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ABSTRACT 
 
     A biological sample obtained from a crime scene might be a mixture containing DNA from two 
or more individuals.  An assumption regarding the number of contributors to a sample is needed 
to compare the crime scene profile with that of a known if the Likelihood Ratio is the statistic 

utilized to convey the óweight of the evidenceô.  Usually, the number of contributors to a question 
sample is unknown and is specified by the analyst based on the electropherogram obtained.  This 
can be challenging in the case of complex, low template samples that exhibit allele sharing and 
often contain artifacts like dropout and stutter.   

     NOCIt ï a computational tool that calculates the probability distribution for the number of 
contributors to a DNA sample is presented.  Unlike existing methods, which operate on the number 
of peaks in the signal and/or the rarity of the alleles, NOCIt uses both the rarity of the alleles and 
the quantitative data in the signal, i.e. the heights of the peaks.  NOCIt was calibrated using single 

source samples amplified from various low level DNA amounts (0.007 ï 0.25 ng) and three 
different times of injection (5, 10 and 20s).  The peak heights (peak height ratios in the case of 
stutter peaks) were modeled using the Gaussian distribution and appropriate parameters (mean and 
variance) were obtained from the calibration data.  Dropout rates were also computed at each DNA 

mass.   
     To test the performance of NOCIt, 1-, 2-, 3-, 4- and 5- person samples were created and 
interpreted with NOCIt.  The number of contributors with the highest probability was taken as the 
answer supported by NOCIt.  In addition, the performance of NOCIt was compared with the 

Maximum Allele Count (MAC) and the Maximum Likelihood Estimator (MLE) [1] methods.  
MAC uses the number of peaks at a locus to determine the minimum number of contributors while 
MLE uses the number of peaks as well as the allele frequencies.  The performance of NOCIt was 
consistently better than MAC and MLE across all DNA amounts and all times of injection for the 

1-, 2- and 3- person samples.  Both NOCIt and MLE (20 sec injection) showed improved 
performance over the allele counting method for the 4- and 5- person samples.  Since the MAC 
and MLE methods utilize analytical and stutter thresholds, the accuracy of MLE and MAC were 
found to be dependent on injection time.  When samples contained at least one contributor with < 

2 cells worth of DNA (i.e., 12.6 pg), the accuracy of all methods decreased due to allele dropout 
and allele sharing.  Further, the difference between the calculated and actual NOC was larger for 
these samples.  For example, the percentage of samples where NCalc-Nactual Ò -2 was 55%, 55% 
and 44% for the MAC, MLE and NOCIt methods, respectively.  However, in cases where NOCIt 

failed to pick the correct number of contributors, it was able identify the region in which the NOC 
is most likely to lie.  NOCIt has been implemented using the Java programming language and is 
currently available on www.bu.edu/dnamixtures.  
  



 3 

Contents 
Executive summary ...........................................................................................................................................................4 

Main Body of the Final Technical Report....................................................................................................................7 

Introduction ....................................................................................................................................................................7 

Statement of the Problem........................................................................................................................................7 

Literature Review .....................................................................................................................................................8 

Rationale for the Research......................................................................................................................................9 

Methods ........................................................................................................................................................................ 12 

Results........................................................................................................................................................................... 18 

Conclusion ................................................................................................................................................................... 26 

References.................................................................................................................................................................... 27 

Dissemination of Research Findings ..................................................................................................................... 29 

Tables............................................................................................................................................................................ 30 

Figures .......................................................................................................................................................................... 38 

 
  



 4 

Executive summary 
 
     Interpreting an STR profile obtained from an evidentiary sample can be complicated because 

the number of contributors to the sample is unknown in most cases.  While it is straightforward to 
identify the number of contributors in the case of high template samples containing 1 or 2 
contributors, the interpretation becomes challenging when complex, low template mixtures are 
evaluated.  The signal from low template samples is difficult to interpret because of allele dropout.  

Moreover, the stutter ratio becomes elevated in low template samples, making it hard to distinguish 
between stutter peaks and allelic peaks.  In response to the aforementioned issues, a probabilist ic 
procedure and corresponding software tool to infer the number of contributors in a forensic DNA 
sample was developed.  The procedure and software tool is called NOCIt. 

     Forensic DNA mixture interpretation of short tandem repeats (STRs) typically uses the 
following procedure: 1) an analytical threshold is applied to distinguish peak from noise, 2) the 
number of contributors is assessed, 3) the genotypes from the item of evidence are de-convoluted, 
4) the inferred genotype obtained from the evidentiary profile is compared to the genotype from a 

known, standard or suspect, and lastly 5) a conclusion and ómatch-statisticô is reported.  
     The number of contributors (NOC) is an important assumption in the DNA interpretation 
process since it has a direct impact on the way in which the evidentiary profile is de-convoluted.  
Further, it may be necessary to determine the most likely number of contributors for investigative 

purposes. Two approaches to determine the number of contributors are currently employed.  The 
common method is the Maximum Allele Count (MAC) technique and the second method is the 
Maximum Likelihood Estimator (MLE) technique.  Both of these methods rely upon the 
application of an analytical threshold and stutter filter to the signal.  All peaks below the AT are 

considered indistinguishable from noise while all peaks above the AT are considered allelic peaks 
and included in the interpretation.  Application of an AT to a low template profile is not optimal 
because of the increased risk of labeling a noise peak as an allelic peak or an allelic peak as a noise 
peak.  Furthermore, an allelic peak could be masked by stutter.  Thus, any peak in the stutter 

position could be a stutter peak, an allelic peak or a combination of the two.  A stutter-ratio 
threshold is used by both MAC and MLE.  Since the height of a stutter peak is dependent upon the 
height of the parent peak, a stutter-ratio is calculated and any peak in the stutter position with a 
ratio less than the stutter-ratio threshold is removed.  

     MAC is a widely used method and gives the minimum number of contributors that explain the 
signal.  MAC works by counting the number of alleles that are visible above the AT at all loci.  
The maximum value is divided by two and rounded up to give the minimum number of contributors 
that explain the profile.  

     MLE was more recently developed and utilizes more information than MAC[1] and is currently 
available on [2].  In addition to using the number of peaks observed, MLE uses the background 
frequencies of the alleles above the AT to calculate the likelihood a locus contains alleles from a 
certain number of contributors.  Based on the profile obtained, all possible genotypes for n 

individuals are considered.  The likelihoods at all the loci are multiplied with each other to obtain 
the overall likelihood for the sample given n contributors.  The number of individuals that results 
in the highest likelihood is taken to be the most likely number of contributors in the sample.  
Though MLE utilizes the qualitative data obtained in the signal (i.e., the allele frequencies), the 

quantitative data (i.e., the heights of the peaks) is not considered.   
     The peak heights in the signal are directly proportional to the amount of DNA originally present 
in the sample.  They are also a good indicator of the mixture ratio that gave rise to the sample.  The 
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background noise may be dependent upon the amount of DNA originally present in the sample.  
Average stutter ratios and allele dropout are also related to the amount of sample.  This information 
could be used while calculating the number of contributors. 

     NOCIt works upon the entire signal obtained ï the background frequencies of the alleles 
observed as well as the peak heights - while calculating the number of contributors.  To calibrate 
the software, 1555 single source samples from 68 donors with known genotypes were created.  
These samples were generated using the AmpFlstr® Identifiler® Plus kit (Life Technologies, Foster 

City, California).  During creation of the sample profiles, 3 times of injection (5, 10 and 20s) were 
used during electrophoresis.  The injection time is typically increased in the case of low template 
samples to increase the signal-noise ratio and hence 3 different sets of data, each at a different 
injection time, were used to study the change in signal with injection time.  At each injection time, 

samples were amplified from 7 template DNA amounts (0.008 ï 0.25ng) to analyze how the DNA 
amount impacted the signal obtained.  In the profiles obtained, the peaks were separated into 1 of 
3 categories: True peaks (all peaks representing the alleles in the sample), Stutter peaks (all peaks 
in the stutter position of True peaks) and Noise peaks (all other peaks in the signal).  Only reverse 

stutter was considered.  The heights of the peaks were modeled using the Gaussian distribution.  
Calibration parameters (namely the mean and the variance) for the 3 categories of peaks were 
computed for each DNA amount at the 3 injection times for every locus.  Dropout rates were also 
computed at each DNA amount at the 3 injection times for every locus.  

     Models to estimate the rise in baseline noise and allele heights were developed.  Both the 
baseline noise and allele peak heights increased linearly with target.  Although the linear model 
was chosen for baseline noise in this study, further valuation into the model is required since it 
was observed that the linear growth occurred after a certain mass of DNA was added to the PCR, 

i.e., > 0.125 ng.  The exponential function was found to be a good approximation of 1) the 
frequency of dropout and 2) the average stutter ratios at a locus.  Gaussian distributions were 
assumed, and the approximation was tested for baseline noise and peak height.  Results suggest 
the Gaussian distribution describes the variability it the peak height well.  Baseline noise is better 

described using a log-normal distribution, and studies that assess the impact of this finding on 
determining the NOC are warranted.  Stutter ratios were calculated for the entire locus and a 
Gaussian distribution was assumed.   
     A Monte Carlo approach is used by NOCIt to compute the likelihood for the number of 

contributors.  In every iteration of the Monte Carlo process, genotypes for the n contributors are 
chosen based on the frequencies of the alleles in the frequency table.  Only alleles present in the 
frequency table are sampled.  A mixture ratio is chosen at random - all mixture ratios are assumed 
to occur with equal probability.  To obtain parameters corresponding to DNA amounts that are not 

among those used for calibration, modeling of the dropout frequencies, means and variances of 
true peak heights, means and variances of the noise heights, and the means and variances of stutter 
ratios is carried out at each locus using the following: exponentially decreasing curve (Pr(D) = ae-

bx) was used to model allele dropout, an exponentially decreasing curve (ὛὙ= ae-bx+c) was used to 

model the average stutter ratio (SR), a straight line with a positive slope (Ὄ  = mx) was used 

to model the peak height and a straight line with positive slope (Ὄ =mx+b) was used to model 
noise. For every allele in the genotype of the contributors, dropout of the allele is simulated by a 
Bernoulli trial. Two assumptions are made with regard to dropout: a) Dropout of one allele of a 
contributor is independent of dropout of the contributor's other allele and b) Dropout of an allele 
from a contributor is independent of dropout of the same allele from another contributor.  Based 

on the evidence observed, the likelihood of observing the heights of the peaks given the genotypes 
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of the contributors, the mixture ratio, the amount of DNA amplified and the time of injection is 
computed using the calibration data.  This is repeated a number of times. The average of the values 
computed is the likelihood of observing the evidence at a locus, given n contributors.  Since the 

loci are assumed to be independent of each other, the likelihood values at all the loci are multip lied 
with each other to give the overall likelihood for n.  The n that results in the highest likelihood is 
taken to be the number of contributors most supported by the evidence as calculated by NOCIt.   
     The performance of NOCIt was tested on 1-, 2-, 3-, 4- and 5- person mixtures.  Like the 

calibration data, these samples were also generated using 3 injection times. Samples were 
amplified using 7 DNA amounts.  The performance of NOCIt was compared with the MAC and 
the MLE methods by running those methods on the same samples.  As previously described, MAC 
and MLE both need the setting of an AT to calculate the number of contributors.  For comparison 

purposes, 2 types of thresholds for MAC and MLE were evaluated.  The first threshold was a 
constant threshold of 50 RFU at all the loci, which is a commonly used threshold in forensic 
laboratories.  The second threshold is a variable threshold.  At each injection time, this threshold 
varies with DNA amount and dye color. This threshold was set by picking the height of the highest 

noise peak observed in the calibration data corresponding to a DNA amount, dye color and time 
of injection and setting that height as the threshold for that DNA amount, dye color and time of 
injection.  NOCIt does not depend upon the setting of a threshold and works on the entire 
electropherogram obtained.  Application of MAC and MLE also uses a stutter threshold to filter 

out the peaks in the stutter position of allelic peaks.  The stutter filter specified by the AmpFlstr®  
Identifiler® Plus manual was used to filter the stutter peaks at each locus.  Allele frequencies from 
the Caucasian population specified in the AmpFlstr® Identifiler® Plus manual were used for NOCIt 
and MLE.  

