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Abstract 

Crime forecasts are sensitive to the spatial discretizations on which 
they are defined. Furthermore, while the Predictive Accuracy Index 
(PAI) is a common evaluation metric for crime forecasts, most crime 
forecasting methods are optimized using maximum likelihood or other 
smooth optimization techniques. Here we present a novel methodol-
ogy that jointly i) selects an optimal grid size and orientation and ii) 
learns a scoring function with the aim of directly maximizing PAI. Our 
method was one of the top performing submissions in the 2017 NIJ 
Crime Forecasting challenge, winning 9 of the 20 PAI categories under 
the name of team PASDA. We illustrate the model on data provided 
through the competition from the Portland Police Department. 

1 Introduction 

A number of statistical models have been proposed for “predicting” or “fore-
casting” the locations of crime hotspots including multivariate regression 
based models [19, 13, 11, 5], kernel density estimation [2, 4, 9, 8, 6] and 
spatio-temporal point processes [17, 15, 16]. In a typical crime forecast, ge-
ographical space is divided into sub-regions that are scored and/or ranked 
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over a forecasting time window. Forecasting models estimate a probability 
or crime rate within a given spatial region using predictors derived from 
past crime history (times and locations) or other spatial data defined in the 
spatial sub-regions requiring a forecast (e.g. census variables, locations of 
liquor stores and other crime attractors, parolee information). The implica-
tions for policing are both short-term, where spatial regions are ranked by a 
forecast and patrols and other interventions can be directed to the highest 
ranked spatial regions, and long-term, where the estimated crime rate may 
help inform resourcing decisions and the design of patrol beats. 

The National Institute of Justice (NIJ) hosted a “Real-time crime fore-
casting challenge” in 2017 aimed at spurring further interest and research 
in this domain. The Portland Police Department provided crime data from 
March 2012 up to end of February 2017 and participants where asked to 
forecast crime hotspots for four types of incidents (burglary, motor vehicle 
theft, street crime, and all calls for service) over the months of March, April 
and May of 2017. In particular, participants were asked to define a grid sub-
ject to area and geometrical constraints and to rank grid cells for each crime 
type over several forecasting windows. Unlike forecasting research focusing 
on retrospective analysis, this competition was a true prospective forecast-
ing test given that the validation data was not yet generated at the time of 
submission. Forecasts were made for 1-week, 2-week, 1-month, 2-month and 
3-month time windows and scored on the basis of the PAI accuracy metric 
(which we define below). 

In this article we provide an overview of the competition and present our 
method that won 9 out of 20 PAI categories in the large business division of 
the competition (and was the top performing solution in terms of PAI across 
all three competition divisions). The method jointly i) selects an optimal 
rectangular grid cell size and orientation and ii) learns a scoring function 
with the aim of directly maximizing PAI. The outline of the paper is as 
follows. In Section 2, we provide details on the contest including the data 
used, the submission guidelines and the evaluation metrics. In Section 3, 
we present our Rotational Grid PAI-Maximizing (RGPM) methodology and 
also outline the feature engineering and models we used within the RGPM 
framework. In Section 4, we analyze the results of the competition and the 
accuracy of the RGPM model and in Section 5, we include a discussion of 
the competition and some directions for future research. 
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Figure 1: Weekly crime counts during the study period. The predictions 
were evaluated during March 1, 2017 - May 31, 2017 (highlighted in blue). 

2 Data and Contest Details 

The NIJ contest was based on forecasting the spatial locations for crime re-
lated call for service in Portland, OR. Specifically, the contestants were given 
event data comprising projected geographic coordinates, date, and category 
(burglary, street crime, theft of auto, other) for the period of March 1, 2012 
through February 28, 2017. The weekly event counts during the training and 
evaluation periods are given in Figure 1. 

Separate forecasts were made for 4 event types: burglary (Burg), street 
crime (Street), theft of auto (MVT), and all calls for service (ACFS) and 5 
forecast horizons: 1 week (March 1-7), 2 weeks (March 1-14), 1 month (March 
1-31), 2 months (March 1-April 30), and 3 months (March 1-May 31). The 
submitted forecast was specified to be a set of regular grid cells that covered 
all of the study region with some of the cells flagged as a “hotspot”. 
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The grid cells were required to be a regular tessellation of the Portland, 
OR administrative region in which all grid cells must have the same size, 
shape, and orientation. Rectangles, triangles, and hexagons were the per-
mitted grid shapes. Furthermore, the grid cells were required to have an 
area between 62,500 ft2 and 360,000 ft2 with the smallest dimension being 
at least 125 ft. The cells flagged as hotspots were required to have aggregate 
area between 0.25 mi2 - 0.75 mi2, but there was no requirement that the 
hotspot cells be connected. 

