Lake, UT, Contributed Poster, with Liping Huang (Presenter), Wenying Zhu, 
James N. MacLeod, Arnold J. Stromberg, Arne Bathke. 

 
Feb., 2008   “A Comparison Between Biometric and Forensic Handwriting Individuality,” 2008 

American Academy of Forensic Sciences Annul Meeting, Contributed Poster with  
Davis, L., Lamas, A., and Buscaglia, J. 

 
Feb., 2008  “Evaluation of the Individuality of Handwriting Using FLASH ID –A Totally     

Automated, Language Independent System for Handwriting Identification,” 2008    
American Academy of Forensic Sciences Annul Meeting, Contributed Talk, Mark 
A.    Walch, Donald T. Gantz, John J. Miller, Linda J. Davis, Christopher P. 
Saunders, Mark    J. Lancaster, Andrea Lamas, and JoAnn Buscaglia. 

 
Feb., 2008  “Statistical Characterization of Writers for Identification,” 2008 American 

Academy of    Forensic Sciences Annul Meeting, Contributed Talk, Donald T. 
Gantz, John J. Miller,    Christopher P. Saunders, Mark J. Lancaster, and JoAnn 
Buscaglia. 
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Nov., 2008  “A Comparison Between Biometric and Forensic Handwriting Individuality.” The 
ROBUST Biometrics Conference. Contributed Poster with Davis, L., Lamas, A., 
and Buscaglia, J. 

 
Aug., 2008  “Modeling the Relationship Between Random Match/Non-Match Probabilities and 

the Sizes of Writing Samples.” The Seventh International Conference on Forensic 
Inference and Statistics. Contributed talk with Davis, L. and Buscaglia, J. 

 
Feb.,  2009  “Handwriting Individuality: Probability Models, Subsampling Routines, and 

Implications.” American Academy of Forensic Sciences. Contributed Talk with 
Buscaglia, J., Davis, L., Hepler, A., and Lancaster, J. 

 
Sep., 2009  “Estimation of likelihood ratios for forensic handwriting analysis.”  5th European 

Academy of Forensic Science Conference.  Submitted as a Poster, invited to 
present as a talk. Saunders C. P. 

 
Feb, 2010  “A Comparison between different likelihood ratios for assessing handwriting 

evidence.” American Academy of Forensic Sciences. Contributed Talk, Hepler  
A. and Saunders C. 

 
Feb, 2010  “New results for addressing the open set problem in automated handwriting 

identification.” American Academy of Forensic Sciences. Contributed Talk, 
Gantz D. T., Miller J. J., Saunders C P., Walch M. A., and Buscaglia J.  

 
Feb, 2010  “Quantifying the effects of database size and sample quality on measures of     

individualization validity and accuracy in forensics.”  2010 General Forensics 
R&D    Grantees Meeting.  Saunders C.P, invited talk.  

 
Aug., 2010  “Estimation of likelihood ratios for forensic handwriting analysis.”  NIJ Impression 

and Pattern Evidence Symposium. submitted poster, Saunders C. P. and Hepler A. 
H. 

 
Aug., 2010  “Quantifying the effects of database size and sample quality on measures of     

individualization validity and accuracy in forensics.”  NIJ Impression and Pattern    
Evidence Symposium. Saunders C.P, invited poster.  

 
Aug., 2011  “Predictive Modeling for Determining the Discriminative Power of Trace Glass 

Evidence as a Function of the Number of Sampled Glass Fragments.”  NIJ Trace 
Evidence Symposium. Kalendra, E. (Presenter) Saunders C.P., invited talk.  

 
Aug., 2011  “ROC Curves for Methods of Evaluating Evidence: A Common Performance 

Measure Based on Similarity Scores.”  NIJ Trace Evidence Symposium. R. 
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Aug., 2011  “On Parametric Models for Pairwise Comparisons with Applications to Estimation 
of Random Match Probabilities.” NIJ Trace Evidence Symposium. Donald T. 
Gantz (Presenter), John J. Miller, Christopher P. Saunders, invited talk. 

 
Aug., 2012 “The Effect of the Order of Suspect and Background Population Samples on the 

Assessment of the Value of Evidence.” NIJ Impression and Pattern Evidence 
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and supported travel), Buscaglia J. and Saunders C.P. 

Aug., 2012 “The Effect of Uncertainty About the Alternative Source Population on the 
Assessment of the Value of Forensic Evidence.”  Joint Statistical Meetings. Poster 
Presentation, Eric Kalendra, Buscaglia J. and Saunders CP (Presenting). 

Aug., 2012 “The Effect of Uncertainty About the Alternative Source Population on the 
Assessment of the Value of Forensic Evidence.”  EAFS2012. Presentation, Eric 
Kalendra, Buscaglia J. and Saunders CP (Presenting). 

Nov., 2012 “Algorithm for Spectroscopic Data Analysis and Outlier Detection.” NSF 
Algorithms for Threat Detection Workshop. Presentation, Numerous authors, the 
talk was focused on  algorithms I developed. 

Nov., 2012 “Computer Vision and Statistical Learning on a Budget.”  NSF Algorithms for 
Threat Detection Workshop. Presentation, Lancaster ML and Saunders CP (Co-
Presenting). 

June, 2013 “Understanding Individuality of Handwriting Using Score-Based Likelihood 
Ratios.” NIST, Measurement Science and Standards in Forensic Handwriting 
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June, 2013 “Scale Invariant Feature Transform (SIFT): Writer Recognition by Computer 
Vision.” NIST, Measurement Science and Standards in Forensic Handwriting 
Analysis. Invited presentation with J. Woodard and L. Lancaster, Saunders 
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July, 2013  “Statistical Aspects of the Forensic Identification of Source Problem.” Invited 
Seminar Lecture at the FBI Laboratory, Quantico, VA. 

Aug., 2013  “On Desiderata for Score-Based Likelihood Ratios for Forensic Evidence.” Joint 
Statistical Meetings 2013, Montreal Canada, Christopher Saunders (Presenting) 
and John J. Miller. 
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Link Between U-Statistics With 0-1 Kernels and Union/Intersection of Events 
 

 

By:  Linda J. Davis  

 

 

ABSTRACT: This paper illustrates a connection between the distribution of a U-statistic with a 0-1 kernel of 

degree 2 and the probability formulas for unions and intersections of events.  This connection provides one way 

to derive formulas for expectations and means as well as bounds on probabilities related to the distribution of a 

U-statistic with a 0-1 kernel. 

1. Introduction 

The distribution of a random count depends upon how the count is generated.   

One common example of a random count involves a fixed number n  of independent trials on each of which 

some event either occurs or does not occur.  The distribution of the number of occurrences is binomial with 

parameter n  and  , where   is the probability of occurrence of the event on a single trial (which is assumed 

constant across trials). 

One way to represent such a count is via a set of n  random variables  1 2, ,..., nX X X  and a binary function 

of one variable ( )  :  ( ) 1iX   if the event does occur (often called a success) on the ith trial and ( ) 0iX   

if the event does not occur (often called a failure) on the ith trial.  Then, 
1

( )
n

i

i

X


  equals the number of 

successes across n  trials and has a binomial distribution provided the set of n  random variables are independent 

and identically distributed (iid). 

There are a number of ways to “complicate” this scenario while still being interested in the number of 

occurrences across some fixed number of trials.  First, one could envision that the probability of occurrence on a 

single trial varies from trial to trial.  The effect on the distribution of the number of occurrences depends upon 

how the probabilities vary.  Alternatively, one could consider situations in which the trials are not independent, 

so called correlated binomial trials.  In this scenario, the effect on the distribution of the number of occurrences 

depends upon how the trials are related. 

In this paper, I consider a set of correlated trials where the correlation is of a specific type – namely that 

induced by individual “trials” involving pairs of independent random variables.  For example, one might 

envision comparing the two random variables within a pair and deciding on the basis of some criteria that some 

event either occurs or does not occur for the pair.  Blom and Holst (1989) use the term similar pair to describe a 

pair for which some event does occur.  One may then be interested in the distribution of the number of similar 

pairs, that is, of the number of pairs for which some event occurs. 
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One way to represent such a count is via a binary function on two variables ( , )   :  ( , ) 1i jX X   if the 

( , )thi j  pair is similar and ( , ) 0i jX X   if the ( , )thi j  pair is not similar.  Then, the number of similar pairs 

among a set of n  iid random variables  1 2, ,..., nX X X  where 2n   can be represented as:  

 ( , )n i j

i j

Y X X


  

where 
i j

  represents 
1

1 1

n n

i j i



  

   or equivalently, 
1

2 1

jn

j i



 

   and the proportion of similar pairs is: 

 1 1 ( , )n n i j

i j

U N Y N X X 



     

where 
2

n
N

 
  
 

, i.e., the number of pairs of integers ( , )i j  with 1 i j n    .  Note that nU  is a U-statistic with 

a 0-1 kernel ( , )    of degree 2 (Lee, 1990, p. 8); the relationship to a U-statistic can be exploited to establish 

both distributions and bounds on probabilities. 

The question I address in this paper is:  What is the distribution of nY  (or equivalently, nU )?  My interest in 

this question arose out of studying the inferences that can be made from the number of “matches” observed in 

databases of forensic evidence, such as fingerprints and handwritten documents.   

This paper is organized as follows.  First, I list formulas for the moments of nY  that follow directly from the 

relationship of nY  to a U-statistic.   These formulas relate the moments of nY  to two probabilities: 

  1 1 2( , ) 1P X X    

  2 1 2 1 3( , ) 1, ( , ) 1P X X X X      

Here, 1  is the probability that two independent random variables are similar, where similar is defined as 

1 2( , ) 1X X  .  2  is the probability that three independent random variables include at least two similar pairs, 

namely the probability that two independent random variables 2X  and 3X  are each similar to a third 

independent random variable 1X , i.e., 1 2( , ) 1X X   and 1 3( , ) 1X X  .   

Next I provide some formulas for the probability mass function of nY  that are related to the probability 

formulas for unions and intersections of events.  Using the relationship to such formulas, I derive bounds on the 

probability mass function for nY  related to moments of nY . 

I conclude this paper with some applications of the developed formulas to specific distributions of the 'X s . 
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2. Moments of the Proportion of Similar Pairs 

Because ( , )    takes on only the values of 0 and 1, 1  and 2  can be represented as expectations: 

    2
1 2 1 2 1 2 1( , ) ( , ) ( , ) 1E X X E X X P X X        

 
 

    1 2 1 3 1 2 1 3 2( , ) ( , ) ( , ) 1, ( , ) 1E X X X X P X X X X         . 