     The performance of MAC and MLE, using both thresholds, increased with an increase in 
injection time.  NOCIt outperformed both methods at all 3 times of injection for the 1-, 2- and 3- 
person samples.  Changing the injection time did not have a significant effect on the performance 
of NOCIt.  Both NOCIt and MLE resulted in similar accuracy rates for the 10 and 20 second 

injections of the 4- and 5- person mixture samples.  NOCIt outperformed MAC and MLE for the 
5 second injections of the 4- and 5- person mixture samples.  MLE was affected by injection time, 
while NOCIt was not.  Overall, the accuracy of all the 3 methods increased with an increase in 
DNA mass.   

     NOCIt can compute the likelihood a forensic sample has up to 5 contributors in approximately 
9 hours on a regular PC with an Intel quad core processor.  Fewer numbers of contributors can be 
evaluated ï as specified by the user ï if desired.  The output of NOCIt is presented as the 
probability distribution over 0 to 5 contributors thereby giving the user information regarding, not 

only the most likely number of contributors, but the uncertainty associated with the measurement.   
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Introduction 

Statement of the Problem 
     Many biological samples deposited at and collected from crime scenes contain mixtures from 

two or more individuals.  The elucidation of individual donors in mixed biological samples has 
traditionally been a problem with serological testing and remains one today.  Even with 
experienced analysts, complex mixtures are not interpreted in many laboratories.   
     There are two general approaches to interpreting DNA profiles.  One is the CPE/CPI 

(Combined Probability of Exclusion/Inclusion) method, which is a binary scheme where alleles 
are considered either present or absent and the resultant genotype match information is derived 
from all possible allele pairs.  This approach requires a stochastic threshold (ST) be defined to 
avoid interpretation of products which are too low and prone to stochastic effects.  The apparent 

benefit of this method is that it makes no assumptions with regard to the number of contributors.  
However, this method cannot always be accurately applied to complex mixtures.  Although the 
number of contributors theoretically has no bearing on whether CPI could be used as the statistic, 
it does have a significant effect on the assumption regarding the fact that all alleles have been 

detected.  That is, as the number of contributorsô increases, the ability to confidently state all alleles 
were detected is lost.  The inability to confidently conclude that all alleles are observed is mainly 
due to allele sharing and the difficulty associated with mixture de-convolution when greater than 
2 contributors are present.  This is exacerbated when amplifying low amounts of DNA.  An 

example of such a case is shown in Figure 1, which displays the electropherogram of a three person 
mixture amplified using the AmpFlstr® Identifiler® Plus Amplification Kit and 125 pg of DNA.  
The AT is set to 30 RFU and the ST is 150 RFU.  In this example, there are 5 peaks at D18S51 
and because the peak heights for alleles 16, 18 and 20 are below the ST of 150, the CPI would not 

be calculated for this locus.  However, at TPOX all alleles are above ST and it would therefore 
appear that TPOX could be used to calculate the CPI.  However, if the minimum number of 
contributors is 3 then there is a substantial amount of óallele stackingô at TPOX and it no longer 
becomes possible to ascertain whether all alleles from every contributor is detected.  As a result, 

uncertainty at that locus precludes the use of CPI at TPOX.  Since CPI is to be used in instances 
where all alleles are detected, it is evident that CPI can only be applied when there is little or no 
ambiguity in the profile.  As a result, CPI has limited applicability to complex, low-template 
samples where there is a significant level of uncertainty associated with the profile. 

     Another approach to obtaining match information is the utilization of the likelihood ratio (LR) 
method which can readily incorporate information which is not utilized in CPI.  The LR test is 
conducted by computing the ratio 
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Where HP represents the prosecutionôs hypothesis, HD the hypothesis of the defense and E 

represents the evidentiary DNA profile. 
     There are a number of state-of-the-art methods, algorithms and software packages that report 
the strength of a match in terms of the LR.[3-10]  Though the methods differ in the algorithmic 
processes and the ways in which they model stutter[10, 11], allele dropout[12, 13] and/or baseline 

noise[14], they all require an assumption regarding the number of contributors.  Since the use of 
any formula for mixture interpretation should be applied in cases where the assumptions are 
reasonable, assigning the correct NOC to an evidentiary profile may arguably be a very important 
step in DNA mixture interpretation pipeline. 

Literature Review 
     Currently, the common approach to determine the NOC is to utilize the MAC (Maximum Allele 

Count) method.  This is a ódiscreteô method which counts the number of alleles above the analytical 
threshold (AT).  Typically, the number of obligate alleles above the AT at a locus is divided by 
two and rounded up.  The maximum value across the loci is taken to be the minimum number of 
contributors that gave rise to the evidentiary DNA profile.  This minimum NOC is then used as 
the NOC to determine the LR.   

     A number of issues with this approach exist.  First, this method does not work well with 
complex mixtures because of allele sharing between contributors.  That is, it does not take into 
account the frequency of the alleles and the propensity for multiple contributors to possess 
common alleles.  Therefore, as the number of actual contributors increases the probability that the 

actual NOC equals the minimum NOC decreases.  For example, in simulation studies using the 
SGM+TM multiplex loci, it was shown that ~66% of four-person mixtures would present six or 
fewer alleles at all loci.  As a result, these complex mixture samples would likely be incorrectly 
interpreted as a mixture from three or fewer people.[15]  Similarly, Paoletti et al. also showed that 

~76-77% of the simulated four-person mixtures tested would not have been recognized as four-
person mixtures based on the maximum allele count as they had only five or six alleles (or fewer) 
at all 13 CODIS loci.[16]  Based on the aforementioned studies, it is unlikely that the minimum 
number of contributors for the majority of mixtures containing DNA from three or more people 

will accurately reflect the actual or true number of contributors.  In fact, the minimum calculation 
could easily be off by one or two contributors. 
     Another allele counting method, similar to the MAC method, was published by Perez et al.[4]  
In this work the total number of alleles above the AT were counted and guidelines for estimating 

the number of contributors for high template and low template samples were established.  Like 
MAC, this method is prone to misclassification due to the fact that it does not take into account 
allele sharing, stutter and dropout.  
     Methods that do not solely rely upon the number of alleles to determine NOC exist.  For 

example, an approach developed by Biedermann et al. [17] employed a Bayesian network to infer 
the number of contributors to forensic samples.  This method was shown to work better than MAC 
with degraded DNA and with higher numbers of contributors.  Haned et al. [1] extended the work 
of Egeland et al. [18] to develop a Maximum Likelihood Estimator (MLE) for the number of 

contributors, taking into account population substructure.  This method was also shown to give 
more accurate results than MAC with higher number of contributors and degraded DNA.  A 
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Probabilistic Mixture Model was used by Paoletti et al. [16] to infer the number of contributors to 
a sample based on the frequencies of the alleles observed.  This method, like MLE, accounts for 
correction due to allele overlap.  

     These methods, though they use the qualitative data available, i.e. the frequencies of the alleles 
observed, do not use the quantitative data obtained, i.e. the heights of the peaks in the signal.  When 
peak heights are not considered a plethora of interfering signal that impacts the ability to deduce 
the actual NOC is also not examined.  This renders both the counting and frequency based methods 

ineffectual for low-template, complex forensic mixture interpretation. 

Rationale for the Research 

     The first impediment to accurately inferring the number of contributors to complex mixtures 
originates from the chance that an allele may not have been detected during testing.  To illustrate 
the effect of allele dropout on the ability to infer the NOC, consider the allelic peaks obtained from 
a typical DNA electropherogram presented in Table 1.  The probabilities that one random 

individual gave rise to the observed peaks in positions 13 and 16 at the D8S1179 locus can be 
computed by examining the frequencies of the alleles in question and the probability of dropout 
(Pr(D)).  If one person gave rise to the stain, then there is only one way that a single person could 
have resulted in a D8S1179 signal at allele positions 13 and 16:  That person must have genotype 

G1 = 13,16, and no dropout could have occurred.  Therefore, (population substructure is not 
considered here for simplicity of exposition) the likelihood that the evidence at D8S1179 
originated from one contributor is 
 

ὒὉȿὲ ρ ςὪὪ ρ ὖὶὈ .          (Equation 2) 

 

Here, n is taken to be the NOC, f13 is the frequency of observing the allele 13 within the population, 
f16 is the frequency of observing allele 16 and Pr(D) is the probability of allele dropout.  To 
calculate the possibility that two unrelated individuals gave rise to the signal at positions 13 and 
16, three scenarios are considered.  First, the profile could have originated from two random 

individuals, where neither of the individualsô alleles dropped out (Rows 1-3 Table 2).  The second 
scenario is that two random individualsô DNA gave rise to the peaks, but one allele dropped out 
(Rows 4-8, Table 2).  The last scenario is that two random individuals gave rise to the signal, but 
two alleles dropped out (Rows 9-11, Table 2).  If dropout is considered - and the frequency of the 

other, not-observed, allele is taken to be 1 less the frequency of the observed alleles - then the 
chance that two random individuals gave rise to the alleles at D8S1179 is, 
 
L(E|n=2) = [(4f13f16

3+6f13
2f16

2+4f13
3f16 )Ā(1-Pr(D))4]+ [4Pr(D)Ā(1-f13-f16) (3f13f16

2+3f13
2f16)Ā(1-

Pr(D))3]+ [6Pr(D)2Ā(1-f13-f16)2 (2f13f16)Ā(1-Pr(D))2]         (Equation 3) 
 