Forecast evaluation was based on1 the Prediction Accuracy Index (PAI) 
[4]. Given a set of k predicted hotspot cells, the PAI is determined by com-
puting the ratio of the proportion of crime captured in the hotspots relative 
to the porportion area of the city flagged as hotspots. Specifically, defining 
H to be the union of the hotspot cells (which does not need to be connected) 
and S the spatial region of interest (e.g. Portland, OR), the PAI is defined 
as 

N(H) |S|
PAI(H) = 

|H| N(S) 

where N(H) is the number of events in H over the forecasting window and 
|H| is the size of the hotspot region H ⊂ S. Letting λ(H) = N(H)/|H| be 
the estimated intensity of events in region H and λ̄ = N(S)/|S| be the total 
intensity of events in the region of interest, the PAI becomes 

λ(H)
PAI(H) = ∝ λ(H)

λ̄

which is only a function of λ(H) because λ̄ is not dependent on the hotspot 
region. Thus, PAI can also be interpreted as the average rate of crime in the 
hotspots relative to the average crime rate in the city. 

On February 28, 2017 the forecasts (i.e., grid cells with hotpot indicator) 
for each crime type and forecast period (20 total) were submitted to NIJ. 

3 Methodology 

The RGPM methodology is designed for jointly learning an optimal grid 
and scoring function for the purpose of maximizing PAI in crime forecasts. 

1The Prediction Efficiency Index (PEI) [7] was also used to evaluate forecasts, but we 
did not attempt to compete in that category. We include some remarks on PEI in the 
discussion in Section 5. 
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In particular, we assume a grid of equally sized rectangles and fix the grid 
cell size to be the minimum allowed in the competition, Amin. We then 
parametrize the grid with three parameters: cell height h, a grid translation 
parameter γ and a rotation angle θ. The overall procedure is captured in 
Algorithm 1. 

Algorithm 1 Optimal rotational grid PAI maximizing methodology 
1: procedure PAI(h,θ,γ,~xi,ti,ω,Amin) 

a. Set up grid with cell height h, cell area Amin, grid angle θ, and offset 
γ. 
b. Calculate event based features on grid using crime locations ~xi and 
times ti. 
c. Fit a supervised model M, using tuning parameters ω, on event 
features defined on the training set. 
d. Predict M on test data features and output PAI. 

return PAI 
2: procedure OptimizeGrid(~xi,ti,ω,Amin) 

Run simplex method to maximize PAI(h, θ, γ, ~xi, ti, ω, Amin) over h, θ, 
and γ. 

return h, θ, and γ. 

In the outer loop of the algorithm, procedure 2, a simplex method is 
used to optimize the RGPM with respect to the grid parameters, given that 
PAI is a non-differentiable function. In the inner loop of the algorithm, 
procedure 1, PAI is calculated on a test data set given a grid parameter set, 
supervised learning model M and a set of features computed on the grid. In 
the competition, we used two different supervised learning algorithms for M 
that are outlined below. 

3.1 RGPM: random forest 

The first model we consider utilizes a regression framework and a random 
forest to map features to a target variable and we refer to this model as 
RGPM-RF. In particular, given a spatial discretization of the city, a number 
of features are defined within each spatial grid cell along with a target variable 
that the model attempts to predict. In the competition we used the following 
event count based features defined in each cell: 
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1. Number of target crime incidents 0 to 2 months before the forecasting 
window 

2. Number of target crime incidents 3 to 5 months before the forecasting 
window 

3. Number of target crime incidents 6 to 14 months before the forecasting 
window 

4. Number of target crime incidents more than 14 months before the fore-
casting window 

5. Number of target crime incidents before the forecasting window in 
March through May 

6. Features 1 through 5 defined for each of the other three event categories 
(leading indicators) 

The target variable was then the logarithm of the number of crimes of the 
target event type in a given cell over the forecasting time window and the 
distribution was assumed to be Gaussian. 

