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I. ABSTRACT 

Samples	 containing	 low-levels	 of	 DNA	 and/or	 mixtures	 of	 DNA	 from	 multiple	
individuals	 are	 routinely	 encountered	 in	 forensic	 DNA	 casework.	 We will	 refer to these 
samples	 inclusively	 as	 “complex”	 samples.	 Such	 samples	 are	 challenging	 to	 interpret	
because	 of	 the	 inherent	 uncertainty	 in	 determining	 the	 genotypes	 of	 the	 contributors	 to	 the	
evidence	 profile.	 Such	 uncertainty	 must	 be	 taken	 into	 account	 when	 assessing	 the	 weight	 of	
such	 complex	 DNA	 profiles.	 Probabilistic	 approaches,	 all	 of	 which	 employ	 a	 likelihood	 ratio	
(LR)	 framework,	 have	 already	 been	 established	 to	 aide	 in	 the	 interpretation	 of	 such	
profiles.	 However,	 the	 performance	 of	 these	 approaches	 is	 still in	 the	 process	 of	 being 
evaluated.	 Further,	 the	 forensic	 DNA	 community	 remains in	 need	 of	 freely	 available,	 user-
friendly	 tools	 to	 implement	 a	 probabilistic	 approach	 to	 the	 determination	 of	 the	 weight	 of	
evidence.	 The	 research	 completed	 in	 this	 project	 fills	 both	 of	 these	 voids	 by	 examining	 the	
performance	 of	 various	 probabilistic	 approaches	 as	 applied	 to	 complex	 DNA	 profiles,	
increasing	 our	 understanding	 of	 the	 capabilities	 and	 limitations	 of	 these	 approaches,	 and	
improving	 and extending Lab	Retriever, an	 existing	 freely	 available program	 that	 can	 assist	 
in	 understanding	 the	 weight	 of	 evidence	 of	 these	 complex	 DNA	 profiles.	 Specifically,	 we	
have:	 1)	 Generated	 a set of	 low-template	 mixtures.	 This	 dataset	 was used for various parts
of	 the	 project	 and	 will	 be	 made	 available	 to	 the	 community	 for	 evaluation	 of	 different 
statistical	 approaches.	 2)	 Evaluated	 the	 performance	 of	 estimates	 of	 drop-out probabilities	
in	 mixed	 samples.	 Approaches	 to	 calculating	 LRs	 either	 require,	 or	 may	 be	 improved	 by,	 an	
estimate	 of	 the	 drop-out probability.	 We	 have	 previously	 shown how	 such	 estimates	 can	 be	
derived	 from	 single-source	 samples,	 how	 the	 estimates	 compare	 to	 the	 true	 (P(DO)s,	 and	 
how	 LRs	 computed	 with	 each	 compare.	 Here	 we	 have	 evaluated	 how	 those	 estimators	 
perform	 when	 applied	 to	 mixtures.	 3)	 Computed	 and	 evaluated	 results	 of	 LRs	 for	 complex	
mixtures	 of	 2,	 3,	 4	 and	 5 contributors.	 The	 purpose	 of	 this	 project is	 to	 assess	 the	 
information	 content	 of	 such	 complex	 mixtures,	 and	 the	 extent	 of	 support	 for	 a	 proposition	
that	 a	 specific	 individual	 is	 a	 contributor	 to	 the	 mixture.	 We	 have	 employed	 simulations	 to 
explore	 the	 results of	 performing	 LRs	 conditioned	 on	 a	 wide	 range	 of	 known	 non-
contributors.	 We	 have	 found	 that	 good	 quality	 mixtures	 of	 up	 to	 4	 contributors	 still	 contain	
substantial	 information	 regarding	 the	 contributors. This	 type	 of	 information	 can	 be	 used	 by	
forensic	 casework	 laboratories	 to	 help	 inform	 both	 their	 policies	 and	 their	 procedures.	 The
results	 of	 these experiments	 also will	 greatly	 assist	 in	 understanding	 the	 meaning	 of	
weaker LRs obtained for suspected contributors.	 4)	 Evaluated	 the	 role	 of	 stutter	 in	 mixture	
interpretation. In	 particular,	 we	 have	 explored	 how	 stutter	 and	 a	 minor	 contributor	 with	 an	
allele	 in	 the	 stutter	 position	 of	 a	 major	 contributor	 peak	 combine	 to	 determine	 the	 final	
peak	 height.	 We found	 that	 they	 often	 do	 not	 combine	 in	 an	 additive	 manner.	 5)	 Extended	
our	 user-friendly,	 freely-available	 software	 program,	 Lab	 Retriever, to help	 analysts
perform	 complex	 LR	 calculations	 for	 low-template	 DNA	 mixtures.	 This	 work	 has	 increased	
the knowledge	 base	 upon	 which	 forensic	 analysts	 may	 rely to	 interpret	 complex	 DNA	 
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profiles and provided new	 resources	 and	 tools	 that	 will	 aide	 forensic	 DNA	 analysts	 in	 
accurately	and 	efficiently	assessing	the weight	of 	such 	evidence. 

II. EXECUTIVE SUMMARY 

Samples	 containing	 low-levels	 of	 DNA	 and/or	 mixtures	 of	 DNA	 from	 multiple	 
individuals	 (hereafter	 referred	 to	 as	 “complex	 samples”)	 are routinely	 encountered in	 
forensic	 DNA	 casework [1].	 Such	 samples	 are	 challenging	 to	 interpret	 because	 of	 the	
inherent	 uncertainty	 in	 determining	 the	 genotypes	 of	 the	 contributors	 to	 the	 evidence	
profile.	 Such	 uncertainty	 must	 be	 taken	 into	 account	 when	 assessing	 the	 weight	 of	 such	
complex	 DNA	 profiles.	 Probabilistic	 approaches,	 all	 of	 which	 employ	 a	 likelihood	 ratio	 (LR)	
framework,	 have	 already	 been	 established	 to	 aide	 in	 the	 interpretation	 of	 such	 profiles [2–
13].	 Over	 the	 past	 few	 years,	 research	 evaluating	 the	 performance	 of	 these	 approaches	 has	
begun	 to	 emerge,	 however,	 the	 efficacy,	 accuracy, and reliability for	 more	 complex	 samples	
remains	 a	 work	 in	 progress [14–31].	 This	 particular issue has	 received	 increased	 scrutiny	
in	 recent years	 and was	 highlighted	 in	 the	 recent	 PCAST	 report	 [32] and	 so	 has	 become	 of	
even	 greater	 urgency.	 Further,	 although	 the	 forensic	 DNA	 community	 now	 has	 a	 choice	 of	
several	 commercial	 software	 programs,	 a	 strong	 need	 still	 exists	 for	 freely	 available,	 open-
source,	 user-friendly	 tools	 to	 implement	 a	 probabilistic	 approach	 to	 the	 determination	 of	
the	 weight	 of	 evidence.	 First,	 not	 all	 users	 can	 meet	 the	 large	 funding	 requirements	 of	 the	
commercial	 programs;	 second,	 the	 black-box	 commercial	 programs	 must	 be	 tested	 against	
similar	programs	for	which	the	computer	code	is	available	to	test	their	veracity [29,30,33].	

