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Abstract: 

New techniques for pattern recognition assisted infrared (IR) library searching of the 
Paint Data Query (PDQ) automotive database have been developed to determine the make and 
model of an automobile from an unknown paint sample recovered at a crime scene.  Modern 
automotive paints have a thin color coat, which on a microscopic fragment, may be too thin to 
obtain accurate chemical information. Furthermore, the small size of the fragment also makes it 
difficult to accurately compare it with manufacturer’s paint color standards.  Since primer and 
clear coat paint layers are usually unique to the automotive assembly plant where these layers 
have been applied, combining chemical information obtained from the Fourier Transform 
infrared (FTIR) spectra of the two primer layers and from the clear coat layer should make it 
possible to rapidly and accurately identify the make and model of an automobile from its paint 
system alone.  The application of IR search prefilters and a cross correlation library searching 
algorithm to the PDQ database, which is a major thrust of this research project, is crucial to 
extract investigative lead information from clear coat and primer layer paint smears.  Information 
derived from these pattern recognition searches can serve to quantify the general discrimination 
power of original automotive paint comparisons encountered in casework and to succinctly 
communicate the significance of the evidence to the courts. To maintain relevancy of the newly 
designed pattern recognition techniques, the analysis of additional paint samples has been 
simultaneously undertaken to populate the database with samples from production years where 
there are insufficient data.  

A correction algorithm to allow attenuated total reflection (ATR) spectra to be matched 
using the IR transmission spectra of the PDQ database has also been developed as part of this 
research project.  ATR is a widely used sampling technique in IR spectroscopy because minimal 
sample preparation is required.  As the penetration depth of the ATR analysis beam is shallow, 
the outer layers of a laminate or multi-layered paint sample can be preferentially analyzed with 
the entire sample intact.  For this reason, forensic laboratories have taken advantage of ATR to 
collect IR spectra of automotive paint systems which may consist of three or more layers.  
However, the IR spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band 
broadening and lower relative intensities at higher wavenumbers, when compared to its 
transmission counterpart.  This hinders library searching as most library spectra are measured in 
transmission mode.  The correction algorithm to convert transmission spectra from the PDQ 
library into ATR spectra is able to address distortion issues such as the relative intensities and 
broadening of the bands, and introduction of wavelength shifts at lower frequencies, which 
prevent library searching of ATR spectra using archived IR transmission data. 
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Executive Summary 
 
Automotive vehicles can be identified from paint fragments transferred onto another vehicle or 
onto the clothing of a pedestrian involved in a hit-and-run accident by comparing the color, layer 
sequence, and chemical composition of each individual layer of the paint [1, 2].  To make these 
comparisons possible, the Royal Canadian Mounted Police have developed a comprehensive 
database for forensic automotive paint analysis known as the paint data query (PDQ) database.  
PDQ is a database of the physical attributes, the chemical composition, and the infrared (IR) 
spectrum of each layer of the original manufacturer’s automotive paint system.  If the original 
automotive paint system is present in the recovered paint fragment, PDQ can assist in identifying 
both the make and model of the automotive vehicle within a limited production year range.   
Currently, PDQ contains 21,000 samples (street samples and factory panels) corresponding to 
over 84,000 individual paint layers representing the paint systems used in most domestic and 
foreign vehicles marketed in North America. Each year over 500 samples are painstakingly 
collected, analyzed and added to the PDQ database by the RCMP.   
 
To use PDQ, the forensic chemist must translate the color of each automotive paint layer and its 
chemical composition based on the IR spectrum of each layer into specific text codes.  The text 
based search and retrieval system of PDQ searches the database, comparing all records for make, 
model and year having a paint system similar to the coded information provided by the user.  The 
final step in the process is to confirm these hits manually (as direct searching of IR spectra in 
PDQ does not exist) by comparing the IR spectrum of each unknown paint layer against the IR 
spectra in the database hit list.  Topcoat color is compared to topcoat color charts to narrow down 
this hit-list to those manufacturers known to have used a similar topcoat color in those samples 
identified by the database search.   
 
Searches performed in PDQ tend to generate a large number of hits because the chemical 
information in the current database is described only in terms of generic chemical formulations. 
For example, modern automotive clear coats in PDQ have one of only two possible formulations: 
acrylic melamine styrene or acrylic melamine styrene polyurethane. Furthermore, modern 
automotive paints contain a thin color coat, and on a microscopic fragment it may be too thin to 
obtain accurate chemical information. The small size of the fragment makes it difficult to 
accurately compare it with manufacturer’s paint color standards.  Another problem stems from 
forensic laboratories using attenuated total reflection (ATR) spectroscopy for infrared analysis of 
automotive paints.  Although ATR is a widely used sampling technique in IR spectroscopy 
because minimal sample preparation is required, the IR spectrum of an automotive paint sample 
obtained by ATR exhibits distortions.  Specifically, band broadening and lower relative 
intensities at higher wavenumbers occur when compared with its transmission counterpart. This 
hinders library searching as most library spectra are measured in transmission mode.   
 
Fortunately, adhesion between layers in modern automotive paint systems is usually strong.  
Often, the primer layers are transferred during a collision when both the clear coat and color coat 
layers are also transferred.  As the primer and clear coat layer are often unique to the assembly 
plant where these layers were applied, combining chemical information obtained from the 
Fourier Transform (FT) IR spectra of the two primer layers and from the clear coat layer makes 
it possible to rapidly and accurately identify the make and model of the automobile within a 
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limited production year range from the paint system alone.  Applying data fusion techniques 
where data (e.g., spectra) from multiple sources (e.g., IR spectra of clear coat and primer paint 
layers) are combined and class membership information is extracted, search prefilters have been 
developed to determine the make and model of the vehicle from which an unknown paint sample 
was obtained. Even in challenging trials where the clear coat and undercoat layers evaluated 
were all the same manufacturer (e.g., General Motors, Chrysler, or Ford) within a limited 
production year range, the respective assembly plant of the vehicle was correctly identified using 
only the information from the FTIR spectra of the clear coat and undercoat paint layers. The 
development of a pattern recognition driven library search system, consisting of search prefilters 
to truncate the PDQ library to a specific assembly plant or assembly plants and a cross 
correlation library search algorithm to identify spectra that are most similar to the unknown in 
the set identified by the search prefilters (as well as characterizing the degree to which the 
truncated PDQ library fits the unknown paint sample), was crucial for extracting investigative 
lead information from clear coat and primer layers.  Information derived from these pattern 
recognition searches also served to quantify the general discrimination power of original 
automotive paint material encountered in casework and to succinctly communicate the 
significance of the evidence to the courts.  
 
A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of 
PDQ has also been developed as part of this research project.  Conversion of transmission 
spectra to ATR spectra were performed by taking advantage of a surface reflection phenomenon 
at the boundary between the sample and the internal reflection element of the spectrometer.  In 
this procedure, the reflection of the incident beam from the internal reflection element is 
described at the boundary with the sample by Fresnel’s equations.  Since transmission spectra in 
the PDQ library do not exhibit sloping baselines or baseline offsets indicative of light scattering, 
the resulting ATR spectra obtained when applying the correction were of high quality.  The 
proposed correction algorithm to convert transmission spectra from the PDQ library to ATR 
spectra is able to address distortion issues such as the relative intensities and broadening of the 
bands, and introduction of wavelength shifts at lower frequencies, which prevent library 
searching of ATR spectra using archived IR transmission data.    
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I.  Introduction 
In the forensic examination of automotive paint, each layer of paint is visually and chemically 
analyzed.  The paint sample examined often consists of multiple and unique layers of paint.  For 
architectural paint, forensic science is normally interested in comparing each layer from a crime 
scene, such as a door frame, to a suspect, such as a pry bar found in the suspect’s possession.  
Likewise, for automotive paint, paint found on the clothing of a victim of a hit-and-run incident 
may be forensically compared to the paint from a suspect’s vehicle.  However, often there are no 
witnesses to a hit-and-run and police are unable to develop a suspect.  In these situations the 
chemistry of the automotive paint layers recovered from the victim’s clothing may be analyzed 
and, with the aid of an automotive paint database, the data can be correlated with a particular 
vehicle make and model within a limited production year range. 
 
Modern automotive paint systems [1] consist of three or four layers: a clear coat over a color 
coat which in turn is over two undercoats. (White trucks often do not have a clear coat layer and 
so only have two primers and a color coat layer.)  With the exception of the clear coat, each paint 
layer contains pigments and fillers (the colored component), and all layers contain binders (the 
matrix that holds the layer together). Automotive manufacturers tend to use unique combinations 
of fillers and binders in each layer of paint. It is this unique combination that allows forensic 
scientists to determine the possible manufacturer and model of a vehicle within a limited 
production year from an automotive paint chip recovered at the crime scene. 
 
The chemical analysis of automotive paint samples in forensic laboratories is typically done 
using Fourier transform infrared (FTIR) spectroscopy [2].  Some laboratories, particularly in 
Europe, will embed the entire paint fragment, cross-section it, and then analyze each layer using 
an infrared (IR) microscope fitted with an attenuated total reflectance (ATR) accessory [3].  
Other forensic laboratories, particularly in North America, are more likely to hand-section each 
layer and present each separated layer to either an IR microscope fitted with an ATR accessory, 
or collect transmittance spectra directly by placing the layer between diamond anvils. 
 
Studies [4, 5] conducted over 35 years ago by the Royal Canadian Mounted Police (RCMP) 
showed that vehicles could be differentiated by comparing the color, layer sequence and 
chemical composition of each individual layer in a paint system.  To make the comparisons 
possible, a comprehensive database was developed as well as the means to search and retrieve 
information from it. Today, the Paint Data Query (PDQ) database contains over 21,000 samples 
(street samples and factory panels), that corresponds to over 84,000 individual paint layers, 
representing the paint systems used on most domestic and foreign vehicles marketed in North 
America. PDQ is a database of the physical attributes (i.e., color), the chemical composition and 
the IR spectrum of each layer of the original manufacturer’s paint system.  The PDQ concept is 
to narrow the list of possible vehicles to a number of suspects, not to identify a single vehicle [6, 
7].  If the original paint layers are present in a recovered (i.e. unknown) paint chip, PDQ can 
assist in identifying the specific manufacturer and the production year of the automotive vehicle 
from which it came.  The comparison of the IR spectrum of each paint layer in a paint system 
(clear coat, surface, and primer layers) to IR spectra in PDQ allows for the assembly plant at 
which the paint system was applied, and the production year within a limited production year 
range, to be identified.  IR library searches based on the color coat layer are not performed 
because the paint chemistry may be color dependent and spectra from this layer are often of poor 
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quality as the IR signal is obscured by the metal and the pearlescent effect flakes mixed in the 
layer.  
 
PDQ is comprised of data which contains the complete color, chemical composition, layer 
sequence and sourcing information on known paint systems, and search and retrieval software 
used to generate a hit list. To use PDQ, the forensic scientist must first translate the chemical 
formulation of the paint layer into specific text codes based on the IR spectrum, and then the 
scientist will enter the color, chemical composition, and layer sequence information derived from 
the examination and analysis of the unknown paint chip left at the scene of the crime. The 
software searches the database, comparing all records for make, model and year having a paint 
system similar to the coded information being searched. The final step in the process is to 
confirm the database hits by manually comparing the IR spectrum of each unknown paint layer 
against the spectra identified in the database hit list, which will often vary from 50 to 200 hits.  
Topcoat color is compared to topcoat color charts to narrow down the hit list so that only those 
manufacturers known to have used a similar topcoat color in the years indicated by the database 
search are reported. 
 
A major problem with PDQ for modern automotive paint systems is its use of text to code the 
chemistry of each layer.  Searches of the PDQ database require the user to code their FTIR 
spectrum according to the guidelines set out by the database, and to search these codes against 
the codes in the database.  The coding used in PDQ is generic, and can lead to non-specific 
search criteria which results in a large number of spurious hits that a scientist must then work 
through and eliminate.  This impairs the accuracy of a search.  For example, the presence of 
styrene in the paint layer of a sample can be coded for that sample in the database but the amount 
could be small or large, a feature that could be easily distinguished by visual inspection of the 
spectrum but cannot be searched for using the text-based system of PDQ.  Thus, initial PDQ 
searches for styrene will return a large number of hits that span multiple makes, models, and 
years.   
 
Another problem is that modern automotive paint systems have a thin color coat which on a 
microscopic fragment may be too thin to obtain accurate chemical and topcoat color information.  
The small size of the fragment will make it difficult to accurately compare it with manufacturer’s 
paint color standards.  Most forensic laboratories rely on PPG or DuPont color refinish books for 
making color comparisons on paint chips recovered from crime scenes.  The color represented in 
these books is intended for use by the refinish/auto body industry and are accurate on a 
macroscopic scale.  While the color can be viewed microscopically, such as under a sterero-
microscope, details such as effect flake size and distribution are not accurately reproduced and 
do alter the appearance of the color somewhat on a microscopic scale.  The accuracy of such 
comparisons diminishes with the size of the paint chip recovered from the crime scene.  In cases 
where the automotive paint sample is limited to the clear coat paint layer, the text based portion 
of PDQ cannot identify the automotive vehicle because modern clear coats in PDQ are coded as 
either acrylic melamine styrene or acrylic melamine styrene polyurethane. 
 
A third problem is that forensic laboratories are using attenuated total reflection (ATR) as an 
infrared sampling technique with increasing frequency to collect FT-IR spectra of automotive 
paint samples because minimal sample preparation is required.  As the penetration depth of the 
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ATR analysis beam is shallow, the outer layers of a laminate or multi-layered paint sample can 
be preferentially analyzed with the entire sample intact.  For this reason, forensic laboratories 
have taken advantage of ATR to collect IR spectra of modern automotive paint systems which 
usually consists of four layers.  However, an IR spectrum of a paint sample obtained by ATR 
exhibits distortions, e.g., band broadening and lower relative intensities at higher wavenumbers, 
when compared to its transmission counterpart.  This can hinder library searching as most library 
spectra are measured in transmission mode. 
 
II. Methodology 
Pattern recognition assisted IR library searching techniques have been developed to search the 
spectral libraries of the PDQ database in an effort to differentiate between similar but 
nonidentical FTIR paint spectra and to correctly identify an unknown paint sample as to the 
manufacturer and model of the vehicle within a limited production year range.  Paint samples are 
often recovered from hit-and-run accidents where damage to vehicles or injury or death to a 
pedestrian has occurred. Searches of the PDQ database using commercial software have met with 
only limited success. Because the PDQ automotive paint library is composed of a large number 
of similar spectra, commercial search algorithms have not proven to be sufficiently sensitive at 
distinguishing subtle but significant features in the data such as shoulders, unique shapes, and 
patterns, and minor peaks. All commercial library search algorithms involve some type of point-
by-point numerical comparison between the IR spectrum of an unknown and each member of the 
library [8]. These algorithms lack interpretive ability because they treat the spectrum as a set of 
points rather than as a collection of specific bands. Furthermore, band shifting is not handled 
well and bands of low intensity, which may be highly informative, are often ignored. 
 
Utilizing search prefilters, many of the problems encountered in library searching have been 
addressed.  Most spectral comparisons performed during a search are of little use because the 
spectra in question are very dissimilar.  A prefilter is a quick test to spot dissimilar spectra, 
thereby avoiding a complete spectral comparison.  Prefilters used in this study allowed for more 
sophisticated but also for more time-consuming algorithms to be used for spectral comparisons 
since the library has been culled down for a specific match.  The exceptionally high quality of 
the FTIR data in the PDQ database, and the comprehensiveness of this database, made it an 
excellent source of data for the development and subsequent validation of search prefilters.   
 
To develop the search prefilters, chemical information from FTIR spectra of the two primer 
layers and the clear coat layer were combined and then subsequently analyzed using a genetic 
algorithm (GA) for features selection and pattern recognition.  Spectral features in each FTIR 
spectrum characteristic of the assembly plant (and hence the manufacturer and model) of the 
vehicle were identified by the pattern recognition GA [9-22], which utilized both supervised and 
unsupervised learning to identify features that optimize the separation of the FTIR spectra by 
assembly plant in a plot of the two or three largest principal components of the data.  Because 
principal components maximize variance, the bulk of the information encoded by the features 
selected by the pattern recognition GA were about differences between the different classes (i.e., 
assembly plants) in the database. A principal component plot that shows separation of the data by 
class can only be generated using features whose variance or information is primarily about 
differences between these classes. This fitness criterion dramatically reduces the size of the 
search space since it limits the search to these types of feature subsets.  In addition, the pattern 
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GA focused on those classes and/or samples that were difficult to classify as it trained by 
boosting the relative importance of classes and samples that consistently scored poorly. Over 
time, the algorithm learns its optimal parameters in a manner similar to a neural network. The 
pattern recognition GA used in these studies integrated aspects of artificial intelligence and 
evolutionary computations to yield a "smart" one -pass procedure for wavelength selection and 
pattern classification.   

 
This idea is demonstrated in Figure 1 which shows a plot of the two largest principal components 
of a data set prior to feature selection. 

 

Figure 1.  A plot of the two largest principal components developed from the 10 wavelengths in the data set does not 
show class separation.  When principal components are developed from the wavelengths that contain information 
about the automobile model, clustering on the basis of model is evident. 
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The hypothetical data set consists of 30 IR spectra of clear coats (2000-2003) from Chryslers 
distributed between 3 assembly plants (1 = Newark/Durango, 2 = Toluca/PT Cruiser, and 3 = 
Toledo/Cherokee). Each paint sample in this example is characterized by 10 spectral features.  
However, only four of these features contain information about model type.  When a principal 
component plot of the data is developed using only these four spectral features, clustering of 
spectra on the basis of the assembly plant (i.e., vehicle model) is evident.   
 