So, in terms of 1  and 2 , the first two moments of 1 2( , )X X  are:  

 
 

    

1 2 1

22 2
1 2 1 2 1 2 1 1 1 1

( , )

Var ( , ) ( , ) ( , ) (1 ) .

E X X

X X E X X E X X

 

      



      
 

 

Note that from the properties of U-statistics (Lee, 1990, p. 8), nU  is an unbiased estimator of 1 , i.e., 

 1( )nE U  . (1) 

Also, since  1 2, ,..., nX X X  are assumed to be iid, the variance of nU  is (Lee, 1990, p. 12)
1
: 

  1
1 2Var( ) 2( 2)nU N n      (2) 

where 

 

 

    

1 1 2 1 3

2

1 2 1 3 1 2

2
2 1

Cov ( , ), ( , )

( , ) ( , ) ( , )

X X X X

E X X X X E X X

  

  

 



 

 

 (3) 

 

 

 
2 1 2 1 2

1 2

1 1

Cov ( , ), ( , )

Var ( , )

(1 )

X X X X

X X

  



 





 

 (4) 

Substituting (3) and (4) into (2), 

 

 

1 2
2 1 1 1

1 2
2 1 1

1
2 1 1 1

Var( ) 2( 2)( ) (1 )

2( 2) (2 3)

2( 2)( ) (2 3) (1 )

nU N n

N n n

N n n

   

  

   







     
 

     
 

     

 (5) 

Relationships involving 1  and 2  can be used to derive relationships involving 1  and 2 .  First, 1 0   

(Lee, 1990, p. 10).  That is, the covariance of 1 2( , )X X  and 1 3( , )X X  is non-negative, as expected due to the 

common term 1X .  However, as shown in (3), 
2

1 2 1    .  Thus, 1 0   implies 
2

1 2  .   

Second, 1 2 2   (Lee, 1990, p. 15).  So, substituting the formulas for 1  and 2  given in (3) and (4), 

2
2 1 1 2 1 12( ) 2 (1 )          .  Rewriting, 2 1 1(1 ) 2    .  Also, since 1  is a probability, 1 1   which 

                                                      

1
 In (Lee, 1990), 1  is denoted by 

2
1  and 2  is denoted by 

2
2 . 
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implies 1(1 ) 2 1   and thus that 1 1 1(1 ) 2    .  So, viewing the proportion of similar pairs as a U-statistic 

leads to the following bounds on 2  in terms of 1 . 

 2 1 1
1 2 1

(1 )

2

 
  


    (6) 

These relationships involving 1  and 2  lead to insightful bounds on the variance of nU .  Applying the 

relationship 
2

1 2   to (5), 

 

1 2
2 1 1 1

1 2 2 1 1
1 1 1 1

Var( ) 2( 2)( ) (1 )

(1 )
2( 2)( ) (1 )

nU N n

N n
N

   

 
   





     
 


      
 

 

Thus, the variance of nU  is bounded below by the variance of the proportion of successes in a binomial 

distribution with the number of trials equal to N  and success probability on each trial equal to 1 .  In other 

words, the variance of the proportion of similar pairs is bounded below by the variance of a sample proportion 

associated with treating the 
2

n
N

 
  
 

 pairwise comparisons as N  independent trials, each with probability of 

success 1 .   

Note that the variance of nU  equals the binomial variance when 
2

2 1  , i.e., when  

      2
1 2 1 3 2 1 1 2 1 3( , ) 1, ( , ) 1 ( , ) 1 ( , ) 1P X X X X P X X P X X             . 

This shows that treating the number of similar pairs in N  pairwise comparisons as having a binomial 

distribution underestimates the variance whenever 1X  being similar to one other observation, say 2X , increases 

its chances of being similar to yet another observation, say 3X . 

Applying the relationship 2 1 1(1 ) 2     to (6), 

 

 

1 2
2 1 1 1

1 2 1 1
1 1 1 1 1

Var( ) 2( 2)( ) (1 )

(1 )
2( 2) (1 ) / 2 (1 )

/ 2

nU N n

N n
n

   

 
    





     
 


       
 

 

Thus, the variance of nU  is bounded above by the variance of a binomial distribution with number of trials 

equal to / 2n  and success probability on each trial equal to 1 .  This corresponds to / 2n  independent trials, 

which would occur if the 'X s  are paired (assuming n is even) and only the resulting / 2n  pairs were compared.  

This shows that treating the number of similar pairs in N  pairwise comparisons as / 2n  independent trials 

overestimates the variance. 
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3. Distribution of Number of Similar Pairs 

Consider the discrete random variables ( , )n i j n

i j

Y X X NU


  , which takes on values 0,1,..., N .  Recall 

that nY  is the number of similar pairs, i.e., the number of ( , )i j  pairs (1 )i j n    with ( , ) 1i jX X  .   

3.1 Moments of nY  

From (1) and (5), 

 1( )nE Y N  (7) 

 

 

2
2 1 1

2 1 1 1

Var( ) 2( 2) (2 3)

2( 2)( ) (2 3) (1 )

nY N n n

N n n

  

   

     
 

     
 (8) 

and  

 

2 2

2
2 1 1

2
2 1 1

( ) Var( ) [ ( )]

2( 2) 0.5( 2)( 3)

6 6
3 4

n n nE Y Y E Y

N n n n

n n
N

  

  

 

      
 

   
    

   

 (9) 

(Note:  An alternative derivation of the formulas for the mean and variance of nY  appear in Blom and Holst 

(1989); they use different notation: 1 p  , N M , and 
2

2 1 c   .) 

The expression for 
3( )nE Y  is more complex than that for the first and second moments.  A technique similar 

to that used in Lee (1990, p.12) to derive a general formula for the variance of a U-statistic, can be used to 

derive a formula for the third non-central moment: 

 

3 3 2
1 1 1

1 2 2 2

3 3

3 2
1 1 1 1 2 2 2 3

( ) 0.25( 2)( 3)( 4)( 5) 1.5( 2)( 3)

3( 2)( 3)( 4) 2( 2)(3 )

2( 2)( 3)(3 )

90 18 180 6 (3 ) 24 (3
6 4 5 3 4

n

b

a b

b a

E Y N n n n n n n

n n n n

n n

n n n n n
N

  

   

 

       

        


      

   

         
                

         
3 )b

 (10) 

where for 3n  2
:   

    2 1 2 1 3 2 3 1 2 1 3 2 3( , ) 1, ( , ) 1, ( , ) 1 ( , ) ( , ) ( , )b P X X X X X X E X X X X X X            

and for 4n  3
: 

    3 1 2 3 4 1 3 1 2 3 4 1 3( , ) 1, ( , ) 1, ( , ) 1 ( , ) ( , ) ( , )a P X X X X X X E X X X X X X            

                                                      

2
 For 3n  , 2 0   and 2 0b  . 

3
 For 4n  , 3 0a   and 3 0b  . 
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    3 1 2 1 3 1 4 1 2 1 3 1 4( , ) 1, ( , ) 1, ( , ) 1 ( , ) ( , ) ( , )b P X X X X X X E X X X X X X           . 

2b , 3a , and 3b  can be interpreted as probabilities of certain numbers of similar pairs.  Recall that 1  is 

the probability that two independent random variables are similar; and 2  is the probability that three 

independent random variables include at least two similar pairs. 

Similarly, 2b  is the probability of three similar pairs among three independent random variables.  From the 

interpretation (or the definition), it is clear that 2 2b   with equality if and only if two pairs being similar 

implies the third pair also must be similar. 

The interpretations for 3a  and 3b  are more difficult to put in words as they involve four independent 

random variables.  3a  is the probability that a specific pair (say, 1 3( , )X X ) of the four independent random 

variables is similar and the remaining two random variables (say, 2X  and 4X ) are each similar to a different 

member of this specific pair (say, 2X  is similar to 1X , and 4X  is similar to 3X ).  3b  is the probability that a 

specific one of the four independent random variables is similar to the other three.  

Expressions for higher-order moments can in principle be computed using the technique shown in Lee 

(1990, p. 12).  However, as suggested by the expression for  3
nE Y , these do not assume a simple form. 

3.2 Probability Distribution of nY  

To derive expressions for the distribution of nY , I relate its distribution to probability formulas associated 

with the union and intersection of events.   

Define 

  ( , ) 1 for ij i jB X X i j   , 1 i j n    . 

In terms of these events, 

 { }n ij

i j

Y I B


  

where { }I   is the indicator function: 

 
1 if event  occurs              

{ }
0 if event  does not occur

B
I B

B


 


. 

In other words, nY  equals the number of the N  events  ,1ijB i j n    that occur.  Viewing nY  in this manner 

allows relating the computation of the distribution of nY  to probability formulas for unions and intersections of 

events. 

It is convenient to map the index “pair” ( , )i j  to a single index k  via say:  
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 ( , ) ( 1)( 2) / 2k i j j j i     for i j . 
4
   (11) 

This allows working with a set of events with a single index k :  ( , )k k i j ijA A B  .  So, in the following, I 

consider a set of N  events  1 2, , , NA A A  with:  

 
1

{ }
N

n k

k

Y I A


  

A key issue to keep in mind in the following discussion is that the N  events  1 2, , , NA A A  are not 

independent.  So, for example  1 2k kP A A  
5
  may or may not equal  3 4k kP A A . 

For 1 r N  , define
6
: 

  1 2
( , )

rr k k k

N r

S P A A A   (12) 

where the sum 
( , )N r

  is taken over all 
N

r

 
 
 

 r-tuples  1 2, , , rk k k  of integers between 1 and N  inclusive with 

11 rk k N   
7
 .  By definition, 0 1S   and 0rS   for r N .  Examples for some other values of r  

include: 

 

 

 

 

1 2

1 2

1

1

2

1

N

k

k

k k

k k

N

N kk

S P A

S P A A

S P A

















 

Consider the following result from Feller (1968, p. 99) 
8
:  The probability 1P  of the realization of at least 

one among the events 1 2, , , NA A A  equals:  

1 1 2 3 4 NP S S S S S      . 