Given the features and response variables defined on a fixed grid using 
historical data, we then estimated a random forest model [3] to map the 
features to the response. Random forests are a type of ensemble learning 
algorithm where many individual decision trees are estimated on bootstrap 
samples of the training data. While each decision tree over-fits a particular 
sample, when averaged together they comprise a random forest with good 
variance reduction properties. 

3.2 RGPM: sparse logistic regression with point pro-
cess features 

The second model for M we consider is a sparse logistic regression, RPGM-
GLM, where the features are determined by marked point process kernels. 
Let (ti, ~xi,mi) denote an event i in the history leading up to a forecasting 
window where ti is the event time, ~xi is the 2-dimensional event spatial loca-
tion, and mi is the crime type of event i. Given a specific grid configuration 
C, we can find the grid cell containing each event, which we denote with ci. 

Instead of modeling the event rate in each cell, we model the probability 
that the event rate (or equivalently the number of events) exceeds a threshold. 
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The threshold is set so that if the event count in the cell reaches the threshold 
then the cell would be part of the optimal hotspot region. Using the historical 
event data, we found the threshold, φ(τ, m), that a grid cell would need to be 
part of the optimal hotspot region (subject to the minimum size constraints) 
for a forecast period of length τ and crime type m. 

Let pj (τ, m) = P (nj (τ, m) ≥ φ(τ, m)) be the probability that the number 
of events, nj , in grid cell j exceeds the hotspot threshold. A multivari-
ate/marked Hawkes process [15] or exciting point process is used to model 
the probability that a grid cell will be included in the hotspot. 

For a given τ and m, we model the logit of the probability that cell j is 
in the hotspot using the features from a marked Hawkes process [15]: 

X 
~logit(pj (τ, m)) = α + hm,mi (t − ti; ~ θ)β, 

i:ci=j 

KX X 
= α + βk(mi,m)g(t − ti; θk) (1) 

i:ci=j k=1 XX 
= α + βk(l, m)Zjl(θk) 

l k 

where t is the start of the forecast period. The decay function hm,mi (u) = PK 
k=1 βk(mi,m)g(u; θk) is a mixture of K geometric pmfs (i.e., g(u; θ) = 

~θ(1 − θ)u−1), We used the pre-specified values θ = .001, .005, .01, .02, .1 to 
provide a range of decay effects. The last line of (1) shows that this is in P 
the form of a GLM model (logistic regression) where Zjl(θk) = i 1(ci = 
j, mi = l) g(t − ti; θk) are the covariates formed from geometric point process 

~kernels evaluated at historical event times. The model parameters β are 
estimated using an elastic net penalty [20] with α = 0.8, a mix between ridge 
and lasso penalties which can provide a sparse solution. The correct penalty 
strength was determined from 10-fold cross-validation. The resulting fitted 
decay functions, ĥm,l(·), are shown in Figure 2. 

4 Results 

To construct the 2017 forecasts, we first trained the RGPM-RF and RGPM-
GLM models on data up to the spring of 2016 and then evaluated the models 
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with the spring 2016 data to perform model comparison and select the best 
model and grid for each category. We then used the date up to February 
28, 2017 to build the forecast models and generate the hotspot estimates. 
Table 1 displays the performance of the models, for the 20 PAI categories, 
during the contest period. The table also shows the difference in PAI scores 
between the two models and which model was submitted to NIJ. The random 
forest (RF) tended to do better for the long-range forecasts (2MO and 3MO), 
whereas the sparse GLM scored better for the short term forecasts. However, 
while both models produced similar PAI scores, they did so using different 
grid configurations. 

In Table 2 we show the feature importances of the RGPM-RF for each 
target event category. For high volume incident types (street crime and all), 
we note that leading indicators play less of a role and the 5 best features 
are the count features for that particular event category. However, for lower 
volume incident types leading indicators are more important as they serve 
to reduce variance. The features created from the Other crime type were 
useful in predicting burglary and motor vehicle theft, for example. In Table 
3 we show the feature importances of the RGPM-GLM. There are some 
similarities, for example the most recent data (e.g., large values of θ) are 
not always the most important and the Other and ACFS leading indicators 
are useful for forecasting the lower volume crime types. Here we see some 
differences, for example burglary is a stronger predictor of burglary than in 
the random forest. 

In Table 4 we compare the relative PAI values when using fixed vs. rota-
tional grids. For this purpose we use the RGPM-RF, though we note similar 
improvements are observed for the RGPM-GLM. The PAI values increase by 
2-6 when employing a rotating grid. In Figure 3 we provide an example of 
the final street crime grid used in the competition, which uses rectangular 
cells aligned with the NE-SW direction. 