The	 research	 that	 we	 have	 completed	 over	 the	 course	 of	 this	 grant	 examines	 the	
performance	 of	 a probabilistic	 approach	 as	 applied	 to	 complex	 DNA	 profiles,	 increasing	 our	
understanding	 of	 the	 capabilities	 and	 limitations	 of	 these	 approaches.	 It	 also improves	 and	
extends Lab	Retriever, an	 existing	 freely available program	 that	 can	 assist	 in	 understanding	
the	 weight	 of	 evidence	 of	 these	 complex	 DNA	 profiles.	 Specifically,	 we	 have:	 1)	 Generated	 a	
set of	 low-template	 mixtures.	 This	 dataset	 has	 been	 used	 in	 other	 parts	 of	 the	 project	 and	
will	 be	 made	 available	 to	 the	 community	 for	 evaluation	 of	 different statistical approaches.	
2)	 Evaluated	 the	 performance	 of	 estimates	 of	 drop-out	 probabilities	 in	 mixed	 samples.	
Approaches	 to	 calculating	 LRs	 either	 require,	 or	 may	 be	 improved	 by,	 an	 estimate	 of	 the	
drop-out probability [34–39].	 We	 had	 previously	 shown	 how	 such	 estimates	 can	 be	 derived	
from	 single-source	 samples,	 how	 the	 estimates	 compare	 to	 the	 true	 (P(DO)s,	 and	 how LRs	 
computed	 with	 each	 compare [39].	 Here	 we	 have	 evaluated	 how	 those	 estimators	 perform	
when	 applied	 to	 mixtures.	 We found that the relationship	 between	 P(DO) and the average
RFUs	 of	 the	 contributor	 of	 interest	 were	 similar	 in	 single-source	 samples	 and	 mixtures.	
Additionally,	 we	 computed	 LRs	 for	 the	 true	 contributors	 and	 found	 that	 the	 LRs	 computed	
using	 a	 P(DO) estimated	 from	 single-source	 samples	 were	 similar	 to	 those	 found	 using	 the		 
true P(DO)).	 This	 work	 suggests	 a	 robustness	 to	 the	 estimates	 of	 P(DO),	 and	 that	 estimates	
from	 single-source	 samples	 can	 be	 applied	 to	 mixtures.	 3)	 Computed	 and	 evaluated	 results	
of	 LRs	 for	 simulated	 complex	 mixtures	 of	 2,	 3, 4, and 5 contributors.	 The	 purpose	 of	 this	 
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part	 of the project	 was to	 assess the	 maximum	 information	 content	 of	 such	 complex	 
mixtures,	 and	 the	 extent	 of	 support	 for	 a	 proposition	 that	 a	 specific	 individual	 is	 a	 
contributor	 to	 the	 mixture.	 The	 information	 content	 of such	 mixtures	 can	 inform laboratory
policy and procedures for	 interpreting	 such	 samples.	 We	 have	 employed	 simulations to
explore	 the	 effects	 of calculating LRs	 conditioned	 on a wide	 range	 of	 known non-
contributors.	 We found that	 LRs could reliably distinguish	 true	 contributors	 from	 known	
non-contributors,	 even	 for a	 5	 contributor	 mixture	 exhibiting a	 high level	 of allele sharing.	 
Moreover,	 we showed that	 LRs have a	 low	 false negative rate,	 with true contributors to a	 
complex	 mixture	 generating	 LRs <	 1	 less than	 0.1% of the time	 for	 5	 person	 mixtures	 in	
which the	 numerator	 includes	 at	 least	 one	 unknown	 contributor.	 Similarly,	 LRs had	 very	
low	 false positive rates,	 with known	 non-contributors generating	 LRs >	 1	 in	 only	 0.054% of	
the 14,000 replicates.	 Further,	 they occurred only with	 4	 and	 5	 person	 mixtures with one
or	 more	 unknown	 contributor in	 the	 numerator. However, individual loci	 often showed	 LRs 
<1	 for	 true	 contributors.	 These	 results	 will	 greatly	 assist	 in	 understanding	 the	 meaning	 of	
weaker LRs obtained for suspected contributors,	 as	 well	 as	 provide	 guidance	 on	 the	 
advisability	 of	 performing	 an	 LR	 when	 only	 a	 few	 loci	 produce typing	 results.	 4)	 Evaluated
the	 role	 of	 stutter	 in	 mixture	 interpretation.	 In	 particular,	 we have explored how stutter	
and	 a	 minor	 contributor	 with an	 allele	 in	 the	 stutter	 position	 of	 a	 major	 contributor	 peak	
combine	 to	 determine	 the	 final	 peak	 height.	 Very	 few published	 works	 address	 this	 
important	 issue	 [40–42].	 Here	 we	 have	 found	 that	 minor	 donor	 alleles	 in	 a	 stutter	 position 
to	 a	 major	 donor	 peak	 can be	 elevated	 above	 the	 normally	 expected	 stutter	 peak	 height.	
However,	 this	 is	 not	 always	 true;	 some	 [minor	 +	 stutter]	 peaks	 are	 below	 the	 lowest	 stutter	
peaks	 detected.	 The	 average	 RFU	 for	 the	 stutter	 peaks	 in	 all	 template	 amounts	 was	 about
50,	 while	 the	 average	 RFU	 for	 the	 [minor	 +	 stutter]	 peaks	 was	 76	 RFUs.	 However,	 the	 range	
of	 variation	 in	 peak	 height	 was	 greater	 for	 the	 [minor	 +	 stutter]	 peaks	 than	 for	 either	 the	
minor	 peaks	 or	 the	 stutter	 peaks	 alone.	 This	 signals	 that	 something	 unusual	 is	 occurring	
during	 PCR	 that	 is	 not	 easily	 explained.	 At	 the	 very	 least,	 it	 is	 clear	 that	 such	 a	 peak	 is	 not
merely the	 direct	 sum	 of	 a	 real	 human	 DNA	 allele	 and	 stutter.	 5) Extended our	 user-
friendly,	 freely available,	 open-source	 software	 program,	 Lab	 Retriever, to help	 analysts
perform	 LR	 calculations	 for	 complex DNA	 mixtures.	 This	 program	 is	 based	 on	 the approach
first suggested	 by	 Balding and Buckleton	 [5].	 By	 incorporating	 a	 computationally	 efficient	 
dynamic	 programming	 algorithm,	 the	 program	 can	 now perform	 calculations	 for 
hypotheses	 involving	 up	 to	 4	 unknown	 contributors	 in	 the	 denominator	 within	 seconds.
The	 program	 has also been	 completely	 rewritten	 to	 replace the original	 GUI	 code, which 
had	 become	 deprecated.	 This	 will	 ensure	 that the	 program	 will	 continue	 to	 work	 into	 the	 
reasonable	 future	 on	 current	 and	 future	 computer	 platforms.	 Additional	 improvements	
include	 the	 ability	 to	 add	 and	 choose	 among	 any	 user-defined	 population	 database,	 the 
ability	 to choose a	 user-defined	 co-ancestry	 coefficient (θ	 or	 FST),	 the ability to choose a	
user	 defined	 “α”	 term	 (relevant	 to	 handling	 homozygotes)	 and	 a	 transparent	 export	 of	 both	
the	 numerator	 and	 denominator	 of	 the	 LR	 to	 provide	 more	 information	 to	 the	 user	 and	 
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assist	 in	 research efforts.	 The framework	 to	 handle	 replicate	 samples	 has	 been	 developed	
and future work	 will	 connect	 it	 with a	 GUI	 for easy	 user access.	 This	 work has	 increased	 
knowledge	 regarding	 the	 interpretation	 of	 complex	 DNA	 profiles	 and	 added	 new	 features	
to a	 freely-available software	 program	 that	 continues	 to	 aide	 forensic	 DNA	 analysts	 in	 
accurately	and 	efficiently	assessing	the weight	of 	such 	evidence. 

The	 results	 generated	 from	 this	 project	 are	 being	 disseminated	 to	 the	 community	 
using	 a	 variety	 of	 mechanisms.	 First,	 we	 have generated	 a	 series	 of	 819 low-template	 
mixtures	 using	 the Identifiler® Plus typing	 system.	 Because	 we	 believe	 that	 the	 raw	 data	
will	 be	 useful	 to	 the	 forensic	 community	 for	 subsequent	 evaluation	 of	 different	 programs	 to	
interpret challenging	 profiles,	 the electronic raw data files,	 as	 well as	 our	 analyzed data,	 
will	 be	 made	 available,	 at	 a	 minimum,	 via the SCIEG website.	 Secondly,	 we	 are	 publishing	 
our	 results	 in	 scientific	 journals.	 We	 have	 already	 published	 our simulation	 study	 on	 the	
information	 content of	 complex	 mixtures [31],	 as	 well	 as	 a	 white	 paper that	 provides	 the	
details	 of	 the	 Lab	Retriever software [10].	 Additional	 publications	 on	 the	 dataset, drop-out 
probabilities,	 and	 stutter results are being	 prepared.	 We have given	 over 20 talks and 
presentations	 during	 the	 course	 of	 this	 work	 on	 the	 interpretation	 of	 challenging	 DNA	 
profiles and the use of Lab	Retriever.	 Finally,	 we	 continue	 to	 host	 the freely available,	 open-
source	 program,	 Lab	 Retriever,	 on	 the	 SCIEG	 website	 (www.scieg.org).	 This	 tool is	 freely	 
available	 to	 the	 community	 and	 has	 been	 implemented	 or	 is	 in	 the	 process	 of	 being	
validated	 by at	 least	 6 government	 and	 private	 forensic	 laboratories of	 which	 we	 are	 aware.	 
We	anticipate	continued	use	of	the	program	and	will	continue	to	support	it.

III. OVERVIEW 

While	 forensic	 DNA	 typing	 has	 historically	 been	 touted	 as	 the	 gold-standard	 for	
forensic	 identification,	 interpretation	 of	 complex	 profiles	 remains	 challenging.	 Difficulties	
in	 interpretation, and	 in	 estimating	 the	 weight	 of	 the	 evidence, can	 arise	 when	 considering	
mixtures	 of	 DNA	 from	 complex samples.	 These	 types	 of	 samples	 are	 challenging	 because	 it	
is	 often	 not possible	 to	 conclusively	 infer	 the	 genotypes	 of	 the	 contributors	 directly	 from	
the	 evidentiary	 sample.	 For	 mixtures,	 the	 moderately	 polymorphic	 nature	 of	 the	 short	
tandem	 repeat	 (STR)	 systems	 developed	 for	 forensic	 use	 exacerbates	 the	 ambiguity, as 
contributors	 often	 share	 alleles	 at individual loci.	 For	 LT-DNA	 samples,	 additional	 
ambiguity	 arises	 from	 the	 fact	 that	 certain	 alleles	 from	 the	 contributors	 may	 not	 be	 
detected	 in	 the	 evidence	 profile	 due	 to	 stochastic	 effects	 inherent	 in	 amplifying	 low	 level	
samples [5,38,43].	 This	 phenomenon	 is	 called	 allelic	 drop-out.	 This	 uncertainty	 in	 
determining	 the	 genotypes	 of	 the	 contributors	 must	 be	 taken	 into	 account	 when	 assessing	
the weight	 of the evidence.	 For	 LRs	 in	 particular,	 difficulty	 in	 determining	 the	 number	 of	 
contributors	 adds	 another	 element	 of	 ambiguity.	 The	 theoretical	 framework	 for	 a	 
likelihood	 ratio	 (LR)	 approach	 to	 assess	 the	 weight	 of	 these	 ambiguous	 samples	 has	 been	 in	
place	 for	 some	 years,	 but	 two	 key	 limitations	 exist	 that	 had	 prevented	 it	 from	 being	 widely	 
implemented	 in	 forensic	 casework:	 1)	 absence	 of	 empirical	 testing	 to	 validate	 these	 
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approaches	 when	 applied	 to	 different	 types	 of	 complex	 DNA	 samples,	 and	 2)	 unavailability	
of	 affordable,	 transparent, and user-friendly	 software	 to	 forensic	 practitioners	 to	 perform	
these	complex	calculations.	

The	 LR	 approach	 provides	 a	 natural	 method	 to	 assess	 the	 weight	 of	 forensic	 DNA	
evidence [44–48].	 Briefly,	 the	 LR	 framework	 compares	 the	 probability	 of	 observing	 the	
evidence	 under	 two	 different	 competing	 hypotheses.	 In	 the	 simplest	 case,	 one	 hypothesis	
(call it H1)	 is	 that the	 suspect	 left	 the	 DNA	 evidence.	 Another	 (call	 it	 H2)	 is	 that an	 unknown	 
individual left the	 evidence.	 The	 LR	 is	 then	 the	 ratio	 of	 the probability of the evidence given	 
H1 to the probability of the evidence given	 H2.	 LRs >1	 provide	 support for	 H1 and LRs <1 
provide	support	 for H2.	 

LRs	 can be	 used	 to	 assess	 the	 weight	 of	 complex	 DNA	 profiles.	 They	 have	 previously	
been	 extended	 to	 consider	 mixtures	 by	 including	 more	 complex	 hypotheses	 [2,49–51] and
to	 accommodate	 allelic	 drop-out [3–5,36,37,43,52,53] by	 including	 a	 model	 of	 such	 when	
computing	 the	 probability	 of	 the	 evidence. For	 complex	 DNA	 profiles	 in	 particular,	 the	
probability	 of the	 evidence	 under the	 hypothesis that	 the	 suspected contributor left	 the	
evidence	may	be	<1.	