To develop the search prefilters, FTIR spectra of the fingerprint region (1500 cm-1 to 600 cm-1) 
of the clear coat and the two primer layers for each paint sample were combined into a single 
data vector.  Since each FTIR spectrum in the PDQ database was collected with 4 cm-1 
resolution, this region was characterized by 506 points in each FTIR spectrum.  To combine the 
chemical information obtained from the clear coat and two primer layers, the first 506 elements 
of the data vector representing the paint sample will be the corresponding fingerprint region of 
the clear coat layer, the next 506 elements of the vector will be the first primer layer and the final 
506 elements of the vector will be the second primer layer (see Figure 2).  The pattern 
recognition GA will then identify the components of this data vector (i.e., specific features in 
each paint layer) that are correlated to the assembly plant of the vehicle from which the paint 
sample was obtained.    

 
Figure 2.  Clear coat, E-coat (first primer layer), primer (surfacer or second primer layer) and fused FT-IR spectrum 
 
To develop the search prefilters, all fused IR spectra were preprocessed using wavelets [23-25] 
to enhance subtle but significant features in the data and to remove noise.  Wavelets offer a 
different approach to removal of noise from multivariate data.  Using wavelets, a new set of basis 
vectors that take advantage of the local characteristics of the data are developed that were better 
at conveying the information present in the data than axes defined by the original measurement 
variables (absorbance value at each wavelength in the IR spectrum).  The mother wavelet 
selected to develop this new basis set is the one that best matches the attributes of the data.  This 
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often circumvents the problem that occurs when an interfering source of variation in the data is 
correlated to information about the class membership of the samples, e.g., assembly plant, as a result 
of the design of the study or because of accidental correlations between signal and noise.  

According to wavelet theory, a discrete signal such as a spectrum can be decomposed into 
approximation components and detail components. Deleting the approximation component with the 
lowest frequencies can result in the removal of baseline-like information from the data.  If the scales 
representing signal are identified and retained and the scales representing background and noise are 
removed, an enhancement of signal to noise occurs with a reduction in the dimensionality of the 
data because of the elimination of the wavelet coefficients corresponding to noisy or uninformative 
spectral features.  Classification of spectra is improved by selectively combining the scales. 

 
Using wavelets, each fused spectrum is passed through two scaling filters: a high pass filter and a 
low pass filter.  The low-pass filter will allow only the low frequency component of the signal to 
be measured as a set of wavelet coefficients which is called the “approximation”. The high-pass 
filter will measure the high frequency coefficient set which is called the “detail”. The detail 
coefficients usually correspond to the noisy part of the data. This process of decomposition is 
continued with different scales of the wavelet filter pair in a step-by-step manner to separate the 
noisy components from the signal until the necessary level of signal decomposition has been 
achieved.  Figure 3 shows the first level of wavelet decomposition applied to an IR spectrum of 
an undercoat paint layer displayed in the transmittance mode. 
 

 
 
Figure 3.  First level of wavelet decomposition applied to a clear coat paint spectrum displayed in the transmittance 
mode. 
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Wavelet coefficients from the fused IR spectra characteristic of the assembly plant of the vehicle 
were identified by the pattern recognition GA.  The fitness function of the pattern recognition 
GA emulates human pattern recognition through machine learning to score the principal 
component plots and thereby identify a set of wavelet coefficients that optimize the separation of 
the automotive classes (i.e., assembly plants) in a plot of the two or three largest principal 
components of the data.  To facilitate the tracking and scoring of the principal component plots, 
class weights (CWs) and sample weights (SWs), which are an integral part of the fitness 
function, are computed (see equations 1 and 2) where CW(c) is the weight of class c (with c 
varying from 1 to the total number of classes in the data set).  SWc(s) is the weight of sample s in 
class c.  The class weights sum to 100, and the sample weights for the objects comprising a 
particular class sum to a value equal to the class weight of the class in question.  

 
Scoring is performed on each principal component plot using the K-nearest neighbor (K-NN) 
classification algorithm.  For a given sample point, Euclidean distances are computed between it 
and every other point in the principal component plot.  These distances are arranged from 
smallest to largest, and a poll is taken of the point’s k nearest neighbors.  For the most rigorous 
classification of the data, K equals the number of samples in the class to which the sample point 
belongs.  The sample hit count (SHC), the number of like nearest neighbors, is 0< SHC(s) < Kc. 
The fitness is computed using Equation 3. 
 

To better understand how a principal component plot is scored, consider a data set with two 
classes, which have been assigned equal weights.  Class 1 has 50 samples, and class 2 has 10 
samples.  At generation 0, the samples in a given class have the same weight.  Thus, each sample 
in class 1 has a sample weight of 1, whereas each sample in class 2 has a weight of 5.  Suppose a 
sample from class 2 has as its nearest neighbors 8 class one samples.  Hence, SHC/K = 0.8, and 
(SHC/K)*SW = 0.8*5, which equals 4.  By summing (SHC/Kc)*SW for each sample, each 
principal component plot can be scored - see Equation 3 where Kc is set by the user and for the 
most rigorous classification of the data Kc equals the number of samples in the class with the 
same class label and SHC (sample hit count) is the number of samples with the same class label 
as the sample in question. One advantage of using this procedure to score the principal 
component plots is that a class with a large number of samples does not dominate the analysis. 

 
The fitness function of the pattern recognition GA is able to focus on those samples and/or 
assembly plants that are difficult to classify by boosting their sample and class weights over 
successive generations.  In order to perform boosting, it is necessary to compute both the sample-
hit rate (SHR), which is the mean value of SHC/Kc over all feature subsets formulated in a 
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particular generation (see equation 4), and the class-hit rate (CHR), which is the mean sample hit 
rate of all samples in a class (see equation 5). φ in equation 4 is the number of chromosomes in 
the population, and AVG in equation 5 refers to the average or mean value. During each 
generation, class and sample weights will be adjusted using a perceptron (see Equations 6 and 7) 
with the momentum, P, set by the user.  (g + 1 refers to the current generation, whereas g is the 
previous generation.)  Classes with a lower class hit rate are boosted more heavily than those 
classes that score well.   

 
Boosting is crucial to ensure the successful operation of the pattern recognition GA because it 
modifies the fitness landscape by adjusting the values of the class and sample weights.  This 
helps to minimize the problem of convergence to a local optimum.  Hence, the fitness function of 
the pattern recognition GA is continually changing using information from previous generations 
as the population is evolving towards a solution.   
 
Search prefilters (i.e. discriminants) have been developed from fused IR spectra of the 
fingerprint region of the clear coat, surfacer, and primer layers that extracted information from 
the fused IR spectrum of an unknown automotive paint sample to yield a response based on the 
assembly plant of the corresponding vehicle.  Spectral features encoded in the wavelet 
coefficients identified by the pattern recognition GA have been used to develop the classifiers 
that serve as our search prefilters.  In this project, we focused on the development of search 
prefilters to identify the assembly plant from fused IR spectra obtained from 25 General Motors 
(GM), 12 Chrysler, and 17 Ford car and truck assembly plants between the years 2000-2006.  
During this time period, GM, Chrysler, and Ford had the largest number of assembly plants in 
North America.  If search prefilters can be developed that are able to discriminate automobiles 
assembled at one GM, Chrysler, or Ford plant from those assembled at another and can 
differentiate among different automobile manufacturers, we believe that this would be the best 
possible test of the proposed methodology to demonstrate the validity of this concept.        
 
Search prefilters developed from fused spectra eliminated dissimilar spectra from the library 
search thereby providing the analyst with an opportunity to take advantage of more sophisticated 
but also more time-consuming search algorithms.  Commercial infrared library search systems 
compare IR spectra by summing the squares of the difference between two spectra at every wave 
number.  However, these algorithms do not perform well when differentiating between similar 
but nonidentical spectra as small peak shifts are not handled well and bands of low intensity, 
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which may be highly informative, are often ignored.  For these reasons, a cross correlation 
function was used to provide the best match between an unknown and the spectra in the hit list 
generated by our search prefilters.  The cross correlation function has been shown to correctly 
identify unknown spectra from similar but nonidentical spectra [26].  Although it is slower than 
conventional search algorithms, it is suitable as a post searching method to rank probable 
matches, which have been selected by a faster algorithm (e.g., search prefilters). Correlation 
based searches are insensitive to instrumental noise and very sensitive to changes in peak shape 
and in the relative peak position making them sensitive to structural differences. 
 
Library matching was performed by cross correlating the unknown with each spectrum in the set 
of library spectra identified by the search prefilters and comparing each cross correlated spectra 
with the corresponding autocorrelated library spectra. Cross correlation is a measure of the 
similarity of two time varying functions. In signal processing, cross-correlation is a method used 
to estimate the correlation between two signals using a dot product after a time lag has been 
applied to one of the signals.   The cross correlation function 𝐶𝐶𝑖𝑖𝑖𝑖 for the sampling interval ∆𝑡𝑡 and 
relative displacement 𝑛𝑛∆𝑡𝑡  between two signals 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑖𝑖 is estimated as shown in the following 
equation 
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Autocorrelation is similar to cross correlation and is the signal being cross correlated with itself.  
Autocorrelation and cross correlation were performed by normalizing the spectra to unit length.  
Two different algorithms were used to perform cross correlation library searching. The first 
algorithm identifies the IR spectrum in the truncated library that is most similar to the unknown 
using three different modes of comparison:  

1. Autocorrelated spectrum of unknown is compared to each cross-correlated unknown and 
library spectrum 

2. Each autocorrelated library spectrum is compared to each cross-correlated unknown and 
library spectrum 

3. Autocorrelated spectrum of unknown is compared to each autocorrelated library spectrum 
 
Each comparison was made using a range of window sizes centered at the midpoint of the cross-
correlated data interval (which corresponds to the cross correlation between two signals with 
zero lag) and increased in steps of 10 points or 100 points to include the entire cross correlated 
spectrum (see Figure 4).  Because of the symmetry associated with cross correlation, the 
comparisons were made from only one side of the center burst.  The Euclidian distance was used 
to evaluate the similarity index (see Equation 9) between the unknown and each library spectrum 
where sij is the similarity of the match, dij is the distance between the cross correlated and 
autocorrelated spectrum and dmax is the largest distance in the set of cross correlated and 
autocorrelated spectra that were compared.  The similarity metric in Equation 9 was used instead 
of the hit quality index (HQI) used by commercial search algorithms, e.g., OMNIC, as it proved 
to be more informative for these spectra. 
 

max

1
d
d
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Library spectra were arranged in descending order of similarity for each comparison and window 
size.  The five most similar library spectra were then chosen from each comparison made for 
each window size, with sample identities preserved. After every window was analyzed, a 
histogram depicting the frequency of occurrence for the most similar spectra was generated. The 
frequency of occurrence for each spectra was then weighted by its average similarity index 
across every interval and every window. The 5 library spectra with the highest frequency of 
occurrence after weighting were selected as potential matches. 
 

 
 
Figure 4.  Comparison of the cross correlated unknown and PDQ library spectrum with the autocorrelated spectrum 
of the unknown or PDQ library spectrum. 
 
All spectra were divided into three regions: 3675 to 2856 cm-1 (region after absorption by the 
diamond cell), 1891 to 668 cm-1 (fingerprint region and carbonyl band), and 1650 to 668 cm-1 
(fingerprint region).  The overlap between the second and third spectral regions, which 
effectively increases the importance of the fingerprint region in the spectral matching, proved 
superior to using a disjoint set of intervals (e.g., 1650 cm-1 to 668 cm-1 with double weighting, 
1891 cm-1 to 1650 cm-1, and 3675 cm-1 to 2856 cm-1) as it enforces the relative scale of the peaks 
and captures the broader trends in the spectral data.   
 
Spectral library matching using the cross correlations search algorithm was implemented using 
two schemes, both based upon transmittance spectra. The first scheme uses auto-cross correlation 
to identify spectra within the library that best matches the blind. At each window for each 
interval, the first method ranks all spectra in order of their similarity index value. The identity of 
the top five spectra (sample identification number, make, model, and line) is preserved for each 
window. After each window has been processed, the output of the algorithm is a set of five 
spectra with the most matches in the top five in each of the prior steps.  
 
The second scheme uses auto-cross correlation to provide a probability index as to the model and 
line of the blind. At each window for each interval, the spectra in the library are ranked by their 

midpoint

100-point window

400-point window

800-point window
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similarity index with regard to the blind, but only the label (i.e., model and line of the automotive 
vehicle) of each of the top five spectra is preserved. After each window has been processed, the 
number of the hits for a specific model and line is divided by the sum of the number of 
comparisons performed. The output is a set of percentages that represents the likelihood that a 
particular model or line is a match to the blind. While the first scheme identifies the library 
spectrum most similar to the blind, the second scheme is assessing the similarity of the library 
spectra for the blind.  In other words, the library is being matched to the blind which is the 
opposite of the first approach which is matching the blind to the library.  The performance of the 
prototype pattern recognition driven library searching system (search prefilters and cross-
correlation library search algorithm) for both schemes was compared to OMNIC, a commercial 
library searching algorithm used by Thermo Nicolet FTIR spectrometers.   
 
 
III. RESULTS 
Search prefilters were developed from 1182 automotive paint systems that spanned 3 automobile 
manufacturers (GM, Chrysler, and Ford) and 54 assembly plants (in North America) within a 
limited production year range (2000-2006). Because of the large number of classes (i.e., 
assembly plants) involved, a hierarchical classification scheme was employed.  A search prefilter 
was developed to differentiate paint samples by automobile manufacturer.  For each automobile 
manufacturer, search prefilters were developed to identify the assembly plant of the vehicle from 
the manufacturer’s paint system conveyed by the sample.  First, the assembly plants were 
divided into groups of plants based upon cluster analysis of the fingerprint region of the clear 
coat paint layer.  Second, each plant group is divided into its constituent assembly plants using 
both the clear coat and the two undercoat paint layers.  The search prefilter system is intended to 
categorize each unknown paint system by identifying successively smaller sets of vehicles to 
which the unknown is assigned.  In the final step, library searching of an unknown is performed 
using IR spectra of vehicles assembled in the manufacturing plant identified by the search 
prefilters.  A block diagram of the vehicle classification process used in the prototype pattern 
recognition driven library search system for the PDQ database is summarized in Figure 5.   
 
 

 

 

 

Figure 5.  Block diagram of the vehicle classification process used in the prototype pattern recognition driven library 
search system for the PDQ database. 

 
Development of Search Prefilters for Manufacturer  
The initial focus of this study was to develop a search prefilter to classify the IR spectra of an 
unknown paint sample by manufacturer. To differentiate automotive paint samples by 
manufacturer, the 1306 paint systems investigated were divided into a training set of 1182 
samples and a validation set of 124 samples.  The validation set samples were chosen by random 
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lot.  The training set of 1182 automotive paint systems was divided into 3 classes by automobile 
manufacturer (see Table 1).    
 
 
 
 Table 1.  Training Set and Validation Set for Manufacturer Search Prefilter  

Manufacturer Training Set Validation Set 
GM (2000-2006) 429 44 
Chrysler (2000-2006) 379 42 
Ford (2000-2006) 374 38 

 
All IR spectra were pre-processed for pattern recognition analysis as follows.  After retaining 
only the fingerprint region in each layer, the spectra were smoothed using a Savitzky-Golay filter 
(fourth order polynomial, 17 point window).  The smoothed IR spectra were vector normalized 
and then wavelet transformed using the Symlet 6 mother wavelet at the 8th level of 
decomposition (8Sym6).  All wavelet coefficients for levels of decomposition less than the 
specified level were retained, such that the final result for each sample-paint layer combination is 
a row vector of wavelet coefficients, [A1 D1 A2 D2 … A8 D8], where A1 represents the set of 
first order approximation coefficients for the sample, D1 is the corresponding set of first order 
detail coefficients for the sample, A2 and D2 similarly represent the second order approximation 
and detail wavelet coefficients and so forth.  Because the search prefilter utilizes both the clear 
coat and undercoat layers, the final step involves horizontally concatenating the wavelet 
coefficients from each layer into a single vector in the order of clear coat, surfacer, and primer.    
 
 
 
 
 
  
 
 
 

Figure 6.  Block diagram of the spectral preprocessing procedure used to develop search prefilters. 
 
 
 
 
 
 
 
 
 
Figure 7.  Diagram of the wavelet coefficient concatenation scheme used with the clear coat paint layer magnified to 
show how individual sets of approximation and detail coefficients are concatenated within each layer. Number of 
coefficients per block decreases with increasing level of decomposition (e.g., A1 or first order approximations and 
D1 or first order details contain an equal number of coefficients whereas A2 or second order approximations 
contains fewer coefficients than A1). 
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Figure 8 shows a PC plot of the two largest principal components of the 1182 training set 
samples and the 3450 wavelet coefficients comprising the training set data. Each paint sample is 
represented as a point in the PC map of the data (1 = GM, 2 = Chrysler, and 3 = Ford).  The 
overlap of the wavelet transformed fused spectra of the fingerprint region for Chrysler and Ford 
is evident.   
  