But, 1 ( 1)nP P Y  .  So,  

                                                      

4
 The actual mapping used is not important.   

5
 For two events E  and F , the notation EF  is used for the intersection of the two events. 

6
 Much of the following notation is adapted from Chapter IV of Feller (1968). 

7
 The sum notation is adapted from Lee (1990, p. 7). 

8
 Most of the results quoted from Feller are not Feller’s original work.  References to the original work are available 

within Feller.  I chose to reference Feller because Chapter IV of his book provides a useful summary of the formulas 

that has been developed concerning combinations of events, and some of the original work is difficult to acquire. 
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1

1 2 3 4

1

( 1) ( 1)
N

r
n N r

r

P Y S S S S S S



          

and using 0 1S  , 

 
1

1 0

( 0) 1 ( 1) 1 ( 1) ( 1)
N N

r r
n n r r

r r

P Y P Y S S

 

           

Formulas for ( )nP Y m  for values of m  greater than 0 can be derived from the following result in Feller 

(1968, p. 106):  For any integer m  with 1 m N  , the probability [ ]mP  that exactly m  among the N  events 

1 2, , , NA A A  occur simultaneously is:  

[ ] 1 2

0

1 2
( 1)

N m
r

m m m m N m r

r

m m N m r
P S S S S S

m m m m



  



         
             

       
 . 

But, [ ] ( )m nP P Y m  .  So, for 1 m N  , 

 
0

( ) ( 1)
N m

r
n m r

r

m r
P Y m S

m







 
    

 
  . 

Note that this formula also holds for 0m  . 

Finally, formulas for ( )nP Y m  for values of m  greater than 1 can be derived using the following formula 

from Feller (1968, p. 109).  The probability mP  that m  or more of the events 1 2, , , NA A A  occur 

simultaneously is:  

1 2 3

1 2 1

1 1 1 1
m m m m m N

m m m N
P S S S S S

m m m m
  

         
            

          
. 

So,  

 
0

1
( ) ( 1)

1

N m
r

n m m r

r

m r
P Y m P S

m







  
     

 
 . 

Note that this formula also holds for 1m  . 

In summary, the distribution of nY  can be expressed in terms of  0 1 2, , , , NS S S S .  For any integer m  with 

0 m N  , the probability mass function of nY  is: 

 
0

( ) ( 1)
N m

r
n m r

r

m r
P Y m S

m







 
    

 
  (13) 

and the complementary cumulative distribution function of nY  is: 
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0

1
( ) ( 1)

1

N m
r

n m r

r

m r
P Y m S

m







  
    

 
 9

 (14) 

3.3 Probability Bounds 

The form of the expression for ( )nP Y m  in (13) and for ( )nP Y m  in (14) allows some Bonferroni-type 

inequalities.  As stated in Feller, (1968, p. 110), if one approximates ( )nP Y m  (or ( )nP Y m ) by dropping the 

terms involving  1, , ,m t m t NS S S    in either (13) or (14), then the sign of the “error” (i.e., true value minus 

approximation) is that of the first omitted term.  Specifically, for any integer m  with 0 m N   and any even 

integer t  with 0 1t N m    , 

 
1

0 0

( 1) ( ) ( 1)
t t

r r
m r n m r

r r

m r m r
S P Y m S

m m



 

 

    
       

   
   (15) 

 
1

0 0

1 1
( 1) ( ) ( 1)

1 1

t t
r r

m r n m r

r r

m r m r
S P Y m S

m m



 

 

      
       

    
   (16) 

In particular, for 0t  , 

  1( 1)m m n mS m S P Y m S      

  1m m n mS mS P Y m S     

and for 2t  , 

 

 

1 2 3

1 2

2 3
( 1)

2
( 1)

m m m m

n m m m

m m
S m S S S

m m

m
P Y m S m S S

m

  

 

    
      

   

 
       

 

 

 

 

1 2 3

1 2

1 2

1 1

1

1

m m m m

n m m m

m m
S mS S S

m m

m
P Y m S mS S

m

  

 

    
     

    

 
      

 

 

The special case of 0m   leads to a bound on the probability of zero similar pairs.  Substituting 0m   in 

(15), for any even integer t  with 0 1t N   , 

 
1

0 0

( 1) ( 0) ( 1)
t t

r r
r n r

r r

S P Y S


 

       

                                                      

9
 For the case 0m  , I am using the convention that 0

a

b


 
 
 

 whenever a  is a nonnegative integer and b  is a 

negative integer; and the convention that 
1

1
1






 
 
 

. 
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So,  

 

0

0

0

( 0) ( 1)   for  odd, 1 1

( 1)   for  even, 0 1

( 1)   for 

t
r

n r

r

t
r

r

r

t
r

r

r

P Y S t t N

S t t N

S t N







     

    

  







 

Substituting 1t   and 2t  , and recalling that 0 1S  , 

 1 1 21 ( 0) 1nS P Y S S       (provided 2N  ). 

Substituting 3t   and 4t  , and recalling that 0 1S  , 

 1 2 3 1 2 3 41 ( 0) 1nS S S P Y S S S S           (provided 4N  ). 

3.4 Values of rS  

The probability bounds in the previous section require knowing the values of rS .  Recall that 

 1 2
( , )

rr k k k

N r

S P A A A   for any integer r  with 1 r N  .  Thus, one could compute rS  directly from the set 

of probabilities  1 2 rk k kP A A A  for all 
N

r

 
 
 

 r-tuples  1 2, , , rk k k  of integers between 1 and N  inclusive 

with 11 rk k N    . 

As pointed out earlier, the 'kA s  are not independent.  So, the terms  1 2 rk k kP A A A  are not all equal.  The 

assumed independence of the underlying  1 2, ,..., nX X X  means that subsets of these probabilities are the same.  

However, counting the number of  1 2 rk k kP A A A  with the same value complicates the computation of rS , 

particularly for larger values of r . 

For 1r  , the computation is straightforward.  For any k , which corresponds via (11) to a unique index pair 

( , )i j ,   1( , ) 1k i jP A P X X      .  So, 1 1S N . 

For 2r  , the computation is not as straightforward and serves to illustrate the combinatorics involved in 

computing the 'rS s  for 1r  .  Each of the terms  1 2k kP A A  is associated via (11) with two index pairs 1 1( , )i j  

and 2 2( , )i j ;  

  1 2 1 1 2 2
( , ) 1, ( , ) 1k k i j i jP A A P X X X X    

 
  

and   
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1 1 2 2

1 1 2 2

1 1 2 2

2
,

( , ) ( , )

( , ) 1, ( , ) 1i j i j
i j i j

k i j k i j

S P X X X X 
 



   
    

where ( , )k i j  is defined in (11).   

The difficulty in computing this sum is that the value of 
1 1 2 2

( , ) 1, ( , ) 1i j i jP X X X X   
 

 depends upon 

how many distinct values there are among the four indices  1 1 2 2, , ,i j i j .  For example, 

 1 2 3 4( , ) 1, ( , ) 1P X X X X    where all indices are distinct is not equal to  1 2 1 3( , ) 1, ( , ) 1P X X X X    

where exactly two of the indices are equal.  Also, there are restrictions on these four indices: 1 1i j , 2 2i j , and 

1 1 1 1 1 2 2 2 2 2( 1)( 2) / 2 ( , ) ( , ) ( 1)( 2) / 2j j i k i j k i j j j i         .  These restrictions complicate counting the 

number of sets of four indices  1 1 2 2, , ,i j i j  where all indices are distinct vs. exactly two of the four indices are 

equal.   

An alternative approach to the computation of rS  is via the relationship of rS  to the moments of nY .  

Consider the following formula from Feller (1968, p. 110): 

 [ ]

N

r m

m r

m
S P

r


 
  

 
  

As noted earlier, [ ] ( )m nP P Y m  .  So, for any integer r  with 0 r N  , 

  
N

n
r n

m r

m Y
S P Y m E

r r


    
       

    
   

using the convention that 0
a

b

 
 

 
 for integers a  and b  with 0 a b  .  In particular, 

 

0

1 1

1
0

( )
1

n

n
n

Y
S E

Y
S E E Y N

  
   

  

  
    

  

 

Consider now 2S . 

    2
2

1 1
( 1) ( ) ( )

2 2 2

n
n n n n

Y
S E E Y Y E Y E Y

  
      

  
 

Substituting (7) and (9), 

 
2 2

2 2 1 1 1 2 1

1
6 6 3 3

3 4 3 42

n n n n
S N N     

        
            

        
. 
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Consider now 3S . 

    3 2
3

1 1
( 1)( 2) ( ) 3 ( ) 2 ( )

3 6 6

n
n n n n n n

Y
S E E Y Y Y E Y E Y E Y

  
        

  
 (17) 

Substituting (7), (9), and (10) into (17),  

 
3

3 1 1 2 2 3 315 30 4 (3 )
6 5 3 4

b a b

n n n n
S      

       
           

       
 

So, in summary,  0 1 2, , , , NS S S S  can be expressed in terms of moments of the distribution of nY : 

 
n

r

Y
S E

r

  
   

  
 for 0,1, ,r N  

and in particular, 

 

0

1 1 1

2
2 1 2

3
3 1 1 2 2 3 3

1

2

3 3
4 3

15 30 4 (3 )
6 5 3 4

b a b

S

n
S N

n n
S

n n n n
S

 

 

     



 
   

 

   
    

   

       
           

       

 (18) 

Conversely, one can express the moments of nY  in terms of  0 1 2, , , , NS S S S .  In particular: 

 

1

2
2 1

2 1 1

3
3 2 1

( )

( ) 2

Var( ) 2 (1 )

( ) 6( )

n

n

n

n

E Y S

E Y S S

Y S S S

E Y S S S



 

  

  

 (19) 

4. Examples – General Case 

In this section, I illustrate and verify the formulas for some small values of n by expressing the sampling 

distribution and moments of nY  in terms of the 'rS s . 