While	 the	 theoretical	 foundation	 for	 the	 interpretation	 of	 complex	 DNA	 profiles	 has	
clearly	 been	 established,	 the	 performance	 of	 these	 approaches	 when	 applied	 to	 challenging	
samples	 for	 which	 ground	 truth	 is	 known	 has	 only	 in	 recent	 years	 begun	 to	 receive	 
comparatively	 more	 scrutiny [14–31].	 For	 example,	 only	 in	 the	 summer	 of	 2015	 did	 
ASCLAD/LAB	 begin	 to	 require	 laboratories	 to	 perform	 and	 document	 such	 validation	 for	
mixed	 samples [54].	 The	 summer	 of	 2015	 also	 saw	 publication	 of	 the	 first	 SWGDAM	 
guidelines	 for	 validation	 of	 probabilistic	 genotyping	 software [33].	 Additionally,	 accessible	
software	 had,	 until	 recently,	 been	 unavailable	 to	 the	 community	 to	 perform	 the	 calculations
described	 above.	 Recent years	 have seen	 an	 explosion	 of	 probabilistic	 genotyping	 software,	
both	 commercial	 and	 freely-available open	 source solutions [2,4,6,7,9–11,13,18,28].	 We	 are	
pleased that	 Lab	Retriever,	 the	 software	 supported	 by	 this	 grant,	 has	 become	 the	 choice	 of	 
many laboratories in	 the U.S.	 opting	 for open-source	 software.	 At	 the	 beginning	 of	 the	
project,	 we	 aimed	 to	 address	 specific	 voids	 in	 the	 field	 that	 existed	 at	 that	 time. In	 the	
following	 sections,	 we	 detail how our	 work has	 begun	 to	 fill in	 these	 deficits. 

IV. MAIN FINDINGS 

A.	 Aim	1:	Generation	of	low-template	DNA	profiles. 

1.	Background	and	Significance 
One way	 to assess the performance	 of	 a	 particular	 method	 to	 estimate	 the	 weight	 of	

evidence	 for	 a	 complex	 DNA	 profile	 is	 to	 apply	 the	 method	 to	 similarly	 complex	 profiles	 for	
which	 the	 genotypes	 of	 the	 true	 contributors	 are	 known.	 Methods	 that	 perform	 well	 should	
1)	 give	 large	 LRs	 when	 the	 true	 contributor	 is	 compared	 to	 the	 evidence	 profile	 and	 2)	 give	 
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small	 LRs	 (<<1)	 when	 a	 random	 individual	 (i.e.	 a	 known	 non-contributor)	 is	 compared	 to	
the	 evidence	 profile.	 By	 examining	 the	 distributions	 of	 LRs	 produced	 under	 these	 two	
scenarios,	 it	 is	 possible	 to	 compare	 different	 approaches	 to	 assess	 the	 weight	 of	 the	
evidence	 and	 to	 determine	 under	 what	 conditions,	 or	 using	 which	 approach,	 comparison	 of	
known	non-contributors	 might	result	in LRs >1.

Prior	 to	 this	 project,	 we	 had applied this type	 of	 simulation	 to	 assess	 the	 
performance	 of	 the	 Balding	 and	 Buckleton	 LR [5] approach	 using	 empirically	 estimated	
drop-out probabilities [39].	 Specifically,	 we	 used	 60	 low-template	 single-source	 DNA	 
profiles generated from	 two	 individuals	 by John	 Butler’s group	 at	 NIST as evidence profiles 
[55].	 We	 then	 compared	 both	 known	 contributors	 and	 known	 non-contributors	 to	 each	 of	 
the low-template	 profiles.	 We	 found	 that for	 single-source	 samples,	 the	 Balding	 and	 
Buckleton	 approach	 (later	 implemented	 in	 Lab Retriever),	 performed	 satisfactorily,	 and	
that	 drop-out probabilities	 estimated using	 average	 peak	 heights worked as well	 as the	
true	 benchmark	 probabilities.	 Here	 we applied this	 same	 type	 of	 analysis	 to	 a	 far greater 
number	of mixed	DNA	profiles.	

Application	 of	 this	 type	 of	 analysis	 to	 mixed	 DNA	 profiles	 requires	 a	 comprehensive
dataset	 of	 mixtures	 reflecting	 both	 adequate	 template	 and	 LT	 situations.	 At	 the time	 we	
proposed	 this	 work,	 such	 a	 dataset	 did	 not	 yet	 exist	 in	 the	 public	 domain.	 Since	 that	 time,	
one	 such	 collection	 of	 profiles	 has	 been	 made	 available	 by Robin	 Cotton	 from	 Boston	
University. While that	 set	 of profiles possesses utility for certain	 applications,	 it	 lacks 
certain	 characteristics,	 such	 as	 a	 sufficient	 number	 of	 amplification replicates, enough	 
different	 profile	 combinations, and	 mixtures	 designed	 to	 address	 particular	 and/or	 
extreme	 situations required	 to	 address	 the specific questions	 that we	 wanted	 to	 pose.	
Importantly,	 validation	 studies	 of	 other	 probabilistic	 genotyping	 systems	 have	 relied	
heavily	 on	 adjudicated	 cases,	 rather	 than	 on	 laboratory	 generated	 mixtures	 for	 which	
ground	 truth	 is	 known	 [56].	 While	 using	 case profiles	 sounds	 appealing	 because	 they	 mimic
the	 types	 of	 samples	 actually	 encountered	 in	 casework,	 ground	 truth	 is	 not	 known	 for	
critical	 parameters,	 including	 the	 genotypes	 of	 the	 true	 contributors,	 the	 proportions	 in	
which they exist	 in	 the	 mixture,	 and	 whether	 drop-out has	 occurred.	 For	 all of	 these	 
reasons, the	 use	 of	 casework profiles,	 regardless	 of	 the	 outcome,	 is	 an	 unreliable	 indicator	
of	 ground	 truth,	 and	 therefore	 unsuitable	 for	 validation	 of	 probabilistic	 approaches	 to	 
weight of	 evidence.	 Mitchell et al. [3] and Perlin	 et	 al.	 [23] described	 an	 analysis	 of	 mixed	
DNA	 samples.	 However,	 their	 data	 are	 not	 publicly	 available	 to	 other	 researchers	 and	 
cannot	 be	 used	 to	 compare	 different	 statistical	 approaches.	 While additional	 studies based 
on	 physical	 samples	 for	 which	 ground	 truth	 is	 known	 have	 recently	 been	 published
[4,8,14,21,26,27,40–42] ,	 those data have	 also	 not	 been	 made	 publicly	 available,	 and/or	 are	
based	 on	 European	 systems	 which	 are	 slightly	 different	 than	 those	 used	 in	 the	 U.S.	 
[11,17,24,28].	 Thus,	 it was	 clear	 that a critical need	 existed	 for	 a thoughtfully constructed	
large	 dataset	 of	 mixed	 DNA	 samples,	 comprising	 2,	 3	 or	 4	 contributors,	 encompassing	 
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varying	 mixture	 ratios	 and	 DNA	 concentrations,	 at	 with	 at	 least	 5	 replicate	 amplifications	 of	
each	sample,	 that	could	be	made	 available 	for 	use 	by	the 	forensic	 DNA community. 

2.	 Materials	and	methods 

Overview 
Here	 we	 generated	 a series	 of	 819	 mixtures,	 many of	 which	 were	 low-template	 for	 

which drop-out was	 a possibility.	 We also created dilutions series of 3 of the single-source	 
samples	 used	 to	 create	 the	 mixtures.	 Sample	 collection,	 extraction,	 and	 typing	 were	 
performed	at	Cal	State	University	East	Bay.

Design of the study 
The	 parameters	 typically	 considered	 to	 contribute	 the	 greatest	 difficulty	 in	 

assessing	 the	 weight	 of	 evidence	 in	 complex	 samples	 include	 allelic	 drop-out,	 the	 number	
of	 contributors,	 shared	 alleles,	 mixture	 ratios,	 and	 stutter.	 In	 order	 to investigate	 the	 effect
of	 these	 parameters	 in	 Aims	 2 and 4,	 we	 produced	 a	 well-characterized	 set	 of	 mixed	 
samples.	 These	 samples	 consisted	 of	 known	 types	 combined	 in	 defined ratios. We	 varied	
the	 total	 amount	 of	 DNA,	 the	 number	 of	 contributors,	 the	 mixture	 ratios,	 and	 the	 genotypes	
of	 the	 contributors	 to produce mixtures	 of	 two,	 three	 and	 four	 individuals	 to create the
easiest	 and	 the	 most	 difficult	 mixtures	 to	 assess.	 This	 gave	 us	 a	 broad	 range	 of	 peak	 heights,	
masked	 alleles	 in	 stutter	 positions,	 and	 allele	 sharing	 to	 test	 the	 performance	 of	 LRs both
with and without	 drop-out.	 The	 samples	 containing	 multiple	 individuals	 also exhibit	 
various	 masking	 scenarios,	 either	 involving shared allelic	 peaks or stutter peaks.	 Tables	 1-4	 
contain	 the	 complete	 matrix	 of the	 samples	 that	 we	 generated.	 Table	 5	 shows	 the	 number	
of	peaks	from	one	contributor	that	fall	in	the	stutter	positions	of	the	second	contributor.

Each	 sample	 was	 amplified	 5	 times.	 The	 total	 number	 of	 mixed	 samples	 generated	
from	this	matrix	was	 819.	The	total	number	of	alleles	detected	was	over	 31,500.	

Sample	Collection

All	 samples	 were	 collected	 with	 informed	 consent	 and	 were	 anonymized	 to	 ensure	
the	 privacy	 of	 the	 contributing	 subjects	 in	 accordance	 with	 the	 UCLA	 and	 CSUEB	 IRB.	 Two	
sterile	 buccal swabs	 were	 collected	 from	 each	 of	 eight	 student	 volunteers.	 Once	 collected,	
the	 swabs	 were	 allowed	 to	 air	 dry,	 sealed	 in	 a	 manila	 envelope	 and	 stored	 frozen	 until	
used.	 The	genotypes	of	the	8	individuals	are	shown	in	Table	1. 

Sample	Extraction

A	 separate	 sterile	 scalpel was	 used	 to	 bisect each	 swab and	 one	 half	 of	 the	 swab was	 
placed	 into	 a	 sterile	 microfuge	 tube.	 The	 Qiagen	 DNEasy	 kit	 was	 used	 to	 extract	 each	 
sample,	 following	 the	 manufacturer’s	 protocol.	 Briefly,	 each	 sample	 was	 mixed	 with	 PBS,	
proteinase	 K, and	 AL	 Buffer	 and	 incubated	 for	 10	 min	 at	 56℃. Each	 sample	 was	 mixed	 with	
200µL ethanol,	 and	 then	 placed	 into	 a	 DNEasy	 spin	 column.	 The	 samples	 were	 centrifuged	
at	 8,000	 rpm	 for	 1	 min.,	 and	 the	 eluate	 discarded.	 The	 samples	 were	 washed	 once	 with	 
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AW1	 buffer	 at	 8,000	 rpm	 for	 1	 min.,	 and	 again	 with	 AW2	buffer	 at	 14,000	 rpm	 for	 3	 min.,	
discarding	 the	 eluate	 each	 time.	 DNA	 was	 eluted	 from	 the	 column	 with	 Buffer	 AE,	
incubating	 the	 spin	 tube	 for	 1	 min	 at	 RT,	 and	 then	 centrifuging	 for	 1	 min	 at	 8,000	 rpm.	
Samples	were	stored	frozen	when	not	 in	 use.		