A similar approach is used to calculate the L(E|n=3), L(E|n=4), etc.  Therefore, Equations 2 and 
3 show that when Pr(D) is considered it can have a significant effect on the ability to accurately 

assess the NOC.  Figure 2 shows the APP (a posteriori probability) that 1 versus 2 versus 3 versus 
4 contributors gave rise to the stain when the information from all loci is combined.  Therefore, 
for this profile, when Pr(D) = 0.4, there is a probability of 0.04 that 2 random individuals gave rise 
to a profile that seems to have originated from only one contributor.  This is a direct result of the 

loss of information associated with a high dropout rate and includes the possibility that the entire 
locus of one person may not be detected.  This example demonstrates that counting the number of 
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peaks observed may not the optimal technique to determine the actual number of contributors to a 
low level stain.   
     One way to minimize the loss of allele information is by decreasing the AT.  However, ATs 

which are too low may lead to false detections, while ATs which are too high lead to high levels 
of false non-detects [19].  For example, work performed by Bregu et al. [20] showed that baseline 
noise increases with target for some kits, suggesting that noise may need to be modeled based on 
target mass or other similar parameter.  This would be the optimal method for examining allele 

signal in the presence of noise and ensures all data in the signal is analyzed.  Further, by examining 
evidentiary profiles in this way, the Pr(D) is kept to a minimum for a given laboratory process.  If 
the Pr(D) is minimized, then the soundest assessment of the NOC can be performed. 
     Determining the NOC may also be complicated by the fact that the ratio of contributors may be 

indeterminable and, like the LR ratio, contributor ratio assessments are dependent on the 
assumption on the NOC.  Table 3 shows a comparison of the likelihoods that the NOC was 1 versus 
2 people when different ratio combinations are considered for a sample amplified with a total of 
1, 0.6, 0.2 and 0.1 ng of DNA.  Table 3 shows that, not only does the likelihood that 2 persons 

contributed to the stain increase as template levels decrease, but the L(E|n=2) for a 1:9 2-person 
mixture increases at a faster rate.  This exemplifies the need to evaluate numerous mixture ratios 
such that all scenarios are taken in to account during interpretation.   
     Signal interference from stutter also inhibits accurate interpretation of complex, low-level 

mixtures.  Current practice dictates that when analyzing single source samples, if the %stutter is 
below the stutter threshold it is assumed that the peak is derived from stutter.  If the stutter percent 
value is above the %stutter cutoff value, the peak is considered an allele.  This determination 
becomes error-prone when a mixture of DNAs is present.  Using a binary method to determine 

whether a peak is stutter versus an allele can have significant effects on the interpretation of 
samples with major/minor components.  For example, Figure 3 shows that in a mixture where the 
amount of DNA from one contributor is significantly below the amount of DNA from the second 
(major) contributor, it is possible to have a minor allele and a stutter peak in the same position.  In 

this instance, the amount of signal from the minor 15 allele and the amount of signal from stutter 
cannot be deciphered.  Therefore, if the %stutter threshold is 8%, the 15 allele would be incorrectly 
ignored.  This is evidence that a more robust model of stutter is needed to correctly interpret 
stutter/allele likelihoods when attempting DNA interpretation. 

     Due to the complex nature of DNA signal and the known signal interferences associated with 
artifacts such as stutter and dropout, samples containing low-template mixtures with > 2 
contributors cannot properly be interpreted using methods currently available.  Current methods 
do not utilize signal strength information to determine the NOC.  Further, all currently available 

methods rely on utilizing an AT resulting in higher than necessary Pr(D), which has an effect on 
the ability to determine the NOC.  If a sample is amplified with optimal DNA targets and the DNA 
from each component is relatively large then stutter can be easily characterized.[11]  However, in 
cases where it is expected that the mass of DNA added to the PCR reaction was sub-optimal (i.e. 

< 0.25ng), elevated stutter may be expected.[21]  Additionally, at optimal amplification inputs, 
peak height ratios at a heterozygous locus are close to 1 and the peak heights are large, leading to 
a probability of dropout of ~ 0.  Therefore, for simple samples amplified using optimal DNA 
concentrations, the minimum number of contributors is usually equivalent to the actual number of 

contributors.  However, the PHR variance has been shown to significantly increase with decreasing 
input levels.[22, 23]  For situations where there are more than 3 contributors and suboptimal DNA 
inputs, the ability to infer either the NOC or the genotypes becomes impossible to accomplish 
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manually.  As previously stated, the LR relies on the ability of the analyst to make an assessment 
regarding the number of contributors.  The question then becomes; how can and does a DNA 
analyst determine the actual number of contributors for low-level, complex mixture profiles?  And, 

are there methods to ascertain the actual number of contributors such that the analyst does not have 
to rely on the assumption that the minimum number of contributors is the actual number of 
contributors?  The fact that there is potential for allelic dropout in a sample automatically precludes 
the analyst from confidently assessing the actual number of contributors by utilizing the number 

of alleles.  Therefore, despite the recent advancements in complex mathematical systems to infer 
evidentiary genotypes - one question still remains; if a suspect is included as a potential contributor 
to an evidence stain and the hypothesis of the prosecution is based on a certain number of 
contributors - which may have been derived from a qualitative assessment of the number of alleles 

- is the defense required to agree with that assumption?  For example, the prosecution may 
hypothesize that the suspect (S) and one unknown (U) were the contributors, while the defense 
may hypothesize that three unknowns (U1 and U2 and U3) contributed to the DNA profile.  The 
number of contributors under HP and HD do not necessarily need to be equivalent, nor has it been 

determined in the literature whether the hypotheses need to be exhaustive.  It has been suggested 
that they should be exhaustive or at least care must be taken to ensure no relevant hypotheses are 
omitted in the denominator.[15, 24]  The SWGDAM Guidelines[25] and Budowle et al.[26] 
suggest numerous LRôs be calculated if need be and all assumptions clearly stated in the report.  

This could potentially result in 2 or more individual LRs with no clear indication of which LR is 
to be regarded as the best estimate.  This highlights the importance of the assumption regarding 
the number of contributors and brings to the forefront the concept that there is a need to develop 
systems, algorithms or interpretation processes which allow the laboratory to assess 1) the NOC 

that gave rise to the evidence and 2) the uncertainty associated with that number. 
     This research represents a detailed study into the effects interfering factors have on the ability 
to accurately infer the number of contributors to mixed stains, and is subdivided into two phases.  
The purpose of the first phase was to create single-source and mixture profiles from multiple 

contributors amplified at low target masses.  Further, 4 factors that were expected to impact 
complex mixture interpretation were evaluated.  Specifically, changes in baseline noise, stutter 
ratios, allele dropout and allele peak heights were evaluated at various targets, and multiple models 
describing each factor were compared.  Once the optimal model to describe each factor was 

established the second phase of the project ensued.  In the second phase, a method to determine 
the NOC to complex, low-template DNA mixtures was developed.  The method was one that 

utilizes an APP (a posteriori probability), where the )|Pr(:)APP( Eini == , which can be 

interpreted as the probability that a certain number (n) of contributors gave rise to the evidence.  

The work resulting from Phase I and II culminated into the development of a computational 
software tool that calculates the probability distribution for the number of contributors to a DNA 
sample, and is referred to as NOCIt.  Tests which examine the results from the MAC, MLE and 
NOCIt were performed.  Specifically, 1- to 5- person mixtures, amplified using 0.25 to 0.008 ng 

of total DNA were generated.  The NOCs were determined via the MAC, MLE and NOCIt 
methods.  The NOCs derived from each method was then compared to the real number of 
contributors that gave rise to the profile and accuracy rates were used as a means to compare 
methods. 
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Methods 
     The procedures are in accordance with the ethical standards of the Institutional Review 
Board.  All reagents were purchased from Sigma Aldrich (Sigma Alrich, St. Louis MO) unless 

stated otherwise.  
     High molecular weight DNA was extracted from 68 single source samples using standard 
organic extraction procedures.  The samples were whole blood, dried blood stains or saliva.  The 
blood stains were either on Whatman® paper or cloth swatches.  Saliva samples were either 

whole saliva or dried buccal swabs on cotton.  Briefly, the organic extraction consisted of 
incubating the sample in 300 µg/mL of Proteinase K and 2% v/v SDS (sodium dodecyl sulfate) 
solution at 37 oC for 2 hours to overnight.  Purification was accomplished with 
phenol/chloroform and alcohol precipitation.  The DNA was dissolved in 50 µl of TE buffer (10 

mM Tris, 0.1 mM EDTA, pH 8.0) at 56oC for 1 hour.  Absolute DNA quantification was 
performed using real-time PCR and the Quantifiler® DuoÊ Quantification kit according to the 
manufacturerôs recommended protocol and one external calibration curve.[27, 28]  A 7500 
Sequence Detection System (Life Technologies, Inc.) was used for Ct (cycle threshold) detection.  

The extracted DNA was amplified using the manufacturerôs recommended protocol (29 cycles) 
for AmpFǎSTRÈ IdentifilerÈ Plus Amplification Kit (Life Technologies, Inc).[29]  Single 
source samples were amplified using 0.5, 0.25, 0.125, 0.063, 0.047, 0.031, 0.016 and 0.008 ng of 
DNA.  In addition, 2-, 3-, 4- and 5- person mixture samples were created by mixing the 

appropriate volumes of DNA extracts to attain the various ratios in Table 4.  Once mixed, these 
samples were re-quantified and amplified using the same target masses used for the single-source 
samples.  The PCR reaction consisted of 15 µL of master mix, the calculated volume of template 
DNA based on target mass required, and enough Tris-EDTA (TE) buffer (10 mM at pH 8.0) to 

bring the total reaction volume to 25 µL.  Amplification was performed on Applied Biosystemsô 
GeneAmp® PCR System 9700 using 9600 emulation mode.  Positive and negative amplification 
controls were also run and showed expected results (data not shown).  Fragment separation was 
accomplished using a 3130 Genetic Analyzer (Life Technologies) and a mixture containing 

appropriate amounts of HiDi (highly-deionized) formamide (8.7 µl/sample) (Life Technologies. 
Inc) and GeneScanÊ-600 LIZÊ Size Standard (0.3 µL/sample) (Life Technologies, Inc).  A 
volume of 9 µL of that mixture and 1 µL of sample, negative or ladder was added to the 
appropriate wells.  The samples were incubated at 95°C for 3 minutes and snap-cooled at -20°C 

for 3 minutes.  Five, ten, and twenty second injections at 3 kV were performed for each of the 
samples and run according the manufacturers recommended protocol.[29]  Fragment analysis 
was performed using GeneMapper IDX v1.1.1 (Life Technologies, Inc) using Local Southern 
sizing and an RFU threshold of 1.  Known artifacts such as pull-up, spikes, -A, and artifacts due 

to dye dissociation were manually removed.  A peak was considered pull-up if it was the same 
size (+/- 0.3bp) as a larger peak in another color and below 5% of the height of the more intense 
peak.  Peaks were determined to be óspikesô if they were in greater than 2 colors and in the same 
position.  Peaks were considered as originating for incomplete adenylation (i.e. ïA) if they were 

one base pair smaller than an allele, and peaks determined to originate from dye dissociation had 
to be in the same position, in the same color channel and be observed in multiple samples.  The 
Genotypes Table, which included the File Name, Marker, Dye, Allele, Size and Height, was then 
exported for further analysis. 
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Phase I. 
     To examine baseline noise and the effects of target on establishing an optimal AT, the data 
obtained from the single source samples were exported from GeneMapper IDX v1.1.1 and filtered 

in order to remove stutter and allele peaks.  Two methods to determine ATs were contrasted and 
compared.  First is the method based on the approach proposed by Kaiser.[30]  In this method the 
mean and standard deviation of the baseline noise are determined and the AT is calculated by 
adding some factor ókô times the standard deviation to the mean noise signal as per,  

 
ὃὝ ὼӶ Ὧί      (Equation 4) 

 
Where ὃὝ is the analytical threshold obtained via Equation 4, ὼӶ  is the mean of the noise peak 
heights, k is a factor which is usually 3, and ί  is the standard deviation of the noise heights.  

