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The specifc aims for this award were to develop and apply new population genetic theory to 

aid the interpretation of DNA profles, with an emphasis on population structure, lineage markers 
and mixtures. Good progress was made, as is now described. 

Estimation of Population Structure Parameter 

A DNA match probability is the probability an untyped person has a DNA profle given that a 
typed person has the profle, and this depends on the genetic structure of the population to which 

these two people belong. The key result, for a single-locus homozygote AA for example, for the 
match probability is 

[2� + (1 − �)pA][3� + (1 − �)pA]
Pr(AA|AA) = 

(1 + �)(1 + 2�) 

where pA is the population frequency for allele A and � is the population structure parameter. 

There is some doubt as to the appropriate value for � and we have developed new theory and 
applied that to a survey of published STR frequencies. 

The problem with structured populations arises when the people of interest belong, or are 
assumed to belong, the same subpopulation but data are available from only the whole population. 

The number and nature of subpopulations is generally unknown. It is helpful to introduce �i for 
a random pair of alleles in the ith subpopulation and �ii0 for a random pair of alleles, one from 

the ith and one from the i0th subpopulation. These �’s are often regarded to be probabilities of 
identity by descent, although more generally they are correlations for pairs of alleles. Averaging over 

subpopulations and pairs of subpopulations gives the within- and between-subpopulation quantities 
�W and �B. We have shown that the matching probability PM for an allele, where the two sources 
of the allele are in the same subpopulation, is 

PM = �W + (1− �W )H (1) 

where H is the sum of squares of population allele frequencies. This result is an average over all 
subpopulations and over all alleles. If H is replaced by H̃, its value in a sample from the whole 

population, then the match probability is estimated by 

ˆ ˜PM = �W + (1− �W )H (2) 

Here, �W = (�W − �B)/(1− �B) is usually written as � or as FST . A moment estimate is 

˜ ˜MW − MB
�̂W = (3) 

˜1 − MB 

˜ ˜The quantities MW , MB are the proportions of pairs of alleles that match, within subpopulations 
or between pairs of subpopulations, averaged over single and pairs or subpopulations. Specifcally, 

for population i, if a sample of ni alleles from that population (i.e. ni/2 individuals) has niu copies 
P˜of allele type u then the sample matching proportion is Mi = u niu(niu − 1)/[ni(ni − 1)] and 

P˜ ˜the average over r populations is MW − Mi/r. Similarly, the proportion of pairs of alleles, i 
P 

one from population i and one from population j that match is M̃ 
ij = niunju/(ninj) and u 

P 

the average over all pairs of populations is M̃B = i=6 j M̃ij/[r(r − 1)]. There may be interest in 

values obtained at a locus for each of the populations, and the appropriate moment estimates are 
Pˆ ˜ ˜ ˜ ˆ ˆ ˆ�i = (Mi − MB)/(1− MB). The quantity �W is the average of these: �W = i �i/r. 
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Figure 1: Moment estimates of �il. 

Moment estimators are designed to have low bias but they can have substantial variances. In 

practice, a common value is assigned to all loci and then the appropriate estimator is 

P ˜ ˜
l(MWl − MBl)

�̂W = 
P ˜(1 − MBl)l

˜ ˜where MBl, MWl are the observed matching proportions at locus l within subpopulations and 

between pairs of subpopulations. 
Moment estimates make few assumptions, other than the parametric form of allele frequency 

means and variances, and they are very easy to calculate. If more assumption are made then 
estimates with smaller variances can be obtained, and we have followed the example of Balding and 

colleagues (e.g. Steele and Balding, 2014; Steele et a., 2014) in assuming allele frequencies have 
a Dirichlet distribution over populations, assuming a beta distribution for � and using Bayesian 
methods to fnd a posterior distribution for �. We have found it convenient to use the BayeScan 

software (Foll et al., 2010) in practice 
We have surveyed the forensic science literature for published allele frequencies for autosomal 

STR loci. We have used data from 378 populations, with frequency data on up to 24 loci. For 
each locus-population combination we estimated �W as above. In Figure 1 we summarize these 

results. The 378 populations are displayed on the X-axis, and the 24 loci on the Y-axis. White 
cells indicate that data were not available for that combination. Blue values are negative, green 

values are small and positive, and brown values are larger and positive. The extreme variability of 
these estimates reduces their value. 