Finally, in Table 5 we include overall competition results illustrating the 
accuracy of the RGPM approach. In the table we list the number of overall 
(across the three divisions) 1st, 2nd and 3rd place PAI finishes for teams 
having placed at least once. We note that the RGPM tied for the most 1st 
and 2nd place finishes and had the most 3rd place finishes across the crime 
type categories and forecasting windows. We also include in Table 5 the total 
number of finishes (3rd place and higher) within our division (large business) 
and overall, in both cases the RGPM method had the most finishes. 
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Table 1: RGPM-RF vs RGPM-GLM model performance during the compe-
tition period. n is the number of events in the hotspot, N is the total number 
of events during the time frame, δPAI is the difference in PAI between the 
two models, and an asterisk next to the model indicates the model which 
was submitted to the competition. 

Crime Time n N PAI Model δPAI 

Burg 
Burg 
Burg 
Burg 
Burg 

1WK 
2WK 
1MO 
2MO 
3MO 

1 
2 
4 
6 
8 

20 
41 
93 
175 
268 

29.5 
28.7 
25.3 
20.2 
17.6 

RF 
GLM 
*GLM 
RF 
RF 

0.1 
14.3 
6.3 
3.4 
0.1 

MVT 
MVT 
MVT 
MVT 
MVT 

1WK 
2WK 
1MO 
2MO 
3MO 

3 
12 
21 
41 
55 

71 
135 
273 
543 
805 

24.9 
52.2 
45.4 
44.5 
40.3 

*GLM 
*RF 
*GLM 
*GLM 
GLM 

0.1 
4.1 
0.2 
5.6 
3.1 

Street 
Street 
Street 
Street 
Street 

1WK 
2WK 
1MO 
2MO 
3MO 

99 
185 
405 
771 
1253 

629 
1205 
2680 
5352 
8480 

92.8 
90.6 
89.1 
84.8 
87.0 

GLM 
GLM 
GLM 
*RF 
*RF 

1.1 
1.7 
1.3 
1.2 
2.9 

ACFS 
ACFS 
ACFS 
ACFS 
ACFS 

1WK 
2WK 
1MO 
2MO 
3MO 

392 
814 
1805 
3556 
5570 

3876 
8021 
17873 
35770 
55744 

59.5 
59.7 
59.4 
58.5 
58.8 

GLM 
GLM 
GLM 
*RF 
*RF 

1.6 
0.1 
0.2 
0.9 
1.9 
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Table 2: Feature importances for the RGPM-RF for each of the four target 
crime types (top 5 in bold) 

Feature Street Burg MVT ACFS 

count1 other 1195.1 34.8 80.6 59621.0 
count2 other 1839.3 40.1 94.0 80035.2 
count3 other 2177.2 50.9 126.9 97239.9 
count4 other 2259.8 60.1 149.6 87000.8 
count5 other 1836.7 47.4 121.0 76231.5 
count1 street 2586.2 16.4 37.7 15026.5 
count2 street 2833.1 20.5 49.6 16556.2 
count3 street 5167.8 32.9 78.1 30617.3 
count4 street 4379.3 44.4 101.8 27493.2 
count5 street 3191.6 28.5 66.9 18651.6 
count1 mvt 81.8 2.2 47.7 677.2 
count2 mvt 91.6 5.6 96.0 1008.9 
count3 mvt 174.7 9.0 99.2 5234.8 
count4 mvt 277.9 12.4 185.5 5152.1 
count5 mvt 144.3 5.2 157.7 2381.2 
count1 burglary 33.7 2.7 2.4 279.7 
count2 burglary 119.1 4.8 4.6 587.9 
count3 burglary 127.6 9.7 13.2 1007.2 
count4 burglary 214.9 10.7 18.6 1777.3 
count5 burglary 85.7 4.5 9.9 778.5 
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Table 3: Feature importances for the RGPM-GLM for each of the four tar-
get crime types. The importance score is the estimated coefficient using 
standardized covariates. 