This value is also known as the MDS (minimum distinguishable/discernable signal) and the Lc 
(critical level) and is differentiated from the stochastic threshold or limit of quantification.[ 31]   
Another method to determine the AT is by examining the allele peak heights from DNAs amplified 

with known target masses and performing a least squares regression to obtain the y-intercept and 
its standard deviation.[20, 31, 32]  In this work the AT derived by this method was determined by 
plotting the average peak height, corrected for diploidy, at each locus against target mass and 
performing a WLS (weighted least squares) regression.  Once the y-intercept and its standard 

deviation were obtained, then the following equation was utilized to estimate the AT. 
 

ὃὝ ὦ Ὧί     (Equation 5) 

 
Here ὃὝ is the AT determined via Equation 5, b is the y-intercept obtained through a WLS 

regression, k is 3 and ί is the standard deviation of the y-intercept. 
     To explore the impact that different target ranges have on the resultant ATs determined via 
Equations 4 and 5, 3 experimental designs utilizing different target ranges were tested.[33]  The 

experiment, named Range 1, consisted of examining the baseline noise and y-intercepts obtained 
from 0.25, 0.125, 0.063 and 0.047 ng samples.  Range 2 examined the noise and intercept obtained 
when examining the lowest masses (0.047, 0.031, 0.016 and 0.008 ng), while Range 3 examined 
the results from 4 points evenly spread throughout the entire range of masses (0.25, 0.062, 0.031, 

and 0.008 ng).  
     The distribution of the noise peak heights was examined and a signal model for noise was 
established.  We call an index i isolated if neither at n - 4 nor at n + 4 there is a single or double 
peak.  In other words an index i is isolated if it is neither in the n + 4 (forward stutter) nor in the 

n - 4 (reverse stutter) position of an allele.  We consider the set 
 

ὔ Ὥȡὼ π ÁÎÄ Ὥ ÉÓ ÉÓÏÌÁÔÅÄ      (Equation 6) 

 
which is the set of indexes i where we have an isolated noise peak, i.e. a peak that is not an allele 
peak (ὼ π), and which is not in n - 4 nor at n + 4 stutter position.  Further, by ὔ
Ὥɴ ὔȡ Ὥ ÉÓ ÏÎ ÌÏÃÕÓ ὒ we denote the set of noise peaks indexes on locus L.  Since, we do the 

analysis separately for all loci, for the sake of brevity, the index L is dropped in the following. 

     The peak heights of the measurements that are available for the analysis are quantized.  In the 
statistical literature this is also known as grouped data.  More precisely, we do not have the true 
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values yi but only the quantized values Qyi, which we abbreviate with ώ.  Q denotes the 

quantization operator that is defined as 
 

ὗὼ ὼ      (Equation 7) 

 
Where ỗὼỘ denotes the largest integer smaller than or equal than x.  For large signal values the 

quantization can be neglected, because the introduced relative error is small, however for the 
noise analysis it is problematic, because the additive noise peak heights are small.  We call the 
peaks ώȡὭɴ ὔ  quantized noise peaks or noise peak measurements.  Note that it is possible that 

ώ π for some  Ὥɴ ὔ.  In Figure 7 the histogram of the noise peak measurements is plotted for 
the different loci.  Since most of the probability mass is concentrated in zero, i.e., most of the 

quantized noise peaks have zero height, further analysis only considers the non-zero noise peak 
measurements.  We denote by ὔ É ɴ ὔȡ ώ π the set of indexes with a non-zero noise 
peak measurement.   

     Two distributions to describe the non-zero noise measurements were assessed, i.e. log-normal 
and Gaussian distribution.  The Kolmogorov-Smirnov test was utilized in order to check whether 
the distribution of the non-zero noise peak measurements follows a quantized log-normal 
distribution. The log-normal cumulative distribution function (CDF) is given by 

 

Ὂȟὼ ρ ÅÒÆ
Ѝ

     (Equation 8) 

 
where erf is the complementary error function, and m and s are parameters.  In a first step the 
parameters m and s are estimated.  The maximum-likelihood estimates are given by  
 

ά
ȿ ȿ
В ÌÏÇώᶰ       (Equation 9) 

and 

ίǶ
ȿ ȿ
В ÌÏÇώ άᶰ      (Equation 10) 

 
Both estimators are for unquantized data, however, our simulations show that the estimates 
obtained are good enough.  Kolmogorov-Smirnov tests were also conducted to test whether the 
normal distribution would also be an acceptable assumption.   
     Since the quantization of a continuous distribution induces a discrete distribution, the ὢ -test 

was also utilized. The intervals [0:5; 3:5),[3:5; 4:5), [4:5; 5:5), [5:5; 6:5), [6:5; 7:5), [7:5; 8:5), 
[8:5; 9:5), and [9:5;1) were used to bin the data.   

     To examine any changes in baseline signal with respect to target, plots of the mean and 
standard deviation of noise against target mass were created for each locus.  An ordinary least 
squares (OLS) regression was performed and the correlation coefficient (R2) used as a means to 
examine whether the fit was satisfactory.   

     Similarly, two distributions to describe the allele peak heights were compared.  Specifically, 
histograms of the peak heights for a given target, for each locus ïusing only heterozygous results 
- were plotted and Gaussian and log-normal fitting ensued.  Once the distribution functions were 
obtained, the Kolmogorov-Smirnov test, which quantifies a distance between the empirical 

distribution of the samples and the Gaussian or log-normal cumulative distribution, was applied.  
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A p-value of 0.05 was used to accept or reject the null hypothesis that the peak height values did 
not come from a normal (or log-normal) population.  The mean of the peak heights and their 
standard deviations were then plotted against target and fit to a line with intercept of 0.  The 

correlation coefficient was used to assess the goodness of fit. 
     Further, the frequency of allele dropout with respect to target was evaluated.  To calculate the 
frequency of dropout, only heterozygous results were considered during this analysis.  The 
frequency of dropout was calculated by dividing the number of non-detected alleles by the 

number of expected alleles.  This was performed for each target and for each locus.  Then four 
methods to characterize dropout were evaluated ï two óindirectô methods based on observed 
peak heights and two ódirectô methods using observed dropout frequencies.  The first of the 
óindirectô methods, named Method 1, included an assessment of the peak heights of the detected 

alleles to determine the predicted level of dropout.  Specifically, a histogram of allele peak 
height was created using Igor Pro v6.12 and the auto-set bin function.  A Gaussian curve was 
fit ted to the data using  
 

Ὢώ πȢυρ
 

Ѝ
     (Equation 11) 

 

where µ is the mean, ů is the standard deviation and ÅÒÆÚ ᷿Ὡ Ὠὸ and y is the peak 

height.  Therefore, to approximate the probability of dropout, f(y=1) was determined and was 
taken to be the probability that an allele is not detected at an RFU threshold of 1.  These 

probabilities were then compared to the frequency of dropout.  The second model to describe 
dropout, Method 2, was similar to Method 1 in that is utilized data obtained from detected alleles 
and is the second of the óindirectô methods.  However, in this instance the mean of the peak 
heights were calculated via 

 

‘ ώ
В

     (Equation 12) 

 

and  
 

„ ί
В

     (Equation 13) 

 
where µ is the mean, ů is the standard deviation n is the number of peaks and ώ is the arithmetic 

mean of the peak height observed for a locus at a specific target mass.  The values of ώ and s 
were then used as the µ and ů in Equation 11 and f(y=1) was determined and taken to represent 
the probability of non-detection (i.e dropout).   

     Two ódirectô methods to determine the Pr(D) at a given target mass were also evaluated.  This 
was accomplished by plotting the frequencies of dropout against the target amount of DNA (ng). 
Logistic[34] (Method 3) and exponential (Method 4) curves were fit to the data using Igor Pro 
v6.12.  The logistic curve takes the form 

 

Ὢὼ        (Equation 14) 

 

While the exponential curve is 
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Ὢὼ ὥὩ      (Equation 15) 
 

Therefore the probability of dropout , i.e. f(x), could be approximated for any target mass x. 
     The differences between the observed frequencies of dropout versus the probability of 
dropout, estimated via each of the methods, was used to assess which model to use during 
algorithm development.  Additionally, 45 single source samples, amplified using 0.25 to 0.008 

ng of DNA, and 12 two-person mixture samples (1:1 or 1:2 mixture ratios), amplified using a 
target of 0.25 to 0.016 ng, were used to further test the validity of the chosen model.  The 
likelihoods (calculation described in Literature Review using Equation 2 and 3) for n =1, 2, 3 and 
4 were calculated using the frequency of dropout and the calculated probability of dropout for 

each contributors target mass.  The probability of dropout was estimated using Method 4 and 
APP differences < 0.05 were considered indications of the validity of Model 4. 
     Lastly, stutter models which describe the change in stutter ratio per locus for every target 
were established.  In this instance, the average stutter ratios were calculated as per, 

 

       (Equation 16) 

 
where Ὄ  is the height of the peak in stutter position and Ὄ  is the height of allele a.  The 

average stutter ratio was then plotted against target mass for each locus.  The standard deviations 

of  were also plotted against target mass.  A decreasing exponential curve was fitted to the 

points and the goodness of fit was assessed by examining the residuals. 

     Once the four models which describe the 1) baseline noise, 2) allele peak height, 3) allele 
dropout and 4) stutter ratios with respect to template mass were chosen, Phase II of the project ï 
which focused on the development and testing of the algorithm to determine the NOC ï ensued.  
The software and its algorithm will henceforth be referred to as NOCIt.   

