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Purpose of the Project 

   For decades, questioned document examiners (QDE) have been conducting handwriting comparisons 

and testified to their conclusions in civil and criminal courts in the US and internationally. The task of 

handwriting identification is based on an assumption of individuality: No two people write the same way 

and no one person writes exactly the same way twice [1], [2], [3]. Statistical support for this identifiability 

in the past using two types of data: (i) random samples from a population representative of the United 

States (4), and (ii) samples from twins to take the genetic factor into account (5).  

   Both previous approaches have a bias which we attempt to address in the study reported here. General 

population across the United States consists of people from different school systems or even different 

cultures. Therefore, they may learn how to write by different ways of teaching, or they may just learn to 

write in different writing systems. So there is a large variation between their handwritings.  However, the 

purpose of this study takes a third approach – using writing samples from a population, all who are in the 

same age groups and instructed in the same manner.  

   This study focuses on analysis over time, specifically children’s handwriting as they develop their 

writing skills during early grades. Because the task of writer identification is based on the assumption of 

individuality of handwriting, it is important to be aware of how individual handwriting characteristics are 

assumed to develop. Students are taught to write in primary school; hand printing begins in kindergarten 

and cursive writing begins in second grade. They are taught a style of hand writing (e.g., D’Nealian, 

Zaner-Bloser, etc.) by copying letter and number formations from a copy book or from an instructional 

banner posted in their classroom. The writing system determines Class Characteristic of all the students; 

in the case the student’s Class Characteristic (properties common to a group) will be the letter formations 

instructed using Zaner-Bloser. An example of the writing is shown in Fig. 1. [Figure 1 here]. 

Over time, with continued instruction and practice, the students’ writing skills increase as well as their 

confidence; they will stop copying the letters and numbers and instead begin writing from memory. It’s at 

this time, when students begin to write from memory, that students are believed to begin developing their 

Individual Characteristics (unique to individual) [6].  

   Questions this project aims to answer are: (i) at what ages do individual handwriting characteristics 

begin to develop; (ii) at what rate do these individual handwriting characteristics develop; (iii) what are 

the most common (less unique) individual characteristics that develop and (iv) what are the least common 

individual (more unique) individual characteristics that develop.  Such a temporal analysis will not only 

lead to an understanding as to how individual handwriting characteristics develop and come to be 

habitual, but it will also provide a clearer understanding of the accuracy, reliability and measurement 

validity of the handwriting comparison processes.   
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Project Subjects 

Handwriting samples were collected from school age children in second grade (~7 years old), third grade 

(~8 years old) and fourth grade (~9 years old) because writing instructions (lessons) begin and then 

continue to be practiced during these three grades. Hand printed and cursive writing samples were 

collected from all the students, approximately 1,800 subjects, as they just began to learn (2nd graders) or 

had just recently learned (3rd and 4th graders) to write using cursive writing.  The first year’s writing 

collection was gathered during spring of the 2011-2012, the second year during spring of the 2012-2013 

and the third year during the spring of 2013-2014. The Minnesota Independent School Districts (MNISD) 

participating in this study were chosen because they had low “family move in/move out” ratios in their 

districts over the past 10 years. Both school districts chosen were teaching their students to write using 

the Zaner-Bloser method of writing; the most common writing method being taught throughout the 

United States at the present. Writing samples were collected each spring in order to obtain consistent data 

sampling, necessary to document minute changes in hand printing and cursive writing skills and habits, as 

the students’ abilities change over time. The students were asked to produce the sample paragraph a total 

of four times (two times hand printed; two times cursive).  Most students achieved this task; some wrote 

less, some wrote more.   

Project Design 

The PI, in conjunction with MNISD #832 and #833, University Professor, Dr. Sargur N. Srihari and Dr. 

Greg Ball gathered all the handwriting and data analysis by completing the following: 

1. The PI and the ISDs worked together assigned each student a unique participant identification 

number used throughout the study. 

2. Each spring handwriting and hand printing samples were gathered from a large number of 

students as they were learning or had just learned how to write. These same students were 

followed through all three years of their primary education writing career, as were available. 

3. Hand writing forms were produced by the PI in order to control the document writing area and 

line spacing variables. Writing forms for second and third graders were produced with a solid 

baseline and top line and a dashed middle line, similar to instruction forms used during class 

instructions. Third grade and above all used single lined forms. 

4. Each student was asked to produce 4 copies of the same paragraphs: 2 copies in cursive writing 

and 2 copies in hand printing.  

