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ABSTRACT

A biological sample obtained from a crime scene might be a mixtoméining DNA from two
or more individuals. An assumptiorregardingthe number of aaributors to a sample is needed
to comparethe crime scene profile with that ofkaown if the Likelhood Ratiois the statistic
utilized to c¢ onviede nidsaady, dhev sumlogehdaf cortributors hapeston
sample is unknown and is specified by the analyst based on the electropherogram obtased.
can be challenging in the case of complex, low template samplesxthibit allele sharing and
often contain artifacts like dropout and stutter.

NOCIti a computational tool that calculates the probability distribution for the number of
contributorsto a DNA samplas presentedUnlike existing methodswhich operate on the number
of peaks in the signal and/or tharity of thealleles, NOCIt usesboth the rarity of the alleles and
the quantitative data in the signal, i.e. the heights of the p&&R€Itwas calbrated using single
source samples amplified ofn various low level DNA amounts (0.0070.25 ng) and three
different times of injection (5, 10 and 20sYhe peak heights (peak height ratios in the case of
stutter peaks) were modeled using the Gaussian distribution and appropriate parameters (mean and
variance) were obtained from the calibration d&eopout rates were also computed at each DNA
mass

To test the performance MOCIt, 1-, 2-, 3, 4 and 5 personsamples were created and
interpreted with NOCIt The number of contributors with the highest probability teken ashe
answer supported bMOCIt. In addition, the performance ®OCIt was compared with the
Maximum Alele Count (MAC) and the Maximum Likelhood Estimator (MLHE] methods
MAC uses the number of peaisa locugto determine theninimum number of contributors while
MLE uses the number of peaks as well as the dlielguencies The performance dflOCIt was
consistently better than MAC and MLE across all DNAoants and all times of injectiofor the
1-, 2 and 3 person samples Both NOCIt and MLE (20 sec injection) showed improved
performance over the allele counting metliodthe 4 and 5 person samplesSince theMAC
and MLE methods utiize analytical drstutter thresholds, the accuracy of MLE and MAC were
found to be dependent on injection tim@&/hen samples contained at least one contributor with <
2 cells worth of DNA (i.e., 12.6 pg), the accuracy of all methods decreaseid allele draput
and akle sharing. Further, the difference between the calculated and actual NOC was larger for
thesesamples. For example, tipercentage of samples wheéNeaNactual 0O-2 was 55%, 55%
and 44% for the MAC, MLE and NOCIt methods, respectivdiowever,in cases wherdOCIt
failed to pick the correct number of contributorswiis able identifythe region in which th&lOC
is most likely to lie. NOCIt has been implemented using the Java programming languabis
currently available omvww.bu.edu/dnamixites
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Executive summary

Interpreting an STR profi®btained from an evidentiargamplecan becomplicated because
the number of contributors to tlsample isunknown in mostases.While it is straightforward to
identify the number of contributors in the case of high template sampletaining 1 or 2
contributors, thenterpretation becomes challenging when complex, low template mixtuaes
evaluated Thesignal frombw template samples difficult to interpret because of alleiropout.
Moreover, the stutter ratio becomes elevated in low template samples, making it hard to distinguish
between stutter peaks and allelic peaksresponse to the aforentened issies a probabilistic
procedure and corresponding software todhfer the number of contributors in a forensic DNA
samplewas developed The procedure and software tool is called NOCIt.

Forensic DNA mixture interpretation of short tandeapeats (STRs) typicallyuses the
following procedure: 1) an analytical threshold is applied to distinguish peak from noise, 2) the
number of contributors is assessed, 3) the genotypes from the item of evidenceaweldesd,

4) the inferred genotypebtained from the evidentiary profils compared to the genotype from a
Kknown, standard or suspect ,-staatdi sltaisctd yi s5)r eap @r

The number of contributors (NOC) is an importaagsumptionin the DNA interpretation
process since it has a direct impact on the way in which the evidentiary profilecadauted.
Further, it may be necessary to determine the most likely number of contributors for investigative
purposesTwo approacheto determine the number of contribrs are currentlyemployed. The
common methods the Maximum Allele Count (MAC)echniqueand the secondmethodis the
Maximum Likelhood Estimator (MLE)technique Both of these methodsely upon the
application of an analytical threshofthd stutter fitterto the signal. All peaks below théAT are
considered indistinguishable framsisewhile all peaks above the Adre considered allelic peaks
and included irthe interpretation Application of anAT to alow templae profile is notoptimal
because of the increased risk of labeling a noise peak as an allelic peak or an allelic peak as a noise
peak. Furthermore, a allelc peak could be masked by stuttdrhus, any peak in the stutte
position could be a stutter peakn allelic peak or aombination of the two.A stutterratio
thresholdis used by both MAC and MLESincethe height of a stutter pe@&kdependent upon the
height of the parent pealg,stutterratio is calculated andng peak in the stutter position with a
ratio less tharnhe stuttesratio thresholds removed.

MAC is a widely used method and gives the minimum number of contribthatexplain the
signal MAC works by counting the number of alleles that are visible abovéhat all loci.

The maximum value is\dded by two and rounded up to give the minimum number of contributors
thatexplain the profile.

MLE wasmorerecently develope@ndutiizes more information than MAQ] and is currently
available on2]. In addition to usig the number of peakdserved MLE uses the background
frequenciesof the allelesabove theAT to calculate the likelihood a locuontains alleles from a
certain number of contributors.Based on the profile obtained, all possible genotypesnfor
individuals are consideredl'he likelhoods at all the loci are multiplied with each otheolitain
the overall likelihood for the samplgiven n contributors The number of individuals that results
in the highest likelihood is taken to be thaost likely nurmber of contributors in the sample.
Though MLE utiizes the qualtative data obtained in the signal (itee allele frequencies), the
guantitative data (i.ethe heights of the peaks) is rainsidered

The peak heights in the signal are directly proportional to the amount of DNA originally present
in the sample.They are also a good indicator of the mixture ratio that gave rise to the sdrhgle.



background noisenay bedependent upothe amount of DNAoriginally present in the sample.
Average stutter ratios and allele dropout are also related to the amount of sanigplaformation
could be used while calculating the number of contributors.

NOCIt works upon the entiresignal obtainedi the ba&ground frequencies of the aleles
observed as well as the peak heighighile calculating the number of contributord.o calibrate
the software, 855 single source samples fror@ @onors with known genotypesere created
These samples were generatsihg the AmpFstr® Identifiler® Plus kit (Life Technologies,Foster
City, California) During creation othe sample profiles, imes of injection (5, 10 and 20sjere
used during electrophoresig.he injection time is typically increased in the caskwftemplate
samples to increase the signaise ratio and hence 3 different sets of datech & a different
injection time wereused to study the change in signal with injection time. At each injection time,
samples were amplified fromtemplate DM amounts (0.081 0.25ng) to analyze how the DNA
amountimpacted the signal obtainedn the profiles obtained, the peaks were separated into 1 of
3 categories: True peaks (all peaks representing the alleles in the sample), Stutter peaks (all peaks
in the stutter position of True peaks) and Noise peaks (all other peaks in the s@niglxeverse
stutter was consideredThe heights of the peaks were modelesihg the Gaussian distribution.
Calibration parameters (namely the mean and the variancehed® categories of peaks were
computed for each DNA amount the 3 injection times for evetycus. Dropout rates were also
computed at each DNA amourttthe 3 injection times for evetycus.

Models to estimate the rise in baselne noise aedealeights were developed. Both the
baseline noise and alele peak heights increased linearly with target. Although the linear model
was chosen for baseline noise in this study, further valuation into the model is required since it
was observed that tlieear growth occurred after a certain mass of DNA was added to the PCR,
l.e., > 0.125 ng. The exponential function was found to be a good approximation of 1) the
frequency of dropout and 2) the average stutter ratios at a locus. Gaussian distringrens
assumed, and the approximation was tested for baseline noise and peak height. Results suggest
the Gaussian distribution describes the variability it the peak height well. Baseline noise is better
described using a legormal distribution, and studiethat assess the impact of this finding on
determining the NOC are warranted. Stutter ratios were calculated for the entire locus and a
Gaussian distribution was assumed.

A Monte Carlo approacls used byNOCIt to compute the likelihood for the number of
contributors. In everyiteration of the Monte Carlo procesgnotypes for then contributors are
chosenbased on the frequencies of the alleles in the frequency t@lolly. alleles present in the
frequency thle are sampled. A mixture ratioaBoserat random all mixture ratios are assumed
to occur with equal probability. To obtain parameters corresponding to DNA amounts that are not
among those used for calibration, modeling of the dropout frequencis)snand variances of
true peak heightsmeans and variances of the noise heigingl, the means and variances of stutter
ratios is carried outit each locusising the following exponentially decreasing cunr(D)=ae
bX) was used to model allele drappanexponentially decreasing curvé (¥ aeb*+c)was used to
model the average stutter ratio (SR)straight line with a positive slop&( = mx) was used
to model the peak height and a straight line with positive si@e (=mx+b) was used to model
noise. For every allele in the genotype of the contributors, dropout of the allele is simulated by a
Bernoulli trial. Two assumptions are made with regard to drapayDropout of one allele faa
contributor isindependent of draut of he contributor's other allele andbDjopout of an allele
from a contributor igndependent of dropout of the samelallfrom another contributorBased
on the evidence observed, the likelihood of observing the heights of the peaks given ty@egeno




of the contributors, the mixture ratio, the amount of DNA amplified and the time of injection is
computed using the calibration dafghis is repeated a number of times. The average of the values
computed is the likelhood of obs@ry the evidencat a locus given n contributors. Since the

loci are assumed to be independent of each otietikélihood values at all the loci are multiplied
with each other to give the overall likelhood for The nthat results in the highest likelhood is
taken to be the number of contributors most supported by the evidence as calculd@@lby

The performance oNOCIt was tested orl-, 2, 3-, 4 and 5 person mixtures. Like the
calibration data, theseamples were also generated using 3 injectionesi &mples were
amplified using 7 DNA amounts. The performance dNOCItwas compared with the MAC and
the MLE methoddby running those methods on the same sampsspreviously dscribed, MAC
and MLE boh need thesetting of @ AT to calculate the number of contributorBor comparison
purposes, 2 types of thresholds for MAC and MivEreevaluated The first threshold was a
constant threshold of 50 RFU at all the loci, which is a commonly used thrashfadensic
laboratories. The second threshold is a variable threshdld.each injection time, this threshold
varies with DNA amount and dye color. This threshold was set by picking the height of the highest
noise peak observed in the calbration dadaresponding to a DNA amount, dye color and time
of injection and setting that height as the threshold for that DNA amount, dye color and time of
injection. NOCIt does not depend upon the setting of a threshold and works omtitee e
electropherogram ¢hined Application of MAC and MLE also uses a stutter threshold to fiter
out the peakd the stutter position of allelipeaks.The stutter fiter specified bthe AmpHstr®
Identifiler® Plus manualwas used to fiter the stutter peakseach locus Allele frequencies from
the Caucasian population specified in the Ahap® Identifler® Plusmanual were used f&fOCIt
and MLE.