                                 
 

Figure 8.  PC plot of the two largest principal components of the 1182 paint samples and the 3450 wavelet 
coefficients comprising the training set data (1 = GM, 2 = Chrysler, and 3 = Ford) 
 
The next step was feature selection.  A genetic algorithm for pattern recognition was used in the 
study to identify wavelet coefficients characteristic of automobile manufacturer.  The pattern 
recognition GA identified wavelet coefficients by sampling key feature subsets, scoring their PC 
plots and tracking those paint samples or automotive manufacturers that were difficult to 
classify.  The boosting routine used this information to steer the population to an optimal 
solution.  After 200 generations, the pattern recognition GA identified 39 wavelet coefficients 
(after deletion of 5 variables with low loadings) whose PC plot showed clustering of the data on 
the basis of automotive manufacturer (see Figure 9).  
 
To assess the predictive ability of the 39 wavelet coefficients identified by the pattern 
recognition GA, a validation set of 124 paint samples was used.  Figure 10 shows the validation 
set samples projected onto the PC plot of the data defined by the 1182 wavelet transformed fused 
IR spectra and the 39 wavelet coefficients identified by the pattern recognition GA.  Each 
validation set sample lies in a region of the PC map with paint samples from the same 
automotive manufacturer.  This result suggests that information about automotive manufacturer 
can be extracted from the wavelet transformed fused IR spectrum of an unknown paint sample.  
 
1-NN [27] was also used to classify the 1182 wavelet transformed fused spectra in the training 
set.  A classification rule developed from the 39 wavelet coefficients identified by the pattern 
recognition GA using 1-NN achieved a classification success rate of 100% for the training set.  
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To further test the predictive ability of this classifier, the validation set of 124 paint samples was 
employed.  Again a classification success rate of 100% was achieved for the fused validation set 
spectra.  The results from 1-NN are consistent with those results obtained using PCA. 

 
 
Figure 9.  PC plot of the two largest principal components of the 1182 training set samples and the 39 wavelet 
coefficients identified by the pattern recognition GA (1 = GM, 2 = Chrysler, and 3 = Ford). 
 

                              
 
Figure 10.  Validation set samples (in red) projected onto the PC plot of the data defined by the 1182 wavelet 
transformed fused IR spectra of the training set (green, yellow, cyan) and the 39 wavelet coefficients identified by 
the pattern recognition GA.  (1 = GM, 2 = Chrysler, and 3 = Ford). 
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Development of Search Prefilters for Chrysler 
The first step in the development of the Chrysler search prefilters was to differentiate Chrysler 
paint systems by plant group.  To determine the composition of each plant group, Chrysler 
assembly plants (see Table 2) whose clear coat paint spectra exhibited a doublet for the carbonyl 
band (acrylic melamine styrene polyurethane) as opposed to a singlet (acrylic melamine styrene) 
were flagged.  The two assembly plants (Jefferson North and Newark) whose clear coat paint 
spectra exhibited a doublet for the carbonyl were placed in Plant Group 13, whereas the 
assembly plants whose clear coat paint spectra exhibited a singlet for the carbonyl band were 
assigned to the other plant groups.  Using only the clear coat paint spectra, each of the ten 
remaining assembly plants (see Table 2) was analyzed by principal component analysis [28] to 
assess its class structure. In four of the ten assembly plants (Bramalea/Brampton, Dodge Main, 
St. Louis, and Toledo), the PC plot of the clear coat paint spectra exhibited two distinct sample 
clusters (see Figures 11 through 14).  For the Bramalea/Brampton assembly plant, clustering 
occurred on the basis of model: Dodge Charger and some Chrysler 300 lines versus Chrysler 
Concorde, Chrysler LHS, Dodge Intrepid, Dodge Magnum, and other Chrysler 300 lines, 
whereas for Dodge Main, clustering occurred on the basis of the production year of the vehicle: 
2000-2002 versus 2003-2006.  For the St. Louis assembly plant, clustering occurred on the basis 
of model and line: Dodge Caravan and Chrysler Town and Country versus Dodge Ram, whereas 
for Toledo, clustering was correlated to a specific vehicle: Jeep Liberty versus the other models 
and lines assembled at the plant.  Because the average clear coat paint spectrum of each cluster 
was noticeably different when compared visually, the four assembly plants were further divided 
into subplants on the basis of the observed sample clustering.  
 

Table 2.  Chrysler Assembly Plants 
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Figure 11.  Plot of the two largest principal components of the clear coat paint spectra from the Bramalea/Brampton 

plant.  Two distinct sample clusters are evident in the plot. 
 

 
Figure 12.  Plot of the two largest principal components of the clear coat paint spectra from the Dodge Main 

assembly plant.  Two distinct sample clusters are evident in the plot. 
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Figure 13.  Plot of the two largest principal components of the clear coat paint spectra from the St Louis assembly 

plant.  Two distinct sample clusters are evident in the plot. 
 

 
Figure 14.  Plot of the two largest principal components of the clear coat paint spectra from the Toledo assembly 

plant.  Two distinct sample clusters are evident in the plot. 
 

To assign the remaining assembly plants and subplants to specific plant groups, the average IR 
spectrum (clear coat layer) of each assembly plant or subplant was computed.  Principal 
component analysis and hierarchical clustering [29] were performed on the average spectra.  
Figures 15 and 16 summarize the results of the clustering study.  Plant Group 11 consists of 

Caravan, Town and Country 

Ram 

Other than Liberty 

Liberty 



22 
 

Belvidere, Bramalea/Brampton (subplant), Dodge Main (subplant), Saltillo, St. Louis (subplant), 
Toledo (subplant), and Toluca assembly plants, whereas Plant Group 12 is comprised of 
Bloomington,  Bramalea/Brampton (subplant), Dodge Main (subplant), Sterling Heights, St. 
Louis (subplant), Toledo (subplant), and Windsor assembly plants.    

   
 

 

 

 

 

 

 

 

 

 

 
Figure 15.  Hierarchical cluster analysis (Wards method) of the average IR spectrum (clear coats) of each assembly 
plant or subplant.  1000 = Belvidere, 1001 = Bloomington, 1002 = Bramalea/Brampton subplant, 1003 = Dodge 
Main subplant, 1007 = Saltillo, 1008 = Sterling Heights, 1009 = St. Louis subplant, 1010 = Toledo, 1011 = Toluca, 
1012 = Windsor, 1102 = Bramalea/Brampton subplant, 1103 = Dodge Main subplant, 1109 = St. Louis subplant, 
and 1110 = Toledo subplant. 
 

 

Figure 16.  Principal component analysis of the average IR clear coat paint spectrum of each assembly plant or 
subplant.  1000 = Belvidere, 1001 = Bloomington, 1002 = Bramalea/Brampton subplant, 1003 = Dodge Main 
subplant, 1007 = Saltillo, 1008 = Sterling Heights, 1009 = St. Louis subplant, 1010 = Toledo, 1011 = Toluca, 1012 = 
Windsor, 1102 = Bramalea/Brampton subplant, 1103 = Dodge Main subplant, 1109 = St. Louis subplant, and 1110 
= Toledo subplant. 

1103    1010    1109   1002     1011   1007    1000   1003    1001    1110    1008   1108    1102    1009   1012 
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Having ascertained the membership of each plant group for both the acrylic melamine styrene 
and acrylic melamine styrene polyurethane clear coats, the next step was discriminant 
development.  Figure 17 shows a PC plot of the two largest principal components of the 379 
wavelet transformed clear coat IR spectra and the 1150 wavelet coefficients comprising the 
training set data for Plant Group (see Table 3). All IR spectra in the training set were vector 
normalized prior to the application of the wavelet transform (8Sym6), and all wavelet 
coefficients were autoscaled prior to principal component analysis.  Each clear coat is 
represented as a point in the PC plot of the data.  (11 = Plant Group 11 (acrylic melamine 
styrene), 12 = Plant Group 12 (acrylic melamine styrene), and 13 = Plant Group 13 (acrylic 
melamine styrene polyurethane)). Plant Group 12 is well separated from Plant Groups 11 and 13, 
whereas Plant Groups 11 and 13 overlap in the plot.   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17.  PC plot of the two largest principal components of the 379 wavelet transformed clear coat IR spectra and 
the 1150 wavelet coefficients comprising the training set data for Plant Group.  Each clear coat is represented as a 
point in the PC plot of the data.  (11 = Plant Group 11, 12 = Plant Group 12, and 13 = Plant Group 13).    
 

Table 3.  Training Set and Validation Set for Chrysler Plant Groups 
Group Training Validation 

11 156 19 
12 157 17 
13 66 6 

 
Feature selection was performed to identify wavelet coefficients characteristic of the profile of 
each plant group. The pattern recognition GA identified informative wavelet coefficients by 
sampling key feature subsets, scoring their PC plots, and tracking those plant groups/and or IR 
spectra that were difficult to classify.  The boosting routine used this information to steer the 
population to an optimal solution.  After 200 generations, the pattern recognition GA identified 9 
wavelet coefficients whose PC plot showed clustering (see Figure 18) of the IR clear coat paint 
spectra on the basis of plant group.   

Plants 1002, 
 

Plants 1001  
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Figure 18.  PC plot of the two largest principal components of the 379 training set samples and 9 wavelet 
coefficients identified by the pattern recognition GA (11 = Plant Group 11, 12 = Plant Group 12, 13 = Plant Group 
13).   
 
To assess the predictive ability of the 9 wavelet coefficients identified by the pattern recognition 
GA, a validation set of 42 IR spectra was used.  IR spectra from the validation set were projected 
directly onto the PC plot developed from the 379 IR spectra and the training set and the 9 
wavelet coefficients identified by the pattern recognition GA.  Figure 19 shows the projection of 
the validation set samples onto the PC map of the training set data.  All validation set samples 
are located in a region of the map with clear coats that have the same class label. 

 
Figure 19.  Validation set samples (in red) projected onto the PC plot of the data defined by the 379 wavelet 
transformed clear coat IR spectra of the training set (green, yellow, cyan) and the 9 wavelet coefficients identified 
by the pattern recognition GA.  (11 = Plant Group 1, 12 = Plant Group 2, and 13 = Plant Group 13). 
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For each plant group, a search prefilter was developed to discriminate automotive paint samples 
by assembly plant using the fingerprint region of the clear coat and the two undercoat layers of 
the automotive paint samples.  After retaining only the fingerprint region in each layer, all IR 
spectra were vector normalized and then wavelet transformed using the Symlet 6 mother wavelet 
at the 8th level of decomposition. Wavelet coefficients from each layer were horizontally 
concatenated into a single data vector in the order of clear coat, surfacer, and primer. The pattern 
recognition GA identified the components of this data vector (i.e., specific coefficients in each 
paint layer) correlated to the assembly plant of the vehicle from which the paint sample was 
obtained.      
 
Table 4 lists the assembly plants or subplants comprising Plant Group 11, which consists of one 
assembly plant (Belvidere), four subplants (Bramalea/Brampton, Dodge Main, St. Louis, Toledo) 
and a plant subgroup consisting of two assembly plants (Saltillo and Toluca).  Saltillo and Toluca 
were combined because the spectra of the clear coat, surfacer, and primer layers were 
superimposable for these two assembly plants.   
 

Table 4.  Assembly and Subplants Comprising Plant Group 11 
Plant Training Validation 

711 (Saltillo + Toluca plants) 47 10 
1000 (Belvidere) 33 3 

1002 (subplant of Bramalea/Brampton) 13 1 
1010 (subplant of Toledo) 14 1 

1103 (subplant of Dodge Main) 19 2 
1109 (subplant of St Louis) 30 2 

 
Figure 20 shows a plot of the two largest principal components of the 156 samples comprising 
Plant Group 11 and the 16 wavelet coefficients identified by the pattern recognition GA for the 
training set.  Each fused IR spectrum is represented as a point in the PC plot.  Every assembly 
plant, subplant, and plant subgroup is well separated from each other in the plot.  Projecting the 
validation set samples assigned to Plant Group 11 onto the PC map showed that each projected 
validation set sample is located in a region of the PC plot with samples from the same assembly 
plant or subplant.  
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Figure 20.  Validation set samples (in red or indicated by an arrow) projected onto the PC plot of the data defined by 
the 156 paint samples comprising Plant Group 11 (training set) and the 16 wavelet coefficients identified by the 
pattern recognition GA.  (711 = plant subgroup containing Saltillo and Toluca, 1000 = Belvidere, 1002 = subplant of 
Bramalea/Brampton, 1010 = subplant of Toledo, 1103 = subplant of Dodge Main, 1109 = subplant of St Louis). 
 

Table 5 lists the assembly plants or subplants comprising Plant Group 12, which consists of one 
assembly plant (Bloomington), three subplants (Bramalea/Brampton, Dodge Main, Sterling 
Heights), and two plant subgroups.  During the course of the analysis, it was necessary to merge 
different plants and subplants into a single class referred to as a plant subgroup due to the 
similarity of their spectra.  One plant subgroup was comprised of the Windsor assembly plant 
and the St. Louis subplant, whereas the other was comprised of two subplants (one from Sterling 
Heights and the other from Toledo).  Although the principal component analysis plot of clear 
coat IR spectra from the Stirling Heights plant did not exhibit sample clustering, the 
corresponding principal component plot for the wavelet transformed concatenated IR spectral 
data (see Figure 21) showed clustering correlated to production year.  Furthermore, the average 
spectra of the clear coat, surfacer, and primer layers for the 2002-2006 Stirling Heights vehicles 
were superimposable when compared to the average spectra of the clear coat, surfacer, and 
primer layers for the vehicles from the Toledo subplant assigned to this plant group.  For this 
reason, this subplant was combined with Toledo to form the corresponding plant subgroup. 
Principal component analysis plots of fused IR spectral data from other assembly plants or 
subplants comprising Plant Group 12 did not exhibit sample clustering.     
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Table 5.  Assembly and Subplants Comprising Plant Group 12 
Plant Training Validation 

912 (part of St. Louis + Windsor) 47 10 
1001 (Bloomington) 33 3 

1003 (part of Dodge Main) 13 1 
1102 (part of Bramalea/Brampton) 14 1 

1108 (part of Sterling Heights) 19 2 
1810 (part of Sterling Heights + part of Toledo) 30 2 

 

 
Figure 21.  Plot of the two largest principal components of the wavelet transformed concatenated IR spectra from 

the Sterling Heights assembly plant.  Two distinct clusters are evident in the plot. 
 

Figure 22 shows a plot of the two largest principal components of the 157 samples comprising 
Plant Group 12 and the 22 wavelet coefficients identified by the pattern recognition GA for the 
training set.  Each fused IR spectrum is represented as a point in the PC plot.  Every assembly 
plant, subplant, and plant subgroup forms a distinct and separated cluster in the PC plot of the 
training set data.  Projecting the validation set samples assigned to Plant Group 12 onto the PC 
plot shows that each projected validation set sample is located in a region of the PC map with 
samples from the same assembly plant, subplant, or plant subgroup.  
 
 

2000-2001 
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Figure 22.  Validation set samples (in red or indicated by an arrow) projected onto the PC plot of the data defined by 
the 157 paint samples comprising Plant Group 12 (training set) and the 22 wavelet coefficients identified by the 
pattern recognition GA.  (912 = plant subgroup containing Windsor and subplant of St. Louis, 1001 = Bloomington, 
1003 = subplant of Dodge Main, 1102 = subplant of Bramalea/Brampton, 1108 = subplant of Sterling Heights, 1810 
= subplant of Sterling Heights and subplant of St. Louis). 
 

Plant Group 13 consisted of two assembly plants: Jefferson North and Newark.  The pattern 
recognition GA was not able to identify a set of coefficients from the wavelet transformed 
concatenated IR spectra that could differentiate Jefferson North from Newark.  To understand the 
reason for the lack of success, principal component analysis was performed on both the Newark 
and Jefferson North assembly plants.  Clustering correlated to the production year of the vehicle 
was observed for Newark. For this reason, Newark was divided into two subplants.  The Newark 
sample that was not a member of either cluster was tagged as an outlier and deleted from the 
analysis after comparing the spectra of each paint layer from this sample with the average spectra 
of each paint layer from each sample cluster identified in the PC plot of the wavelet transformed 
data.  Table 6 describes the assembly plant and subplants comprising Plant Group 13. 
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Figure 23.  Plot of the two largest principal components of the wavelet transformed concatenated IR spectra from 

the Newark assembly plant.  Two distinct sample clusters and one outlier are present in the PC plot. 
 

Table 6.  Assembly and Subplants Comprising Plant Group 13 
Plant Training Validation 

1004 (Jefferson North) 34 3 
1006 (subplant of Newark) 20 2 
1106 (subplant of Newark) 11 1 

 
 
 
Figure 24 shows a plot of the two largest principal components of the 65 samples comprising 
Plant Group 13 and the 33 wavelet coefficients identified by the pattern recognition GA for the 
training set.  The assembly plant and two subplants are well separated from each other in the 
plot.  Projecting the validation set samples assigned to Plant Group 13 onto the PC plot showed 
that each projected validation set sample is located in a region of the PC plot with samples from 
the same assembly plant or subplant. 
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Figure 24.  Validation set samples (in red) projected onto the PC plot of the data defined by the 65 paint samples 
comprising Plant Group 13 (training set) and the 33 wavelet coefficients identified by the pattern recognition GA.  
(1004 = Jefferson North, 1006 = Newark (2000-2002), and 1106 = Newark (2002-2006).  
 