4.1 2n   

When 2n  , 2 1 2( , )Y X X .  So, the support of 2Y  is  0,1  which implies 2Y  is Bernoulli with parameter 

1 .  So, the probability mass function is: 

 2 1( 0) 1P Y     

 2 1( 1)P Y    

And, the formulas for the following moments are easily derived from the probability mass function: 
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1

2
1

1 1

3
1

( )

( )

Var( ) (1 )

( )

n

n

n

n

E Y

E Y

Y

E Y





 







 



 

These can also be derived from the formulas in this paper.  For 2n  , 1
2

n
N

 
  
 

.  So, 1 1 1S N    and 

0rS   for 2r  .  Substituting into (13), 

 
1

0 1 1

0

( 0) ( 1) 1
0

r
n r

r

r
P Y S S S 



 
       

 
  

 
0

1 1 1

0

1
( 1) ( 1)

1

r
n r

r

r
P Y S S 



 
     

 
  

And, substituting into (19): 

 

1 1

2
2 1 1 1

2 1 1 1 1 1 1

3
3 2 1 1 1

( )

( ) 2

Var( ) 2 (1 ) (1 ) (1 )

( ) 6( )

n

n

n

n

E Y S

E Y S S S

Y S S S S S

E Y S S S S





 



 

   

      

    

 

4.2 3n   

When 3n  , 3 1 2 1 3 2 3( , ) ( , ) ( , )Y X X X X X X     .  So, the support of 3Y  is  0,1,2,3 .  The 

corresponding probability mass function can be derived directly from the form of 3Y .  However, it is easier to 

derive using the formulas in this paper. 

For 3n  , 3
2

n
N

 
  
 

.  Also, recall that 3 3 0a b    for 4n  .  So, using the formulas in (18), 1 13S  , 

2 23S  , and 3 2bS  ; and by definition, 0rS   for 4r  . 

Substituting into (13), 

 
3

3 0 1 2 3 1 2 2

0

( 0) ( 1) 1 3 3r
r b

r

P Y S S S S S   


            

 
2

3 1 1 2 3 1 2 2

0

1
( 1) ( 1) 2 3 3 6 3

1

r
r b

r

r
P Y S S S S   



 
         

 
  

 
1

3 2 2 3 2 2

0

2
( 2) ( 1) 3 3( )

2

r
r b

r

r
P Y S S S  



 
       

 
  

 
0

3 3 3 2

0

3
( 3) ( 1)

3

r
r b

r

r
P Y S S 



 
     

 
  
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Substituting into (19), 

 3 1( ) 3E Y   

 
2

3 1 2( ) 3 6E Y     

 3 1 1 2Var( ) 3 (1 3 ) 6Y       

 
3

3 1 2 2( ) 3 6(3 )bE Y       

4.3 Larger n 

For larger values of n , use of the expressions in this paper is not helpful in general.  However, these 

expressions can still be useful in some special cases, as shown in the next section. 

5. Examples – Special Case 

As a special case, consider a population   with 1K   groups of objects { , 0,1,..., }k k K   satisfying the 

following assumptions: 

a) 
0

K

k

k

    and i j    for i j  (i.e., groups are mutually exclusive and exhaustive).  

b) When an object is selected at random from this population, k  is the probability that the object belongs 

to Group k . 

c) Any object from Group 0  is not similar to any other object. 

d) For Groups 1  through K : 

i. Any two objects from the same group are similar. 

ii. Any two objects from different groups are not similar. 

Suppose one is interested in the distribution of the number of pairs of similar objects among n randomly 

selected objects from this population.  This number of similar pairs can be represented as follows.   

Let the random variable X  denote the group to which a randomly selected object belongs.  Then, the 

distribution of X  is discrete with support  0,1,2,...,K  and probability mass function  0 1, ,..., K   , i.e., 

( )i kP X k   .  And, the group membership of a random sample of size n of objects can be represented as 

 1 2, ,..., nX X X .   

Next, consider the specific binary function: 

 
1 if  0

( , )
0 if   or  0 or  0

i j

i j
i j i j

X X
X X

X X X X


 
 

  

 (20) 

Then, the number of similar pairs is: 
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 ( , )n i j

i j

Y X X


  . 

So, in this special case, the distribution of the number of pairs of similar objects among n randomly selected 

objects is just the distribution of nY , which is the focus of this paper.   

One major simplification in this scenario is that for three independent random variables 1X , 2X , and 3X , 

  1 2 1 3 2 3( , ) 1, ( , ) 1, ( , ) 0 0P X X X X X X        

In other words, if two objects 2x  and 3x  are each similar a third object 1x , then necessarily, 2x  and 3x  are also 

similar to each other.  Another way to state this is: 

    1 2 1 3 2 3 1 2 1 3( , ) 1, ( , ) 1, ( , ) 1 ( , ) 1, ( , ) 1P X X X X X X P X X X X           . 

As a consequence, some of the expected values take on simpler forms.  For example,  

     2
1 1 2 1 2

1

( , ) 1 0
K

k

k

P X X P X X  


       

     3
2 1 2 1 3 1 2 3

1

( , ) 1, ( , ) 1 0
K

k

k

P X X X X P X X X   


         

   3
2 1 2 1 3 2 3 2

1

( , ) 1, ( , ) 1, ( , ) 1
K

b k

k

P X X X X X X     


       

     4
3 1 2 3 4 1 3 1 2 3 4

1

( , ) 1, ( , ) 1, ( , ) 1 0
K

a k

k

P X X X X X X P X X X X    


           

     4
3 1 2 1 3 1 4 1 2 3 4 3

1

( , ) 1, ( , ) 1, ( , ) 1 0
K

b a k

k

P X X X X X X P X X X X     


            

Defining 
4

3

1

K

k

k

 


 ,  

 
1

1

K
j

j k
k

  



  (21) 

for 1,2,3j  . 

There are a few simplifications for the small values of n studied in the last section.  For 2n  , the only 

simplification is that 2
1

1

K

k

k

 


 .  For 3n  , making the substitution that 2 2b   and 3 3 3a b    , 

 3 1 2( 0) 1 3 2P Y       

 3 1 2( 1) 3( )P Y      

 3( 2) 0P Y    

 3 2( 3)P Y    
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and 

 3 1( ) 3E Y   

 
2

3 1 2( ) 3 6E Y     

 3 1 1 2Var( ) 3 (1 3 ) 6Y       

 
3

3 1 2( ) 3 24E Y     

Consider now larger values of n .  As mentioned previously, use of the expressions in this paper is not 

helpful in general because of the difficulty of finding expressions for rS  for 4r  .  However, in this special 

case, expression can be derived directly from the definition of rS  given in (12): 

  1 2
( , )

rr k k k

N r

S P A A A   

for specific values of n  because, in this simplified scenario, one of the key properties is that the formula is 

driven by the amount of overlap in the indices of the  1 2, ,..., nX X X  involved in the expression. 

So, let’s consider 4n  .  With 4n  , there are a total of 
4

6
2

N
 

  
 

 different pairs of indices that can be 

selected from  1,2,3,4 . 

For 4r  , there are 4 pairs of indices 1 1 2 2 3 3 4 4{( , ),( , ),( , ),( , )}i j i j i j i j  associated with each term 

 1 2 3 4k k k kP A A A A  in 4S , and the value of  1 2 3 4k k k kP A A A A  depends upon the amount of overlap among these 

indices.  With 4n  , regardless of which 4 pairs are chosen from the 6 possible, all four of the indices 

 1,2,3,4  appear.  So, for each of the 
6

15
4

 
 

 
 terms in 4S ,  

  1 2 3 4 1 2 3 4 3( 0)k k k kP A A A A P X X X X        

So,  

 4 315S   (22) 

For 5r  , there are 5 pairs of indices associated with each  1 2 3 4 5k k k k kP A A A A A .  With 4n  , regardless of 

which 5 pairs are chosen, all four of the indices  1,2,3,4  appear.  So, for each of the 
6

6
5

 
 

 
 terms in 5S ,  

  1 2 3 4 5 1 2 3 4 3( 0)k k k k kP A A A A A P X X X X        

So,  

 5 36S   (23) 

Finally, for 6r  , 
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  6 1 2 3 4 5 6 1 2 3 4 3( 0)S P A A A A A A P X X X X         (24) 

In summary, combining equations (22), (23), and (24) with equations in (18) evaluated at 4n  : 

 

0

1 1

2
2 1 2

3 2 3

4 3

5 3

6 3

1

6

3 12

4 16

15

6

S

S

S

S

S

S

S



 

 











 

 







  

Substituting these values for rS  into (13): 

 

6

4 0 1 2 3 4 5 6

0

2
1 1 2 2 3 3 3 3

2
1 1 2 3

( 0) ( 1)

1 6 3 12 4 16 15 6

1 6 3 8 6

r
r

r

P Y S S S S S S S S

       

   



         

        

    



 

 

5

4 1 1 2 3 4 5 6

0

2
1 1 2 2 3 3 3 3

2
1 1 2 3

1
( 1) ( 1) 2 3 4 5 6

1

6 2(3 12 ) 3(4 16 ) 4(15 ) 5(6 ) 6( )

6 6 12 12

r
r

r

r
P Y S S S S S S S

       

   





 
         

 

       

   



 

 

4

4 2 2 3 4 5 6

0

2 2
1 2 2 3 3 3 3 1 3

2
( 2) ( 1) 3 6 10 15

2

3 12 3(4 16 ) 6(15 ) 10(6 ) 15 3 3

r
r

r

r
P Y S S S S S S

        





 
        

 

        


 

 

3

4 3 3 4 5 6

0

2 3 3 3 3 2 3

3
( 3) ( 1) 4 10 20

3

4 16 4(15 ) 10(6 ) 20 4 4

r
r

r

r
P Y S S S S S

      





 
       

 

      


 

 
2

4 4 4 5 6 3 3 3

0

4
( 4) ( 1) 5 15 15 5(6 ) 15 0

4

r
r

r

r
P Y S S S S   



 
          

 
  

 
1

4 5 5 6 3 3

0

5
( 5) ( 1) 6 6 6 0

5

r
r

r

r
P Y S S S  



 
        

 
  

 
0

4 6 6 3

0

6
( 6) ( 1)

6

r
r

r

r
P Y S S 



 
     

 
  
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RMP Confidence Interval 

1. Setup 

In this paper, we will be considering a set of correlated trials where the correlation is of a specific type – 

namely from individual trials involving pairs of independent random variables.  Specifically, consider a set of n  

r.v.  1 2, ,..., nX X X .  Assume this set of n  r.v.’s are independent and identically distributed (iid).  