Quantitation	

The	 DNA	 quantity	 of	 the	 samples	 was	 estimated	 using	 the	 Quantifiler®
		
Human	 DNA	 

Quantification	 Kit	 (Life	 Technologies,	 Foster	 City,	 CA)	 on	 either	 a	 Bio-Rad	 Laboratories	 
Opticon®

	
2	 or	 an	 ABI	 Prism®	 7000	 Real	 Time	 PCR	 instrument,	 following	 each	 

manufacturer’s	 protocols.	 Instrument	 data	 was	 interpreted	 by	 either	 Opticon	 3	
quantitation	software	or	SDS	software.		

Mixture 	preparation	
Dilutions	 (500,	 100,	 50,	 30,	 10	 and	 5	 pg)	 of	 three	 single-source	 samples	 were	 

prepared 	to	 estimate	the	probability	of	drop-out.	

Five	 replicates	 of	 two,	 three	 and	 four	 person	 mixtures	 were	 prepared	 in	 Tris/EDTA	 
buffer 	(TE-4).	The	combinations	prepared	are	 summarized	in	 Tables	2-4.		

Two	 person	 mixtures	 were	 prepared	 in	 ratios	 of	 1:1,	 2:1,	 4:1,	 and	 9:1.	 	Each	 mixture	
was	amplified	using	a 	total	DNA	 input	of	 500,	 100,	 50,	and 	30	pg	(Table	2).		

The	 two-person	 mixture	 set	 combinations	 were	 designed	 to	 produce	 extreme	 
examples	 of	 one	 of	 two	 parameters,	 heterozygosity	 or	 overlap	 in	 stutter	 positions,	 as	 
follows:		

Max	#	 homozygous	peaks/Max	#	heterzygous	peaks	

Max	#	heterozygous 	peaks/Max	#	homozygous	peaks	
Max	#	homozygous	peaks/Max	#	homozygous	peaks	

Max	#	heterozygous 	peaks/Max	#	heterozygous 	peaks	
Maximizing	#	of	peaks	in	stutter	position	for	minor	donor	

Minimizing	#	of	peaks	in	stutter	position	for	minor	donor	

Three	 person	 mixture	 ratios	 were:	 1:1:1,	 2:2:1,	 6:3:1,	 8:1:1.	 Each	 was	 amplified	
using	total	input	DNA	of	500,	 100,	 50,	 and 	30 	pg	(Table	3).	

The	 three	 person	 mixture	 sets	 were	 designed	 to	 produce	 extreme	 combinations	 of	
heterozygosity:		
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Max	#		homozygous	peaks/Max	#	heterzygous 	peaks	

Max	#	heterozygous	peaks/Max	#	homozygous	peaks	

Max	#	homozygous	peaks/Max	#	homozygous	peaks	

Max	#	heterozygous 	peaks/Max	#	heterozygous 	peaks	

The	 four	 person	 mixture	 sets	 were	 all	 ratios	 of	 1:1:1:1,	 with	 no	 specific	 goal	 of	 
stutter	 or	 heterozygosity.	 Again,	 each	 was	 amplified	 using	 total	 input	 DNA	 of	500,	 100,	 50,	
and 	30 	pg	(Table	4).	

STR	amplification	and	detection	

Thermal	 cycling	 was	 performed	 using	 the	 GeneAmp®
	
PCR	 system	 9700	 (Life	 

Technologies).	 For	 STR	 amplification,	 25µL	 volumes	 of	 each	 ratio/template	
amount/replicate	 were	 prepared	 in	 96-well	 plates.	 Replicates	 were	 prepared	 using	 the	
AmpFlSTR®

	
Identifiler®	 Plus	 Amplification	 Kit	 (Life	 Technologies)	 following	 the	 

manufacturer’s	 protocols	 [6].	 PCR	 conditions	 for	 the	 IdentifilerPlus
	 	
Kit	 were	 11	 min	 at	 

95°C	for	 initial	 incubation,	 28	 cycles	 of	 20	 sec	 at	 94°C	for	 denaturation,	 3	 min	 at	 59°C	for	
annealing,	and	30	min	at	60°C 	for	final	extension.		

STR	detection	and	typing	

Typing	 of	 PCR	 products,	 including	 the	 kit	 positive	 control	 and	 one	 or	 more	 negative	
control	 samples,	 was	 carried	 out	 in	 96-well	 plates	 on	 a	 3130	 Genetic	 Analyzer	 (Life	 
Technologies).	 Each	 samples	 was	 injected	 for	 5	sec	 at	3kV	 and	 data	collected	 for	 12	 –	18	 
minutes	 (depending	 on	 the	 temperature	 in	 the	 laboratory).	The	 data	were	 analyzed	 using	 
GeneMapper®

	
ID-X	(Life 	Technologies).	 	

Color-specific	 analytical	 thresholds	 were	 established	 on	 a	 per-run	 basis	 by	
estimating	 the	 baseline	 as	 2x	 the	 maximum	 noise	 peak	 from	 one	 or	 more	 of	 three	negative	
PCR	 reaction	 controls	 run	 with	 each	 amplification	 plate.	 The	 range	 of	 analytical	 thresholds	
for	 all	of	 the	 runs	 calculated	 in	 this	 way	are 	presented in	Table	6.	

3.	 Results	
The	 typing	 data	 will	 be	 made	 publicly	 available	 in	 the	 near	 future.	The	 availability	

will	 be	posted	on	 the	SCIEG	web	 site	 (the	non-profit	 entity	 that	 houses	Lab	 Retriever)	 as	
well	 as	on	 the	university	 web	 sites	 of	 Professors	 Lohmueller	 and	 Inman.	 	Announcements	
will	also	be	disseminated	through	various	professional	news	outlets.	

B.	Aim	2:	Evaluation 	of	estimated	drop-out	probabilities	in 	mixed	samples.	

1.	Background	and	Significance	
We	 have	 shown	 in	 previously	 published	 work	 [39]	 that	 a	 logistic	 regression	 

approach	[34,35]	can	 be	 used	 to	 model	 the	 relationship	 between	 allelic	 drop-out	and	 peak	
heights	 in	 an	 evidence	 profile.	 This	 logistic	 equation	 can	 then	 be	 used	 to	 estimate	 the	 drop-
out	 probability	 for	 an	 evidentiary	 profile	 based	 on	 the	 relevant	 peak	 heights.	 In	 that	 
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foundational work, we fit the	 logistic	 curve	 to	 single-source	 LT-DNA	 profiles	 with	 10,	 30,	 
and	100	pg	of	DNA.	

We	 then	 evaluated	 the	 performance	 of	 our	 estimate	 of	 the	 drop-out probability [39].	
To	 do	 this,	 we	 compared	 the	 LRs	 calculated	 using	 the	 estimated	 drop-out probabilities	 to	
the LRs calculated using	 the true drop-out probabilities.	 These	 calculations	 were	 
performed	 for	 2	 different	 scenarios	 for	 each	 low-template	 profile:	 1)	 the	 hypothesized	
contributor	 was	 the	 true	 contributor,	 and	 2)	 the	 hypothesized	 contributor	 was	 a	 random	
individual	 simulated	 from	 a	 population	 allele	 frequency	 database	 (i.e.	 a	 known	 non-
contributor).	 Importantly,	 we	 found	 that,	 using	 the	 Balding	 and Buckleton	 [5] approach,
LRs	 computed	 with	 an	 empirically	 estimated	 probability	 of	 drop-out were	 similar	 to	 the	
LRs	 calculated	 when using the	 true	 drop-out probability [39].	 Additionally,	 we	 found	 that	 

>99.4%	 of	 LRs	 were	 £1	 when	 comparing	 the	 LT-DNA	 profiles	 to	 known	 non-contributors,	
suggesting	 that	 this	 approach	 correctly	 provides	 support	 for	 the	 hypothesis	 that	 random	
individuals	 are	 not contributors	 to	 the	 LT-DNA	samples [39].

While these results are certainly encouraging,	 further work	 was required	 to	 assess	
the	 performance	 of	 the	 estimated	 drop-out	 probabilities	 when	 applied	 to	 mixtures.	 It	 was
unclear	 whether	 these	 estimates	 would show the same	 level	 of	 robustness	 in	 mixed	 
samples	 as	 they	 showed	 in	 the	 single-source	 samples.	 Before	 we began	 this project,	 no
systematic	 evaluation	 of	 the	 performance	 of	 estimated	 drop-out probabilities	 for	 low-
template	mixtures had	been	published.	 

2.	Results 
In	order 	to	fill	the	gap	 in knowledge 	described 	above,	we 	conducted 	a	detailed 

analysis 	of allelic drop-out using	 the	data	generated	in	Aim	1	of	this	project.

Characterization of	 drop-out and	estimation	of	drop-out 	probabilities 
We first	 used logistic regression	 to	 model	 the	 relationship	 between	 the	 proportion	 

of	 alleles	 that dropped-out	 from	 each	 profile	 and	 the	 average	 RFUs	 of	 the	 peaks	 in	 that	
profile.	 When	 considering	 single-source	 LT	 samples,	 little	 drop-out was	 observed	 when	 the	
average RFUs were >150	 RFUs	 (Figure 1).	 It is	 noteworthy	 that, for	 the	 single-source	 data
we	 analyzed	 data	 from	 three	 different	 individuals,	 each	 with	 different	 multi-locus 
genotypes,	 the	 logistic	 regression	 curves	 fit to the	 data	 from	 each	 of	 the	 three	 individuals	
appear to be	 similar	 to	 each	 other (Figure 1). This	 suggests	 that the	 drop-out probability	 is	
not	substantially	influenced	by	the	 particular alleles carried	by	different 	individuals. 

We next	 performed	 a	 similar	 analysis	 for	 2	 to	 4-person	 mixtures.	 Importantly,	 when	
computing	 the	 average	 RFUs	 and	 the	 proportion	 of	 alleles	 that	 dropped	 out,	 we	 considered	
just	 heterozygous	 peaks unique	 to	 the	 specified contributor(s).	 Furthermore,	 we	 did	 not	
include	 peaks	 in stutter	 positions	 for	 the	 logistic	 regression	 analysis	 because	 such	 peaks 
may contain	 contributions	 from	 both stutter and alleles from	 the	 low-level	 contributor 
(further explored	 in	 Aim	 4).	 When	 examining	 the	 mixed	 samples,	 little	 drop-out is	 observed	 
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in	 profiles	 that show an	 average minor	 contributor	 peak	 height	 >150 RFUs (Figure	 2).	
Below	 about	 150 RFU,	 drop-out decreases	 in	 direct proportion	 to	 the	 average	 peak height
of	 the	 profile.	 We	 note	 that	 the	 logistic	 regression	 curves	 for	 the	 different	 number	 of	 
contributors	 appear	 qualitatively	 similar	 to	 each	 other,	 though there	 is	 a	 small	 amount	 of	
variability (Figures	 2	 and	 3).	 This	 finding	 argues	 that,	 for a	 given	 average	 peak	 height	 of	 a	
particular contributor,	 drop-out	 in	 a	 mixture	 is	 not	 substantially	 different than	 what	 occurs	
in	 single-source	 samples at	 the ratios and	 DNA	 concentrations	 assessed	 here.	 Table	 7 
shows the	logistic	regression	parameters	inferred	from	different	subsets	of	the	data.

