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1. Executive Summary 

The National Academy of Sciences (NAS) 2009 report on Strengthening Forensic Science 
in the United States revealed several research recommendations related to forensic footwear 
examinations, including the need for greater clarity concerning the variability of outsole class 
and individual (randomly acquired) characteristics (RACs), the validity and reliability of 
current methods and practices, the relative frequency of features, and the appropriate use 
of statistical standards (NAS, 2009). In response to this request, this project performed 
foundational research to clarify the empirical frequency and shape distribution of randomly 
acquired characteristics on outsoles collected from a general population. 

To achieve this goal, an outsole database was generated, resulting in summary statistics and 
frequency estimates on 72,306 randomly acquired characteristics extracted from 1,300 out-
soles. The subsequent results are based on a combination of automated and analyst-derived 
image extraction and processing tools, with the human-dependent step of RAC detection and 
marking. Given some unavoidable subjective steps in the image processing chain, inter- and 
intra-analyst variability in RAC marking was assessed using a quality control/assurance pro-
gram that included the duplicate marking of 5,477 randomly acquired characteristics across 
160 shoes (320 RAC maps). The results indicate that RAC detection is the largest variable not 
easily controlled (even with training), but when RACs are equally detected in repeat analyses, 
they are marked relatively consistently, with mean polar coordinate localization differences 
of less than r ± 0.2mm, and θ ± 0.1o, and shape attribution (e.g., isometric, elongated or 
irregular) agreement nearly 75% of the time. 

Post-detection and extraction, each RAC was broadly characterized in terms of its degree 
of linearity, circularity and triangularity. Using geometric shape classification rules, auto-
mated shape attribution was compared to human-perceptual assignments and found to be in 
agreement between 68% to 95% of the time, across 1,352 comparisons, and depending on the 
complexity of the dataset presented for analysis. Overall, the results indicate limited utility in 
classifying complex features into prescribed shape classes (such as circles, lines, curves, rect-
angles, triangles, etc.), and that future work should consider alternative mechanisms (such 
as shape clustering), as opposed to strict categorization, as a means of grouping randomly 
acquired characteristics in terms of shape similarity. 

Next, outsole size and shape normalization was performed. This step, although not ideal, was 
deemed unavoidable in order to create sufficient power in the inter-comparison of all 1,300 shoes 
in the database, regardless of outsole style/shape and size. Post normalization, each RAC was 
localized to one of 990 possible spatial bins, each 5mm x 5mm in size. Post-localization and 
binning, estimates of co-occurrence and similarity were possible. This was accomplished by 
computing the Fourier descriptor of each RAC, and for RACs with positional co-occurrence, 
pairwise comparisons were performed using five similarity metrics (Euclidean distance (ED), 
Hausdorff distance (HD), modified cosine similarity (MCS), matched filter (MF), and mod-
ified phase only correlation (MPOC)). Variation in similarity score as a function of RAC 
shape, perimeter and area were computed and are reported, along with receiver operator and 
cumulative match characteristic curves that provide insight on the use of numerical metrics 
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to rank-order RACs from different sources. Results indicate superior performance with dis-
tance metrics (HD and ED), making Hausdorff distance the best candidate (of those metrics 
compared) for computing score-based likelihood ratios. More specifically, it was noted that 
both HD and ED had statistically indistinguishable AUCs (area under the curve) of 0.82, and 
that both were significantly better than MCS, MF and MPOC. However, alternative metrics, 
including deep learning, might prove equally or more useful, and additional work is needed 
to fully appreciate the strengths and weaknesses associated with the use of numerical shape 
comparisons within the field of forensic footwear examinations. 

Equipped with RACs with known positional co-occurrence and shape similarity, three ques-
tions related to chance co-occurrence were asked. First, what was the empirical frequency of 
finding a pair of RACs with positional similarity anywhere on an outsole within this dataset? 
Second, what was the empirical frequency of selecting two shoes at random and finding shape 
similarity at a specific location? Lastly, what kind of numerical/quantitative similarity is 
expressed by RACs with positional co-occurrence? 

With regard to positional co-occurrence anywhere on an outsole, the empirical frequency is 
extremely high (1 in 4 for elongated features, to 1 in 10 for isometric features). However, when 
positional co-occurrence in a specific location is queried, median results range from 1 in 2,080 
for elongated features, to 1 in 9,279 for irregularly-shaped features. In addition, the worst case 
scenario (greatest chance association) was found to be 1 in 281 for elongated features, while 
the best case scenario (lowest chance association) was found to be 1 in 844,350 or better (this 
value is limited by the size of the database). 

However, RACs with positional co-occurrence (and even identical shape categorizations), are 
not necessarily geometrically similar (e.g., two linear elements could vary in orientation, length, 
thickness, curvature, etc). Thus, the mathematical similarity of RACs with coincidental po-
sitional and shape similarity were computed based on 6,993 known match comparisons, and 
3,239,114 known non-match comparisons. The results indicate that 13% of known non-matches 
have likelihood ratios (LR) greater than 1.0, but even for known non-match RACs with some 
degree of numerical similarity, very few were found to be visually indistinguishable. In fact, 
to assess the possibility of numerical versus visual confusion, a subset of 19,800 of the most 
similar RACs from different sources (1,000 shoes) were visually compared. More specifically, 
all pairwise comparisons for RACs from a subset of 1,000 shoes were compared and ranked 
(for a total of 2,022,595 known non-matches), and the five most similar RACs per spatial bin 
were examined to determine visual differentiability. Of the almost 20,000 visual comparisons 
that were performed, all but 25 pairs were deemed distinguishable based on RAC geometry 
(orientation, size, shape, complexity, etc.), with an associated probability of confusion on the 
order of 1.2E-05 (or 0.001% of the time, assuming an effective ranking). Moreover, when the 
25 indistinguishable RAC pairs were further characterized, all were found to be differentiable 
based on shoe class characteristics (differences in make/model, size and/or degree of wear). 

In conclusion, there is evidence to assert that RACs possess a high degree of forensic dis-
crimination potential. However, the widespread and general applicability of any associated 
probability and chance association computed based on this study must be considered within 
the confines that bound the research dataset and methodology. More specifically, all results are 
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a function of the nature of the footwear population studied, which was predominately athletic 
gear (86%), men’s wear (72%), and of sizes 9 through 11 (53%). Moreover, all shoes have been 
inter-compared without regard for class characteristics, which required the less-than-ideal step 
of normalization as a function of outsole size and shape. As such, the probability of confusion, 
reported to be on the order of 1.2E-05, must be interpreted within the confines of this footwear 
population, and with full understanding of the nature of the data analyses that lead to these 
conclusions. 
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2. Research Overview 

This work proposed five deliverables: 

• To analyze and characterize more than 400 exemplar and questioned prints (referred to 
as the ‘footwear database’); 

• To subsequently pairwise compare exemplar RACs and RAC maps using a quantitative 
metric (correlation); 

• To provide frequency estimates relating RAC ‘type’ and location; 

• To report on the random co-occurrence of accidental features; 

• To create a user-friendly graphical interface that allows the analyst to rapidly extract 
similarity and frequency information from the database, including quantitative measures 
of similarity and estimates of chance co-occurrence of features in terms of geometry and 
positional information. 

To date, the following products have been realized: 

• The collection (purchase and donation) of 2,028 outsoles; 

• The analysis and characterization of 1,300 outsoles (900 more than originally contracted 
to deliver); 

• The quantitative comparison of RAC similarity using 5 metrics (4 more than originally 
contracted to deliver, including the strengths and weaknesses associated with each); 

• A web-based application that provides frequency estimates describing RAC type and 
location (http://www.4n6chemometrics.com/database/); 

• A web-based application reporting on the random co-occurrence of accidental features 
(http://www.4n6chemometrics.com/database/); 

• Long-term and on-going soft-benefits associated with an increased understanding of 
fundamental phenomenology such as the spatial prevalence and coincidental association 
of accidental features and feature patterns in random and specific footwear populations. 

2.1 Review of Selected Works 

The power associated with demonstrating a linkage between footwear and an impression left 
at the scene of a crime is directly related to the perceived rarity of the shoeprint itself, which 
is a function of observed class and accidental characteristics (including clarity and quality). 
When individualizing characteristics are present, their relative position, orientation, size and 
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shape are examined and compared with known exemplars (SWGTREAD, 2006) in an effort 
to formalize the strength of the suspected linkage. However, the degree to which a feature, or 
a collection of features, might repeat is less well understood. This latter issue is referred to as 
chance co-occurrence (or the random match probability (RMP) in DNA/population genetics), 
which inevitably impacts the discrimination potential associated with any form of forensic 
evidence, including forensic footwear analysis. 

Within the pattern sciences, the likelihood of a close non-match is often formalized by an 
examiner’s accumulated expertise, wherein an analyst, with years of experience, develops 
internalized knowledge as to the likelihood that a feature (or set of features) would reproduce 
by random chance alone between two known non-matches. Despite the reasonable validity 
associated with using accumulated expertise to inform evidence interpretation, the need for 
external theoretical models and empirical investigations to support these inferences still exists. 
Unfortunately, providing objective data in support of these endeavors is not an easy feat, and 
most attempts are constrained as a function of model assumptions and sample size (wherein the 
latter obstacle should not be underestimated since it is extremely difficult and time-consuming 
to obtain a sufficiently large sample size (or footwear database) for reliable estimation). 

Past efforts in support of increased knowledge concerning close non-matches and chance as-
sociation are based on theoretical models and small/modest-scale empirical research efforts, 
as well as studies with alternative goals (not necessarily related to answering the question of 
chance association, but by virtue of research design, have shed light on this question) (Cas-
sidy, 1995; Champod et al., 2000; Davis and DeHaan, 1977; Davis and Keeley, 2000; Fawcett, 
1970; Hannigan et al., 2006; Petraco et al., 2010; Sheets et al., 2013; Shor and Wiesner, 2015; 
Skerrett et al., 2011; Stone, 2006; Wilson, 2012). Although not an exhaustive review, the 
remainder of this section will highlight three notable works ((Fawcett, 1970), Stone (2006), 
and Cassidy (1995)) that provided motivation for this project. 

To begin, Fawcett (1970) modeled the chance agreement of accidental characteristics between 
test and crime scene impressions using the binomial coefficient. The model determines the 
number of ways of obtaining (x) unordered accidental marks in a scene impression from a 
total of (s) possible defects using Eq. (1). 

s! 
sCx = (1)

(x − s)!(s)! 

To account for variation in resolution, as well as aberrant pseudo-accidentals that are a function 
of contamination of the questioned impression, differences in scene versus exemplar prints were 
modeled according to Eq. (2) where (z) represents the number of features in the questioned 
print and (p) defines the number of scene and exemplar accidentals that correspond. 

sCx
Probability of Chance Coincidence = P (2)

(zCp) (s−zCx−p)p 

Although Eq. (2) can be simplified by considering a single term in the denominator (where 
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p = p only, instead of summing from p = p to p = x or z), Fawcett (1970) states that the 
computation will always underestimate the true probability since the metric is binary in nature 
(e.g., a defect is present or absent in the questioned and exemplar impressions, without regard 
for shape or variation in size). 

In a comparable approach, Stone (2006) purported to compute the theoretical probability of 
the random duplication of accidental features with increasing degrees of complexity (points, 
lines, curves, etc.) but assuming questioned impressions of full resolution and free of pseudo-
accidentals. The model employed by Stone (2006) assumes a hypothetical flat-soled men’s size 
8.5 shoe with a working area of 16,000mm2 and a 1mm2 resolvable limit. Using these model 
parameters, Stone (2006) computed a 1 in 16,000 probability of random duplication of a single 
point feature, defined as a defect with ‘no discernible length or width’. This computation 
was repeated for larger defects (such as lines and curves), that possess a greater number 
of attributes including binned estimates for length, orientation and curvature. Although the 
results are extremely useful and intuitive, Stone (2006) acknowledges the many ways in which a 
theoretical model can diverge from reality when the complexity and variation of empirical data 
are considered. For example, the computed probability is a function of the model assumptions, 
impacted by model violations such as (1.) shoes with surface areas less than 16,000mm2, (2.) 
resolution capabilities less than 1mm2, (3.) outsoles with a raised instep or unequal contact 
with terrain, and (4.) observations suggesting that accidentals are not equally likely to occur 
on the entire outsole (as a function of a raised instep or otherwise). Despite this, a model 
should not be invalidated simply because it is bounded. In fact, bounding is typically a model 
requirement; partially driven by the need to formulate simplifying assumptions, and partially 
based on our understanding of phenomenology. However, the physics implicit in the model 
should be continually expanded using empirical observations. For example, crime scene prints 
are often partial impressions deposited in variable media and therefore of variable resolution. 
As such, the resolution capability of 1mm2 may not be reasonable under all circumstances. 
In addition, there is considerable known variation in shoe size, characteristics, and the likely 
capture of an accidental. Consider the evidence provided by Bodziak (2000) from a survey of 
450 athletic shoes showing that outsoles that differ in size between 6 and 12 vary in length 
between approximately 3.8 and 5.5cm. Similarly, Davis and DeHaan (1977) reported evidence 
based on a random analysis of 650 pairs of men’s shoes showing that shoe sizes that differ 
between 6 and 11 can lead to variation in heel and sole widths of approximately 3cm. Moreover, 
Davis and DeHaan (1977) report that this sample highlighted many shoes with deep ‘cleats’, 
thereby reducing the area of the outsole susceptible to damage. This is compounded by raised 
insteps that can further limit the surface area of a shoe in contact with the terrain. In addition, 
the study by Davis and DeHaan (1977) reported that defects were rarely encountered in the 
rear and central portions of the heel, which the authors attribute to areas of high wear and 
continual erosion. As a corollary, Davis and DeHaan (1977) attribute a higher significance to 
any accidental that is found on the mid- to rear-section of the heel. 

In contrast with the theoretical models presented by Fawcett (1970) and Stone (2006), Cassidy 
(1995) attempted to answer questions concerning chance reproduction of individual charac-
teristics based on empirical studies. Using groups of police recruits engaged in activities that 
promote the chance reproduction of accidental characteristics, Cassidy (1995) concluded that 
there was a 1 in 6 chance of finding 10 ‘minute’ characteristics and a 1 in 20 chance of finding 
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3 moderate-sized characteristics possessing coincidental similarity in position for the heel of 
compared shoes. However, Cassidy (1995) acknowledged that similarities based on mold may 
very well be included in these figures, and an extensive discussion of the similarity in feature 
quality was not explicitly provided. Similar empirical observations collected from two different 
sets of test shoes (presumably less likely to exhibit mold subclass characteristics) suggest that 
a single moderate-sized characteristic has a 1 in 38 to a 1 in 60 chance of possessing coinci-
dental similarity with known non-match heels (Cassidy, 1995). Of course, the heel of a shoe 
is only a fraction of the size of the shoe modeled by Stone (2006), but even assuming that 
the heel is a fourth of the total area of the outsole, the empirical results presented by Cassidy 
(1995) suggest a higher probability of chance similarity in position. Although one could ar-
gue that this difference is a function of the shared activities performed by the police recruits 
(e.g., activities believed to favor the duplication of shared features), this is only speculative 
since an empirical baseline does not exist that can describe the chance duplication of random 
characteristics for individuals and activities that are unrelated or random (which this research 
project addresses). 

2.2 Research Methodology & Results 

Characterizing the presence, geometric shape and utility of a randomly acquired characteristic 
is not, in fact, a straightforward process. Instead, the physical evidence record available for 
analysis is typically corrupted by a host of factors that can include variations in material prop-
erties, deposition conditions, temporal and spatial factors, as well as attempts at collection 
and enhancement (not to mention the size, quality and clarity of the feature under consider-
ation). With this in mind, the major focus of this project was to report on similarity scores 
and population frequency estimates that result when comparing high quality (HQ) (exemplar) 
known matches (KM) and known non-matches (KNM), with a limited focus on the increased 
variability that results when considering mixed-media and crime scene-like (CS) conditions. 
In order to generate sufficient data upon which to argue some pretext in terms of statistical 
power, a large footwear database was needed, therefore demanding a rigorous approach to 
data (1.) acquisition, (2.) pre-processing, (3.) registration, (4.) segmentation, (5.) processing, 
and (6.) comparison. The remainder of this section will expand upon each of these steps. 

2.2.A Data Acquisition 

Footwear was obtained by donation, request, and purchases from Goodwill R and similar thrift 
stores. Table 1 reports the total number of shoes procured by the research group (2,028), 
including source. Note that nearly half (45%) resulted from purchases, while the remaining 
55% were acquired based on generous corporate donations. 

Of the 2,028 footwear collected, 1,300 have been fully characterized. Tables 2 - 6 summarize 
the attributes of the resulting footwear dataset as a function of type, degree of wear, the 
presence/absence of features (such as microcellular material and/or Schallamach patterns), 
manufacturer, and finally, gender/size. 
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Table 1: Break down of footwear by source. 

Source Total Shoes ∼ Percent % 
Goodwill R 914 45% 

Decker 72 4% 
Nike 538 27% 
Reebok 274 13% 
Under Armour 230 11% 
Total 2,028 100% 

Table 2: Footwear database by shoe type. 

Type Number ∼ Percentage % 

Athletic 1,122 86% 
Dress 89 7% 
Boot 69 5% 
Sandal 20 2% 
Total 1,300 100% 

Table 3: Footwear database by degree-of-wear . Note that ‘light’ describes an outsole with texture still present 
throughout most of outsole, ‘moderate’ describes an outsole with texture that remains apparent but may be 
accompanied by small bald spots, and ‘heavy’ describes an outsole nearly devoid of any remaining texture, 
many or large bald spots, and possible holes where the sole has been worn away. 

Degree of Wear Number ∼ Percentage % 

Light 324 25% 
Moderate 673 52% 
Heavy 303 23% 
Total 1,300 100% 

Table 4: Footwear database as a function of microcellular material and Schallamach patterns. 

Microcellular Material Number ∼ Percentage % 

Present 155 12% 
Absent 1,145 88% 
Total 1,300 100% 

Schallamach Pattern Number ∼ Percentage % 

Present 921 71% 
Absent 379 29% 
Total 1,300 100% 
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Table 5: Footwear database as a function of manufacturer. Note that ‘other’ reports on shoes from manufac-
turers that individually contributed a very small number of shoes (less than 1% of the total), but in totality, 
define 23% of the database. 

Manufacturer Number ∼ Percentage % 

Adidas 32 2% 
Asics 30 2% 
Brooks 10 1% 
Converse 36 3% 
Hoka 36 3% 
New Balance 22 2% 
Nike 513 39% 
Puma 15 1% 
Reebok 152 12% 
Skechers 16 1% 
Under Armour 114 9% 
Unknown 24 2% 
Other 300 23% 
Total 1,300 100% 

Table 6: Footwear database as a function of intended gender and manufacturer’s reported size. Note that 8% 
of the outsoles in this database have unknown gender and/or size, and that each row reports data for both the 
whole and half-size ( e.g., 10 and 10.5). 

Men’s Size Number ∼ Percentage % Women’s Size Number ∼ Percentage % 

5 4 <1% 4 4 <1% 
6 10 <1% 5 2 <1% 
7 34 3% 6 18 1% 
8 93 7% 7 69 5% 
9 215 17% 8 82 6% 
10 271 21% 9 51 4% 
11 193 15% 10 23 2% 
12 87 7% 11 10 <1% 
13 30 2% 12 2 <1% 
Total 937 72% Total 261 20% 
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2.2.B Pre-processing of High Quality Prints 

As necessary, each shoe was gently washed (using warm water) to remove debris (i.e., this 
research does not account for the possible presence of transient RACs, such as rocks, gum, 
etc.). When dry, each outsole was scanned at 600PPI with an Epson Expression 11000XL 
Graphic Arts Scanner. Post-outsole scanning, Handiprint exemplars were created (Bodziak, 

2000) using a Zephyr R brush (A-1-0200 Arrowhead Forensics, trimmed to a total length of 
approximately 1 inch), Lightning R Black Powder (1-4005 CSI Forensic Supply) and Handiprint 
sheets with clear polyester covers (2-3150 CSI Forensic Supply). To create each exemplar, the 
Handiprint sheet was prepared by removing the clear polyester sheet and allowing the flexible 
Handiprint material to rest (reform shape, adhesive side-up) while lightly dusting the outsole 
with the powder and Zephyr R brush. 

During powder application, the outsole was brushed in at least three directions; North-South 
(toe/heel), East-West (medial/lateral) and diagonally to ensure full coverage. After dust 
application, the shoe was tapped three-four times to dislodge excess dust, before placing the 
outsole on top of the prepared Handiprint sheet sitting on the laboratory benchtop. The 
Handiprint+shoe combination was slowly pulled off of the benchtop toward the analyst, while 
the researcher used his or her hands to gently add pressure on the non-adhesive side of the 
Handiprint (pressing the outsole against the tacky side of the Handiprint to maximize tight 
contact). When the Handiprint+shoe was fully removed from the laboratory benchtop, the 
analyst then used a paper towel or fingerprint roller to gently reapply pressure between the 
Handiprint and outsole to again maximize contact. When complete, the Handiprint was pulled 
from the outsole and laid flat on the benchtop. The clear polyester cover was then slowly re-
applied from bottom to top in a type of rastering process to minimize the introduction of air 
pockets between the Handiprint and protective cover. After development, the Handiprint was 
likewise scanned at 600PPI; both are illustrated in Fig. 1 for a size 9 men’s Converse Chuck 
Taylor R  with moderate wear and Schallamach patterns.  All Star R

Crime Scene-Like Images 

Using a random number generator, 50 pairs of shoes were selected from the aforementioned 
exemplar database. Five analysts of differing height, weight and shoe size were selected and 
randomly assigned 10 pairs of shoes to aid in print creation. In order to best replicate crime 
scene conditions, each analyst wore his or her randomly assigned shoes when creating impres-
sions (note that this methodology differed from that used in exemplar creation which entailed 
pressing a dusted outsole against an adhesive sheet). Each outsole was lightly covered with 
shoe polish and analysts walked four steps over clear acetate sheets, thereby creating two repli-
cate impressions per shoe for a total of 200 crime scene-like quality prints. Each impression was 
then developed using black magnetic powder (Lightning Powder Co. Black Magnetic 1-0160) 
and lifted using white gelatin lifters (13cm x 36cm BVDA Gellifters, Batch no. 2015033). 
Fig. 2 illustrates one ‘best case’ and one ‘worst case’ reproduction scenario. Note: the authors 
acknowledge that the crime scene-like impressions created in this dataset are still far superior 
than prints collected at the majority of real scenes by actual examiners. 
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Figure 1: Example of outsole and Handiprint exemplar scans (size 9 men’s Converse Chuck Taylor R All 
Star R). 
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Figure 2: A ‘best case’ scenario (top row) and a ‘worst case’ scenario (bottom row) for crime scene-like 
impression production. Handiprint exemplar (left) and two crime scene-like replicates (center, right). Note: 
the authors acknowledge that the crime scene-like impressions created in this dataset are still far superior than 
prints collected at the majority of real scenes by actual examiners. 
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Pre-Processing of Crime Scene-Like Prints 

After lifting, all crime scene impressions were likewise scanned at 600PPI with the Epson Ex-
pression 11000XL Graphic Arts Scanner. The lifters were afixed to a scanning board designed 
to raise the gel surface off the scanner bed by less than 1mm, thus allowing for clear, focused 
prints, without direct interaction between the lifter and the scanner’s glass surface. After 
scanning, lifts were covered and stored for future reference. 