Define a binary function on two variables ( , )   ; assume ( , ) 1x x  .  Associated with this binary function 

are two probabilities: 

    1 1 2 1 2( , ) 1 ( , )P X X E X X      

    2 1 2 1 3 1 2 1 3( , ) 1, ( , ) 1 ( , ) ( , )P X X X X E X X X X         

Here, 1  is the probability that two random variables match, where a match is defined as 1 2( , ) 1X X  .  In this 

paper, we refer to this probability as the random match probability (RMP).  Similarly, 2  is the probability that 

two random variables 2 3{ , }X X  each match a third 1X , i.e., 1 2( , ) 1X X   and 1 3( , ) 1X X  .  We will refer to 

this probability as the random tri-match probability (TMP). 

In terms of 1  and 2 , the first two moments of 1 2( , )X X  are:  

 

 

    

1 2 1

22
1 2 1 2 1 2

2
1 1 1 1

( , )

Var ( , ) ( , ) ( , )

(1 )

E X X

X X E X X E X X

 

  

   



  
 

   

 

A natural point estimate of 1  is the U-statistic of degree 2 (Serfling, 1980):  

 
1 ( , )n i j

i j

U N X X



   

where 
2

n
N

 
  
 

, i.e., the number of pairs ( , )i j  with 1 i j n    and 
i j

  is used to represent  
1

2 1

jn

j i



 

  or 

equivalently,  
1

1 1

n n

i j i



  

  .  Note that nU  is the sample proportion of matches in N  pairwise comparisons. 

From the properties of U-statistics, nU  is an unbiased estimator of 1 , i.e., 

 1( )nE U  . (1) 

Furthermore, when  1 2, ,..., nX X X  are iid, the variance of nU  is (Lee 1990, p. 12)
1
: 

                                                      

 
1
 In Lee (Lee, 1990), 1  is denoted by 

2
1  and 2  is denoted by 

2
2 . 
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  1
1 2Var( ) 2( 2)nU N n      (2) 

where 

 

 

    

1 1 2 1 3

2

1 2 1 3 1 2

2
2 1

Cov ( , ), ( , )

( , ) ( , ) ( , )

X X X X

E X X X X E X X

  

  

 



 

 

 (3) 

 

 

 
2 1 2 1 2

1 2

1 1

Cov ( , ), ( , )

Var ( , )

(1 )

X X X X

X X

  



 





 

 (4) 

Substituting in (3) and (4) into (2), 

 1 2
2 1 1 1Var( ) 2( 2)( ) (1 )nU N n          

 
 (5) 

2. Relationships Between 1  and 2  

2.1 Derived From Representation as a U-Statistics  

Relationships between 1  and 2  given by Lee (1990) can be used to derive relationships between 1  and 

2 .   

First, 1 0   (Lee 1990, p. 10).  That is, the correlation between 1 2( , )X X  and 1 3( , )X X  is non-negative, 

as excepted due to the common term 1X .  However, as shown in (3), 2
1 2 1    .  Thus, 1 0   implies 

2
1 2  . 

Second, 1 2 2   (Lee 1990, p.15).  So, substituting (3) and (4), 2
2 1 1 2 1 12( ) 2 (1 )          .  

Rewriting, 2 1 1(1 ) 2    .  Also, since 1  is a probability, 1 1   which implies 1(1 ) 2 1   and thus that 

1 1 1(1 ) 2    .  So, viewing the number of matches as a U-statistic leads to the following bounds on 2  in 

terms of 1 . 

 2 1 1
1 2 1

(1 )

2

 
  


    (6) 

These relationships between 1  and 2  lead to bounds on the variance of nU .  Using the relationship 

2
1 2   in (5), 

 

1 2
2 1 1 1

1 2 2 1 1
1 1 1 1

Var( ) 2( 2)( ) (1 )

(1 )
2( 2)( ) (1 )

nU N n

N n
N

   

 
   





     
 


      
 
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Thus, the variance of nU  is bounded below by the variance of the proportion of "successes" in a binomial 

distribution with number of trials equal to N  and success probability on each trial equal to 1 , i.e., the variance 

of a sample proportion associated with treating the 
2

n
N

 
  
 

 pairwise comparisons as N  independent trials.   

Note that the variance of nU  equals the binomial variance when 2
1 2  , i.e., when  

      2
1 2 1 3 2 1 1 2 1 3( , ) 1, ( , ) 1 ( , ) 1 ( , ) 1P X X X X P X X P X X             . 

This shows that treating the number of matches in N  pairwise comparisons as binomial underestimates the 

variance whenever 1X  matching one other observation, say 2X , increases its chances of matching yet another 

observation, say 3X . 

Using the relationship 2 1 1(1 ) 2     in (5), 

 

1 2
2 1 1 1

1 2 1 1
1 1 1 1 1

Var( ) 2( 2)( ) (1 )

(1 )
2( 2)( (1 ) / 2 ) (1 )

/ 2

nU N n

N n
n

   

 
    





     
 


       
 

 

Thus, the variance of nY  is bounded above by the variance of a binomial distribution with number of trials equal 

to / 2n  and success probability on each trial equal to 1 .  This corresponds to / 2n  independent trials, which 

would occur if the 'X s  were paired (assuming n is even) and only the / 2n  pairs were compared.  This shows 

that treating the number of matches in N  pairwise comparisons as / 2n  independent trials overestimates the 

variance. 

The difference between an upper confidence interval for the success probability in binomial trials differs 

significantly when the number of trials equals N  vs. / 2n .  Table 1 shows the exact 95% upper confidence 

bounds associated with observing 0 successes in N  vs. / 2n  binomial trials.  The “correct” bounds for the 

RMP based on 0nU   are somewhere between these two extremes. 

 

Table 1:  Upper confidence bound for the success probability when 0 successes are observed.  

 
95% Upper Confidence Bound 

n  Number of Trials:  
2

n
N

 
  
 

 Number of Trials: / 2n  

10 6.4 E-02 4.5 E-01 

50 2.4 E-03 1.1 E-01 

100 6.1 E-04 5.8 E-02 

500 2.4 E-05 1.2 E-02 

1,000 6.0 E-06 6.0 E-03 
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5,000 2.4 E-07 1.2 E-03 

10,000 6.0 E-08 6.0 E-04 

50,000 2.4 E-09 1.2 E-04 

100,000 6.0 E-10 6.0 E-05 

1,000,000 6.0 E-12 6.0 E-06 

 

Thus, inference performed on the N  pairwise comparisons as if they are all independent will be liberal as 

the variance is underestimated.  Inference performed treating the N  pairwise comparisons as / 2n  independent 

trials will be conservative as the variance is overestimated. 

2.2 Derived From Inequalities  

In some scenarios, a “tighter” upper bound on 2  in terms of 1  is possible.  Consider a population   that 

can be divided into 1K   groups k   Necessarily, 
0

K

k
k

   .   

Suppose: 

a) When an object is selected at random from this population, k  is the probability that the object 

belongs to group k .   

b) For groups 1 through K: 

i. Any two distinct objects from the same group “match”, i.e., 1 2( , ) 1x x   if 1 2, kx x   for 

some  1,2,...,k K , 1 2x x .  

ii. Any two objects from different groups “do not match”, i.e., 1 2( , ) 0x x   if 
11 kx   and 

22 kx   for some  1 2, 1,2,...,k k K , 1 2k k .   

c) Any two distinct objects from 0  “do not match”, i.e., 1 2( , ) 0x x  .if 1 2 0,x x  , 1 2x x . 

Assumption (b) is equivalent to the assumption that for three randomly chosen objects  1 2 3, ,X X X  from 

this population:  

 1 2 1 3 2 3[ ( , ) 1, ( , ) 1, ( , ) 0] 0P X X X X X X       

In other words, if two objects 2 3{ , }x x  each match a third 1x , then necessarily 2x  and 3x  match each other.  

Another way to state Assumption (b) is:  

  1 2 1 3 1 2 3[ ( , ) 1, ( , ) 1] , , for some 1,2,...,k k kP X X X X P X X X k K             

Under these assumptions, 2
1

1

K

k

k

 


 , 3
2

1

K

k

k

 


 , and 
3/2

2 1  .  Substituting the relationship 
3/2

2 1   

into (10),  
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1 3/2 2
1 1 1 1

1/21
1 1 1

Var( ) 2( 2)( ) (1 )

2( 2)( ) (1 )

nU N n

n
N

   


  

      
 

     
 

 (7) 

2. Upper Confidence Bound 

When performing inference, it is useful to consider instead 

 ( , )n n i j

i j

Y NU X X


  . (8) 

instead of nU .  From (1) and (2), it follows that: 

 1( )nE Y N  (9) 

 
 2 1 1 1

2
2 1 1 1

Var( ) 2( 2)( ) (2 3) (1 )

2( 2)( ) (1 )

nY N n n

N n

   

   

     

     
 

 (10) 

From (7), assuming the relationship 
3/2

2 1   holds,  

 

1/2
1 1 1 1

1/2 1/2 2
1 1 1 1

Var( ) 2( 2)( ) (1 )

(1 ) 1 (2 3) ( )

n

B

Y N n

N n

   

    

     
 

     
 

 (11) 

This bound 2
1( )B   on Var( )nY  (associated with the relationship 

3/2
2 1  ) combined with Cantelli’s 

inequality can be used to construct an upper confidence bound for 1 .  In particular, the set 

 1 1 1: ( ) ( )n BN Y k       is a 100(1 )%  upper confidence bound for 1  where 

1/2
1

( )k





 
  
 

.  Since 
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ROC Curves for Statistical Methods of Evaluating Evidence: Com-

mon Performance Measures Based On Similarity Scores

R. B. Patterson, J. J. Miller, and C. P. Saunders†

George Mason University, Fairfax, USA

Summary. We demonstrate the benefits of receiver operating characteristic (ROC) curves for measuring the per-
formance of four statistical methods applied to forensic data. The statistical methods evaluate whether multivariate
trace evidence found at a crime scene and on a suspect arise from the same source. Each method produces a
numerical value that indicates the degree of association between two pieces of evidence. We treat such a number
as a similarity score which provides a univariate measure of association between two observations. The number
of false positives and false negatives at nominal thresholds on similarity scores for each method make interpreting
performance ambiguous. Instead, ROC curves created with the similarity scores depict the full range of error rates
achievable with each method. Moreover, they show the differentiation of similarity scores on common axes of true
positive and false positive rates and so do not depend on the scales of the similarity scores. ROC curves provide
an objective and comprehensive methodology for comparing the performance of the distinct statistical methods. We
analyzed the performance of the statistical methods under several scenarios with data consisting of elemental com-
position measurements of glass fragments. Overall, the methods perform similarly and very accurately, with values
often near 0.99 for the area under the ROC curve.