The performane of MAC and MLE, using boththresholds, increased withnancrease in
injection time NOCIt outperformel bothmethods at all 3 times of injectiofor the &, 2- and 3
person samplesChanging thenjection time did not have a significartffect on the performance
of NOCIt. Both NOCIt and MLE resulted in similar accuracy rates for 1eand20 second
injections of the 4and 5 person mixture sampleNOCIt outperformed MAC and MLE for the
5 second injections of the dnd 5 person mixture sampledVILE was affected by injection time,
whie NOCIt was not. Overall, the accuracy of all the Bethods increased with an increase in
DNA mass

NOCItcan compute the likelhood a forensic san@esup to 5 contributorsn approximately
9 hours on a regular PC with an Intel quad core procegs®wer numbers of contributors can be
evaluatedi as specified by the usérif desired. The output of NOCIt is presented as the
probabilty distribution over O to 5 contributors thereby giving the user information regarding, not
only the most likely number of contributors, but the uncertainty asedomith the measurement.
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Introduction

Statement of the Problem

Many biological samples deposited at and collected from crime scenes contain nfbdores
two or more individuals. The elucidation of individual donors in mixed biological samples has
traditionally been a problem with serological testing and remains one today. Even with
experienced analysts, complex mixtures are not interpreted in latsoratories.

There are two general approaches to interpreting DNA profies. One is the CPE/CPI
(Combined Probability of Exclusion/Inclusiormethod which is a binary scheme where alleles
areconsideredeither present or absent and the resultamotype match information is derived
from all possible allele pairs. This approach rexpiia stochastic threshold (SB@ defined to
avoid interpretation of products which are too low and prone to stochastic effects. The apparent
benefit of this methods that it makes no assumptions with regard to the number of contributors.
However, this method cannot always be accurately appliecbmplex mixtures. Although the
number of contributorgheoretically has no bearing on whether CPI could be used astdltistic,
it does have a significant effect on the assumption regarding the fact that all alleles have been
detected. Thatissthe number af o nt r iinocredases the abiity to confidently statealleles
were detecte® lost The inabilty to confidently conclude that all alleles are observethisly
due to allele sharing and the difficulty associated with mixtureaholution whergreater than
2 contributors are present. This is exacerbated when amplifying low amoumNA. An
example of ach a case is shown in Figurewlhich displays the electropherogram afthree person
mixture amplified usinghe AmpHstr® Identifler® Plus Amplification Kit and125 pgof DNA.

The AT is set t80 RFU andhe ST is 150 RFU. Inthis example, there are 5 peaks at D18S51

and becaustihe peak heights faleles 16, 18 and 28re below the ST of 15@he CPIwould not

be calculatedor this locus. However, at TPOX all alleles are above ST and it would therefore
appear hat TPOX cold be usedo calculate the CPIHowever if the minmum number of
contributors is 3henthereims ubst ant i al a mo uat TPOXaNdit dicaldngee | e st
becomegossible to ascertain whether all alleles from every contributor is detecteal.reAsit,
uncertainty at that locusrecludes the use of CPlat TPOXince CPl is to be used in instances

where all alleles are detected, it is evident that CPI can onppked when there is little or no

ambiguity in the profie As a result, CPI &s limited applicability to complex, lotemplate

samples where there is a significant leveln€ertaintyassociated with the profile.

Another approach to obtainingnatchinformation is the utiization of thelikelihood ratio(LR)
method which caneadiy incorporate information which is not utiized in ICPThe LR test is
conducted by computing the ratio
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LR= Equation 1
m (Equation 1)

WhereHpr epr esent s t he pr Hpsthe dypdothesisn @ shelefensgandtEh e s i s
represents the evidentiary DNA profile.

There are a nuber of stateof-the-art methodsalgorithms andsoftware packages that report
the strengthof a match in terms of the LE3-10] Though the methods differ in the algorithmic
processes and the ways in which they model sfifiet], allele dropouf12, 13 and/or baseline
noisg 14], they all require an assumption regardihg humber of contributors Since the use of
any formula for mixture interpretation should be applied in cases where the assumptions are
reasonable, assigning the correct NOC to an evidentiary profie may arguabtyebeimportant
stepin DNA mixture interpretationpipeline

Literature Review

Currently, the common approach to determine the lé@cCutiize the MAC (Maximum Allele
Count ) met hdeaetd nienhti vo d sw haiumiber otatielesabave the laralytical
threshold (AT). Typically, the number obbligate alleles alove the ATat a locus is divided by
two and rounded up. The maximum value across the loci is taken to be the minimum number of
contributors that gave rise to the evidentiaByNA profie. This minimum NOC is then used as
the NOC to determine the LR.

A number of issues with this approach exidtirst, his method does not work well with
complex mixtures because aflele sharingbetweencontributors That is it does not take into
account the frequency of the alleles and the propensitymigtiple contributors to possess
commonalleles Therefore, as the numbefraxtual contributors increastée probability that the
actual NOC equals the minimum NOC decreases. For example, in simulation studies using the
SGM+™™ multiplex loci, it was shown that66% of fourperson mixtures would present six or
fewer alleles at all loci. As a result, these complex mixture samples would likely be incorrectly
interpreted as a mixture from three or fewer pefifig Similarly, Paoletti et al. also showed that
~7677% of the simulated foypersm mixturestestedwould not have been recognized as four
person mixtures based on the maximum allele count as they had only five or six allelesepr few
at all 13 CODIS locj16 Based on the aforementioned studies, it is unlikely tt&minimum
number of contributors for the majority of mixtures containing DNA from three or people
will accurately reflect theactual or truenumber of contributors. In fact, the minimum calculation
could easily be off by oner two contributors

Another allele counting methpdimilar to the MAC methodwas publishedby Perez et 4]

In this work the total number of alleles above the AT were countedjadelines for estimating
the number of contributors for high template and low template lsamyereestablished Like
MAC, this method is prone to misclassification dudh® fact that it does not take into account
allele sharing, stutter ardtopout

Methods that do nosolely rely upon the number of alele® determine NOC exist.For
example, a approach developed Biedermann et aJ17] employeda Bayesian netark to infer
the number of contributors to forensic samplgékis method was shown to work better than MAC
with degraded DNA and with higher numbef contributors. Haned et alf1] exterded the work
of Egeland et al[18 to develop a Maximum LikelhoodEstimator (MLE) for the number of
contributors, taking into account population substructuréis method was also shown to give
more accurate results than MAC with higher number of contributors and degraded BNA.



Probabilistic Mixture ModeWwas used by Paoletti et §6 to infer the number of contributors to
a sample based onetlirequencies of the alleles observédis method, like MLE, accounts for
correction de to allele overlap.

These methods, though they use the qualtative data available, i.e. the frequencies of the alleles
observed, do not use the quantitativeadaitained, i.e. the heights of the peaks in the sigiaen
peak heights are not consideragblethora of interfering signadhat impacs the ability to deduce
the actual NOC is also not examined. This renders both the counting and frequency based methods
ineffectual forlow-template,complex forensic mixture interpretation.

Rationale for the Research

The first impediment to accurageinferring the number of contributor® complex mixtures
originates from thehancehat an allele may not have bedetectediuring testing. To illustrate
the effectof allele draqut on the abilty to infer the NQConsider the allelic peaks obtainfrdm
a typical DNA electropherogram presented in Table The probabiities that one random
individual gave rise to the observed peaks in positions 13 arad tt® D8S1179locus can be
computed by examining the frequencies of the alleles in questiothamuobability ofdropout
(Pr(D)). If one person gave rise to the stain, then there is only one way that a single person could
have resulted in a D8S1179 signal at allele positions 13 and 16: That person must have genotype
G; = 13,16, and ndaropout could have occurred. Therefore, (population substructure is not
considered herdor simplicity of expositioh the likelihood that theevidence at D8S1179
originated from one contributor is

b p ¢cQQ p 0iI0O . (Equation 2

Here nis taken to be the NOG@;3is the frequency of observing the allele 13 within the population,

fi6is the frequency of observing allele 16 aRdD)is the probabiity of alleledropout To

calculate the possibility that two unrelated individuals gave righetsignal at posttions 13 and

16, three scenarioare considered. First, the profie could have originated from two random
individuals, where neither of the individuélalleles droppedut (Rows 13 Table 2). The second
scenario is that two random individual ssod DNA
(Rows 48, Table 2). The last scenario is that two random individuals gave rise to the signal, but
two alleles dropped ofRows 911, Table 2). Idropoutis considered and the frequency of the

other, notobserved allele is taken to be lessthe frequency of the observed alleleshen the
chancehat two random individuals gave rise to tllelesat D8S1179 is

L(E|n=2) = [(4f13f163+6f132f162+4_f133f16) A'?I’(D))4]+_[4 Pr ((191}-1:[%) (3f13f162+3f132f16) A—( 1
Pr(D))3]+ [6Pr(D)2A1-f15-f16)? (2f13f16) ARI(D)) (Equation 3

A similar approach is used to calculate tl{&|n=3), L(E|n=4), etc. Therefore ,Equatiors 2 and

3 showthat whenPr(D)is consideed it can have a significant effecton the abilty to accurately
assess the NQCrigure 2shows the APPa( posterioriprobability) that 1 versus 2 versus 3 versus
4 contributors gave rise to the stawnenthe information fromall loci is combined Therefore

for this profile, wherPr(D) =04, there is a probabilityof 0.04 that 2 random individualgaverise

to a profile that seems to have originated from only one contributdrs is a direct resutbf the
loss of information associated with a hidfopout rate and includes the possibility that the entire
locus of one person may not be detected. This example demonstratesuttiag the number of



peaks observenhaynot the optimal techniqueo deermine the actual number of contributors to a
low level stain

One way to minimize the loss of allele information is by decreasing the AT. However, ATs
which are too low may lead to false detectjonbile ATs which are too high lead to high levels
of falsenondetects[19. For example, work performed Bregu et al[20] showedthat basetie
noise increases with targ®r some kits suggesting that noiseay need to be modeled based on
target mass or other similar parametdihis would bethe optimal method for examining allele
signalin the presence of noise and ensaedata in the signal is analyzed. Further, by examining
evidentiary profiles in this way, the Pr(D) is kept to a miniméon a given laboratory processf
the Pr(D) is minimized, then trsundestissessment of the NOC can be performed.

Determining the NOC may also be complicated by the fact that the ratio of contributors may be
indeterminable and, lke the LR ratio, contributor ratio assessments are dependent on the
assumption on the NOC. Bla 3 shows a comparison of the likelihoods thatthe NOC was 1 versus
2 people when different ratio combinations are considered for a sample amplified tattl of
1, 0.6, 0.2 and 0.1 ng of DNA. Table 3 shows that, not only does the likelhood theta?hs
contributed to the stain incse as template levels decredse the LE|n=2) for a 1:9 Zerson
mixture increases at a faster rate. This exemplifies the need to evaluate numerous mixture ratios
such that all scenarios are taken in to accoumglunterpretation.