2.2.C Registration 

In order to facilitate the automated downstream extraction of RAC shape and position, the 
outsole and exemplar (and crime scene-like images) were background subtracted and registered 
using identified control points. This process required the analyst to identify eight common 
geometric shapes that were patent on both the outsole and the exemplar. The features selected 
for registration varied per shoe, but needed to be distributed as evenly as possible around the 
perimeter of the outsole (a minimum of two on the toe, two on the heel, and the remaining 
four on the lateral and medial sides of the shoe) and generally consisted of class characteristics 
with sharp boundaries, such as corners in polygonal-geometric shapes (and lettering in logos, 
if applicable). 

To expedite this process, a simple graphical user interface was constructed that opened two 
paired images (the scanned version of the outsole, and the mirrored version of the Handiprint 
exemplar). With both images in a common orientation, the analyst used the cross-hair of the 
cursor on his or her mouse to designate mated-points between the images (open windows). 
Using this process, any number of mated points could have been selected, but as a compromise 
in terms of efficiency and accuracy, eight total ground control points were selected. Of the 
two possible images to use as a base, the outsole was selected, which meant during transfor-
mation, the Handiprint exemplar was translated, rotated and scaled (as necessary) to bring 
it into registration with the outsole. This transformation was performed using a first order 
polynomial with least-squares fitting (note that a first order polynomial was selected over an 
affine transformation in order to handle slight shearing in the toe and heel that is not uncom-
mon when creating Handiprint exemplars). Note that registration of crime scene-like images 
was accomplished using the same methodology. 

In addition to this co-registration, the background (non-tread areas) of both the outsole and 
exemplar (and crime scene-like images) were removed. This was accomplished in a rather 
rudimentary or primitive way, using the aforementioned graphical user interface, wherein 
the analyst simply traced the perimeter of the outsole using the cross-hair of the cursor, 
thus automatically generating a binary image that labeled every pixel as either belonging 
to the outsole or belonging to the background. Once generated, this map was saved and 
mathematically multiplied with other images downstream (e.g., the outsole and Handiprint 
exemplar) to effectively increase image signal to noise ratios. As such, the background (or 
non-tread areas) of both the outsole and exemplar were removed (Fig. 3) to ensure the highest 
quality imagery moving forward (e.g., removal of remnants of the analyst’s hands that may 
have been captured during scanning when pressure was applied to the outsole to promote 
a nearly planar surface, and/or removal of extraneous dust and fingerprints on Handiprint 
exemplars). 
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Figure 3: Registered and background subtracted outsole scan (left) and Handiprint scan (right). The middle 
image is an overlay of the outsole and Handiprint illustrating co-registration (size 9 men’s Converse Chuck 

Taylor R All Star R). 

Finally, the outsole and exemplar (and crime scene-like images) were collectively translated 
and rotated to ensure that all were centered within the image frame (8,961 x 8,961 pixels) and 
oriented such that the long-axis of the shoe (toe-to-heel) was North-South. This was most 
easily accomplished using the binary image that was created in the previous step, wherein 
each pixel was defined as either outsole or background. From this image, the midpoint of 
the outsole was mathematically computed (xo,yo), defined as the x-pixel halfway between the 
maximum width of the shoe and the y-pixel halfway between the maximum length of the 
shoe. Since the image frame was 8,961 x 8,961 pixels, the image frame center was located at 
pixel coordinate (4,481,4,481), so the outsole and Handiprint exemplar images were centered 
by translating the imagery such that (xo,yo) was coincident with (4,481, 4,481). 

To ensure that the shoe’s long-axis was North-South, the binary map defining outsole versus 
background was treated as a bivariate normal distribution, amenable to eigen-decomposition. 
After decomposition, the resulting eigen-vectors defined the major and minor axes of the best-
fit ellipse conforming to the (x,y) coordinates of the pixels that defined the outsole. Ergo, the 
deviation of the major axes from vertical defined the degree of rotation necessary to ensure 
that the final imagery was oriented as close to North-South as possible within the image frame. 
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2.2.D Segmentation 

Following registration and background subtraction, randomly acquired characteristics present 
on both the exemplar and crime scene-like images were marked. This process required the ana-
lyst to physically examine each outsole with oblique illumination and 4X magnification. Upon 
identifying a RAC that appeared on both the outsole and the exemplar, the analyst blacked 

 out the RAC pixels on the Handiprint image using the pencil tool in Adobe R Photoshop R

Elements 10. This was completed by tracing the edge of the RAC with the pencil tool (set 
at 2-pixels wide) and then filling in the RAC (if necessary), with the paint bucket tool while 
viewing the exemplar at a minimum magnification of 200X. When complete, each feature was 
examined to ensure that every pixel included within the traced perimeter of the RAC was fully 
labeled (converted to black). For features found on the edge of the shoe, a lug, or a tread ele-
ment, the boundary of the RAC was interpolated by hand if the distance for interpolation was 
short and relatively linear (Fig. 4 (a)). In instances when the edge could not be dependably 
interpolated (e.g., along an irregular segment, a curved surface, or near a large void area), the 
RAC was traced, but not closed, in order to avoid the introduction of interpolation variability 
(Fig. 4 (b)). 

Figure 4: (a) Illustration of RAC on edge of linear tread element. Note that the edge of the RAC (terminating 
on the edge of a short and linear tread element), has been interpolated and the entire RAC has been filled 

in (size 9.5 men’s Vans R sneaker, Skink Mid model shoe). (b) Illustration of RAC on edge of curved tread 
element. Note that the edge of the RAC (terminating on the edge of a curved tread element), has not been 

interpolated nor filled in (size 9 men’s Adidas R sneaker, Pro Feather model). 
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When this registered and marked image was subtracted from its registered (but unmarked) 
counterpart, the result was a RAC map that highlighted the location and geometry associated 
with each randomly acquired feature (Figs. 5 and 6). Using the standard image processing 
technique of connected components, the location of each RAC was sequentially characterized 
using three parameters that were readily available based on x,y pixel coordinates; the radius 
(r) or distance (in pixels) between the shoe’s midpoint and the RAC’s centroid (geometric 
average of the RAC’s x,y pixel coordinates), the angular (θ) position (in degrees) between the 
RAC’s centroid and zero degrees (defined as a horizontal line drawn directly East of the shoe’s 
midpoint), and the normalized distance (rnorm) equal to r divided by the distance (in pixels) 
between the shoe’s midpoint and the perimeter of the shoe at angular position θ (obtained by 
casting out a vector from the shoe’s midpoint to the shoe’s perimeter at angle θ). 

Figure 5: Registered and marked Handiprint image (left) and resulting RAC map (right) (size 9 men’s Converse 
Chuck Taylor R All Star R). 
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Figure 6: Example of a selected portion of the Converse Chuck Taylor R All Star R . Handiprint (top left), out-
sole (bottom left), marked Handiprint (top right), RAC map (bottom right). Note that the outsole image shown 
in this figure has been scanned on a flat bed scanner, but that all RACs were detected using 4X magnification 
and oblique illumination. 

Following localization, each feature was automatically numbered (via its connected component 
value) and extracted from the total RAC map. The resulting subimages (Fig. 7) were then 
evaluated to define RAC shape and geometry, based on a five-dimensional RAC feature vector, 
before transformation into individual RAC Fourier descriptors (FD). 

Figure 7: Subsection of RAC map and example of connected component subimages. This particular RAC was 
numbered #101 and located at a normalized radius of 0.55 and an angle of 104o . 

17 
This resource was prepared by the author(s) using Federal funds provided by the U.S.  

Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
necessarily reflect the official position or policies of the U.S. Department of Justice.



I I I 

I I I 

2.2.E Processing 

RAC Feature Vector 

Initially, each randomly acquired characteristic was attributed to one of four categories (lines/curves, 
circles, triangles, and irregular-shaped features), as inspired by work conducted by Stone 
(2006) (Table 7). 

Table 7: Description of accidental characteristics (adapted from Stone (2006)). 

Feature 
Discrete 
Position 

Discernible 
Length 

Discernible 
Width Orientation Curvature 2D Shape Elevation 

Point Yes No No N/A N/A N/A N/A 
Line Yes Yes No Yes No N/A N/A 
Curve Yes Yes No Yes Yes N/A N/A 

Enclosure Yes Yes Yes Yes N/A Yes No 
3D Yes Yes Yes Yes N/A Yes Yes 

However, geometric characterization was determined using an automated technique, and based 
on five RAC attributes, including: area, perimeter, linearity, circularity and triangularity. 
The first two descriptions (area and perimeter) were readily available; area describes the total 
number of pixels comprising the RAC and perimeter evaluates the distance in pixels along a 
line/curve, or around a two-dimensional shape. 

The linearity metric was also readily available and was obtained by computing the ratio of 
the first and second eigenvalues (λ1 and λ2) generated from eigen decomposition of the RAC 
itself (Park and Jain, 2010). Using this approach, when λ1 is much greater than λ2, the RAC 
in question has a greater length than width and can be classified into the line/curve category. 

The fourth measurement was a circularity metric, computed according to Eq. 3 (Gonzalez 
and Woods, 2008), where A is the area of the object, and P is the length of its perimeter: 

4 π A 
Rc = 

P 2 
(3) 

Rc = maximum of 1.0 for a perfect circle 

The fifth and final metric was a triangularity value computed using central moments (Eq. 4) 
that are invariant to translation, scale and rotation. As per Rosin (2003) (Rosin, 2003), the 

1variable I1 in Eq. 5 equals 
108 for any triangle that has been affine transformed into a perfect 

right-angled triangle: 

XX 
µpq = (x − xc)

p(y − yc)
q (4) 

x y 

2µ20µ02 − µ11 = (5)I1 4µ00 
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Circle Line/Curve Triangle Irregular 

As such, the triangularity measure can be normalized to vary between 0.0 − 1.0 according to 
Eq. 6 (Rosin, 2003): 

� 
1108 I1 if I1 ≤ 

108T = 1 (6)
otherwise

108 I1 

The five-dimensional feature vector (Fig. 8) describing area, perimeter, linearity, circularity 
and triangularity served as a primary descriptor and comparison parameter for each randomly 
acquired characteristic. In addition, it was used to categorize the randomly acquired char-
acteristics into one of the four groups previously mentioned; line/curve, circle, triangle or 
irregular. 

Figure 8: Four RAC images with their corresponding feature vectors [area, perimeter, circularity, triangularity, 
linearity]. 

Based on a survey of known geometric shapes, absolute categorization rules were developed. 
More specifically (and for this dataset), circles have a circularity measure greater than or 
equal to 0.8, triangles have a circularity measure less than 0.8 and a triangularity greater than 
or equal to 0.9, while lines/curves have a linearity ratio greater than 5 and a triangularity 
measure less than or equal to 0.3; any shape not satisfying one of the above rules defaults into 
the irregular category (Fig. 9). 

Although this categorization was relatively straightforward when it came to idealized shapes, 
it was clear that RACs rarely took on an idealized form/habit, and therefore, categorization 
into narrowly defined bins proved to be somewhat unproductive, and even sometimes at odds 
with what a human analyst might decide if asked to categorize a real randomly acquired 
characteristic. However, this disagreement cannot be defined as a failing of the algorithm, 
since shape categorization by a human observer is, by necessity, both subjective and personal. 
Nonetheless, when quantified, the agreement between ‘automated’ and ‘human’ categorization 
of RACs ranged between 95% and 68%, depending on the complexity and imperfections of 
the shape under review. For example, using a test set of 74 ‘stylized’ shapes (manually 
created in ImageJ (Rasband, 2016) with an intended geometry), plus 110 randomly selected 
RACs, the overall agreement or accuracy in categorization was computed to be 95%. This was 
determined by taking the total test set of 184 images and presenting them via a graphical user 
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Figure 9: Examples of RACs classified as circles, lines/curves, triangles, and irregulars by the algorithm. 

interface to analysts seated at a computer. When presented with each image, in a randomized 
order, the analyst was asked to categorize the shape as either a circle, triangle, line/curve or 
irregular-shaped feature by clicking on a corresponding toggle button. The same shape was 
automatically categorized using the decision rules determined during our training phase, and 
the results for three separate analysts (for a total of 552 human-perceptual estimates of shape 
categorization) were combined into the confusion matrix shown in Table 8 with an overall 
agreement of 95%. 

Table 8: Confusion matrix for automated categorization of 184 shapes (74 stylized and 110 real RACs) as 
assessed by three analysts for a total of 552 human-perceptual assessments of shape. The column headers 
represent the algorithm report while the rows designate human-perception. Total agreement equals 95%. 

Label Circle Triangle Line/Curve Irregular 

Circle 99 0 0 0 
Triangle 0 90 2 4 
Line/Curve 0 0 214 8 
Irregular 1 5 5 124 

Conversely, for a total of 800 randomly selected RACs (zero stylized shapes), assessed by four 
analysts (200 each, with a total of 746 human-perceptual estimates of shape categorization of 
which 27 RACs happen to repeat during the randomized selection), the equivalent confusion 
matrix (shown in Table 9) was found to have an overall agreement of 68%. Despite the clear 
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decrease in agreement, the authors assert that this should not be defined as an ‘error rate’ 
since it is based on human-perception of shapes, which cannot be expected to agree among 
or between individuals. The problem is that there is no appropriate reference by which to 
define ‘ground truth’ as soon as shapes become complex and imperfect. To illustrate this, 
consider Figs. 10 and 11 which show a sampling of RAC images that lead to disagreement 
in the ‘human-perception’ versus ‘automated-algorithm’ study, contributing to the results 
shown in Table 9. In both figures, the top row denotes the automated categorization label, 
while the cell label indicates the human analyst choice. Depending on the viewer and the 
image, there are some instances where the human’s reasoning seems more ‘accurate’, and some 
instances where the algorithm’s choice seems more ‘accurate’. Overall, the results suggest 
that it would not be robust to keep a large number of RAC shape groupings, due to both 
human-perceptual differences and RAC complexity/imperfections. Given this observation, the 
authors suggest a maximum of three groups that may be useful moving forward; ‘irregular’ 
for complex structures, ‘elongated’ to describe lines and curves, and a new grouping defined 
as ‘approximate isometric’ to include circular and triangular structures. 

Table 9: Confusion matrix for automated categorization of 746 unique RACs and 27 repeated RACs as assessed 
by four analysts for a total of 800 human-perceptual assessments of shape. The column headers represent the 
algorithm report while the rows designate human-perception. Total agreement equals 68%. Note that early 
categorizations also included a ‘rectangle’ group, defined as a linear element with width/thickness greater than 
30 pixels (or 1.3 mm). 

Label Circle Triangle Rectangle Line/Curve Irregular 

Circle 46 10 0 0 19 
Triangle 12 25 0 1 19 
Rectangle 3 3 0 2 3 
Line/Curve 0 7 0 340 58 
Irregular 9 80 0 29 134 

It is also important to note that several analysts were involved in marking randomly acquired 
characteristics. Therefore, to assess inter- and intra-analyst variation in RAC marking, a 
random set of 100 pairs of shoes (approximately 8% of the database) were selected for periodic 
reassessment. On an approximate once-weekly basis, each analyst selected the next available 
shoe from the randomized list (which may or may not be a shoe he or she has already marked), 
and repeated the marking process on the post-registered and background subtracted image. 
Subtraction of the newly marked RAC image from its registered and unmarked mate created 
a secondary RAC map. Differences between replicate maps then served as a basis for assessing 
inter- and intra-analyst variation in marking. 

To date, the quality assessment program has obtained 161 paired RAC maps, prepared by 5 
analysts, over a 15-month time period (although at the time of writing, only 160 have been 
used in data analysis). The information contained in each of the 320 RAC maps (2 markings 
x 160 shoes) has been assessed in two ways. First, the data has been converted into a one-
dimensional (1D) vector by rastering across image rows and down image columns, collecting 
total RAC size per cell using a fixed bin width of 150 x 150 pixels (approximately 6mm x 
6mm). The resulting 1D feature vectors of RAC size (per cell) for paired RAC maps were 
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Figure 10: Illustration of disagreement in human-perception of shape categorization (cell labels) versus auto-
mated categorization based on training rules (column header). To account for this disagreement a reduction in 
grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate 
isometry (a combination of circular and triangular structures). 
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Figure 11: Illustration of disagreement in human-perception of shape categorization (cell labels) versus auto-
mated categorization based on training rules (column header). To account for this disagreement a reduction in 
grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate 
isometry (a combination of circular and triangular structures). 
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then evaluated to determine the average correlation coefficient of similarity. Inter-analyst 
variation produced an average correlation coefficient of 0.66 with a variance of 0.057, based on 
137 paired RAC maps. To date, the dataset has allowed for the computation of intra-analyst 
correlation, but thus far, based on only 23 paired RAC maps for 2 analysts in the research 
group; the combined average correlation coefficient is 0.80 with a variance of 0.016. In addition 
to the image-wide correlation scores, individual uncertainty of measure for θ, r, and rnorm has 
been computed based on this same dataset. Table 10 reports the mean, variance and range 
of measurements associated with each value based on 160 shoes and 5,477 duplicate marked 
randomly acquired characteristics (combined inter- and intra-analyst markings). In addition, 
illustrations of duplicate markings of known match RACs are shown in Fig. 12, along with 
individual measurement differences. The results indicate that angular differences are very 
small (less than a 1o) and that radial distances differ by 0.16 ± 1.9 mm. The interpretation of 
each quality metric (correlation versus measurement uncertainty) indicates that the greatest 
variation is within the RAC detection process; but when a RAC is detected, it is marked, on 
average, in such a manner to limit variation in actual localization. 

Table 10: Variation in analyst duplicate marking of 5,477 randomly acquired characteristics across 160 shoes 
(320 RAC maps). 

Metric θ (degrees) r (pixels) r (mm) rnorm 

Mean 0.0922 4.27 0.167 0.00177 
Variance 0.0178 91.7 3.61 0.0000121 
Maximum 0.6990 112 4.40 0.03000 

Figure 12: Duplicate markings of known match RACs with the following marking variations: (a) Δ θ = 0.235, 
Δ r = 67.2px/2.64mm, Δ rnorm = 0.0170; (b) Δ θ = 0.567, Δ r = 88.5px/3.49mm, Δ rnorm = 0.0270; (c) 
Δ θ = 0.551, Δ r = 112px/4.40mm, Δ rnorm = 0.0290. 

However, when the shape categorization of duplicate marked RACs are compared, repeated 
concerns about shape classification are noted. For example, Tables 11 and 12 report confusion 
matrices for RAC shape classification when high quality images marked by different analysts 
(or the same analyst repeatedly) are pairwise compared (Table 11; 5,477 features), and when 
high quality images are pairwise compared with lower quality images created to mimic crime 
scene-like conditions (Table 12; 1,766 RACs). As is evident from the results, the overall 
consistency in shape label varies between 74% and 68%, respectively. 

2.2.F Outsole Size & Shape Normalization 

At this point in data acquisition, each RAC has a geometric description, location and well-
defined origin (from a left or right shoe with a known pattern, a known manufacturer (usually), 
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Table 11: Confusion matrix for RAC shape categories for duplicate RAC markings among high quality RACs 
that were part of the quality control/assurance study. Note that approximately 74% of known match RACs 
maintained the same shape class. 

Label Elongated Isometric Irregular 

Elongated 2047 35 270 
Isometric 37 476 353 
Irregular 287 381 1341 

Table 12: Confusion matrix for RAC shape categories for duplicate RAC markings between high quality RACs 
and those created to mimic crime scene-like conditions. Note that approximately 68% of known match RACs 
maintained the same shape class. 

Label Elongated Isometric Irregular 

Elongated 487 19 128 
Isometric 5 184 176 
Irregular 89 141 537 

a known size, etc.) and can be assessed as such. However, for any given shoe size (or pattern, 
or brand, etc.) the database itself is limited in sample size. With this in mind, an interim 
solution (at least until the database grows to such a size that sampling is considered robust) 
is to transform the frequency information into a normalized space that allows for numerical 
assessment regardless of shoe size, shape, pattern, etc. Naturally, this simplification bounds 
the utility of the frequency information, and the authors urge the user to be cognizant of this 
moving forward, but the transformation in no way invalidates provisional usefulness. 

Normalization was achieved using a single idealized shoe corresponding to a men’s size 10 
Reebok R walking shoe with an outsole surface area of approximately 21,235mm2 . Beginning 

from the top medial portion of the shoe, the outsole was divided into 5mm x 5mm cells through 
a rastering process, creating 990 total cells of which 860 were complete, and 130 were partial (or 
straddling the perimeter/edge of the outsole as illustrated in Fig. 13). By mapping between 
Cartesian and polar coordinates, each RAC could be localized via θ and rnorm. Essentially, 
this meant that a RAC near the edge of the medial part of the heel on a women’s size 6.5 could 
have the same θ and rnorm as a RAC on the edge of the medial part of the heel of a men’s size 
10.0, and therefore map to the same 5mm x 5mm cell in the normalized outsole. (Note: we 
also have the capacity to report frequency values as absolute, physical or non-normalized values 
using θ and r. This would be equivalent to taking a stack of Handiprints, centering all shoes in 
the middle of each sheet with the toe-heel oriented North-South, and drilling down through all 
sheets at a fixed location, regardless of shoe size. To further elaborate, in the aforementioned 
example, the RAC on the medial heel portion of the women’s size 6.5 shoe would likely fall 
somewhere in the lower-instep area of the men’s size 10.0.) 

The shoes described in Tables 2 - 6 generated a total of 72,306 RACs. The minimum number 
on a single outsole was 1, and the maximum was 465 (with an average of 56). The mean, 
standard deviation and maximum number of RACs per heatmap bin is summarized in Table 
13. The total across all shoes/bins reveals 25,420 irregularly shaped features (35%), 32,549 
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Figure 13: Illustration of a full and partial 5mm x 5mm cell on the normalized outsole. 

linear features (45% lines/curves), and 14,337 isometric features (20% circles/triangles). 

Table 13: Descriptive statistics of RAC frequency per heatmap bin as a function of shape. 

Statistic Any Shape Isometric Elongated Irregular 

Mean 73 14 33 26 
SD 36 8 19 13 
Maximum 182 45 109 63 

Table 14 reports the frequency of bins with a given range of randomly acquired characteristics, 
revealing that the highest percentage of bins (35%) have between 61-90 RACs. Graphically, 
this same data is provided as a histogram in Fig. 14, but with a binwidth/resolution of 12 
(e.g., 0-12 RACs, 13-24 RACs, etc.) showing that the largest frequency of bins have between 
72-84 RACs. 

Table 14: Frequency of bins with a given range of RACs. 

Number of RACs Frequency of Bins ∼ Percentage % 

0 14 > 1 
1-30 138 14 
31-60 191 19 
61-90 342 35 
91-120 202 20 
121-150 89 9 
151-180 14 >1 
Total 990 100 

2.2.G Shape Descriptor 

Based on the limitations noted using general shape categorization, additional methods to 
discern RAC similarity/dissimilarity were sought. To this end, each RAC was treated as a 
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Figure 14: Frequency of RACs per bin (cell/bin resolution of 5mm x 5mm) and histogram bins of size 12 (i.e., 
0-12, 13-25, etc.). 

closed planar figure yielding a Fourier description (Bartolini et al., 2005; Dalitz et al., 2013; 
Wallace and Mitchell, 1980). This description was generated by tracing the contour of the 
shape (x(t), y(t)) (where t = 0, . . . N − 1 with N = 350 for this dataset) and assuming a √ 
complex plane z(t) = x(t) + i y(t) (where i = −1). The resulting one-dimensional complex 
sequence of numbers was then mapped to the frequency domain via the discrete Fourier 
transform (Bartolini et al., 2005) where Rm and θm are the magnitude and phase of the mth 

coefficient, respectively (Bartolini et al., 2005): 

N −1X 
(−i2πmt/N) (iθm)Z(m) = z(t) e = Rm e (7) 

t=0 

m = −N/2, . . . , −1, 0, 1, . . . , N/2 − 1 

As necessary, the coefficients can be normalized and forced to be invariant to translation, scale, 
rotation and contour/sequence start point according to the following modifications (Bartolini 
et al., 2005): 

Z(0) = 0 ⇒ translation invariance 
RmRm = 
R1 

⇒ scale invariance 
(8)− θ−1+θ1θm = θm 2 ⇒ rotation invariance 

θ−1−θ1θm = θm + m 
2 ⇒ start point invariance 

To illustrate, consider Fig. 15; the first row depicts a single RAC (A), along with four synthetic 
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modifications (B-E showing changes in scale, rotation and translation), and the second row 
illustrates the associated normalized Fourier descriptors. Note that the x- and y-axes are 
arbitrary since the images have been normalized, but all shape contours are normalized to 
the same configuration, save a single π radian ambiguity (Folkers and Samet, 2002). Unless 
otherwise noted, all subsequent uses of RAC Fourier descriptors make use of both translation 
and start point invariance modifications. 