The PDQ spectral library consisted of the manufacturer’s paint system for 1182 automotive 
Chrysler, General Motors, and Ford automotive vehicles within a limited production year range 
(2000-2006).  To extract information about the model from the IR spectrum, library searching of 
each validation set sample was performed using the IR spectra of the automotive vehicles 
assembled in the assembly plant(s) identified by the search prefilters.  During this phase of the 
study, each spectrum in the validation set was compared to library spectra using the regions from 
3675 cm-1 to 2856 cm-1 and from 1891 cm-1 to 668 cm-1. Within the region from 1891 cm-1 to 
668 cm-1, the spectral region from 1650 cm-1 to 668 cm-1, corresponding to the fingerprint region, 
was doubled in relative weight to emphasize its importance. The region of the spectrum 
corresponding to absorption by the diamond transmission cell was omitted. Within each interval, 
up to 75 windows were employed from the center burst. The library search results for the 
validation set samples are summarized in Table 7 for 41 of the 42 samples. One validation set 
sample was deleted from this tabulation because the corresponding model and line of this paint 
sample was not present in the library. For Scheme 1, the remaining results were then weighted 
based on their average similarity index across all windows and spectral intervals.  The 5 top 
matches were chosen from each comparison and a histogram depicting the frequency of 
occurrence for spectra most similar to the validation set sample was computed to find the closest 
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NEW (2000-2002) 

NEW (2002-2006) 
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matching sample. Results from the cross correlation library searching method were compared 
with the top 5 matches identified by OMNIC (Thermo Nicolet), which accessed the entire PDQ 
library (1182 Chrysler, Plymouth, and Ford samples) for spectral matching.  Library search 
results for both the cross correlation searching algorithm and OMNIC are summarized in Table 
7. The prototype pattern recognition system outperformed OMNIC, which is a commercially 
available IR search algorithm considered by many workers in the field as the industry standard.  
To search all three paint layers simultaneously, the spectra (in absorbance mode) of the clear coat 
and undercoat paint layers for each sample were added to yield a single spectrum which was then 
converted to the transmittance mode for analysis by the cross correlation library search 
algorithm.   
 

Table 7.  Library Search Results for Chrysler 
Layer 1OMNIC 

Searching 
Prototype System 

(Scheme 1) 
Prototype System 

(Scheme 2) 
Clear Coat 28 40 38 
Surfacer 31 39 35 
Primer 26 37 31 

2Fused (Addition) 14 38 37 
1OMNIC searching was done using its built-in library searching routine. The diamond region, 2856 cm-1 to 1891 cm-

1 was excluded from the search. The results of OMNIC were considered correct if there was a match within the top 5 
hits found by OMNIC’s search algorithm as ranked by the hit quality index. 
2Fusion of the layers was achieved by taking spectra (in absorbance mode) of the clear coat and undercoat paint 
layers and directly adding them to yield a single spectrum which was then converted to the transmittance mode for 
analysis by the cross correlation library search algorithm. 
 

All spectra incorrectly matched by Scheme 1 were also incorrectly matched by OMNIC.  For 
Scheme 1, the sample corresponding to the only clear coat IR spectrum missed was also missed 
in the surfacer and primer layer searches.  However, the additional sample missed in the surfacer 
layer search was correctly matched in the primer layer search. All paint samples incorrectly 
matched by Scheme 1 were also incorrectly matched by Scheme 2.   
 
The top hit selected by Scheme 1 always yielded a reasonable match, usually superior to the 
match obtained between the validation set sample and the actual model for incorrectly matched 
paint samples (see Figures 25 through 27).  This was true for all incorrectly matched paint 
samples. Although Scheme 2 did not perform as well as Scheme 1, it has the advantage of 
providing insight into how well the library matches the blinds, rather than how well an individual 
blind matches the library. This suggests that samples assigned the same model and line by both 
schemes are well represented in the library and correlate well on an individual basis to specific 
samples in the library.  For these samples, one can have confidence in the quality of the match 
and high certitude regarding the accuracy of the match.  A similar statement cannot be made 
regarding the accuracy and quality of individual matches by OMNIC as reflected by their hit 
quality index which are typically 98%-99% for the top 20 hits.   
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Figure 25: Chrysler Clear Coat spectral matches: a) top hit and b) correct match 

Figure 26: Chrysler Surfacer spectral matches: a) top hit and b) correct match 
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Figure 27: Chrysler Primer spectral matches: a) top hit and b) correct match 
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Development of Search Prefilters for General Motors 
The first step in the development of the search prefilters for General Motors (GM) was to 
differentiate the paint systems by plant group.  To determine the composition of each plant group, 
representative spectra were selected from each assembly plant.  GM assembly plants (see Table 8) 
whose clear coat paint spectra exhibited a doublet for the carbonyl band (acrylic melamine styrene 
polyurethane) as opposed to a singlet (acrylic melamine styrene) were flagged.  Average spectra 
of the clear coat layer from these nine assembly plants (Baltimore, Hamtramck, Orion, Ramos 
Arizpe, Silao, Spring Hill, Saint Therese, Wentzville, and Wilmington) were analyzed using 
cluster analysis.  A separate cluster analysis was performed on the average spectra of the clear coat 
layer from the other sixteen assembly plants whose clear coat spectra corresponded to acrylic 
melamine styrene formulation (Arlington, Doraville, Fairfax, Flint, Fort Wayne, Fremont, 
Ingersoll, Janesville, Lansing, Linden, Lordstown, Moraine, Oklahoma City, Oshawa, Pontiac, and 
Shreveport).   
 
 

Table 8.  General Motors Assembly Plants 
PLANT PID# (Data Label) DIVIDED BETWEEN 

PLANT GROUPS 
Plant 

GROUP 
Arlington (ARL) 1 NO 1 
Baltimore (BAL) 2 NO 2 
Doraville (DOR) 4 NO 1 

Fairfax (FAI) 5 NO 1 
Flint (FLI) 6 NO 3 

Fort Wayne (FOR) 8 NO 1 
Fremont (FRE) 9 NO 6 

Hamtramck (HAM) 10 NO 2 
Ingersoll (INE) 11 NO 3 

Janesville (JAN) 12 NO 4 
Lansing (LAN) 14 YES 1,5 
Linden (LIN) 16 NO 3 

Lordstown (LRD) 17 NO 6 
Moraine (MOR) 18 NO 1 

Oklahoma City (OKL) 20 YES 1,3 
Orion (ORI) 21 NO 2 

Oshawa (OSH) 22 YES 1,3,6 
Pontiac (PON) 23 NO 1 

Ramos Arizpe (RAM) 24 NO 5 
Shreveport (SHR) 25 NO 3 

Silao (SIL) 26 NO 5 
Spring Hill (SPH) 27 NO 5 

Saint Therese (THE) 28 NO 5 
Wentzville (WEN) 29 NO 2 
Wilmington (WIL) 30 NO 2 

 

Prior to cluster analysis, principal component analysis was performed on each assembly plant to 
assess its class structure.  PC plots of the clear coats from assembly plants corresponding to acrylic 
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melamine styrene polyurethane indicated that each plant was represented by a set of similar 
spectra.  However, clustering was observed in the PC plots of three (Lansing, Oklahoma City, and 
Oshawa) of the seventeen assembly plants whose top coat layer corresponds to acrylic melamine 
styrene (see Figures 28 – 30).  For Lansing, the two clusters in the PC plot were detected which 
were correlated with the carbonyl band being a singlet or a doublet.  (This was missed in our initial 
analysis of the data when the assembly plants were divided into two groups based on whether the 
carbonyl band was a singlet or a doublet because the representative spectra selected were all 
singlets for the carbonyl.)  For Oklahoma City, clustering was correlated to vehicle type (car or 
truck) with one paint sample not being a member of either cluster.  This sample was tagged as an 
outlier after its IR spectrum was visually compared to the average clear coat paint spectrum of the 
two clusters detected in the principal component plot.   In the case of the Oshawa assembly plant, 
three sample clusters were present in the principal component plot. Trucks formed one distinct 
cluster, whereas the automobiles were divided into two clusters on the basis of model and line.  
Because the average clear coat paint spectrum of each cluster in the PC plot was visually different, 
these three assembly plants were further divided into subplants.  The Lansing subplant for the 
samples corresponding to the acrylic melamine styrene polyurethane formulation was transferred 
to the clustering study involving assembly plants whose clear coat layer was acrylic melamine 
styrene polyurethane.  
 
 
 

 

Figure 28.  Plot of the two largest principal components of the wavelet transformed clear coat paint spectra from the 
Lansing plant.  Two distinct sample clusters are evident in the plot.  
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Figure 29.  Plot of the two largest principal components of the wavelet transformed clear coat paint spectra from the 

Oklahoma City plant.  Two distinct sample clusters and one outlier are evident in the plot.  
 

 

 

Figure 30.  Plot of the two largest principal components of the wavelet transformed clear coat paint spectra from the 
Oshawa plant.  Three distinct sample clusters are evident in the plot. 
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To assign the assembly plants and subplants to specific plant groups, the average IR spectrum of 
the clear coat layer of each assembly plant or subplant was computed.  Principal component 
analysis and hierarchical clustering were performed on the average spectra.  Figures 31 and 32 
show the results of the principal component analysis and hierarchical cluster analysis for the nine 
assembly plants and one subplant (Baltimore, Hamtramck, Orion, Ramos Arizpe, Silao, Spring 
Hill, Saint Therese, Wentzville, Wilmington, and Lansing subplant) whose polymer formulation 
for the clear coat layer is acrylic melamine styrene polyurethane.  From the results of the principal 
component analysis and cluster analysis, the nine assembly plants and one subplant were divided 
into two plant groups. Plant Group 2 consists of Baltimore, Hamtramck, Orion, Wentzville, and 
Wilmington assembly plants, whereas Plant Group 5 is comprised of the Lansing subplant and the 
Ramos Arizpe, Silao, Spring Hill, and Saint Therese assembly plants.  Figures 33 and 34 show the 
results of principal component analysis and hierarchical clustering of the thirteen assembly plants 
and six subplants whose polymer formulation for the clear coat layer is acrylic melamine styrene. 
From the results of the principal component analysis and hierarchical clustering, the thirteen 
assembly plants and the six subplants were divided into four plant groups.  Plant Group 1 consists 
of Arlington, Doraville, Fairfax, Fort Wayne, Lansing (subplant), Moraine, Oklahoma City 
(subplant), Oshawa (subplant) and Pontiac assembly plants, whereas Plant Group 3 is comprised 
of Flint, Linden, Oklahoma City (subplant), Oshawa (subplant) and Shreveport assembly plants.  
Plant Group 4 only contains the Janesville assembly plant, and Plant Group 6 consists of Fremont, 
Lordstown, and Oshawa (subplant).   
 

 
Figure 31.  Principal component analysis of the average IR clear coat paint spectrum of each assembly plant or 

subplant whose polymer formulation for the clear coat layer is acrylic melamine styrene polyurethane. 
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Figure 32.  Hierarchical cluster analysis (Wards method) of the average IR spectrum (clear coats) of each assembly 
plant or subplant whose polymer formulation for the clear coat layer is acrylic melamine styrene polyurethane. 

 

 
Figure 33.  Principal component analysis of the average IR clear coat paint spectrum of each assembly plant or 

subplant whose polymer formulation for the clear coat layer is acrylic melamine styrene. 

  30         10          29          21          2           26          24          28        114         27 
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Figure 34.  Hierarchical cluster analysis (Wards method) of the average IR spectrum (clear coats) of each assembly 
plant or subplant whose polymer formulation for the clear coat layer is acrylic melamine styrene. 

 

Having ascertained the membership of each plant group, the next step was classification.  The 
training set and validation set used for Plant Group is listed in Table 9.  During this phase of the 
study, 5 paint samples, which were flagged as discordant observations using the outlier routines 
of the pattern recognition genetic algorithm, were deleted from the analysis.  Figure 35 shows a 
PC plot of the two largest principal components of the remaining 424 wavelet transformed clear 
coat IR spectra and the 1150 wavelet coefficients comprising the training set data for Plant Group.  
All IR spectra in the training set were vector normalized and smoothed (Savitzky-Golay, 4th order, 
17 point window) prior to the application of the wavelet transform (8Sym6), and all wavelet 
coefficients were autoscaled prior to principal component analysis.  Each sample (clear coat) is 
represented as a point in the PC plot of the data.   
 

Table 9.  Training Set and Validation Set for GM Plant Groups 
Group Training Validation 

1 171 17 
2 46 7 
3 73 7 
4 16 0 
5 59 7 
6 59 6 

 

 

  222   9   22  12  11  17   18   1   120 14   8   23    5    4   25  20    6  122  16 
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Figure 35.  PC plot of the two largest principal components of the 424 wavelet transformed clear coat IR spectra and 
the 1150 wavelet coefficients comprising the training set data for Plant Group.  Each clear coat is represented as a 
point in the PC plot of the data.  (1 = Plant Group 1, 2 = Plant Group 2, 3 = Plant Group 3, 4 = Plant Group 4, 5 = 
Plant Group 5, 6 = Plant Group 6). 
 
The next step was feature selection.  The goal was to identify wavelet coefficients characteristic 
of the profile of each plant group. The pattern recognition GA identified informative wavelet 
coefficients by sampling key feature subsets, scoring their PC plots, and tracking those plant 
groups/and or IR spectra that were difficult to classify.  The boosting routine used this information 
to steer the population to an optimal solution.  After 200 generations, the pattern recognition GA 
identified 26 wavelet coefficients whose PC plot showed clustering of the IR clear coat paint 
spectra on the basis of plant group (see Figure 36).   
 

 
Figure 36.  PC plot of the two largest principal components of the 424 training set samples and 26 wavelet coefficients 
identified by the pattern recognition GA (1 = Plant Group 1, 2 = Plant Group 2, 3 = Plant Group 3, 4 = Plant Group 4, 
5 = Plant Group 5, 6 = Plant Group 6). 
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To assess the predictive ability of the 26 wavelet coefficients identified by the pattern recognition 
GA, a validation set of 44 clear coat IR spectra was used.  Clear coat IR spectra from the validation 
set were projected directly onto the PC plot developed from the 424 IR spectra of the training set 
and the 26 wavelet coefficients identified by the pattern recognition GA.  Figure 37 shows the 
projection of the validation set samples onto the PC map of the training set data.  All validation set 
samples are located in a region of the map with clear coats from the same Plant Group. 
 

 
Figure 37.  Validation set samples (in red) projected onto the PC plot of the data defined by the 424 wavelet 
transformed clear coat IR spectra of the training set and the 26 wavelet coefficients identified by the pattern recognition 
GA.  (1 = Plant Group 1, 2 = Plant Group 2, 3 = Plant Group 3, 4 = Plant Group 4, 5 = Plant Group 5, 6 = Plant Group 
6). 

 
For each plant group, a search prefilter was developed to discriminate automotive paint samples 
by assembly plant using the clear coat, surfacer, and primer layers.  After retaining only the 
fingerprint region in each layer, all spectra were vector normalized and then wavelet transformed 
using the Symlet 6 mother wavelet at the 8th level of decomposition.  Wavelet coefficients from 
each layer were horizontally concatenated into a single data vector in the order of clear coat, 
surfacer, and primer. The pattern recognition GA identified the components of this data vector 
(i.e., specific wavelet coefficients in each layer) correlated to the assembly plant of the vehicle 
from which the paint sample was obtained.   
 
Table 10 lists the six assembly plants (Arlington, Doraville, Fairfax, Fort Wayne, Moraine, 
Pontiac) and three subplants (Lansing, Oklahoma City, Oshawa) comprising Plant Group 1.  
Doraville and the Lansing subplant were combined into a plant subgroup as were Fort Wayne and 
Pontiac because the spectra of their clear coat, surfacer, and primer layers were superimposable.   
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Table 10.  Assembly and Subplants Comprising Plant Group 1 
Plant Training Validation 

1 (Arlington) 17 4 
5 (Fairfax) 25 3 

18 (Moraine) 27 2 
20 (subplant of Oshawa) 18 1 

122 (subplant of Oklahoma City) 4 1 
414 (Doraville and subplant of Lansing) 52 5 

823 (Fort Wayne and Pontiac) 28 1 
 
Figure 38 shows a plot of the two largest principal components of the 171 samples comprising 
Plant Group 1 and the 55 wavelet coefficients identified by the pattern recognition GA for the 
training set.  Each fused IR spectrum is represented as a point in the PC plot.  Every assembly 
plant, subplant, and plant subgroup is well separated from each other in the plot.  When the 
validation set samples assigned to Plant Group 1 in the previous principal component plot (see 
Figure 37) were projected onto the PC plot shown in Figure 37, each projected validation set 
sample was located in a region of the map with paint samples from the same assembly plant.  
  

 
 
Figure 38.  Validation set samples (in red or indicated by an arrow) projected onto the PC plot of the data defined by 
the 171 paint samples comprising Plant Group 1 (training set) and the 55 wavelet coefficients identified by the pattern 
recognition GA.  1 = Arlington, 5 = Fairfax, 18 = Moraine, 20 = subplant of Oshawa, 122 = subplant of Oklahoma 
City, 414 = Doraville and subplant of Lansing, and 823 = Fort Wayne and Pontiac. 
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Table 11 lists the five assembly plants (Baltimore, Hamtramck, Orion, Wentzville, Wilmington) 
comprising Plant Group 2.  Figure 39 shows a plot of the two largest principal components of the 
46 samples comprising Plant Group 2 and the 9 wavelet coefficients identified by the pattern 
recognition GA for the training set.  Each fused IR spectrum is represented as a point in the PC 
plot.  Every assembly plant is well separated from each other in the plot.  Projecting the validation 
set samples assigned to Plant Group 2 onto the PC map showed that each projected validation set 
sample is located in a region of the map with paint samples from the same assembly plant.  
 