5. First year: PI gathered only hand printing writing from students in 2nd graders and hand printing 

and cursive writing from 3rd and 4th graders; Second year: PI gathered hand printing and cursive 
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writing from 3rd, 4th and 5th graders; Third year: PI gathered hand printing and cursive writing 

from 4th, 5th and 6th graders 

6. All writing samples were scanned as whole page documents, digitized and the all of the words 

and were extracted and saved as separate images. If less than 5 and were present the sampling 

was not analyzed for that student that year.   

7. Each student’s and was analyzed using two different approaches.  In the first approach, the 

distribution of the characteristics of the letters in the word and was studied using characteristic 

values, assigned by human board certified questioned document examiners, using a truthing tool. 

This resulting data was analyzed first by constructing probabilistic graphical models (7), from 

which information theoretic measures were computed to determine the range of variations (8,9).  

In the second approach, the entire sample of writing, rather than a single word, was examined by 

the use of an automated system for handwriting comparison.  

Methods 

    The students write a paragraph four times each year; two times in cursive writing and two times by 

hand printed. The paragraph consists of the following text:  

The brown fox went into the barn where he saw the black dog. After a second, the black dog saw the fox 

too. The brown fox was fast and quick. The black dog was not fast and he lost the fox. The fox hid in a 

hole and waited for the black dog to go home. After the black dog went home, the fox was able to go to 

the hole he called home and saw all the other foxes. The other foxes were glad to see him and they all 

asked him to tell them about his day.  

    The word and appears five times in the paragraph. This data gathering process produced an average of  

5 to 10 samples of the word per student in hand printed and in cursive (except for second graders) to be 

analyzed using a truthing tool, which assigns numbers to the sub-categories involved with the 12 

individual handwriting characteristics (7). The word and is one of few words that children write over and 

over during their early writings and have therefore began to develop individual handwriting 

characteristics rather than words that are not written often. 

These QDEs assigned different characteristics to handwriting manually, depending on whether the writing 

is cursive or hand printed. The Zaner-Bloser Copy Book Handwriting Style (10), (see Fig. 2), is the hand 

printing / hand writing copy book style being taught in elementary schools in Minnesota to introduce 

children to writing. A handwritten letter, or a combination of letters such as the word and, can be 

represented by a set of D characteristics, ,  =1,..,D where characteristic Xi takes one of di 

discrete values. The characteristics assigned to our dataset of children's handwriting is represented in               

Fig. 3. [Figure  2 here][Figure 3(a-b) here] 
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Samples of handwritten and by children of grade 2, 3 and 4 and their respective feature values are shown  

in Fig. 4. [Figures 4 here] 

The data sets gathered using the truthing tool were then forwarded to Dr. Srihari and Dr. Ball for 

statistical analysis. Two types of analyses were conducted: one based on similarity between samples, and 

another based on probability distribution of the samples. The distribution of the characteristics was 

analyzed first by constructing probabilistic graphical models of the data. Information theoretic measures, 

entropy and relative entropy, were computed using samples generated from the models. The measures are 

used to document the changes that take place in each  student’s own writing from year to year, as well as 

the changes that occur between the time the students learn (copy) from the copy book and then stray away 

as time passes between grades.    

Data Analysis 

    In studying the differences between populations of different grades, a statistical measure, relative 

entropy (K-L divergence), becomes useful. It measures the change in disorder between two populations. 

Given a vector x of discrete characteristics, and distributions  and , relative entropy is 

represented as: 

 

Where ln represents natural logarithm and the summation is over all  values of x,  

represents information lost in nats (or in bits if logarithm has base 2) when q is used to represent p. 

    Since we do not have the distributions but have samples {x1,.., xN}, the sampling version of relative 

entropy is: 

 

    The sampling version still needs distributions for computing K-L divergence. For this we constructed 

Bayesian Networks for each of the two distributions by using a causal Bayesian network structure 

learning algorithm (9).  

    The relative entropies between different grades for hand printed and cursive handwriting data sets are 

shown in Table 1. Here it is seen that the relative entropy between Grade 2 (G2) to Grade 3 (G3) is  

smaller than the relative entropy between Grade 2 (G2) and Grade 4 (G4). This reflects the development of 

individuality as the grades progress. [Table 1 here] 
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Conclusion for Approach 1            

     The extent of change between grades is measured by relative entropy: the relative entropy of hand 

printed between grades 2 and 3 is smaller than the relative entropy between grades 3 and 4, and grades 2 

and 4. 