Figure 15: First row: (A) Original RAC, (B) Rotated, (C) Rotated, (D) Rotated, Translated, and Scaled, (E) 
Scaled and Translated. Second row: Plot of normalized Fourier shapes derived from the RACs shown in first 
row. 

2.3 Similarity Assessment 

The aforementioned normalization step yields RAC frequency information and the potential 
for chance co-occurrence of RACs within a 5mm x 5mm cell on an outsole (in other words, the 
dataset can empirically estimate the random chance of discovering two or more accidentals in 
the same position on shoes previously known to be unrelated). This can be further divided by 
geometry in terms of the chance co-occurrence of elongated, isometric and irregular shaped 
RACs within a 5mm x 5mm cell. However, chance co-occurrence in position and general 
category does not mean coincidental association in actual geometry since general categoriza-
tion does not sufficiently describe RAC complexity. Thus, chance association in position and 
general shape should be extended to include an estimate of the actual similarity exhibited 
between the co-occurring features. This can be accomplished using numerical metrics, visual 
assessment, and/or both. In support of this, one of the goals of this work was to examine the 
strengths and weaknesses of a host of similarity metrics. More specifically, the project was 
contracted to deliver results for correlation using full RAC maps, however, the research team 
actually investigated and provide results for five different metrics, as assessed individually 
when comparing high quality RACs to their crime scene-like reproductions, as well as one 
metric that compared total RAC maps (where a map is a collection or constellation of RACs 
in totality). The goal was to: 

• Assess the strengths and weaknesses of each metric; 
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• Report the actual separability of known matches and known non-matches as a function 
of RAC maps; 

• To reduce the number of pairwise comparisons that would be required if an analyst 
wished to ‘visually’ assess similarity. In other words: 

– To perform all pairwise similarity comparisons for RACs with positional overlap 
(which required a total of 3,239,114 pairwise comparisons); 

– Sort the ordered list in every bin/cell to reveal the top (most similar) 8 paired RAC 
candidates; 

– Allow an analyst to visually examine the short-list (pairs deemed most similar 
mathematically) to determine the degree to which the coincidental association in 
position and categorical-shape is associated with visually indistinguishable RACs, 
and therefore of forensic significance. 

With the above in mind, the remainder of this section will describe the similarity metrics of 
interest, the strengths and weaknesses associated with each metric, the separation of known 
matches and known non-matches, and the manner in which a numerical metric can be used 
within a web-based application. 

Identification of Known Match (KM) RAC Pairs 

A database of 2,159 randomly acquired characteristics was compiled by marking features on 
the 200 crime scene-like (CS) impressions (originating from 100 shoes) as detailed in Richetelli 
et al. (2017). In order to compare KM RACs, it was necessary to identify correspondences 
between accidentals on high quality exemplars and crime scene-like prints. For exemplars that 
were repeatedly marked within the quality control/assurance program, correspondences were 
readily available. For crime scene-like images, there was much greater chance that the print 
deposition and replication process would create positional variations, so RAC pair candidates 
were nominated if the angular (θ) and normalized radial values (rnorm) between a RAC on 
an exemplar fell within 1 − 2o and 0.1, respectively, of a corresponding θ and rnorm on its 
associated crime scene-like image. These (large) thresholds were selected in order to minimize 
loss of candidate RAC mates, but all resulting candidates were manually verified (and adjusted 
as necessary) before moving forward. Fig. 16 illustrates a set of these known match pairs, as 
well as the corresponding location information for each accidental, of which a total of 1,766 
paired candidates were detected (Richetelli et al., 2017). 

2.3.A RAC Loss 

Given the inherent inconsistency present in shoeprint creation (such as variation in pressure, 
torque, substrate, etc.), it is expected that reproduction of RACs in crime scene-like quality 
prints will be variable in comparison to high quality exemplars collected by pressing a dusted 
outsole against an adhesive sheet, thus ensuring full and even contact. Based on the results 
from this study, an average of 85% of RACs were not reproduced in crime scene-like impressions 
(Table 15). In addition, zero RACs were reproduced in 10% of the images (20 out of 200 
impressions). Loss was further broken down by shape, perimeter and area to determine if RAC 
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[244, 1415, 0.71] [245, 1395, 0.68] [244, 1411, 0.71] 

[99, 1380, 0.42] [99, 1383, 0.42] [98, 1378, 0.41] 

[244, 1562, 0.68] [243, 1550, 0.70] [244, 1562, 0.68] 

Figure 16: RAC image mates with their corresponding location information [θ (degree), r (pixel), rnorm]. High 
quality RAC image (left) with its detected crime scene RAC mates from each replicate (center, right). 
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reproduction varied as a function of any of these factors. As detailed in Table 16, RAC loss 
(77% - 84%) exhibited very little variation across shape categories. However, greater variation 
can be observed as a function of RAC size; in fact, significant differences in loss as a function 
of RAC size were detected as per the Chi-square test (McHugh, 2013) with α = 0.05. To 
summarize the observed trend, as a feature’s size increased (in either total area or perimeter), 
the percent loss decreased (Tables 17 and 18). Of course, this matched intuition in that ‘larger’ 
defects were more likely to persist and withstand the variation introduced during reproduction 
in a crime scene setting as compared to smaller features that were more easily occluded by 
erratic conditions (such as differences in media, substrate, motion, pressure, etc.). 

Table 15: Quantifying RAC loss between high quality exemplars and replicate crime scene-like impressions 
(HQ = high quality, CS = crime scene). 

RACs HQ CS Rep 1 CS Rep 2 

Total Number 6,896 1,049 1,110 
Number Lost - 5,847 5,786 
Percent Lost - 85% 84% 

Mean Number per Shoe ± 1 SD 69 ± 72 10 ± 12 11 ± 12 
Maximum Number 307 66 61 
Minimum Number 2 0 0 

Table 16: RAC loss between high quality exemplars and replicate crime scene-like impressions as a function of 
RAC shape (HQ = High Quality). 

Shape Total HQ RACs Lost HQ RACs ∼ % Loss 

Circle 1,024 863 84% 
Line/Curve 2,685 2,239 83% 
Irregular 2,732 2,173 80% 
Triangle 455 348 77% 

Table 17: RAC loss between high quality exemplars and replicate crime scene-like impressions as a function of 
RAC perimeter (HQ = High Quality). 

Perimeter (P) (mm) P (pixels) Total HQ RACs Lost HQ RACs ∼ % Loss 

0 < P < 2 0-45 2,936 2,623 89% 
2 ≤ P < 4 46-91 2,413 1,939 80% 
4 ≤ P < 6 92-137 828 599 72% 
6 ≤ P < 8 138-183 337 217 64% 
P ≥ 8 ≥ 184 382 245 64% 

2.3.B Comparison 

To assess the degree of similarity that can be expected when comparing high quality exem-
plars with crime scene-like impressions, five metrics of similarity were considered, including: 
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Table 18: RAC loss between high quality exemplars and replicate crime scene-like impressions as a function of 
RAC area (HQ = High Quality). 

Area (A) (mm2) A (pixels2) Total HQ RACs Lost HQ RACs % Loss 

0.00 ≤ A < 0.25 0-131 3,994 3,548 89% 
0.25 ≤ A < 0.50 132-264 1,408 1,080 78% 
0.50 ≤ A < 0.75 265-396 589 419 71% 
0.75 ≤ A < 1.00 397-528 294 201 68% 
1.00 ≤ A < 2.00 529-1058 391 253 65% 

A ≥ 2.00 ≥ 1059 220 122 55% 

modified phase only correlation (MPOC), matched filter (MF), a modified cosine similarity 
(MCS), Hausdorff distance (HD), and Euclidean distance (ED). Note: the results compar-
ing high quality versus crime scene-like imagery were assessed prior to characterization of all 
1,300 outsoles in the current database, and are therefore based on the first 1,000 outsoles that 
were analyzed. 

Modified Phase Only Correlation (MPOC) 

The Fourier transform F [g(x, y)] = G(u, v) of a spatial domain image g(x, y) gives the analyst 
access to frequency information associated with image amplitude A(u, v) and phase σ(u, v) as 
illustrated in Eqs. 9 and 10 (where the subscripts reference the images under comparison and √ 
i = −1) (Bouridane, 2009). 

iσ1(u,v)G1(u, v) = A1(u, v)e (9) 

iσ2(u,v)G2(u, v) = A2(u, v)e (10) 

Once the Fourier transform of each input image has been calculated, the phase only correlation 
can be computed according to Eq. 11 (de Chazal et al., 2005; Gueham et al., 2007; Xiao and 
Shi, 2008) where F −1 is the inverse Fourier transform and G∗ 

2 is the complex conjugate of G2 

(Bouridane, 2009). 

� � 
G1(u, v)G∗ 

2(u, v)F −1P OCg1g2 = (11)
| G1(u, v)G∗(u, v) |2� � 

F −1 i[σ1(u,v)−σ2(u,v)]= e 

Eq. 11 can be modified by application of a frequency filter that selectively limits frequencies 
used in the computation such that F [g(x, y) · h(k, l)] = G(u, v). In this work, each image 
g(x, y) was modified by the windowing function shown in Eq. 12 with α = 0.2 and where 
k = l = N which is the size of the RAC image in pixels (1,600 x 1,600): 
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�� 
2πk 

h(k) = α − (1 − α) cos 
N 

(12) 

k = 0, 1, . . . , N − 1 

Fourier Descriptors (FD) 

With the exception of MPOC which was computed using 1,600 x 1,600 pixel imagery, all 
remaining similarity metrics were based on perimeter information. More specifically, the RAC 
was treated as a closed planar figure yielding a Fourier description (FD) (Bartolini et al., 
2005; Dalitz et al., 2013; Wallace and Mitchell, 1980), and as previously described (Eqs. 7 
anad 8 and Fig. 15), after normalization to ensure invariance to translation, rotation and 
contour/sequence start point. 

Matched Filter (MF) 

The matched filter similarity metric between two shapes Ẑ1(m) and Ẑ2(m) was computed as 
Z(m)illustrated in Eq. 13 (Gregga et al., 2002) where Ẑ(m) is normalized according to √P 
ˆ

|z(t)|2 
t

such that 0.0 is the minimum (least similar) and 1.0 is the maximum (most similar): 

MF = argmax 

����� 1 XN−1
N 

t=0 

Ẑ1(m) Ẑ2(m)e(i2πmt/N) 

����� (13) 

Modified Cosine Similarity (MCS) 

Cosine similarity is a commonly used metric that can assess the similarity between two data 
vectors (Schott, 2007). For two similar inputs a and b, the resulting angle (θ) between them 
will be small; conversely, θ is large for two dissimilar inputs. Since the RAC perimeters were 
defined as FDs (or complex numbers z(t) = x(t) + i y(t)), each complex vector was converted 
to a real-valued vector (ẑ) by adding x and y in quadrature before employing the traditional 
cosine computation shown in Eq. 14, where (T ) represents the transpose of a vector. 

� � 
aT b 

θ = cos −1 √ √ (14)
T bT ba a 

Euclidean Distance (ED) 

Euclidean distance was the fourth metric employed for comparison. The distance (D) between 
elements in complex vectors was obtained as detailed in Eq. 15, where x1 and y1 denote the 
real and imaginary parts of the first vector, respectively (Schott, 2007). Likewise, x2 and y2 

denote the real and imaginary parts of the second vector for comparison, respectively. The 
total distance was normalized by dividing the summation by the maximum number of elements 
in the vectors (N = 350 for this datset), yielding an average distance. Naturally, as elements 
become more dissimilar, the distance between them increases. 
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qX X1 
D = (x1 − x2)

2 + (y1 − y2)
2 (15)

N 

Hausdorff Distance (HD) 

Using the Euclidean distance, Hausdorff distance was likewise computed. This is more a 
variant of ED than a truly unique computation since ED was used ‘under-the-hood’ in the HD 
computation (instead of a new metric - such as Manhattan distance - but this is something that 
can be remedied moving forward). In this computation, the distance (d(a, b)) was computed 
between a point (e.g., a1) on the perimeter of RAC (A) and all points on the perimeter of 
RAC (B) using the desired distance metric (in this case, ED). Following all computations, 
the smallest distance from a1 to B was retained. This process was then repeated for all 
points on A (i.e., a2...an), wherein h(A, B), or the maximum of these minimums, was retained 
(Huttenlocher et al., 1993). This same process was repeated to compare all points on RAC 
perimeter vector B to those on RAC perimeter vector A, thus obtaining h(B, A). The actual 
distance HD was then the maximum of these two values (h(A, B) and h(B, A)) as illustrated 
in Eq. 16. 

H(A, B) = max{h(A, B), h(B, A)} (16) 

where h(A, B) = maxa∈A{minb∈B{d(a, b)}} 

2.3.C Individual RAC Similarity 

Of the five metrics utilized to determine similarity between crime scene-like RACs and their 
high quality mates (MPOC, MF, MCS, HD and ED), each was assessed as a function of 
RAC shape, perimeter and area. The results are illustrated using continuous probability 
density functions (PDFs) constructed using Gaussian kernel density estimators, with Chi-
square significance testing (α = 0.05) as a function of 10 evenly divided discrete score bins 
(where bin shading in individual plots indicates significance). Note that only selected plots of 
interest are provided in order to illustrate relevant results. 

2.3.D Similarity as a Function of RAC Shape 

Differences in similarity scores based on RAC shape (linear/elongated, isometric and irregular) 
were detected for 99.5% of the data for all metrics, except matched filter, as per the Chi-square 
test (McHugh, 2013) with α = 0.05. For MPOC, HD and ED, isometric features (circles and 
triangles) exhibited higher similarity scores, while linear/elongated features (lines and curves) 
exhibited lower similarity scores. This is illustrated in Figs. 17 and 18 for the MPOC and 
HD metrics, respectively. This trend is believed to be a function of rotational variation. 
For example, a circular RAC can tolerate orientation differences reasonably well (i.e., no 
matter how you rotate a circle, the distance between features remains relatively consistent, 
as illustrated in Fig. 19). Conversely, an elongated feature, when rotated, is likely to exhibit 
a drastic decrease in correlation between its known match RAC. Likewise, if confronted with 
similarly sized but non-matching circles from two different shoes, and similarly sized but 

34 
This resource was prepared by the author(s) using Federal funds provided by the U.S.  

Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
necessarily reflect the official position or policies of the U.S. Department of Justice.



I 
I , 

non-matching lines from two different shoes, a rotational offset between the circles may go 
undetected, but the rotational offset between the linear features may very well be the only 
way to differentiate the non-matching lines. 

Modified Phase Only Correlation for Linear, Isometric, and 
 Irregular Shaped Features
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Figure 17: Modified phase only correlation scores as a function of RAC shape. Note that isometric features 
(circles and triangles) exhibit higher similarity scores (closer to 1.0), while linear/elongated features (lines and 
curves) exhibit lower similarity scores (closer to 0.0). Shaded score bins represent significance differences in 
score as a function of shape based on the Chi-square test. Note that differences in scores as a function of RAC 
shape were observed for 99.5% of the data. 

Interestingly, the opposite trend (Fig. 20) was observed for MCS wherein linear/elongated 
features exhibited the highest similarity scores. Although it is difficult to conceptualize why 
this may be true, the results do match the mathematics (e.g., if you compare two slightly 
misaligned/noisy lines and two slightly misaligned/noisy isometric features, computationally, 
the linear/elongated features report smaller angular differences in n-dimensional space). Also 
of equal importance is the fact that the matched filter expressed the least dependence (95.3% 
of the data) between score and shape (Fig. 21). 

2.3.E Similarity as a Function of RAC Size 

Mirroring the results for MF as a function of shape, the majority of the matched filter scores 
(94.2% for perimeter and 92.6% for area) did not exhibit dependence on RAC size, as il-
lustrated in Figs. 22 and 23. However, differences in similarity scores based on RAC size 
(perimeter and area) were detected for 99.5% of the data with MPOC, HD and ED, as per 
the Chi-square test (McHugh, 2013) with α = 0.05. In other words, the similarity scores for 
different sized RACs were significantly different from those expected if the variables were inde-
pendent. Differences in similarity score based on RAC perimeter were also detected for 99.8% 
of the data with the MCS metric (but only minimally dependent on area for 48.7% of the 
data). For MPOC, HD and ED, RAC size and score varied inversely, matching intuition. This 
is illustrated in Figs. 24 and 25 for Euclidean distance as a function of perimeter and area, 
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Figure 18: Hausdorff scores as a function of RAC shape. Note that isometric features (circles and triangles) 
exhibit higher similarity scores (closer to 0.0), while linear/elongated features (lines and curves) exhibit lower 
similarity scores (further from 0.0). Shaded score bins represent significance differences in score as a function 
of shape based on the Chi-square test. Note that differences in scores as a function of RAC shape were observed 
for 99.5% of the data. 

Figure 19: Example of stylized high quality (HQ) and crime scene (CS) RACs. Note that lines exhibit greater 
discordance (overlap very little) as compared to circular shapes when orientation differences exists (scale and 
rotational differences are shown for maximum emphasis). 
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Figure 20: Modified cosine similarity scores as a function of RAC shape. Note that linear/elongated features 
(lines and curves) exhibit higher similarity scores (closer to 0.0). Shaded score bins represent significance 
differences in score as a function of shape based on the Chi-square test. Note that differences in scores as a 
function of RAC shape were observed for 99.5% of the data. 

respectively. In other words, as RAC size increased, similarity scores decreased. This likely 
occurred because large features can reproduce as several smaller and segmented versions of 
their original, more-complex self when created under variable crime scene-like conditions (Fig. 
26). Due to this phenomena, each individual smaller segment from the crime scene-like RAC 
may compare back to a single larger feature in the high quality impression, yielding a lower 
numerical score unless manual intervention or unsupervised probability models are introduced 
to link disconnected features back together. In other words, an automated metric can provide 
a baseline numerical assessment of similarity that can be very beneficial moving forward, but 
this illustration shows that the score still requires expert interpretation in determining the 
conditions that warrant sub-RAC linkages prior (or post) similarity computation. 
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Matched Filter for Linear, Isometric, and 
 Irregular Shaped Features
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Figure 21: Matched filter scores as a function of RAC shape. Note the lack of dependence on score and shape 
for nearly 95.3% of the data. 

Matched Filter as a Function 
 of Increasing Perimeter
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Figure 22: Matched filter similarity score as a function of RAC perimeter. Note the lack of dependence on 
score and perimeter for nearly 94.2% of the data. 
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Figure 23: Matched filter similarity score as a function of RAC area. Note the lack of dependence on score 
and area for nearly 92.6% of the data. 

Euclidean Distance as a Function 
 of Increasing Perimeter
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Figure 24: Euclidean distance as a function of RAC perimeter. Note that differences in score as a function of 
perimeter were observed for 99.5% of the data. 
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Figure 25: Euclidean distance as a function of RAC area. Note that differences in score as a function of area 
were observed for 99.5% of the data. 

Figure 26: Original marked RAC on high quality exemplar (top left) with corresponding RAC image obtained 
through connected components (top right). Corresponding RAC on crime scene-like print (bottom left) and 
RAC images obtained through connected components (bottom center and right). The crime scene-like RACs 
exhibit more voids and are incomplete in comparison with their high quality counterparts. 
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2.4 Differentiating between KM and KNM Crime Scene RACs using Similarity 
Metrics 

Each crime scene-like RAC was compared to all high quality KMs and KNMs with coinciden-
tal association in position within a 5mm x 5mm cell around the questioned RAC’s centroid 
position within a database consisting of 1,000 shoes. Of the more than 57,000 high quality 
RACs within this database (at the time of analysis), a total of 44,230 exhibited chance asso-
ciation in position (within the previously defined 5mm x 5mm cells). Based on RAC density, 
each crime scene-like RAC was compared to an average of 72 ± 21 (one standard deviation) 
other RACs, with a maximum of 126 comparisons, and a minimum of 15 comparisons (e.g., 
the most populated 5mm x 5mm cell (again, at the time of this analysis) contained 126 RACs 
with coincidental association in position, while the least populated had only 15 RACs with 
coincidental association in position. In total, 8,830 KM pairwise comparisons and 755,380 
KNM pairwise comparisons were evlauated (KMs = 1,766 x 5 metrics = 8,830 and KNMs = 
151,076 x 5 metrics = 755,380). The performance of each similarity metric was then evaluated 
using modified Cumulative Match Characteristic (CMC) and Receiver Operator Characteristic 
(ROC) curves — including associated Area Under the Curve (AUC) integrals. 

Fig. 27 depicts the CMC curve for each similarity metric using the crime scene-like RAC 
as the query image, and the HQ database as possible mates. Similarity, Fig. 28 depicts 
the corresponding ROC curves (line designations are as follows: Hausdorff distance = solid, 
Euclidean distance = dotted, modified cosine similarity = dashed, matched filter = dash-dot, 
modified phase only correlation = dash-dot-dot-dot). 
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Figure 27: Cumulative match characteristic curves for similarity metrics. Line designations are as follows: 
Hausdorff distance = solid, Euclidean distance = dotted, modified cosine similarity = dashed, matched filter 
= dash- dot, modified phase only correlation = dash-dot-dot-dot. 
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Figure 28: Receiver operator characteristic curve of RAC similarity results. Line designations are as follows: 
Hausdorff distance = solid, Euclidean distance = dotted, modified cosine similarity = dashed, matched filter 
= dash- dot, modified phase only correlation = dash-dot-dot-dot. 

In addition to the CMC and ROC curves, Table 19 reports the ROC AUCs (or the prob-
ability of a randomly selected known match RAC pair exhibiting a higher similarity score 
than a known non-match pair (also known as stochastic dominance)). Based on all observa-
tions, Hausdorff and Euclidean distance metrics yield the best results, and this performance 
is significantly better than that of the remaining three techniques (at p < 0.05). 

Table 19: AUC of ROC curves for five metrics used to assess RAC similarity. All scores are significantly 
different from each other at p < 0.05, with the exception of Hausdorff and Euclidean distances (p = 0.986). 

HD ED MCS MF MPOC 
0.8152 0.8151 0.7706 0.7462 0.6289 

Note that the results regarding RAC similarity obtained using five quantitative methods sug-
gest two additional, but equally important, conclusions. First, not all similarity metrics are 
created equal. This is evident based on the dependence of MPOC, HD, ED, and MCS, (as well 
as the lack of dependence of MF) on RAC shape and size. For example, if one were to argue 
that all RACs are not equally valuable, then it appears that not all numerical objective metrics 
of similarity are equally able to discern this inherent value. Conversely, if one were to argue 
that all RACs are of equal value, then again, not all numerical objective metrics of similarity 
are equally able to convey this message. However, the authors must acknowledge that shape 
and size (perimeter and area) may very well be interrelated factors, and this interdependence 
has not been tested here (e.g., the dependence of score on size for a given metric could be a 
function of shape, say, for example, if all linear/elongated features cluster into a particular size 
category). Although this interdependence has not been examined, the more important point 
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is that numerical metrics exhibit particular behaviors, and that these behaviors can impact 
conclusions. In other words, the results of an objective numerical comparison, just like the 
results of two competing subjective experts, will not necessarily remove disagreement unless 
the community fully agrees on a single approach and the reason for employing a specific type 
of metric for all comparisons. 