Signal interference from stutter also inhibits accurate interpretation of complexevew
mixtures. Current practice dictates that when analyzing single source samples, if the %stutter is
below thestutter threshold is assimed that the peak is derived from stutter. If the stutter percent
value is above thébstutter cutoff value, the peak is considered an allele. This determination
becomes erreprone when a mixture of DNASs is present. Using a binary method to determine
whether a peak is stutter versus alele can have significant effects on the interpretation of
samples with major/minor cqeonents. For example, FiguresBows that in a mixture where the
amount of DNA from one contributor is significantly below the antcof DNA from the second
(major) contributor, it is possible to have a minor allele and a stutter peak in the same position. In
this instance, the amouof signal from the minor 15 allele and thmount of signal from stutter
cannot be deciphered. Tleéore, if the %stutter threshold886, the 1%llele would be incorrectly
ignored This is evidence that a more robust model of stutter is needed to correctly interpret
stutter/allele likelihoods when attempting DNA interpretation.

Due to the comple nature of DNA signal and the known signal interfereraesociated with
artifacts such asstutter anddropout samples containing lowemplate mixtures with > 2
contributors cannoproperly be interpreted using methods currently availab@urrent methds
do not utiize signal strength informaticto determine the NOC. Further, all currently available
methods rely on utiizingan AT resulting in highethan necessai®r(D), which has a effect on
the ability to determine the NOGf a sample is amplified with optimal DNA targetad the DNA
from each component is relatively large tistutter can beasily characterizefil1l] However, in
cases where it is expected that the mass of DNA awddéee PCR reactiowas sukoptimal (i.e.
< 0.25nQ), elevated stutter may be expe¢®dfl Additionally, at optimal amplification inputs,
peak height ratiosit a heterozygous locase close to 1 and the peak hegglaire large, leading to
a probability ofdropout of ~ 0. Thereforefor simple samplesamplified using optimal DNA
concentrations, theinimum number of contributorss usually equivalent to the actual number of
contributors However, the PHR variance has been shown to significantly increase with decreasing
input levels[22, 23] For situations where there are more than 3 contributors and suboptimal DNA
inputs, the ability to infereither the NOC or thgenotypes beomes impossibleto accomplish
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manually As previouslystatedthe LRrelies on the abilty of the analyst to makeamsessment
regarding the number of contributorsThe question then becomd®ww can ad does a DNA
analystdeterminetheactualnumber 6contributors for low-level, complex mixture profigs And,
are there methods &scertain thectualnumber of contributorsuchthatthe analystloes no have
to rely on the assumption that the minimum number of contributors is the actual nafmber
contributor® The fact that there is potential for alledicopoutin a sample automatically precludes
the analyst from confidently assessing #wtualnumber of contributors by utiizing the number
of alleles Therefore, despite theecent advanceemts in complex mathematical systetosnfer
evidentiary genotypesone question still remains; if a suspectis included as a potential contributor
to an evidence stain and the hypothesis of the prosecution is based on a certain number of
contributors - which may have beederived from a qualitative assessment of the number of alleles
- is the defenserequired to agree witlthat assumptich For example, the prosecution may
hypothesize that the suspect (S) and one unknown (U) were the contributorsthe/difense
may hypothesize that thremknowns (Ul and Uand U3 contributel to the DNA profile. The
number of contributors underptdnd H, do not necessarily need to be equivalent, nor has it been
determined in the literature whether the hypothesesd ttebe exhaustivelt has been suggested
thatthey should be exhaustive or at least care must be talearsureno relevant hypotheses are
omitted in the denominat¢l5 24 The SWGDAM Guidelingl25 and Budowleet al[26]
suggest numer ous LROGs be calculated if need b
This could potentially result in 2 or more individual LRs with clear indicationof which LR is
to be regarded as the best estimatdis highlights the importance of the assumption regarding
the number of contributors and brings to the forefrontcthecept that there is a need to develop
systems, algorithm®r interpretationprocesses which allow the laboratory to assess 1) the NOC
that gave rise to the evidence and 2) the uncertainty associated with that number.

This research represents a detailed study into the effects interfering faoteo the ability
to accurately infer the number of contributors to mixed staind is subdivided into two phases.
The purpose of the first phase was to create sswlece and mixture profiles from multiple
contributors amplified at lowarget masses. Furthed factors thatwere expected to impact
complex mixture interpretationvere evaluated Specifically changes in baselineoise stutter
ratios allele dropoutandallele pealkheightswereevaluatedat various targetsndmultiple models
describing each factor ave compared. Once the optimal model to ddmcreach factor vea
established the second phase of the project ensued. In the secondchphag®d to determine
the NOC to complex, loviemplate DNA mixtureswas developed The method was onthat
utlizes an APP @ posterioriprobabilty), where the APP{) :=Pr(h=i|E), which can be
interpreted as the probabilitthat a certain numbem) of contributors gave rise to the evidence
The work resulting from Phase | and Il culminated into the developmemt caimputational
softwaretool that calculates the probabilitgistribution for the number of contributors to a DNA
sample and is referred to a8OCIt. Tests which examine the results from the MAC, MLE and
NOCItwere performed. Specifically,- 10 5 person mixtures, amplified using 0.25 to 0.008 ng
of total DNA wee generated. The NOCs were determined via the MAC, MLE and NOCIt
methods. The NOCs derived from each method was then compared to the real number of
contributors that gave rise to the profie and accuracy rates were used as a means to compare
methods
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Methods
The procedureare in accordance with the ethical standards of the Institutional Review
Board. Al reagents were purchased from Sigma Aldrich (Sigma Alrich, St. Louis MO) unless
stated otherwise.
High molecular weight DNA was extracted from €i8gle source samples using standard
organic extraction procedure¥he amples werevhole blood dried blood stainsr saliva. The
blood stains were eitheon Whatma® paper or cloth swatchesaliva samples wereither
whole saliva or dried buccal swabs on cottoBriefly, the organic extraction consisted of
incubating the sample in 300 pg/mL of Proteinase K and 2% v/v SDS (sodium dodecyl sulfate)
solution at 3?C for 2 hours tmvernight. Purifiation was accomplished with
phenol/chloroform and alcohol precipitation. The DNA was dissolved in 50 u of TE buffer (10
mM Tris, 0.1 mM EDTA, pH 8.0) at 3& for 1 hour Absolute DNA guantificationwas
performedusing reatime PCR and the Quantiflerd u o E Quant i ficati on kit
manufacturerds recommended pr o[RO2ABoA7502a nd one e
Sequence Detection Systdhife Technologies, Inc.yvas used for (Qcycle threshold) detection.
The extracted NA was amplified wusing the (@8ayaeBlact ur er
for AmpFaSTR EPlud Adngliicationf Kit|(Léfer TEchnologies, IndR9 Single
source samples were amplified usi, 0.25, 0.125, 0.063, 0.047, 0.031, 0.016 and 0.008 ng of
DNA. In addition, 2, 3-, 4 and5- person mixture samples were created by mixing the
appropriate volumes of DNA extracts to attain the various ratios in Bali@nce mixed, these
samples weree-quantified andamplified using the same target masses used for the-simglee
samples. The PCRreaction consisted of 3% of master mix, the calculated volume of template
DNA based on target mass requjratid enough Tr&DTA (TE) buffer (10 mM at pH 8.0) to
bring the total reaction volume to 2&. Amplification was performed on ApplieBi osy st e ms 0o
GeneAmp® PCR System 97@8ing 9600 emulation modePositive and negative amplification
controls were also run and showed expected results (data not shown). Fragment separation was
accomplished using 3130 Genetic Analyzer (Life Technologieanda mixture containing
appropriate amounts of HiDhighly-deionized) formamide (8.jfl/'samplg (Life Technologies
Inc)and GeneS a n@E0 0 LI ZE Si z qlL/sSmpe)n(df@ Tedhnologiesing). A
volume of9 pL of that mixtureandl pL of sample negativeor ladder wasd@ded to the
appropriate wells.The samples weliacubated at 95°C for 3 minutesd snajcooled at20°C
for 3 minutes. Five, ten and wentysecond injections &KkV were peformedfor each of the
samples and run according tmanufacturers recommended protd@3] Fragment analysis
was performed using GeneMapper IDX v1.1.1 (Life Technolpdies using Local Southern
sizing and an RFU threshold of Known arffacts such as pulip, spikes;A, and artifacts due
to dye dissociation were manually removed. A peak was consideregp piilit was the same
size (+f 0.3bp) as a larger peak in anotloeior and below 5% of the height of thaore intense
peak. Peak wer e determined to be O0spikesd if they
position. Peaks were considerasloriginating for incomplete adenylation (ié\) if they were
one base pair smaller thanallele, and peaks determined to origindtem dye dissociation had
to be in the same position, in the same color channel and be observed in multiple samples. The
Genotypes Table, which included the File Name, Marker, Dye, Allele, Size and Height, was then
exported forfurther analysis.
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Phasd.

To examinebaseline noise and the effects of target on establishing an optimal AT, the data
obtained from the single source samples veeq@rted from GeneMapper IDX v1.1ahdfitered
in order to remove stutter and allele peaksvo methods taletermine ATs were contrasted and
compared. First is the method based oraihygroachproposed by KaisdB(] In this method the
mean and standard deviation of the baseline rmiseletermined and the Ris calculated by
adding some factor 6kdé times the standard dev

0°Y of K¢ (Equation 4)

Where0 "Ys the analytical threshold obtained via Equationd4, is the mean of the noise peak
heights,k is a factor which is usually 3, and is the standard deviation of the noise heights.

This valueis also known as the MDS (minimum distinguishable/discernable signad)the L.

(critical level) and is differentiated from the stochastic threshold or limit of quantificf8adh.
Another method to determine the AT is by examining the allele peak heights from DNAs amplified
with known taget masses and performing a least squares regression to obtgimtéieept and

its standard deviatiof20, 31, 32 In this work the AT derived by this method was determined by
plotting the average peak height, corrected for diploidy, at each locus against target mass and
performing a WLS (weighted least squares) regressiomce they-intercept andts standard
deviation wereobtained, thetthe following equationvasutiized to estimate the AT.

0"Y @ @ (Equation 5)

Here0 "Vis the AT determined via Equation B,is the y-intercept obtained through a WLS
regressionk is 3 and is the standard deviation of tlgentercept.

To explore the impact that different target ranges have on the resultant ATs determined via
Equatiors 4 and 5, 3xperimental designs utiizing differetarget ranges were testi8§ The
experiment namedRange 1 consisted of examining the baseline noise yaimiercepts obtaed
from 0.25, 0.125, 0.063 and 0.047 ng samplieange Zxamined the noise and intercept obtained
when examining the lowest masses (0.047, 0.031, 0.016 and 0.008 ng)Ramie examined
the results from 4 points evenly spread throughout the eatige of masses (0.25, 0.062, 0.031,
and 0.008 ng).

The distribution of the noise peak heightsasexamined and a signal model for noise was
established We call an index isolated if neither at n4 nor at n + 4 thers a single or double
peak. In other words an indekis isolated if it isneither inthen + 4(forward stuttey norin the
n- 4 (reversestutte) position of a allele. We consider the set

0 "Go mAT®EO EOI I(Hy@thoho)

which is the set of indexdasnvhere we havan isolated noise peak, i.e. a peak that is not an allele
peak (o 1), andwhich is not in n- 4 nor at n + 4 stuttgrosition Further, byl
D OdEO T 10 WddAndt®the set of noise peaks indexes on locuBince, we dohe
analysis separately for all loci, ftwe sake of brevity, the index i droppedin the following.