In Table 1, we show the �il and �Wl estimates for both the collection of populations within 
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Table 1: Moment Estimates of �. 

Locus African AustAb. Asian Caucas. Hispanic Indo-Pak Nat.Am. Polynes. Average 
VWA -0.064 0.018 0.014 0.012 0.021 0.019 0.005 0.023 0.006 
CSF1PO 0.028 – 0.058 -0.014 0.009 0.023 – – 0.021 
D1S1656 0.018 – 0.014 0.017 0.082 0.056 – – 0.037 
D2S441 -0.008 0.029 0.021 0.003 0.011 0.005 0.119 -0.000 0.022 
D2S1338 0.004 -0.002 0.039 -0.049 0.004 0.003 0.074 0.034 0.013 
D3S1358 0.032 0.008 0.003 0.066 0.060 0.032 0.061 -0.000 0.032 
D5S818 -0.002 – 0.004 0.060 0.001 – – – 0.015 
D6S1043 0.026 0.043 0.028 -0.002 0.014 0.017 0.046 -0.005 0.021 
D7S820 0.044 -0.006 -0.025 0.012 0.030 -0.034 0.083 0.021 0.015 
D8S1179 -0.034 – 0.031 0.011 0.055 -0.010 – – 0.010 
D10S1248 0.005 – 0.042 -0.029 0.045 0.008 – – 0.014 
D12S391 0.121 0.068 0.011 0.039 -0.007 0.001 -0.007 0.032 0.032 
D13S317 -0.007 0.062 0.003 0.024 0.003 -0.004 0.044 0.022 0.018 
D16S539 -0.005 0.004 0.022 0.004 0.002 0.038 0.022 0.054 0.018 
D18S51 -0.024 0.166 0.013 0.031 -0.007 0.016 0.004 -0.008 0.024 
D19S433 -0.012 -0.010 0.031 0.009 0.013 -0.008 0.018 0.032 0.009 
D21S11 -0.068 – 0.006 0.072 0.122 0.016 – – 0.030 
D22S1045 0.003 0.004 0.009 0.013 -0.002 0.005 -0.001 0.062 0.011 
FGA -0.024 – 0.068 0.026 0.021 0.023 -0.005 – 0.018 
PENTAD 0.022 – 0.008 0.022 0.015 0.008 0.014 – 0.015 
PENTAE 0.017 – 0.001 -0.002 0.010 -0.002 – – 0.004 
SE33 0.056 0.065 0.121 -0.003 0.018 0.003 0.190 0.031 0.060 
TH01 -0.070 0.031 0.146 0.119 -0.019 0.026 0.094 0.102 0.053 
TPOX -0.006 0.032 0.004 0.007 0.031 -0.000 0.053 0.023 0.018 
Average 0.002 0.021 0.028 0.019 0.022 0.010 0.034 0.017 0.019 

each of eight continental-ancestry groups, and for all 378 populations. Using more loci or more 
populations clearly decreases variation in the estimates. The “Caucas.” values, for example, show 

�W values for each locus and then for all 24 loci for the 152 populations we classifed as Caucasian. 
˜For these estimates the MB quantities were for all pais of the the Caucasian populations. The 

value of 0.019 for all loci is the value we would suggest using for a Caucasian subpopulation when 
data were available from only a larger, maybe national, database. We do note, however, the large 

variation in values among loci even when those use all the populations. 
We note that the group-specifc estimates in Table 1 are generally larger than the commonly 

accepted value of 0.01, and our peer-reviewed publication will containg the recommendation that 

a more appropriate value is 0.03. The practical implications for profles made from many loci, 
such as the CODIS set, will not be of great signifcance: match probabilities will remain small if 

”�” is changed from 0.01 to 0.03. There is a small e�ect from our use of unweighted estimators, 
following the recommendation of Bhatia et al. (2013), instead of the weighted analyses of Weir and 

Cockerham (1984), but the main reason our estimates are larger than those reported by some other 
authors (e.g. Budowle et al., 2001) is that we have used a wider collection of sampled populations. 