Phase II. 
     NOCIt calculates the a posteriori probability (APP) on the number of contributors ὔ given a 

particular evidence sample (electrophoresis profile) Ὁ.  That is, it calculates 0Ò ὔ ὲὉ for ὲ
ρȟςȟσȟȣ. We assume that a priori ὔ is uniformly distributed between 1 and ὲmax, the maximum 

possible number of contributors. Thus, by Bayesô rule, we obtain 
 
 0Ò ὔ ὲὉ ᶿ0Ò Ὁȿὔ ὲ,     (Equation 17) 

 
 

for ὲ ρȟȣȟὲmax. Let Ὃȟɡ be the genotype of and fraction of total DNA mass, respectively, 

contributed by Ὥɴ ρȟȣȟὲmax, and let ╖ and  be the ὲmax-component vectors of the Ὃ and ɡ, 
respectively. We have 

 

0ÒὉȿὔ ὲ 0ÒὉȿ╖ ▌ȟ Ᵽȟὔ ὲ0Ò╖ ▌Ὢ Ᵽ

▌ɴ ᴍⱣɴ

 
(Equation 

18) 

 

where ɝ ḧ ὼȟȣȟὼ ᶰᴙȿВ ὼ ρȟὼ π ᶅ Ὥ is the unit ὲ ρ simplex, ᴍ is the 
space of possible genotypes (for both alleles of a contributor) in the population, and Ὢ is the 

probability density function of , which we assume to be uniform over ɝ .  The distribution 



 17 

0ÒὉȿ╖ ▌ȟ Ᵽȟὔ ὲ is known because it is derived from calibration samples with known 

genotype. 
     We implement NOCIt using a Monte-Carlo sampling algorithm.  We generate random samples 
of ▌ and Ᵽ using the background population allele frequencies and Ὢ and, for each sample, we 

compute 0ÒὉȿ╖ ▌ȟ Ᵽȟὔ ὲ.  After a large number of samples, we average all the 
computed values of 0ÒὉȿ╖ ▌ȟ Ᵽȟὔ ὲ to obtain an approximation of Equation 18.  We 

then calculate the APP according to 
 
 0Òὔ ὲȿὉ

 ȿ

В  ȿmax .          (Equation 19)  

     

     To determine the probability of the evidence given a specified genotype ▌ and Ᵽ, the baseline 
noise, reverse stutter proportions, dropout rates and allele heights/areas are all considered and 
modeled as a function of target amount (i.e. mass).  In every iteration of the Monte Carlo process, 

a genotype ▌ is randomly chosen based on the frequencies of the alleles provided in any allele 
frequency table.  In the current iteration of NOCIt, modeling of the dropout frequencies, means 
and variances of true peak heights, means and variances of the baseline noise heights, and the 

means and variances of stutter ratios is carried out using the following: An exponentially 
decreasing curve (Pr(D) = ae-bx) was used to model allele dropout, an exponentially decreasing 

curve (ὛὙ= ae-bx+c) was used to model the average stutter ratio (SR), a straight line with a positive 

slope (Ὄ  = mx) was used to model the peak height, and a straight line with positive slope 

(Ὄ = mx+b) was used to model height of the baseline noise.  For every allele in the genotype 
of the contributors, dropout of the allele is simulated by a Bernoulli trial.  Two assumptions are 

made with regard to dropout: a) Dropout of one allele of a contributor is independent of dropout 
of the contributor's other allele and b) Dropout of an allele from a contributor is independent of 
dropout of the same allele from another contributor.  Based on the evidence observed, the 
likelihood of observing the heights of the peaks given the genotypes of the contributors, the 

mixture ratio, the amount of DNA amplified and the time of injection is computed using calibration 
data.  The STR loci are assumed to be independent of each other and the distributions for peak 
height, noise height and stutter ratios are assumed to be Gaussian. 
     To test the algorithm and software system, 1555 single source samples from 58 donors with 

known genotypes were used to calibrate NOCIt.  During creation of the sample profiles, 3 times 
of injection (5, 10 and 20s) were used.  The injection time is typically increased in the case of low 
template samples to increase the signal-noise ratio and hence 3 different sets of data each at a 
different injection time were used to study the change in signal with injection time.  To test the 

performance of the software, NOCIt was run on 1-, 2-, 3-, 4- and 5- person mixtures.  The 
performance of NOCIt was compared to the MAC and MLE methods.  MAC uses the number of 
peaks observed in the signal to determine the minimum number of contributors while MLE uses 
the number of peaks as well as the allele frequencies.  Both methods depend upon the establishment 

of a threshold to determine the set of true peaks.  The threshold is typically chosen by a laboratory 
based on internal validation data.  Two different types of thresholds were used for MAC and MLE 
for comparison purposes.  The first threshold was a constant threshold of 50 RFU at all the loci, 
which is a commonly used threshold in forensic laboratories.  The second threshold is a variable 

threshold.  At each injection time, this threshold varies with DNA amount and dye color.  Thus, 
this threshold was set by determining the height of the highest noise peak observed in the 
calibration data corresponding to a DNA amount, dye color and time of injection and setting that 
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height as the threshold for that DNA amount, dye color and time of injection.  Application of MAC 
and MLE also used a stutter threshold to filter out the peaks in the reverse stutter position.  Thus, 
any peak in the stutter position with a ratio less than the stutter filter was removed.  The stutter 

filter specified by Applied Biosystems in the AmpFlstr® Identifiler® Plus manual was used.[29]   
Allele frequencies from the Caucasian population specified in the AmpFlstr® Identifiler® Plus 
manual were used for the NOCIt and MLE methods.[29] 

Results 
Phase I. 
     If an AT is to be utilized during evidence interpretation, consideration as to the which template 
ranges to study are of importance[35]; this is particularly true when examining low-level, complex 
mixtures since it is necessary to keep the AT to a minimum if allele dropout is to be minimized.[ 19]   

To explore the impact different target ranges have on determining the ATs, three ranges of target 
masses were evaluated.  Range 1 consisted of evaluating the baseline noise heights and y-intercepts 
obtained when 0.25, 0.125, 0.063 and 0.047 ng samples were utilized.  Range 2 examined the noise 
and intercept obtained when examining the lowest mass range, 0.047, 0.031, 0.016, 0.008, and, 

Range 3 examined the results from 4 targets evenly spread throughout the entire range of masses 
tested (0.25, 0.063, 0.031, 0.008 ng).  Figure 4. shows either the y-intercept and 3 times the 
standard deviation or the average height of the noise and 3 standards deviations obtained when 
data from Ranges 1, 2 and 3 were utilized.  It is observed that, as discussed and predicted by 

Currie[33], the range of templates utilized to estimate the AT using Equation 5 can have a 
significant impact on the final result.  For example, when Range 1 and Equation 5 are utilized to 
determine the AT, the result is substantially higher than the AT derived using Ranges 2 and 3.  
Further, the ATs derived using this method yields AT which are up to 2 orders of magnitude larger 

than the ATs derived when the baseline noise is directly examined, and is similar to previously 
published results.[20]  The ATs derived by directly examining the heights of the baseline noise 
using data from each of the Ranges is provided in Table 5.  The higher range of masses, Range 1, 
results in higher ATs than the other two ranges tested, suggesting that when determining ATs for 

forensic purposes, mass ranges used during validation studies must take into account the template 
masses tested and expected in casework.  Therefore if low-template DNA analysis is sought, a 
representative data set which includes the full-range of template masses observed in casework is 
recommended.    

     Although utilization of an AT determined via careful consideration of the template masses 
may decrease the Type II error rates (rates of false non-detection of true alleles) associated with 
allele detection, Figure 5 shows that the average and standard deviations of the baseline noise for 
each color channel change with template mass, suggesting that rather than utilizing an AT, a 

model which describes the baseline noise may prove useful for determining the NOC for low-
template samples.  As a result, the average and standard deviation of the baseline noise for each 
locus was plotted against target and showed the same trend.  Representative plots are provided in 
Figure 6.  It is observed that the averages and standard deviations of the noise remains relatively 

stable between 0.008 and 0.125 ng, but then increase with target.  When an OLS regression is 
performed for similar data at every locus, at all three injection times, the trends are similar.  
Although the linear fit tends to overestimate the noise at targets of 0.125 and 0.25 ng, the 
residuals for the average differ did not exceed 2 RFU, suggesting the linear model may be useful 

for purposes of describing the increase in baseline noise with target masses.  Further the R2 
values for the mean noise heights were 0.82, 0.93, 0.94 and 0.90 for the CSF1P0, D3S1358, 
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D18S51 and D5S818 loci respectively.  The R2 values for the standard deviations for the same 
loci were 0.90, 0.97, 0.94 and 0.56.  All loci showed similar results.   
     To further examine which distribution to utilize in order to describe the noise, two 

distributions were tested.  In Figure 7a the histogram of the noise peak measurements (all targets) 
is plotted for the different loci.  Most of the probability mass is concentrated in zero, i.e., most of 
the quantized noise peaks have zero height.  Therefore, for further analysis, we consider only the 
non-zero noise peak measurements.   

     Figure 7b shows the empirical CDF of the quantized noise peaks for samples amplified with 
0.25 ng of DNA 
 

Ὂ ὼ
ȿ ȿ
В ρᶰ      (Equation 20) 

 

and ὊȟǶὼȟ i.e., the CDF of a quantized log-normal distributed random variable with parameters 

ά ά and ί ίǶ for each locus.  In the title of each sub-figure the Kolmogorov-Smirnov test 

statistic 
 

+3ȤÓÔÁÔÓÕÐὊ ὼ ὊȟǶὼ       (Equation 21) 

 

and the corresponding p-value are given.  In Figure 7c the histogram of the quantized noise 
peaks and a pseudo PMF of a quantized log-normal distributed random variable with parameters 
ά ά and ί ίǶ is visualized.  The high p-values show that the null hypothesis that the 

quantized noise peaks follow a quantized log-normal distribution cannot be rejected.  We are 
aware that our approach has two conceptual weaknesses.  First, we estimate the parameters s and 
m from the same data that we use for the Kolmogorov-Smirnov test.  Second, we use the 
Kolmogorov-Smirnov test for quantized data, and it is known to be too conservative, i.e., giving 

p-values which are too large.  Therefore, the …-test as also applied on the data and utilized to 
assess whether the log-normal or normal distributions are reasonable assumptions for the noise 

distribution.   
     Figure 7d shows a comparison of the log-normal and the normal distribution.  The parameters 
of both distributions were obtained from the data by maximum likelihood estimators.  It can be 
seen that the p-values of the Kolmogorov-Smirnov test for normal distribution are in the range 

from 0 to 0.651.  In particular, loci D2S1338, D3S1358, D8S1179, D18S51,D19S433, D21S11, 
FGA, and TH01 have a p-value smaller than 0.05.  Thus, given a significance level of 0.05, the 
null-hypothesis that the quantized noise peaks follow a quantized normal distribution for these 
loci would be rejected.  In Figure 7e we see the p-values of the …-test for the log-normal and the 

normal distribution.  Except for locus D2S1338 the p-values for the log-normal distribution are 
all larger than 0.05.  This confirms the previous findings that the log-normal distribution is a 

reasonable assumption for the noise distribution.  In contrast, except for locus D13S317, all p-
values for the normal distribution are smaller than 0.05, which is significant for the rejection of 
the null-hypothesis. 
     To evaluate the change in allele peak height, a similar analysis was performed.  In this 

instance the average peak heights (only heterozygous results are used) for each locus was plotted 
against the target mass and an OLS regression ensued.  Figure 8 shows the results for samples 
injected for 10 sec.  In all cases, the linear model fits well to the data, whereby the R2 values for 
all loci were Ó 0.97.  Plots of the standard deviation of the peak heights versus target resulted in 
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R2 Ó 0.92 for all loci.  Although endpoint PCR has traditionally been considered a sub-optimal 
way to quantify peak heights, low-template samples are not expected to exhibit obvious 
plateauing effects at cycle numbers as low as 29.  That is, if the amplification efficiency of the 

PCR is 100% at the end-point cycle number of 29, and it is assumed the portion of the product 
and the RFU is directly proportional to the concentration of amplified product at 29 cycles, the 
following linear relationship is obtained,  
 