The peak heights of the measurements that are avaliaitle analysis are quantizedin the

statistical lterature this is aldamown as groupediata. More precisely, we do not have the true

13



valuesy; but only the quantized value®y;, which we abbreviate witkh. Q denotesthe
guantization operatdhat is defied as

0w ® - (Equation 7)

Where&denotes the largest integer smaller than or equalth&or large signal values the
guantization can be neglected, because the introdredative error is smal, however for the
noise analysis it is problematic, becatise additive noise peak heights are smee call the
peaks wd® 0 quantized noise peaks or noise peak measuremilote. that it is possible that
@ T1ifor some™@ 0. In Figure 7 the histogram of the noise peak measurememtstied for
the different loci. Sincemost of the probabiity mass concentrated in zero, i.e., most of the
guantized noise peaks have zeeight further analysisonly considershe nonzero noise peak
measurementsWe denote byl EN Odw Tt the setof indexes ithh a nonzero noise
peak measurement.

Two distributions to describe th@ornzero noise measurementa/ere assesseik. lognormal
and Gaussian distributionThe KolmogorovSmirnov testwas utiized in order to check whether
the distribution othe nonzero noise peak measurements follows a quantizedologal
distribution. The loghormal cumulative distribution function (CDF) is givew

Op @ -p AO%EM? (Equation $

where erfis the complementary error function, and m arate parameters. In a first pt¢he
parametersnandsare estimated. The maximtlikelihood estimates are given by

G — B, I 1Td& (Equation 9

and

iH ;BN 1T a (Equation 1]

Both estimators are for unquantized data, however, our simulations show that the estimates
obtained are good enoughtKolmogorovSmirnov tests were also conducted to test whether the
normal distribution would also be an acceptable assumption.

Sincethe quantization of a continuous distribution induces a disdigtidbution, thed -test
was also utiized The intervals [0:5; 3:5),[35; 4:5), [45; 55), [55; 65), [65; 75), [75; 85),
[85; 95), and [9:5;1were usedo bin the data.

To examine any changes lbaselinesignal with respect ttarget plots of the mean and
standard deviation of noise against target mes® createtbr each locus. An ordinary least
squares (OLS) regression was performed and the correlation coeffici@niséd as a means to
examinewhether the fit was satisfactory

Similarly, two distributionsto describe the allele peak heights were compared. Specifically,
histograms of the peak heights for a given target, for eachiaaisg only heterozygousesults
- were plotted an@aussian and legormal fitting ensued Once the distribution functions were
obtained, the KlmogorovSmirnov test, which quantfies a distance between the empirical
distribution of the samples and t@aussiaror log-normal cunulative distribution was applied.
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A p-value of 0.05 was used to accept or reject the null hypothesis that the peak height values did
not come from a normal (or lagprmal) population. The mean of the peak heights and their
standard deviations were theiotted against target and fit to a line with intercept of 0. The
correlation coeffient was used to assess the goodness.of fit

Further, be frequency of allelelropoutwith respect to target wavaluated To calculate the
frequency ofdropout only heterozygousesultswere consideredluring this analysis The
frequency ofdropoutwas calculated by dividing the number of rdetected alleles by the
number of expected aleles'his was performed for each target and for each locusn ficwe
methods to characterize dropout were evaluatedvo o6i ndirect & met hods ba
peak heights and two o6direct 6 niddfisbofitee usi ng o
6indirect 6 Mmahodlanduwledanasaessmdnt of the peakdies of the detected
alleles to determine the predicted levedaobpout Specifically, a histogram of allelgpeak
height was created using Igor Pro v6.12 anddlésset bin function A Gaussian curvevas
fittedto the datausing

Qw T p = (Equation11)

wherep is the mean(lis the standard deviatoandA OJE - Q Qd&ndyis the peak

height. Therefore, to approximate tipeobability of dropout,f(y=1)was determined and wa
taken tobe the probabilty that aallele is not detecteat an RFU threshold of 1IThese
probabilties were then compared to theguency ofdropout The second model to describe
dropout Method 2was similarto Method 1in that is utiized data obtainedrom detected alleles
andistesecond of t he 0 oweder,inéhis instancaentbetmeanafthe peakH
heights were calculated via

S R (Equation12)

and

(Equation13)

wherey is the mean(lis the standard deviationis the number of peaks afids the arithmetic
meanof the peak height observed for a locus at a specific target massvalues otbands
were then used as tpeand ¥ in Equation 11 andf(y=1) was determinednd taken to represent
the probabilty of nondetection(i.e dropout)
Two 6directd methods to det ewermblsoevalbated Thisr ( D)
wasaccomplishedoy plotting the frequencies of dropout against the target amount of DA (
Logistid34] (Method 3 and exponential Method 4 curves were fit to the data using Igor Pro
v6.12. The logistic curveakesthe form

"Qw —— (Equation14)

While the exponential curve is
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N WQ (Equation B)

Therefore e probability of dropout i.e.f(x), could be approximated for any target mass

The differences between the obserfetjuenciesof dropoutversus the probability of
dropout estimated via each of the methodss used to assestich model to use during
algorithm development Additionally, 45 single sourcesamplesampilified using 0.25 to 0.008
ng of DNA, and12 two-personmixture samples(1:1 or 1:2 mixture ratigs amplified using a
target of 0.25 to 0.016 ngvere used to further test the validity of the chosen motkeé
likelihoods (calculation described in Literature Reviasing Equation 2 and) 3or n=1, 2, 3 and
4 were calculated usintpe frequency ofdropoutand the calculated probability dfopout for
each contributors target masghe probabilty ofdropout was estimated usinlethod 4and
APP differences < 0.05 were considered indicationsheof/alidity ofModel 4

Lastly, stutter models which degum the change in stutter raper locus for every target
were established. In this instandlee average stutter radiovere calculated as per,

— (Equation )

where'O is the heightof the peak in stutter position aid is the height of allelea. The
average stutter rativas therplotted against target maks each locus The standard deviations

of —— werealso plotted against target mass. A decreasipgreential curve was tédto the

points and the goodness of fit was assessed by examining the residuals.
Once the four modelgrhich describe the 1paseline noise2) allele peak height3) allele
dropoutand 4)stutterratios with respect to template mas®rechosenPhase Il of the projedt
which focused on the development and testing of the algorithm to determine thé &S@=d.
The software ands algorithm wil henceforttbereferred to adNOCILt.
Phase II.
NOCIt calculates He a posterioriprobability (APP) on the number of contributaisgiven a
particular evidence sample (electrophoresis profie)That is, it calculate@ @ & O for &
plg fof8 . We assume that priori 0 is uniformly distributed beteen 1 and , 5 xthe maximum
possible number of contributors. Thus, by Bay

0O ¢ OO0y ¢, (Equation 7)

foré  ph8 FEp,.Let"Ofyg be the genotype of and fraction of total DNA mass, respectively,
contributed by® pi8 €, and lety and be theg ,,ycomponent vectors of tH® andg ,
respectively. We have
N N - - - . (Equation
0oy ¢ ots; p P ¢ 0G | ap 18)
PN I'm
where h wMBho "a sB ® pho 1 Qis the unité p simplex, mis the

space of possible genotypes (for both alleles of a contributor) in the populationq iaritie
probabilty density function of , which we assume to be uniform ower . The distribution
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0axs; Jh PRI ¢ is known because it is derived from calibration samples with known
genotype.

We implementNOCItusing a MonteCarlo sampling algorithm.We generate random samples
ofl andP using the background population allele frequencies™@rahd, for each sample, we
compute0 (s [|h PRy & . After a large number of samples, we average al the
computed values @i GD&H | h PH) ¢ to obtain an approximation of Equati18. We
then calculate the APP according to

0@ &0 ﬁ. (Equation 19

To determine the probabilty of the evidence given a specified genlmtyepuiP, the baseline
noise, reverse stutter proportiondropout rates and allele heights/areas are all considered and
modeled as a function of target amount (i.e. mass). In every iteration of the Monte Carlo process,
a genotypel is randomly chosen based dretfrequencies of the allelggovided in anyalele
frequency table.In the current iteration oNOCIt, modeling of the dropout frequencies, means
and variances of true peak heighteeans and variances of the baseline noise height$,the
means and vé@ances of stutter ratios is carried out using the followidgn exponentially
decreasing curve (Pr(D) =8¢ was used to model allele dropout, exponentially decreasing

curve (Y'¥ aebx+c) was used to model the average stutter ratio (SR), a stiadglwith a positive
slope (O = mx) was used to model the peak height, and a straight line with positive slope

(O =mx+b) was used to model height of the baseline ndis@.every allele in the genotype
of the contributors, dropoutf the allele is simulated by a Bernouli trialwo assumptions are
made with regard to dropout: a) Dropout of one allele of a contributor is independent of dropout
of the contributor's other allele and b) Dropout of an alele from a contributor geindent of
dropout of the same allele from another contributoBased on the evidence observed, the
likelihood of observing the heights of the peaks given the genotypes of the contributors, the
mixture ratio, the amount of DNA amplified and the time jgfation is computed using calibration
data. The STR loci are assumed to be independent of eachaticethe distributions for peak
height, noise height and stutter ratios are assumed to be Gaussian

To test the algorithm and software systdb5 sngle source samples from 58 donors with
known genotypesvere usedo calibrateNOCIt. During creation of the sample profiles, 3 times
of injection (5, 10 and 20s) were usethe injection time is typically increased in the case of low
template samples to increase the sigiede ratio and hence 3 different sets of data each at a
different injection time were used to study the change in signal with injection flrogest the
performance of the softwar®&OCIt was run on 4, 2-, 3-, 4 and 5 person mixtures. The
performance oNOCItwas comparetb the MAC and MLE methodsMAC uses the number of
peaks observed in the signal to determinentiremum number of contributors wila MLE uses
the number of peaks as well as the aledgjuencies Both methods depend upon the establishment
of a threshold to determine the set of true pedke threshold is typicaly chosen by a laboratory
based ornnternalvalidation data.Two diferent types of thresholds were used for MAG &LE
for comparison purposesThe first threshold was a constant threshold of 50 RFU at all the loci,
which is a commonly used threshold in forensic laboratorieise second threshold is a variable
threshdd. At each injetion time, this threshold variesith DNA amount and dye colorThus,
this threshold was set bgetermining the height of the highest noise peak observed in the
calibration data corresponding to a DNA amount, dye color and time ofdnjeahd setting that
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height asthe threshold for that DNA amoughite color and time of injectionApplication of MAC
and MLE also used stutter threshold to fiter out the pedkshe reversestutter position Thus,
any peak in the stutter position with a ratio less than the stutterillesremoved The stutter
fiter specified by Aoplied Biosystemsin the AmpHstr® Identifiler® Plus manualwas used29

Alele frequencies from the Caucasian population specified in the BtipHdentifler® Plus
manual were used fdne NOCIt and MLE methodq 29

Results
Phase I.