Keywords: Receiver operating characteristic (ROC) curves; Evaluation of evidence; Forensic science; Likelihood ratio;
Test statistic; Multivariate data

1. Introduction

In forensics, many methods of evaluating evidence deal with whether two observations come from the same
source. Such methods often produce a wide range of numerical values as output, which may support the
hypothesis of a common source or the hypothesis of a different source. Yet, in measuring the performance
of these methods, most often single values serve as fixed cutoffs on the output from the methods. For
instance, a test statistic may have a cutoff at the significance level of 0.05. A likelihood ratio method may
use the number one as the cutoff. These fixed values lead to single sets of errors (i.e., false positives and
false negatives) as measures of performance when assessing the procedures. Comparing sets of just two
numbers may make interpreting performance ambiguous. However, instead of measuring performance by
one pair of error rates, we could apply techniques that consider all possible cutoffs and thus the full range of
performance. Examples of such techniques include Tippett plots, detection error tradeoff (DET) curves, and
receiver operating characteristic (ROC) curves. In this article, we will demonstrate the use of ROC curves
with forensics data and detail their benefits.

Numerous fields use ROC curves to evaluate the performance of classification and prediction methods
(Swets et al., 2000). Zhou et al. (2002), Pepe (2004), Lasko et al. (2005), and Zou et al. (2007) discussed their
application in medicine. The general introduction by Fawcett (2006) mentioned their role in data mining
and machine learning. In this article we demonstrate the utility of ROC curves in forensics, where we seek
to measure the performance of methods that evaluate evidence.

We introduce ROC curves in general by following the development presented in the recent book by
Krzanowski and Hand (2009) before we detail their use in forensics. In many fields, a classification method
assigns observations to one of two classes. For example, in medicine a diagnostic test may predict whether
a patient is healthy or sick. In astronomy, the problem may be to detect whether an observed object is an
asteroid. In machine learning, an algorithm may classify a web search result as relevant or not. In these
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examples, each observation belongs in truth to one of two populations, which we label positive and negative
for generality.

A classification method often maps an observation to a univariate score and then classifies the observation
based on the score. For instance, the method may classify new observations as positive or negative depending
on whether their scores are above a certain value. We can measure the performance of the classifier by
studying the separation of the distributions of scores for the positive and negative populations.

We could measure a classification method’s performance by choosing a single threshold on scores. Then
based on whether an observation has a score above or below the threshold, we could classify it as positive or
negative. However, we may assign the wrong class and thereby cause an error. With multiple observations,
we can compute the rates of these errors. Then, the false positive rate refers to the fraction of times
that the classification method incorrectly assigns observations from the negative class to the positive class.
Similarly, the false negative rate refers to the fraction of times that the classification method incorrectly
assigns observations from the positive class to the negative class. The true negative rate is the complement
of the false positive rate, and the true positive rate is the complement of the false negative rate. A single
threshold on scores yields one set of rates, but we could vary the threshold to find all possible rates.

ROC curves depict the full range of error rates for a classification method. They plot the true positive rate
against the false positive rate for all threshold values. Furthermore, because the relative ordering of scores
for the positive and negative populations determines the ROC curve, we may use ROC curves to compare
classification methods that generate scores on different scales. ROC curves indicate the differentiation of
the scores for the positive and negative populations. Summary measures from ROC curves also provide
insight into performance. For example, the area under the curve (AUC) corresponds to the Wilcoxon rank-
sum test for the distributions of scores for the positive and negative populations. It gives the probability
that a randomly chosen observation from the positive class will have a higher score than a randomly chosen
negative observation. When dealing with numerous ROC curves, we may use their AUCs as average measures
of performance to facilitate their interpretation.

In forensics, we evaluate pieces of evidence to weigh whether they come from the same source. We may
form two hypotheses about a pair of observations, one of which we find at a crime scene and the other
on a suspect. Suppose that the prosecution hypothesizes that the observations come from the same source
while the defense hypothesizes that they come from different sources. (More specifically, the defense may
hypothesize that the observation found on a suspect arises from a source randomly selected from a reasonable
alternative population.) Many methods in forensics produce a numerical value that indicates the degree of
association between two pieces of evidence. We may treat such a number as a similarity score, comparable
to the scores discussed previously for classification methods in general. A similarity score is a univariate
measure of association between two observations. High similarity scores support the hypothesis that the
pair of observations belong to the same source. Low similarity scores support the hypothesis that the pair of
observations come from different sources. A method’s performance depends on its capability of supporting
the hypothesis that corresponds to the truth.

Unlike many other fields, forensics does not technically have two populations as in the preceding examples.
However, the methods of evaluating evidence do generate two distributions of similarity scores, one for pairs
from the same source and another for pairs from different sources. The separation of those distributions is
critical. We propose measuring that separation with ROC curves. We can still label the distributions as
positive and negative. In the context of forensics, a false positive corresponds to misleading evidence in favor
of the prosecution, and a false negative corresponds to misleading evidence in favor of the defense.

ROC curves offer several benefits to forensics. To start, they capture the full range of error rates achievable
with a method. They also depict the relative separation of the distributions of similarity scores from a given
method. This then allows for comparisons of methods that produce scores on different scales. Additionally,
an important characteristic for a method of evaluating pairs of evidence is the probability that a randomly
selected pair from the same source would have a higher similarity score than a randomly selected pair from
different sources, which the AUC can estimate. We will discuss these benefits and more details of ROC
curves relevant to forensics in Section 2.2.2.

To show the value of ROC curves in forensics, we applied them to measuring the performance of methods
of evaluating trace evidence in the form of glass fragments. The methods, based on test statistics and
likelihood ratios, came from an article by Aitken and Lucy (2004). Test statistics and likelihood ratios both
provide measures of association between two samples. So we interpreted those values as similarity scores,
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with which we created ROC curves for the same data as the original article. The ROC curves provided
measurements of the full performance of the methods across all thresholds as well as an even basis for
comparison. All of the methods performed very well.

2. Data and Methodology

2.1. Data

We use the glass data published online with the article by Aitken and Lucy (2004) at

http://www.blackwellpublishing.com/rss/

The complete data set includes measurements of elemental composition for each of five (n) fragments from
62 (m) window panes, giving a total of 310 (N = mn) observations. Each observation of a fragment includes
measurements of four elements (Si, K, Ca, and Fe), which we transform as in the original paper to three (p)
variables: log(Ca/K), log(Ca/Si), and log(Ca/Fe). An additional variable available for grouping the data is
the type of window, of which there were three. Sixteen panes came from the first type, 16 from the second,
and 30 from the third.

2.2. Methodology

To demonstrate the usefulness of ROC curves in forensics, we chose specific methods of evaluating evidence,
but many others could benefit from ROC curves as well. After describing the chosen methods, we detail the
application of ROC curves in forensics and their relation to other common measures of performance.

2.2.1. Procedures of evaluating evidence and similarity scores

We selected methods of evaluating evidence from the paper by Aitken and Lucy (2004) for use with ROC
curves. The authors studied methods of evaluating trace evidence in the form of glass fragments. The forensic
question was whether glass fragments recovered from a suspect had the same source as glass fragments found
at a crime scene. We selected the following four methods of evaluating evidence as reported in Aitken and
Lucy (2004):

(a) multiple t-statistics, based on the largest absolute value of multiple t-statistics;
(b) T 2-statistic, based on the value of Hotelling’s T 2-statistic;
(c) normal-based LR, based on a likelihood ratio where multivariate normal probability densities represent

both within-group and between-group variability;
(d) density-based LR, based on a likelihood ratio where within-group variability is assessed using a mul-

tivariate normal probability density function and between-group variability by using a multivariate
kernel density estimate.

The above methods all map two samples to a number, which we interpret as a similarity score. The
negative values from the multiple t-statistics and T 2-statistic methods and the raw values from the LR
methods constitute similarity scores. We do not claim that a given value of a similarity score should have a
specific interpretation. The reader may decide what meaning to attach.

2.2.2. Details of ROC curves

ROC curves have appeared in previous studies of the performance of methods in forensics. We refer the
reader to examples by Whittaker et al. (1998); Phillips et al. (2001); Gonzalez-Rodriguez et al. (2005);
Martin-de-las-Heras and Tafur (2009); and Tuceryan et al. (2011). As forensic methods assign more degrees
of certainty (i.e., more categories or ranks) or continuous values to the evaluation of evidence, ROC curves
become even more useful. Below we reiterate some of the benefits of ROC curves to forensics and introduce
new ones.

For assessing the performance of methods of evaluating evidence, ROC curves offer several advantages.
First, ROC curves are independent of the scale, calibration, or normalization of similarity scores generated
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by a given method. The curves depend on only the order of similarity scores from the positive and negative
distributions. Thus, we may fairly compare methods of evaluating evidence that produce similarity scores
on different scales. Second, ROC curves depict the differentiation of similarity scores from the positive
and negative distributions and hence a method’s inherent capability of separating true positives and true
negatives. Curves that approach the upper-left corner more closely indicate more separation between the
distributions. Third, ROC curves present a complete picture of possible error rates achievable with a method.
Each point on an ROC curve gives the true positive rate and false positive rate for a particular threshold
on the similarity scores. So instead of choosing an arbitrary threshold on similarity scores, we could pick
a threshold based on the error rates. In all, ROC curves offer complete and objective comparisons of the
performance of methods of evaluating evidence.

Other possible techniques of measuring performance include the detection error tradeoff (DET) curve
and Tippett plot. In biometrics, the DET curve aids in assessing a comparison method that does not possess
a pre-specified threshold. The DET curve is similar to the ROC, but plots both error rates on normal
deviate scales (Martin et al., 1997). Tippett plots have appeared in forensics, particularly for studying the
performance of likelihood ratio methods (Aitken and Taroni, 2004). We describe Tippett plots in terms of
our existing presentation of negative and positive distributions of similarity scores for pairs of observations
from different sources and the same sources. We may form cumulative distribution functions (CDFs) of these
distributions along the univariate axis of similarity scores. For a specific method of evaluating evidence, a
Tippett plot shows one minus the CDF for each of the two distributions versus the similarity score. So a
Tippett plot consists of two curves that give the fractions of the negative and positive distributions above the
similarity score. By contrast, an ROC curve shows one minus the CDF of the positive distribution plotted
against one minus the CDF of the negative distribution. While a Tippett plot clearly depends on similarity
scores’ scale, an ROC curve is independent of their scale. Thus, ROC curves make comparing methods that
produce similarity scores on different scales easier. After choosing error rates at which to operate with a
given method, we may identify the corresponding threshold on similarity scores by examining the Tippett
plot or by finding the value of the parameter underlying the ROC curve.