We believe our more conservative estimates are appropriate for the usual situation where the exact 
ancestral background of an unknown contributor to an evidence profle is not known. 

In Figure 2 we contrast the simple moment estimates, using all loci but for each of the 378 
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Figure 2: Moment (red) vs Bayesian (black) Estimates. 

populations with the Bayesian estimates. Specifcally, we show the 95% confdence intervals for 

the moment estimates, obtained by bootstrapping over loci, and the 95% credible intervals from 
the Bayesian posterior distributions. We believe the reason for the two intervals not to overlap 
in about one third of the populations is because the Bayesian approach ignores the correlation in 

allele frequencies between populations. 
Two publications, one containing the theoretical development and one containing the applica-

tions to the survey data, are about to be submitted. 

Y-STR Match Probabilities 

There is growing interest in the use of Y-STR profles for forensic purposes. Issues have arisen on 

how to determine match probabilities and how to combine Y-STR and autosomal match probabil-
ities. We have addressed each of these issues. 

Match probabilities follow the same logic as shown in the last section for autosomal alleles, 
except that now they apply to Y-haplotypes rather than separate alleles at each locus because 

of the lack or recombination on the Y chromosome. Specifcally, for haplotype A, the match 
probability is 

Pr(A|A) = �Y i + (1− �Y i)pA 

where �Y i is the value for the Y-markers in this haplotype for the ith subpopulation and pA is the 

haplotype frequency in the whole population. Averaging over subpopulations and haplotypes, the 
match probability is estimated as 

˜ ˜ ˜MW − MB 1 − MWˆ ˜PM = + H
˜ ˜1 − M 1 − MB B 

as in Equations 2, 3. In Table 2 we show data from the NISTpop.htm page of STRBase. The 

values shown are for matching averaged over within and between-pairs of the four groups African 
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Table 2: Matching Proportions for Y-STR Loci in NIST Database 

˜ ˜ ˆLocus MW MB �W 

DYS19 0.32571062 0.24309148 0.10915340 
DYS385a/b 0.07982377 0.04427420 0.03719640 
DYS389I 0.41279418 0.38319082 0.04799436 
DYS389II 0.26072434 0.23741323 0.03056847 
DYS390 0.28981997 0.18813203 0.12525182 
DYS391 0.52191425 0.48517426 0.07136392 
DYS392 0.39961865 0.35168087 0.07394164 
DYS393 0.50285122 0.48769253 0.02958906 
DYS437 0.46400112 0.38595032 0.12710828 
DYS438 0.36817530 0.23212655 0.17717601 
DYS439 0.35507469 0.34990863 0.00794667 
DYS448 0.30091326 0.22640195 0.09631787 
DYS456 0.33444029 0.32578009 0.01284478 
DYS458 0.21642167 0.19701369 0.02416976 
DYS481 0.18867019 0.14121936 0.05525373 
DYS533 0.39365769 0.37177174 0.03483757 
DYS549 0.33976578 0.30691346 0.04740003 
DYS570 0.21298105 0.20775666 0.00659442 
DYS576 0.20955290 0.18125443 0.03456321 
DYS635 0.27720127 0.20653182 0.08906400 
DYS643 0.28394262 0.20058158 0.10427710 
Y-GATA-H4 0.40667782 0.39899963 0.01277568 

American, Caucasian, Hispanic, and Asian. There is variation among loci. We do not have data 
from populations within each of these four groups, so the �W estimates are larger than they would 

be for use within one group. The estimates in Table 2 were produced as in Equation 3, where 
matching now refers to the alleles at each locus. 

A more helpful indication of � values is provided in Figure 3, where all possible haplotypes of 1 
to 23 loci are used to estimate �W for the same NIST data. The red line is the median value for all 

sets of the specifed number of loci, the blue lines delineate the central 95% of the values and the 
black lines show the maxima and minima. Note that the estimates are shown on a logarithmic scale, 

and that independence of mutation across loci would suggest a linear dependence on the number 
of loci. (For STR loci undergoing stepwise mutations that change the number of repeat units by 1, 

p

Kimura and Ohta (1975) showed that �W = 1/ (1 + 8Nµ) for populations of size N and mutation 

rate µ. In other words − ln(�W ) = 4Nµ and we might assume the haplotype mutation rate is 
proportional to the number of loci.) This is clearly not the case, showing that as more loci match, 

the greater the chance that additional loci will also match. The same phenomenon was noted for 
autosomal loci by Laurie and Weir (2003). 