If an AT is to be utiized during evidence interpretatiaonsideration as to the which template
ranges to study are of importaif8§|; this is particulagl true when examining lovevel, comple x
mixtures sincet is necessary to keep the AT to a minimum if alidlepoutis to be minimized.19]

To explore the impact different target ranges havedaiarmining the ATsthree anges of target
masses were evaluateBange onsisted of evaluating the baseline adights ang-intercepts
obtained when 0.25, 0.125, 0.063 and 0.047 ng samples were utikaatge Z2xamined the noise

and intercept obtained when examining the lowaassrange, 0.047, 0.031, 0.016, 0.008, and,
Range 3xamined the results from 4rg¢gets evenly spread throughout the entire range of masses
tested (0.25, 0.063, 0.031, 0.008 ndyigure 4. showsither they-intercept and 3 times the
standard deviation or the average height of the noise and 3 standards deviations obtained when
data fran Range 1, 2 and 3 were utiized. It is observed that, as discussed and predicted by
Currig33], the range of templates utiized to estimate the usihg Equation 5can have a
significant impact on the final result. For example, wRamge Jand Equation 5 are utiized to
determine the AT, the result is substantially highltean the AT derived usinRanges 2and 3.
Further,the ATs derived usinghis methodyields AT which araup to2 orders of magnitude larger
than the ATs derived when the baseline ndsdirectly examined, and is similar to previously
published resultf2( The ATs derivedby directly examining the heights of thaseline noise
using data froneach of the Ranges is provided in TahleThe higher range of mass&ange 1
results in higher A% than the other two ranges tested, suggestingwthen determining ATSs for
forensic purposesnass rangessedduring validation studies must take into account the template
masses tested and expected in casewbHerefore if lowtemplate DNA analysissisought, a
representative data set which includes therfulge of template masses observed in casemork
recommended

Although utiization ofanAT determined via careful consideration of the template masses
may decrease the Type Il error ragegtes of false nedetection of true alleles) associated with
allele detectionfFigure 5shows that the average and standard deviations of the baseline noise for
each color channel change with template mass, suggesting that rather than utiizing an AT, a
model which describes the baseline noise praye usefufor determining the NOC for low
template samplesAs a result, the average and standard deviation of the baseline noise for each
locus was plotted against targatd showed the same trendedregntative plat areprovided in
Figure 6. Itis observed that the averages and standard deviations of the noise remains relatively
stable between 008 and0.125ng, but thernncrease with target. When an OLS regression is
performed for similar data atewy locus, at all three injection times, the trends are similar.
Although the linear fitends tooverestimate the noise at targets of 0.125 and 0.25 ng, the
residuals for the average diffdid not exceed 2 RFU, suggesting the linear mauey beuseful
for purposes of describing the increase in baseline noise with target masses. FurtRer the R
valuesfor the mean noise heights wéx8&2 0.93, 0.94 and 0.90 for the CSF1P0, D3S1358,
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D18S51 and D5S818 loci respectively. ThevRlues for the standard deviations for the same
loci were 0.90, 0.97, 0.94 and 0.58ll loci showed similar results.

To further examine which distribution to utiize orderto describe the noiséwo
distributions were testedn Figure 7a the histogram of the noise peak measureméailtdargets)
is plotted for thedifferent loci. Most of the probability mass concentrated in zero, i.e., most of
the quantized noise peaks have Zeright. Therefore, ér further analysis, we consider onlyet
nortzero noise peakeasurements

Figure 7b showsthe empirical CDF of the quantized noise pef@ksamples amplified with
0.25 ng of DNA

0O w s_sB vp (Equation 2D

and"O h.e., the CDF of a quantized logrmal distributed randonvariable with parameters
G & andi iHor each locus.In the title ofeach sulfigure the KolmogorovSmirnov test

statistic

s A s oA~

+DOAO0OD ® "Op W (Equation 21)

and the corresponding-yalue are given.In Figure 7cthe histogram of thquantized noise

peaks and a pseuddv/iF of a quantized legormal distributedrandom variable wittparameters

& & andi iHb visualized. The high pvalues show that the null hypothesis that the
quantized nois@eaks follow a quaized loghormal distribution cannot be rejectedle are
aware that our approach has two comgalpnveaknesseskFirst, we estimate the parametexand

m from the same data that we use for K@mogorovSmirnov test.Second, we use the
KolmogorovSmirnov test foquantized data, and it is known to be too conservative, i.e., giving
p-values which are too large. Therefore, thetest as also applied on the data and utiized to
assess whether the dogrmal or normal distributions are reasonablsuagtions for the noise
distribution.

Figure @ showsa comparison of the legormal and the normal distribution. The parameters
of both distributions were obtained from the data by maximum likelihood estimators. It can be
seen that the-palues 6 the KolmogorovSmirnov test for normal distribution are in the range
from 0 to 0651. In particular, loci D2S1338, D3S1358, D8S1179, D18S51,019S433, D21S11,
FGA, and THO1 have ayalue smaller than.05. Thus, given a significance level of08, the
null-hypothesis that the quantized noise peaks follow a quantized normal distribution for these
loci would be rejected In Figure 7e we see the palues of the..-test for the lognormal and the
normal distribution. Except for locus D2S1338 thevaluesfor thelog-normal digribution are
all larger than @5. This confirms the previous findingghat the lognormal distribution is a
reasonable assumptidor the noise distribution.In contrast, except for locus D13S317, all p
valuesfor the normaldistribution are smaller than(b, whichis significant for therejection of
the nukthypothesis.

To evaluate the change in allele peak height, a similar analysis was performed. In this
instance the averageakheights (only heterozygous result® asedfor each locusvasplotted
agairst the target mass and @1L.Sregressiorensued. Figurd shows thaesults forsamples
injected for 10 secln all cases, the linear model fits well to the data, whetlediR? valuesfor
all loci were00.97. Plots of the standardeviation of the peak heights versus target resulted in
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R2O 0for@&Rloci. Although endpoint PCR has traditionally been considered -astimal
way to quantify peak heights, letemplate samples are not expected to exlobitious
plateauing effects at cycimimbersas low as 29.That is if the amplification efficiency of the
PCRis 100% at the engoint cycle number of 2 andit is assumed the portion of the product
and the RFU is directly proportional to the concentratbamplified product a29 cycles, the
following linear relationship is obtained,

RFU =7C,,2*° + A (Equation22)

where theA is they-intercept (and may be expected to be O if the proportionality is unbiased) and
the slope isp29 multiplied by a proportionality constant)( Therefore, if optimal conditions are

met, the samples contain accurate DNA concentrations, and the approxithatid®hCR efficiency

does not change between concentrations is valid, a pREUdfversu<C;resulsin a straight line.
However, the target mass at which plateauing effects wil begin to be significdepasadenbn

the number of cycles and the template mass. Itis to be emphasized that the current work focused
on low-template © 0.25 ) masesand therefore the dynamic ranges for this approach would
need to be evaluated for each kit or amplification process. For example, if the dynamic range for
an amplification kit vhich utiizes 29 cycles is 0.00® 0.5 ng, it may not be assumed that the
dynamic range is equivalent for a process that uses 32 or 35 cycles. However, previous studies
have shown that the dynamic range can be quite large and were up to 1 ngAanpifstr®
Identifiler® kit (28 cycles);20] The distributims of the allele peak heighteere also examined

and the resultfor representative locus21S1lare shown in Figure. Qualitatively, both the log

normal and Gaussiadistributions seem reasonableTo confirmthis quantitatively Kolmogorowv

Smirnov test were applied and the results for the 0.25 ng samples are depicted in1Bigumd

11 for the Gaussian and legprmal distributions respectively The KS statistic and theyalues

are provided along with the cumulative distribution functionShe smdést pvalug when
comparing the Gaussian to the empirical distributionss 0.108 at D2S1338 and the smallest p
value for the lognormal comparison was 0.143 at D5S818. Since allriesulted inp > 0.05,

both the Gaussian and {ogrmal distributions were considered appropriate for algorithmic
development purposes.

The probability ofdropout and the modeling thereof has been extensively studied in the
Iiterature. Typically, the logistic model is appligdO, 12 13] However,dropout models are
typically dependent upon the abilty to measuredifupout rate as a function of total peak height,
or surviving sister allele.Therefore, it was of interest to examine whether the Jaonesimilar 7
models can be applied when the independent variable is the mass. Since the peak height canbe a
good indication of the input madke logistic model is hypothesized to be of valuthis instance.

Three other methods to estimate@pout probability were also assessddethods land?2 utiize
peak height datdo extrapolate that information in order to estimate the probability of non
detection of an alleleResults on the cumula¢ distribution of the empirical data compared to the
Gaussian curve generated uskgthod 1and2 for a representative locus, D16S519, is shown in
Figure P for single source samples amplifiegsing 0.25 and 0.008 ng. The associated means and
standard deviations are shown in TableAlthough similar, Method 1results in smaller residuals
and a better fit to the data. However, both methods overestimatieofimitrates at high targets
and underesnate the rates at low targetSigure B showsthe frequency oflropout for the same
locus D16S519 plotted against target. Here the data is fit to eithdwgstic Method 3 or
exponential ethod 4 functionand the residuals are also indicatedtenfigure. The coefficients
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(Equations14 and15) were 0.25 and 0.72 faroefficienta, and-131 and105 for coefficientb for
the logistic and exponential fits, respectiveBimilar trendswere obtained for all loci tested. A
summary of the estimated probabilties of dropout for the D16S519 locus, calougatddthods
1-4 at 7 target amounts are summarized in T&ble This shows that the o
characterizingdropout overestimatedropoutat higher targets and underestimate it at lower targets,
whil e bot h 6directo met hods are drappupr ®hpr i at e
underestimations associated wittethods Jand2 suggesbther factors beyond detection an@me
variation contribute to allele nestetection as hypothesized by Gill etf@g Further, across all
loci, the frequency oflropoutincreased as target amount decreased and increased with increasing
molecuar weight. Since Method 4was deemed an appropriate model to determine Pr(D), the
validity of Method 4o estimate the NO@as tested. In this experiment, 45 single source samples,
amplified using 0.25 to 0.008 ng of DNA were utiizedThe likelihoods that n=1,23 or 4
contributors gave rise to thgrofile weredeterminedusing theeither thefrequency ofdropout or
the Pr(D) calculated viMethod 4 The APP was then plotted and the results are shown in Figure
14a. The same examination svgerformed on 12, twperson mixturesand the reults are
presented in Figure b4 Figure ¥ shows that the APPs obtained usihg modelersus the aatl
frequencies ofiropout are very close, whereby the difference never exceeded.1xThis is an
indication thatMethod 4is a viable method for determining the Pr(D) for purposes of determining
the NOC tolow-template DNA mixtures.

