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Introduction 

The purpose of this project was to demonstrate the utility of an analytical 

chemistry tool that is relatively new to forensic laboratories, Laser Induced 

Breakdown Spectroscopy (LIBS), to conduct elemental analysis of ink, paper, 

and soil evidence quickly and with little or no sample preparation. This research 

effort extends the successful application of LIBS for the analysis of glass by our 

group (and by other researchers) to the analysis of other matrices of interest to 

forensic scientists. This effort focused on the use of commercially available 

instrumentation in order to facilitate the rapid transfer of the research to the 

operational laboratory. The main advantage of LIBS as an analytical tool is the 

capability to detect practically the entire periodic table of the elements very 

quickly (< 1 sec/analysis) and without the need of a sophisticated operator. 

Detection limits on the order of 10 ppm are routinely attainable for most elements 

with the commercial instruments currently available. Three commercial systems 

were initially evaluated for the matrices selected for the project and two systems 

were selected to conduct most of the research on these matrices (soil, 

ink/paper). The commercial LIBS instrumental results were compared to 

previously optimized in-house built LIBS systems and also to the alternative 

forensic tools of LA-ICP-MS, µXRF, and SEM-EDS, which offer good analytical 

performance but suffer from either very high cost and significant complexity (in 

the case of LA-ICP-MS) or analytical limitations in the form of sample 

requirement and relatively high detection limits (in the case of µXRF and SEM-

EDS). Some of the recognized advantages of LA-ICP-MS include direct 
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characterization of solids, elimination for the need for chemical procedures for 

dissolution, minimum consumption of the sample (< microgram), high sensitivity 

and high selectivity.  Although less mature than LA-ICP-MS, LIBS also shares 

the benefits associated with laser ablation methods with the added advantage of 

improved speed, versatility, ease of operation, affordability and portability.  

Document related crimes are considered the most prevalent form of crime in 

society and the examination of ink and paper has been the focus of many 

criminal investigations. In routine document examinations, non-destructive 

analytical methods such as microscopic and optical techniques are applied first. 

However, these are often insufficient to identify the inks used to prepare the 

document or to determine whether questioned pages originate from the same 

source, or if one or more pages of the document have been fraudulently 

replaced. Moreover, paper and ink formulations are constantly changing to adjust 

to market requirements. As a consequence, there is an increased interest in 

finding alternative and/or complementary methods of analysis for inks and paper 

to assist document examiners to overcome analytical challenges that otherwise 

are difficult to address using the conventional methods. For instance, gel pen 

inks have become a prominent type of ink found in forensic document 

examinations due to its widespread use and low cost of manufacture.  

Nevertheless, the analysis of gel pen inks constitute a challenge for the forensic 

ink examiner since most of the gel inks are difficult to analyze by conventional 

techniques such as paper chromatography, TLC and capillary electrophoresis. 

As a result, other non-destructive or less-destructive methods such as Spectral 

methods (HyperSpectral Imaging), Raman spectroscopy, Infrared Spectroscopy 

and µXRF have been recently explored as alternative tools to cope with forensic 

comparisons of gel inks. The laser-based methods of LIBS and LA-ICP-MS were 

used in this current study to develop rugged analytical methods for the qualitative 

and quantitative elemental analysis and comparison of writing and printing inks 

and document paper. Laser sampling is particularly well-suited for this application 

since it can provide good spatial resolution (< 40 um) for the direct removal and 

subsequent elemental analysis of very small samples on surfaces such as ink 
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deposited on a paper substrate while achieving the necessary sensitivity (LOD of 

most elements ~ 10-50 ppm).  

Soil samples can provide important forensic information to associate an 

individual to a given geographic location or to associate two individuals to an 

event. LA-ICP-MS elemental characterization of soil has been shown to provide 

excellent discrimination between soils originating from different geographic 

locations. The results from the current project suggests that soil samples can be 

discriminated by geographic location using LIBS even between small distances in 

a geographic area. This approach to soil analysis and comparison, when 

combined with existing geochemical data from the U.S. Geological Survey 

(USGS) provides new tools to the forensic scientist. In addition, a new method 

using less than 10 mg of soil sample was developed for forensic analysis. 

Finally, one key objective of this research was to evaluate the significance of a 

“match” of elemental composition for these matrices, when samples are 

determined to be indistinguishable using an optimized methods. Comprehensive 

sample sets of inks, paper, cotton and soils were collected from a variety of 

sources and the discrimination capabilities of both laser-based methods were 

determined and reported in the peer-reviewed literature. Ten (10) publications [1-

10] and more than 50 oral and poster presentations by the PI and students 

describe the results of the research effort, to date. Three of the papers described 

analysis of inks/paper [1,6,9], four of the papers described soil analysis [2,5,7,10] 

and 2 of the papers described cotton and other plant analysis [3,4]. One paper 

was devoted to fundamental studies of laser-based analysis coupled to atomic 

emission [8] that was then used to better understand LIBS emissions. 