Evaluation	of	estimated	drop-out	probabilities	for	mixtures

The	 analysis	 described	 above	 modeled	 the	 relationship	 between	 drop-out and	 peak
heights	 using	 logistic	 regression.	 This	 logistic	 regression	 model	 can	 be	 used	 to	 estimate	 the
probability	 of drop-out (P(DO))	 from	 an	 evidentiary	 sample	 using	 the	 average	 peak	 heights	
from	 the	 evidentiary	 sample.	 Before this approach can confidently be applied to mixed	
samples,	 we	 need	 to	 evaluate	 its	 performance.	 To	 do	 this,	 we	 examined	 the	 LRs	 obtained	
when	 using	 the true contributor (TC) for	 each	 of	 the	 evidence	 profiles.	 The	 LRs	 were	 
computed using the command line version	 of Lab	 Retriever assuming	 a	 drop-in	 probability	 
of	 1%,	 θ	 (FST) of	 0.01	 and	 using	 the	 allele frequencies	 from	 NIST	 [57].	 For each	 LT profile,	
we	 computed	 several	 LRs.	 First,	 we	 computed	 the	 LR using	 the	 benchmark	 P(DO).	 This	 is	 
the true P(DO) and is	 simply	 the	 proportion	 of	 alleles	 (0,0.5,	 or	 1)	 that	 actually	 dropped	 out	
at	 a	 particular locus.	 This	 would	 not	 be	 known	 for	 an	 actual	 case	 sample,	 but,	 by	 design,	 this	
information	 is	 known for	 these	 mixtures	 analyzed in	 this	 project.	 Second,	 we	 computed	 a	
LR using P(DO) estimated	 by applying the	 logistic	 regression	 model	 to data	 from single-
source	 samples.	 This	 is	 meant	 to	 mimic	 the	 straightforward	 practice	 of	 using	 single-source	
sample	 validation	 data	 to	 fit	 the	 logistic	 regression	 model	 and	 then	 applying that	 model	 to	
more	 complex	 profiles.	 Third,	 we	 estimated	 P(DO) using	 the	 logistic	 regression	 model	 fit	 to
the actual	 type of mixture	 sample.	 For	 example,	 for	 3-person	 mixtures,	 we	 used	 the logistic
regression fit to	 the	 3-person	 mixtures.	 Importantly,	 to	 avoid	 over-fitting,	 3 replicates of	 
each	 profile	 were	 used	 to estimate	 the	 parameters	 of	 the	 logistic	 regression	 model	 of	 drop-
out (Table	 7)	 and the	 remaining	 2 replicates	 were used	 to	 evaluate	 the	 performance	 of	 the	 
LR. 

Focusing on the	 2-person	 mixtures,	 we	 compared	 the	 log(LRs)	 for	 TCs when	 
estimating the P(DO) using	 the	 three	 different	 approaches described above (Figures 4 and 
5).	 Here	 we	 considered	 the	 following	 hypotheses	 in	 the	 LR:	 H1:	 Suspected	 contributor	 +	 1	
unknown	 contributor;	 H2:	 2	 unknown	 contributors.	 Overall,	 the	 LRs	 estimated	 using	 the	 3	
different P(DO)s	 are	 remarkably	 similar	 to	 each	 other (Figures	 4	 and	 5).	 However,	 for	 some	
profiles,	 the	 log(LRs)	 calculated	 from	 the	 estimated	 P(DO)s were	 smaller	 than	 those	 
computed	 using	 the	 benchmark	 values	 of	 P(DO). When	 the	 TC was	 used	 as	 the	 major	 
contributor,	 this	 effect	 was	 more	 pronounced	 for the log(LRs)	 computed	 using	 P(DO)
estimated	 from	 the	 single-source samples	 than	 from	 those using	 the 2-person	 mixtures	 
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computed	using	

(Figure	 4).	 When	 the	 suspected	 contributor	 was	 the	 minor	 contributor,	 this	 effect	 was	 
more	 pronounced	 for the P(DO) estimated	 from	 the	 2-person mixtures	 than those	 using the	 
single-source	 samples	 (Figure	 5).	 When	 the	 TC was	 the	 major	 contributor,	 all	 LRs	 
computed	 using	 the	 estimated	 P(DO)s were never	 more	 than	 2	 orders	 of	 magnitude	 larger 
than	 those	 using	 the	 true	 benchmark	 P(DO) (Figure	 4).	 When the	 TC was	 the	 minor	 
contributor,	 99%	 of	 the	 LRs	 computed	 using	 the	 estimated	 P(DO)s were no	 more	 than	 2	 
orders	of	magnitude	 larger than those	using	the	true	benchmark	 P(DO) (Figure	5).

Turning	 to	 the	 3-person	 mixtures,	 we	 considered	 the	 following	 hypotheses	 in	 the	
LR:	 H1:	 Suspected	 contributor	 and	 2	 unknown contributors;	 H2:	 3	 unknown contributors.
Generally,	 we	 also	 found	 that	 the	 log(LRs)	 estimated using	 the	 three	 types of P(DO) in	 this	 
situation	 were	 quite	 similar	 to	 each	 other (Figures 6	 and	 7).	 Note	 that	 for	 certain	 samples,	
the log(LR) calculated using	 P(DO) estimated	 from	 the single-source	 samples	 tend	 to	 be	 
smaller	 than	 those	 from	 the	 benchmark	 P(DO).	 For	 95%	 of	 the	 cases	 when	 the	 TC	 is	 the	 
major	 contributor,	 the	 LRs	 computed	 using	 the	 estimated	 P(DO) were	 not	 more	 than 2	 
orders	 of	 magnitude	 larger than	 those	 calculated	 using	 the	 benchmark	 P(DO) (Figure	 6).	
Importantly,	 when	 the	 TC is	 the	 minor	 contributor,	 99%	 of	 the	 LRs	 computed	 using	 the	
single-source	 P(DO) were not more	 than	 an	 order	 of	 magnitude	 larger than	 the	 LR	 produced
using	 the	 benchmark	 P(DO) (Figure	 7). Importantly,	 cases	 where	 the	 LRs	 
estimated	 P(DO)s	 were	 more	 than	 an	 order	 of	 magnitude	 larger	 than	 those	 computed	 using	
the true P(DO) occurred	for	log(LRs)	in	the	15-20	 range.

For	 the	 4-person	 mixtures,	 we	 considered	 the	 following	 hypotheses	 in	 the	 LR:	 H1:	
Suspected	 contributor and	 3	 unknown	 contributors;	 H2:	 4	 unknown	 contributors.	 In	 
general	 the	 patterns	 observed	 for the	 4-person	 mixtures	 mimicked	 those	 for	 the	 2	 and	 3-
person	 mixtures.	 We	 found	 that	 log(LR)s	 computed	 using	 the	 3	 different values	 of P(DO)
were	similar	to	each	other (Figure	8).	

We note that	 for	 17	 2-person	 mixtures	 and	 14	 3-person	 mixtures, the log(LR) for the
true contributor is <0 (Figures 5-7),	 suggesting	 that the	 true	 contributor	 is	 not present in	
the	 mixture.	 This	 tends	 to	 occur	 more	 often	 for	 the	 2	 and	 3-person	 mixtures	 when	 the	 true	
contributor	 is	 the	 minor	 contributor.	 Because	 we	 observe	 this	 trend	 regardless	 of	 which 
way	 we	 estimate	 P(DO), and see	 the	 same	 pattern	 even	 when	 using	 the	 benchmark	 P(DO),	
this	 effect	 is	 likely	 not	 caused	 by	 imprecise	 or	 biased	 estimation	 of	 P(DO).	 To	 explore	 this	 
effect	 further,	 we	 performed	 a	 re-analysis of the 17 2-person	 mixtures	 giving	 log(LR)s<0	
for	 true	 contributors using	 a	 range of P(DO)	 from	 0	 to	 0.9	 (Figure	 9).	 For	 the	 majority	 of	 the	 
cases,	 regardless	 of	 which	 P(DO)	 was	 used,	 the	 log(LR)	 remained	 <0.	 In	 a	 couple	 of	 cases,	
the log(LR) increased above 0,	 but	 only to	 a	 maximum	 of	 0.25.	 This	 suggests	 that	 improved	
estimation	 of	 P(DO)	 will	 not	 improve	 this	 situation.	 Rather,	 our	 results	 point	 out	 a	 limitation	
of	 the	 current version	 of	 Lab	Retriever	 that	 uses the same P(DO)s for all	 contributors to the 
mixture	 when	 the	 different	 contributors	 may	 have	 different	 P(DO). Using	 the	 same	 P(DO)	 for	
all	 contributors	 of	 the	 mixture	 can	 yield	 log(LR)s	 that	 are	 too	 small	 in	 this	 situation.	 Figure	 
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10	 shows	 how	 the	 log(LR)	 behaves	 as	 a	 function	 of	 the	 benchmark	 P(DO).	 For 2	 and	 3-
person	 mixtures,	 when	 P(DO) was greater than	 0.6,	 the	 log(LRs)	 start	 to	 move	 <0.	 This	 may	

n	 Lab	Retriever may	 be	 be a	 useful	 heuristic	 to determine a	priori whether a	 LR	 calculation	 i 
too	 small.	 It	 is	 important	 to	 note	 that	 these	 experiments do	 not	 include	 an	 assumed	 
contributor	 to	 the	 mixture.	 If,	 however,	 case	 circumstances	 suggest	 it	 is	 appropriate	 to	
assume	 a	 contributor,	 then,	 in	 the	 case	 of	 a	 2-person	 mixture,	 the	 drop-out probability	 will 
only	 be	 applied	 to	 the	 single	 unknown	 contributor,	 possibly	 mitigating	 this	 problem.	 Future	
developments of Lab	Retriever will	 consider distinct	 drop-out probabilities	 for	 the	 different 
contributors. 