Second, the similarity metrics used in this study are more adept at measuring ‘exactness’, 
which is really not a reasonable expectation given the physical variation in print quality that 
is typically encountered during the commission of a crime. Although the experienced footwear 
examiner innately recognizes mitigating factors that can impact the quality and degree of 
correspondence between randomly acquired characteristics on reported matches and those 
anticipated by random chance alone, it is much more difficult to train an automated algorithm 
to handle such a wide range of possible deformations. Moreover, several exact correspondences 
may not be of equal or greater value than a single inexact match. For example, a single 
large, complex feature may be considered ‘rare’ enough to justify an identification, whereas 
several smaller features with basic geometries may not provide enough information, even in 
combination, to warrant this same conclusion. However, without expanding the quantitative 
metrics tested here (to incorporate complexity or additional examiner input), the smaller 
‘insignificant’ correspondences may very well provide a higher numerical similarity. For a 
visual illustration, consider Fig. 29, which shows that the dynamic nature of print creation 
can result in a single RAC reproducing as several disjointed and smaller features, apparent only 
upon inspection of the high quality imagery (e.g., when the analyst uses a priori information 
to try to understand the scores). Thus, the performance of each of these metrics can be 
improved if combined with human intervention such as supervised partitioning/pairing or the 
use of additional probability models to re-group disjointed RACs. 
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Figure 29: Illustration of segmentation of RACs in crime-scene-like impressions (center and bottom row) as 
compared to their high quality mate (top row). The RAC in the left column originated from the heel region of 

a men’s size 11 Merrell R Goretex XCR hiking shoe with heavy wear. The feature in the center column was 
identified in the heel region of a men’s size 8 Reebok R DMX Foam athletic shoe with moderate wear. Lastly, 

the accidental in the right column was localized in the heel region of a men’s size 11.5 Nike R athletic shoe with 
heavy wear. 
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2.4.A RAC Map Correlation 

In addition to individual RAC characterization and comparison, the entire RAC map for each 
crime scene-like print was compared back to its high quality exemplar to determine a ‘global 
similarity metric’ or the degree to which the impressions could be linked back to their source. 
This was accomplished using image-wide phase only correlation according to Eq. 11 (without 
windowing), and on full RAC maps (8,691 x 8,691 pixels in dimension). 

Table 20 reports the total frequency of RACs in the binary maps, which are a comprehensive 
representation of all accidentals observed on an impression. The POC was computed on all 
possible RAC map pairs to estimate a global similarity score. Results are provided in Fig. 30 
(a) as ROC curves displaying the true positive and false positive rate. Based on the POC 
metric, there was a 0.72 probability that a randomly selected pair of positive maps (known 
match mates) would result in a higher similarity score than a randomly selected pair of negative 
maps (known non-match mates). In other words, positive known matches would be correctly 
ranked in an ordered list 72% of the time. Given that 64% of the query crime scene-like maps 
contained 10 or fewer RACs, and that an average of 85% of the identified randomly acquired 
characteristics failed to transfer to the questioned impressions, this result is still considered 
promising. The same data comparison and interpretation was re-conducted on high quality 
RAC maps, but at a point in time when 1,261 outsoles had been fully characterized, with 
161 duplicates (the duplicates are a product of the mini-study used to determine intra- and 
inter-analyst variation in marking). This lead to 161 known-match comparisons and 794,430 
known non-match comparisons, a ROC curve as illustrated in Fig. 30 (b) with an AUC of 
0.995, and probability density functions as illustrated in Fig. 31. 

Table 20: RAC map density (CS = Crime Scene, HQ = High Quality). 

Number of RACs in Map CS Frequency HQ Frequency 

0 20 (10%) 0 (0%) 
1-5 74 (37%) 7 (7%) 
6-10 33 (17%) 12 (12%) 
11-15 32 (16%) 5 (5%) 
16-20 14 (7%) 11 (11%) 
21-25 4 (2%) 2 (2%) 

Greater than 25 23 (11%) 63 (63%) 
Total 200 (100%) 100 (100%) 
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Figure 30: (a) Receiver operator characteristic curve of RAC map POC results. High quality comparisons 
are represented by the dash-dotted line and exhibit an area under the curve (AUC) of 0.996 (100 KMs and 
19,800 KMN; 100 KMs × 2 duplicates, each cross-compared, creating n(n-1)/2 = 200(199)/2 = 19,900 total 
comparisons, of which 100 are KMs and 19,800 are KNMs). The solid line illustrates the results of crime 
scene-like impressions with an AUC of 0.719. (b) Receiver operator characteristic curve of RAC map POC 
results based on 161 KM and 794,430 KNM comparisons, with resulting AUC of 0.995. 
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Figure 31: Probability density function describing the separability (in terms of POC match score) for 161 KM 
and 794,430 KNM comparisons (n(n-1)/2 = 1,261(1,260)/2 = 794,430). 
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2.5 Chance Co-occurrence 

Finally, the database was queried for chance co-occurrence and random match probabilities 
(based on positional and shape category ‘matches’), and associated likelihood ratios as a 
function similarity metrics for RACs with positional co-occurrence. More specifically, the 
following three forensically-relevant questions were asked and answered. 

1. Question: What is the empirical frequency of selecting two shoes at random, and finding 
a pair of RACs with positional similarity anywhere on the outsole? Using the formula 
for a simple combination (when order does not matter, and repetition is not allowed), 
the total number of ways k = 2 ‘outsoles’ can be selected from n = 1,300 (‘total shoes’ 
in the database) was computed according to Eq. 17. 

n! 
All (Possible Pairs) = = 844, 350 (17)

(n − k)!k! 

Next, the dataset was queried to determine (empirically) the number of times two shoes 
exhibited a pair of RACs with positional similarity. When this empirical result is divided 
by the total number of ways this could happen (or ‘All’ in Eq. 17) a normalized frequency 
of occurrence (or probability) is obtained. Results are summarized in Table 21 for ‘any 
shaped’ pairs, and for pairs where both RACs are identified as ‘elongated’, both are 
identified as ‘irregular’ and both are identified as ‘isometric’. 

Table 21: Normalized empirical frequency (probability) and chance co-occurrence for RAC 
pairs of any shape, and specific shapes (elongated, irregular and isometric). 

Metric Any Shape Elongated Irregular Isometric 

Probability 0.58 0.27 0.21 0.095 
Chance Co-occurrence 1 in 2 1 in 4 1 in 5 1 in 10 

Note that the results provided in Table 21 are in alignment with reports from past 
empirical studies (Cassidy, 1995). More specifically, Cassidy (1995) found between a 1 
in 6 chance of finding 10 ‘minute’ characteristics, a 1 in 20 chance of finding 3 moderate-
sized characteristics, and 1 in 38 (to 1 in 60) chance of finding a single moderate-sized 
characteristic with coincidental similarity across known non-match heels (Cassidy, 1995). 

2. Question: What is the empirical frequency of selecting two shoes at random and finding 
a positional match at a specific location? This is like asking for the empirical frequency 
of selecting two (unrelated) shoes at random, and finding RACs of shape type ‘A’ with 
positional association at location ‘B’, which is the forensic activity of identifying a crime 
scene print with RAC shape type ‘A’ at location ‘B’, and then asking for the random 
match probability (or the empirical frequency) of finding RAC shape type ‘A’ at location 
‘B’ in an unrelated dataset (assuming that the empirical database described in this 
document can be used to model the ‘relevant population’). 
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To answer this question, each spatial cell in the dataset was queried to determine (empir-
ically) the number of times two shoes exhibited a pair of RACs with positional similarity, 
resulting in 990 bin-specific frequencies, each divided by ‘All’ in Eq. 17, and converted 
to chance co-occurrence (or 1 in X), as illustrated in Table 22. 

Table 22: Summary statistics (per spatial bin of the normalized outsole) describing chance 
co-occurrence for RAC pairs of any shape, and specific shapes (elongated, irregular and iso-
metric). Note that the best case scenario lacks locations where no repeats were detected, and 
the row labeled ‘unaccounted’ reports the number of bins with zero or a single RAC. 

Metric Any Shape Elongated Isometric Irregular 

Mean Probability 
Chance Co-occurrence 

2.251E-04 
1 in 4,441 

6.920E-05 
1 in 14,450 

1.919E-05 
1 in 52,120 

5.539E-05 
1 in 18,055 

Median Probability 
Chance Co-occurrence 

2.237E-03 
1 in 447 

4.808E-04 
1 in 2,080 

1.078E-04 
1 in 9,279 

3.554E-04 
1 in 2,814 

Worst Probability 
Chance Co-occurrence 

9.615E-03 
1 in 104 

3.559E-03 
1 in 281 

1.112E-03 
1 in 893 

1.757E-03 
1 in 569 

Best Probability 
Chance Co-occurrence 

1.184E-06 
1 in 844,350 

1.184E-06 
1 in 844,350 

1.184E-06 
1 in 844,350 

1.184E-06 
1 in 844,350 

Unaccounted 9 15 31 22 

Note that the worst case scenario (greatest chance association) was found to be a chance 
of 1 in 104 (or a probability of 9.61E-03) and the best case scenario (lowest chance 
association, excluding bins where no repeats occurred) was a chance of 1 in 844,350 (or 
a probability of 1.18E-06). However, it must be noted that the best case scenario is 
bounded by the size of the database (i.e., bins with a single positional co-occurrence 
between all 1,300 shoes). Thus, if the database size increases, the denominator will 
naturally increase, but the numerator is likely to remain constant for one or more bins, 
thus causing a more rare ‘best case’ chance association. 

3. Question: How similar are RACs with positional co-occurrence? RACs with positional 
co-occurrence (and even identical shape categorizations), are not necessarily geometri-
cally similar. For example, two linear elements could vary in orientation, length, thick-
ness, curvature, etc. Thus, the mathematical similarity of RACs with coincidental posi-
tional similarity was determined. First, the HD dissimilarity of 6,993 KM comparisons 
was computed (of which 5,227 were high quality versus high quality RAC comparisons 
(either marked by different analysts, or the same analyst repeatedly), and 1,766 where 
high quality versus crime scene-like RAC comparisons). Next, the HD dissimilarity of 
3,239,114 KNM comparisons was computed (based on all RACs in this database with 
positional association). Using the maximum HD dissimilarity value, all scores were nor-
malized such that a normalized HD score of 1.0 would signify indistinguishable RACs 
(within this database and the resolution possible using Hausdorff distance), and a score 
of 0.0 would be associated with the most dissimilar pairwise comparison between two 
known non-match RACs in this dataset. 

All resulting normalized scores were used to create probability density functions (PDFs), 
and then the likelihood ratio (LR) was computed as the ratio of the KM and KNM PDFs 
at all normalized HD values. The cumulative results are illustrated in Fig. 32, where the 
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solid curve represents the probability density of the KNMs, the dotted line represents the 
probability density of the KMs, and the dashed line represents the associated LR value. 
Note that a normalized HD score between 0.9930 to 0.9931 represents the boundary LR 
(or an LR = 1), the LR equals 27 at the maximum KM density, and that the LR climbs 
to 6,945 between HD values of 0.9994-0.9995. Given the boundary LR, the number of 
normalized HD KNM scores greater than 0.9930 was queried, and found to occur 414,417 
times (13% of all comparisons). Again, this does not mean that the compared RACs 
actually appear visually indistinguishable, but only that they are mathematically similar 
based on the similarity metric employed to compare them. In order to cross-compare 
the visual similarity of the mathematically similar RACs, the top 8 most-similar RAC 
KNM pairs with positional similarity (per spatial bin) will be physically examined — 8 
pairs x 990 bins x 4 shape classes = 31,680 visual comparisons (modified by the number 
of bins with fewer than 5 RACs). These results are forthcoming, but based on inspection 
of 1,000 pairs of outsoles, with 57,426 RACs, creating 2,022,595 pairwise comparisons, 
and examination of the top 5 matches per bin using the matched filter (MF) similarity 
metric previously described, only 25 pairs (out of 19,800 examined) were found to be 
visually indistinguishable. Moreover, of these 25 indistinguishable pairs, all but two 
were on shoes that could be distinguished based on manufacturer make/model. For the 
remaining two pairs, one pair was on the left and the right of a matched set, and the other 
pair originated from shoes of the same make/model, but with a different manufacturer 
size, and exhibiting different degrees of wear. Thus, all 2,022,595 comparisons were 
ultimately deemed distinguishable. 
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Figure 32: Probability density of normalized HD scores for KNMs (solid line), KMs (dotted line) and associated 
LR values (dashed line). 

Note that the above can be expanded to account for additional associations in RACs at 
more than one location and more than one type within the dataset, but this is reserved 
for dynamic applications in a web-based application (described in subsection 2.5.A and 
illustrated in Fig. 33). 
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2.5.A Use of Similarity in the Web Application 

Based on the results revealed in Fig. 28 and Table 19, HD was deemed the most appropriate 
metric to use moving forward with the web application (Fig. 33). With this in mind, every 
HQ RAC with positional co-occurrence (localized to a specific bin) was pairwise compared 
using Hausdorff distance. The results (per bin) were sorted and the top 8 ‘hits’ (or the 8 
most mathematically similar RACs) are made available to the user for visual comparison. 
These results are available using a web-based application (Fig. 34) that allows the viewer to 
visually inspect RACs with positional association (leading to visual pairwise comparisons). 
Part of the motivation for this is the fact that the similarity metrics themselves are limited 
in terms of applicability, and partially to enhance efficiency (i.e., inspection of all pairwise 
comparisons by an examiner is a tedious task, even when a bin only contains a few RACs — for 
example, just 10 RACs with positional similarity would give rise to n(n − 1)/2 = 45 pairwise 
comparisons). The cumulative result is refinement of the chance co-occurrence estimate based 
on actual RAC shape, size and complexity in order to determine if the random association is 
forensically relevant or just the numerically interesting. 

Any Shape Irregular Elongated Approximately Isometric 

Total in Database 72,306 25,420 32,549 14,337 

Total in Cell 182 43 109 30 

Chance of Finding RAC in Cell 1 in 397 1 in 1,681 1 in 633 1 in 2,410 

Chance of RAC 1 in 116 1 in 1,268 1 in 281 1 in 2,234 

Similarities & Likelihood Ratios All Shapes Irregular Elongated Approximately Isometric 

Few Many 

Figure 33: Static illustration of web application: http://www.4n6chemometrics.com/database/. The user 
can select a cell of interest, obtain frequency information associated with the cell, and then examine the most 
similar pairwise-compared RACs by selecting the buttons in the row labeled ‘Similarity & Likelihood Ratio’. 
Once selected, the user is directed to a second web page that allows for a side-by-side comparison of the 8 most 
similar RACs of interest. 
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However, it is also important to remind the reader that RAC-specific likelihood ratios (LR) 
are not yet available for this dataset. In the interim, this webpage reports generalized LRs 
only. More specifically, the LR is the probability of a NHD score, given that the score has 
been sampled from a probability density function of scores generated when evidence is known 
to be from the same source, versus the probability of the same NHD score, given that the score 
has been sampled from a probability density function of scores generated when the evidence is 
known to be from different sources. However, the actual RACs being compared have not been 
reproduced repeatedly to generate individual (e.g., RAC-specific) known match probability 
density functions, and although the RAC in question has been repeatedly compared when 
generating the known non-match probability density function, this function also contains 
scores based on thousands of other unrelated known non-match RAC comparisons. 

Figure 34: Static illustration of top 3 pairwise-compared RACs for a selected bin (note that the web page 
actually provides the top 8, including images of the Fourier descriptors, the normalized HD similarity score, 
and the associated likelihood ratio). 
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2.6 Impact, Outcomes, Evaluation & Dissemination 

The contracted research was required to shed light on 3 research objectives of interest to NAS, 
NIJ and SWGTREAD (SWGTREAD, 2013): 

1. Random shape and/or placement of accidental marks; 

2. Mathematical probabilities of individual characteristics; 

3. Frequency of style, size, design and uniqueness in footwear. 

Deliverables were as follows: 

1. An evaluation of the discrimination potential of a numerical metric of similarity when 
comparing footwear accidental patterns: 

(a) Density functions describing the probability of similarity scores for known match 
and known non-match comparisons; 

(b) False positive and false negative error rates, including receiver operator character-
istics (ROC) curves; 

(c) A Bayesian interpretation of similarity scores. 

2. A tool and dataset that can be integrated into existing training procedures and policies: 

(a) An electronic collection of exemplar and test impressions; 

(b) A web application that reports empirical frequency estimates related to close non-
matches. 

3. A framework for databasing studies (frequency of make, model and accidental charac-
teristics): 

(a) Positional frequency and estimates of chance occurrence of accidental features; 

(b) Frequency of accidental types. 

2.7 Added Value 

1. Began a collaboration with the FBI to share methodology/code that will allow the FBI 
to process their footwear database using the approach created by our research group. 

• 11-12-June-2014: A joint meeting between the WVU research group, the project’s 
practitioner partner (Mr. William Bodziak) and two analysts from the FBI (Dr. 
Brian Eckenrode and Mr. Eric Gilkerson) allowing for both training and pro-
fessional development for the research students on this project (at the time, one 
undergraduate and two graduate students). Note that the most significant out-
come was that each student was given general and specific instructions regarding 
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the identification of randomly acquired characteristics on outsoles, and how to dif-
ferentiate microcellular bubbles, model features, texture and Schallamach patterns. 
The end result was a mini-proficiency testing session where each student interacted 
with the expert practitioners to receive specific feedback on his or her ability to 
detect and mark the acquired features. 

• 28-May-2015: Teleconference between WVU, NIST and the FBI group. 

• 30-June-2015: Teleconference between WVU, NIST and the FBI group. 

• 15-16-July-2015: Joint meeting between the WVU research group, the project’s 
practitioner partner (William Bodziak), and FBI analysts/visiting scientists. Dur-
ing this visit, Mr. Bodziak provided a training session to WVU and FBI analysts on 
the generation and collection of crime scene prints. This meeting was extended to 
17-July-2015 between the WVU research group and the FBI group. During the full 
three-day time period, the WVU group trained three FBI visiting scientists (Brent 
Allred, Nicholas Vercruysse and Andrew Plotner) in data acquisition and extrac-
tion. In addition, we collaborated and had extended discussions concerning the 
project with one FBI program manager (Brian Eckenrode) and two FBI footwear 
examiners (Brian McVicker and Eric Gilkerson). At present, we have an unofficial 
agreement that the FBI will analyze their database of 776 pairs of boots using the 
algorithms WVU has created. On 07-July-2015, WVU gave the FBI group code 
responsible for image pre-process. 

• 15-16-September-2016: Joint meeting between the WVU research group and three 
FBI employees (Dr. Brian Eckenrode, Nicholas Vercruysse and Katherine Ky). 
Note that data analysis sharing is ongoing between the two teams. 

2.8 Publications & Abstracts 

• Richetelli, N., Lee, M., Lasky, C., Gump, M., and Speir, J. Classification of Footwear 
Outsole Patterns using Fourier Transform and Local Interest Points. Forensic Science 
International. Vol. 275, 2017, pp. 102-109. 

Abstract: Successful classification of questioned footwear has tremendous evidentiary 
value; the result can minimize the potential suspect pool and link a suspect to a victim, 
a crime scene, or even multiple crime scenes to each other. With this in mind, several 
different automated and semi-automated classification models have been applied to the 
forensic footwear recognition problem, with superior performance commonly associated 
with two different approaches: correlation of image power (magnitude) or phase, and 
the use of local interest points transformed using the Scale Invariant Feature Transform 
(SIFT) and compared using Random Sample Consensus (RANSAC). Despite the dis-
tinction associated with each of these methods, all three have not been cross-compared 
using a single dataset, of limited quality (i.e., characteristic of crime scene-like imagery), 
and created using a wide combination of image inputs. To address this question, the 
research presented here examines the classification performance of the Fourier Mellin 
transform (FMT), phase-only correlation (POC), and local interest points (transformed 
using SIFT and compared using RANSAC), as a function of inputs that include mixed 
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media (blood and dust), transfer mechanisms (gel lifters), enhancement techniques (dig-
ital and chemical) and variations in print substrate (ceramic tiles, vinyl tiles and paper). 
Results indicate that POC outperforms both FMT and SIFT + RANSAC, regardless of 
image input (type, quality and totality), and that the difference in stochastic dominance 
detected for POC is significant across all image comparison scenarios evaluated in this 
study. 

• Richetelli, N., Nobel, M., Bodziak, W., and Speir, J. Quantitative assessment of similar-
ity between randomly acquired characteristics on high quality exemplars and crime scene 
impressions via analysis of feature size and shape. Forensic Science International. 
Vol. 270, 2017, pp. 211-222. 

Abstract: Forensic footwear evidence can prove invaluable to the resolution of a crim-
inal investigation. Naturally, the value of a comparison varies with the rarity of the 
evidence, which is a function of both manufactured as well as randomly acquired char-
acteristics (RACs). When focused specifically on the latter of these two types of fea-
tures, empirical evidence demonstrates high discriminating power for the differentiation 
of known match and known non-match samples when presented with exemplars of high 
quality and exhibiting a sufficient number of clear and complex RACs. However, given 
the dynamic and unpredictable nature of the media, substrate, and deposition process 
encountered during the commission of a crime, RACs on crime scene prints are expected 
to exhibit a large range of variability in terms of reproducibility, clarity, and quality. 
Although the pattern recognition skill of the expert examiner is adept at recognizing 
and evaluating this type of natural variation, there is little research to suggest that ob-
jective and numerical metrics can globally process this variation when presented with 
RACs from degraded crime scene quality prints. As such, the goal of this study was 
to mathematically compare the loss and similarity of RACs in high quality exemplars 
versus crime scene-like quality impressions as a function of RAC shape, perimeter, area, 
and common source. Results indicate that the unpredictable conditions associated with 
crime scene print production promotes RAC loss that varies between 33% and 100% with 
an average of 85%, and that when the entire outsole is taken as a constellation of features 
(or a RAC map), 64% of the crime scene-like impressions exhibited 10 or fewer RACs, 
resulting in a 0.72 probability of stochastic dominance. Given this, individual RAC 
description and correspondence were further explored using five simple, but objective, 
numerical metrics of similarity. Statistically significant differences in similarity scores 
for RAC shape and size were consistently detected for three of the five metrics (modified 
phase only correlation, Euclidean distance, and Hausdorff distance). Conversely, a sin-
gle metric (the matched filter) expressed the least dependence between score and both 
shape and size. Moreover, for all crime scene-like RACs with coincidental association 
in position, the matched filter produced the greatest discrimination potential in sorting 
known matches and known non-matches. Despite this demonstrated success, numerical 
metrics of similarity are not without limitations, and the remainder of this work provides 
commentary on the difficulties associated with using objective metrics when faced with 
segmentation, incomplete information, and low signal-to-noise ratios. 

• Speir, J., Richetelli, N., Fagert, M., Hite, M., and Bodziak, W. Technical Note: Quan-
tifying randomly acquired characteristics on outsoles in terms of shape and position. 
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Forensic Science International. Vol. 266, 2016, pp. 399-411. 