The last parameter to be assessed and characterized was stutter. To acconistavkisage
stutter ratios wre plotted against target mass and a decreasing exponential curve was fit to the
data. A representative plot for ti@8S1179locus is shown in Figure51 Qualtatively it is
observed that the meaand standard deviation of tlsutter ratio increases &srget amounts
decrease. This phenomenon was observed for all loci tested. Therefore, using the fit information
provided in Figure 3, one can estimate the average stutter expected fdb&884179 locus
amplified with the AmpHst® Identifler® Plus chemistry/protocol. Therefore at 0.008 ng, an
average stutter ratio is expected to be

OL Qi BIi"G 0 orRic 10y 38 8t @ y wherex=0.008ng (Equation 23
OO0 Qi BI"GQ0 6 opCd b

The standard deviation of stutter is modele a similar fashiorwherethe y0, a andb coefficients
for theD8S1179locus were determined to #5336,-191.54 and 0.0237espectively. Therefore
the standard deviation of %stutter can be calculated in a similar fashion

YO (BQUW 6 0 ori®ic Qg 8 T8t ¢ g therefore ak=0.008ng, (Equation 2%
YO (BQUW 6 0 opd b

The average %stutter &18S1179for a 0.008 ng sample 4.5+ 13.4% is significantly different

from the %stutter calculatefdr x = 0.25 ng whichis 6.5 + 2.4%. The %stutter obtained from the

0.25 sample arsimilar to the range of values provided ntem nuf act ur er 6 s manu
D8S1179locus, i.e2i 11% for all aleled29 It should be noted that although the stutter ratios

could also be modeled on a per allele basis, the model shown here takes the average stutter ratio
for all alleles within alocus. It is expected thatutter models whichutiize the length of the

longest uninterrupted sequence would be of value, but are beyond the scope of this work. Each

|l ocusd average and standard deviation of stu
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aforementioned model was used to deternteNOC. Stutter distributions were assumed to be
Gaussian.
Phase Il

To determine the NOC to a DNA sample, all parameters were modeled as a function of template
and all distributions were assumed to be Gaussian. Specifically, the baseline amis®deled
as a line with a nemeroy-intercept, the allele peak heights were modeled as a straight line with a
y-intercept of Othe average stutter ratios were modeledreexponential. The standard deviations
were modeled using the same functi@sthe meansThe probability of allele dropout and Ron
occurrence of stutter was modeled asaponential. Each of the models was examined, either
through analysis of the residuals or via more extensive means, to confirm their validity. The
normal dstribution was shown to be reasonable for descrithiegvariability in thepeak heights
at all loci at various targets. Gaussidstributions were assumed fetutter ratio and noise
calculations. Future implementations of the algorithm are expectecbiporate improvements
in the noise and stutter models as per findings in Phase | of this study.

The performance dNOCItwas compared to the Maximum Allele Count (MAC) and the
Maximum Likelhood Estimator (MLE) methed Since the MAC and MLE ntieods rely on the
use of ATs, two different ATs were tested. The first was the common AT of 50 RFU and the
second AT was the maximum noise peak observed for a given color channel. 16igin@vs
the performance of MAQYILE andNOCIt for 30, 1-person saples amplified using 0.26 0.16
ng of DNA(i.e. 5 samples amplified at0.25, 0.125, 0.063, 0.047, 0.031, 0.1@&aghsample
was injected three times; once utiizing a 5 second injection, witicea 10 second injectiomnd
once using 20 second injamti  The %accuracy is calculatbg determining the most likely
NOC divided by the actual NOC, multiplied by 100%igure B shows the summary of resuls.
For singlesourcesamples the performance of the MLE and MAC methods are dependent upon
injection time. Speciffically, MACs accuracy decredd$mm 93 to 70% when an AT of 50 RFU
was utiized. In contrast, when an injeati specific AT was usetthe %accuracy of MAC
increased from 70 to 90%, indicating the importance of ATs which are specific tdodnatday
process. The %accuracy of the MLE method decreased with injection time when a constant AT
was used, while %accuracy increased when an injection specific AT was appiedccuracy
of NOClt also decreashwith an increase in injection timigom 100% to 93% However, for
every sample at every injectiofNOCIt resulted in the highest accuracy rates and was not
drastically impacted by time of injectionFigure I7 shows the %accuracy of@erson mixture
sampleswhich consisted of 30 samples anigif at various targets (0.25, 0.125, 0.063, 0.047
and 0.031 ng) using various ratios (1:1, 1:2, 1:4, 1.9, 1:t%hould be noted thaamples
containing less thar? cells worth of DNA (< 012 ng) from any one contributowerenot
utiized to assess aaracy.

Changing thanjection time resulted in minor decreases in performance for all methods
Figures 8, 19 and20 are the results from the,3+ and 5 person mixtures respectively. The 3
person accuracy study was conducted by amplifyiBgsamples using 0.047, 0.063, 0.0125 and
0.25 ng of DNA at ratios of 1:1:1, 1:2:1, 1:4:1, 1:.9:1, 1:2:2, 1:4:4, 1918 13, 4person
mixtures contained 0.25, 0.125 and 0.063 ng of DNA mixed in 1:1:1:1, 1:1:2:1, 1:1:4:1, 1:1.9:1,
1:2:2:1, 1:4:4:1 and 99:1 ratios. Lastly, 145-person mixtures consisted of samples mixed in
1:1:1:11, 1212101, 1:24:101, 1:1:9:101, 1:1:2:2:1, 1:1:4:4:1, 1:2:2:2:1, and 1:4:4:4:1 ratios,
amplified using 0.063, 0.125 and 0.25 ng total mass of template DNA. Similbe igperson
samples, a minimum of 2 cells was requiredd@ocuracyesting.

22



For the 2person and -personsamples, at all 3 injgion times, NOCIt underestimatedhe
number of contributors at the lower DNA amountspé2son samples were called apetson
samples, whie most of thefrsonsampés werecalled as Zoerson samples and a few as 1
person samples). At the higher DNA amount0(©47 ng),NOCIt had 100% accuracy with the
2-person and the-Berson samplesThere were no overestimates frdNOCIt for the 2person
and 3person samples.The 4 and 5 person samples show that the overall %accuracy of all
methods decreases and falls below 80%, regardless of injection time and/or AT utilized. However,
there is a marked increase in the accuratgs between the MAC amdOCIt methods for these
complex mixtures, where the %accuracyN®DCIt was2-fold greater than MAC. Further, the
MLE method was superior to the MAC method for Higfel mixtures and also resulted in a two
fold increase in the #@ccuracy over MAC. However, MLE was dependent on both injection time
and AT, where the highest %accuracy was obtained with a 20 second injection and a constant AT
of 50 RFU. Interestingly, MAQiearly always underestimated thecbntributor mitures (only
one sample was correctly identified asjpeBson mixture) MLE resulted in higher accuracy rates
with the highest %accuracy (i.e. 71%) originating from the dataset analyzed using a 20 second
injection time and a constant AT of 50 RFWNOCIt resulted in the highest %accuracy of 64%
when the 20 sec injection was utiized’he MLEs accuracy is highly dependent on the injection
time for the 4 and 5person samples, where the %accuracy was 15%, 46% and 69% fbr the
person mixtures injected f&; 10 and 20 secondespectively. The %accuracy of MLE for the
5-person mixtures was 14%, 57% and 71% for the 5, 10 and 20 second injections respectively.
This is hypothesized to be the effect of increasing the rates of allele detegciincreasing te
amount of producin the capillary In contrastNOCIt results were not aaffectedby injection
time for these samplend were 69%, 61% and 69%{drson) and 50%, 43% and 64%p&rson)
for the 5, 10 and 20 second injection®A summary of resultsor eachtime of injection for all
sampleghixtures is shown in Figure 21n summary, for all samples and mixtures tested, NOCIt
resulted in higher accuracgtes for all times of injection Further, it was unaffected by injection
time, suggesting an amach which utiizes information procured from the laboratory and takes
into account the changing stutter, baseline noise, dropout rates and peak heights is essential for
accurate interpretation of letemplate mixtures. Thisnformation further highlighs that the
minimum number of contributors not equivalent to thexctualNOC for lowtemplate or highly
mixed samples Although the MLE method resulted in higher rates of accuracy than MAC,
especially for samples containing ahd 5 contributors, it ihighly dependent on the rate of allele
detection. If MLE is to be utlized for losemplate samples, enhancing the amount of product
injected into the capilary is one way to improve its accuracy.

The %accuracy rates of < 80% for the 8 and 5 person, lowtemplate mixtures highlights
theissuesassociated with complex mixture interpretation. For example, Fifuie the
electropherogram and corresponding output fi@CIt for a sample amplified using a lew
template (0.016 ng) mixture of 2 contributors injected for 10sec using a 3 kV injection voltage.
The peaks which can confidently be discerned from baseline are highlighted with a red arrow.
Within the arrow is the ale designation (i.e. STR allele). The loci and true genotypes of
contributor 1 and 2 (i.65; andG,) are also depicted. As expected, the electropherogram shows
there is a substantial amount of alldiepoutand there are multiple loci with completieopout
Note that the alleles 9,12 at the D7S820 are a composite of two heterozygous contributors where
one allele from each contributor dropped otlherefore, unless the laboratory has a standard
operating procedure which explicitty prohibits the intetption of such lowemplate samples
using this sample and others like it are at high riskrfis-classification using MAC and MLEas

23



there is no quantitative indication tretNOC of 2 is a pasbility. Thus, etremely corrupted

samples, such as theeodepicted in Figure 22 were also tested in an attempt to evaluate whether

it is possible taleducethe true NOC without significant probability of errdro evaluate this, 53
samples which contained very low quantities (i.e., < 2 cells) froncamlyibutor wereevaluated

and the results are shown in Table 8. Table 8 depicts the difference between the calculated NOC
and the true NOC obtained via the MAC, MLE and NOCIt methods. Overal, the accuracy of
these samples iswer than samples whictlo not exhibit excessive allele dp-out from any one
contributor andesulted in accuracy rates of 26%, 26% and 30% for the MAC, MLE and NOCIt
methods respectively. Itis also observed that the extent to which the samples are underestimated
is substantiain that they may be underestimated by more than one contributor. MAC and MLE
grossly (i.e. NOGyc-NOCr,cO-2 ) under est i &YW obtlk tinte inecontha&t,dad s
samples containing a minor contribution containing < 2cBIBCIt grossly underdimated the

NOC 45% of the time.

Since there is a netnivial probability of error associated with evaluating NONOCIt
provides an estimate on the NOC. Fig@&shows the output obtainedhen thesample was
interpreted usindNOCIt - using ampax=2 - and shows that the output dogst provide a single
number (i.e. the estimated NOC). Rather than provide the most likely NN Itpresents the
enduser with the probability that the stain originated from O versus 1 versus 2 separate,
independenbiological sources. By providing the probability estimaM®CIt supplies the
measure of uncertainty associated with the assessment. This allows the abilty to assess the
validity of the assumption on the NOC reporteat can also be an indication the complexity
of a sample. The APPs of #29, 0.91 and 0.09 for n= 0,1 and 2, respecti&hgws that
althoughNOCIt suggests the most likely NOC is 1, it also suggests there is a reasonable
probability that the NOC may also be Rigure 23shows the comparison between the
%accuracy oNOCIt(as depicted in Figures 16 to)2ersusthe percentage of tmBOCIt
resulted in a probabilty of at least 1% for the number of contributors in the saFle
example for the data set containing-c@ntributors, the percentag®f time NOClItreturned an
APP00.01 for n=2wasdetermined An APP of 0.0lwasutiized as ecutoff indicating that
NOCIt showed areasonab@probability that the sample may have originated from the correct
NOC. As indicatedin Figure 3, the&ccuracgincreasedor every mixture setThis again is an
indication that complex DNA mixtures may need to be evaluated under multiple assumptions
using probabilistic analysis methods$ particularly when the number of contributors excezds
and the total t e .minteathe ®utput @ $n she forsn of @n APP disiributio,
an assessment of the complexity of the profile prior to comparison is podsiige 24 shows
the APP distribution for a lowtemplate Zperson mixture when only 10 loci are consideraad
shows the output can be used to inform the analyst of the potential complexity of a Saonple.
example, if the probdhies are not strongly peakethen this iformation could be utiized
during the comparison to a known. That i s, m
reportedor the LR may incorporate multiple assumptions on N@Ghe laboratory may report
that since the NOC is in question, the sangpl®o complex to render a meaningful conclusion
with respect to a known.