Introduction to Elemental Analysis by LA-ICP-MS and LIBS 

Laser ablation can be defined as a progressive and superficial destruction of a 

material by melting, fusion, sublimation, erosion and explosion [11,12]. A typical 

LA-ICP-MS setup consists of a laser, an ablation cell and the ICP-MS which is 

used as an ionization source and analyzer. A solid sample is placed inside the 

ablation cell and a laser beam is focused on the surface of the sample (see figure 

1, left side). When the laser is fired, the high-energy interaction between the laser 
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and the sample surface produces a cloud of very small particles and micro-

droplets. These particles are removed from the sampling cell by a carrier gas, 

usually argon or helium, and are swept into the ICP plasma for atomization, 

ionization and subsequent analysis. LA-ICP-MS can be considered as a quasi-

non destructive method due to the very small quantities (hundreds of nanograms) 

that are removed from the analytical ablation. Significant advances in the 

understanding of the processes involved in the laser ablation of solid materials 

followed by elemental analysis by ICP-MS provide qualitative and quantitative 

methods that are very mature, accurate, efficient, and sensitive [13-24].  

Forensic applications of  LA-ICP-MS and LIBS methods in different forensic sub-

disciplines such as trace evidence, environmental forensics and toxicology have 

also been previously reported [25-59]. The right side of the schematic in figure 1 

depicts a LIBS system composed of a pulsed laser, focusing optics, ablation cell 

where the plasma is generated and light collection optics connected to a 

spectrometer that resolves the light into individual emission peaks representing 

the elemental composition.  

Reference 8 describes a fundamental study of LA coupled to atomic emission 

spectroscopy that provides insight into the emission phenomena for a more 

familiar matrix (glass) and was used to later optimize LIBS parameters. 

Figure 1. LA-ICP-MS setup (left) and LIBS setup (right). A commercial version of this LA-ICP-
MS/LIBS “tandem” system was used to characterize printing inks for this project (from [1]).  
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Elemental Analysis of Ink and Paper 

Inks are usually analyzed in document examinations with the purposes of a) 

comparing two or more ink entries to determine similarities or differences, b) 

identifying whether two or more entries were written with the same formula 

and/or batch of ink and/or c) dating ink entries to determine if documents have 

been backdated [60]. As ink formulations are continuously changing to adjust to 

the market requirements there is an increased interest in finding alternative 

and/or complementary methods of ink analysis to assist document examiners to 

overcome analytical challenges that are difficult to address using the 

conventional methods [61-64]. Gel-based and printing inks are examples of inks 

that benefit from the development of laser-based methods. Calibration curves, 

using integrated peak areas for each element, have been generated using LA-

ICP-MS for the matrix-matched ink standards prepared as discussed in 

references 6 and 9 printing inks and gel-based writing inks, respectively. Figure 2 

is an example of the excellent linearity obtained for LA-ICP-MS for both inkjet 

and toner standards indicating the feasibility of preparing matrix-matched ink 

standards without an internal standard.  

 

Figure 2. Calibration curves for six isotopes of the matrix-matched inkjet standards; peak areas 
are not normalized to an internal standard. 
 

All ink samples have been analyzed qualitatively using LA-ICP-MS and SEM-

EDS [6]. The discrimination and association potential of the technique was 
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evaluated using the spectral overlay method described in [6]. LA-ICP-MS 

provided excellent discrimination for all four ink types while SEM-EDS performed 

well for toner and intaglio inks, but is limited for the analysis of offset and inkjet 

inks. Summary results are tabulated below: 

Table 1. Discrimination/Association Rates of Printing Inks Using Spectral Overlay of LA-ICP-MS Spectra. 

 TONER INKJET OFFSET INTAGLIO 

Number of Samples 76 78 79 86 

Comparison Pairs 2850 3003 3081 3655 

% Discrimination 99.1 99.6 99.8 99.9 

Number of Duplicates 24 3 23 6 

% Correct Association 92.3 100 99.8 100 

 

A thorough experimental description for the analytical and normalization 

procedure can be found in reference 9 along with results for gel-based pen inks. 