    
Table 11.  Assembly and Subplants Comprising Plant Group 2 

Plant Training Validation 
2 (Baltimore) 8 0 

10 (Hamtramck) 16 2 
21 (Orion) 7 5 

29 (Wentzville) 8 0 
30 (Wilmington) 7 0 

 
 
 

  
Figure 39.  Validation set samples (in red or indicated by an arrow) projected onto the PC plot of the data defined by 
the 46 paint samples comprising Plant Group 2 (training set) and the 9 wavelet coefficients identified by the pattern 
recognition GA.  2 = Baltimore, 10 = Hamtramck, 21 = Orion, 29 = Wentzville, 30 = Wilmington. 
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Table 12 lists the four assembly plants (Flint, Ingersoll, Linden, Shreveport) and the two subplants 
(Oklahoma City, Oshawa) comprising Plant Group 3.  Figure 40 shows a plot of the two largest 
principal components of the 72 samples comprising Plant Group 3 and the 43 wavelet coefficients 
identified by the pattern recognition GA for the training set.  Each fused IR spectrum is represented 
as a point in the PC plot.  Every assembly plant is well separated from each other in the plot.  
Projecting the validation set samples assigned to Plant Group 3 by the plant group search prefilter 
onto the PC map showed that each projected validation set sample is located in a region of the map 
with paint samples from the same assembly plant.  
 

Table 12.  Assembly and Subplants Comprising Plant Group 3 
Plant Training Validation 

6 (Flint) 7 1 
11 (Ingersoll) 10 0 
16 (Linden) 11 3 

20 (subplant of Oklahoma City) 7 0 
25 (Shreveport) 18 1 

122 (subplant of Oshawa) 20 2 
 

 

 
Figure 40.  Validation set samples (in red or indicated by an arrow) projected onto the PC plot of the data defined by 
the 72 paint samples comprising Plant Group 3 (training set) and the 43 wavelet coefficients identified by the pattern 
recognition GA.  6 = Flint, 11 = Ingersoll, 16 = Linden, 20 = subplant of Oklahoma City, 25 = Shreveport, 122 = 
subplant of Oshawa. 
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Since Plant Group 4 consists solely of the Janesville assembly plant, no assembly plant prefilter is 
required.  Table 13 lists the four assembly plants (Ramos Arizpe, Silao, Spring Hill, and St. 
Therese) and one subplant (Lansing) comprising Plant Group 5.  Figure 41 shows a plot of the two 
largest principal components of the 59 paint samples comprising Plant Group 5 and the 30 wavelet 
coefficients identified by the pattern recognition GA for the training set.  Each fused IR spectrum 
is represented as a point in the PC plot.  Every assembly plant is well separated from each other in 
the plot.  Projecting the validation set samples assigned to Plant Group 5 onto the PC map showed 
that each projected validation set sample is located in a region of the map with paint samples from 
the same assembly plant.  
 

 
Table 13.  Assembly and Subplants Comprising Plant Group 5 

Plant Training Validation 
24 (Ramos Arizpe) 21 3 

26 (Silao) 18 0 
27 (Spring Hill) 8 1 

28 (Saint Therese) 6 1 
114 (subplant of Lansing) 6 2 

 
 

 

Figure 41.  Validation set samples (in red or indicated by an arrow) projected onto the PC plot of the data defined by 
the 59 paint samples comprising Plant Group 5 (training set) and the 30 wavelet coefficients identified by the pattern 
recognition GA.  24 = Ramos Arizpe, 26 = Silao, 27 = Spring Hill, 28 = Saint Therese, 114 = subplant of Lansing. 
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Table 14 lists the two assembly plants (Fremont and Lordstown) and one subplant (Oshawa) 
comprising Plant Group 6.  Figure 42 shows a plot of the two largest principal components of the 
61 samples comprising Plant Group 6 and the 16 wavelet coefficients identified by the pattern 
recognition GA for the training set.  Each fused IR spectrum is represented as a point in the PC 
plot.  Every assembly plant, is well separated from each other in the plot.  Projecting the validation 
set samples assigned to Plant Group 6 by the plant group search prefilter onto the PC map showed 
that each projected validation set sample is located in a region of the map with paint samples from 
the same assembly plant.  The results of the GM study indicate that search prefilters developed 
from IR spectra of the clear coat and the two undercoat paint layers can characterize an unknown 
paint sample by the assembly plant of the vehicle from which the paint sample originated. 
 

Table 14.  Assembly and Subplants Comprising Plant Group 6 
Plant Training Validation 

9 (Fremont) 10 0 
17 (Lordstown) 34 4 

222 (subplant of Oshawa) 15 2 
 

 

 

Figure 42.  Validation set samples (in red or indicated by an arrow) projected onto the PC plot of the data defined by 
the 61 paint samples comprising Plant Group 6 (training set) and the 16 wavelet coefficients identified by the pattern 
recognition GA.  9 = Fremont, 17 = Lordstown, 222 = subplant of Oshawa. 
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Library searching of each validation set sample was performed using the IR spectra of the 
automotive vehicles assembled in the manufacturing plant identified by the General Motors search 
prefilters.  Our spectral library consisted of the manufacturer’s paint system for 1182 automotive 
Chrysler, General Motors, and Ford automotive vehicles within a limited production year range 
(2000-2006).  To extract information about the model from the IR spectrum, library searching of 
each validation set sample was performed using the IR spectra of the automotive vehicles 
assembled in the assembly plant(s) identified by the search prefilters. The library search results for 
the validation set samples are summarized in Table 15 for the 44 validation set samples.  Although 
several spectral intervals were investigated during this phase of the study (including the fingerprint 
region and the fingerprint region and the carbonyl band), the results tabulated here are for the 
region from 3675 cm-1 to 2856 cm-1 and from 1891 cm-1 to 668 cm-1, where the relative weighting 
of the sub-region from 1650 cm-1 to 668 cm-1, corresponding to the fingerprint region, was doubled 
relative to the other two spectral regions.   
 
Within each interval, up to 75 windows were employed from the center burst. For Scheme 1, the 
remaining results were then weighted based on their average similarity index across all windows 
and spectral intervals.   A histogram of the results was computed with the top 5 matches of each 
comparison used to find the closest matching sample. Results from the cross correlation library 
searching method were compared with the top 5 matches identified by OMNIC (Thermo Nicolet), 
which accessed the entire PDQ library for spectral matching. Search results for both schemes and 
OMNIC are summarized in Table 15.  The prototype pattern recognition software system 
outperformed OMNIC (Thermo Nicolet) in all cases. There was one paint sample (UMNP00180) 
that was always misclassified by both OMNIC and the prototype pattern recognition software 
system.  For UMNP00180, there were other models and lines that proved to be better matches.   
There were several samples continually missed by OMNIC. For example, both CONT00968 and 
UCAD00033 were usually missed by OMNIC in all the spectral regions investigated but in most 
cases were correctly classified by the prototype pattern recognition system.  OMNIC misclassified 
the clear coat and the two undercoat layers of CONT01547 and UORS00235, whereas these two 
samples (for either the clear coat or undercoat layers) were correctly classified by the prototype 
pattern recognition system.  For CONT01547, the correct model and line was a poor match, 
whereas for UORS00235, other models and lines proved to be better spectral matches.   
 
All spectra incorrectly matched by Scheme 1 were also incorrectly matched by OMNIC.  Two of 
the samples missed by Scheme 1 were missed in all three layers. The remaining samples missed 
were incorrectly matched in only some paint layers, dependent upon the quality of the individual 
spectra for the layer in question. 
 
The top hit selected by Scheme 1 always yielded a reasonable match, usually superior to the match 
between the validation set sample and the actual model for incorrectly matched spectra (see Figures 
43 through 45).  This was true for all incorrectly matched paint samples.  Although Scheme 2 did 
not perform as well as Scheme 1, it had the advantage of providing insight into how well the library 
matched the blinds, rather than how well an individual blind matched spectra in the library. This 
suggests that samples assigned the same model and line by both schemes are well represented in 
the library and correlate well on an individual basis to specific samples in the library.  For these 
samples, one can have confidence in the quality of the match and high certitude regarding the 
accuracy of the match.  A similar statement cannot be made regarding the accuracy and quality of 
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individual matches by OMNIC as reflected by their hit quality index which are typically 98%-99% 
for the top 20 hits.   

Table 15.  Library Search Results for General Motors 
Layer 1OMNIC 

Searching 
Prototype System 

(Scheme 1) 
Prototype System 

(Scheme 2) 
Clear coat 17 39 28 
Surfacer 26 38 31 
Primer 18 36 34 

2Fused (Addition) 29 35 31 
 

1OMNIC searching was done using its built-in library searching. The diamond region, 2856 cm-1 to 1891 cm-1 was 
excluded from the search. The results of OMNIC were considered correct if there was a match within the top 5 hits 
found by OMNIC’s search algorithm as ranked by hit quality index. 
2Fusion of the layers was achieved by taking spectra (in absorbance mode) of the clear coat and undercoat paint layers 
and directly adding them to yield a single spectrum which was then converted to the transmittance mode for analysis 
by the cross correlation library search algorithm. 

 
Figure 43: GM Clear Coat spectral matches: a) top hit and b) correct match 
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Figure 44: GM Surfacer spectral matches: a) top hit and b) correct match 

Figure 45: GM Primer spectral matches: a) top hit and b) correct match 
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Development of Search Prefilters for Ford 
The first step in the development of the search prefilters for Ford was to differentiate the 
manufactured paint systems by plant group.  To determine the composition of each plant group, 
representative spectra were selected from each assembly plant.  The Ford assembly plants (see 
Table 16) whose clear coat paint spectra exhibited a doublet for the carbonyl band (acrylic 
melamine styrene polyurethane) as opposed to a singlet (acrylic melamine styrene) were flagged.  
The two assembly plants (St. Thomas-Talbotsville and Wixom) whose clear coat paint spectra 
exhibited a doublet for the carbonyl were assigned to Plant Group 24, whereas the other fifteen 
assembly plants whose clear coat spectra exhibited a singlet for the carbonyl were assigned to other 
plant groups.   
 
Prior to cluster analysis, principal component analysis was performed on each Ford assembly plant 
to detect outliers and to assess class structure.  Using only clear coat spectra, the Wixom plant was 
observed to contain an outlier which was attributed to the carbonyl band of the sample being a 
singlet, not a doublet.  Distinct sample clusters were observed in the PC plots of six Ford assembly 
plants (Dearborn, Norfolk, Oakville, St. Thomas-Talbotsville, Twin Cities-St Paul, Wayne). For 
St. Thomas-Talbotsville and Dearborn (see Figures 46 and 47), the clustering was correlated to 
production year.  However, the larger sample cluster (2000-2006) in the Saint Thomas-Talbotsville 
plant was represented by spectra that had a singlet for the carbonyl.  For Norfolk, Oakville and 
Wayne (see Figures 48-50), clustering occurred on the basis of the model and the production year 
of the vehicle.  For Twin Cities-Saint Paul (see Figure 51), clustering was correlated to production 
year. Since the average clear coat paint spectrum of each cluster was visually different, these six 
assembly plants were further divided into subplants.  For St. Thomas-Talbotsville, the subplant 
corresponding to the acrylic melamine styrene formulation was removed from the Plant Group 
containing clear coats prepared using the acrylic melamine styrene polyurethane formulation. 

 
Table 16.  Ford Assembly Plant 

PLANT PID# (Data Label) DIVIDED BETWEEN 
PLANT GROUPS 

Plant 
GROUP 

Atlanta (ATL) 2000 NO 21 
Chicago (CHI) 2002 NO 21 

Dearborn (DEA) 2003 YES 21,22 
Edison (EDI) 2004 NO 21 

Flat Rock (FLA) 2005 NO 22 
Hermosillo (HER) 2006 NO 22 
Kansas City (KAN) 2007 NO 23 

Kentucky Truck (KTR) 2008 NO 21 
Lorain (LOR) 2009 NO 22 

Louisville (LOU) 2010 NO 23 
Norfolk (NOR) 2011 YES 21, 22 
Oakville (OAK) 2012 YES 21, 22 

Saint Louis (STL) 2013 NO 22 
Saint Thomas-Talbotsville (STT) 2014 YES 23, 24 

Twin Cities-Saint Paul 2015 YES 21, 22 
Wayne (WAY) 2016 YES 21, 22 
Wixom (WIX) 2017 NO 24 
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Figure 46.  Plot of the two largest principal components of the wavelet transformed clear coat spectra from the Saint 

Thomas-Talbotsville plant.  Two distinct sample clusters are evident in the plot. 
 

 
Figure 47.  Plot of the two largest principal components of the wavelet transformed clear coat spectra from the 

Dearborn plant.  Two distinct sample clusters are evident in the plot. 
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Figure 48.  Plot of the two largest principal components of the wavelet transformed clear coat spectra from the 

Norfolk plant.  Two distinct sample clusters are evident in the plot. 
 

 
Figure 49.  Plot of the two largest principal components of the wavelet transformed clear coat spectra from the 

Oakville plant.  Two distinct sample clusters are evident in the plot. 
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Figure 50.  Plot of the two largest principal components of the wavelet transformed clear coat spectra from the 

Wayne plant.  Two distinct sample clusters are evident in the plot. 
 

 
Figure 51.  Plot of the two largest principal components of the wavelet transformed clear coat spectra from the Twin 

Cities-Saint Paul plant.  Two distinct sample clusters are evident in the plot. 
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To assign the remaining eleven assembly plants (Atlanta, Chicago, Dearborn, Edison, Flat Rock, 
Hermosillo, Kansas City, Kentucky Truck, Lorain, Louisville, Saint Louis) and nine subplants 
(Norfolk/two subplants, Oakville/two subplants, St. Thomas-Talbotsville, Twin Cities – St. 
Paul/two subplants, Wayne/ two subplants) to specific plant groups, the average IR spectrum of 
the clear coat layer of each assembly plant or subplant was computed. Principal component 
analysis and hierarchical clustering were performed on the average spectra.   
 
Figures 52 and 53 show the results of principal component analysis and hierarchical clustering for 
the twelve assembly plants and nine subplants whose polymer formulation for the clear coat layer 
was acrylic melamine styrene.  From the results of the principal component analysis and 
hierarchical clustering, the eleven assembly plants and the nine subplants were divided into three 
plant groups. Plant Group 21 consists of Atlanta, Chicago, Dearborn (subplant), Edison, Kentucky 
Truck, Norfolk (subplant), Oakville (subplant), Twin Cities-St. Paul (subplant), and Wayne 
(subplant).  Plant Group 22 consists of Dearborn (subplant), Flat Rock, Hermosillo, Lorain, 
Norfolk (subplant), Oakville (subplant), St. Louis, Twin Cities-St. Paul (subplant), and Wayne 
(subplant).  Plant Group 23 consists of Kansas City, Louisville, St. Thomas-Talbotsville (subplant) 
and the lone Wixom paint sample whose clear coat spectrum has a singlet for the carbonyl band.  
(The Wixom sample was included in the cluster analysis for the purpose of assessing its similarity 
relative to other assembly plants or subplants as the possibility was raised about the sample being 
mislabeled.)        
  

 
Figure 52.  Principal component analysis of the average IR clear coat spectrum of each assembly plant or subplant 

whose polymer formulation for the clear coat layer is acrylic melamine styrene. 
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Figure 53.  Hierarchical cluster analysis (Wards method) of the average IR spectrum (clear coats) of each assembly 

plant or subplant whose polymer formulation for the clear coat layer is acrylic melamine styrene. 
 

Having ascertained the membership of each plant group, the next step was classification.  The 
training and validation sets used for Plant Group are listed in Table 17.  Figure 54 shows a PC plot 
of the two largest principal components of the 375 wavelet transformed clear coat IR spectra and 
the 1150 wavelet coefficients comprising the training set data for Plant Group.  All IR spectra in 
the training set were vector normalized and smoothed (Savitzky-Golay, 4th order, 17 point 
window) prior to the application of the wavelet transform (8Sym6), and all wavelet coefficients 
were autoscaled prior to principal component analysis.  Each sample (clear coat) is represented as 
a point in the PC plot of the data.  The overlap between Plant Groups 22, 23, and 24 in the plot is 
evident. 

Table 17.  Training Set and Validation Set for Ford Plant Groups 
Group Training Validation 

21 180 15 
22 86 12 
23 85 8 
24 23 3 

 

2112 2001 2113 2009 2116 2111 2115 2103 2013 2005 2006 2117 2010 2014 2007 2004 2000 2102 
2008 2003 2108 2015 2011 2016 2012 2002 
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Figure 54.  PC plot of the two largest principal components of the 374 wavelet transformed clear coat IR spectra and 
the 1150 wavelet coefficients comprising the training set data for Plant Group.  Each clear coat is represented as a 
point in the PC plot of the data.  (21 = Plant Group 21, 22 = Plant Group 22, 23 = Plant Group 23, 24 = Plant Group 
24). 
 

The next step was feature selection.  The goal was to identify wavelet coefficients characteristic 
of the profile of each plant group. The pattern recognition GA identified informative wavelet 
coefficients by sampling key feature subsets, scoring their PC plots, and tracking those plant 
groups/and or IR spectra that were difficult to classify.  The boosting routine used this information 
to steer the population to an optimal solution.  After 200 generations, the pattern recognition GA 
identified 37 wavelet coefficients whose PC plot showed clustering of the IR clear coat paint 
spectra on the basis of plant group (see Figure 55). 
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Figure 55.  PC plot of the two largest principal components of the 374 training set samples and 37 wavelet 
coefficients identified by the pattern recognition GA (21 = Plant Group 21, 22 = Plant Group 22, 23 = Plant Group 
23, 24 = Plant Group 24). 
 