To	 assess	 the	 ability	 of	 Lab	 Retriever to correctly exclude individuals who did not	 
contribute	 to	 a	 mixture,	 we	 compared	 the	 mixtures	 generated	 from	 Aim	 1	 to	 a	 series	 of	
known	 non-contributors	 (KNCs).	 These	 known	 non-contributors	 were	 simulated	 from	 an	
allele	 frequency	 database	 (see	 below	 for	 Aim	 3	 as	 well	 as	 Lohmueller	 et	 al.	 [39] and
Marsden	 et	 al.	 [31]).	 We	 then	 computed	 log(LRs)	 comparing	 each	 of	 these	 10,000	 known	
non-contributors	 to	 each	 of	 our	 mixtures using	 Lab	 Retriever (Table	 8).	 For these	 
comparisons,	 we	 used	 the	 true	 benchmark	 P(DO).	 Overall,	 we	 find	 that	 log(LR)s>0	 occur 
quite	 rarely,	 <1%	 of	 the	 time.	 They	 occur	 more	 often	 (0.96%)	 for	 4-person	 mixture	
comparisons	 and less often	 for 2 and 3-person	 mixtures.	 This	 is	 not surprising	 given	 the	
higher	 risk	 of	 a	 coincidental	 inclusion	 based	 on	 unrelated	 alleles	 in	 a	 higher	 order	 mixture.		
However,	 even	 those	 comparisons	 with	 log(LRs)>0	 tend	 to	 be	 fairly	 close	 to	 one.	 Less than	
0.0052%	 were	 larger	 than	 100.	 The	 maximum	 log(LRs)	 across	 each	 set	 of	 comparisons	 was
6516,	 which	 occurred	 for	 a 3-person	mixture.

3.	Conclusions 
We assessed patterns of allelic	 drop-out in	 819 low-template	 mixed	 samples	 of	 1-4	

contributors.	 Overall, we found that,	 given	 the average RFUs,	 drop-out tended	 to	 behave	
similarly,	 regardless	 of	 the	 number	 of	 contributors	 in	 the	 sample.	 Further,	 for	 a	 given	
mixture,	 using	 single-source	 samples	 to	 estimate	 P(DO) tended to yield log(LR)s for the true
contributor	 that	 were	 similar	 to	 the	 log(LR)s	 obtained	 using	 the	 true	 benchmark	 P(DO).	 
Further, using	 the	 single-source	 P(DO),	 if	 anything,	 tended	 to	 understate	 the	 weight	 of	 the	
evidence	 in	 a	 limited	 number	 of	 cases.	 Approximately 95%	 of	 the	 LRs computed	 using	 the
single-source	 P(DO) were not more	 than	 2 orders of	 magnitude	 greater	 than	 the	 log(LR)s	
using	 the	 benchmark	 P(DO).	 This	 finding	 suggests	 that	 P(DO) estimated	 using	 logistic	
regression modeled	 on	 single-source	 samples	 performs	 well	 and	 does	 not carry	 a risk of	
overstating the	 strength	 of	 the	 evidence	 when	 applied	 to	 more	 complex	 samples. Further,
we 	can	reliably 	exclude 	known	non-contributors	in	>99%	of	the	comparisons	considered.

C.	Aim	3:	Compute	and	evaluate	results	of	Likelihood	Ratios	(LR)	for	complex	 
mixtures. 

1.	Background	and	Significance 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
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Even	 without	 the	 added	 complication	 of	 potential	 drop-out	 in	 LT	 samples,	 at	 least	
two	 factors	 may	 reduce	 the	 information	 content	 of	 multi-contributor	 mixed	 samples	 First,	
many	 of	 the	 alleles	 at	 a	 particular	 locus	 may be	 present	 in	 the	 evidence	 sample.	 As	 such,	 the	
ability	 to	 exclude	 people	 as	 contributors	 to	 the	 mixture	 is	 diminished.	 Second,	 two	 or	 more	
contributors	 to	 the	 mixture	 may	 share	 the	 same	 alleles.	 Thus,	 it	 is	 more	 difficult	 to	 infer	
both	 the	 number	 of	 donors	 to	 a	 mixture,	 as	 well	 as	 the genotypes of the true contributors of 
the	 mixture, directly	 from	 the	 evidentiary	 sample.	 This	 effect	 further	 reduces	 the	 ability	 to	
distinguish	 between	 the	 proposition	 that	 a	 particular	 person	 is	 a	 contributor	 to	 the	 mixture
and	 the	 proposition	 that	 the	 individual	 is	 not	 a	 contributor.	 If	 complex	 mixtures	 routinely	
produce	 LRs around 1,	 then	 this suggests that	 they	 contain	 little information,	 and	 thus,	 may	
not	 be	 worth	 the	 time	 and	 effort	 to	 interpret	 them.	 Additionally,	 if,	 due	 to	 the	 fact that
many	 of	 the	 alleles	 at	 a	 locus	 are	 present	 in	 the	 evidence	 profile,	 known	 non-contributors	
produce	 LRs	 >1,	 then	 this	 suggests	 that	 finding	 an	 LR	 >1	 may	 not	 be	 very	 meaningful	 
evidence.	 

Before we started this project,	 a small	 body	 of	 work suggested that,	 especially for 
mixtures,	 some	 proportion	 of	 true	 non-contributors	 will generate	 LRs	 >1	 [3,39].	 If	 complex	
mixtures	 generate	 LRs	 <1	 (i.e.	 suggesting	 that	 the	 hypothesized	 contributor	 is	 not a true	
contributor	 to	 the	 evidence)	 even	 when	 all of	 the suspected	 contributor’s	 alleles	 are	 
present	 in	 the	 evidence	 profile,	 then	 this	 may	 be	 important	 evidence	 that	 should	 be	
carefully	 considered	 in	 the	 case.	 Intuitively,	 if	 the	 suspected contributor’s alleles were	 all	

present	 in	 the	 evidence	 sample,	 one	 might	 expect	 that	 the	 LR	 would	 be	 ³1.	 However,	 Weir	 
et al. [50] showed	 that this	 is	 not always	 the	 case.	 Specifically,	 they	 showed	 that if	 all of	 the	 
alleles at	 the locus were	 detected in	 the	 evidence	 profile,	 and the	 hypothesis in	 the	
numerator	 included	 at	 least	 one	 unknown	 contributor,	 the	 resulting	 LR	 could	 be	 <1	 if	 the	
suspected	 contributor	 in	 the	 numerator	 carries	 common	 alleles	 at	 the	 locus.	 We	 are	 not	
aware of any follow-up	 work	 in	 the	 literature	 to	 assess how	 often	 this effect	 would be	 
expected	 to	 occur	 in	 different	 types	 of	 mixtures	 or	 with	 different	 genotypes	 for	 the	
hypothesized	 contributor.	 While	 the	 example	 presented	 in	 the	 Weir	 study	 [50] used loci	
contained	 in	 the	 historical	 Polymarker	 genetic	 typing kit, all of	 which	 contain only	 2-3	 
alleles,	 the situation	 can	 be extended to STR	 megaplex	 mixtures	 containing	 3-4	 people.	 
Thus,	 complex	 mixtures	 of	 >2	 individuals	 provide	 ample	 opportunity	 to	 produce	 LRs	 <1,	
depending	 on	 the	 nature	 of	 the	 particular	 profile,	 the	 number	 of	 alleles	 at	 a	 particular	 locus,	
and 	the 	allele 	frequencies.	

Therefore, further work	 was	 required	 to	 assess	 how often LRs	 fall below 1, the	
magnitude	 of	 the	 difference,	 and	 even	 if	 an	 LR	 of	 1	 should	 be	 considered	 the	 default	 neutral	
point. Additionally, we wanted to	 assess	 the	 distribution	 of	 LRs	 in	 complex	 mixtures	 when	
the hypothesized contributor is a	 true contributor and when	 the hypothesized contributor 
is	 a known	 non-contributor.	 To	 fill this	 void,	 we	 have	 conducted	 a	 simulation	 study	 to	 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.

15 



	

	

	

	

	

	 	 	

	

	 	

	

	

	

	 	 	 	

	 	

	 	

	 	

	 	

	 	 	 	

	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	

	 	 	 	 	

	 	 	

	 	

	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

complex	

investigate	 the	 performance	 of	 LRs	 in	 complex	 mixtures	 of	 up	 to	 5	 contributors. These	
results	will	enable	a	more	accurate	interpretation	of	LRs	produced	for	complex	mixtures.

2.	Results 
The	 objective	 of	 Aim	 3	 was	 to	 assess	 how	 well	 LR	 approaches	 perform	 at	 

distinguishing	 true	 contributors	 (TC)	 from	 known	 non-contributors	 (KNC)	 for	
DNA	 mixtures	 with	 2-5	 contributors.	 To	 achieve	 this, we	 simulated	 a	 set	 of	 10,000	 complex	
mixture replicate	 sets assuming	 no	 drop-out.	 Individual genotype	 profiles	 were	 simulated	
using	 the	 program	 R,	 by	 sampling	 two	 alleles	 for	 each	 locus	 from	 a	 multinomial	 distribution	
with	 the	 parameters	 2	 and	 p,	 where	 p	 is	 the	 vector	 of	 allele	 frequencies	 for	 a	 specific	 locus.		
For	 the	 purposes	 of	 these	 simulations,	 we	 used	 Caucasian	 allele	 frequencies	 generated	 by	
the NIST	 group	 [58].	 For	 each	 replicate	 in	 our	 simulation,	 we	 simulated	 a	 set	 of	 six	 
individual genotypes.	 The	 first five	 individuals	 were	 used	 as	 contributors	 to	 create	 the	 
evidence	 mixtures	 and	 are	 hereafter	 referred	 to	 as	 C1,	 C2,	 C3,	 C4	 and	 C5 (Table	 9).		
Specifically,	 the	 two	 person	 mixture	 was	 created	 by	 combining	 the	 genotypes	 for	 C1	 and	 C2
generated	 for	 that	 replicate,	 a	 three	 person	 mixture	 was	 created	 by	 combining	 C1,	 C2,	 C3	
for	 that	 replicate,	 and	 so	 on,	 up	 to	 a	 five	 person	 mixture.	 As	 such	 all	 mixtures	 were	 created	
assuming	 no	 drop-out.	 The	 sixth	 individual (C6)	 was	 simulated	 to	 represent	 a	 non-
contributor	(discussed	below),	and	thus	was not included	in	any	of	the mixtures.

Then	 for	 each	 mixture set,	 we	 computed	 LRs	 (using	 the freely	 available	 program	
DNAMIX,	 http://genomine.org/dnamix/index.html)	 when: 1)	 a	 TC was	 compared	 to	 the	
mixture,	 and	 2)	 a	 KNC was	 compared	 to	 the	 mixture.	 The	 TC was	 one	 of	 the	 multilocus	
genotypes	 that went	 into	 the	 mixture,	 in	 each	 case	 the	 sample	 designated	 C1.	 For each	 
simulated	 mixture,	 we	 compared	 one	 TC (C1)	 and one KNC (C6),	 varying	 the	 number	 of	
assumed	 donors.	 In	 all,	 280,000	 LRs	 were	 computed	 for	 this	 portion	 of	 the	 study (10,000	
replicates	 x 14	 distinct hypotheses x	2 (TC or KNC in the numerator).	