Abstract: Footwear evidence has tremendous forensic value; it can focus a criminal 
investigation, link suspects to scenes, help reconstruct a series of events, or otherwise 
provide information vital to the successful resolution of a case. When considering the 
specific utility of a linkage, the strength of the connection between source footwear and 
an impression left at the scene of a crime varies with the known rarity of the shoeprint 
itself, which is a function of the class characteristics, as well as the complexity, clarity, 
and quality of randomly acquired characteristics (RACs) available for analysis. To help 
elucidate the discrimination potential of footwear as a source of forensic evidence, the 
aim of this research is to further characterize the chance association in position, shape, 
and geometry of RACs on a semi-random selection of footwear. To accomplish this 
goal in an efficient manner, a partially automated image processing chain was required, 
including steps for automated feature characterization. This technical note details the 
methods, procedures, and type of results available for subsequent statistical analysis 
after processing a collection of more than 1000 shoes and 57,426 randomly acquired 
characteristics. 

• Richetelli, N. Master’s of Science in Forensic Science Thesis: Quantitative Assessment 
of the Discrimination Potential of Class and Randomly Acquired Characteristics for 
Crime Scene Quality Shoeprints. West Virginia University, Department of Forensic & 
Investigative Science, December, 2015. 

2.9 Meetings, Presentations & Invited Talks 

• Richetelli, N., Speir, J. Quantifying the Chance Similarity of Randomly Acquired Char-
acteristics in terms of Shape and Position on High Quality Footwear Exemplars. Presen-
tation: International Association for Identification (IAI) Annual Educational 
Conference, Cincinnati, OH, 2016. 

• Speir, J. Imaging, Classification, and Quantification of Forensic Pattern Evidence. Roc-
hester Institute of Technology, Chester F. Carlson Center for Imaging Science 
Seminar Series, Rochester, NY, 11-March-2015. 

• Speir, J. A Quantitative Assessment of Shoeprint Accidental Patterns with Implications 
Regarding Similarity, Frequency and Chance Association of Features. Invited Talk and 
Collaborative Meeting: National Institute of Standards and Technology, (Martin 
Herman, Hariharan Iyer, Simone Gittelson, Steve Lund, Yooyoung Lee), Gaithersburg, 
MD, 23-March-2015. 

• Richetelli, N., Fagert, M., Hite, M., Speir, J. Estimates of Randomly Acquired Charac-
teristic Frequency in High Quality Footwear Exemplars. Poster: National Institute of 
Justice Impression Pattern and Trace Evidence Symposium, San Antonio, TX, 
2015. 

• Richetelli, N., Fagert, M., Epler, A., Bodziak, W., Speir, J. Preliminary Efforts to Quan-
tify the Chance Similarity in Shape and Position of Randomly Acquired Characteristics 
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in Footwear. Presentation: International Association for Identification (IAI) 
Annual Educational Conference, Sacramento, CA, 2015. 

• Speir, J. Preliminary Efforts to Quantify the Chance Similarity in Shape and Position 
of Randomly Acquired Characteristics in Footwear. Invited Talk: NSF Statistical 
and Applied Mathematical Sciences Institute (SAMSI) Forensics Opening 
Workshop, Research Triangle Park, NC, 31-August-2015 through 04-September-2015. 

2.9.A Limitations 

Use and interpretation of the results presented in this summary document are bounded by the 
following limitations: 

1. The database samples are such that a single shoe type, manufacturer, brand and size 
does not repeat with appreciable frequency, providing only limited power to allow for 
statistical estimates based on a priori class association. Instead, the results ignore 
class features (including outsole size, perimeter and geometry) and apply only to the 
normalized scenario describe in subsection 2.2.F. 

2. The results/metrics (i.e., likelihood ratios, random chance probability, etc.) are specific 
to the samples collected in this dataset, and should be extrapolated to other scenarios 
with caution, and only when doing so reasonably approximates the relevant population. 
In addition, the spatial limit of detection for RACs extracted from high quality imagery is 
most certainly much lower than that expected in forensic impressions (e.g., only a subset 
of the largest RACs in this dataset are likely to reproduce in crime scene imagery, and 
the entire dataset and associated chance co-ocurrence estimates should be modified to 
account for this if any extrapolation to casework is made). 

3. Randomly acquired characteristics were manually extracted by analysts (no known auto-
mated extraction algorithm has proven to be effective for this purpose), and as such, po-
sitional and shape/geometry frequency estimates are limited by intra- and inter-analyst 
variability in marking. 

4. Score-based likelihood ratios are limited by the discrimination potential associated with 
the similarity metric utilized. In addition, the numerator in all LRs is a generic prob-
ability density function (created using scores obtained when sampling known matches, 
and not the repeated sampling and comparison any specific RAC). 

5. Chance co-occurrence in position and position/categorical-shape does not equal a foren-
sically significance random match probability. 
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	1. Executive Summary 
	1. Executive Summary 
	The National Academy of Sciences (NAS) 2009 report on Strengthening Forensic Science in the United States revealed several research recommendations related to forensic footwear examinations, including the need for greater clarity concerning the variability of outsole class and individual (randomly acquired) characteristics (RACs), the validity and reliability of current methods and practices, the relative frequency of features, and the appropriate use of statistical standards (NAS, 2009). In response to thi
	To achieve this goal, an outsole database was generated, resulting in summary statistics and frequency estimates on 72,306 randomly acquired characteristics extracted from 1,300 out-soles. The subsequent results are based on a combination of automated and analyst-derived image extraction and processing tools, with the human-dependent step of RAC detection and marking. Given some unavoidable subjective steps in the image processing chain, inter-and intra-analyst variability in RAC marking was assessed using 
	-
	o

	Post-detection and extraction, each RAC was broadly characterized in terms of its degree of linearity, circularity and triangularity. Using geometric shape classiﬁcation rules, automated shape attribution was compared to human-perceptual assignments and found to be in agreement between 68% to 95% of the time, across 1,352 comparisons, and depending on the complexity of the dataset presented for analysis. Overall, the results indicate limited utility in classifying complex features into prescribed shape clas
	-
	-

	Next, outsole size and shape normalization was performed. This step, although not ideal, was deemed unavoidable in order to create suﬃcient power in the inter-comparison of all 1,300 shoes in the database, regardless of outsole style/shape and size. Post normalization, each RAC was localized to one of 990 possible spatial bins, each 5mm x 5mm in size. Post-localization and binning, estimates of co-occurrence and similarity were possible. This was accomplished by computing the Fourier descriptor of each RAC,
	Next, outsole size and shape normalization was performed. This step, although not ideal, was deemed unavoidable in order to create suﬃcient power in the inter-comparison of all 1,300 shoes in the database, regardless of outsole style/shape and size. Post normalization, each RAC was localized to one of 990 possible spatial bins, each 5mm x 5mm in size. Post-localization and binning, estimates of co-occurrence and similarity were possible. This was accomplished by computing the Fourier descriptor of each RAC,
	-

	to rank-order RACs from diﬀerent sources. Results indicate superior performance with distance metrics (HD and ED), making Hausdorﬀ distance the best candidate (of those metrics compared) for computing score-based likelihood ratios. More speciﬁcally, it was noted that both HD and ED had statistically indistinguishable AUCs (area under the curve) of 0.82, and that both were signiﬁcantly better than MCS, MF and MPOC. However, alternative metrics, including deep learning, might prove equally or more useful, and
	-


	Equipped with RACs with known positional co-occurrence and shape similarity, three questions related to chance co-occurrence were asked. First, what was the empirical frequency of ﬁnding a pair of RACs with positional similarity anywhere on an outsole within this dataset? Second, what was the empirical frequency of selecting two shoes at random and ﬁnding shape similarity at a speciﬁc location? Lastly, what kind of numerical/quantitative similarity is expressed by RACs with positional co-occurrence? 
	-

	With regard to positional co-occurrence anywhere on an outsole, the empirical frequency is extremely high (1 in 4 for elongated features, to 1 in 10 for isometric features). However, when positional co-occurrence in a speciﬁc location is queried, median results range from 1 in 2,080 for elongated features, to 1 in 9,279 for irregularly-shaped features. In addition, the worst case scenario (greatest chance association) was found to be 1 in 281 for elongated features, while the best case scenario (lowest chan
	However, RACs with positional co-occurrence (and even identical shape categorizations), are not necessarily geometrically similar (e.g., two linear elements could vary in orientation, length, thickness, curvature, etc). Thus, the mathematical similarity of RACs with coincidental positional and shape similarity were computed based on 6,993 known match comparisons, and 3,239,114 known non-match comparisons. The results indicate that 13% of known non-matches have likelihood ratios (LR) greater than 1.0, but ev
	-

	In conclusion, there is evidence to assert that RACs possess a high degree of forensic discrimination potential. However, the widespread and general applicability of any associated probability and chance association computed based on this study must be considered within the conﬁnes that bound the research dataset and methodology. More speciﬁcally, all results are 
	In conclusion, there is evidence to assert that RACs possess a high degree of forensic discrimination potential. However, the widespread and general applicability of any associated probability and chance association computed based on this study must be considered within the conﬁnes that bound the research dataset and methodology. More speciﬁcally, all results are 
	-

	a function of the nature of the footwear population studied, which was predominately athletic gear (86%), men’s wear (72%), and of sizes 9 through 11 (53%). Moreover, all shoes have been inter-compared without regard for class characteristics, which required the less-than-ideal step of normalization as a function of outsole size and shape. As such, the probability of confusion, reported to be on the order of 1.2E-05, must be interpreted within the conﬁnes of this footwear population, and with full understan


	2. Research Overview 
	2. Research Overview 
	This work proposed ﬁve deliverables: 
	• 
	• 
	• 
	To analyze and characterize more than 400 exemplar and questioned prints (referred to as the ‘footwear database’); 

	• 
	• 
	To subsequently pairwise compare exemplar RACs and RAC maps using a quantitative metric (correlation); 

	• 
	• 
	To provide frequency estimates relating RAC ‘type’ and location; 

	• 
	• 
	To report on the random co-occurrence of accidental features; 

	• 
	• 
	To create a user-friendly graphical interface that allows the analyst to rapidly extract similarity and frequency information from the database, including quantitative measures of similarity and estimates of chance co-occurrence of features in terms of geometry and positional information. 


	To date, the following products have been realized: 
	• 
	• 
	• 
	The collection (purchase and donation) of 2,028 outsoles; 

	• 
	• 
	The analysis and characterization of 1,300 outsoles (900 more than originally contracted to deliver); 

	• 
	• 
	The quantitative comparison of RAC similarity using 5 metrics (4 more than originally contracted to deliver, including the strengths and weaknesses associated with each); 

	• 
	• 
	A web-based application that provides frequency estimates describing RAC type and location (/); 
	http://www.4n6chemometrics.com/database


	• 
	• 
	A web-based application reporting on the random co-occurrence of accidental features (/); 
	http://www.4n6chemometrics.com/database


	• 
	• 
	Long-term and on-going soft-beneﬁts associated with an increased understanding of fundamental phenomenology such as the spatial prevalence and coincidental association of accidental features and feature patterns in random and speciﬁc footwear populations. 


	2.1 Review of Selected Works 
	2.1 Review of Selected Works 
	The power associated with demonstrating a linkage between footwear and an impression left at the scene of a crime is directly related to the perceived rarity of the shoeprint itself, which is a function of observed class and accidental characteristics (including clarity and quality). When individualizing characteristics are present, their relative position, orientation, size and 
	The power associated with demonstrating a linkage between footwear and an impression left at the scene of a crime is directly related to the perceived rarity of the shoeprint itself, which is a function of observed class and accidental characteristics (including clarity and quality). When individualizing characteristics are present, their relative position, orientation, size and 
	shape are examined and compared with known exemplars (SWGTREAD, 2006) in an eﬀort to formalize the strength of the suspected linkage. However, the degree to which a feature, or a collection of features, might repeat is less well understood. This latter issue is referred to as chance co-occurrence (or the random match probability (RMP) in DNA/population genetics), which inevitably impacts the discrimination potential associated with any form of forensic evidence, including forensic footwear analysis. 

	Within the pattern sciences, the likelihood of a close non-match is often formalized by an examiner’s accumulated expertise, wherein an analyst, with years of experience, develops internalized knowledge as to the likelihood that a feature (or set of features) would reproduce by random chance alone between two known non-matches. Despite the reasonable validity associated with using accumulated expertise to inform evidence interpretation, the need for external theoretical models and empirical investigations t
	Past eﬀorts in support of increased knowledge concerning close non-matches and chance association are based on theoretical models and small/modest-scale empirical research eﬀorts, as well as studies with alternative goals (not necessarily related to answering the question of chance association, but by virtue of research design, have shed light on this question) (Cas-sidy, 1995; Champod et al., 2000; Davis and DeHaan, 1977; Davis and Keeley, 2000; Fawcett, 1970; Hannigan et al., 2006; Petraco et al., 2010; S
	-

	To begin, Fawcett (1970) modeled the chance agreement of accidental characteristics between test and crime scene impressions using the binomial coeﬃcient. The model determines the number of ways of obtaining (x) unordered accidental marks in a scene impression from a total of (s) possible defects using Eq. (1). 
	s! 
	sCx = (1)
	(x − s)!(s)! 
	(x − s)!(s)! 

	To account for variation in resolution, as well as aberrant pseudo-accidentals that are a function of contamination of the questioned impression, diﬀerences in scene versus exemplar prints were modeled according to Eq. (2) where (z) represents the number of features in the questioned print and (p) deﬁnes the number of scene and exemplar accidentals that correspond. 
	sCx
	Probability of Chance Coincidence = P (2)
	(zCp)(s−zCx−p)
	p 
	Although Eq. (2) can be simpliﬁed by considering a single term in the denominator (where 
	p=p only, instead of summing from p = p to p = x or z), Fawcett (1970) states that the computation will always underestimate the true probability since the metric is binary in nature (e.g., a defect is present or absent in the questioned and exemplar impressions, without regard for shape or variation in size). 
	In a comparable approach, Stone (2006) purported to compute the theoretical probability of the random duplication of accidental features with increasing degrees of complexity (points, lines, curves, etc.) but assuming questioned impressions of full resolution and free of pseudo-accidentals. The model employed by Stone (2006) assumes a hypothetical ﬂat-soled men’s size 
	8.5 shoe with a working area of 16,000mmand a 1mmresolvable limit. Using these model parameters, Stone (2006) computed a 1 in 16,000 probability of random duplication of a single point feature, deﬁned as a defect with ‘no discernible length or width’. This computation was repeated for larger defects (such as lines and curves), that possess a greater number of attributes including binned estimates for length, orientation and curvature. Although the results are extremely useful and intuitive, Stone (2006) ack
	2 
	2 
	2
	2
	2 

	In contrast with the theoretical models presented by Fawcett (1970) and Stone (2006), Cassidy (1995) attempted to answer questions concerning chance reproduction of individual characteristics based on empirical studies. Using groups of police recruits engaged in activities that promote the chance reproduction of accidental characteristics, Cassidy (1995) concluded that there was a 1 in 6 chance of ﬁnding 10 ‘minute’ characteristics and a 1 in 20 chance of ﬁnding 
	In contrast with the theoretical models presented by Fawcett (1970) and Stone (2006), Cassidy (1995) attempted to answer questions concerning chance reproduction of individual characteristics based on empirical studies. Using groups of police recruits engaged in activities that promote the chance reproduction of accidental characteristics, Cassidy (1995) concluded that there was a 1 in 6 chance of ﬁnding 10 ‘minute’ characteristics and a 1 in 20 chance of ﬁnding 
	-

	3 moderate-sized characteristics possessing coincidental similarity in position for the heel of compared shoes. However, Cassidy (1995) acknowledged that similarities based on mold may very well be included in these ﬁgures, and an extensive discussion of the similarity in feature quality was not explicitly provided. Similar empirical observations collected from two diﬀerent sets of test shoes (presumably less likely to exhibit mold subclass characteristics) suggest that a single moderate-sized characteristi
	-
	-



	2.2 Research Methodology & Results 
	2.2 Research Methodology & Results 
	Characterizing the presence, geometric shape and utility of a randomly acquired characteristic is not, in fact, a straightforward process. Instead, the physical evidence record available for analysis is typically corrupted by a host of factors that can include variations in material properties, deposition conditions, temporal and spatial factors, as well as attempts at collection and enhancement (not to mention the size, quality and clarity of the feature under consideration). With this in mind, the major f
	-
	-


	2.2.A Data Acquisition 
	2.2.A Data Acquisition 
	Footwear was obtained by donation, request, and purchases from Goodwill 
	R

	and similar thrift stores. Table 1 reports the total number of shoes procured by the research group (2,028), including source. Note that nearly half (45%) resulted from purchases, while the remaining 55% were acquired based on generous corporate donations. 
	. 

	Of the 2,028 footwear collected, 1,300 have been fully characterized. Tables 2 -6 summarize the attributes of the resulting footwear dataset as a function of type, degree of wear, the presence/absence of features (such as microcellular material and/or Schallamach patterns), manufacturer, and ﬁnally, gender/size. 
	Table 1: Break down of footwear by source. 
	Source 
	Source 
	Source 
	Total Shoes 
	∼ Percent % 

	.Goodwill R
	.Goodwill R
	914 
	45% 

	Decker 
	Decker 
	72 
	4% 

	Nike 
	Nike 
	538 
	27% 

	Reebok 
	Reebok 
	274 
	13% 

	Under Armour 
	Under Armour 
	230 
	11% 

	Total 
	Total 
	2,028 
	100% 


	Table 2: Footwear database by shoe type. 
	Type 
	Type 
	Type 
	Number 
	∼ Percentage % 

	Athletic 
	Athletic 
	1,122 
	86% 

	Dress 
	Dress 
	89 
	7% 

	Boot 
	Boot 
	69 
	5% 

	Sandal 
	Sandal 
	20 
	2% 

	Total 
	Total 
	1,300 
	100% 


	Table 3: Footwear database by degree-of-wear . Note that ‘light’ describes an outsole with texture still present throughout most of outsole, ‘moderate’ describes an outsole with texture that remains apparent but may be accompanied by small bald spots, and ‘heavy’ describes an outsole nearly devoid of any remaining texture, many or large bald spots, and possible holes where the sole has been worn away. 
	Degree of Wear 
	Degree of Wear 
	Degree of Wear 
	Number 
	∼ Percentage % 

	Light 
	Light 
	324 
	25% 

	Moderate 
	Moderate 
	673 
	52% 

	Heavy 
	Heavy 
	303 
	23% 

	Total 
	Total 
	1,300 
	100% 


	Table 4: Footwear database as a function of microcellular material and Schallamach patterns. 
	Microcellular Material 
	Microcellular Material 
	Microcellular Material 
	Number 
	∼ Percentage % 

	Present 
	Present 
	155 
	12% 

	Absent 
	Absent 
	1,145 
	88% 

	Total 
	Total 
	1,300 
	100% 

	Schallamach Pattern 
	Schallamach Pattern 
	Number 
	∼ Percentage % 

	Present 
	Present 
	921 
	71% 

	Absent 
	Absent 
	379 
	29% 

	Total 
	Total 
	1,300 
	100% 


	Table 5: Footwear database as a function of manufacturer. Note that ‘other’ reports on shoes from manufacturers that individually contributed a very small number of shoes (less than 1% of the total), but in totality, deﬁne 23% of the database. 
	-

	Manufacturer 
	Manufacturer 
	Manufacturer 
	Number 
	∼ Percentage % 

	Adidas 
	Adidas 
	32 
	2% 

	Asics 
	Asics 
	30 
	2% 

	Brooks 
	Brooks 
	10 
	1% 

	Converse 
	Converse 
	36 
	3% 

	Hoka 
	Hoka 
	36 
	3% 

	New Balance 
	New Balance 
	22 
	2% 

	Nike 
	Nike 
	513 
	39% 

	Puma 
	Puma 
	15 
	1% 

	Reebok 
	Reebok 
	152 
	12% 

	Skechers 
	Skechers 
	16 
	1% 

	Under Armour 
	Under Armour 
	114 
	9% 

	Unknown 
	Unknown 
	24 
	2% 

	Other 
	Other 
	300 
	23% 

	Total 
	Total 
	1,300 
	100% 


	Table 6: Footwear database as a function of intended gender and manufacturer’s reported size. Note that 8% of the outsoles in this database have unknown gender and/or size, and that each row reports data for both the whole and half-size ( e.g., 10 and 10.5). 
	Men’s Size 
	Men’s Size 
	Men’s Size 
	Number 
	∼ Percentage % 
	Women’s Size 
	Number 
	∼ Percentage % 

	5 
	5 
	4 
	<1% 
	4 
	4 
	<1% 

	6 
	6 
	10 
	<1% 
	5 
	2 
	<1% 

	7 
	7 
	34 
	3% 
	6 
	18 
	1% 

	8 
	8 
	93 
	7% 
	7 
	69 
	5% 

	9 
	9 
	215 
	17% 
	8 
	82 
	6% 

	10 
	10 
	271 
	21% 
	9 
	51 
	4% 

	11 
	11 
	193 
	15% 
	10 
	23 
	2% 

	12 
	12 
	87 
	7% 
	11 
	10 
	<1% 

	13 
	13 
	30 
	2% 
	12 
	2 
	<1% 

	Total 
	Total 
	937 
	72% 
	Total 
	261 
	20% 



	2.2.B Pre-processing of High Quality Prints 
	2.2.B Pre-processing of High Quality Prints 
	As necessary, each shoe was gently washed (using warm water) to remove debris (i.e., this research does not account for the possible presence of transient RACs, such as rocks, gum, etc.). When dry, each outsole was scanned at 600PPI with an Epson Expression 11000XL Graphic Arts Scanner. Post-outsole scanning, Handiprint exemplars were created (Bodziak, 
	.
	2000) using a Zephyr brush (A-1-0200 Arrowhead Forensics, trimmed to a total length of approximately 1 inch), Lightning 
	R
	R

	Black Powder (1-4005 CSI Forensic Supply) and Handiprint sheets with clear polyester covers (2-3150 CSI Forensic Supply). To create each exemplar, the Handiprint sheet was prepared by removing the clear polyester sheet and allowing the ﬂexible Handiprint material to rest (reform shape, adhesive side-up) while lightly dusting the outsole with the powder and Zephyr 
	. 
	R

	brush. 
	. 

	During powder application, the outsole was brushed in at least three directions; North-South (toe/heel), East-West (medial/lateral) and diagonally to ensure full coverage. After dust application, the shoe was tapped three-four times to dislodge excess dust, before placing the outsole on top of the prepared Handiprint sheet sitting on the laboratory benchtop. The Handiprint+shoe combination was slowly pulled oﬀ of the benchtop toward the analyst, while the researcher used his or her hands to gently add press
	-
	R
	. 

	All Star 
	. 
	R

	Crime Scene-Like Images 
	Using a random number generator, 50 pairs of shoes were selected from the aforementioned exemplar database. Five analysts of diﬀering height, weight and shoe size were selected and randomly assigned 10 pairs of shoes to aid in print creation. In order to best replicate crime scene conditions, each analyst wore his or her randomly assigned shoes when creating impressions (note that this methodology diﬀered from that used in exemplar creation which entailed pressing a dusted outsole against an adhesive sheet)
	-
	-

	Figure
	.
	All 
	Figure 1: Example of outsole and Handiprint exemplar scans (size 9 men’s Converse Chuck Taylor 
	R
	Star 
	R

	). 
	.