To assess the predictive ability of the 37 wavelet coefficients identified by the pattern recognition 
GA, a validation set of 38 clear coat IR spectra was used.  Clear coat IR spectra from the validation 
set were projected directly onto the PC plot developed from the 374 IR spectra of the training set 
and the 37 wavelet coefficients identified by the pattern recognition GA.  Figure 56 shows the 
projection of the validation set samples onto the PC map of the training set data.  All validation set 
samples are located in a region of the map with clear coats from the same Plant Group. 
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Figure 56.  Validation set samples (in red) projected onto the PC plot of the data defined by the 374 wavelet 
transformed clear coat IR spectra of the training set and the 37 wavelet coefficients identified by the pattern recognition 
GA.  (21 = Plant Group 21, 22 = Plant Group 22, 23 = Plant Group 23, 24 = Plant Group 24). 
 
For each plant group, a search prefilter was developed to discriminate automotive paint samples 
by assembly plant using the clear coat, surfacer, and primer layers.  After retaining only the 
fingerprint region in each layer, all spectra were vector normalized and then wavelet transformed 
using the Symlet 6 mother wavelet at the 8th level of decomposition.  Wavelet coefficients from 
each layer were horizontally concatenated into a single data vector in the order of clear coat, 
surfacer, and primer. The pattern recognition GA identified the components of this data vector 
(i.e., specific wavelet coefficients in each layer) correlated to the assembly plant of the vehicle 
from which the paint sample was obtained.   
 
Table 18 lists the subplant (Dearborn) and plant subgroup (Atlanta, Chicago, Edison, Kentucky 
Truck, Norfolk (subplant), Oakville (subplant), Twin Cities-St. Paul (subplant), Wayne (subplant)) 
comprising Plant Group 21.  Figure 57 shows a plot of the two largest principal components of the 
180 samples comprising Plant Group 21 and the 17 wavelet coefficients identified by the pattern 
recognition GA for the training set.  Each fused IR spectrum is represented as a point in the PC 
plot.  The validation set samples assigned to Plant Group 21 which are projected onto the PC map 
are shown in red. Only the Dearborn subplant could be reliably discriminated from the other 
assembly plants and subplants in this plant group.  Because of the similarity of their spectra, the 
other assembly plants and subplants were combined into a single plant subgroup. 
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Table 18.  Assembly and Subplants Comprising Plant Group 21 
Plant Training Validation 

2003 (subplant of Dearborn) 19 1 
2481 (Atlanta, Chicago, Edison, Kentucky Truck, 

subplant of Norfolk, subplant of Oakville, subplant of 
Twin Cities-St. Paul, subplant of Wayne) 

161 14 

 
 

 
Figure 57.  Validation set samples (in red) are projected onto the PC plot of the data defined by the 180 paint samples 
comprising Plant Group 21 (training set) and the 17 wavelet coefficients identified by the pattern recognition GA.  
2003 = subplant of Dearborn, 2481 = Atlanta, Chicago, Edison, Kentucky Truck, Norfolk (subplant), Oakville 
(subplant), Twin Cities-St. Paul (subplant), Wayne (subplant). 

 
Table 19 lists the three plant subgroups comprising Plant Group 22.   Plant subgroup 1923 consists 
of Lorain, Oakville, and the St. Louis subplant, whereas Plant subgroup 3156 consists of the 
subplants of Dearborn, Norfolk, Twin Cities-St. Paul, and Wayne.  Plant subgroup 5613 is 
comprised of the Flat Rock and Hermosillo plants, as well as the other St. Louis subplant.  For St. 
Louis, it was necessary to divide the assembly plant into two subplants due to clustering observed 
in the surfacer layer (see Figure 58).   
 
Figure 59 shows a plot of the two largest principal components of the 79 samples comprising Plant 
Group 22 and the 24 wavelet coefficients identified by the pattern recognition GA for the training 
set.  Each fused IR spectrum is represented as a point in the PC plot.  The validation set samples 
assigned to Plant Group 22, which are projected onto the PC map, are shown in red.  Every 
validation set sample was projected onto a region of the map with paint samples from the same 
plant subgroup. During the course of feature selection, 6 training set samples were detected as 
outliers and were deleted from the analysis.  Two were from Flat Rock, one was from Hermosillo, 
one was from Lorain, and two were from the Twin Cities-St. Paul subplant.  These six samples 
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differed from their assembly plant or subplant in the surfacer and/or primer layers.  A seventh 
sample (Avon Lake) was discarded from the analysis because the corresponding assembly plant 
was represented by only a single sample.  Thus, the original training set of 86 wavelet preprocessed 
fused IR spectra was truncated to 79 spectra for assembly plant search prefilter development. 
 
 
 

 
Table 19.  Assembly and Subplants Comprising Plant Group 22 

Plant Training Validation 
1923 (Lorain, Oakville, subplant of St. Louis) 14 2 

3156 (subplant of Dearborn, subplant of Norfolk, 
subplant of Twin Cities-St. Paul, subplant of Wayne) 

25 5 

5613 (Flat Rock, Hermosillo, subplant of St. Louis) 40 5 
 
 
 
 
 

 
Figure 58.  Plot of the two largest principal components of the surfacer spectra from the St. Louis assembly plant.  

Two distinct clusters are evident in the plot. 
 

 
 
 

2000-2003 

2003-2006 
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Figure 59.  Validation set samples (in red) are projected onto the PC plot of the data defined by the 79 paint samples 
comprising Plant Group 22 (training set) and the 24 wavelet coefficients identified by the pattern recognition GA.  
1923 = Lorain, Oakville, and St. Louis (subplant), 3156 = Dearborn (subplant), Norfolk (subplant), Twin Cities-St. 
Paul (subplant), and Wayne (subplant), 5613 = Flat Rock, Hermosillo, St. Louis (subplant). 
 
Table 20 lists the two plants (Kansas City and Louisville) and the subplant (St. Thomas-
Talbotsville) comprising Plant Group 23.  Figure 60 shows a plot of the two largest principal 
components of the 80 samples comprising Plant Group 23 and the 51 wavelet coefficients 
identified by the pattern recognition GA for the training set.  Each fused IR spectrum is represented 
as a point in the PC plot.  The validation set samples assigned to Plant Group 23 which are 
projected onto the PC map are shown in red. All validation set samples except for one from 
Louisville were projected onto a region of the map with paint samples that were from the same 
assembly plant or subplant.  Five of the original 86 training set samples in Plant Group 23 were 
found to be outliers and discarded during the course of the pattern recognition analysis to develop 
an assembly plant and subplant search prefilter for this plant group.  Four were from Kansas City, 
and the other was from Louisville.  These five samples differed from their assembly plant or 
subplant in the surfacer and/or primer layers.  A sixth sample (Wixom) was discarded because the 
corresponding subplant was represented by a single sample – the only carbonyl singlet among 
Wixom clear coat spectra.  
 
 

 
Table 20.  Assembly and Subplants Comprising Plant Group 23 

Plant Training Validation 
2007 (Kansas City) 39 4 
2010 (Louisville) 28 3 

2014 (subplant of St. Thomas-Talbotsville) 13 1 
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Figure 60.  Validation set samples (in red or indicated by arrows) are projected onto the PC plot of the data defined 
by the 80 paint samples comprising Plant Group 23 (training set) and the 51 wavelet coefficients identified by the 
pattern recognition GA.  2007 = Kansas City, 2010 = Louisville, 2014 = St. Thomas-Talbotsville (subplant). 

 

For Plant Group 24, the pattern recognition GA was not able to identify a set of coefficients from 
the wavelet transformed concatenated IR spectra that could differentiate Wixom from St. Thomas 
- Talbotsville.  To understand the reason, principal component analysis was performed on both the 
Wixom and St. Thomas-Talbotsville assembly plants.  Clustering correlated to the production year 
of the vehicle was observed for the Wixom assembly plant.  For this reason, Wixom was divided 
into two subplants (see Figure 61). Table 21 lists the three subplants (one from St. Thomas-
Talbotsville, two from Wixom) comprising Plant Group 24.   
 

Table 21.  Assembly and Subplants Comprising Plant Group 24 
Plant Training Validation 

2017 (subplant of Wixom) 9 1 
2114 (subplant of St. Thomas-Talbotsville) 5 0 

2217 (subplant of Wixom) 7 2 
 
Figure 62 shows a plot of the two largest principal components of the 21 training set samples 
comprising Plant Group 24 and the 2 wavelet coefficients identified by the pattern recognition GA 
for the training set.  All three subplants are well separated from each other in the plot.  Projecting 
the validation set samples assigned to Plant Group 24 onto the PC plot showed that each projected 
validation set sample is located in a region of the PC map containing samples from the same 
subplant.  As only two wavelet coefficients were necessary for the development of the search 
prefilter, it is logical to conclude that the underlying classification problem is simple.  
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Figure 61.  Plot of the two largest principal components of the surfacer spectra from the Wixom assembly plant.  

Two distinct clusters are evident in the plot. 
 

 
Figure 62.  Validation set samples (in red or indicated by arrows) are projected onto the PC plot of the data defined 
by the 21 paint samples comprising Plant Group 24 (training set) and the 2 wavelet coefficients identified by the 
pattern recognition GA.  2017 = Wixom (subplant), 2114 = St. Thomas-Talbotsville (subplant), 2217 = Wixom 
(subplant). 

2002-2006 

2000-2001 
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The results of the Ford search prefilter development study suggest that Ford vehicles could pose 
challenges in the forensic examination of automotive paints as most assembly plants or subplants 
could not be differentiated.  Ford automotive paint samples from the Atlanta, Chicago, Edison, 
and Kentucky Truck assembly plants and the Norfolk, Oakville, Twin Cities-St. Paul, and Wayne 
subplants produced automotive paint systems similar in both the top coat and under coat layers as 
reflected by their IR spectra.  Furthermore, the Flat Rock and Hermosillo assembly plants and the 
St. Louis subplant produced automotive paint systems also similar in both top coat and undercoat 
layers.  Only the Kansas City and Louisville assembly plants as well as the Dearborn, St. Thomas-
Talbotsville, and Wixom subplants could be reliably differentiated by the search prefilters.  This 
does not augur well for IR library searches involving Ford paint samples as there could be a high 
probability of obtaining a large number of spurious hits that a scientist must work through and 
eliminate thereby impairing the accuracy of the search.  Nevertheless, the cross correlation library 
search algorithm was shown to be effective for these matches.    
 
Library searching of each validation set sample was performed using the IR spectra of the 
automotive vehicles assembled in the manufacturing plant identified by the Ford search prefilters.  
The spectral library consisted of the manufacturer’s paint system for 1182 automotive Chrysler, 
General Motors, and Ford automotive vehicles within a limited production year range (2000-
2006).  To extract information about the model from the IR spectrum, library searching of each 
validation set sample was performed using the IR spectra of the automotive vehicles assembled in 
the assembly plant(s) identified by the search prefilters.  Three validation set samples were deleted 
from this analysis because the corresponding make and model of the corresponding paint sample 
was not present in the library.  Although several spectral intervals were investigated during this 
phase of the study (including the fingerprint region and the fingerprint region and the carbonyl 
band), the tabulated results shown here are for the region from 3675 cm-1 to 2856 cm-1 and from 
1891 cm-1 to 668 cm-1. Additionally, the fingerprint region (1650 cm-1 to 668 cm-1) was doubled 
in weight relative to the other two spectral intervals used.   
 
The library search results for both schemes are summarized in Table 22 for 38 validation set 
samples.  A histogram of the results with the top 5 matches for each comparison was computed to 
find the closest matching sample. For Scheme 1 this histogram was then weighted based on the 
average similarity index across all windows and intervals for each match candidate.  The cross 
correlation library searching method was then compared with the top 5 matches identified by 
OMNIC, which used all 1182 spectra for library matching.  Search results for both schemes and 
OMNIC are summarized in Table 22.  The prototype pattern recognition software system 
outperformed OMNIC (Thermo Nicolet) in all cases and the results were comparable to General 
Motors whose search prefilters performed better than those of Ford.  
 
There was one paint sample (UFLO00432) that was always misclassified by both the prototype 
pattern recognition system (both schemes) and OMNIC.  For UFLO00432, there were other 
models and lines that were shown to be better matches.  Two samples (UAZP00343 and 
UKYF00141) were always misclassified by OMNIC, but could be correctly classified by the 
prototype pattern recognition system.  There were paint samples (UAZP00354, UAZP00474, and 
UOHL00133) that were usually missed by both OMNIC and the prototype pattern recognition 
system.  For UAZP00354, the correct model was a poor match, whereas for UOHL00133, the 
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correct model was a better match but not an optimal match.  For UAZP00474, the other models 
and lines were better matches. 

Table 22.  Library Search Results for Ford 
Layer 1OMNIC 

Searching 
Prototype System 

(Scheme 1) 
Prototype System 

(Scheme 2) 
Clear Coat 24 32 30 
Surfacer 24 32 28 
Primer 27 29 29 

2Fused (Addition) 23 31 29 
1OMNIC searching was done using its built-in library searching. The diamond region, 2856 cm-1 to 1891 cm-1 was 
excluded from the search. The results of OMNIC were considered correct if there was a match within the top 5 hits 
found by OMNIC’s search algorithm as ranked by hit quality index. 
2Fusion of the layers was achieved by taking spectra (in absorbance mode) of the clear coat and undercoat paint layers 
and directly adding them to yield a single spectrum which was then converted to the transmittance mode for analysis 
by the cross correlation library search algorithm. 
 
All spectra incorrectly matched by Scheme 1 were also incorrectly matched by OMNIC.  The 
sample corresponding to the sole clear coat IR spectrum missed was also missed in the surfacer 
and primer layer searches by the cross correlation library search algorithm.  However, the 
additional paint sample missed in the surfacer layer search was correctly matched in the primer 
layer search.  With one exception, all paint samples incorrectly matched by Scheme 1 were also 
incorrectly matched by Scheme 2. This exception was caused by two populations that were hit 
equally often. One population contained the correct model identifier, while the other had the 
correct line identifier. Because of this, the probabilistic system identified a fair chance of there 
being a correct match for the correct model and line in the top 5, when in reality is was observing 
the overlap between similar populations. 
 
The top hit selected by Scheme 1 always yielded a reasonable match, usually superior to the match 
between the validation set sample and the actual model for incorrectly matched spectra (see Figures 
63 through 65).  This was true for all incorrectly matched samples. Although Scheme 2 did not 
perform as well as Scheme 1, it has the advantage of providing insight into how well the library 
matches the blinds, rather than how well an individual blind matches the library. This suggests that 
samples assigned the same model and line by both schemes are well represented in the library and 
correlate well on an individual basis to specific samples in the library.  For these samples, one can 
have confidence in the quality of the match and high certitude regarding the accuracy of the match.  
A similar statement cannot be made regarding the accuracy and quality of individual matches by 
OMNIC as reflected by their hit quality index which are typically 98%-99% for the top 20 hits.   

 
 



66 
 

Figure 63.  Ford GM clear coat spectral matches: a) top hit and b) correct match 

Figure 64.  Ford surfacer spectral matches: a) top hit and b) correct match 
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Figure 65: Ford Primer spectral matches: a) top hit and b) correct match 
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Simulation of Attenuated Total Reflection Infrared Absorbance Spectra 

A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of the 
paint data query (PDQ) automotive database is presented.  The proposed correction algorithm to 
convert IR transmission spectra from the PDQ library to ATR spectra is able to address distortion 
issues such as the relative intensities and broadening of the bands, and introduction of wavelength 
shifts at lower frequencies, which prevent library searching of ATR spectra using archived IR 
transmission data.  Conversion of an IR transmission spectrum to an ATR spectrum was performed 
by taking advantage of a surface reflection phenomenon at the boundary between the sample and 
the internal reflection element (IRE) of the spectrometer.  In this procedure, the reflection of the 
incident beam from the IRE is described at the boundary with the sample by Fresnel’s equations.  
In order to simulate an ATR spectrum the following data are required: optical constants, n- and k- 
indices of the sample, refractive index of IRE, sample thickness, incident angle of the beam and 
the number of internal reflections.  By assigning values to these parameters, the reflectance of s- 
and p- polarized light can be calculated from Fresnel’s equations. ATR spectra of p- and s- 
polarized incident light obtained are averaged to give the ATR spectrum with unpolarized light. 
 
The optical constants of the paint sample were calculated from the transmission spectrum of the 
sample in absorbance units when the sample thickness is known.  The process consists of two 
steps.  First, the k-index is obtained using Equation 10. 
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A(ν) is the transmission spectrum in absorbance units as a function of wavenumber, ν, λ (which 
equals 1/ν) is the wavelength of the incident beam, and d is the sample thickness, respectively.  As 
two components, both real and imaginary, of a complex function such as the refractive index, 

iknn +=~ , are mutually related through the Kramers-Kronig relationship, once the k-index has 
been obtained, the n-index is calculated by Kramers-Kronig integration of the k-index with the 
refractive index at high wavenumbers used as the anchor value, which is summarized in Equation 
11. 
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P denotes the principal value and n( ∞ ) is defined as the index at high wavenumber, where there 
is no absorption.  In our calculation, the double Fourier method was employed to perform 
calculations using Equation 11.   Using Equation 11, the complex refractive index of the sample 
can be obtained.   
 