Feature (crimetype θ) Street Burg MVT ACFS 

ACFS 0.1 - - - -
ACFS 0.02 0.07 0.11 - 0.19 
ACFS 0.01 - 0.06 0.08 0.12 
ACFS 0.005 - - 0.11 0.21 
ACFS 0.001 - - - 0.20 

other 0.1 0.15 - - 0.17 
other 0.02 - - - 0.03 
other 0.01 - - - -
other 0.005 - - - 0.04 
other 0.001 - - - 0.02 

street 0.1 - - - -
street 0.02 0.31 0.02 - -
street 0.01 - - - -
street 0.005 - - - -
street 0.001 0.38 - - 0.02 

mvt 0.1 - - 0.01 -
mvt 0.02 0.02 - - -
mvt 0.01 0.03 - - -
mvt 0.005 0.01 - - -
mvt 0.001 0.01 0.06 0.27 0.03 

burglary 0.1 - - - -
burglary 0.02 - - - -
burglary 0.01 - - - -
burglary 0.005 0.07 - - 0.03 
burglary 0.001 - 0.11 0.04 0.06 
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Table 4: PAI values for RGPM-RF vs fixed grid random forest 

Method Street Burglary MVT All 

RGRF 84.99 18.12 34.90 61.26 
RF 78.75 13.59 32.57 59.12 

Table 5: Aggregate number of 1st, 2nd and 3rd place PAI finishes across 
divisions along with total number of overall 3rd and higher finishes (A) and 
number of 3rd and higher finishes within division (B). 

Name 1st 2nd 3rd A B 

PASDA 4 5 4 13 20 
TAMERZONE 4 5 2 11 15 
GRIER 1 4 0 5 8 
JeremyHeffner 2 0 3 5 9 
ANDY NIJ 1 2 1 4 9 
KUBQR1 0 1 3 4 7 
pennaiken 2 0 2 4 10 
Codilime 3 0 0 3 7 
MURRAYMIRON 0 1 2 3 6 
MARUANALSHEDIVAT 0 1 1 2 7 
BATESANALYTICS 1 0 0 1 1 
DYLANFITZPATRICK 0 0 1 1 1 
GRANTHAM 0 0 1 1 7 
Intuidex 0 1 0 1 3 
TEAM Kernel Glitches 1 0 0 1 2 
WARREN 1 0 0 1 20 
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Figure 3: Optimal street crime grid with street crime events plotted for the 2017 
forecasting window. 

5 Conclusion 

We provided a summary of the 2017 NIJ Real-time crime forecasting chal-
lenge and our top performing approach. Several take aways include i) the 
spatial units and grid on which predictions are defined are a key component 
to maximizing PAI ii) directly maximizing PAI can also improve accuracy, 
especially for large volume incident types. These observations are in line with 
several recent studies [18, 14] that move beyond the use of arbitrary grids in 
crime forecasting and prediction. While our focus was on optimizing PAI, 
PEI was another metric used in the competition. PEI is the ratio of PAI to 
the maximum possible PAI a model could have achieved in the competition. 
There appears to be some trade-off between the two metrics, as the other 
top performing team, Kernel Glitches, in the large business category won a 
number of the PEI categories. We believe a method like the one outlined 
here can be tuned to optimize a particular metric of interest, including PEI. 
In practice, given a fixed number of hotspots and police resources, PAI and 
PEI are equivalent as they only diverge if the size of hotspot region can vary. 
Thus the trade-off is not often of practical consequence. However, other ac-
curacy metrics (for example precision, the percentage of hotspots having a 
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crime each day) may be useful to consider, as false positives can have the 
effect of decreasing officer buy-in to predictive policing. 

While the methodology introduced here improved accuracy of crime fore-
casts, greater improvements in the future may be possible with the greater 
prevalence of sensor data provided by the internet of things in smart and con-
nected cities. For example, images and video of city locations may provide 
features related to “broken windows” crime patterns [10] and some recent 
work has shown that such imagery may help estimate crime rates [12]. Pedes-
trian and vehicle count data provides real time information on the density 
of targets for various types of violent and property crime and other recent 
research has shown that this type of data can also improve predictive models 
of crime [1]. The methods we have introduced in this paper may be used 
in combination with new sensor streams to improve crime forecasts in the 
future. 

References 

[1] Andrey Bogomolov, Bruno Lepri, Jacopo Staiano, Nuria Oliver, Fabio 
Pianesi, and Alex Pentland. Once upon a crime: towards crime predic-
tion from demographics and mobile data. In Proceedings of the 16th in-
ternational conference on multimodal interaction, pages 427–434. ACM, 
2014. 

[2] Kate J Bowers, Shane D Johnson, and Ken Pease. Prospective hot-
spotting the future of crime mapping? British Journal of Criminology, 
44(5):641–658, 2004. 