	Figure
	Figure 2: A ‘best case’ scenario (top row) and a ‘worst case’ scenario (bottom row) for crime scene-like impression production. Handiprint exemplar (left) and two crime scene-like replicates (center, right). Note: the authors acknowledge that the crime scene-like impressions created in this dataset are still far superior than prints collected at the majority of real scenes by actual examiners. 
	Pre-Processing of Crime Scene-Like Prints 
	After lifting, all crime scene impressions were likewise scanned at 600PPI with the Epson Expression 11000XL Graphic Arts Scanner. The lifters were aﬁxed to a scanning board designed to raise the gel surface oﬀ the scanner bed by less than 1mm, thus allowing for clear, focused prints, without direct interaction between the lifter and the scanner’s glass surface. After scanning, lifts were covered and stored for future reference. 
	-


	2.2.C Registration 
	2.2.C Registration 
	In order to facilitate the automated downstream extraction of RAC shape and position, the outsole and exemplar (and crime scene-like images) were background subtracted and registered using identiﬁed control points. This process required the analyst to identify eight common geometric shapes that were patent on both the outsole and the exemplar. The features selected for registration varied per shoe, but needed to be distributed as evenly as possible around the perimeter of the outsole (a minimum of two on th
	To expedite this process, a simple graphical user interface was constructed that opened two paired images (the scanned version of the outsole, and the mirrored version of the Handiprint exemplar). With both images in a common orientation, the analyst used the cross-hair of the cursor on his or her mouse to designate mated-points between the images (open windows). Using this process, any number of mated points could have been selected, but as a compromise in terms of eﬃciency and accuracy, eight total ground
	-
	-

	In addition to this co-registration, the background (non-tread areas) of both the outsole and exemplar (and crime scene-like images) were removed. This was accomplished in a rather rudimentary or primitive way, using the aforementioned graphical user interface, wherein the analyst simply traced the perimeter of the outsole using the cross-hair of the cursor, thus automatically generating a binary image that labeled every pixel as either belonging to the outsole or belonging to the background. Once generated
	Figure
	Figure 3: Registered and background subtracted outsole scan (left) and Handiprint scan (right). The middle image is an overlay of the outsole and Handiprint illustrating co-registration (size 9 men’s Converse Chuck 
	.
	All Star 
	All Star 
	Taylor 
	R
	R

	). 
	.


	Finally, the outsole and exemplar (and crime scene-like images) were collectively translated and rotated to ensure that all were centered within the image frame (8,961 x 8,961 pixels) and oriented such that the long-axis of the shoe (toe-to-heel) was North-South. This was most easily accomplished using the binary image that was created in the previous step, wherein each pixel was deﬁned as either outsole or background. From this image, the midpoint of the outsole was mathematically computed (xo,yo), deﬁned 
	To ensure that the shoe’s long-axis was North-South, the binary map deﬁning outsole versus background was treated as a bivariate normal distribution, amenable to eigen-decomposition. After decomposition, the resulting eigen-vectors deﬁned the major and minor axes of the best-ﬁt ellipse conforming to the (x,y) coordinates of the pixels that deﬁned the outsole. Ergo, the deviation of the major axes from vertical deﬁned the degree of rotation necessary to ensure that the ﬁnal imagery was oriented as close to N

	2.2.D Segmentation 
	2.2.D Segmentation 
	Following registration and background subtraction, randomly acquired characteristics present on both the exemplar and crime scene-like images were marked. This process required the analyst to physically examine each outsole with oblique illumination and 4X magniﬁcation. Upon identifying a RAC that appeared on both the outsole and the exemplar, the analyst blacked 
	-

	..
	out the RAC pixels on the Handiprint image using the pencil tool in Adobe Photoshop Elements 10. This was completed by tracing the edge of the RAC with the pencil tool (set at 2-pixels wide) and then ﬁlling in the RAC (if necessary), with the paint bucket tool while viewing the exemplar at a minimum magniﬁcation of 200X. When complete, each feature was examined to ensure that every pixel included within the traced perimeter of the RAC was fully labeled (converted to black). For features found on the edge of
	R
	R
	-

	Figure
	Figure 4: (a) Illustration of RAC on edge of linear tread element. Note that the edge of the RAC (terminating on the edge of a short and linear tread element), has been interpolated and the entire RAC has been ﬁlled 
	.
	sneaker, Skink Mid model shoe). (b) Illustration of RAC on edge of curved tread element. Note that the edge of the RAC (terminating on the edge of a curved tread element), has not been 
	in (size 9.5 men’s Vans 
	R

	.
	sneaker, Pro Feather model). 
	interpolated nor ﬁlled in (size 9 men’s Adidas 
	R

	When this registered and marked image was subtracted from its registered (but unmarked) counterpart, the result was a RAC map that highlighted the location and geometry associated with each randomly acquired feature (Figs. 5 and 6). Using the standard image processing technique of connected components, the location of each RAC was sequentially characterized using three parameters that were readily available based on x,y pixel coordinates; the radius 
	(r) or distance (in pixels) between the shoe’s midpoint and the RAC’s centroid (geometric average of the RAC’s x,y pixel coordinates), the angular (θ) position (in degrees) between the RAC’s centroid and zero degrees (deﬁned as a horizontal line drawn directly East of the shoe’s midpoint), and the normalized distance (rnorm) equal to r divided by the distance (in pixels) between the shoe’s midpoint and the perimeter of the shoe at angular position θ (obtained by casting out a vector from the shoe’s midpoint
	Figure
	Figure 5: Registered and marked Handiprint image (left) and resulting RAC map (right) (size 9 men’s Converse 
	.
	All Star 
	Chuck Taylor 
	R
	R

	). 
	.

	Figure
	.
	Figure 6: Example of a selected portion of the Converse Chuck Taylor All Star . Handiprint (top left), out-sole (bottom left), marked Handiprint (top right), RAC map (bottom right). Note that the outsole image shown in this ﬁgure has been scanned on a ﬂat bed scanner, but that all RACs were detected using 4X magniﬁcation and oblique illumination. 
	.
	R
	R

	Following localization, each feature was automatically numbered (via its connected component value) and extracted from the total RAC map. The resulting subimages (Fig. 7) were then evaluated to deﬁne RAC shape and geometry, based on a ﬁve-dimensional RAC feature vector, before transformation into individual RAC Fourier descriptors (FD). 
	Figure
	Figure 7: Subsection of RAC map and example of connected component subimages. This particular RAC was numbered #101 and located at a normalized radius of 0.55 and an angle of 104. 
	o 


	2.2.E Processing 
	2.2.E Processing 
	RAC Feature Vector 
	Initially, each randomly acquired characteristic was attributed to one of four categories (lines/curves, circles, triangles, and irregular-shaped features), as inspired by work conducted by Stone (2006) (Table 7). 
	Table 7: Description of accidental characteristics (adapted from Stone (2006)). 
	Feature 
	Feature 
	Feature 
	Discrete Position 
	Discernible Length 
	Discernible Width 
	Orientation 
	Curvature 
	2D Shape 
	Elevation 

	Point 
	Point 
	Yes 
	No 
	No 
	N/A 
	N/A 
	N/A 
	N/A 

	Line 
	Line 
	Yes 
	Yes 
	No 
	Yes 
	No 
	N/A 
	N/A 

	Curve 
	Curve 
	Yes 
	Yes 
	No 
	Yes 
	Yes 
	N/A 
	N/A 

	Enclosure 
	Enclosure 
	Yes 
	Yes 
	Yes 
	Yes 
	N/A 
	Yes 
	No 

	3D 
	3D 
	Yes 
	Yes 
	Yes 
	Yes 
	N/A 
	Yes 
	Yes 


	However, geometric characterization was determined using an automated technique, and based on ﬁve RAC attributes, including: area, perimeter, linearity, circularity and triangularity. The ﬁrst two descriptions (area and perimeter) were readily available; area describes the total number of pixels comprising the RAC and perimeter evaluates the distance in pixels along a line/curve, or around a two-dimensional shape. 
	The linearity metric was also readily available and was obtained by computing the ratio of the ﬁrst and second eigenvalues (λ1 and λ2) generated from eigen decomposition of the RAC itself (Park and Jain, 2010). Using this approach, when λ1 is much greater than λ2, the RAC in question has a greater length than width and can be classiﬁed into the line/curve category. 
	The fourth measurement was a circularity metric, computed according to Eq. 3 (Gonzalez and Woods, 2008), where A is the area of the object, and P is the length of its perimeter: 
	4 π A 
	4 π A 
	4 π A 

	Rc 
	Rc 
	= 
	P 2 
	(3) 

	Rc 
	Rc 
	= 
	maximum of 1.0 for a perfect circle 


	The ﬁfth and ﬁnal metric was a triangularity value computed using central moments (Eq. 4) that are invariant to translation, scale and rotation. As per Rosin (2003) (Rosin, 2003), the 
	1
	1
	1


	variable I1 in Eq. 5 equals for any triangle that has been aﬃne transformed into a perfect right-angled triangle: 
	108 

	XX 
	µpq =(x − xc)(y − yc)(4) xy 
	p
	q 

	2
	2
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	µ
	00 
	As such, the triangularity measure can be normalized to vary between 0.0 − 1.0 according to Eq. 6 (Rosin, 2003): 
	. 
	1
	1

	108 I1 if I1 ≤ 
	108

	T = (6)
	1 

	otherwise
	108 I1 
	The ﬁve-dimensional feature vector (Fig. 8) describing area, perimeter, linearity, circularity and triangularity served as a primary descriptor and comparison parameter for each randomly acquired characteristic. In addition, it was used to categorize the randomly acquired characteristics into one of the four groups previously mentioned; line/curve, circle, triangle or irregular. 
	-

	Figure
	Figure 8: Four RAC images with their corresponding feature vectors [area, perimeter, circularity, triangularity, linearity]. 
	Based on a survey of known geometric shapes, absolute categorization rules were developed. More speciﬁcally (and for this dataset), circles have a circularity measure greater than or equal to 0.8, triangles have a circularity measure less than 0.8 and a triangularity greater than or equal to 0.9, while lines/curves have a linearity ratio greater than 5 and a triangularity measure less than or equal to 0.3; any shape not satisfying one of the above rules defaults into the irregular category (Fig. 9). 
	Although this categorization was relatively straightforward when it came to idealized shapes, it was clear that RACs rarely took on an idealized form/habit, and therefore, categorization into narrowly deﬁned bins proved to be somewhat unproductive, and even sometimes at odds with what a human analyst might decide if asked to categorize a real randomly acquired characteristic. However, this disagreement cannot be deﬁned as a failing of the algorithm, since shape categorization by a human observer is, by nece
	Figure
	Figure 9: Examples of RACs classiﬁed as circles, lines/curves, triangles, and irregulars by the algorithm. 
	interface to analysts seated at a computer. When presented with each image, in a randomized order, the analyst was asked to categorize the shape as either a circle, triangle, line/curve or irregular-shaped feature by clicking on a corresponding toggle button. The same shape was automatically categorized using the decision rules determined during our training phase, and the results for three separate analysts (for a total of 552 human-perceptual estimates of shape categorization) were combined into the confu
	Table 8: Confusion matrix for automated categorization of 184 shapes (74 stylized and 110 real RACs) as assessed by three analysts for a total of 552 human-perceptual assessments of shape. The column headers represent the algorithm report while the rows designate human-perception. Total agreement equals 95%. 
	Label 
	Label 
	Label 
	Circle 
	Triangle 
	Line/Curve 
	Irregular 

	Circle 
	Circle 
	99 
	0 
	0 
	0 

	Triangle 
	Triangle 
	0 
	90 
	2 
	4 

	Line/Curve 
	Line/Curve 
	0 
	0 
	214 
	8 

	Irregular 
	Irregular 
	1 
	5 
	5 
	124 


	Conversely, for a total of 800 randomly selected RACs (zero stylized shapes), assessed by four analysts (200 each, with a total of 746 human-perceptual estimates of shape categorization of which 27 RACs happen to repeat during the randomized selection), the equivalent confusion matrix (shown in Table 9) was found to have an overall agreement of 68%. Despite the clear 
	Conversely, for a total of 800 randomly selected RACs (zero stylized shapes), assessed by four analysts (200 each, with a total of 746 human-perceptual estimates of shape categorization of which 27 RACs happen to repeat during the randomized selection), the equivalent confusion matrix (shown in Table 9) was found to have an overall agreement of 68%. Despite the clear 
	decrease in agreement, the authors assert that this should not be deﬁned as an ‘error rate’ since it is based on human-perception of shapes, which cannot be expected to agree among or between individuals. The problem is that there is no appropriate reference by which to deﬁne ‘ground truth’ as soon as shapes become complex and imperfect. To illustrate this, consider Figs. 10 and 11 which show a sampling of RAC images that lead to disagreement in the ‘human-perception’ versus ‘automated-algorithm’ study, con

	Table 9: Confusion matrix for automated categorization of 746 unique RACs and 27 repeated RACs as assessed by four analysts for a total of 800 human-perceptual assessments of shape. The column headers represent the algorithm report while the rows designate human-perception. Total agreement equals 68%. Note that early categorizations also included a ‘rectangle’ group, deﬁned as a linear element with width/thickness greater than 30 pixels (or 1.3 mm). 
	Label 
	Label 
	Label 
	Circle 
	Triangle 
	Rectangle 
	Line/Curve 
	Irregular 

	Circle 
	Circle 
	46 
	10 
	0 
	0 
	19 

	Triangle 
	Triangle 
	12 
	25 
	0 
	1 
	19 

	Rectangle 
	Rectangle 
	3 
	3 
	0 
	2 
	3 

	Line/Curve 
	Line/Curve 
	0 
	7 
	0 
	340 
	58 

	Irregular 
	Irregular 
	9 
	80 
	0 
	29 
	134 


	It is also important to note that several analysts were involved in marking randomly acquired characteristics. Therefore, to assess inter-and intra-analyst variation in RAC marking, a random set of 100 pairs of shoes (approximately 8% of the database) were selected for periodic reassessment. On an approximate once-weekly basis, each analyst selected the next available shoe from the randomized list (which may or may not be a shoe he or she has already marked), and repeated the marking process on the post-reg
	To date, the quality assessment program has obtained 161 paired RAC maps, prepared by 5 analysts, over a 15-month time period (although at the time of writing, only 160 have been used in data analysis). The information contained in each of the 320 RAC maps (2 markings x 160 shoes) has been assessed in two ways. First, the data has been converted into a one-dimensional (1D) vector by rastering across image rows and down image columns, collecting total RAC size per cell using a ﬁxed bin width of 150 x 150 pix
	Automated Classification 
	Circle Triangle Irregular 
	Irregular Irregular 
	41 
	Triangle Irregular Irregular 
	Figure
	Figure 10: Illustration of disagreement in human-perception of shape categorization (cell labels) versus automated categorization based on training rules (column header). To account for this disagreement a reduction in grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate isometry (a combination of circular and triangular structures). 
	Figure 10: Illustration of disagreement in human-perception of shape categorization (cell labels) versus automated categorization based on training rules (column header). To account for this disagreement a reduction in grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate isometry (a combination of circular and triangular structures). 


	Figure
	Figure 11: Illustration of disagreement in human-perception of shape categorization (cell labels) versus automated categorization based on training rules (column header). To account for this disagreement a reduction in grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate isometry (a combination of circular and triangular structures). 
	Figure 11: Illustration of disagreement in human-perception of shape categorization (cell labels) versus automated categorization based on training rules (column header). To account for this disagreement a reduction in grouping complexity (from four to three) is suggested: irregular, elongated (lines and curves) and approximate isometry (a combination of circular and triangular structures). 


	then evaluated to determine the average correlation coeﬃcient of similarity. Inter-analyst variation produced an average correlation coeﬃcient of 0.66 with a variance of 0.057, based on 137 paired RAC maps. To date, the dataset has allowed for the computation of intra-analyst correlation, but thus far, based on only 23 paired RAC maps for 2 analysts in the research group; the combined average correlation coeﬃcient is 0.80 with a variance of 0.016. In addition to the image-wide correlation scores, individual
	o

	Table 10: Variation in analyst duplicate marking of 5,477 randomly acquired characteristics across 160 shoes (320 RAC maps). 
	Metric 
	Metric 
	Metric 
	θ (degrees) 
	r (pixels) 
	r (mm) 
	rnorm 

	Mean 
	Mean 
	0.0922 
	4.27 
	0.167 
	0.00177 

	Variance 
	Variance 
	0.0178 
	91.7 
	3.61 
	0.0000121 

	Maximum 
	Maximum 
	0.6990 
	112 
	4.40 
	0.03000 


	Figure
	Figure 12: Duplicate markings of known match RACs with the following marking variations: (a) Δ θ = 0.235, Δ r = 67.2px/2.64mm, Δ rnorm = 0.0170; (b) Δ θ = 0.567, Δ r = 88.5px/3.49mm, Δ rnorm = 0.0270; (c) Δ θ = 0.551, Δ r = 112px/4.40mm, Δ rnorm = 0.0290. 
	Figure 12: Duplicate markings of known match RACs with the following marking variations: (a) Δ θ = 0.235, Δ r = 67.2px/2.64mm, Δ rnorm = 0.0170; (b) Δ θ = 0.567, Δ r = 88.5px/3.49mm, Δ rnorm = 0.0270; (c) Δ θ = 0.551, Δ r = 112px/4.40mm, Δ rnorm = 0.0290. 


	However, when the shape categorization of duplicate marked RACs are compared, repeated concerns about shape classiﬁcation are noted. For example, Tables 11 and 12 report confusion matrices for RAC shape classiﬁcation when high quality images marked by diﬀerent analysts (or the same analyst repeatedly) are pairwise compared (Table 11; 5,477 features), and when high quality images are pairwise compared with lower quality images created to mimic crime scene-like conditions (Table 12; 1,766 RACs). As is evident

	2.2.F Outsole Size & Shape Normalization 
	2.2.F Outsole Size & Shape Normalization 
	At this point in data acquisition, each RAC has a geometric description, location and well-deﬁned origin (from a left or right shoe with a known pattern, a known manufacturer (usually), 
	Table 11: Confusion matrix for RAC shape categories for duplicate RAC markings among high quality RACs that were part of the quality control/assurance study. Note that approximately 74% of known match RACs maintained the same shape class. 
	Label 
	Label 
	Label 
	Elongated 
	Isometric 
	Irregular 


	Elongated 
	Elongated 
	Elongated 
	2047 
	35 
	270 

	Isometric 
	Isometric 
	37 
	476 
	353 

	Irregular 
	Irregular 
	287 
	381 
	1341 


	Table 12: Confusion matrix for RAC shape categories for duplicate RAC markings between high quality RACs and those created to mimic crime scene-like conditions. Note that approximately 68% of known match RACs maintained the same shape class. 
	Label 
	Label 
	Label 
	Elongated 
	Isometric 
	Irregular 


	Elongated 
	Elongated 
	Elongated 
	487 
	19 
	128 

	Isometric 
	Isometric 
	5 
	184 
	176 

	Irregular 
	Irregular 
	89 
	141 
	537 


	a known size, etc.) and can be assessed as such. However, for any given shoe size (or pattern, or brand, etc.) the database itself is limited in sample size. With this in mind, an interim solution (at least until the database grows to such a size that sampling is considered robust) is to transform the frequency information into a normalized space that allows for numerical assessment regardless of shoe size, shape, pattern, etc. Naturally, this simpliﬁcation bounds the utility of the frequency information, a
	Normalization was achieved using a single idealized shoe corresponding to a men’s size 10 
	.
	Reebok walking shoe with an outsole surface area of approximately 21,235mm. Beginning from the top medial portion of the shoe, the outsole was divided into 5mm x 5mm cells through a rastering process, creating 990 total cells of which 860 were complete, and 130 were partial (or straddling the perimeter/edge of the outsole as illustrated in Fig. 13). By mapping between Cartesian and polar coordinates, each RAC could be localized via θ and rnorm. Essentially, this meant that a RAC near the edge of the medial 
	R
	2 

	The shoes described in Tables 2 -6 generated a total of 72,306 RACs. The minimum number on a single outsole was 1, and the maximum was 465 (with an average of 56). The mean, standard deviation and maximum number of RACs per heatmap bin is summarized in Table 
	13. The total across all shoes/bins reveals 25,420 irregularly shaped features (35%), 32,549 
	Figure
	Figure 13: Illustration of a full and partial 5mm x 5mm cell on the normalized outsole. 
	Figure 13: Illustration of a full and partial 5mm x 5mm cell on the normalized outsole. 


	linear features (45% lines/curves), and 14,337 isometric features (20% circles/triangles). 
	Table 13: Descriptive statistics of RAC frequency per heatmap bin as a function of shape. 
	Statistic 
	Statistic 
	Statistic 
	Any Shape 
	Isometric 
	Elongated 
	Irregular 

	Mean 
	Mean 
	73 
	14 
	33 
	26 

	SD 
	SD 
	36 
	8 
	19 
	13 

	Maximum 
	Maximum 
	182 
	45 
	109 
	63 


	Table 14 reports the frequency of bins with a given range of randomly acquired characteristics, revealing that the highest percentage of bins (35%) have between 61-90 RACs. Graphically, this same data is provided as a histogram in Fig. 14, but with a binwidth/resolution of 12 (e.g., 0-12 RACs, 13-24 RACs, etc.) showing that the largest frequency of bins have between 72-84 RACs. 
	Table 14: Frequency of bins with a given range of RACs. 
	Number of RACs 
	Number of RACs 
	Number of RACs 
	Frequency of Bins 
	∼ Percentage % 

	0 
	0 
	14 
	> 1 

	1-30 
	1-30 
	138 
	14 

	31-60 
	31-60 
	191 
	19 

	61-90 
	61-90 
	342 
	35 

	91-120 
	91-120 
	202 
	20 

	121-150 
	121-150 
	89 
	9 

	151-180 
	151-180 
	14 
	>1 

	Total 
	Total 
	990 
	100 



	2.2.G Shape Descriptor 
	2.2.G Shape Descriptor 
	Based on the limitations noted using general shape categorization, additional methods to discern RAC similarity/dissimilarity were sought. To this end, each RAC was treated as a 
	Based on the limitations noted using general shape categorization, additional methods to discern RAC similarity/dissimilarity were sought. To this end, each RAC was treated as a 
	closed planar ﬁgure yielding a Fourier description (Bartolini et al., 2005; Dalitz et al., 2013; Wallace and Mitchell, 1980). This description was generated by tracing the contour of the shape (x(t),y(t)) (where t =0, ... N − 1 with N = 350 for this dataset) and assuming a 

	Figure
	Figure 14: Frequency of RACs per bin (cell/bin resolution of 5mm x 5mm) and histogram bins of size 12 (i.e., 0-12, 13-25, etc.). 
	Figure 14: Frequency of RACs per bin (cell/bin resolution of 5mm x 5mm) and histogram bins of size 12 (i.e., 0-12, 13-25, etc.). 


	√ 
	complex plane z(t)= x(t)+ iy(t) (where i = ). The resulting one-dimensional complex sequence of numbers was then mapped to the frequency domain via the discrete Fourier transform (Bartolini et al., 2005) where Rm and θm are the magnitude and phase of the mcoeﬃcient, respectively (Bartolini et al., 2005): 
	−1
	th 

	N −1
	X 
	(−i2πmt/N)(iθm)
	Z(m)= z(t) e= Rm e(7) t=0 
	m = −N/2,..., −1, 0, 1, . . . , N/2 − 1 
	As necessary, the coeﬃcients can be normalized and forced to be invariant to translation, scale, rotation and contour/sequence start point according to the following modiﬁcations (Bartolini et al., 2005): 
	Z(0) = 0 ⇒ translation invariance 
	Rm
	Rm

	Rm = ⇒ scale invariance 
	Rm = ⇒ scale invariance 
	R
	1 

	(8)

	− 
	− 
	θ−1+θ1

	θm = θm ⇒ rotation invariance 
	2 

	θ−1−θ1
	θ−1−θ1

	θm = θm + m ⇒ start point invariance 
	2 

	To illustrate, consider Fig. 15; the ﬁrst row depicts a single RAC (A), along with four synthetic 
	modiﬁcations (B-E showing changes in scale, rotation and translation), and the second row illustrates the associated normalized Fourier descriptors. Note that the x-and y-axes are arbitrary since the images have been normalized, but all shape contours are normalized to the same conﬁguration, save a single π radian ambiguity (Folkers and Samet, 2002). Unless otherwise noted, all subsequent uses of RAC Fourier descriptors make use of both translation and start point invariance modiﬁcations. 
	Figure
	Figure 15: First row: (A) Original RAC, (B) Rotated, (C) Rotated, (D) Rotated, Translated, and Scaled, (E) Scaled and Translated. Second row: Plot of normalized Fourier shapes derived from the RACs shown in ﬁrst row. 
	Figure 15: First row: (A) Original RAC, (B) Rotated, (C) Rotated, (D) Rotated, Translated, and Scaled, (E) Scaled and Translated. Second row: Plot of normalized Fourier shapes derived from the RACs shown in ﬁrst row. 