    A somewhat similar effect is seen with the mean of each distribution: (i) the mean for hand printed is 

closer to the ideal (Zaner-Blozer) in Grade 3 compared to Grade 2, but moves further away for Grade 4. 

However the mean for cursive is closer to the ideal (Zaner-Bloser) for Grade 4 compared to Grade 3-- 

which may not be as significant as the increase in entropy. 

Approach 2 

    The automated analysis setup is described by the flowchart in Fig. 5. This analysis focused on hand 

printed and cursive samples from children in grade 2 during 2011-12, and from the same children in 

grades 3 and 4 in the years 2012-13 and 2013-14. Table 2 shows the number of samples used. The schools 

are coded as follows: A= Liberty Ridge, B= Middleton, C= Red Rock, and D= Wildwood.  and  are 

the numbers of hand printed and cursive writing samples in grade i. [Figure 5 here] [Table 2 here] 

    Handwriting samples were scanned as grayscale images in PNG format. There are three types of noise: 

printed instructions at the top, black vertical line in the left most part, and the dashed lines and solid lines 

crossing the letters, whose presence can influence accuracy of automatic comparison. So pre-processing is 

needed before comparison as shown in Fig. 6(a), which is the resulting image of Fig. 1(a). 

    Firstly, the source image was cropped to eliminate instructions and vertical lines. After converting the 

input to a black and white reversed binary image, dashed lines can be easily removed by comparing the 

length with a threshold. Since dashed lines are built up by small connected parts, they can be removed 

while preserving handwriting strokes. Solid lines are removed with the help of a mask to preserve the 

intersection parts between the lines and handwritings. After multiplied by a predetermined weaken rate, 

the binary image is compressed vertically to build a mask, in which the intersection parts are intensified. 

Then the means of each row are deducted from the pixel values. Therefore, when the mask is stretched 

back to its original size, the intersection parts’ information can still be preserved. So when the weakened 

binary image is multiplied by the mask, and converted to binary image again using a restoration threshold, 

the solid lines can be removed while keeping strokes integral.  

    This method can get good results if the images are scanned in upright direction. However, the lines in 

the scanned images are not perfectly horizontal, instead have a tiny slope. Thus, a line removal parameter, 

number of batches, is introduced. The column vectors of the binary image is first separated evenly into a 
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certain number of batches, so that lines can be regarded as horizontal in each batch. Then the batches are 

processed one by one to remove the lines (11).  

    The parameter, #batch can influence the degree of line-removal. Fig. 6(b-e) illustrates the results with 

different values of #batch. With #batch= 10, some relatively long segments near the edge are not 

removed. With #batch= 20, there are only few noticeable line segments left. When #batch= 40, very few 

short lines can be found near the edge. With #batch= 80, solid lines and dash lines crossing the words are 

completely removed, but some other lines are removed incorrectly. This is because when batch number is 

small, we separate a relatively large number of columns into one batch, so we may mistakenly determine 

a short line as strokes. While when batch number is large, relatively small number of columns are 

assigned to one batch, so some long horizontal strokes, like the horizontal line of letter t, may be regarded 

as lines instead of strokes. It was concluded that removing less leads to segments still left. Removing too 

much leads to lines being removed incorrectly, e.g., horizontal line of letter t, and continuous strokes 

becoming disconnected. So, we chose 20 or 40 for 8-bit images, and 10 for 16-bit images. Additionally, 

line removal was improved in the conversion to binary image part considering that the source images 

were in two formats: 8-bit and 16-bit. [Figure 6 here] 

Log Likelihood Ratio Calculation 

    For performing comparisons of writing samples we used the CEDAR-FOX software system (5). The 

indexed input images were firstly mapped with a transcript, containing the paragraph which children were 

asked to copy. Then based on the recognized characteristics, the system computes three types of features 

vectors, macro-features, micro-features, and style features, to determine the strength of whether the two 

inputs are written by the same writer or not, which is measured by log-likelihood ratio (LLR). Examples 

of macro-features are gray-scale entropy, slant, and height. Micro-features represent handwriting 

characteristics such as stroke and structure, and style features come from pairs of letters, known as 

bigrams. 