A prototype ofNOCIthas been developed in Jaaad the interface is shown in Figurs. ZT'he
NOCIt application, technical manual and tutoriall may be downloaded from
www.bu.edu/dnamixtures Modeling of 1) peak height withespect to target, 2gverse stutter
ratios with respect to target, 3) baseline with respect to target and 4) @igleut with respect to
target have beentegrated into the systen©utput files that contain the APPs on the NOCs, the
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input information (i.e. calibration fie used, frequency information used and sample file) and the
analysis time is available for the eunser to utiize with reports or furthstudies.

NOCIt can be used within thdorensic DNA laboratory process and does not require
interruption to the current laboratory scheme. That is, data analyzed using the current laboratory
software (i.e. GeneMapper) is exported in tabular forih @sed byNOCIt. The following is a
description of the standard operating procedure usedNGIRIt and details the user/laboratory
interaction;

1. NOCIt has been written in Java and is designed to work on Wsdsystems running JRE

1.7
2. DownloadNOCIt. The software is present as part of a zip fiextract the contents of the

zip NOCltej.ar® is the file used to run the sof"

Commons Math files NOGtejdarforarmrdirtviee Whyd lted enrg . 6 10

kept in the same directory.

3. Doubl e blOGItckarom téo | aunch the software.
4. NOCItrequires the users to provide 6 inputs, the formats of which are described below:
a. Calibration file: This file contains the single source samples used for calibration of the
sof t ware and s houl Borekampletis the GeeeMappes auiput f or ma t
fle, analyzed using a 1RFU peak threshokhe first line is a header linélhe first
column is O6Gener al i nformationd anthscontai
column is not used by the software during the calculation. The second column contains
the DNA input (in ng) used to amplify the sampl€he third and théourth columns
contain the 2 known alleles present in the sample at the locus. Homozygous alleles are

listed twice. (i.e. 10,10). The Ffomthé¢ h and
seventh column onwards, the descriptathe peaks are predemwith each peak having

3 characteristics: OAllelebod, 0Size6 and OH
b. Allele frequency file: This is the file containing the frequencies of the alleles in the

population the useristestngl he f il e shoul d Thefistlne istahe 06 c s\
header I|ine. The first column is oO0locusé,
column is 6frequencyo. At every |l ocus, onl

table are considered potential alleles while performing tlele&ion.
c.Sample file: This is théevidencéfile with the unknown number of contributors that the

user is interested inanalyzngT hi s f il e shoul d This & exportedt he & c ¢
from the | aborator i e &SéneMdppdr)ausing areRIFY threskolds of t w
of 1. The first line is aheaderlineThe first column is a &édGener

that contains details about the sample and is not used by the sofivix@reecond and
third columns ar leromahd dourtk eolurdin oawardls, theldgseription
about the peaks are present, with each pea
OHei ght 0, in that order.

d. Output file: This file contains the results of the calculation. The output file is i thex t 6
format. The user can browse and choose a txt file as the output file. Alternatively, if no
output file is providedNOCIt creates an output file in the same directory as the sample
file and with the def &QdlttoutputebadeAnexardpe afmp | e f
the output file is provided in Figure62
The beginning of the output file contains the inputs specified by the tisecalibration
file, the frequency file, the sample file and the sample DNA input.
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After that, the results of the calculation are shown. For each number of contributors,
NOCIt displays:

U The time taken (in minutes)

U The probabilty of observing the evidence at each locus, given the number
of contributors

U The setof alleles at every loctisat had the highest probabilty while
doing the sampling

U The probabilty of observing the entire evidence, given the number of
contributors. This is computed as the product of the probabilities at all the
l oci . The value is displayed as oOLi k

0 Theprobabilty of the sample coming from the number of individuals,
given the evidence. This is computed by normalizing all the likelihood
values to add to 1. The value is dis|

e. Maximum number of contributors: This is the maximum lemnof individuals for
which the user is interested in computing the likelihoodalid values: Any integer
between 0 and 5.
f. DNA input: This represents the amount of DNA amplified to obtain the samgie pro
Valid values: Any real number greater than
5. Once all the inputs have been specified, c
A progress bar starts moving and indicates that the software is running.
7. Click on O6Stopdé at any moment to terminate
computel up to this point would be written to the output file.
8. If the software continues running uninterrupted, at the end of the calculation a pop up box
informs the user that the software has finished running.
9. Open the output file to view the results.

o

Conclusim
Allele dropout was shown to have a detrimental effect on the abilty to infer the actual number
of contributors. As alleledropoutincreased, so did the probability of underestimating the NOC.
Models that estimate the rise in baseline noise and allele heights were developed. Both the
baseline noise and alele peak heights increased linearly with target. Although the linear model
was chosen for basadnnoise in this study, furthemluation into the modds required since it
was observed that the linear growth occumé@ntarget mass > 025ng Further, it is unclear
if this increase in baseline noise at targets 22®.ng is consistent between kit chemistries,
laboratories, instrumentsetc. Thereadre, fuure research would aim at elucidating an approach
that utiizes information provided in 1) blank/negativemples and 2) samples containing DNA.
The exponential function was found to be a good approximatioh) thie frequency ofiropout
and?2) the average stutter rasi@t a locus. Since the stutter ratio is dependent on the number of
uninterrupted repeats, examination into the implementatioseqiience specifistutter models are
warranted. Gaussian distributions were assumed, and the ap@toimwas tested for baseline
noise and peak height. Preliminary results suggest the Gaussian distribution describes the
variabiity it the peak height wel. Baseline noige better described using a {ogrmal
distribution, andstudies that assess timpact of this finding on determining the NOC are
warranted Stutter ratios were calculated for the entire locus and a Gaussian distribution was
assumed. Though the stutter ratio model and distribution used for NOCIt resulted in high levels
of accuracyimprovements to the modédistributions describing stutter are of interest.
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As the signahoise ratio increased with an increase in injection time, so did the accuracy of
MLE. MAC was shown to be an insufficient method for determining the actual féOg&amples
containing more than 2 contributor?NOCIt wasminimally affected by a change in tligection
time, as the software designed to uggmrameters from calibration data corresponding gpecific
laboratory processOverall, the accuracy of all 3 methods increased with an increase in DNA
amount. Samples that contain at least one contributor with fewer than 2 cells are prone to gross
underestimation, where the actual and calculated true NOCs differ by at Idd&s2.n addition
to providing estimates on the most likely NQ@)CIt provides the APP distribution across 0 to
5 contributors such that thencertainty associated with likely NOC is available to the analyst and
trier-of-fact.  Information on NOCIt training and the use of NDCIt can be foundon
www. bu.edu/dnamixtuie

References

1. Haned, H.; Pene, L.; Lobry, J. R.; Dufour, A.; Pontier, D., Estimating the number of
contributors to forensic DNA Mixtures: Does Maximum Likelihood Perform Better than
Maximum Allele Count?]. Forensic Sci2011,56, (1), 2328.

2. http://forensim.fforge.rproject.org/ (July 24, 2014).

3. Gill, P.; Buckleton, J., A Universal Strategy to Interpret DNA profiles that does not require
a defintion of lowcopy-number. Forensic Sci. Int: Genetic2010 4, 221227

4. Gill, P.; Kirkham, A.; Curran, J., LoComatioN: A software tool for the analysis of low
copy number DNA profilesForensic Sci. Int2007,166, 128138.

5. Gil, P.; L. Gusmao; Haned, H.; Mayr, W. R.; Morling, N.; Parson, W.; Prieto, linzPr

M.; Schneider, H.; Schneider, P. M.; Weir, B. S., DNA commission of the International Society of
Forensic Genetics: Recommendations on the evaluationn of STR typing results that may include
dropout and/or drogin using probabilistic methods-orensicSci. Int. Genetic2012,6, 679688.

6. Perin, M. W.; Szabady, B., Linear Mixture Analysis: A Mathematical Approach to
Resolving Mixed DNA Samplesl. Forersic Sci2001,46, (6), 13721.378.

7. Wang, T.; Xue, N.; Birdwel, J. D., LeaSguare Deconvolan: A Framework for
Interpreting Short Tandem Repeat Mixturdd-orensic Sc2006,51, (6), 12841297.

8. Curran, J. M.; Gil, P.; Bil, M. R., Interpretation of repeat measurement DNA evidence
allowing for multiple contributors and population substmuet Forensic Sci. Int2005,148, 47

53.

9. Curran, J. M., A MCMC method for resolving two person mixtuiz308,48, 168177.

10. PuchSols, R.; Rodgers, L.; Mazumbder, A.; Pope, S.; Evett, I.; Curran, J.; Balding, D.,
Evaluating Forensic DNA Profilessing Peak Heights, Allowing for Multiple Donors, Alelic
Dropout and Stutterg:orensic Sci. Int. Genetic013,7, 555563.

11.  Bright, J-A.; Taylor, D.; Curran, J. M.; Buckleton, J. S., Developing Allelic and Stutter
Peak height Models for a Continuoldethod of DNA InterpretationForensic Sci. Int. Genetics
2013,7, 296304.

12.  Haned, H.; Egeland, T.; Pontier, D.; Pene, L.; Gil, P., Estimating-aliogprobabilties in
forensic DNA samples: A simulation approach to evaluate different mdéeignsicSci. Int.
Genetic011,5, 525531.

13. Tvedebrink, T.; Eriksen, P. S.; Mogensen, H. S.; Morling, N., Estimating the Probability
of Allelic Drop-out of STR alleles in forensic genetidrensic Sci. Int: Genetic2009,3, 222

226.

14. Perlin, M. W.; $helnikov, A., An Information Gap in DNA Evidence Interpretatiétios
One2009,4, (12), e8327.

27


http://forensim.r-forge.r-project.org/

15.  Buckleton, J. S.; Curran, J. M.; Gil, P., Towards understanding the effect of uncertainty in
the number of contributors to DNA staiirensic Sci. Int: Genetic2007,1, 2028.

16. Paoletti D. R.; Krane, D. E.; Raymer, D. L.; Doom, T. E., Inferring the Number of
Contributors to Mixed DNA Profies.I[EEE/ACM Trans. on Computational Bio. and
Bioinformatics2012,9, (1).

17. Biedermann, A.; Bozza, S.; Kani K.; Taroni, F., Inference about the number of
contributors to a DNA mixture: Comparative analyses of a Bayesian network approach and the
maximum allele countForensic Sci. Int. Geneti€012,6, 689696.

18. Egeland, T.; Dalen, I.; Mostad, P. F., Estimg the Number of Contributors to a DNA
Profile. Int J Legal Med2003,117, 271275.