	2.3 Similarity Assessment 
	2.3 Similarity Assessment 
	The aforementioned normalization step yields RAC frequency information and the potential for chance co-occurrence of RACs within a 5mm x 5mm cell on an outsole (in other words, the dataset can empirically estimate the random chance of discovering two or more accidentals in the same position on shoes previously known to be unrelated). This can be further divided by geometry in terms of the chance co-occurrence of elongated, isometric and irregular shaped RACs within a 5mm x 5mm cell. However, chance co-occur
	-

	• 
	• 
	• 
	Assess the strengths and weaknesses of each metric; 

	• 
	• 
	Report the actual separability of known matches and known non-matches as a function of RAC maps; 

	• 
	• 
	• 
	To reduce the number of pairwise comparisons that would be required if an analyst wished to ‘visually’ assess similarity. In other words: 

	– 
	– 
	– 
	To perform all pairwise similarity comparisons for RACs with positional overlap (which required a total of 3,239,114 pairwise comparisons); 

	– 
	– 
	Sort the ordered list in every bin/cell to reveal the top (most similar) 8 paired RAC candidates; 

	– 
	– 
	Allow an analyst to visually examine the short-list (pairs deemed most similar mathematically) to determine the degree to which the coincidental association in position and categorical-shape is associated with visually indistinguishable RACs, and therefore of forensic signiﬁcance. 




	With the above in mind, the remainder of this section will describe the similarity metrics of interest, the strengths and weaknesses associated with each metric, the separation of known matches and known non-matches, and the manner in which a numerical metric can be used within a web-based application. 
	Identiﬁcation of Known Match (KM) RAC Pairs 
	A database of 2,159 randomly acquired characteristics was compiled by marking features on the 200 crime scene-like (CS) impressions (originating from 100 shoes) as detailed in Richetelli et al. (2017). In order to compare KM RACs, it was necessary to identify correspondences between accidentals on high quality exemplars and crime scene-like prints. For exemplars that were repeatedly marked within the quality control/assurance program, correspondences were readily available. For crime scene-like images, ther
	o 



	2.3.A RAC Loss 
	2.3.A RAC Loss 
	Given the inherent inconsistency present in shoeprint creation (such as variation in pressure, torque, substrate, etc.), it is expected that reproduction of RACs in crime scene-like quality prints will be variable in comparison to high quality exemplars collected by pressing a dusted outsole against an adhesive sheet, thus ensuring full and even contact. Based on the results from this study, an average of 85% of RACs were not reproduced in crime scene-like impressions (Table 15). In addition, zero RACs were
	Figure
	[244, 1415, 0.71] [245, 1395, 0.68] [244, 1411, 0.71] 
	Figure
	[99, 1380, 0.42] [99, 1383, 0.42] [98, 1378, 0.41] 
	Figure
	Figure 16: RAC image mates with their corresponding location information [θ (degree), r (pixel), rnorm]. High quality RAC image (left) with its detected crime scene RAC mates from each replicate (center, right). 
	Figure 16: RAC image mates with their corresponding location information [θ (degree), r (pixel), rnorm]. High quality RAC image (left) with its detected crime scene RAC mates from each replicate (center, right). 


	[244, 1562, 0.68] [243, 1550, 0.70] [244, 1562, 0.68] 
	reproduction varied as a function of any of these factors. As detailed in Table 16, RAC loss (77% -84%) exhibited very little variation across shape categories. However, greater variation can be observed as a function of RAC size; in fact, signiﬁcant diﬀerences in loss as a function of RAC size were detected as per the Chi-square test (McHugh, 2013) with α =0.05. To summarize the observed trend, as a feature’s size increased (in either total area or perimeter), the percent loss decreased (Tables 17 and 18).
	Table 15: Quantifying RAC loss between high quality exemplars and replicate crime scene-like impressions (HQ = high quality, CS = crime scene). 
	RACs 
	RACs 
	RACs 
	HQ 
	CS Rep 1 
	CS Rep 2 

	Total Number 
	Total Number 
	6,896 
	1,049 
	1,110 

	Number Lost 
	Number Lost 
	-
	5,847 
	5,786 

	Percent Lost 
	Percent Lost 
	-
	85% 
	84% 

	Mean Number per Shoe ± 1 SD 
	Mean Number per Shoe ± 1 SD 
	69 ± 72 
	10 ± 12 
	11 ± 12 

	Maximum Number 
	Maximum Number 
	307 
	66 
	61 

	Minimum Number 
	Minimum Number 
	2 
	0 
	0 


	Table 16: RAC loss between high quality exemplars and replicate crime scene-like impressions as a function of RAC shape (HQ = High Quality). 
	Shape 
	Shape 
	Shape 
	Total HQ RACs 
	Lost HQ RACs 
	∼ % Loss 

	Circle 
	Circle 
	1,024 
	863 
	84% 

	Line/Curve 
	Line/Curve 
	2,685 
	2,239 
	83% 

	Irregular 
	Irregular 
	2,732 
	2,173 
	80% 

	Triangle 
	Triangle 
	455 
	348 
	77% 


	Table 17: RAC loss between high quality exemplars and replicate crime scene-like impressions as a function of RAC perimeter (HQ = High Quality). 
	Perimeter (P) (mm) 
	Perimeter (P) (mm) 
	Perimeter (P) (mm) 
	P (pixels) 
	Total HQ RACs 
	Lost HQ RACs 
	∼ % Loss 

	0 < P < 2 
	0 < P < 2 
	0-45 
	2,936 
	2,623 
	89% 

	2 ≤ P < 4 
	2 ≤ P < 4 
	46-91 
	2,413 
	1,939 
	80% 

	4 ≤ P < 6 
	4 ≤ P < 6 
	92-137 
	828 
	599 
	72% 

	6 ≤ P < 8 
	6 ≤ P < 8 
	138-183 
	337 
	217 
	64% 

	P ≥ 8 
	P ≥ 8 
	≥ 184 
	382 
	245 
	64% 



	2.3.B Comparison 
	2.3.B Comparison 
	To assess the degree of similarity that can be expected when comparing high quality exemplars with crime scene-like impressions, ﬁve metrics of similarity were considered, including: 
	-

	Table 18: RAC loss between high quality exemplars and replicate crime scene-like impressions as a function of RAC area (HQ = High Quality). 
	Area (A) (mm2) 
	Area (A) (mm2) 
	Area (A) (mm2) 
	A (pixels2) 
	Total HQ RACs 
	Lost HQ RACs 
	% Loss 

	0.00 ≤ A < 0.25 
	0.00 ≤ A < 0.25 
	0-131 
	3,994 
	3,548 
	89% 

	0.25 ≤ A < 0.50 
	0.25 ≤ A < 0.50 
	132-264 
	1,408 
	1,080 
	78% 

	0.50 ≤ A < 0.75 
	0.50 ≤ A < 0.75 
	265-396 
	589 
	419 
	71% 

	0.75 ≤ A < 1.00 
	0.75 ≤ A < 1.00 
	397-528 
	294 
	201 
	68% 

	1.00 ≤ A < 2.00 
	1.00 ≤ A < 2.00 
	529-1058 
	391 
	253 
	65% 

	A ≥ 2.00 
	A ≥ 2.00 
	≥ 1059 
	220 
	122 
	55% 


	modiﬁed phase only correlation (MPOC), matched ﬁlter (MF), a modiﬁed cosine similarity (MCS), Hausdorﬀ distance (HD), and Euclidean distance (ED). Note: the results comparing high quality versus crime scene-like imagery were assessed prior to characterization of all 1,300 outsoles in the current database, and are therefore based on the ﬁrst 1,000 outsoles that were analyzed. 
	-

	Modiﬁed Phase Only Correlation (MPOC) 
	The Fourier transform F [g(x, y)] = G(u, v) of a spatial domain image g(x, y) gives the analyst access to frequency information associated with image amplitude A(u, v) and phase σ(u, v) as illustrated in Eqs. 9 and 10 (where the subscripts reference the images under comparison and 
	√ 
	i = −1) (Bouridane, 2009). 
	iσ1(u,v)
	G1(u, v)= A1(u, v)e (9) 
	iσ2(u,v)
	G2(u, v)= A2(u, v)e (10) 
	Once the Fourier transform of each input image has been calculated, the phase only correlation can be computed according to Eq. 11 (de Chazal et al., 2005; Gueham et al., 2007; Xiao and Shi, 2008) where F is the inverse Fourier transform and Gis the complex conjugate of G2 (Bouridane, 2009). 
	−1 
	∗ 
	2 

	.. 
	G1(u, v)G(u, v)
	G1(u, v)G(u, v)
	∗ 
	2

	−1
	F 


	P OCgg= (11)
	1
	2 

	| G1(u, v)G(u, v) |
	| G1(u, v)G(u, v) |
	∗


	2
	.. 
	−1 i[σ1(u,v)−σ2(u,v)]
	F 

	= e 
	Eq. 11 can be modiﬁed by application of a frequency ﬁlter that selectively limits frequencies used in the computation such that F [g(x, y) · h(k, l)] = G(u, v). In this work, each image g(x, y) was modiﬁed by the windowing function shown in Eq. 12 with α =0.2 and where k = l = N which is the size of the RAC image in pixels (1,600 x 1,600): 
	.. 
	2πk 
	2πk 
	2πk 

	h(k) 
	h(k) 
	= 
	α − (1 − α) cos 
	N 
	(12) 

	k 
	k 
	= 
	0, 1, . . . , N − 1 


	Fourier Descriptors (FD) 
	With the exception of MPOC which was computed using 1,600 x 1,600 pixel imagery, all remaining similarity metrics were based on perimeter information. More speciﬁcally, the RAC was treated as a closed planar ﬁgure yielding a Fourier description (FD) (Bartolini et al., 2005; Dalitz et al., 2013; Wallace and Mitchell, 1980), and as previously described (Eqs. 7 anad 8 and Fig. 15), after normalization to ensure invariance to translation, rotation and contour/sequence start point. 
	Matched Filter (MF) 
	The matched ﬁlter similarity metric between two shapes Z1(m) and Z2(m) was computed as m)
	ˆ
	ˆ
	Z(

	illustrated in Eq. 13 (Gregga et al., 2002) where Z(m) is normalized according to √
	ˆ
	P 
	ˆ

	|z(t)|2 
	t
	such that 0.0 is the minimum (least similar) and 1.0 is the maximum (most similar): 
	MF = argmax 
	..... 
	1
	X
	N−1
	N 
	t=0 
	ˆˆ(i2πmt/N) 
	Z
	1
	(m) Z
	2
	(m)e

	.....
	(13) 
	Modiﬁed Cosine Similarity (MCS) 
	Cosine similarity is a commonly used metric that can assess the similarity between two data vectors (Schott, 2007). For two similar inputs a and b, the resulting angle (θ) between them will be small; conversely, θ is large for two dissimilar inputs. Since the RAC perimeters were deﬁned as FDs (or complex numbers z(t)= x(t)+ iy(t)), each complex vector was converted to a real-valued vector (ˆz) by adding x and y in quadrature before employing the traditional cosine computation shown in Eq. 14, where (T ) rep
	.
	. 
	ab 
	T 

	θ = cos 
	−1 
	√ 

	√ 
	(14)
	T T 
	b
	b

	aa 
	Euclidean Distance (ED) 
	Euclidean distance was the fourth metric employed for comparison. The distance (D) between elements in complex vectors was obtained as detailed in Eq. 15, where x1 and y1 denote the real and imaginary parts of the ﬁrst vector, respectively (Schott, 2007). Likewise, x2 and y2 denote the real and imaginary parts of the second vector for comparison, respectively. The total distance was normalized by dividing the summation by the maximum number of elements in the vectors (N = 350 for this datset), yielding an a
	X X
	q

	1 
	D =(x1 − x2)+(y1 − y2)(15)
	2 
	2 

	N 
	Hausdorﬀ Distance (HD) 
	Using the Euclidean distance, Hausdorﬀ distance was likewise computed. This is more a variant of ED than a truly unique computation since ED was used ‘under-the-hood’ in the HD computation (instead of a new metric -such as Manhattan distance -but this is something that can be remedied moving forward). In this computation, the distance (d(a, b)) was computed between a point (e.g., a1) on the perimeter of RAC (A) and all points on the perimeter of RAC (B) using the desired distance metric (in this case, ED). 
	H(A, B)= max{h(A, B),h(B, A)} (16) where h(A, B)= maxa∈A{minb∈B{d(a, b)}} 

	2.3.C Individual RAC Similarity 
	2.3.C Individual RAC Similarity 
	Of the ﬁve metrics utilized to determine similarity between crime scene-like RACs and their high quality mates (MPOC, MF, MCS, HD and ED), each was assessed as a function of RAC shape, perimeter and area. The results are illustrated using continuous probability density functions (PDFs) constructed using Gaussian kernel density estimators, with Chi-square signiﬁcance testing (α =0.05) as a function of 10 evenly divided discrete score bins (where bin shading in individual plots indicates signiﬁcance). Note th

	2.3.D Similarity as a Function of RAC Shape 
	2.3.D Similarity as a Function of RAC Shape 
	Diﬀerences in similarity scores based on RAC shape (linear/elongated, isometric and irregular) were detected for 99.5% of the data for all metrics, except matched ﬁlter, as per the Chi-square test (McHugh, 2013) with α =0.05. For MPOC, HD and ED, isometric features (circles and triangles) exhibited higher similarity scores, while linear/elongated features (lines and curves) exhibited lower similarity scores. This is illustrated in Figs. 17 and 18 for the MPOC and HD metrics, respectively. This trend is beli
	Diﬀerences in similarity scores based on RAC shape (linear/elongated, isometric and irregular) were detected for 99.5% of the data for all metrics, except matched ﬁlter, as per the Chi-square test (McHugh, 2013) with α =0.05. For MPOC, HD and ED, isometric features (circles and triangles) exhibited higher similarity scores, while linear/elongated features (lines and curves) exhibited lower similarity scores. This is illustrated in Figs. 17 and 18 for the MPOC and HD metrics, respectively. This trend is beli
	non-matching lines from two diﬀerent shoes, a rotational oﬀset between the circles may go undetected, but the rotational oﬀset between the linear features may very well be the only way to diﬀerentiate the non-matching lines. 

	Figure
	Figure 17: Modiﬁed phase only correlation scores as a function of RAC shape. Note that isometric features (circles and triangles) exhibit higher similarity scores (closer to 1.0), while linear/elongated features (lines and curves) exhibit lower similarity scores (closer to 0.0). Shaded score bins represent signiﬁcance diﬀerences in score as a function of shape based on the Chi-square test. Note that diﬀerences in scores as a function of RAC shape were observed for 99.5% of the data. 
	Figure 17: Modiﬁed phase only correlation scores as a function of RAC shape. Note that isometric features (circles and triangles) exhibit higher similarity scores (closer to 1.0), while linear/elongated features (lines and curves) exhibit lower similarity scores (closer to 0.0). Shaded score bins represent signiﬁcance diﬀerences in score as a function of shape based on the Chi-square test. Note that diﬀerences in scores as a function of RAC shape were observed for 99.5% of the data. 


	Interestingly, the opposite trend (Fig. 20) was observed for MCS wherein linear/elongated features exhibited the highest similarity scores. Although it is diﬃcult to conceptualize why this may be true, the results do match the mathematics (e.g., if you compare two slightly misaligned/noisy lines and two slightly misaligned/noisy isometric features, computationally, the linear/elongated features report smaller angular diﬀerences in n-dimensional space). Also of equal importance is the fact that the matched ﬁ

	2.3.E Similarity as a Function of RAC Size 
	2.3.E Similarity as a Function of RAC Size 
	Mirroring the results for MF as a function of shape, the majority of the matched ﬁlter scores (94.2% for perimeter and 92.6% for area) did not exhibit dependence on RAC size, as illustrated in Figs. 22 and 23. However, diﬀerences in similarity scores based on RAC size (perimeter and area) were detected for 99.5% of the data with MPOC, HD and ED, as per the Chi-square test (McHugh, 2013) with α =0.05. In other words, the similarity scores for diﬀerent sized RACs were signiﬁcantly diﬀerent from those expected
	-
	-

	Figure
	Figure 18: Hausdorﬀ scores as a function of RAC shape. Note that isometric features (circles and triangles) exhibit higher similarity scores (closer to 0.0), while linear/elongated features (lines and curves) exhibit lower similarity scores (further from 0.0). Shaded score bins represent signiﬁcance diﬀerences in score as a function of shape based on the Chi-square test. Note that diﬀerences in scores as a function of RAC shape were observed for 99.5% of the data. 
	Figure
	Figure 19: Example of stylized high quality (HQ) and crime scene (CS) RACs. Note that lines exhibit greater discordance (overlap very little) as compared to circular shapes when orientation diﬀerences exists (scale and rotational diﬀerences are shown for maximum emphasis). 
	Figure 19: Example of stylized high quality (HQ) and crime scene (CS) RACs. Note that lines exhibit greater discordance (overlap very little) as compared to circular shapes when orientation diﬀerences exists (scale and rotational diﬀerences are shown for maximum emphasis). 


	Figure
	Figure 20: Modiﬁed cosine similarity scores as a function of RAC shape. Note that linear/elongated features (lines and curves) exhibit higher similarity scores (closer to 0.0). Shaded score bins represent signiﬁcance diﬀerences in score as a function of shape based on the Chi-square test. Note that diﬀerences in scores as a function of RAC shape were observed for 99.5% of the data. 
	respectively. In other words, as RAC size increased, similarity scores decreased. This likely occurred because large features can reproduce as several smaller and segmented versions of their original, more-complex self when created under variable crime scene-like conditions (Fig. 26). Due to this phenomena, each individual smaller segment from the crime scene-like RAC may compare back to a single larger feature in the high quality impression, yielding a lower numerical score unless manual intervention or un
	Figure
	Figure 21: Matched ﬁlter scores as a function of RAC shape. Note the lack of dependence on score and shape for nearly 95.3% of the data. 
	Figure 21: Matched ﬁlter scores as a function of RAC shape. Note the lack of dependence on score and shape for nearly 95.3% of the data. 


	Figure
	Figure 22: Matched ﬁlter similarity score as a function of RAC perimeter. Note the lack of dependence on score and perimeter for nearly 94.2% of the data. 
	Figure 22: Matched ﬁlter similarity score as a function of RAC perimeter. Note the lack of dependence on score and perimeter for nearly 94.2% of the data. 


	Figure
	Figure 23: Matched ﬁlter similarity score as a function of RAC area. Note the lack of dependence on score and area for nearly 92.6% of the data. 
	Figure 23: Matched ﬁlter similarity score as a function of RAC area. Note the lack of dependence on score and area for nearly 92.6% of the data. 


	Figure
	Figure 24: Euclidean distance as a function of RAC perimeter. Note that diﬀerences in score as a function of perimeter were observed for 99.5% of the data. 
	Figure 24: Euclidean distance as a function of RAC perimeter. Note that diﬀerences in score as a function of perimeter were observed for 99.5% of the data. 


	Figure
	Figure 25: Euclidean distance as a function of RAC area. Note that diﬀerences in score as a function of area were observed for 99.5% of the data. 
	Figure 25: Euclidean distance as a function of RAC area. Note that diﬀerences in score as a function of area were observed for 99.5% of the data. 


	Figure
	Figure 26: Original marked RAC on high quality exemplar (top left) with corresponding RAC image obtained through connected components (top right). Corresponding RAC on crime scene-like print (bottom left) and RAC images obtained through connected components (bottom center and right). The crime scene-like RACs exhibit more voids and are incomplete in comparison with their high quality counterparts. 
	Figure 26: Original marked RAC on high quality exemplar (top left) with corresponding RAC image obtained through connected components (top right). Corresponding RAC on crime scene-like print (bottom left) and RAC images obtained through connected components (bottom center and right). The crime scene-like RACs exhibit more voids and are incomplete in comparison with their high quality counterparts. 


	2.4 Diﬀerentiating between KM and KNM Crime Scene RACs using Similarity Metrics 
	2.4 Diﬀerentiating between KM and KNM Crime Scene RACs using Similarity Metrics 
	Each crime scene-like RAC was compared to all high quality KMs and KNMs with coincidental association in position within a 5mm x 5mm cell around the questioned RAC’s centroid position within a database consisting of 1,000 shoes. Of the more than 57,000 high quality RACs within this database (at the time of analysis), a total of 44,230 exhibited chance association in position (within the previously deﬁned 5mm x 5mm cells). Based on RAC density, each crime scene-like RAC was compared to an average of 72 ± 21 
	-
	-

	Fig. 27 depicts the CMC curve for each similarity metric using the crime scene-like RAC as the query image, and the HQ database as possible mates. Similarity, Fig. 28 depicts the corresponding ROC curves (line designations are as follows: Hausdorﬀ distance = solid, Euclidean distance = dotted, modiﬁed cosine similarity = dashed, matched ﬁlter = dash-dot, modiﬁed phase only correlation = dash-dot-dot-dot). 
	Figure
	Figure 27: Cumulative match characteristic curves for similarity metrics. Line designations are as follows: Hausdorﬀ distance = solid, Euclidean distance = dotted, modiﬁed cosine similarity = dashed, matched ﬁlter = dash-dot, modiﬁed phase only correlation = dash-dot-dot-dot. 
	Figure 27: Cumulative match characteristic curves for similarity metrics. Line designations are as follows: Hausdorﬀ distance = solid, Euclidean distance = dotted, modiﬁed cosine similarity = dashed, matched ﬁlter = dash-dot, modiﬁed phase only correlation = dash-dot-dot-dot. 


	Figure
	Figure 28: Receiver operator characteristic curve of RAC similarity results. Line designations are as follows: Hausdorﬀ distance = solid, Euclidean distance = dotted, modiﬁed cosine similarity = dashed, matched ﬁlter = dash-dot, modiﬁed phase only correlation = dash-dot-dot-dot. 
	Figure 28: Receiver operator characteristic curve of RAC similarity results. Line designations are as follows: Hausdorﬀ distance = solid, Euclidean distance = dotted, modiﬁed cosine similarity = dashed, matched ﬁlter = dash-dot, modiﬁed phase only correlation = dash-dot-dot-dot. 