    The dissimilarity of the two input images is measured by the distance between their feature vectors, 

which is computed by “Correlation” measure: 

 

where  represents the number of matches of  in vector X and  in Y. The distance data is 

represented by Gaussian and Gamma distributions, and parameters are estimated by maximum likelihood 
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estimation method and stored in the software system. Then the likelihood of same writer , and the 

likelihood of different writer  can be expressed as: 

 

 

where  is the number of writing elements,  is the distance between the th element  appearing 

in the first document and the th  in the second, and  and  are the probability density functions of 

distances for same writer and different writer respectively. Then the log-likelihood ratio is given by the 

software as: 

 

    Therefore, a positive LLR means the likelihood ratio is larger than 1, so it is indicative of the same 

writer; while a negative LLR refers that the likelihood ratio is less than 1, which means the two inputs are 

from different writers. When LLR is close to zero, it means the answer is ambiguous (5).  

Results 

    Two types of comparisons were made: (ii) samples collected in two consecutive years by the same 

children, and (ii) samples from different children in the same grade. The numbers of comparisons made 

were  for hand printed samples and  for cursive samples, where , 

and . A total of 2755 comparisons were made: 1974 of them for hand printed writing, 

and 781 for cursive writing. The mean and standard deviation of the computed LLRs are shown as Tables 

3-- 4, where Table 3 is the results of comparing same child in different grades and Table 4 is for 

comparing different children in the same grade. [Table 3 here] [Table 4 here] 

    Fig. 7 graphically illustrates the means and standard deviations for each comparison type: means are 

represented as crosses and standard deviations as vertical lines. Fig. 7(a) is from comparing the same 

children’s hand printed writing in two consecutive years: the vertical lines are for comparisons between 

grade 2 and grade 3, grade 3 and grade 4, and grade 2 and grade 4. Fig. 7(b) also refers to the comparisons 

between the same children but wrote in cursive style. Fig. 7(c) and Fig. 7(d) illustrate the results for 
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comparing two images from two different children in the same grade. For hand printed, results for grade 

2, grade 3, and grade 4 are shown in Fig. 7(c). While for cursive, Fig. 7(d) shows the results from children 

in grade 3 and the results when they moved up to grade 4. [Figure 7 here] 

    An example of handwriting for the same child MAA2022VA in different years is shown in Fig. 8: (a) is 

from grade 2 in 2011-2012, (b) is from the same child in grade 3 in 2012-2013 (c) is from the third year. 

Comparing images from grades 2 and 3, LLR=51.71, and between grades 3 and 4, LLR= -105.15. 

Another example of comparisons between different children in the same grade is illustrated in Fig. 9. The 

three pairs of images are from the same two children, HUA2022CH and IAC2022SA, in grades 2-4 

respectively. Comparing each pair, we get low LLR values of -18.64, -101.99, and -178.74, which are 

smaller with each higher grade. [Figure 8 here] [Figure 9 here] 

    To determine statistical significance, we use the chi-squared goodness of fit test, to compare different 

distributions (12). The data are divided into bins, which have at least 5 elements in each of them. Then the 

test statistic is calculated as  

 

where k is the number of  bins, Oi and Ei are the frequency count for the ith bin of the two distributions. 

The test statistic follows a chi-square distribution. Therefore, the null hypothesis that the two distributions 

are consistent is rejected if the calculated test statistic is larger than the chi-square critical value, which 

can be determined in a chi-square distribution table with  degrees of freedom and significance level 

.  

    We used the chi-squared goodness of fit test for three kinds of comparisons of LLR values: (i) between 

different grades’ hand printed results, (ii) between different grades’ cursive results, and (iii) between the 

two kinds of writing styles in the same grade. Through the test, we get the test statistic for the null 

hypothesis  same distribution, as shown in Table 5. According to the chi-square distribution table 

with α=0.05, null hypothesis of same distribution is rejected. Thus we conclude that all of the compared 

result distributions are statistically different. [Table 5 here] 

    The results for different schools are also tabulated. Comparison of the same child's handwriting in two 

consecutive years is shown in Tables 3. The average LLR between grades 2 and 3 for hand printed 

writing is -15.85 showing some change but between grades 3 and 4 it is -115.05 indicating a much more 

marked difference. As for cursive writing between grade 3 and grade 4, the average LLR value is -52.85. 

LLR values when different grade 2 children are compared are summarized in Table 4. The mean of -57.69 
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is much larger than the mean of -15.85 in Table 3 for grade pair 2 and 3, implying that different children 

in the same grade write more differently from each other when compared to the same child in different 

grades. 