ACRFU j += 29

0, 2f            (Equation 22) 

 
where the A is the y-intercept (and may be expected to be 0 if the proportionality is unbiased) and 
the slope is 229

 
multiplied by a proportionality constant (ʟ).  Therefore, if optimal conditions are 

met, the samples contain accurate DNA concentrations, and the approximation that PCR efficiency 

does not change between concentrations is valid, a plot of RFU versus Cj,0 results in a straight line.  
However, the target mass at which plateauing effects will begin to be significant is dependent on 
the number of cycles and the template mass.  It is to be emphasized that the current work focused 
on low-template (Ò 0.25 ng) masses and therefore the dynamic ranges for this approach would 

need to be evaluated for each kit or amplification process.  For example, if the dynamic range for 
an amplification kit which utilizes 29 cycles is 0.008 to 0.5 ng, it may not be assumed that the 
dynamic range is equivalent for a process that uses 32 or 35 cycles.  However, previous studies 
have shown that the dynamic range can be quite large and were up to 1 ng for the AmpFlstr®  

Identifiler® kit (28 cycles).[20]  The distributions of the allele peak heights were also examined 
and the results for representative locus D21S11 are shown in Figure 9.  Qualitatively, both the log-
normal and Gaussian distributions seem reasonable.  To confirm this quantitatively, Kolmogorov-
Smirnov tests were applied and the results for the 0.25 ng samples are depicted in Figure 10 and 

11 for the Gaussian and log-normal distributions, respectively.  The KS statistic and the p-values 
are provided along with the cumulative distribution functions.  The smallest p-value, when 
comparing the Gaussian to the empirical distributions, was 0.108 at D2S1338 and the smallest p-
value for the log-normal comparison was 0.143 at D5S818.  Since all loci resulted in p > 0.05, 

both the Gaussian and log-normal distributions were considered appropriate for algorithmic 
development purposes. 
     The probability of dropout and the modeling thereof has been extensively studied in the 
literature.  Typically, the logistic model is applied.[10, 12, 13]  However, dropout models are 

typically dependent upon the ability to measure the dropout rate as a function of total peak height, 
or surviving sister allele.  Therefore, it was of interest to examine whether the same ï or similar ï 
models can be applied when the independent variable is the mass.  Since the peak height can be a 
good indication of the input mass, the logistic model is hypothesized to be of value in this instance.  

Three other methods to estimate dropout probability were also assessed.  Methods 1 and 2 utilize 
peak height data to extrapolate that information in order to estimate the probability of non-
detection of an allele. Results on the cumulative distribution of the empirical data compared to the 
Gaussian curve generated using Method 1 and 2 for a representative locus, D16S519, is shown in 

Figure 12 for single source samples amplified using 0.25 and 0.008 ng.  The associated means and 
standard deviations are shown in Table 6.  Although similar, Method 1 results in smaller residuals 
and a better fit to the data.  However, both methods overestimate the dropout rates at high targets 
and underestimate the rates at low targets.  Figure 13 shows the frequency of dropout for the same 

locus, D16S519, plotted against target.  Here the data is fit to either a logistic (Method 3) or 
exponential (Method 4) function and the residuals are also indicated on the figure.  The coefficients 
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(Equations 14 and 15) were 0.25 and 0.72 for coefficient a, and -131 and -105 for coefficient b for 
the logistic and exponential fits, respectively.  Similar trends were obtained for all loci tested.  A 
summary of the estimated probabilities of dropout for the D16S519 locus, calculated via Methods 

1-4 at 7 target amounts are summarized in Table 7.  This shows that the óindirectô methods for 
characterizing dropout overestimate dropout at higher targets and underestimate it at lower targets, 
while both ódirectô methods are appropriate ways of characterizing allele dropout.  The 
underestimations associated with Methods 1 and 2 suggest other factors beyond detection and PCR 

variation contribute to allele non-detection, as hypothesized by Gill et al.[36]  Further, across all 
loci, the frequency of dropout increased as target amount decreased and increased with increasing 
molecular weight.  Since Method 4 was deemed an appropriate model to determine Pr(D), the 
validity of Method 4 to estimate the NOC was tested.  In this experiment, 45 single source samples, 

amplified using 0.25 to 0.008 ng of DNA were utilized.  The likelihoods that n=1,2,3 or 4 
contributors gave rise to the profile were determined using the either the frequency of dropout or 
the Pr(D) calculated via Method 4.  The APP was then plotted and the results are shown in Figure 
14a.  The same examination was performed on 12, two-person mixtures and the results are 

presented in Figure 14b.  Figure 14 shows that the APPs obtained using the model versus the actual 
frequencies of dropout are very close, whereby the difference never exceeded 1x10-6.  This is an 
indication that Method 4 is a viable method for determining the Pr(D) for purposes of determining 
the NOC to low-template DNA mixtures.   

     The last parameter to be assessed and characterized was stutter.  To accomplish this, the average 
stutter ratios were plotted against target mass and a decreasing exponential curve was fit to the 
data.  A representative plot for the D8S1179 locus is shown in Figure 15.  Qualitatively it is 
observed that the mean and standard deviation of the stutter ratio increases as target amounts 

decrease.  This phenomenon was observed for all loci tested.  Therefore, using the fit information 
provided in Figure 15, one can estimate the average stutter expected for the D8S1179 locus 
amplified with the AmpFlstr® Identifiler® Plus chemistry/protocol.  Therefore at 0.008 ng, an 
average stutter ratio is expected to be 

 
ὥὺὩὶὥὫὩϷίὸόὸὸὩὶπȢςςπχὩ Ȣ πȢπφυρ, where x=0.008 ng     (Equation 23) 

ὥὺὩὶὥὫὩϷίὸόὸὸὩὶρςȢυϷ 
 

The standard deviation of stutter is modeled in a similar fashion where the y0, a and b coefficients 
for the D8S1179 locus were determined to be 0.5336, -191.54 and 0.0237, respectively.  Therefore 
the standard deviation of %stutter can be calculated in a similar fashion 
 

ὛὸὨὩὺϷίὸόὸὸὩὶπȢυσσφὩ Ȣ πȢπςσχ, therefore at x=0.008 ng,     (Equation 24) 

ὛὸὨὩὺϷίὸόὸὸὩὶρσȢτϷ 
 
The average %stutter at D8S1179 for a 0.008 ng sample of 12.5 ± 13.4% is significantly different 

from the %stutter calculated for x = 0.25 ng which is 6.5 ± 2.4%.  The %stutter obtained from the 
0.25 sample are similar to the range of values provided in the manufacturerôs manual for the 
D8S1179 locus, i.e. 2 ï 11% for all alleles.[29]  It should be noted that although the stutter ratios 
could also be modeled on a per allele basis, the model shown here takes the average stutter ratio 

for all alleles within a locus.  It is expected that stutter models which utilize the length of the 
longest uninterrupted sequence would be of value, but are beyond the scope of this work.  Each 
locusô average and standard deviation of stutter was plotted and fit in this manner and the 
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aforementioned model was used to determine the NOC.  Stutter distributions were assumed to be 
Gaussian.   
Phase II. 

     To determine the NOC to a DNA sample, all parameters were modeled as a function of template 
and all distributions were assumed to be Gaussian.  Specifically, the baseline noise was modeled 
as a line with a non-zero y-intercept, the allele peak heights were modeled as a straight line with a 
y-intercept of 0, the average stutter ratios were modeled as an exponential.  The standard deviations 

were modeled using the same functions as the means.  The probability of allele dropout and non-
occurrence of stutter was modeled as an exponential.  Each of the models was examined, either 
through analysis of the residuals or via more extensive means, to confirm their validity.  The 
normal distribution was shown to be reasonable for describing the variability in the peak heights 

at all loci at various targets.  Gaussian distributions were assumed for stutter ratio and noise 
calculations.  Future implementations of the algorithm are expected to incorporate improvements 
in the noise and stutter models as per findings in Phase I of this study.   
     The performance of NOCIt was compared to the Maximum Allele Count (MAC) and the 

Maximum Likelihood Estimator (MLE) methods.  Since the MAC and MLE methods rely on the 
use of ATs, two different ATs were tested.  The first was the common AT of 50 RFU and the 
second AT was the maximum noise peak observed for a given color channel.  Figure 16 shows 
the performance of MAC, MLE and NOCIt for 30, 1-person samples amplified using 0.25 ï 0.16 

ng of DNA (i.e. 5 samples amplified at 0.25, 0.125, 0.063, 0.047, 0.031, 0.16 ng).  Each sample 
was injected three times; once utilizing a 5 second injection, once with a 10 second injection and 
once using 20 second injection.  The %accuracy is calculated by determining the most likely 
NOC divided by the actual NOC, multiplied by 100%.  Figure 16 shows the summary of results.  

For single-source samples, the performance of the MLE and MAC methods are dependent upon 
injection time.  Specifically, MACs accuracy decreased from 93 to 70% when an AT of 50 RFU 
was utilized.  In contrast, when an injection specific AT was used the %accuracy of MAC 
increased from 70 to 90%, indicating the importance of ATs which are specific to the laboratory 

process.  The %accuracy of the MLE method decreased with injection time when a constant AT 
was used, while %accuracy increased when an injection specific AT was applied.  The accuracy 
of NOCIt also decreased with an increase in injection time from 100% to 93%.  However, for 
every sample at every injection, NOCIt resulted in the highest accuracy rates and was not 

drastically impacted by time of injection.  Figure 17 shows the %accuracy of 2-person mixture 
samples which consisted of 30 samples amplified at various targets (0.25, 0.125, 0.063, 0.047 
and 0.031 ng) using various ratios (1:1, 1:2, 1:4, 1:9, 1:19).  It should be noted that samples 
containing less than 2 cells worth of DNA (< 0.012 ng) from any one contributor were not 

utilized to assess accuracy.     
     Changing the injection time resulted in minor decreases in performance for all methods.  
Figures 18, 19 and 20 are the results from the 3-, 4- and 5- person mixtures respectively.  The 3-
person accuracy study was conducted by amplifying 13 samples using 0.047, 0.063, 0.0125 and 