Several aspects of ROC curves provide further insight into methods of evaluating evidence. An important
value for measuring performance of methods in forensics and biometrics is the equal error rate (EER). The
error rate achieved at the threshold where the false positive rate matches the false negative rate defines the
EER. On an ROC plot, the EER occurs where a line running from the point (0,1) to (1,0) intersects the
curve. As we will demonstrate in Section 3, the EER often does not match the error rates at nominal cutoffs.
The AUC gives two valuable indications of the performance of a forensic method. First, the empirical AUC
estimates the probability that a randomly selected pair from the same source would have a higher similarity
score than a randomly selected pair from different sources. As Hanley and McNeil (1982) reported, this
estimate is related to the nonparametric Wilcoxon rank-sum test of equal distributions. Second, the empirical
AUC gives the mean true positive rate averaged uniformly across the false positive rate (Krzanowski and
Hand, 2009). This average true positive rate is clearly distinct from the average error rate calculated as
the mean of the false positive and false negative rates at a single threshold. By taking the average true
positive rate over all possible false positive rates, we obtain a broader average measure of performance with
the empirical AUC.

2.2.3. Analysis

We applied the four procedures mentioned above to several subsets of the data with different allotments of
fragments to the control and recovered samples. To measure the performance of the procedures, we created
ROC curves and computed the AUC values. We describe the relevant details of the calculations below.

To start, we introduce some notation. Let xij = (xij1, xij2, xij3)
′ be the vector of observations, where

xijk is the kth variable of the jth fragment from the ith window. Then the mean of the ith window is:

x̄i =
1

5

∑5

j=1
xij .

In investigating the performance of the selected methods, we also considered their dependence on as-
sumptions of normality and the number of fragments in the background data. All four methods assume a
normal distribution for the within-group variation of fragments from the same window. The normal-based
LR method also assumes a normal distribution for the between-group variation of the means of all the win-
dows. Aitken and Lucy (2004) reported that the latter assumption may not be reasonable for this set of
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data. We explored the impact of these assumptions by splitting the data into four different sets {xij}, which
consisted of windows from: all types (m = 62), only the first (m = 16), only the second (m = 16), and only
the third (m = 30). The sets of data had a constant number (n = 5) of fragments per window, but a variable
number (m) of windows and total number (N = nm) of fragments. To examine the degree of normality of the
between- and within-group variation for each of these sets, we constructed Q-Q plots, presented in Table 5 of
Appendix A. The distribution of between-group variation seems more normal for the sets of individual types
of windows (especially those of type one) than for the set of all windows. For the within-group variation, we
found type one windows exhibit the most similarity to the normal distribution and type two windows the
least. The four methods of evaluating evidence also all use background data to estimate the within-group
covariance matrices, and the LR procedures do so as well for the between-group covariance matrices. When
analyzing a given set of data, we restricted the background data to observations from only the specific set.
Then for each comparison between two groups of fragments, we excluded the two groups’ observations from
the background data before estimating the covariance matrices. The specific equations and results for the
within- and between-group covariance matrices appear in Appendix B for the entire data.

Within a given set of the data, each window has five fragments, which we can treat as control or recovered
fragments. As an example, we could let fragments one and four be the control fragments and fragments two,
three, and five be the recovered fragments. Treating window a as the control and window b as the recovered
is distinct from treating window b as the control and window a as the recovered for a 6= b. If we continue
with the example above, in the first case, the comparison is between the data {xa1,xa4} and {xb2,xb3,xb5},
while in the second the comparison is between {xb1,xb4} and {xa2,xa3,xa5}. Additionally, because the
four methods under study all treat the control and recovered data symmetrically, the scenario in which
fragments one and four are the control and fragments two, three, and five the recovered will contain the
same comparisons as the scenario in which fragments two, three, and five are the control and fragments
one and four the recovered. We consider the following allotments of the five fragments from each window
into the control and recovered data: two and two, two and three, and one and four. Within each of these
scenarios, several permutations of the fragments assigned to the control and recovered data exist. For each
such permutation of fragments, m2 comparisons exist, with m between the same group and m × (m − 1)
between different groups.

To assess the performance of the different methods, we report the EER and the AUC of the ROC curve,
computed with the R package ROCR by Sing et al. (2005). We converted the AUC and EER values into
percentages by multiplying by 100. To calculate the EER, we sort the scores to use as thresholds. We then
determine the curves for the rate of false negatives and the rate of false positives versus the threshold on
similarity scores as follows. We treat comparisons between fragments from the same window with a score
greater than or equal to the threshold as false negatives and comparisons between fragments from different
windows with a score less than or equal to the threshold as false positives. The EER is then the maximum
of the two rate curves at the point where they have the smallest absolute difference.

3. Results and discussion

In this section, we present results for each of the four sets of data described above. For a given scenario,
we calculated the EER and AUC for each relevant permutation of fragments assigned to the control and
recovered data. We then averaged the results across the permutations for the scenario as one summary. To
obtain smoother values, we also combined the similarity scores across the permutations for the scenario and
then calculated the EER and AUC from the pooled collection.

To contrast ROC curves with single thresholds, we also calculated the percentages of false positives and
false negatives for each permutation of a scenario at nominal cutoffs of the similarity scores. For the multiple
t-statistics method and the T 2-statistic method, we chose the cutoff at the 5% significance level. In both LR
methods we used the number one as the cutoff. We report the percentages of each type of error averaged
across the permutations of a scenario for each set of the data.

3.1. Windows of all types

We initially use all of the data so that m = 62 and N = 310. Table 1 gives the average percentages of
false negatives and false positives for each method. In Table 1, the normal-based LR method has the lowest
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Table 1. Average percentages of errors using all of the data.

Scenario Errors
Multiple
t-statistics

T 2-
statistic

Normal-
based
LR

Density-
based
LR

2 vs 2
false neg. 7.53 6.56 0.65 1.18
false pos. 2.41 2.36 3.74 3.55

2 vs 3
false neg. 7.90 6.77 0.48 0.97
false pos. 2.23 2.19 3.41 3.27

1 vs 4
false neg. 8.71 7.10 0.00 0.32
false pos. 2.71 2.65 4.14 3.90

ROC curves for 2 fragments vs 2 fragments
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Fig. 1. ROC curves for two versus two fragments from windows of all types.

percentage of false negatives, but the T 2-statistic method has the lowest percentage of false positives. Thus,
results at single, nominal thresholds on similarity scores make measuring the performances of these methods
challenging.

Figures 1, 2, and 3 show the ROC curves for the pooled similarity scores. By depicting all possible error
rates for the methods, the ROC curves make comparisons of performance easier and allow for the choice
of threshold based on error rates. The nearly overlapping ROC curves for the T 2-statistic, normal-based
LR, and density-based LR methods indicate that they perform almost equally. The corresponding EER and
AUC for the ROC curves appear in Table 2. These results confirm that all of the methods perform very
well. The averaged and pooled AUC values are all at least 98.8 and within less than one fifth of a percentage
point across the methods for a given scenario’s row. Different rankings of the methods by the EER and
AUC results within a scenario occur due to the practically indistinguishable ROC curves. We emphasize
primarily that all of the methods exhibit very high performance. Also, while allotting two fragments to one
set of observations and three to the other leads to the best results, allotting four fragments to one set and
one to the other produces the worst results.

In regard to choosing a threshold, the ROC curves show that three of the methods can achieve comparable
error rates. Furthermore, a quick visual inspection of the curves reveals the attainable error rates. The
choice of error rates may depend on many factors, and doing a cost-benefit analysis may suggest rates
optimal for a specific application. We demonstrate just two possibilities as examples with the ROC curves
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ROC curves for 2 fragments vs 3 fragments
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Fig. 2. ROC curves for two versus three fragments from windows of all types.

ROC curves for 1 fragment vs 4 fragments
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Fig. 3. ROC curves for one versus four fragments from windows of all types.
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Table 2. Results from ROC curves for all of the data.

Scenario Value
Multiple
t-statistics

T 2-
statistic

Normal-
based
LR

Density-
based
LR

EER AUC EER AUC EER AUC EER AUC

2 vs 2
Averaged 3.42 98.94 3.19 99.01 3.17 98.91 3.13 99.02
Pooled 3.23 98.94 2.90 99.01 2.80 98.91 2.90 99.02

2 vs 3
Averaged 3.28 99.03 3.14 99.08 2.95 98.98 3.04 99.09
Pooled 3.23 99.03 2.81 99.08 2.61 98.98 2.62 99.09

1 vs 4
Averaged 3.53 98.84 3.25 98.90 3.27 98.80 3.28 98.92
Pooled 3.69 98.83 3.23 98.90 3.23 98.81 3.23 98.92

Table 3. Average percentages of errors for windows of individual types.

Window
type

Scenario Errors
Multiple
t-statistics

T 2-
statistic

Normal-
based
LR

Density-
based
LR

1

2 vs 2
false neg. 6.25 5.42 2.92 2.92
false pos. 3.39 3.33 4.78 4.81

2 vs 3
false neg. 5.62 6.25 2.50 2.50
false pos. 2.75 2.63 4.58 4.54

1 vs 4
false neg. 8.75 7.50 2.50 2.50
false pos. 3.83 3.83 5.00 5.00

2

2 vs 2
false neg. 6.25 5.42 2.92 2.92
false pos. 20.92 20.31 20.03 19.33

2 vs 3
false neg. 6.88 3.75 3.12 3.12
false pos. 18.88 18.67 18.88 18.42

1 vs 4
false neg. 5.00 3.75 3.75 3.75
false pos. 24.17 22.17 20.83 19.83

3

2 vs 2
false neg. 9.56 5.56 0.67 1.33
false pos. 4.54 4.57 5.87 5.81

2 vs 3
false neg. 8.67 7.33 0.33 0.67
false pos. 4.39 4.29 5.48 5.53

1 vs 4
false neg. 8.00 6.67 1.33 2.67
false pos. 5.15 4.97 6.25 6.23

for two versus three fragments. If the acceptable false negative rate were 5%, then we could achieve false
positive rates of approximately 2.3% with the T 2-statistic, normal-based LR, and density-based LR methods.
The corresponding thresholds on similarity scores for each would be, respectively, 8.96, 117.33, and 44.71.
Alternatively, we could seek equal values of the false negative and false positive rates. Then the equal error
rates and thresholds on similarity scores would respectively be 3.23% and 3.29 for the multiple t-statistics
method, 2.81% and 12.44 for the T 2-statistic method, 2.61% and 38.32 for the normal-based LR method,
and 2.62% and 17.98 for the density-based LR method.