If IR spectra that have been simulated using n(∞) values of 1.45, 1.50 or 1.55 are overlaid with the 
remaining parameter set unchanged, only small changes in the peak intensities of weak peaks 
which appear as shoulders of major (strong) peaks are observed.  The peak positions of major 
peaks, for example the C=O stretching vibration, change only 0.7 cm-1 from 1.45 to 1.55. Hence, 
a spectral library search will not be influenced by this small discrepancy. Absolute values of the 
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peak intensities of major peaks such as C=O stretching vibration change approximately 20% from 
1.45 to 1.55.  Although this is not a small change, these changes can be easily compensated for by 
adjusting the film thickness of the transmission sample.  Instead of an ad hoc selection of n(∞) and 
thickness for each sample, we have selected a self-consistent parameter set of 47o incident angle, 
n(∞) = 1.50, and sample thickness of 4.5 micrometers for these clear coat samples.      
 
The set of n- and k- indices defines Fresnel’s reflection coefficients for the p- and s-polarized beam 
(see Equation 12 and Equation 13). 
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Here, n0 and 1

~n  are the refractive indices of the IRE and the sample.  θ0 and θ1 are the angles of 
the beam in the IRE and in the sample respectively.  Reflectance values for the ATR spectrum are 
given by Equation 14. 
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Using Equations 10 and 11, the k-index and n-index are calculated from the transmission spectrum.  
These values as well as the refractive index of the IRE are placed into Equations 12 and 13 to yield 
Fresnel’s reflection coefficients.  These coefficients are then used to compute the reflectance 
values of the corresponding ATR spectrum via Equation 14.  Further details about Kramers-Kronig 
integration and the calculations of Fresnel’s coefficients can be found elsewhere [30-32]. 
 
A program to convert an IR transmission spectrum to the corresponding ATR spectrum was written 
in Matlab (MathWorks, Nautick, MA U.S.A.)  Since the double Fourier transform technique was 
used to implement Equation 11, the spectral data size was adjusted to 2𝑛𝑛 points in excess of the 
original data length (analogous to zero filling) to the lower and higher frequency sides.  In these 
calculations, the thickness of the paint sample is required.  IR spectra in the PDQ library were 
collected using thin microtomed films of the surface materials of the individual paint layers 
compressed between diamond-windows at 40 psi with the film thickness estimated to be below 10 
micrometers thick.  To estimate the film thickness, 13 transmission spectra were selected from the 
PDQ library and ATR spectra of these same samples were measured using the built-in diamond 
single-reflection ATR accessory of the Nicolet iS50 FTIR spectrometer and compared with 
calculated ATR spectra for these samples using a sample thickness of 3 to 10 micrometers for 
every 1 micrometer increment.  In all cases, the best match in both ordinate intensities and peak 
positions was observed when the sample thickness was assumed to be 4 to 5 micrometers.  For this 
reason, a thickness of 4.5 micrometers for the sample film was used throughout our simulations.   



70 
 

In these simulation studies, ATR analysis was limited to the clear coat paint layer.  Because the 
penetration depth of an ATR analysis is quite shallow and is considerably less than the thickness 
of an automotive clear coat, this layer can be preferentially analyzed directly on intact paint chips 
with little or no sample preparation. Use of an ATR objective on an infrared microscope is also 
the method of choice for the analysis of very thin automotive paint smears. Such smears may 
consist primarily of the clear coat paint layer transferred onto the impacted vehicle or other object 
such as a pedestrian.  The Forensic Laboratory of the Royal Canadian Mounted Police who utilize 
high pressure diamond cells to acquire transmission IR spectra of automotive paint layers for the 
PDQ database have estimated that the thickness of the clear coat layer, once it is pressed between 
the two diamonds, as 5 micrometers.   
 
For this program, it was also necessary to provide the incident angle of the ATR accessory in the 
equations used to compute the ATR spectrum.  The incident angle of the iS50 ATR accessory was 
estimated using a simulation.  As explained above, it is possible to simulate ATR spectrum when 
the optical constants of the sample (e.g., refractive index) are known. We have selected the optical 
constants of toluene published by Jones and coworkers [33]. The best match for the ATR spectrum 
of toluene measured on the iS50 built-in ATR accessory at 1 cm-1 spectral resolution was 
determined when the incident angle is changed from 43o to 50o. For medium strength (~0.53 Abs.) 
absorption such as the absorption band at 463 cm-1, the best match in intensity was achieved using 
an incident angle of 47o, while for the strong band (~0.96 Abs.) at  725 cm-1, 49o gave the best 
match in intensity. In this study, we have selected 47o for the effective incident angle of the built-
in ATR accessory for our clear coat paint spectra as it is best for weak to medium strength 
absorptions.  All transformations of transmission spectra to corresponding ATR spectra were 
performed with the following input data to the above-mentioned MATLAB codes: refractive index 
of diamond is 2.38, the refractive index at high wavenumber where there is no absorption of the 
sample n ( ∞ ), is 1.50, and the incident angle (relative to the normal) in the IRE is 47o. The value 
of 1.50 was searched from the list of refractive indices corresponding to the Sodium D-line. The 
clear coats used in this study are composed of acrylate polymer with modification by polyurethane 
and polystyrene. The refractive indices of these compounds are near 1.50, and this value was 
employed for n( ∞ ) throughout our entire study. 
 
Figure 66 shows a plot of the calculated versus measured ATR spectrum of a clear coat paint 
sample designated as UAZP00503 in the PDQ database. The carbonyl peak, which is a doublet at 
1730 cm-1, is accurately represented in the calculated ATR spectrum.  Minor peaks and shoulders 
in the measured ATR spectrum are also accurately represented in the simulation.  The noise in the 
measured ATR spectrum from 2400 cm-1 to 2000 cm-1 is caused by absorption bands of diamond 
in this region.   
 
The incident angle used in this and in our other simulations is 47o.  If the incident angle of the 
ATR accessory is 45o, the signal due to the p-polarized beam would be twice that of the s-polarized 
beam.  As 47o incidence refers to a system that has more s-polarized beam than p-polarized beam, 
the signal of the absorption intensity is weaker than expected.  This is evident when two spectra 
of stretched (oriented) polyethylene collected at two different orientations, each 90o apart, are 
compared (see Figure 67).  The ratio of the intensity of the doublet that corresponds to the bending 
vibration is reversed in these two spectra.  As these two spectra are different, one can only conclude 
that residual polarization exists with this spectrometer equipped with this ATR system.  By 
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comparison, there is no difference in ATR spectra of unstretched polyethylene when it is oriented 
in these two perpendicular directions.  For this reason, it is necessary to use a lower sample 
thickness in the calculations, which corresponds to a higher k value and therefore higher dispersion 
amplitude of the n index.  The values specified in these simulations were self-consistent as they 
described the salient features of this system specified by equations 10 through 14.   

 
Figure 66.  ATR spectrum of the (a) simulated and (b) measured ATR spectrum of the clear coat paint sample 
designated as UAZP00503 in the PDQ database.  The ATR spectrum was measured at 4 cm-1 resolution. 
 
 

 
Figure 67.   Spectra of stretched (oriented) polyethylene at two different orientations, each 900 apart: a) drawn axis of 
the sample is oriented parallel to the ridge of the diamond prism, b) drawn axis of the sample is oriented perpendicular 
to the ridge of the diamond prism. 
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One problem that impacted the quality of these simulations is the absence of any information about 
the angle of incidence from the manufacturer.  If the incident angle is smaller, the absorption peak 
will be more intense but there will be more tailing towards lower frequency.  If the incident angle 
is larger, the absorption peak will be less intense but it will be more symmetric.  A second problem 
is the polarization of the entire optical system of the spectrometer used in this study including the 
interferometer and the ATR accessory.  Our simulation assumes s- and p- polarization of 50:50.  
If the polarization deviates from 50:50, then the polarization must be measured. To make this 
measurement, it is necessary to insert a polarizer into the optical system, which is not an easy task.  
For this simulation study, we used 50:50 polarization in the calculations.  In the future, we hope 
to refine this calculation by measuring the residual polarization of our spectrometer. 
 
Although both the input incident angle and the sample refractive index at high wave-numbers must 
be provided by the user for these simulations, the same is true in the case of the ATR-to-
Transmission correction method, as this routine also requires the input of the incident angle and 
the refractive index at high wavenumbers. For the ATR-to-Transmission correction method, data 
acquired with imperfect sample contact with the IRE and the resultant scattering of the evanescent 
wave at the boundary between the sample and the IRE can cause numerical overflow/underflow 
problems, because the offset from the baseline due to insufficient contact is interpreted as strong 
absorption, namely a large k-index in a wide wavenumber range, which in turn generates a large 
dispersion of the n-index in the same wavenumber range through Kramers-Kronig integrations. 
When such a problem occurs, the corresponding transmission spectrum may show, for examples, 
a straight line with a high absorbance value, or large ringing around strong peaks, or negative 
absorbance with opposite phase. Using the present method, the spectrum taken with insufficient 
sample contact with the IRE will at least show a spectrum if the intensity is weak or it will show a 
bent baseline. Even with such a poor quality spectrum, a library search is plausible using the 
present method. 
 
During the course of this investigation, we discovered that it is not always possible to calculate an 
ATR spectrum of a sample from its corresponding transmission spectrum due to the presence of 
contaminants on the surface of some clear coat paint samples.  ATR analysis is restricted to the 
surface of the sample and a region of a few micrometers below the surface of the sample.  
Transmission measurements, on the other hand, interrogate all regions of the sample along the path 
of the IR beam and are relatively insensitive to the presence of contaminants on the surface as 
these compounds would comprise a very small fraction of the sample.  Figure 68 shows an ATR 
spectrum of the clear coat paint sample designated as ULH00050 in the PDQ database before and 
after washing with methanol.  The peak between 1650 cm-1 and 1600 cm-1 corresponds to water, 
whereas the peak between 1050 cm-1 and 1000 cm-1 indicates the presence of silicates in the 
sample.  These peaks are not present in the IR transmission spectrum of this sample.  Washing the 
sample with methanol decreases the amount of water and silicates in the sample as reflected by the 
decrease in the intensities of these absorption bands.  If water is trapped in the silicates, decreasing 
the amount of silicates in the sample by washing would also decrease the amount of water present 
in the clear coat paint sample.  
 
Figure 69 shows the difference spectrum formed by subtracting the ATR spectrum of ULH00050 
before and after sample washing.  An examination of the difference spectrum reveals the presence 
of a water band at 1650 cm-1 and a silicate peak at 1000 cm-1.  Library matching of the difference 
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spectrum using OMNIC revealed the presence of bentonite (see Figure 70), which is a type of clay 
that contains alumino-silicates.  Many paint samples in the PDQ library were obtained from 
salvage yards, and the presence of these contaminants could be due to prolonged exposure of the 
paint layers in the environment. 

 
Figure 68.  ATR spectra of ULH00050 (a) before and (b) after washing by methanol 

 

 
Figure 69.  ATR spectra of ULH00050: a) before washing, b) after washing, and c) difference spectrum 
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Figure 70.  (a) Difference spectrum before and after washing and (b) library spectrum of bentonite selected by 

OMNIC as a match for the difference spectrum. 
 
ATR spectra of ULH00050 were collected using a germanium IRE.  However, these surface effects 
will also be present when a diamond IRE is used. Figure 71 shows the changes in the ATR 
spectrum of sample UOHL00050 after washing with methanol using a diamond IRE.  Figure 72 
shows the changes in the ATR spectrum of the same sample after washing with methanol using a 
germanium IRE.  Although these surface contaminants are present in spectra collected using both 
diamond and germanium, they are more pronounced when germanium is used. This proves that 
the contaminant is near the surface as the penetration depth of the evanescent wave through 
germanium and the sample is less than it would be with diamond due to the higher refractive index 
of germanium.   

 
Figure 71.  Effect of methanol washing on ATR spectra of UOHL00050 clear coat paint sample on diamond IRE 
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Figure 72.  Effect of methanol washing on ATR spectra of UOHL00050 clear coat paint sample on germanium IRE 
 

To further assess the efficacy of the ATR correction algorithm, search prefilters were developed 
from simulated ATR spectra for the purpose of identifying the assembly plant of a vehicle from 
an ATR spectrum of its clear coat paint smear.  456 transmission spectra from the PDQ library 
spanning 22 GM assembly plants (see Table 23) were transformed into ATR spectra using the 
ATR simulation algorithm. The spectral region used to formulate the search prefilters was the 
fingerprint region (1500 cm-1 to 600 cm-1).   In this study, both the simulated and experimental 
ATR spectra were preprocessed using the discrete wavelet transform, which increased the signal 
to noise of the data by concentrating the signal in specific wavelet coefficients.  Using the pattern 
recognition GA, wavelet coefficients characteristic of the assembly plant of the vehicle were 
identified.  In this study, the Symlet 6 mother wavelet at the 8th level of decomposition (8Sym6) 
was used to denoise and to resolve overlapping spectral responses in each ATR spectrum.  Prior 
to pattern recognition analysis, the wavelet coefficients for each IR spectrum were organized as a 
data vector.  Each wavelet coefficient was autoscaled to ensure that it had a mean of zero and a 
standard deviation of one.  Auto-scaling removed inadvertent weighting of the wavelet coefficients 
that otherwise would occur due to differences in magnitude among the coefficients.  This ensures 
that each wavelet coefficient had an equal weight in the pattern recognition analysis of the data. 
 
Search prefilters were developed using the same hierarchical classification scheme from a previous 
study [reference] involving IR transmission data for GM assembly plants.  First, an unknown was 
classified as to its plant group and then a search prefilter was used to identify a specific assembly 
plant or assembly plants within the plant group to which membership of the unknown was 
assigned.  The assembly plants comprising each plant group are listed in Table 24.  In the previous 
study, the IR spectra were initially divided into two categories based on the carbonyl band at 1709 
cm-1.  In one category, the carbonyl band in each transmission spectrum was a singlet (Plant Groups 
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1, 3, and 5) which corresponds to acrylic melamine styrene and in the other category the carbonyl 
band was a doublet (Plant Groups 2 and 4) which corresponds to acrylic melamine styrene 
polyurethane.  An examination of the expanded fingerprint region revealed five distinct spectral 
patterns with each pattern corresponding to a specific plant group.    
 

Table 23.   GM Plants used to develop the Search Prefilters 
Plant ID Plant Model Line 

1 Arlington CAD, CHE, GMC SUB,YUK,ESD,CTA 

3 Bowling Green CAD,CHE CVT,XLR 

4 Doraville PON VTR,SIL,MTA,UPL,TAR 

5 Fairfax CHE,OLD,PON GRA,MAL,ITR 

6 Flint CHE,GMC SLV,SIE 

8 Fort Wayne CHE,GMC SLV,SIE 

9 Fremont GMC VIB,TAC,PVB,COA,GPR 

10 Hamtramck BUI,CAD,PON BON,DEV,LUC,LES,SEV,ELD 

11 Ingersoll CHE, PON EQU, MGM, TRA, TOR 

12 Janesville GMC CTA,SUB,YUK 

14 Lansing PON STS 

16 Linden CHE,GMC BZR,JMY,S10 

17 Lordstown PON SFR,CAV,COB,PST 

18 Moraine CHE,GMC,SAA JMY,ENV,9S7,BZR,TBZ,SON 

20 Oklahoma City CHE, GMC MAL,TBZ,ENV,EQU, XUV 

21 Orion PON,BUI BON,PG6,LES,AUR, PKA 

22 Oshawa GMC,PON ALL,REG 

23 Pontiac CHE,GMC SLV,SIE,SIL 

24 Ramos Arizpe BUI,CHE,PON CAV,SFR,RZV,AZT,HHR 

25 Shreveport CHE,GMC S10,COL,SON 

26 Silao CHE,GMC,SAA AVL,SUB,YXL 

27 Spring Hill STR SSL,ION,SC1,SC2,SL1,VUE 
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Table 24.  Assembly Plants Comprising Each Plant Group 
Plant Group Plant ID Number Assembly Plant 

1 1, 4, 5, 8, 14, 18, 23 Arlington, Doraville, Fairfax, Lansing, 
Moraine, Pontiac 

2 3, 10, 21 Bowling Green, Hamtramck, Orion 

3 6, 9, 11, 16, 17, 20, 
22, 25 

Flint, Fremont, Linden, Lordstown, 
Oklahoma City, Oshawa, Shreveport 

4 12 Janesville 

5 24, 26, 27 Ramos Arizpe, Silao, Spring Hill 

 

The first step in this study was to apply principal component analysis (PCA) to the 456 wavelet 
transformed ATR spectra.  Figure 73 shows a principal component (PC) plot of the 456 ATR 
spectra and the 1178 wavelet coefficients representing each simulated ATR spectrum.  Each 
sample is represented as a point in the PC plot.  The overlap of several plant groups in the PC plot 
of the data is evident. 

 
Figure 73.  PC plot of the two largest principal components of the 456 ATR spectra and the 1178 wavelet coefficients 
comprising the training set.  Each clear coat paint sample is represented as a point in the PC plot of the data (1 = Plant 
Group 1, 2 = Plant Group 2, 3 = Plant Group 3, 4 = Plant Group 4, and 5 = Plant Group 5).   
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The next step was feature selection.  The pattern recognition GA identified wavelet coefficients 
characteristic of the plant group by sampling key feature subsets, scoring their PC plots and 
tracking those plant groups and/or spectra that were most difficult to classify.  The boosting routine 
used this information to steer the population to an optimal solution.  After 200 generations, the 
pattern recognition GA identified 27 wavelet coefficients whose PC plot (see Figure 74) showed 
clustering of the spectra on the basis of plant group. 
 