    Tables 4 also summarizes comparisons between pairs of different children in grades 3 and 4. The mean 

values of -87.17 and -245.16 for hand printed writing, and -45.12 and -162.98 for cursive writing, indicate 

that children write more differently as they grow up. Consistently, in Fig. 7(a), the cross on the second 

vertical line is lower than the one on its left. This shows that when comparing hand printed writings from 

the same child in different years, the mean LLR of grades 3 to 4 has a larger absolute value than the mean 

LLR of grades 2 to 3. This also indicates children change their handwriting to a larger degree from grade 

3 to 4 than from grade 2 to 3. The crosses in Fig. 7(c) and Fig. 7(d) refer to the means for different 

children. Observing the three crosses in Fig. 7(c), which are for hand printed writings in grades 2, 3 and 4, 

or the two in Fig. 7(d), which are for cursive writings in grade 3 and 4, we see that both are progressively 

lower.  

    The standard deviations, which represent the amount of variation of the data from its average, are also 

interesting to observe. They are tabulated as well as indicated by the lengths of the vertical lines in Fig. 7. 

For the comparisons of the same child, the degree of dispersion is more when children move from grade 3 

to 4 than from grade 2 to 3. For the comparisons between different children, dispersion is more for higher 

grades. This again is consistent with development of handwriting individuality. 

Conclusion for Approach 2 

    We compared both hand printed and cursive handwriting samples of children progressing from grades 

2 to 4 to determine the degree of individuality as children develop. We considered the entire writing 

sample image as input yielding an LLR value for each comparison. Since the quality of images plays an 

important role, a line removal algorithm was carefully chosen. Resulting LLR values were analyzed using 

chi-squared goodness of fit tests. They indicate that as children move to higher grades, they gradually 

begin to form their own writing styles. This provides a strong justification that handwriting becomes more 

individualistic with age even when children are taught with the same writing style.  

Implications for Criminal Justice Policy and Practice 

Forensic handwriting examinations are often an important part of criminal and civil cases.  Threatening 

letters, bomb threats, check fraud, homicides, and controlled substance cases, just to name a few. During 

the past decade, Daubert and Frye Mack hearings have become a common occurrence across the United 

States involving forensic handwriting comparisons. The collection of these writing samples, along with 

the measurements of the individual hand writing characteristics as they developed is the beginning of a 
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true statistical model that may be used to scientifically prove why forensic handwriting comparisons are 

possible. In addition, it may also be possible in the future to continue data mining by examining new 

words, located within the previously collected paragraphs.   By continuing to gather these measurements 

and statistics, data gathered can continue to statically prove how individual handwriting characteristics 

develop and how the combinations of these individual handwriting characteristics develop into individual 

handwriting styles. This study has made it possible replace “theory” with solid statistics that are 

scientifically accurate and reliable.   The outcome of this research is important for hand writing examiners 

as well as for all courts and legal areas that involve forensic handwriting examinations. 
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TABLES  

Table 1 

Differences (KL values) of “and” characteristics of students in different grade pairs 

Grade Pair Hand printed Cursive 

KL(G3||G2) 0.32 - 

KL(G4||G3) 0.41 0.68 

KL(G4||G2) 0.64 - 

 

 

 

 

 

Table 2 

Numbers of full-page samples from each year, school, and writing type (hand printed/cursive) 

 = No. of hand printed samples from grade i 

= No. of cursive samples from grade i 

Grade 

(Year) 

                 School 

Type 

A B C D Total 

G2 

(2011-2012) 

 57 87 73 149 366 

 0 0 0 0 0 

G3 

(2012-2013) 

 57 87 73 149 366 

 40 59 50 114 263 

G4 

(2013-2014) 

 47 73 54 122 296 

 40 59 50 114 263 
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Table 3 

Results of comparing same child full page samples in different grades (LLR values) 

 = Comparison of same child in grades i and j 

 = No. of comparisons of hand printed samples between grades i, j 

= No. of comparisons of cursive samples between grades i, j 

 = Mean of LLR from comparing hand printed samples of grades i, j 

 = Mean of LLR from comparing cursive samples of grades i, j 

 = Std. deviation of LLR from comparing hand printed samples of grades i, j 

 = Std. deviation of LLR from comparing cursive samples of grades i, j 

Grade pair 

 

         School  

LLR 

A B C D Total 

 

 57 87 73 149 366 

 -9.66 -4.08 -2.87 -31.13 -15.85 

 95.66 93.50 101.69 75.89 89.42 

 

 47 73 54 122 296 

 -87.69 -109.48 -83.85 -142.50 -115.05 

 140.32 113.67 219.60 99.04 140.15 

 40 59 50 114 263 

 -72.89 -59.35 -33.04 -51.39 -52.85 

 104.24 45.51 49.64 53.95 62.54 

 