	In addition to the CMC and ROC curves, Table 19 reports the ROC AUCs (or the probability of a randomly selected known match RAC pair exhibiting a higher similarity score than a known non-match pair (also known as stochastic dominance)). Based on all observations, Hausdorﬀ and Euclidean distance metrics yield the best results, and this performance is signiﬁcantly better than that of the remaining three techniques (at p< 0.05). 
	-
	-

	Table 19: AUC of ROC curves for ﬁve metrics used to assess RAC similarity. All scores are signiﬁcantly diﬀerent from each other at p< 0.05, with the exception of Hausdorﬀ and Euclidean distances (p =0.986). 
	HD 
	HD 
	HD 
	ED 
	MCS 
	MF 
	MPOC 

	0.8152 
	0.8152 
	0.8151 
	0.7706 
	0.7462 
	0.6289 


	Note that the results regarding RAC similarity obtained using ﬁve quantitative methods suggest two additional, but equally important, conclusions. First, not all similarity metrics are created equal. This is evident based on the dependence of MPOC, HD, ED, and MCS, (as well as the lack of dependence of MF) on RAC shape and size. For example, if one were to argue that all RACs are not equally valuable, then it appears that not all numerical objective metrics of similarity are equally able to discern this inh
	Note that the results regarding RAC similarity obtained using ﬁve quantitative methods suggest two additional, but equally important, conclusions. First, not all similarity metrics are created equal. This is evident based on the dependence of MPOC, HD, ED, and MCS, (as well as the lack of dependence of MF) on RAC shape and size. For example, if one were to argue that all RACs are not equally valuable, then it appears that not all numerical objective metrics of similarity are equally able to discern this inh
	-

	is that numerical metrics exhibit particular behaviors, and that these behaviors can impact conclusions. In other words, the results of an objective numerical comparison, just like the results of two competing subjective experts, will not necessarily remove disagreement unless the community fully agrees on a single approach and the reason for employing a speciﬁc type of metric for all comparisons. 

	Second, the similarity metrics used in this study are more adept at measuring ‘exactness’, which is really not a reasonable expectation given the physical variation in print quality that is typically encountered during the commission of a crime. Although the experienced footwear examiner innately recognizes mitigating factors that can impact the quality and degree of correspondence between randomly acquired characteristics on reported matches and those anticipated by random chance alone, it is much more diﬃ
	Figure
	Figure 29: Illustration of segmentation of RACs in crime-scene-like impressions (center and bottom row) as compared to their high quality mate (top row). The RAC in the left column originated from the heel region of 
	Figure 29: Illustration of segmentation of RACs in crime-scene-like impressions (center and bottom row) as compared to their high quality mate (top row). The RAC in the left column originated from the heel region of 


	.
	Goretex XCR hiking shoe with heavy wear. The feature in the center column was 
	a men’s size 11 Merrell 
	R

	.
	DMX Foam athletic shoe with moderate wear. Lastly, 
	identiﬁed in the heel region of a men’s size 8 Reebok 
	R
	the accidental in the right column was localized in the heel region of a men’s size 11.5 Nike 
	R

	athletic shoe with heavy wear. 
	. 

	2.4.A RAC Map Correlation 
	In addition to individual RAC characterization and comparison, the entire RAC map for each crime scene-like print was compared back to its high quality exemplar to determine a ‘global similarity metric’ or the degree to which the impressions could be linked back to their source. This was accomplished using image-wide phase only correlation according to Eq. 11 (without windowing), and on full RAC maps (8,691 x 8,691 pixels in dimension). 
	Table 20 reports the total frequency of RACs in the binary maps, which are a comprehensive representation of all accidentals observed on an impression. The POC was computed on all possible RAC map pairs to estimate a global similarity score. Results are provided in Fig. 30 
	(a) as ROC curves displaying the true positive and false positive rate. Based on the POC metric, there was a 0.72 probability that a randomly selected pair of positive maps (known match mates) would result in a higher similarity score than a randomly selected pair of negative maps (known non-match mates). In other words, positive known matches would be correctly ranked in an ordered list 72% of the time. Given that 64% of the query crime scene-like maps contained 10 or fewer RACs, and that an average of 85%
	Table 20: RAC map density (CS = Crime Scene, HQ = High Quality). 
	Number of RACs in Map 
	Number of RACs in Map 
	Number of RACs in Map 
	CS Frequency 
	HQ Frequency 

	0 
	0 
	20 (10%) 
	0 (0%) 

	1-5 
	1-5 
	74 (37%) 
	7 (7%) 

	6-10 
	6-10 
	33 (17%) 
	12 (12%) 

	11-15 
	11-15 
	32 (16%) 
	5 (5%) 

	16-20 
	16-20 
	14 (7%) 
	11 (11%) 

	21-25 
	21-25 
	4 (2%) 
	2 (2%) 

	Greater than 25 
	Greater than 25 
	23 (11%) 
	63 (63%) 

	Total 
	Total 
	200 (100%) 
	100 (100%) 


	ROC Curve of HQ ROC Curve of Results RAC Map for Full RAC Map Comparisons 
	I I I 
	0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
	(a) False positive rate (b) False positive rate 
	Figure
	Figure 30: (a) Receiver operator characteristic curve of RAC map POC results. High quality comparisons are represented by the dash-dotted line and exhibit an area under the curve (AUC) of 0.996 (100 KMs and 19,800 KMN; 100 KMs × 2 duplicates, each cross-compared, creating n(n-1)/2 = 200(199)/2 = 19,900 total comparisons, of which 100 are KMs and 19,800 are KNMs). The solid line illustrates the results of crime scene-like impressions with an AUC of 0.719. (b) Receiver operator characteristic curve of RAC map
	•I 
	Figure 31: Probability density function describing the separability (in terms of POC match score) for 161 KM and 794,430 KNM comparisons (n(n-1)/2 = 1,261(1,260)/2 = 794,430). 
	Figure 31: Probability density function describing the separability (in terms of POC match score) for 161 KM and 794,430 KNM comparisons (n(n-1)/2 = 1,261(1,260)/2 = 794,430). 



	2.5 Chance Co-occurrence 
	2.5 Chance Co-occurrence 
	Finally, the database was queried for chance co-occurrence and random match probabilities (based on positional and shape category ‘matches’), and associated likelihood ratios as a function similarity metrics for RACs with positional co-occurrence. More speciﬁcally, the following three forensically-relevant questions were asked and answered. 
	1. Question: What is the empirical frequency of selecting two shoes at random, and ﬁnding a pair of RACs with positional similarity anywhere on the outsole? Using the formula for a simple combination (when order does not matter, and repetition is not allowed), the total number of ways k = 2 ‘outsoles’ can be selected from n = 1,300 (‘total shoes’ in the database) was computed according to Eq. 17. 
	n! 
	All (Possible Pairs) = = 844, 350 (17)
	(n − k)!k! 
	(n − k)!k! 

	Next, the dataset was queried to determine (empirically) the number of times two shoes exhibited a pair of RACs with positional similarity. When this empirical result is divided by the total number of ways this could happen (or ‘All’ in Eq. 17) a normalized frequency of occurrence (or probability) is obtained. Results are summarized in Table 21 for ‘any shaped’ pairs, and for pairs where both RACs are identiﬁed as ‘elongated’, both are identiﬁed as ‘irregular’ and both are identiﬁed as ‘isometric’. 
	Table 21: Normalized empirical frequency (probability) and chance co-occurrence for RAC pairs of any shape, and speciﬁc shapes (elongated, irregular and isometric). 
	Metric 
	Metric 
	Metric 
	Any Shape 
	Elongated 
	Irregular 
	Isometric 

	Probability 
	Probability 
	0.58 
	0.27 
	0.21 
	0.095 

	Chance Co-occurrence 
	Chance Co-occurrence 
	1 in 2 
	1 in 4 
	1 in 5 
	1 in 10 


	Note that the results provided in Table 21 are in alignment with reports from past empirical studies (Cassidy, 1995). More speciﬁcally, Cassidy (1995) found between a 1 in 6 chance of ﬁnding 10 ‘minute’ characteristics, a 1 in 20 chance of ﬁnding 3 moderate-sized characteristics, and 1 in 38 (to 1 in 60) chance of ﬁnding a single moderate-sized characteristic with coincidental similarity across known non-match heels (Cassidy, 1995). 
	2. Question: What is the empirical frequency of selecting two shoes at random and ﬁnding a positional match at a speciﬁc location? This is like asking for the empirical frequency of selecting two (unrelated) shoes at random, and ﬁnding RACs of shape type ‘A’ with positional association at location ‘B’, which is the forensic activity of identifying a crime scene print with RAC shape type ‘A’ at location ‘B’, and then asking for the random match probability (or the empirical frequency) of ﬁnding RAC shape typ
	To answer this question, each spatial cell in the dataset was queried to determine (empirically) the number of times two shoes exhibited a pair of RACs with positional similarity, resulting in 990 bin-speciﬁc frequencies, each divided by ‘All’ in Eq. 17, and converted to chance co-occurrence (or 1 in X), as illustrated in Table 22. 
	-

	Table 22: Summary statistics (per spatial bin of the normalized outsole) describing chance co-occurrence for RAC pairs of any shape, and speciﬁc shapes (elongated, irregular and isometric). Note that the best case scenario lacks locations where no repeats were detected, and the row labeled ‘unaccounted’ reports the number of bins with zero or a single RAC. 
	-

	Metric 
	Metric 
	Metric 
	Any Shape 
	Elongated 
	Isometric 
	Irregular 

	Mean Probability Chance Co-occurrence 
	Mean Probability Chance Co-occurrence 
	2.251E-04 1 in 4,441 
	6.920E-05 1 in 14,450 
	1.919E-05 1 in 52,120 
	5.539E-05 1 in 18,055 

	Median Probability Chance Co-occurrence 
	Median Probability Chance Co-occurrence 
	2.237E-03 1 in 447 
	4.808E-04 1 in 2,080 
	1.078E-04 1 in 9,279 
	3.554E-04 1 in 2,814 

	Worst Probability Chance Co-occurrence 
	Worst Probability Chance Co-occurrence 
	9.615E-03 1 in 104 
	3.559E-03 1 in 281 
	1.112E-03 1 in 893 
	1.757E-03 1 in 569 

	Best Probability Chance Co-occurrence 
	Best Probability Chance Co-occurrence 
	1.184E-06 1 in 844,350 
	1.184E-06 1 in 844,350 
	1.184E-06 1 in 844,350 
	1.184E-06 1 in 844,350 

	Unaccounted 
	Unaccounted 
	9 
	15 
	31 
	22 


	Note that the worst case scenario (greatest chance association) was found to be a chance of 1 in 104 (or a probability of 9.61E-03) and the best case scenario (lowest chance association, excluding bins where no repeats occurred) was a chance of 1 in 844,350 (or a probability of 1.18E-06). However, it must be noted that the best case scenario is bounded by the size of the database (i.e., bins with a single positional co-occurrence between all 1,300 shoes). Thus, if the database size increases, the denominato
	3. Question: How similar are RACs with positional co-occurrence? RACs with positional co-occurrence (and even identical shape categorizations), are not necessarily geometrically similar. For example, two linear elements could vary in orientation, length, thickness, curvature, etc. Thus, the mathematical similarity of RACs with coincidental positional similarity was determined. First, the HD dissimilarity of 6,993 KM comparisons was computed (of which 5,227 were high quality versus high quality RAC compariso
	-
	-
	-
	-

	All resulting normalized scores were used to create probability density functions (PDFs), and then the likelihood ratio (LR) was computed as the ratio of the KM and KNM PDFs at all normalized HD values. The cumulative results are illustrated in Fig. 32, where the 
	All resulting normalized scores were used to create probability density functions (PDFs), and then the likelihood ratio (LR) was computed as the ratio of the KM and KNM PDFs at all normalized HD values. The cumulative results are illustrated in Fig. 32, where the 
	solid curve represents the probability density of the KNMs, the dotted line represents the probability density of the KMs, and the dashed line represents the associated LR value. Note that a normalized HD score between 0.9930 to 0.9931 represents the boundary LR (or an LR = 1), the LR equals 27 at the maximum KM density, and that the LR climbs to 6,945 between HD values of 0.9994-0.9995. Given the boundary LR, the number of normalized HD KNM scores greater than 0.9930 was queried, and found to occur 414,417

	Figure
	Figure 32: Probability density of normalized HD scores for KNMs (solid line), KMs (dotted line) and associated LR values (dashed line). 
	Figure 32: Probability density of normalized HD scores for KNMs (solid line), KMs (dotted line) and associated LR values (dashed line). 


	Note that the above can be expanded to account for additional associations in RACs at more than one location and more than one type within the dataset, but this is reserved for dynamic applications in a web-based application (described in subsection 2.5.A and illustrated in Fig. 33). 
	2.5.A Use of Similarity in the Web Application 
	Based on the results revealed in Fig. 28 and Table 19, HD was deemed the most appropriate metric to use moving forward with the web application (Fig. 33). With this in mind, every HQ RAC with positional co-occurrence (localized to a speciﬁc bin) was pairwise compared using Hausdorﬀ distance. The results (per bin) were sorted and the top 8 ‘hits’ (or the 8 most mathematically similar RACs) are made available to the user for visual comparison. These results are available using a web-based application (Fig. 34
	if 

	Any Shape Irregular Elongated Approximately Isometric Total in Database 72,306 25,420 32,549 14,337 Total in Cell 182 43 109 30 Chance of Finding RAC in Cell 1 in 397 1 in 1,681 1 in 633 1 in 2,410 Chance of RAC 1 in 116 1 in 1,268 1 in 281 1 in 2,234 Similarities & Likelihood Ratios All Shapes Irregular Elongated Approximately Isometric Few Many 
	Figure 33: Static illustration of web application: /. The user can select a cell of interest, obtain frequency information associated with the cell, and then examine the most similar pairwise-compared RACs by selecting the buttons in the row labeled ‘Similarity & Likelihood Ratio’. Once selected, the user is directed to a second web page that allows for a side-by-side comparison of the 8 most similar RACs of interest. 
	Figure 33: Static illustration of web application: /. The user can select a cell of interest, obtain frequency information associated with the cell, and then examine the most similar pairwise-compared RACs by selecting the buttons in the row labeled ‘Similarity & Likelihood Ratio’. Once selected, the user is directed to a second web page that allows for a side-by-side comparison of the 8 most similar RACs of interest. 
	http://www.4n6chemometrics.com/database



	However, it is also important to remind the reader that RAC-speciﬁc likelihood ratios (LR) are not yet available for this dataset. In the interim, this webpage reports generalized LRs only. More speciﬁcally, the LR is the probability of a NHD score, given that the score has been sampled from a probability density function of scores generated when evidence is known to be from the same source, versus the probability of the same NHD score, given that the score has been sampled from a probability density functi
	Figure
	Figure 34: Static illustration of top 3 pairwise-compared RACs for a selected bin (note that the web page actually provides the top 8, including images of the Fourier descriptors, the normalized HD similarity score, and the associated likelihood ratio). 
	Figure 34: Static illustration of top 3 pairwise-compared RACs for a selected bin (note that the web page actually provides the top 8, including images of the Fourier descriptors, the normalized HD similarity score, and the associated likelihood ratio). 



	2.6 Impact, Outcomes, Evaluation & Dissemination 
	2.6 Impact, Outcomes, Evaluation & Dissemination 
	The contracted research was required to shed light on 3 research objectives of interest to NAS, NIJ and SWGTREAD (SWGTREAD, 2013): 
	1. 
	1. 
	1. 
	Random shape and/or placement of accidental marks; 

	2. 
	2. 
	Mathematical probabilities of individual characteristics; 

	3. 
	3. 
	Frequency of style, size, design and uniqueness in footwear. 


	Deliverables were as follows: 
	1. An evaluation of the discrimination potential of a numerical metric of similarity when comparing footwear accidental patterns: 
	(a) 
	(a) 
	(a) 
	Density functions describing the probability of similarity scores for known match and known non-match comparisons; 

	(b) 
	(b) 
	False positive and false negative error rates, including receiver operator characteristics (ROC) curves; 
	-


	(c) 
	(c) 
	A Bayesian interpretation of similarity scores. 


	2. A tool and dataset that can be integrated into existing training procedures and policies: 
	(a) 
	(a) 
	(a) 
	An electronic collection of exemplar and test impressions; 

	(b) 
	(b) 
	A web application that reports empirical frequency estimates related to close non-matches. 


	3. A framework for databasing studies (frequency of make, model and accidental characteristics): 
	-

	(a) 
	(a) 
	(a) 
	Positional frequency and estimates of chance occurrence of accidental features; 

	(b) 
	(b) 
	Frequency of accidental types. 



	2.7 Added Value 
	2.7 Added Value 
	1. Began a collaboration with the FBI to share methodology/code that will allow the FBI to process their footwear database using the approach created by our research group. 
	• 
	• 
	• 
	• 
	11-12-June-2014: A joint meeting between the WVU research group, the project’s practitioner partner (Mr. William Bodziak) and two analysts from the FBI (Dr. Brian Eckenrode and Mr. Eric Gilkerson) allowing for both training and professional development for the research students on this project (at the time, one undergraduate and two graduate students). Note that the most signiﬁcant outcome was that each student was given general and speciﬁc instructions regarding 
	-
	-


	the identiﬁcation of randomly acquired characteristics on outsoles, and how to differentiate microcellular bubbles, model features, texture and Schallamach patterns. The end result was a mini-proﬁciency testing session where each student interacted with the expert practitioners to receive speciﬁc feedback on his or her ability to detect and mark the acquired features. 
	-


	• 
	• 
	28-May-2015: Teleconference between WVU, NIST and the FBI group. 

	• 
	• 
	30-June-2015: Teleconference between WVU, NIST and the FBI group. 

	• 
	• 
	15-16-July-2015: Joint meeting between the WVU research group, the project’s practitioner partner (William Bodziak), and FBI analysts/visiting scientists. During this visit, Mr. Bodziak provided a training session to WVU and FBI analysts on the generation and collection of crime scene prints. This meeting was extended to 17-July-2015 between the WVU research group and the FBI group. During the full three-day time period, the WVU group trained three FBI visiting scientists (Brent Allred, Nicholas Vercruysse 
	-
	-


	• 
	• 
	15-16-September-2016: Joint meeting between the WVU research group and three FBI employees (Dr. Brian Eckenrode, Nicholas Vercruysse and Katherine Ky). Note that data analysis sharing is ongoing between the two teams. 



	2.8 Publications & Abstracts 
	2.8 Publications & Abstracts 
	• Richetelli, N., Lee, M., Lasky, C., Gump, M., and Speir, J. Classiﬁcation of Footwear Outsole Patterns using Fourier Transform and Local Interest Points. Forensic Science International. Vol. 275, 2017, pp. 102-109. 
	Abstract: Successful classiﬁcation of questioned footwear has tremendous evidentiary result can minimize the potential suspect pool and link a suspect to a victim, a crime scene, or even multiple crime scenes to each other. With this in mind, several diﬀerent automated and semi-automated classiﬁcation models have been applied to the forensic footwear recognition problem, with superior performance commonly associated with two diﬀerent approaches: correlation of image power (magnitude) or phase, and the use o
	Abstract: Successful classiﬁcation of questioned footwear has tremendous evidentiary result can minimize the potential suspect pool and link a suspect to a victim, a crime scene, or even multiple crime scenes to each other. With this in mind, several diﬀerent automated and semi-automated classiﬁcation models have been applied to the forensic footwear recognition problem, with superior performance commonly associated with two diﬀerent approaches: correlation of image power (magnitude) or phase, and the use o
	value; the 
	-

	media (blood and dust), transfer mechanisms (gel lifters), enhancement techniques (digital and chemical) and variations in print substrate (ceramic tiles, vinyl tiles and paper). Results indicate that POC outperforms both FMT and SIFT + RANSAC, regardless of image input (type, quality and totality), and that the diﬀerence in stochastic dominance detected for POC is signiﬁcant across all image comparison scenarios evaluated in this study. 
	-


	• Richetelli, N., Nobel, M., Bodziak, W., and Speir, J. Quantitative assessment of similarity between randomly acquired characteristics on high quality exemplars and crime scene impressions via analysis of feature size and shape. Forensic Science International. Vol. 270, 2017, pp. 211-222. : Forensic footwear evidence can prove invaluable to the resolution of a criminal investigation. Naturally, the value of a comparison varies with the rarity of the evidence, which is a function of both manufactured as wel
	-
	Abstract
	-
	-
	-
	-
	-

	• Speir, J., Richetelli, N., Fagert, M., Hite, M., and Bodziak, W. Technical Note: Quantifying randomly acquired characteristics on outsoles in terms of shape and position. 
	-

	Forensic Science International. Vol. 266, 2016, pp. 399-411. Abstract: Footwear evidence has tremendous forensic value; it can focus a criminal on, link suspects to scenes, help reconstruct a series of events, or otherwise provide information vital to the successful resolution of a case. When considering the speciﬁc utility of a linkage, the strength of the connection between source footwear and an impression left at the scene of a crime varies with the known rarity of the shoeprint itself, which is a funct
	investigati

	• Richetelli, N. Master’s of Science in Forensic Science Thesis: Quantitative Assessment of the Discrimination Potential of Class and Randomly Acquired Characteristics for Crime Scene Quality Shoeprints. West Virginia University, Department of Forensic & Investigative Science, December, 2015. 

	2.9 Meetings, Presentations & Invited Talks 
	2.9 Meetings, Presentations & Invited Talks 
	• 
	• 
	• 
	Richetelli, N., Speir, J. Quantifying the Chance Similarity of Randomly Acquired Characteristics in terms of Shape and Position on High Quality Footwear Exemplars. Presentation: International Association for Identiﬁcation (IAI) Annual Educational Conference, Cincinnati, OH, 2016. 
	-
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	• 
	• 
	Speir, J. Imaging, Classiﬁcation, and Quantiﬁcation of Forensic Pattern Evidence. Rochester Institute of Technology, Chester F. Carlson Center for Imaging Science Seminar Series, Rochester, NY, 11-March-2015. 
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	• 
	• 
	Speir, J. A Quantitative Assessment of Shoeprint Accidental Patterns with Implications Regarding Similarity, Frequency and Chance Association of Features. Invited Talk and Collaborative Meeting: National Institute of Standards and Technology, (Martin Herman, Hariharan Iyer, Simone Gittelson, Steve Lund, Yooyoung Lee), Gaithersburg, MD, 23-March-2015. 
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	in Footwear. Presentation: International Association for Identiﬁcation (IAI) Annual Educational Conference, Sacramento, CA, 2015. 
	• Speir, J. Preliminary Eﬀorts to Quantify the Chance Similarity in Shape and Position of Randomly Acquired Characteristics in Footwear. Invited Talk: NSF Statistical and Applied Mathematical Sciences Institute (SAMSI) Forensics Opening Workshop, Research Triangle Park, NC, 31-August-2015 through 04-September-2015. 
	2.9.A Limitations 
	Use and interpretation of the results presented in this summary document are bounded by the following limitations: 
	1. 
	1. 
	1. 
	The database samples are such that a single shoe type, manufacturer, brand and size does not repeat with appreciable frequency, providing only limited power to allow for statistical estimates based on a priori class association. Instead, the results ignore class features (including outsole size, perimeter and geometry) and apply only to the normalized scenario describe in subsection 2.2.F. 

	2. 
	2. 
	The results/metrics (i.e., likelihood ratios, random chance probability, etc.) are speciﬁc to the samples collected in this dataset, and should be extrapolated to other scenarios with caution, and only when doing so reasonably approximates the relevant population. In addition, the spatial limit of detection for RACs extracted from high quality imagery is most certainly much lower than that expected in forensic impressions (e.g., only a subset of the largest RACs in this dataset are likely to reproduce in cr

	3. 
	3. 
	Randomly acquired characteristics were manually extracted by analysts (no known automated extraction algorithm has proven to be eﬀective for this purpose), and as such, positional and shape/geometry frequency estimates are limited by intra-and inter-analyst variability in marking. 
	-
	-


	4. 
	4. 
	Score-based likelihood ratios are limited by the discrimination potential associated with the similarity metric utilized. In addition, the numerator in all LRs is a generic probability density function (created using scores obtained when sampling known matches, and not the repeated sampling and comparison any speciﬁc RAC). 
	-


	5. 
	5. 
	Chance co-occurrence in position and position/categorical-shape does not equal a forensically signiﬁcance random match probability. 
	-
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