 
Figure 74.  PC plot of the two largest principal components of the 456 ATR training set spectra and the 27 wavelet 
coefficients identified by the pattern recognition GA.  Each clear coat paint sample is represented as a point in the PC 
plot of the data (1 = Plant Group 1, 2 = Plant Group 2, 3 = Plant Group 3, 4 = Plant Group 4, and 5 = Plant Group 5).   
 
To assess the predictive ability of these 27 wavelet coefficients, a validation set of 14 clear coat 
paint samples whose ATR spectra were obtained using a Nicolet iS50 FTIR spectrometer served 
as the validation set.  ATR spectra from the validations set were projected onto the PC plot 
developed from the 456 simulated ATR spectra of the training set and the 27 wavelet coefficients 
identified by GA using the transductive learning routine of the pattern recognition GA [34].  Figure 
75 shows the projection of the 14 validation set samples onto the PC plot of the training set data.  
All 14 clear coats were correctly classified.   
 
The next step was to develop search prefilters to identify the spectra of the validation set samples 
by assembly plant.  For each plant group, a search prefilter was developed to discriminate spectra 
by assembly plant within a plant group.  Figure 76 shows a PC plot of the two largest principal 
components of 29 wavelet coefficients identified by the pattern recognition GA for Plant Group 1 
(see Table 24).  Each simulated spectrum is represented as a point in the PC plot of the data.  Plant 
18 (Moraine, OH) is well separated from the other assembly plants in the PC plot.  The spectra 
from the other 6 assembly plants (Arlington TX, Doraville GA, Fairfax KS, Fort Wayne IN, 
Lansing MI, and Pontiac MI) were similar, which prevented further discrimination by assembly 
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plant of these clear coats.  Projecting the validation set samples assigned to Plant Group 1 onto 
this PC plot via transverse learning showed that each projected sample was located in a region of 
the map with paint samples of the same class label: either plant 18 or plants 1, 4, 5, 8, 14, and 23.   

 
 
Figure 75.  PC plot of the two largest principal components of the 456 ATR training set spectra and the 27 wavelet 
coefficients identified by the pattern recognition GA.  Each clear coat paint sample is represented as a point in the PC 
plot of the data.  Validation set samples are circled. (1 = Plant Group 1, 2 = Plant Group 2, 3 = Plant Group 3, 4 = 
Plant Group 4, and 5 = Plant Group 5).   
       
 

 

 

 

 

 

 

 

 

 
Figure 76.  PC plot of the two largest principal components of the 180 Plant Group 1 simulated spectra and the 27 
wavelet coefficients identified by the pattern recognition GA.  Each simulated or experimental ATR spectrum is 
represented as a point in the PC plot of the data.  Validation set samples are in red and circled. (1 = Arlington, 
Doraville, Fairfax, Fort Wayne, Lansing, Pontiac, and 18 = Moraine).   
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Figure 77 shows a plot of the two largest principal components of the 52 simulated ATR spectra 
and the 28 wavelet coefficients identified by the pattern recognition GA for the assembly plants 
comprising Plant Group 2.   All 3 assembly plants (Bowling Green KY, Hamtramck MI, and Orion 
MI) are well separated from each other in the PC plot of the data.   The two validation set samples 
assigned to Plant Group 2 also projected onto this plot lie in a region of the PC map that contains 
simulated spectra with the same class label.   
 

 
Figure 77.  PC plot of the two largest principal components of the 52 Plant Group 2 simulated spectra and the 28 
wavelet coefficients identified by the pattern recognition GA.  Each simulated or experimental ATR spectrum is 
represented as a point in the PC plot of the data.  Validation set samples are in red and circled. (3 = Bowling Green, 
10 = Hamtramck, and 21 = Orion).  
 
Figure 78 shows a plot of the two largest principal components of the 138 simulated ATR spectra 
from Plant Group 3 and the 33 wavelet coefficients identified by the pattern recognition GA.  
Clustering of the simulated spectra by assembly plant and model in the PC plot is evident for the 
spectra comprising the training set.  Fremont California (Plant 9) and Lordstown Ohio (Plant 17) 
form distinct clusters in the PC plot as do the trucks from Oshawa (Plant 22).  The two validation 
set samples assigned to Plant Group 3 are projected onto the PC plot in a region that contains 
simulated spectra from the same assembly plant.   
 
Plant Group 4 contains only one assembly plant, and the three assembly plants from Plant Group 
5 cannot be discriminated due to the similarity of their spectra.  A summary of the results obtained 
for the 14 validation samples using the search prefilters developed from the simulated ATR spectra 
is shown in Table 3.  For validation set samples 91001, 91013, 91027, and 92005, differences 
between the experimental ATR spectrum and the simulated ATR spectrum derived from the 
corresponding transmission spectrum of the same sample in the PDQ library (see Figures 79-82) 
can be attributed to weathering.  The increase in the 1630 cm-1 band and the decrease and change 
in the spectral pattern for the 1085 cm-1 – 1030 cm-1 region can be attributed to the formation of 
primary amines and the loss of the C-O-C groups attached to the triazine ring of acrylic melamine 
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in acrylic melamine styrene [35-37].  By exposing a fresh surface of the clear coat automotive 
paint layer to the spectrometer (see Figure 83), interference due to weathering has been eliminated.    
 

 

 

 

 

 

 

 

 

 

 
 
Figure 78.  PC plot of the two largest principal components of 138 Plant Group 3 simulated ATR spectra and the 33 
wavelet coefficients identified by the pattern recognition GA.  Each simulated or experimental ATR spectrum is 
represented as a point in the PC plot of the data.  Validation set samples are in red and circled. (1 = Fremont, 2 = 
Lordstown, 3 = Ingersoll, 4 = Oshawa, and 6 = Flint, Linden, Oklahoma City, Oshawa, Shreveport).  
 

Table 25.  Summary of Results for Validation Set Samples 

 

 

Validation 
Sample 

Assigned 
Plant Group Assigned Plant(s) 

ID of Validation 
Sample 

91001 1 1,4,5,8,14, 22(Buick cars), 20(Trucks) 14 
91011 5 24,26,27 26 
91012 5 24,26,27 26 
91013 1 1,4,5,8,14, 22(Buick cars), 20(Trucks) 14 
91025 2 10 10 
91027 1 1,4,5,8,14, 22(Buick cars), 20(Trucks) 14 
91028 1 1,4,5,8,14, 22(Buick cars), 20(Trucks) 14 
92001 1 1,4,5,8,14, 22(Buick cars), 20(Trucks) 1 
92003 4 12 12 
92004 3 6,16,20(CHE),22(CHE cars),25 6 
92005 1 1,4,5,8,14, 22(Buick cars), 20(Trucks) 22 
92006 5 24,26,27 24 
92007 2 21 21 
92008 3 6,16,20(CHE),22(CHE cars),25 25 

Plant 11 

Plants: 
6 
16 
20-CHE 
22-CHE cars 
25 

Plant 17 

Plant 9 

Plant 22 
Trucks 
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Figure 79. Simulated (red) and experimental (blue) ATR spectra for Sample 92005.  For the experimental ATR 
spectrum, the increase in the 1630 cm-1 band and the decrease in the 1085 cm-1 and 1030 cm-1 bands are attributed to 
weathering of the clear coat layer.    
 

 

 
Figure 80. Simulated (red) and experimental (blue) ATR spectra for Sample 91001.  For the experimental ATR 
spectrum, the increase in the 1630 cm-1 band and the decrease in the 1030 cm-1 and 1085 cm-1 bands are attributed to 
weathering of the clear coat layer.    
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Figure 81. Simulated (green) and experimental (red) ATR spectra for Sample 91027.  For the experimental ATR 
spectrum, the increase in the 1630 cm-1 band and the decrease in the 1030 cm-1 and 1085 cm-1 bands are attributed to 
weathering of the clear coat layer.    
 

 

 
Figure 82. Simulated (red) and experimental (purple) ATR spectra for Sample 91013.  For the experimental ATR 
spectrum, the increase in the 1630 cm-1 band and the decrease in the 1030 cm-1 and 1085 cm-1 bands are attributed to 
weathering of the clear coat layer.   
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Figure 83. Simulated (red) and experimental (blue) ATR spectra for Sample 92005.  For the experimental ATR 
spectrum, a fresh surface of the clear coat layer was exposed to the spectrometer to minimize the effects of 
weathering.  The circled regions (1630 cm-1, 1030 cm-1 and 1085 cm-1) indicative of weathering are consistent with 
the simulated ATR spectrum.     
 

Spectral libraries of archived transmission data of automotive paint samples can be transformed 
into ATR libraries using the correction algorithm.  As ATR is a surface sensitive technique, the 
presence of contaminants at or near the surface of the clear coat paint layer, which is not a problem 
with transmission spectra, will pose a problem for ATR. Removal of these contaminants from 
automotive paint samples is crucial to quantify the general discrimination power of original 
automotive paint comparisons limited to clear coat paint smears when ATR spectroscopy is used 
to characterize automotive paint samples. 
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IV. Conclusions 
 
Discussion of Findings: A search prefilter was developed to differentiate automotive paint 
samples by automobile manufacturer (Chrysler, General Motors, and Ford) using the clear coat 
and undercoat paint layers.  For each automobile manufacturer, search prefilters were developed 
to identify the assembly plant of the vehicle from the manufacturer’s paint system conveyed by 
the sample.  First, the assembly plants were divided into groups of assembly plants based upon 
cluster analysis of the fingerprint region of the clear coat paint layer.  Second, each plant group 
was divided into its assembly plants using both the clear coat and the two undercoat paint layers.  
The search prefilter system categorizes each unknown paint system by identifying successively 
smaller sets of vehicles to which the unknown is assigned.  The search prefilters have the potential 
to facilitate spectral library searching as the size of the library is truncated to those spectra of paint 
samples obtained from assembly plants identified by the search prefilters.   
 
The search prefilters developed for the GMC and Chrysler vehicles (2000-2006) can identify the 
assembly plant or subplant where the manufacturer’s paint system was applied to the vehicle.  This, 
in turn, allows for the model and line of the vehicle to be identified.  As some models and lines are 
assembled in more than one assembly plant, identifying the specific plant that has assembled the 
vehicle reduces the size of the PDQ library to a smaller number of IR spectra than a search prefilter 
predicated on identifying the specific model and line of the vehicle.  Although the results of the 
Ford search prefilters suggested that Ford vehicles could pose challenges in the forensic 
examination of automotive paints as most assembly plants or subplants could not be differentiated, 
the cross correlation library search algorithm was shown to be effective, yielding results for the 
matching of the validation set samples comparable to General Motors.    
 
The cross correlation library searching algorithm in conjunction with the search prefilters was able 
to outperform OMNIC for all three U. S. manufacturers (Chrysler, General Motors, and Ford) and 
reduce the hit-list to five samples in each search.  This is a potentially significant development as 
it can increase both the speed and accuracy of forensic automotive paint analysis.  
 
A correction algorithm to allow attenuated total reflection (ATR) spectra to be matched using the 
IR transmission spectra of the PDQ database has also been developed as part of this research 
project.  ATR is a widely used sampling technique in IR spectroscopy because minimal sample 
preparation is required.  As the penetration depth of the ATR analysis beam is shallow, the outer 
layers of a laminate or multi-layered paint sample can be preferentially analyzed with the entire 
sample intact.  For this reason, forensic laboratories have taken advantage of ATR to collect IR 
spectra of automotive paint systems which may consist of three or more layers.  However, the IR 
spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band broadening and 
lower relative intensities at higher wavenumbers, when compared with its transmission 
counterpart.  This hinders library searching as most library spectra are measured in transmission 
mode.  The correction algorithm to convert transmission spectra from the PDQ library into ATR 
spectra is able to address distortion issues such as the relative intensities and broadening of the 
bands, and introduction of wavelength shifts at lower frequencies, which prevent library searching 
of ATR spectra using archived IR transmission data. 
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To maintain relevancy of the newly designed library search system, it is crucial to populate PDQ 
to assembly plants, makes, lines and production years including current years where there is 
insufficient data.  Further validation of the search prefilters and further assessment of the cross 
correlation library search algorithms also needs to be undertaken to authenticate the performance 
of the proposed search prefilters and spectral library searching system.  The studies discussed in 
this report have shown that evidential trace information can be obtained directly from clear coat 
and undercoat paint layers using search prefilters developed as part of a pattern recognition driven 
library matching search system.    
 
Implications for Policy and Practice: The research project described in this report is directly 
targeted to enhance current approaches to data interpretation of forensic paint examinations and to 
aid in evidential significance assessment, both at the investigative lead stage and at the courtroom 
testimony stage.  The search prefilters and cross correlation library searching algorithms for the 
PDQ database have the potential to enhance current approaches to data interpretation of forensic 
paint examinations and to aid in evidential significance assessment, both at the investigative lead 
level and at the courtroom testimony stage.  There is also potential for direct impact with the 53 
local, state, and federal forensic laboratories currently using the PDQ database in the United States 
as well as international forensic laboratories including the National Forensic Laboratory Services 
Division of the RCMP, the Centre of Forensic Sciences in Toronto, Canada, members of the 
ENFSI network of European forensic science institutes, and the Australian Police Services.   
 
The R & D effort described in this report is an international collaborative effort between the Lavine 
research group at Oklahoma State University and Mark Sandercock of the RCMP.  The advantages 
of using pattern recognition techniques to search the IR spectra of the PDQ database include 
extraction of investigative lead information from clear coat and undercoat paint layers and 
increased accuracy of searches as spectra from the entire database are searched.  This is a 
significant improvement over the way searches are currently performed for automotive paints 
using the PDQ database.  Information derived from the proposed pattern recognition searches will 
allow forensic scientists to quantify the general discrimination power of original automotive paint 
comparisons encountered in casework. Addressing these concerns is a direct response to 
Recommendation 3 of the National Academies’ February 2009 report, “Strengthening Forensic 
Science in the United States: A Path Forward.”  It is anticipated that once these pattern recognition 
techniques have been developed, they may also be used to efficiently and accurately search other 
forensic spectral libraries, for example, illicit drug and pharmaceutical databases, textile fiber 
database and explosive databases.  
 
Implications for Future Research:  The proposed pattern recognition driven library searching 
system and the ATR correction algorithm have the potential to extract evidentiary lead information 
from automotive paint systems.  In the forensic examination of automotive paint, each layer of 
paint is analyzed individually by FTIR. The more unique the paint layers are, the more information 
is contained in the sample, and the stronger are the forensic conclusions that can be drawn. 
Laboratories in North America hand-section each layer and present each separated layer to the 
spectrometer for analysis which is time consuming. In addition, sampling too close to the boundary 
between adjacent layers can also be a problem as it produces an IR spectrum that is a mixture of 
two layers. Not having a “pure” spectrum of each layer will prevent a meaningful comparison 
between each paint layer or, in the situation of searching an automotive paint database, will prevent 
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the scientist from developing an accurate hit list of potential suspects. We have addressed these 
problems by collecting concatenated IR data from all paint layers in a single analysis by scanning 
across the cross-sectioned layers of the paint sample using an FTIR imaging microscope equipped 
with a linear array detector. Decatenation of the concatenated IR data can be achieved using 
multivariate curve resolution techniques to obtain a “pure” IR spectrum of each automotive paint 
layer. This approach, not only saves time and eliminates the need to analyze each layer separately, 
but also ensures that the final spectrum of each layer is “pure” and not a mixture. By integrating 
this imaging experiment including the use of multivariate curve resolution to improve spatial 
resolution with a prototype pattern recognition IR library searching system, the forensic 
examination of automotive paints can be facilitated in terms of both speed and accuracy. 
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VI. Dissemination of Research Findings 
The development of an ATR correction algorithm and a pattern recognition driven library 
searching system for automotive paints analysis and the demonstration of their efficacy against a 
large database of FTIR spectra is of significant interest to the wider scientific community.  
Therefore, publication of the initial results from this work will occur in more widely read journals 
such as Analytical Chemistry, Talanta, Analytica Chimica Acta, and Applied Spectroscopy.  
Additional publications, demonstrating the practical application of this prototype system to solve 
forensic casework will be published in one of the more widely read forensic science journals such 
as Journal of Forensic Sciences.  
 
Oral and poster presentations focusing on the search prefilters have been made at several scientific 
meetings, e.g., American Academy of Forensic Sciences, Federation of Analytical Chemistry and 
Spectroscopy Societies, the Pittsburgh Conference, and the American Chemical Society.  These 
presentations have generated interest among analytical chemists and forensic scientists as the 
pattern recognition driven library search system and the ATR correction algorithm have the 
potential to be used efficiently and accurately to search other forensic spectral libraries, for 
example, illicit drug and pharmaceutical databases, textile fiber database, explosive databases, 
architectural paint databases, plastic databases (motor vehicle parts), adhesive tape databases, 
caulks and sealant databases, and pigment databases (art forgeries). 
 
We are currently working with the RCMP who have developed the PDQ database to engage the 
practitioner community and transition this research into practice.  PDQ database users will be made 
aware of these research activities through the RCMP in their annual PDQ database updates.   The 
PDQ Maintenance Team of the RCMP provides support and training on basic and advanced search 



90 
 

techniques for the database and they are often invited to the AAFS meetings to run a workshop.  
At this workshop, the maintenance team will be able to inform users about our research activities 
to improve the searching capabilities of the PDQ database. 
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