[3] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 

[4] Spencer Chainey, Lisa Tompson, and Sebastian Uhlig. The utility of 
hotspot mapping for predicting spatial patterns of crime. Security Jour-
nal, 21(1):4–28, 2008. 

[5] Jacqueline Cohen, Wilpen L Gorr, and Andreas M Olligschlaeger. Lead-
ing indicators and spatial interactions: A crime-forecasting model for 
proactive police deployment. Geographical Analysis, 39(1):105–127, 
2007. 

15 

This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice 



[6] Matthew Fielding and Vincent Jones. ’disrupting the optimal forager’: 
predictive risk mapping and domestic burglary reduction in trafford, 
greater manchester. International Journal of Police Science & Manage-
ment, 14(1):30–41, 2012. 

[7] Joel M Hunt. Do crime hot spots move? Exploring the effects of the 
modifiable areal unit problem and modifiable temporal unit problem on 
crime hot spot stability. PhD thesis, American University, 2016. 

[8] Shane D Johnson. Prospective crime mapping in operational context: 
Final report. 

[9] Shane D Johnson, Kate J Bowers, Dan J Birks, and Ken Pease. Predic-
tive mapping of crime by promap: accuracy, units of analysis, and the 
environmental backcloth. In Putting crime in its place, pages 171–198. 
Springer, 2009. 

[10] Kees Keizer, Siegwart Lindenberg, and Linda Steg. The spreading of 
disorder. Science, 322(5908):1681–1685, 2008. 

[11] Leslie W Kennedy, Joel M Caplan, and Eric Piza. Risk clusters, 
hotspots, and spatial intelligence: risk terrain modeling as an algorithm 
for police resource allocation strategies. Journal of Quantitative Crimi-
nology, 27(3):339–362, 2011. 

[12] Aditya Khosla, Byoungkwon An An, Joseph J Lim, and Antonio Tor-
ralba. Looking beyond the visible scene. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pages 3710– 
3717, 2014. 

[13] Hua Liu and Donald E Brown. Criminal incident prediction using a 
point-pattern-based density model. International journal of forecasting, 
19(4):603–622, 2003. 

[14] G. Mohler. Learning to rank spatio-temporal event hotspots. 2017. 

[15] George Mohler. Marked point process hotspot maps for homicide and 
gun crime prediction in chicago. International Journal of Forecasting, 
30(3):491–497, 2014. 

16 

This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice 



[16] George O Mohler, Martin B Short, Sean Malinowski, Mark Johnson, 
George E Tita, Andrea L Bertozzi, and P Jeffrey Brantingham. Ran-
domized controlled field trials of predictive policing. Journal of the 
American Statistical Association, 110(512):1399–1411, 2015. 

[17] GO Mohler, MB Short, P Jeffrey Brantingham, FP Schoenberg, and 
GE Tita. Self-exciting point process modeling of crime. Journal of the 
American Statistical Association, 106(493):100–108, 2011. 

[18] Gabriel Rosser, Toby Davies, Kate J Bowers, Shane D Johnson, and Tao 
Cheng. Predictive crime mapping: Arbitrary grids or street networks? 
Journal of Quantitative Criminology, pages 1–26, 2016. 

[19] Xiaofeng Wang, Donald E Brown, and Matthew S Gerber. Spatio-
temporal modeling of criminal incidents using geographic, demographic, 
and twitter-derived information. In Intelligence and Security Informat-
ics (ISI), 2012 IEEE International Conference on, pages 36–41. IEEE, 
2012. 

[20] Hui Zou and Trevor Hastie. Regularization and variable selection via the 
elastic net. Journal of the Royal Statistical Society: Series B (Statistical 
Methodology), 67(2):301–320, 2005. 

17 

This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice 





Accessibility Report





		Filename: 

		251203.pdf









		Report created by: 

		



		Organization: 

		







[Enter personal and organization information through the Preferences > Identity dialog.]



Summary



The checker found problems which may prevent the document from being fully accessible.





		Needs manual check: 2



		Passed manually: 0



		Failed manually: 0



		Skipped: 1



		Passed: 25



		Failed: 4







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Needs manual check		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Needs manual check		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Passed		All page content is tagged



		Tagged annotations		Failed		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Passed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Passed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Failed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Failed		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Skipped		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Failed		Appropriate nesting










Back to Top