 47 73 54 122 296 

 -161.17 -121.15 -171.50 -153.57 -150.45 

 107.17 101.85 136.79 92.07 107.15 
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Table 4 

Results of comparing different children full page samples in same grade (LLR values) 
 = Comparison of different children in grade i 

 = Mean of LLR from comparing hand printed samples of grades i 
 = Mean of LLR from comparing cursive samples of grades i 

 = Std. deviation of LLR from comparing hand printed samples of grades i 
 = Std. deviation of LLR from comparing cursive samples of grades i 

Grade 

 

         School  

LLR 

A B C D Total 

  56 86 72 148 362 

  -63.31 -42.50 -52.16 -67.08 -57.69 

  90.26 56.51 60.31 51.10 62.24 

 

 56 86 72 148 362 

 -75.46 -57.57 -55.47 -124.22 -87.17 

 79.64 83.70 81.84 87.90 89.85 

 39 58 49 113 259 

 -68.81 -47.20 -19.30 -47.07 -45.12 

 36.70 34.81 30.00 30.25 35.28 

 

 46 72 53 121 292 

 -201.43 -184.35 -217.05 -310.28 -245.16 

 260.73 177.86 241.85 176.15 211.20 

 39 58 49 113 259 

 -238.89 -165.74 -95.40 -164.68 -162.98 

 92.76 125.95 142.84 104.19 122.56 
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Table 5 

Results of chi-squared goodness of fit tests for  = same distribution 

 = Comparison of hand printed of same child for grade i and j 

 = Comparison of cursive of same child for grade i and j 

 = Comparison of hand printed of different children for grade i 

 = Comparison of cursive of different children for grade i 

 
 

Reject  ? 

Between different pairs of comparisons for hand printed 

 vs  561.42 Yes 

 vs  85.75 Yes 

 vs  128.89 Yes 

 vs  802.13 Yes 

Between different pairs of comparisons for cursive 

 vs  1.30e+03 Yes 

Between hand-print and cursive of the same pair of comparisons 

 vs  1.38e+03 Yes 

 vs  2.08e+03 Yes 

 vs  565.86 Yes 
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Fig. 1 

Fig. 2 

Fig. 3a 
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Fig. 3b 

Fig. 4 
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Fig. 5 

Fig. 6 
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Fig. 7 

Fig.83 
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Legends for illustrations 

 

Fig. 1. Handwriting samples for a child: (a) hand printed in grade 2, (b) hand printed in grade 3, (c) 
cursive in grade 3, (d) hand printed in grade 4, and (e) cursive in grade 4. 

Fig. 2. Zaner-Bloser copy book style for word and: (a) hand printed, and (b) cursive. 

Fig. 3.  Twelve characteristics of and together with their possible values: (a) hand printed and (b) cursive. 

Fig. 4. Samples of Handwritten and  together with feature values assigned by FDEs: (a) cursive grade 3, 
student ID: AlK2021WA11-12, features: 1, 2, 1, 1, 2, 1, 1, 0, 2, 0, 0, 0, (b) cursive grade 4, student ID: 
EmR2020Ll11-12, features: 2, 1, 1, 1, 2, 1, 0, 0, 2, 2, 2, 0, (c) hand printed grade 2, student ID: 
AlA2022RO11-12, features: 0, 0, 0, 1, 1, 0, 3, 0, 2, 0, 0, 0, (d) hand printed grade 3, student ID: 
EmL2021Za11-12, features: 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, and (e) hand printed grade 4, student ID: 
AnL2020Fe11-12, features: 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0 . 

Fig. 5. Automated comparison overview. 

Fig. 6. Line removal with different parameter settings: (a) processed image, (b) #batch= 10, (c) #batch= 
20, (d) #batch= 40, and (e) #batch= 80. 

Fig. 7. Distributions of LLRs: (a) same child from different grades in hand printed, (b) same child from 
different grades in cursive, (c) different children in grades 2-4 in hand printed, and (d) different children 
in grades 3-4 in cursive. 

Fig. 9 
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Fig. 8. Hand printed samples for the same child in three grades: (a) grade 2 in 2011-12, (b) grade 3 in 
2012-13, and (c) grade 4 in 2013-14. Between grades 2-3, LLR=51.71 indicating high similarity, while 
between grade 3-4 and 2-4, LLR=-105.15 and -148.05 indicating less similarity.  

Fig. 9. Hand printed samples of two different children: (a, b) in grade 2 with LLR=-18.64, (c, d) in grade 3 
with LLR=-101.99, and (e, f) in grade 4 with LLR=-178.74. 
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