0.25 ng of DNA at ratios of 1:1:1, 1:2:1, 1:4:1, 1:9:1, 1:2:2, 1:4:4, 1:9:9.  The 13, 4-person 
mixtures contained 0.25, 0.125 and 0.063 ng of DNA mixed in 1:1:1:1, 1:1:2:1, 1:1:4:1, 1:1:9:1, 
1:2:2:1, 1:4:4:1 and 1:9:9:1 ratios.  Lastly, 14, 5-person mixtures consisted of samples mixed in 
1:1:1:1:1, 1:1:2:1:1, 1:1:4:1:1, 1:1:9:1:1, 1:1:2:2:1, 1:1:4:4:1, 1:2:2:2:1, and 1:4:4:4:1 ratios, 

amplified using 0.063, 0.125 and 0.25 ng total mass of template DNA.  Similar to the 1-person 
samples, a minimum of 2 cells was required for accuracy testing.   
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     For the 2-person and 3-person samples, at all 3 injection times, NOCIt underestimated the 
number of contributors at the lower DNA amounts (2-person samples were called as 1-person 
samples, while most of the 3-person samples were called as 2-person samples and a few as 1-

person samples). At the higher DNA amounts (> 0.047 ng), NOCIt had 100% accuracy with the 
2-person and the 3-person samples.  There were no overestimates from NOCIt for the 2-person 
and 3-person samples.  The 4- and 5- person samples show that the overall %accuracy of all 
methods decreases and falls below 80%, regardless of injection time and/or AT utilized.  However, 

there is a marked increase in the accuracy rates between the MAC and NOCIt methods for these 
complex mixtures, where the %accuracy of NOCIt was 2-fold greater than MAC.  Further, the 
MLE method was superior to the MAC method for high-level mixtures and also resulted in a two-
fold increase in the %accuracy over MAC.  However, MLE was dependent on both injection time 

and AT, where the highest %accuracy was obtained with a 20 second injection and a constant AT 
of 50 RFU.  Interestingly, MAC nearly always underestimated the 5-contributor mixtures (only 
one sample was correctly identified as a 5-person mixture).  MLE resulted in higher accuracy rates 
with the highest %accuracy (i.e. 71%) originating from the dataset analyzed using a 20 second 

injection time and a constant AT of 50 RFU.  NOCIt resulted in the highest %accuracy of 64% 
when the 20 sec injection was utilized.  The MLEs accuracy is highly dependent on the injection 
time for the 4- and 5-person samples, where the %accuracy was 15%, 46% and 69% for the 4-
person mixtures injected for 5, 10 and 20 seconds, respectively.  The %accuracy of MLE for the 

5-person mixtures was 14%, 57% and 71% for the 5, 10 and 20 second injections respectively.  
This is hypothesized to be the effect of increasing the rates of allele detection by increasing the 
amount of product in the capillary.  In contrast, NOCIt results were not as affected by injection 
time for these samples and were 69%, 61% and 69% (4-person) and 50%, 43% and 64% (5-person) 

for the 5, 10 and 20 second injections.  A summary of results for each time of injection for all 
samples/mixtures is shown in Figure 21.  In summary, for all samples and mixtures tested, NOCIt 
resulted in higher accuracy rates for all times of injection.  Further, it was unaffected by injection 
time, suggesting an approach which utilizes information procured from the laboratory and takes 

into account the changing stutter, baseline noise, dropout rates and peak heights is essential for 
accurate interpretation of low-template mixtures.  This information further highlights that the 
minimum number of contributors is not equivalent to the actual NOC for low-template or highly 
mixed samples.  Although the MLE method resulted in higher rates of accuracy than MAC, 

especially for samples containing 4- and 5- contributors, it is highly dependent on the rate of allele 
detection.  If MLE is to be utilized for low-template samples, enhancing the amount of product 
injected into the capillary is one way to improve its accuracy.   
     The %accuracy rates of < 80% for the 3-, 4- and 5- person, low-template mixtures highlights 

the issues associated with complex mixture interpretation.  For example, Figure 22 is the 
electropherogram and corresponding output from NOCIt for a sample amplified using a low-
template (0.016 ng) mixture of 2 contributors injected for 10sec using a 3 kV injection voltage.  
The peaks which can confidently be discerned from baseline are highlighted with a red arrow.  

Within the arrow is the allele designation (i.e. STR allele).  The loci and true genotypes of 
contributor 1 and 2 (i.e. G1 and G2) are also depicted.  As expected, the electropherogram shows 
there is a substantial amount of allele dropout and there are multiple loci with complete dropout.  
Note that the alleles 9,12 at the D7S820 are a composite of two heterozygous contributors where 

one allele from each contributor dropped out.  Therefore, unless the laboratory has a standard 
operating procedure which explicitly prohibits the interpretation of such low-template samples 
using this sample and others like it are at high risk for mis-classification using MAC and MLE as 
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there is no quantitative indication that an NOC of 2 is a possibility.  Thus, extremely corrupted 
samples, such as the one depicted in Figure 22 were also tested in an attempt to evaluate whether 
it is possible to deduce the true NOC without significant probability of error. To evaluate this, 53 

samples which contained very low quantities (i.e., < 2 cells) from any contributor were evaluated 
and the results are shown in Table 8.  Table 8 depicts the difference between the calculated NOC 
and the true NOC obtained via the MAC, MLE and NOCIt methods.  Overall, the accuracy of 
these samples is lower than samples which do not exhibit excessive allele drop-out from any one 

contributor and resulted in accuracy rates of 26%, 26% and 30% for the MAC, MLE and NOCIt 
methods respectively.  It is also observed that the extent to which the samples are underestimated 
is substantial in that they may be underestimated by more than one contributor.  MAC and MLE 
grossly (i.e. NOCCalc-NOCTrue Ò -2) underestimated the NOCôs 55% of the time.  In contrast, for 

samples containing a minor contribution containing < 2cells, NOCIt grossly underestimated the 
NOC 45% of the time.    
     Since there is a non-trivial probability of error associated with evaluating NOC, NOCIt 
provides an estimate on the NOC.  Figure 22 shows the output obtained when the sample was 

interpreted using NOCIt - using an nmax =2 - and shows that the output does not provide a single 
number (i.e. the estimated NOC).  Rather than provide the most likely NOC, NOCIt presents the 
end-user with the probability that the stain originated from 0 versus 1 versus 2 separate, 
independent biological sources.  By providing the probability estimates, NOCIt supplies the 

measure of uncertainty associated with the assessment.  This allows the ability to assess the 
validity of the assumption on the NOC reported and can also be an indication of the complexity 
of a sample.  The APPs of 1E-429, 0.91 and 0.09 for n= 0,1 and 2, respectively, shows that 
although NOCIt suggests the most likely NOC is 1, it also suggests there is a reasonable 

probability that the NOC may also be 2.  Figure 23 shows the comparison between the 
%accuracy of NOCIt (as depicted in Figures 16 to 20) versus the percentage of time NOCIt 
resulted in a probability of at least 1% for the number of contributors in the sample.  For 
example, for the data set containing 2-contributors, the percentage of time NOCIt returned an 

APP Ó 0.01 for n=2 was determined.  An APP of 0.01 was utilized as a cutoff indicating that 
NOCIt showed a óreasonableô probability that the sample may have originated from the correct 
NOC.  As indicated in Figure 23, the óaccuracyô increases for every mixture set.  This again is an 
indication that complex DNA mixtures may need to be evaluated under multiple assumptions 

using probabilistic analysis methods ï particularly when the number of contributors exceeds 2 
and the total template mass is Ò 0.25 ng.  Since the output is in the form of an APP distribution, 
an assessment of the complexity of the profile prior to comparison is possible.  Figure 24 shows 
the APP distribution for a low-template 2-person mixture when only 10 loci are considered, and 

shows the output can be used to inform the analyst of the potential complexity of a sample.  For 
example, if the probabilities are not strongly peaked, then this information could be utilized 
during the comparison to a known.  That is, multiple LRôs may need to be calculated and 
reported, or the LR may incorporate multiple assumptions on NOC, or the laboratory may report 

that since the NOC is in question, the sample is too complex to render a meaningful conclusion 
with respect to a known.   
     A prototype of NOCIt has been developed in Java and the interface is shown in Figure 25.  The 
NOCIt application, technical manual and tutorial may be downloaded from 

www.bu.edu/dnamixtures.  Modeling of 1) peak height with respect to target, 2) reverse stutter 
ratios with respect to target, 3) baseline with respect to target and 4) allele dropout with respect to 
target have been integrated into the system.  Output files that contain the APPs on the NOCs, the 

http://www.bu.edu/dnamixtures
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input information (i.e. calibration file used, frequency information used and sample file) and the 
analysis time is available for the end-user to utilize with reports or further studies.   
     NOCIt can be used within the forensic DNA laboratory process and does not require 

interruption to the current laboratory scheme.  That is, data analyzed using the current laboratory 
software (i.e. GeneMapper) is exported in tabular form and used by NOCIt.  The following is a 
description of the standard operating procedure used with NOCIt and details the user/laboratory 
interaction; 

1. NOCIt has been written in Java and is designed to work on Windows systems running JRE 
1.7. 

2. Download NOCIt.  The software is present as part of a zip file.  Extract the contents of the 
zip file. óNOCIt.jarô is the file used to run the software. The folder ólibô contains the Apache 

Commons Math files used for curve fitting. óNOCIt.jarô and the folder ólibô should always be 
kept in the same directory. 

3. Double click on óNOCIt.jarô to launch the software. 
4. NOCIt requires the users to provide 6 inputs, the formats of which are described below: 

a. Calibration file: This file contains the single source samples used for calibration of the 
software and should be in the ócsvô format.  For example, it is the GeneMapper output 
file, analyzed using a 1RFU peak threshold.  The first line is a header line. The first 
column is óGeneral informationô and contains details about the calibration samples.  This 

column is not used by the software during the calculation. The second column contains 
the DNA input (in ng) used to amplify the sample.  The third and the fourth columns 
contain the 2 known alleles present in the sample at the locus. Homozygous alleles are 
listed twice. (i.e. 10,10). The fifth and sixth columns are óMarkerô and óDyeô.  From the 

seventh column onwards, the description of the peaks are present, with each peak having 
3 characteristics: óAlleleô, óSizeô and óHeightô, in that order. 

b. Allele frequency file: This is the file containing the frequencies of the alleles in the 
population the user is testing.  The file should be in the ócsvô format.  The first line is a 

header line. The first column is ólocusô, the second column is óalleleô and the third 
column is ófrequencyô. At every locus, only the set of alleles present in the frequency 
table are considered potential alleles while performing the calculation. 

c. Sample file: This is the óevidenceô file with the unknown number of contributors that the 

user is interested in analyzing.  This file should be in the ócsvô format.  This is exported 
from the laboratoriesô data analysis software (i.e. GeneMapper) using an RFU threshold 
of 1.  The first line is a header line.  The first column is a óGeneral informationô column 
that contains details about the sample and is not used by the software.  The second and 

third columns are óMarkerô and óDyeô.  From the fourth column onwards, the description 
about the peaks are present, with each peak having 3 characteristics: óAlleleô, óSizeô and 
óHeightô, in that order.  

d. Output file: This file contains the results of the calculation. The output file is in the ótxtô 

format. The user can browse and choose a txt file as the output file. Alternatively, if no 
output file is provided, NOCIt creates an output file in the same directory as the sample 
file and with the default name ñ óSample file nameô_NOCIt_output.txt ò.  An example of 
the output file is provided in Figure 26.   

The beginning of the output file contains the inputs specified by the user - the calibration 
file, the frequency file, the sample file and the sample DNA input. 
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After that, the results of the calculation are shown. For each number of contributors, 
NOCIt displays: 
ü The time taken (in minutes)  

ü The probability of observing the evidence at each locus, given the number 
of contributors 

ü The set of alleles at every locus that had the highest probability while 
doing the sampling 

ü The probability of observing the entire evidence, given the number of 
contributors. This is computed as the product of the probabilities at all the 
loci. The value is displayed as óLikelihoodô. 