19. Rakay, C. A.; Bregu, J.; Grgicak, C. M., Maximizing allele detection: Effects of analytical
threshold and DNA levels on rates of alele and locus-dubpForensic Sci. Int. Genetic012,

6, (6), 723728.

20. Bregu, J.; Conkiin, D.; Coronado, E.; Terril, M.; Cotton, R. W.; Grgicak, C. M., Analytical
thresholds and Sensitivity: Establishing RFU thresholds for forensic DNA analydirensic
Sci.2012,58 120129.

21. Hil, B., Low Copy Number (LCN) DNA Analysis. IrMid-Atlantic Association of
Forensic Sciences Meetingunt Valley, Maryland, 2009.

22. Bright, J-A.; Turkington, J.; Buckleton, J., Examination of the variabilty in mixed DNA
profie parameers for the Identifler multiplex.Forensic Sci. Int: Genetic2010,4,111114.

23. Ruiz, E.; Grgicak, C. M.; Cotton, R. W., Amplification Reproducibility of profies
generated using Identifler and MiniFiler PCR Ampilfication Kits: Effects on Mixture
Interpretation. IrNortheastern Association of Forensic Sciepdélite Plains, New York, 2008.

24.  Brenner, C. H.; Fimmers, R.; Baur, M. P., Likelhood ratios for mixed stains when the
number of donors cannot be agre896,109, (4), 21819.

25. SWGDAM SWGDAM Interpretation Guidelines for Autosomal STR Typing.
http//www.fbi.gov/aboutus/lab/c odis/swgdam. pdf11/22/2010),

26. Budowle, B.; Onorato, A. J.; Callaghan, T. F.; MannaDA.Gross, A. M.; Guerrieri, R.

A.; Luttman, J. C.; McClure, D. L., Mixture Interpretation: Defining the Relevant Features for
Guidelines for the assessment of Mixed DNA Profiles in Forensic Caselvéikensic Sc009,

54, (4), 816821.

27.  Grgicak, C. M.; Urban, Z. M.; Cotton, R. W., Investigation of Reproducibilty and Error
Associated with gPCR Methods using Quantifler Duo DNA Quantification Zit10,55, (5),
13311339.

28.  Cicero, M. C.; Grgicak, C. M., Examination into the Applicability aralfiity of a Single
External Calibrator for Forensic DNA Quantification. WorthEastern Association of Forensic
ScientistsCromwell, CT, 2013.

29.  AppliedBiosyste ms AmpFISTRR) Identifiler(RPlus PCR Amplification Kit User's Manual
Isted.; Applied Biosystems: 2006.

30. Kaiser, H., Part Il: Quantttation in Elemental Analysial. Chem1970,42, (4), 26A

59A.

31. Winefordner, J. D.; Long, G. L., Limits of Detection. A Closer Look at the IUPAC
Definition. Anal. Chem1983,55, (7), 12A-724A.

32. Mocak, J.; Bond, A. M.; Mitchell, S.; Scollary, G., A Statistical Overview of Standard
(IUPAC and ACS) and New Procedures for Determining the Limits of Detection and

28


http://www.fbi.gov/about-us/lab/codis/swgdam.pdf

Quantification:  Application to Voltammetric and Stripping Techniquare & Appl. Chem.
1997,69, (2), 297328.

33.  Currie, L. A., Detection: International Update, and Some Emergirignimas Involving
Calibration, the Blank and Multiple Detection Decision€hemometrics and Intelligent
Laboratory Systens997,37, (1997), 15181.

34. PuchSols, R.; Kirkham, A. J.; Gil, P.; Read, J.; Watson, S.; Drew, D., Practical
Determination of the Low Template DNA Thresholebrensic Sci. Int: Genetic2011,5, 422

427.

35.  Currie, L. A., Detection: International update, and some engedjilemmas involving
calibration, the blank and multiple detection decisid@iemometrics and Intelligent Laboratory
System& 997,37, 151181.

36. Gil, P.; Curran, J.; Eliot, K., A graphical simulation model of the entire DNA process
associated withhe analysis of short tandem repeat ldducl. Acids Re005,33, (2), 632643.

Dissemination of Research Findings

1 H.Swaminathan, C.M. Grgicak, M. Medard and D. S. Lun. NO&I€omputational
Method to Infer the Number of Contributors to DEAmples Analyzed by STR Genotyping
Forensic Science International: Genetics, 16;18® (2015).

2 66" Annual AAFS Scientific Meetingi Sarah Norsworthy, Desmond S. Lun, Harish
Swaminathan, Muriel Medard and Catherine M. Grgic&haracterizing Rates dllelic
Dropout and the Impact on Estimating the Number of Contribut@sbruary 2014)

3 25MInternational Symposium on Human Identification antl R@rtheastern Association of
Forensic ScientistisKayleigh Rowan, Genevieve Wellner, Desmond S. Lun, &viedard
and Catherine M. Grgicak.Characterization of the Sources of Peak Height Uncertainty
Resulting from Ordinary Alterations During Forensic DNA Processing: Examining
Validation Schemes for the Calibrationd®CIt (October 2013)

4 250 Internatioral Symposium on Human IdentificatidhHarish Swaminathan, Catherine M.
Grgicak, Muriel Medard and Desmond S. LUNOCIt: A High-Accuracy Computational
Method for Determining the Number of Contributors in an STR DNA Prof8eptember
2013).

5 39" Northeastern Association of Forensic Scientistslarish Swaminathan, Catherine M.
Grgicak, Muriel Medard and Desmond S. LUNOCIt: A Computational Tool to Infer the
Number of Contributors to a Forensic DNA SamplEéeptember 2013).

29



Tables

Table 1. Allelic peaks observed in a typical DNA electropherogram
Locus Peak1l Peak?2

D8S1179 13 16
D21S11 29 32.2
D7S820 8 11

CSF1PO 11 12

D3S1358 15 16

THO1 6 9

D13S317 11 11

D16S539 11 12

D2S1338 19 24

D19S433 15 15

VWA 18 19
TPOX 8 11
D18S51 13 14
D5S818 10 12

FGA 20 20




Table 2. Possible genotype combinations that may explain how two random individuals could
have given rise to the genotype in Table 1.

Possible Genotypes Possible Genotypes

Ro Person 1 Person 2
1 13,13 13,16 or 16,16
2 13,16 13,16 or 13,13 or 16,1!
3 16,16 13,13 or 13,16
4 13,13 16,0
5 13,16 13,0 or 16,0
6 16,16 13,0
7 13,0 13,16 or 16,16
8 16,0 13,13 or 13,16
9 13,16 0,0
10 13,0 16,0
11 16,0 13,0
12 0,0 13,16
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Table 3. A comparison of the I|ikelihoods of
at everylocus for different targets.

0.6 ng 0.2 ng
L(n=1) L(n=2) L(n=1) L(n=2)
11 2.67e30 11 3.51e30
1:2 2.67e30 1:2 5.58e30
9.08e20 14 267630 | 08820 1:4 3.13e30
1:9 2.67e30 1:9 7.19e30

32



Table 4. The DNA ratios of multiple contributors when generating th@,24- and 5 person

mixtures.

No. of people

in the 2 3 4 5
mixture

11 111 1:1:1:1 1:1:1:1:1

1.2 1.2:1 11:2:1 11211

14 141 1.1:4.1 11411

19 191 1191 1:1:1:91

1:19 1:2:2 1.2:2:1 11:2:2:1

144 1441 11:4:.41

1:.99 1.99:1 11991

1.2:2:2:1

14:4.41

1:99:9:1
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Table 5 The average noise and 3 standard deviations for the noise peak heights obtained from

samples amplified usinRange 10.25i 0.047ng), Range Z0.0471 0.008 ng) andRange 30.25
I 0.008 ng) of target DNA mass. The AT (avg + 3stdev) is also shown.

Range 1 Range 2 Range 3
Locus Avg Avg Avg
Noise 3Std'Dev Noise 3Std'Dev Noise SStd_Dev
. Noise AT . Noise AT . Noise AT
Height Height Height Height Height Height
(RFU) (RFU) (RFU)

D8S1179 3 6 10 3 5 9 3 7 10
D21S11 3 6 9 3 4 7 3 5 8
D7S820 3 4 7 3 4 7 3 5 8

CSF1PO 3 6 9 3 4 7 3 4 7

D3S1358 5 8 13 5 7 12 5 8 13
THO1 4 8 12 4 6 10 4 6 10
D13S317 4 9 13 4 5 9 4 7 12
D16S539 4 6 10 4 5 9 4 6 10
D2S1338 4 7 11 4 6 10 4 6 11
D19S433 8 10 18 7 9 16 8 9 17
VWA 7 9 16 7 8 15 7 8 15
TPOX 8 12 20 7 10 17 7 10 18
D18S51 7 8 16 7 8 15 7 8 15
D5S818 10 19 28 8 16 23 9 16 25
FGA 8 9 16 7 8 15 8 9 16

D8S1179 7 8 15 7 8 15 7 8 15
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Table 6 Themean and standard deviation fdethod 1(fitted cumulative Gaussian) aMiethod
2 (nontfitted cumulative Gaussian) for thepresentativéd16S539 locusobtained with68 single
source samples amplified using 0.25 and 0.008 ng of template DNA.

0.25ng 0.008ng
Method Mean Std. Dev. Mean Std. Dev.
1 944 446 37 48
2 1076 440 58 43
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Table 7. Allele dropout and estimated probabilties of dropout calculateMéthods 14 at 7

target amountdor representative locus D16S538howing thatMethods land?2 overestimated
dropout at higher target amounts but underestimate dropout at lower target amounts whereas
Methods 3and4 are both appropriate characterizations of dropout. Highlighted cells signify most
the accurate approximation.

Target (ng) Observed Method 1  Method 2  Method 3  Method 4

0.25 0 0.017 0.007 7.25E15 2.72E12
0.125 0 0.005 0.016 9.67E8 1.40E6
0.0625 0 0.104 0.050 3.53E4 1.01E3
0.047 0.008 0.074 0.027 2.69E3 5.14E3
0.0313 0.032 0.158 0.081 0.021 0.027
0.0156 0.136 0.209 0.085 0.143 0.140
0.0078 0.319 0.226 0.091 0.316 0.314

36



Table 8. he NOGacT NOGCq e 0Obtained when examining samples containing minor
components with < 2 cells worth of DNA with the MAC, MLE and NOCIt methods.

NOCcalc - NOCrrue (N=53, Minor < 12.6 pg)

-4 -3 2 -1 0o 1
MAC 3 11 15 9 14 1
MLE 3 11 15 9 14 1
NOCIt 1 12 11 13 16 0
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Figures
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362 548 380 138
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603

Figure 1. Complex lowevel DNA profied ampilified using 125 pg of DNA using tAenpHstr®
Identifiler® Plus Kit injected for 10s on a 3130 Genetic analyzdihis data representdiree
contributors in a 1:1:2 ratio.
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Figure 2. The probability that the profiérom Table 1 resulted fror(y) 1 versug/) 2 versus
(y) 3 versus(y) 4 contributors at various levels dfopout
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Figure 7b Empirical CDF othe noise peaks (blue) and CDF of a quantizeehdgal

distributed random variable with (red).
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Figure 7c. Histogram of the noise peaks (blue) and pseudo PDF of a quantirechiag
distributed random variable (red).
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