Walsh et al. (2008) used a coalescent approach to address the e�ect of Y-STR matching on 
autosomal matching, and their work was followed up by Buckleton and Myers (2014). We are fnding 

it helpful to introduce �AY as the probability that, for two men in the same population, their Y-
haplotypes are identical by descent and so are a pair of autosomal alleles, one taken randomly 

from each. Our interest will center on the conditional identity probabilities: �Y |A = �AY /�A for Y 
identity given autosomal identity and �A|Y = �AY /�Y for autosomal identity given Y identity. 

There are fve possible arrangements Ri, i = 1, 2, ..., 5 of two autosomal and two Y alleles. In 
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Figure 3: Dependence of �W on the Number of Y-STR Loci. 

the following list of these arrangements, a, a0 are two autosomal alleles and y, y0 are two Y alleles 
(or haplotypes), and brackets enclose alleles in the same individual: 

R1 : 0 0][ay], [a y 

R2 : 0 0][aa y], [y 

R3 : 0][ay], [a 0], [y 

R4 : 0][aa 0], [y], [y 

R5 : 0][a], [a 0], [y], [y 

To establish the transition equations for the fve probabilities each of the four alleles is traced back 

to an individual in the previous generation. 
Numerical iteration of the transition equations for a range of values of N = NM = NF and µ 

(with �A = (1−µ)2 , �Y = (1−µ)40 for 20 Y loci) are shown in Table 3. This shows that Y-matching 
has little e�ect on autosomal coancestry when �A, �Y are large but the e�ect can be substantial 

when they are small. 
Another view of these results is shown in Figure 4. Only for moderately large values of �A can 

�A|Y be equated to �A and match probabilities for autosomal and Y profles be multiplied. 
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Table 3: Equilibrium Values of Joint and Conditional Identities 
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Table 1 

ˆ ˆ ˆ ˆ ˆ ˆ ˆN µ �Y �AY �A �A|Y �AY /(�A�Y ) 
104 10−2 0.00040 0.00001270 0.00123 0.03143 25.5580 
104 10−3 0.00447 0.00007101 0.01233 0.01587 1.2878 
104 10−4 0.04343 0.00483898 0.11110 0.11142 1.0029 

105 10−2 0.00004 0.00000123 0.00012 0.03036 246.6184 
105 10−3 0.00045 0.00000217 0.00125 0.00483 3.8785 
105 10−4 0.00452 0.00005742 0.01234 0.01271 1.0293 

106 10−2 0.00000 0.00000012 0.00001 0.03025 2457.2222 
106 10−3 0.00004 0.00000017 0.00012 0.00372 29.7852 
106 10−4 0.00045 0.00000073 0.00125 0.00161 1.2928 

Infinite Alleles Iterations 

0.00 0.01 0.02 0.03 0.04 0.05 

Theta−A 

Figure 4: Conditional vs Unconditional Autosomal � values. 
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Both the theoretical work and applications to published Y-STR data are about to be submitted 

for publication. 

Continuous Model for Mixtures 

Over the past three years we have made substantial contributions to the literature on providing 

numerical characterization of the evidentiary strength of DNA evidence. Our work assumes the 
applicability of likelihood ratios, and it has been designed to avoid problems with the “binary 

model” where decision rules on allelic presence in a profle rest on detection or analysis thresholds. 
These problems have been described by Evett et al. (1998) and others. Apart from the diÿculty 

of assigning values to thresholds and not attaining a conservative interpretation there is the real 
danger of ignoring relevant information in the electropherograms for STR markers (Perlin et al., 
2011) with the binary model. 