We	 found	 that	 LRs	 could	 reliably	 distinguish	 true	 contributors	 from	 KNC,	 even	 with	
a	 5	 contributor	 mixture	 in	 which a	 high level	 of allele sharing	 exists	 (Figure	 11).	 Moreover,	
we showed that	 LRs have a	 low	 false negative rate,	 with TCs to	 a	 complex	 mixture	 rarely
generating a	 LR <	 1	 (7 of	 140,000 replicates), and then	 only	 for complex	 mixtures	 with	 5	 
contributors	 in	 which the	 numerator	 hypothesis	 includes	 one	 or	 more	 unknown	 
contributor (Table	 10). Similarly,	 LRs had	 very	 low false	 positive	 rates,	 with	 KNCs 
generating	 LR	 >	 1	 in	 only	 75 of	 the	 140,000 replicates (0.054%),	 and	 only	 with	 4	 and	 5	
person	mixtures	with	one	or	more	unknowns	in	the	numerator (Table	 10). 

For	 some	 complex	 samples,	 not	 all	 loci	 will	 amplify	 to produce detectable alleles
(locus	 dropout).	 We	 wanted	 to	 know	 the	 effect	 that	 a	 reduced	 number	 of	 loci	 would	 have	
on	 the overlap	 of LR distributions for	 TCs and KNCs in	 such	 a	 circumstance.	 We	 assessed	
this situation based on	 a	 9 locus Profiler	 Plus	 profile.	 Similar	 to	 the	 15	 locus	 complete	
profile	 (Figure	 11),	 separation	 in	 the	 distribution	 of	 LRs from	 TCs and KNCs was good 
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when	 based	 on	 a 9	 locus	 profile	 (Figure	 12).	 Notably, however,	 a	 greater overlap	 in	 the	 
distributions was observed,	 as TC	 LR	 values	 were lower,	 and KNC values higher, than	 for	 
the 15 locus profiles.	 This	 is particularly	 apparent	 as	 the	 number	 of	 contributors	 and	 
number	 of	 unknowns	 in	 the	 numerator	 increases.	 For	 example,	 88%	 of	 replicates	 for	 a	 3-
person	 mixture	 with	 1	 unknown	 in	 the	 numerator	 yielded	 LR	 >	 1	 million	 when	 using	 a	
complete	 15	 locus	 profile	 compared	 with 22% from	 a	 9 locus profile.	 By	 contrast,	 83% of
replicates	 for	 5	 person	 mixtures	 with	 2	 unknowns	 in	 the	 numerator	 yielded	 LR	 >	 1000	 with
a	 complete	 15	 locus profile	 compared	 with	 just	 37%	 from a	 9 locus profile.	 In	 addition,	 the 
number	 of	 TCs	 with LR <	 1	 (64/140,000)	 and	 the	 number	 of	 KNCs with LR	 > 1 
(751/140,000)	 was	 an	 order	 of	 magnitude	 higher	 with the 9 locus profiles compared	 to	 the 
complete	profiles.

How commonly	do	TC	yield	LR	<	1	at	individual	loci? 
As	 discussed	 above,	 we	 found	 that	 7/140,000 replicates	 yielded	 LRs <	 1	 for	 TCs.	 All	 

of	 these	 examples	 were	 associated	 with	 5	 person	 mixtures	 with	 1	 or	 more	 unknown	 
contributors in	 the	 numerator.	 We	 investigated	 how frequently	 LRs <	 1	 were	 found	 at 
individual	 loci when	 based on	 a	 15 locus profile.	 While hypotheses with 0 unknowns 
always gave a	 LR	 > 1 at	 all	 loci,	 for other hypotheses a	 large proportion	 of replicates 
generated	 a locus with a LR <	 1. For	 example, ~	 45% of replicates for 2-person	 mixtures	 
and ~95% of	 replicates	 from	 5	 person	 mixtures	 showed at	 least	 one locus with a	 LR	 < 1 
(Table	 11). These	 results	 suggest that a potential contributor	 should	 not be	 excluded	 on	 
the 	base 	of a	single 	locus. 

3.	 Conclusions 
Overall,	 we find that	 simulated	 mixtures	 containing	 all alleles	 of	 the	 input profiles,	 

and including	 up	 to	 5	 contributors, provide	 a	 substantial	 amount	 of	 information.	 It	 is	 
possible	 to	 distinguish	 between	 true	 contributors and non-contributors quite	 reliably,	
using	 a	 LR	 framework	 that	 does	 not	 include	 information	 about	 peak	 heights.	 As	 such,	 while	
overlapping	 of	 alleles	 (allele sharing,	 sometimes	 called	 “stacking”)	 may	 complicate	 the	
deconvolution	 of	 mixtures,	 it	 does	 not	 negate	 the	 numerical	 weight of	 such	 evidence.	 Of	
course,	 complications	 such	 as	 degradation	 and	 allelic	 drop-out,	 which	 were	 not	 examined	
in	 this part	 of the study,	 will	 complicate	 the	 interpretation,	 and	 likely	 decrease	 the	 strength	
of	 the	 evidence.	 As	 such,	 this	 work	 provides	 information	 to	 establish	 a	 ceiling	 for	 the	 
expected	 LR	 under	 optimal	 conditions. In	 this way,	 our work	 provides	 information	 to	
laboratories	to	assist	with	optimizing	their	policies	and	procedures.

The	 results	 of	 this	 part of	 the	 project were	 published	 in Marsden	 et	 al.	 (2016) [31].	 
Please	see	that publication	for	additional 	technical 	details	and	discussion	of	our	findings. 

D.	 Aim 4:	 Evaluation of	the	role	of	stutter	in 	mixture	interpretation. 

1.	Background	and	Significance 
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A	 characteristic	 of	 Short	 Tandem	 Repeat	 (STR)	 in	 vitro amplification	 is	 the	 loss	 or	 
gain	 of	 repeat	 units [60,61].	 The	 frequency	 of	 these	 events	 is	 inversely	 proportional to	 the	 
repeat length. Thus	 dinucleotide	 repeats	 show the	 highest occurrence of	 “stutter” peaks	 
and the frequency	 decreases as the repeat	 length increases to tri-,	 tetra,	 and	 penta-
nucleotide	 repeats.	 The	 most	 prevalent	 event	 is	 the	 loss	 of	 one	 repeat	 unit,	 however	 the
gain	 of	 one	 repeat	 unit	 is	 observed	 at	 a	 lower frequency.	 Likely the loss or gain	 of 
additional	 repeat	 units also occurs,	 but	 at	 a	 frequency	 that	 is not	 usually	 detected under 
conditions	typical	of	forensic	DNA	typing.

While	 stutter	 peaks	 pose	 no	 problem	 to	 interpreting	 single-source	 profiles,	 they	 can	
confound	 the	 interpretation of	 mixtures,	 in	 particular	 those	 in	 which	 a	 minor	 component	 is	
present	 in	 the	 same	 RFU	 range	 as	 the	 stutter	 peaks	 of	 a	 major	 contributor [40–42].	 It	 is	 
often	 assumed	 that	 for	 such	 overlapping	 alleles, the contribution of	 the	 minor	 allele	 and	 the	 
stutter peak	 are directly additive. Little	 work	 has	 been	 performed	 to	 address	 this	 important	
issue	 and	 to	 investigate	 the	 relative	 contributions	 of	 a	 minor	 allelic	 peak	 and	 a	 stutter	 peak	
to 	the 	total	height	(RFU),	but	see	 [40–42].	

We	have	included	mixtures	designed	specifically	to	address	this	question (Table	5).	 

2.	Results 
As	a	simple	first	pass,	data	from	all	template	amounts	were	used	and	alleles	

representing three different	conditions 	were identified: 

1. Alleles	solely	from	the	minor donor 
2. Peaks	due	to	stutter	only 
3. Peaks	from	the	minor	donor	that	occur	in	stutter	positions	for	the	major	donor

[minor+	stutter].	

Only	 the	 9:1	 mixtures	 produced	 peaks	 of	 similar	 height	 in	 both	 the	 stutter	 peaks and
minor	 donor	 alleles. The	 average	 peak	 height	 for	 the	 minor	 donor	 alleles	 was	 55 (! =	 39),	
while the average height for	 stutter	 peaks	 was	 50 (! =	 33).	 The	 distribution	 of	 the	 heights	
for	 both	 types	 of	 peaks	 appears	 visually	 similar (Figure	 13).	 In	 addition	 to	 the	 concordance	
of	 means	 of	 the	 peak	 heights,	 the	 full	 distributions	 of	 the	 stutter	 and	 minor	 peaks	 appear	 to	
be similar	 to	 each	 other	 (Figure	 14,	 compare	 the	 red	 and	 black	 lines).	 Further, shorter	
alleles 	tend to 	show	elevated 	stutter 	relative to 	longer 	alleles	 (Figure	 13).

For	 those	 peaks	 from	 the	 minor	 donor	 that	 occur	 in	 stutter	 positions	 of	 alleles	 from	
the	 major	 donor,	 a	 clear	 increase	 in	 RFU	 is	 seen in	 some,	 but	 not	 all,	 samples (Figure	 15).
More	 important,	 RFU	 values	 for	 the	 [minor	 +	 stutter]	 peaks	 are	 clearly	 more	 variable than	
for	 either	 alone,	 exhibiting values	 both	 lower	 and	 higher	 than	 either	 the	 minor	 or	 stutter	
peaks show separately.	 The	 average	 RFU	 of	 these	 peaks	 is	 76 (! =	 66). The	 [minor+stutter]	 
peak height distribution	 has	 a longer	 tail of	 high	 RFU	 values	 relative	 to	 the	 minor	 peak	 
height distribution	 and	 the	 stutter	 peak height distribution (Figure	 14).	 Given	 that the	 
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medians	 of	 all	 three	 distributions	 are	 similar	 (45,	 46,	 and	 49	 RFUs	 for	 the	 minor,	 stutter,	
and [minor+stutter]	 distributions, respectively), the	 long tail is	 driving the	 higher	 average	
RFUs	 for	 the	 [minor+stutter]	 peaks. Another	 way	 to	 visualize	 this	 difference	 is	 to	 plot	 the	
peak	 height	 ratios	 of	 the	 stutter	 only	 and	 the	 [minor	 +	 stutter]	 peaks	 (Figure	 16;	 trend lines
added).	 The	 peak	 height	 ratio	 is	 higher	 for	 the	 [minor	 +	 stutter]	 peaks,	 although	 the	 degree	
to which it	 is elevated is quite variable.	 The	 trend	 lines	 appear	 to	 differ	 between	 the	 two	 
sets	 of	 peaks.