3.2. Windows of individual types

In this section we use only windows of individual types. Table 3 gives the average percentages of false
negatives and false positives at the nominal cutoffs for each method. In general, the methods based on
likelihood ratios have lower percentages of false negatives, and those based on test statistics have lower
percentages of false positives. Again, the single thresholds lead to a difficult interpretation of performance
for the methods.

While we omit figures of the ROC curves to save space, we list the averaged and pooled EER and AUC
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Table 4. Results from ROC curves for windows of individual types.

Window
type

Scenario Value
Multiple
t-statistics

T 2-
statistic

Normal-
based
LR

Density-
based
LR

EER AUC EER AUC EER AUC EER AUC

1

2 vs 2
Averaged 5.00 99.01 5.33 99.11 5.78 98.68 5.75 98.77
Pooled 4.17 99.03 4.17 99.09 4.17 98.65 4.17 98.75

2 vs 3
Averaged 4.00 99.26 4.83 99.28 5.17 98.86 5.12 98.96
Pooled 3.96 99.23 3.75 99.27 3.75 98.84 3.75 98.96

1 vs 4
Averaged 5.17 98.74 5.42 98.86 6.25 98.35 5.58 98.41
Pooled 5.00 98.75 5.00 98.83 5.00 98.42 5.00 98.46

2

2 vs 2
Averaged 14.89 91.33 15.53 91.94 14.86 91.87 14.78 91.75
Pooled 15.42 91.37 14.36 92.01 14.17 91.97 14.25 91.79

2 vs 3
Averaged 14.79 92.09 14.37 92.67 14.37 92.40 14.21 92.29
Pooled 14.38 92.16 14.37 92.71 13.75 92.44 13.38 92.24

1 vs 4
Averaged 19.08 89.84 16.42 90.90 16.42 91.16 15.75 91.01
Pooled 17.92 89.86 17.50 91.04 16.25 91.29 15.58 91.20

3

2 vs 2
Averaged 5.39 97.72 4.98 97.75 4.70 97.76 4.93 97.68
Pooled 5.13 97.72 4.74 97.74 4.46 97.76 4.67 97.67

2 vs 3
Averaged 5.29 97.85 4.94 97.89 4.47 97.88 4.72 97.81
Pooled 5.00 97.85 4.67 97.88 4.34 97.88 4.67 97.82

1 vs 4
Averaged 6.28 97.53 6.32 97.59 6.30 97.70 6.67 97.59
Pooled 5.52 97.53 5.33 97.58 5.33 97.70 5.33 97.58

in Table 4 for each method. Recall that the AUC gives an average measure of performance. We review the
results by type of window. For windows of type one, all of the methods have very high accuracy with the
lowest AUC value above 98.3, and the difference among the methods for a given scenario is less than half
of a percentage point. The performance of all methods suffers with windows of type two, which seem to
agree least with the assumptions of between- and within-group normality. However, the different methods
still have similar results; the AUC values differ by less than two percentage points across the methods. For
type three windows, the results improve. The lowest AUC value is above 97.5, and the range of values across
the methods for a given scenario is less than half of a percentage point. Yet despite having almost twice the
amount of background data as type one windows, type three windows have slightly lower performance.

We also note the different possible thresholds on the similarity scores suggested by the ROC curves for
the scenario of two versus three fragments from windows of type one. If we sought equal false positive and
false negative rates, we could choose the thresholds as follows. We could achieve the EER of 3.96% for the
multiple t-statistics method with a threshold of 2.95. By setting the thresholds on the similarity scores for
the T 2-statistic, normal-based LR, and density-based LR methods at 11.63, 3.77, and 4.13, respectively, we
could achieve the common EER of 3.75%.

4. Conclusion

We have demonstrated the use of ROC curves for measuring the performance of methods of evaluating
forensic evidence. We noted that the false positive and false negative rates at nominal thresholds on output
from the methods made assessing their performance unclear. Treating the output from the methods as
similarity scores allowed us to analyze the methods with ROC curves. The ROC curves showed the methods’
capability of discriminating between true positives and true negatives more completely. They also allowed
for different thresholds on similarity scores for achieving error rates with each method.

The particular results for the publicly available glass data analyzed with the methods studied by Aitken
and Lucy (2004) support additional conclusions. In general, all of the methods perform extremely well, and
they can very accurately separate the glass fragments in this data set by window. Also, the normal-based
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LR method does not appear to suffer appreciably from a lack of between-group normality. Although the
full set of all window types exhibits departure from the assumption of between-group normality, the results
for all methods with this set are almost as good as the results with the set of type one windows, which
show the best agreement with the assumption of between-group normality. The higher performance with the
set of type one windows over the set of type three windows suggests the larger number of windows in the
background data may not overly influence the methods either. Instead, the performance with the different
sets of data seems to correlate better with the normality of the within-group variability. The Q-Q plots in
Table 5 of Appendix A suggest that the within-group variability of type one windows is the most normal
and that of type two windows the least. Thus, the dependence on a normal distribution for within-group
variability may affect all methods most.

As mentioned in the introduction, the accuracy of all four methods is very high. The smallest AUC value
is still greater than 89.8, and most of the AUC values are near 99. Furthermore, the distinction among the
four methods is small, with differences in AUC values often less than one percentage point. Indeed, the ROC
curves for the T 2-statistic, normal-based LR, and density-based LR methods almost overlap. Thus, they
can achieve nearly equivalent error rates by choosing appropriate thresholds. A researcher may prefer one
method over another for philosophical reasons or computational necessity, but all methods perform almost
equally well in terms of ROC curves.

Applying ROC curves to different statistical methods of evaluating forensic evidence or to the same
methods covered here but with different data would offer some very interesting future research. Also, fitting
parametric ROC curves to the empirical ones would provide efficient estimates with which to make additional
measures of performance.

Acknowledgements

The research detailed in this article was supported in part by Award No. 2009-DN-BX-K234 awarded by
the National Institute of Justice, Office of Justice Programs, US Department of Justice. The opinions,
findings, and conclusions or recommendations expressed in this publication are those of the authors and do
not necessarily reflect those of the Department of Justice.

The authors thank Dr. C. G. G. Aitken at the University of Edinburgh and Dr. D. Lucy at Lancaster
University for sharing R code to compute the likelihood ratios.

A. Between-group and within-group distributions

The normal-based LR method assumes a multivariate normal distribution of the window means, but the
density-based LR method does not. Aitken and Lucy (2004) noted the departure from normality for the
window means from all of the data. To assess normality for the window means for each set, we examined
Q-Q plots of Mahalanobis distances squared versus quantiles of χ2

3, the chi-squared distribution with three
degrees of freedom. The squared Mahalanobis distances for each set are:

Mahalanobis D2 = (x̄i − x̄)′Ŝ−1(x̄i − x̄),

where i ranges over the groups in the set, x̄ is the mean of the set, and Ŝ is the estimated covariance matrix.
Table 5 suggests that the window means from only a single type assume a more normal distribution. We
also created Q-Q plots of the within-group variation, presented in the far right column of Table 5. The
within-group variability appears most normal for windows of type one and least normal for windows of type
two.

B. Covariance matrices

We present the equations used to estimate the within- and between-group covariance matrices below. Letting

W =

m
∑

i=1

n
∑

j=1

(xij − x̄i)(xij − x̄i)
′,
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Table 5. Q-Q plots of Mahalanobis distances squared versus quantiles of χ2

3 for between- and
within-group variability for the sets of all windows and individual types.
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the estimate of the within-group covariance matrix U is

Û = W/(N −m).

We estimate the between-group covariance matrix C by

Ĉ =
B

m− 1
−

W

n(N −m)
,

where

B =
m
∑

i=1

(xi − x̄)(xi − x̄)′

and x̄ is the grand mean.
We calculated the within- and between-group matrices for each subset of the data analyzed. The estimated

within- and between-group covariance matrices for all groups are:

Û =





1.68× 10−2 2.66× 10−5 2.21× 10−4

2.66× 10−5 6.53× 10−5 7.40× 10−6

2.21× 10−4 7.40× 10−6 1.33× 10−3





Ĉ =





7.06× 10−1 9.88× 10−2 −4.63× 10−2

9.88× 10−2 6.21× 10−2 −6.96× 10−3

−4.63× 10−2 −6.96× 10−3 1.01× 10−1



 .

For the set of only type one windows, the estimated within- and between-group covariance matrices are:

Û =





1.57× 10−2 1.72× 10−4 3.50× 10−4

1.72× 10−4 5.57× 10−5 −5.96× 10−6

3.50× 10−4 −5.96× 10−6 5.04× 10−4





Ĉ =





1.06× 10−1 −8.33× 10−3 7.62× 10−2

−8.33× 10−3 2.62× 10−3 −6.9× 10−3

7.62× 10−2 −6.9× 10−3 8.25× 10−2



 .

For the set of only type two windows, the estimated within- and between-group covariance matrices are:

Û =





3.78× 10−2 −2.74× 10−5 7.46× 10−4

−2.74× 10−5 6.61× 10−5 3.63× 10−5

7.46× 10−4 3.63× 10−5 8.64× 10−4





Ĉ =





1.77× 10−1 6.75× 10−4 1.90× 10−3

6.75× 10−4 7.10× 10−4 −1.89× 10−3

1.90× 10−3 −1.89× 10−3 6.47× 10−3



 .

For the set of only type three windows, the estimated within- and between-group covariance matrices are:

Û =





6.15× 10−3 −2.19× 10−5 −1.28× 10−4

−2.19× 10−5 7.00× 10−5 −8.80× 10−7

−1.28× 10−4 −8.80× 10−7 2.02× 10−3





Ĉ =





5.49× 10−1 4.80× 10−2 2.57× 10−2

4.80× 10−2 8.55× 10−3 −1.19× 10−2

2.57× 10−2 −1.19× 10−2 1.18× 10−1



 .
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