There have been studies (e.g. Butler, 2006) showing a divergence in interpreting mixtures by 
di�erent laboratories when, for example, alleles are called depending on peak heights in relation to 

a threshold. A consequence of rigid thresholds is that profles that di�er in the most minor way, say 
replicates from a single extraction, can lead to opposing interpretations. A counterexample to the 

apparent “conservativeness” of not calling alleles below a threshold was described by Lohmueller 
and Rudin (2013): a potential contributor, whose profle inclusion in a mixed profle would have 

favored the defense, was excluded by the binary model. Another concern is the widespread use of 
the “2p” rule in cases of allele dropout as this can be quite non-conservative (Buckleton and Triggs, 

2006). A growing literature (Cowell et al., 2008; Balding and Buckleton, 2009; Haned, 2011; Perlin 
et al., 2011; Lohmueller and Rudin, 2013) preceded our own basic paper (Taylor et al., 2013) on 
continuous models that avoid thresholds: these papers have reviewed diÿculties with the binary 

model. 
It is convenient to describe our work as having three stages. Firstly there is modeling of the 

complexities of STR electropherograms to account for heterozygote imbalance, allelic dropout and 
stutter peaks. In Bright et al. (2013) we described models for allele and stutter peak heights and 

we referred to our empirical studies. We confrmed the dependence of the ratio of stutter to parent 
peak height on the longest uninterrupted sequence of repeat units (LUS) as opposed to the allele 

size or total number of repeat units. We modeled allele plus stutter peak heights as a function of 
molecular weight with three “mass variables” a locus e�ect, a replicate e�ect, and the slope of the 

regression line (Bright et al., 2013a). We subsequently allowed for a non-linear relationship (Bright 
et al., 2013b). 

The heart of our approach is contained in Taylor et al. (2013). We consider alternative hy-

potheses Hm, m = 1, 2 for an STR profle G. Usually H1 denotes the prosecution hypothesis and 
H2 that of the defense. For each Hm we consider all sets Sj of multi-locus genotypes consistent 

with that hypothesis. Once the genotypes are specifed the hypotheses are not needed and we work 
with genotype weights wj = Pr(G|Sj). The likelihood ratio is 

P P 

Pr(G|H1) Pr(G|Sj) Pr(Sj|H1) wj Pr(Sj|H1)j j
LR = = P = P 

Pr(G|H2) j Pr(G|Sj) Pr(Sj|H2) j wj Pr(Sj|H2) 

Note that the binary model assigns every set of genotypes the weight of 0 or 1 depending on whether 
the profle G is deemed impossible or possible to have originated from the genotypes specifed by 

Sj under Hm. The collection ({Sj}) of sets of genotypes will be di�erent under H1 and H2. The 
continuous approach avoids the procedure sometimes employed under the binary model of omitting 

loci if certain criteria are not met. This is conservative only if the LR based on the approach 
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described here is greater than one. Alleles that fail to meet a threshold may well have low or zero 

probability under one or other hypothesis. 
An exact analytical approach that would account for all the complexities of electropherograms 

is not possible so we have adopted a Markov chain Monte Carlo (MCMC) method. Briefy, we 
choose an Sj and this specifes the molecular weights for each allele in the profle. These, and our 

other parameters and model, lead to expected allelic and stutter peak heights Ei, where i ranges 
over all peaks. Bright et al. (2013a) showed that ratio of the observed peak heights Oi to these 
expected values has a log-normal distribution: ln(Oi/Ei) ˘ N (0, ˙2). This allows probabilities to 

be attached to the Pr(Oi|Sj)’s: the genotype Sj is then changed at a randomly-chosen locus and 
the probability of the profle {Oi} is re-calculated with the updated probabilities. If the profle 

now has a higher probability the new set Sj is “accepted” and becomes the new profle, otherwise 
it is accepted with a probability that is less than one. This Metropolis-Hastings algorithm leads 

to all profles Sj being visited by the process with a frequency that depends on the probabilities 
of the profle given the Sj and the procedure provides numerical values of the weights wj in an 

eÿcient way. The probabilities Pr(Sj|Hm) just use standard methods: if Sj was the set (AA, BC) 
of genotypes at one locus that under H1 accounted for the alleles observed in the evidentiary profle 

then Pr(Sj|H1) = pApBpC(1 − �)2[� + (1 − �)pA]/[(1 + �)(1 + 2�)(1 + 3�)] (Balding and Nichols, 
1994). Suÿcient details are given by Taylor et al. (2013) to allow other investigators to write their 
own computer code to implement our method. 