ü The probability of the sample coming from the number of individuals, 

given the evidence. This is computed by normalizing all the likelihood 
values to add to 1. The value is displayed as óProbabilityô. 
 

e. Maximum number of contributors: This is the maximum number of individuals for 

which the user is interested in computing the likelihood.  Valid values: Any integer 
between 0 and 5. 

f. DNA input: This represents the amount of DNA amplified to obtain the sample profile. 
Valid values: Any real number greater than 0. 

5. Once all the inputs have been specified, click on óStartô to initiate the calculation. 
6. A progress bar starts moving and indicates that the software is running. 
7. Click on óStopô at any moment to terminate the calculation. The values that have been 

computed up to this point would be written to the output file. 

8. If the software continues running uninterrupted, at the end of the calculation a pop up box 
informs the user that the software has finished running. 

9. Open the output file to view the results. 

Conclusion 
     Allele dropout was shown to have a detrimental effect on the ability to infer the actual number 
of contributors.  As allele dropout increased, so did the probability of underestimating the NOC. 

     Models that estimate the rise in baseline noise and allele heights were developed.  Both the 
baseline noise and allele peak heights increased linearly with target.  Although the linear model 
was chosen for baseline noise in this study, further valuation into the model is required since it 
was observed that the linear growth occurred when target mass > 0.125 ng.  Further, it is unclear 

if this increase in baseline noise at targets > 0.125 ng is consistent between kit chemistries, 
laboratories, instruments, etc.  Therefore, future research would aim at elucidating an approach 
that utilizes information provided in 1) blank/negative samples and 2) samples containing DNA.  
The exponential function was found to be a good approximation of 1) the frequency of dropout 

and 2) the average stutter ratios at a locus.  Since the stutter ratio is dependent on the number of 
uninterrupted repeats, examination into the implementation of sequence specific stutter models are 
warranted.  Gaussian distributions were assumed, and the approximation was tested for baseline 
noise and peak height.  Preliminary results suggest the Gaussian distribution describes the 

variability it the peak height well.  Baseline noise is better described using a log-normal 
distribution, and studies that assess the impact of this finding on determining the NOC are 
warranted.  Stutter ratios were calculated for the entire locus and a Gaussian distribution was 
assumed.  Though the stutter ratio model and distribution used for NOCIt resulted in high levels 

of accuracy, improvements to the models/distributions describing stutter are of interest. 
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     As the signal-noise ratio increased with an increase in injection time, so did the accuracy of 
MLE.  MAC was shown to be an insufficient method for determining the actual NOC for samples 
containing more than 2 contributors.  NOCIt was minimally affected by a change in the injection 

time, as the software is designed to use parameters from calibration data corresponding to a specific 
laboratory process.  Overall, the accuracy of all 3 methods increased with an increase in DNA 
amount.  Samples that contain at least one contributor with fewer than 2 cells are prone to gross 
underestimation, where the actual and calculated true NOCs differ by at least 2.  Thus, in addition 

to providing estimates on the most likely NOC, NOCIt provides the APP distribution across 0 to 
5 contributors such that the uncertainty associated with likely NOC is available to the analyst and 
trier-of-fact.  Information on NOCIt training and the use of NOCIt can be found on 
www.bu.edu/dnamixtures. 
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Tables 
 
Table 1.  Allelic peaks observed in a typical DNA electropherogram 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

  

Locus Peak 1 Peak 2 
D8S1179 13 16 

D21S11 29 32.2 
D7S820 8 11 
CSF1PO 11 12 
D3S1358 15 16 

TH01 6 9 
D13S317 11 11 
D16S539 11 12 
D2S1338 19 24 

D19S433 15 15 
vWA 18 19 
TP0X 8 11 

D18S51 13 14 

D5S818 10 12 
FGA 20 20 
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Table 2.  Possible genotype combinations that may explain how two random individuals could 
have given rise to the genotype in Table 1. 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
  

Row 
Possible Genotypes 

Person 1 

Possible Genotypes 

Person 2 

1 13,13 13,16 or 16,16 

2 13,16 13,16 or 13,13 or 16,16 
3 16,16 13,13 or 13,16 
4 13,13 16,O 
5 13,16 13,O or 16,O 

6 16,16 13,O 
7 13,O 13,16 or 16,16 
8 16,O 13,13 or 13,16 
9 13,16 O,O 

10 13,O 16,O 
11 16,O 13,O 
12 O,O 13,16 
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Table 3.  A comparison of the likelihoods of n=1 and n=2 for a simulated profile with Ò 2 alleles 
at every locus for different targets. 
 

0.6 ng 0.2 ng 

L(n=1) L(n=2) L(n=1) L(n=2) 

9.08e-20 

1:1 2.67e-30 

9.08e-20 

1:1 3.51e-30 
1:2 2.67e-30 1:2 5.58e-30 

1:4 2.67e-30 1:4 3.13e-30 
1:9 2.67e-30 1:9 7.19e-30 
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Table 4.  The DNA ratios of multiple contributors when generating the 2-, 3-, 4- and 5- person 
mixtures.   
 

No. of people 

in the 

mixture  

2 3 4 5 

 1:1 1:1:1 1:1:1:1 1:1:1:1:1 
 1:2 1:2:1 1:1:2:1 1:1:2:1:1 
 1:4 1:4:1 1:1:4:1 1:1:4:1:1 
 1:9 1:9:1 1:1:9:1 1:1:1:9:1 

 1:19 1:2:2 1:2:2:1 1:1:2:2:1 
  1:4:4 1:4:4:1 1:1:4:4:1 
  1:9:9 1:9:9:1 1:1:9:9:1 
    1:2:2:2:1 

    1:4:4:4:1 
    1:9:9:9:1 
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Table 5.  The average noise and 3 standard deviations for the noise peak heights obtained from 
samples amplified using Range 1 (0.25 ï 0.047 ng), Range 2 (0.047 ï 0.008 ng) and Range 3 (0.25 

ï 0.008 ng) of target DNA mass.  The AT (avg + 3stdev) is also shown.  
 

 Range 1  Range 2 Range 3 

Locus Avg 

Noise 

Height 

(RFU) 

3StdDev 

Noise 

Height  

AT 

Avg 

Noise 

Height 

(RFU) 

3StdDev 

Noise 

Height  

AT 

Avg 

Noise 

Height 

(RFU) 

3StdDev 

Noise 

Height  

AT 

D8S1179 3 6 10 3 5 9 3 7 10 

D21S11 3 6 9 3 4 7 3 5 8 

D7S820 3 4 7 3 4 7 3 5 8 

CSF1PO 3 6 9 3 4 7 3 4 7 

D3S1358 5 8 13 5 7 12 5 8 13 

TH01 4 8 12 4 6 10 4 6 10 

D13S317 4 9 13 4 5 9 4 7 12 

D16S539 4 6 10 4 5 9 4 6 10 

D2S1338 4 7 11 4 6 10 4 6 11 

D19S433 8 10 18 7 9 16 8 9 17 

vWA 7 9 16 7 8 15 7 8 15 

TP0X 8 12 20 7 10 17 7 10 18 

D18S51 7 8 16 7 8 15 7 8 15 

D5S818 10 19 28 8 16 23 9 16 25 

FGA 8 9 16 7 8 15 8 9 16 

D8S1179 7 8 15 7 8 15 7 8 15 
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Table 6.  The mean and standard deviation for Method 1 (fitted cumulative Gaussian) and Method 
2 (non-fitted cumulative Gaussian) for the representative D16S539 locus obtained with 68 single-
source samples amplified using 0.25 and 0.008 ng of template DNA. 

. 

 0.25ng 0.008 ng 

Method Mean Std. Dev. Mean Std. Dev. 

1 944 446 37 48 

2 1076 440 58 43 
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Table 7.  Allele dropout and estimated probabilities of dropout calculated by Methods 1- 4 at 7 
target amounts for representative locus D16S539, showing that Methods 1 and 2 overestimated 
dropout at higher target amounts but underestimate dropout at lower target amounts whereas 

Methods 3 and 4 are both appropriate characterizations of dropout.  Highlighted cells signify most 
the accurate approximation. 
 

Target (ng) Observed Method 1 Method 2 Method 3 Method 4 

0.25 0 0.017 0.007 7.25E-15 2.72E-12 

0.125 0 0.005 0.016 9.67E-8 1.40E-6 

0.0625 0 0.104 0.050 3.53E-4 1.01E-3 

0.047 0.008 0.074 0.027 2.69E-3 5.14E-3 

0.0313 0.032 0.158 0.081 0.021 0.027 

0.0156 0.136 0.209 0.085 0.143 0.140 

0.0078 0.319 0.226 0.091 0.316 0.314 
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Table 8.  The NOCCalc ï NOCTrue obtained when examining samples containing minor 
components with < 2 cells worth of DNA with the MAC, MLE and NOCIt methods. 
 

NOCCalc - NOCTrue (N=53, Minor < 12.6 pg) 

 -4 -3 -2 -1 0 1 

MAC 3 11 15 9 14 1 

MLE 3 11 15 9 14 1 

NOCIt 1 12 11 13 16 0 
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Figures 

 

 
 
Figure 1.  Complex low-level DNA profiled amplified using 125 pg of DNA using the AmpFlstr®  

Identifiler® Plus Kit, injected for 10s on a 3130 Genetic analyzer.  This data represents three 
contributors in a 1:1:2 ratio. 
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Figure 2.  The probability that the profile from Table 1 resulted from (ƴ) 1 versus (ƴ) 2 versus 
(ƴ) 3  versus (ƴ) 4  contributors at various levels of dropout. 
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Figure 3.  The blue channel of a 1:9, 2-person mixture, where the minor componentsô known 

genotype (Gm) is provided in the box above the peaks, and the minor peaks are highlighted.  The 

15 allele of minor contributor in D8S1178 is in stutter position and the %stutter of 7.5% is below 

the stutter cutoff value of 8%. 
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Figure 4.  The y-intercept and 3 standard deviations obtained from a WLS linear regression 
obtained from (ǒ) Range 1, (ǒ) Range 2 and (ǒ) Range 3.  The average and 3 standard deviations 
of the baseline peak heights from samples amplified with targets in (ƴ) Range 1, (ƴ) Range 2 and 
(ƴ) Range 3.   
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Figure 5.  The average baseline noise and standard deviation of baseline noise plotted against 

target for the (a) blue, (b) green, (c) yellow, and (d) red color channels.  Data for (ƺ) 10 and (ö) 
20 second injections are shown. 
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Figure 6.  The (ö) average noise peak heights and the (Ǐ) standard deviation of the noise heights 
plotted against target for samples amplified with 0.007 to 0.5 ng of DNA for the four 
representative loci a) CSF1P0, b) D3S1358, c) D18S51 and d) D5S818.  The injection time was 

10 seconds.  Also presented is the resultant trendline with and R2 of > 0.82 and > 0.56 for the 
average and standard deviations, respectively.   
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Figure 7a.  Histogram ( Ư) of the noise peak heights (all targets) in an allele position at each 
locus. 
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Figure 7b.  Empirical CDF of the noise peaks (blue) and CDF of a quantized log-normal 
distributed random variable with (red). 
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Figure 7c.  Histogram of the noise peaks (blue) and pseudo PDF of a quantized log-normal 

distributed random variable (red).