A more complete set of experimental/results for the printing inks can be found in 

reference 6 for LA-ICP-MS and reference 1 for LA-ICP-MS and LIBS. Reference 

9 describes the discrimination of > 97% of pens and 100% of paper originating 

from different sources using LA-ICP-MS. Reference 6 reports these laser 

sampling methods resulting in discrimination of different sources with LIBS 

producing 89% discrimination and LA-ICP-MS producing up to 100% 

discrimination (with <5% false exclusion rate for the same samples) while SEM-

EDS discriminates less than 50% of the inkjet and toner samples under study [6].  

Reference 1 reports that major, minor and trace elements present in ink samples 

can serve as good discriminators for both toner and inkjet printing inks. In this 

study, Lithium was found only in inkjet samples and the application of LIBS 

overcomes the spectral interferences of ICP-MS for the elements K, Ca, Si and 

Fe, which are good discriminators for both inkjets and toners. The use of LA-ICP-

MS and LIBS in “tandem” mode, that is, simultaneously, further improves the 

discrimination of very similar ink samples. Table 4 summarizes the discrimination 

of specially selected (similar) toner and inkjet samples using LA-ICP-MS, LIBS 

and both techniques in tandem by fusing the data from both methods [1]. 
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Table 2: Discrimination of selected printing inks by two methods using spectral overlay (from [1]).  

Toner Samples LIBS LA-ICP-MS 

Tandem (fusion of) LIBS / 

LA-ICP-MS 

# Samples 9 (36 comparison pairs) 9 (36 comparison pairs) 9 (36 comparison pairs) 

% Discrimination 100% 66.60% 100% 

 

(36 out of 36) (24 out of 36) (36 out of 36) 

Inkjet samples LIBS LA-ICP-MS 

Tandem (fusion of) LIBS / 

LA-ICP-MS 

# Samples 10 (45 comparison pairs) 10 (45 comparison pairs) 10 (45 comparison pairs) 

% Discrimination 97.80% 91.10% 100% 

  (44 out of 45) (41 out of 45) (45 out of 45) 

Elemental Analysis of Soils 

Elemental analysis of soil is a useful application of both laser ablation inductively 

coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown 

spectroscopy (LIBS) in geological, agricultural, environmental, archaeological, 

planetary, and forensic sciences. In forensic science, the question to be 

answered is often whether soil specimens found on objects (e.g., shoes, tires, or 

tools) originated from the crime scene or other locations of interest. Elemental 

analysis of the soil from the object and the locations of interest results in a 

characteristic elemental profile of each specimen, consisting of the amount of 

each element present. Because multiple elements are measured, multivariate 

statistics can be used to compare the elemental profiles in order to determine 

whether the specimen from the object is similar to one of the locations of interest. 

Previous work [7] involved milling and pressing 0.5 g of soil into pellets before 

analysis using LA-ICP-MS and LIBS. However, forensic examiners prefer 

techniques that require smaller samples, are less time-consuming and are less 

destructive, allowing for future analysis by other techniques. An alternative 

sample introduction method was developed to meet these needs while still 

providing quantitative results suitable for multivariate comparisons. The tape-

mounting method involved deposition of a thin layer of soil onto double-sided 

adhesive tape [2]. A comparison of the tape-mounted and pellet method 

performance was reported for both LA-ICP-MS and LIBS [2]. Calibration 
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standards and reference materials, prepared using the tape method, were 

analyzed by LA-ICP-MS and LIBS. As with the pellet method, linear calibration 

curves were achieved with the tape method, as well as good precision and low 

bias. Soil specimens from Miami-Dade County were also prepared by both the 

pellet and tape methods and analyzed by LA-ICP-MS and LIBS. Principal 

components analysis (PCA) and linear discriminant analysis (LDA) were applied 

to the multivariate data. Results from both the tape method and the pellet method 

were nearly identical, with clear groupings and correct classification rates of > 94 

% [2]. To prepare the tape-mounted samples, spiked calibration standards, 

reference materials, and sieved soil specimens were carefully re-homogenized 

using a vortex touch mixer. A 19 x 22 mm piece of Scotch removable poster tape 

#109 (3M, St. Paul, MN, USA) was affixed to a labeled 30 x 22 mm glass cover 

slip (Fisher Scientific, Pittsburg, PA, USA), leaving the tape liner on. The liner 

was folded back halfway to expose an area of adhesive approximately 19 x 10 

mm (see figure 3a).  A small amount of each specimen (approximately 10 mg) 

was deposited onto the exposed tape and shaken gently to distribute it evenly 

(see figure 3b). The deposited sample was smeared and pressed gently to 

improve adhesion, and then tapped lightly to remove any excess that was not 

adhered. The liner was folded back down to act as a cover to prevent 

contamination or loss and was taped in place (see figure 3c). Each tape-mounted 

specimen was packaged carefully in weighing paper, and labeled (see figure 3d).  