The fnal step is to attach probabilities to the likelihood ratios. Although there is merit in 
calculating and reporting only a point estimate of the likelihood ratio, using the MCMC-derived 

weights Wwj and the conventional profle probabilities Pr(Sj|Hm), there is still the diÿculty of 
interpreting this value. When does a likelihood ratio indicate compelling evidence: is a million 

suÿciently large, or is a billion necessary? Other authors have discussed this. We made an ini-
tial attempt to address this question (Beecham and Weir, 2011). For a multi-locus situation, we 

regarded the logarithm ln(LR) as being normally distributed and constructed confdence intervals 
of the form LR/C, LR × C) where C depended on the variance of the estimated LR, taking into 

account sampling variation for the allele frequency database and the variation among populations 
(i.e. the “theta” e�ects). 

In Taylor et al. (2014) we considered several sources of variation that a�ect the distribution 

of LR values. Specifcally, we incorporated uncertainty in allele frequencies, uncertainty in �, 
uncertainty in genotype weights wj, and uncertainty in relatedness amongst hypothesized unknown 

contributors. In each of these four directions, distributions were assumed for the appropriate 
parameters and sampling from these distributions was added to the LR calculations. The procedure 

does add to the computational burden but it has the advantage of being able to attach probabilities: 
the probability of the calculated LR or some more extreme value. It could be argued that there is 

still an element of subjectivity, but it seems less so than does a verbal scale (e.g. “weak, moderate, 
strong, very strong”) for LR values. 

Outreach Activities 

The work on population structure and Y-STR matching played a large part in our contributions 
to the “SWGDAM Interpretation Guidelines for Y-Chromosome STR Typing by Forensic DNA 

Laboratories” approved by SWGDAM on January 9, 2014. Weir hosted a meeting of the SWGDAM 
Working Group, that included Buckleton, at the University of Washington in February 2013, Weir 
attended a SWGDAM meeting, and Buckleton and Weir took part in several conference calls. They 

both attended the July, 2014 SWGDAM meeting. The Guidelines contain explicit language about 
the distinction between profle probabilities (pu) and profle match probabilities P :u|u 
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“10.3 Theta (�) is used in the following equation for the match probability, Pr(A|A) = 

� +(1− �)pA, (3) where A is the haplotype of interest and Pr(A|A) is the probability of 
observing A given that it has already been seen once in another individual of the same 

subpopulation. pA is the profle probability. 
10.3.1 Equation (3) is a match probability. It is the haplotype analog of the formula 

described in National Research Council (1996) Recommendation 4.2.” 

The same language was used by Weir et al. (2014). Weir (2007) had already discussed match 

and profle probabilities, “Among the many advantages of adopting this approach to comparing 
competing hypotheses is the clarifcation that it is match probabilities Pr(GS|GC) for profles from 

two people that are relevant rather than profle probabilities Pr(GS).” Buckleton et al. (2011) had 
also said “Note that the match probability within a particular subpopulation is also greater than 

the haplotype frequency in the whole population since �+(1−�)pA > pA.” This crucial distinction 
between match and profle probabilities has recently been stressed by Brenner (2014). 

The methods described above were used by SWGDAM to estimate “�” (actually �W ) for the 
US Y-STR data as well as the NIST data (not shown in the Guidelines). 

Weir is participating in a new SWGDAM Working Group to examine software for continuous 

approaches to interpreting STR profles, and Buckleton is on an ISFG Commission looking at 
validation of such software. 

Weir and Curran serve on the ad-hoc Committee for Forensic Science established by the Amer-
ican Statistical Association. 

Weir was on the advisory committee for the 9th International Conference on Forensic Inference 
and Statistics held in Leiden in 2014: he and Curran presented papers at that conference. 

Weir was a member of the Working Group of the United Nations Oÿce of Drugs and Crime 
that met in 2013 to establish guidelines for the identifcation of seized ivory. 
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