                               

Figure 3. Sample preparation method using tape mounting of soil onto adhesive tape to facilitate 
the laser sampling using both LA-ICP-MS and LIBS (from [2]). 
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LIBS experiments were conducted on both a commercial (Applied Spectra) 

system and compared to a home-built system using a 266 nm Nd:YAG Tempest 

laser (New Wave Research, Fremont, CA, USA) with a Mechelle 5000 

spectrometer and iStar iCCD camera (Andor Technologies, South Windsor, CT, 

USA) [2]. Acquisition parameters for both pellets and tape-mounted specimens 

were as follows: 5 replicate measurements per specimen, 75 pulses accumulated 

per replicate, 900 mL/min argon delivered to the surface, 100 % laser energy, 

and 148 J/cm2 focused 1.4 mm behind the surface. Daily performance was 

tested using NIST SRMs 1831 (“Soda Lime Sheet Glass (1.2 % Al2O3)”) and 610 

(“Trace Elements in a Glass Matrix (3mm Wafer)”; “Nominal Trace Element 

Concentrations 500 mg/kg (ppm)”, NIST, Gaithersburg, MD, USA) in air and in 

argon. For pellets, spot mode was used with three cleaning pulses applied to the 

each location before beginning each replicate measurement. For tape-mounted 

specimens, line mode was used, in which the sample stage was moved at a 

speed of 250 μm/s. Background subtraction was performed by subtracting the 

intensity at a neighboring blank (background) region of the spectrum from the 

intensity of the peak.  Normalization was performed by dividing the background-

subtracted intensity of the each peak by that of the Sc 361.4 nm emission line. 

Further details can be found in reference 7. Calibration curves were generated 

from the calibration standards for each emission line, and linear regression was 

used to calculate the concentrations for all samples. Limits of detection (LODs) 

were calculated as 3 times the standard deviation of the noise in the background 

regions of the spectrum. Emission lines monitored included: Ba II 493.4, Ba II 

614.2, Ca I 393.4, Ca II 396.9, Ca I 643.9, Cr I 360.5, Cr I 425.4, Cu I 324.8, Fe I 

360.9, Fe I 495.8,  Li I 610.4, Li I 670.8, Mg I 517.3, Mg I 518.4, Pb I 405.8, Sr II 

407.8, Sr II 421.6, Ti I 336.1, V I 437.9, and Zr I 468.8 nm. Figure 4 (left) 

presents example calibration curves for LIBS analysis of the tape-mounted soil 

samples using Sc as an internal standard. These results (including precision and 

LODs) correspond very well with the equivalent pelletized samples. Figure 4 

(right) presents a comparison of pellet samples with tape-mounted samples using 

a PCA plot to visualize the separation between different soil samples 

incorporating the element menu report above for LIBS analysis. 
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Figure 4. (Left) Example calibration curves obtained from LIBS analysis of spiked, non-milled, 

tape-mounted calibration standards. Error bars represent one standard deviation. (Right) PCA 

and LDA plots for samples HA (red), KNT (green), and CC6 (blue) generated from LIBS data of 

sieved pellets and tape-mounted soil. The following discrimination element menu was used: Ca I 

643.9/ Fe I 360.9, Cr I 360.5/ Sr II 421.6, Fe I 495.8/ Li I 670.8, and Ba II 493.4/ Fe I 360.9. 

Numbers and different shades denote the different sub-plots within an area. a. PCA score plot for 

pellets, b. PCA score plot for tape-mounted specimens, c. LDA canonical plot for pellets, d. LDA 

canonical plot for tape-mounted specimens. Misclassified specimens are circled (from [2]). 

Implications for criminal justice policy and practice  

This project included the participation of 4 graduate students at Florida 

International University and 2 experienced practicing forensic scientists (in 

Virginia and in Colorado) as collaborators. The greater impact to the forensic 

science community is the availability  of a rapid, simple and relatively inexpensive 

analytical method that can provide elemental analysis for matrices of importance 

to forensic scientists. There are currently ~ 140 forensic laboratories in the US 

with active trace evidence sections and, to date, 15 labs have acquired LA-ICP-

MS or LIBS instruments. This research expands the use of these methods 

beyond the previously reported glass analysis method (ASTM E2926-13) [65].  

Conclusions 

A total of 10 peer-reviewed publications and more than 50 oral and poster 

presentations describe the efforts completed through this NIJ award over the last 

4 years. LA-ICP-MS and LIBS have both been shown as useful analytical tools 

for the analysis of paper, inks, soil and cotton. The results have been presented 

in analytical chemistry and forensic science journals and venues.  
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