If	 stutter	 and	 minor	 peaks	 were	 truly	 additive,	 then	 the	 heights	 of	 the	 
[minor+stutter] peaks	 could	 be	 modeled	 by	 summing	 the	 heights	 of	 the	 stutter	 and	 the	
minor	 peaks	 together.	 To	 test	 the	 additive	 model,	 we	 randomly	 sampled 47	 minor	 peaks	
and 47 stutter peaks (we	 have	 47	 [minor+stutter]	 peaks	 in	 the	 distribution	 shown in	 blue	 
in	 Figure	 17).	 The	 height	 of	 a	 stutter	 peak	 was	 added	 to	 each	 minor	 allele	 peak,	 giving	 a	
distribution	 of	 47	 heights	 that	 each	 are	 the	 sum	 of	 a	 stutter	 peak	 and	 a	 minor	 peak.	 We did	
this	 1000	 times,	 combining	 different	 sets	 of	 47	 peaks	 together. We find that	 the 
[minor+stutter] peak	 distribution	 (blue	 curve	 in	 Figure	 17)	 does	 not fall within	 the	 range	 of	
the	 distribution	 from	 what	 is	 predicted	 when	 stutter	 and	 minor	 allele	 peaks	 are	 additive	
(gray	 curves	 in	 Figure	 17).	 This	 allows	 us	 to	 reject a model	 where	 the	 heights	
[minor+stutter] peaks	 are	 simply	 the	 sum	 of	 the	 minor	 peak	 heights	 and	 the	 stutter	 peak	
heights. The	 lack	 of	 fit	 of	 the	 additive	 model	 is	 especially	 pronounced	 in	 the	 low-template	 
range	 (<150	 RFUs).	 For higher peak	 heights	 >150	 RFUs,	 the	 additive	 model	 is	 more	 
consistent	 with	 the	 observed	 heights	 of	 the	 [minor+stutter	 peaks]	 (note	 the	 blue	 curve	 falls	
within	the 	bounds 	of 	the 	gray 	lines in	Figure 	17 	for 	peak	heights 	>150 	RFUs).	 

3.	Conclusions 

Our data	 demonstrate that	 minor	 donor	 alleles in	 a	 stutter	 position	 of	 a	 major	 donor	 
peak	 can be	 elevated	 above	 the	 normally	 expected	 stutter	 peak	 height.	 However,	 this	 is	 not	
always the case;	 some	 [minor	 +	 stutter]	 peaks	 fall below	 the lowest	 stutter peaks detected.	
The	 average	 RFU	 of	 the stutter peaks for	 all	 template	 amounts	 was	 about	 50,	 while	 the	
average	 RFU	 for	 the	 [minor	 +	 stutter]	 peaks	 was	 76.	 However, the range of variation	 was 
greater	 for	 the	 [minor	 +	 stutter]	 peaks	 than	 for	 either	 the	 minor	 peaks	 or	 the	 stutter	 peaks	
alone.	 This signals that	 something	 unusual	 is	 occurring	 during	 PCR	 that	 is not	 readily	
explained.	 At	 the	 very	 least,	 it	 is	 clear	 that	 such	 a	 peak	 cannot	 be	 assumed	 to	 be	 the direct	 
sum	 of	 a	 true allele and stutter.	 Because the fluorescent	 signal	 of a	 stutter peak	 and a	 real	 
allele is expected	 to	 be additive,	 our	 rejection	 of	 an	 additive	 model	 argues	 that	 some	 other	 
aspect of	 the	 typing	 process	 is	 responsible	 for	 the	 apparent lack of	 additivity.	 One	 
possibility	 is that,	 when	 present	 together,	 the	 PCR	 amplification of	 the	 true	 allele,	 and the	
generation	of	the	N-1	stutter	product	become	dependent	in	some	as	yet	undefined	way. 
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It	 is	 possible	 that	 the	 wide	 range	 of	 [minor	 +	 stutter]	 peak	 heights	 is	 related	 to	 a	
difference	 in	 the	 repeat sequence	 between	 the	 stutter	 peak and	 the minor	 donor	 allele,	 as	
outlined	in	Bright et al.	2013 [40].	That	possibility	was	not	investigated	in	this	study.	

For	 mixed	 samples,	 a	 common	 practice	 among	 practitioners	 is	 to	 subtract	 some	 
statistical value	 related	 to	 expected	 stutter	 (maximum	 stutter	 or	 average	 stutter,	 for	
example)	 from	 the	 peak	 in	 a	 stutter position,	 and designate	 that peak	 as representing a true	
DNA	 allele	 present	 in	 the	 DNA	 source	 if	 the	 remaining	 RFU	 value	 is	 above	 the	 analytical	
threshold.	 The data	 developed here suggests that	 this is unwise,	 as the height	 of a	 peak	
resulting	from	a	true	minor	allele	+	stutter	cannot	 be	assumed	to	be	directly	additive.	

E.	 Aim 5:	 Development,	 distribution 	and	support	of	 Lab	Retriever. 

1.	Background	and	Significance 
While	 the	 theoretical	 foundation	 for	 calculating	 LRs	 for	 complex	 DNA	 samples	 has	

existed	 for	 some	 time,	 at	 the	 time	 our	 project	 began,	 no	 freely	 available,	 transparent,	 and
user-friendly	 software	 was	 available	 that	 forensic	 DNA	 analysts	 could	 use	 to	 perform	 the	
calculations.	 Some	 programs	 provide	 a	 graphical	 user	 interface,	 but	 are	 opaque,	 difficult	 to	
use	 and/or require	 a	 substantial	 monetary	 investment	 (e.g.	 TrueAllele®). Others,	 while 
somewhat	 more	 affordable,	 only	 deconvolve mixtures	 without	 considering	 the	 probability	
of	 drop-out,	 and	 do	 not	 employ	 a	 probabilistic	 approach	 (e.g.	 Armed	 Xpert™.)	 Still	 others	
are	 freely	 available,	 but	 require	 expertise	 in	 computer	 programming	 to	 use	 (e.g.	 the 
original LRMix,	 likeLTD,	 DNAmixtures,	 European	 Forensic	 Mixtures).	 In	 recognition	 of	 this	
void,	 we	 developed	 Lab	Retriever.	 Lab	Retriever	 provides	 a graphical user	 interface	 (GUI)	 to	 
the	 algorithms	 described	 by	 Balding	 and	 Buckleton [5].	 As	 such,	 this	 program	 provides	 a	 
user-friendly	 environment	 in	 which	 forensic	 analysts	 can	 calculate	 LRs	 incorporating	 a 
P(DO)	for	complex	samples (Figure	18).	

2.	Results 
During this	 project, we	 have	 made	 a	 number	 of	 substantive improvements	 to	 our	

Lab	 Retriever program.	 While	 the	 program	 is	 based	 on	 R	 code	 originally	 published by 
Balding	 and	 Buckleton [5],	 Lab	 Retriever includes a	 number	 of	 important	 technical	 
advances.	 We	 recoded	 the	 program	 in	 C++	 to	 allow	 for	 substantially	 faster	 run	 times when	
considering	 hypotheses	 involving	 multiple	 unknown	 contributors.	 In	 this work,	 the	 
graphical	 user interface	 (GUI)	 has	 been	 completely	 rewritten	 to	 replace the original	 GUI	 
code (Tide-SDK), which	 had	 become	 deprecated. This	 will	 ensure	 that	 the	 program	 will	
continue	 to	 work	 into	 the	 reasonable	 future	 on	 current	 and	 future	 computer	 platforms.	
Second,	 the	 original	 algorithm could	 only	 consider	 hypotheses	 with	 at	 most	 2	 unknown
contributors	 in	 the	 denominator.	 The	 original	 algorithm	 used	 a	 series	 of	 “for”	 loops	 to	
iterate	 through	 the	 genotypes	 of	 all	 possible	 pairs	 of	 contributors.	 As	 this	 is	 extremely	
computationally	 intensive,	 extending	 the	 program to	 handling	 more	 than	 2	 unknown 
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contributors	 would be difficult.	 However,	 we	 have	 overcome	 this	 technical	 challenge	 by	
replacing	 the	 nested	 “for”	 loops	 with	 a	 computationally	 efficient	 dynamic	 programming	
algorithm	 that	 can	 efficiently	 handle	 hypotheses	 involving	 up	 to	 4	 unknown	 contributors	 in	
the	 denominator	 within	 seconds.	 The	 details	 of	 this	 algorithm	 may	 be	 found	 in	 the	
Supplementary Notes of our publication	 on	 Lab	Retriever [10]. We now	 report	 a number of 
additional	 improvements	 that	 have	 been	 incorporated. These	 include	 the	 ability	 to	 add	 and	
choose	 among	 any	 user-defined	 population	 database,	 the ability to choose a	 user-defined	 
co-ancestry	 coefficient	 (θ	 or FST),	 the	 ability	 to	 choose	 a	 user	 defined	 “α”	 term	 (relevant	 to	
handling	 homozygotes), and	 a	 transparent	 export	 of	 both	 the	 numerator	 and	 denominator	
of	 the	 LR	 to	 provide	 more	 information	 to	 the	 user	 and	 assist	 in	 research	 efforts. This	 work
has	 increased	 knowledge	 regarding	 the	 interpretation	 of	 complex	 DNA	 profiles	 and	 added	
new	 features	 to	 a	 freely-available	 software	 program	 that	 continues	 to	 aide	 forensic	 DNA	
analysts in	accurately	and efficiently	assessing	the weight	of such evidence. 

We	have	published	detailed	description	of	the	methodology	used	in	 Lab Retriever in	 
BMC	 Bioinformatics [10]. The	program	is	freely	available	for	download	from	the	website	 
www.scieg.org)	and	the	code,	which	follows	GNU	licensing,	is	available	on	GitHub 
(https://github.com/SCIEG/LabRetriever.)

3.	Conclusions 
At	 present,	 a number	 of	 software	 solutions	 are	 available to aid in	 the interpretation	

of	 challenging	 forensic	 DNA	 profiles.	 These	 programs	 use	 different	 summaries	 of	 the	 DNA	
profile	 data,	 make	 different	 modeling	 assumptions,	 require	 different	 computational
resources, and	 have	 different	 levels	 of	 accessibility and transparency in	 licensing.	 To	 this	 
end,	 we	 continue	 to	 develop	 and	 support Lab	 Retriever,	 a	 freely	 available	 open-source	 
software solution	 to aid forensic analysts.	 Lab	Retriever has	 a	 number	 of	 attractive	 features 
including an open	 source platform,	 a	 basis in published	 algorithms,	 flexibility	 in	 terms	 of	 
the hypotheses that	 can	 be considered,	 nearly instantaneous run-time,	 and	 a	 friendly	
graphical	user interface. 

At	present	a	number	of	laboratories	are	using	 Lab	Retriever for	 casework.	 These	 labs	 
include: 

Denver	Police	Department

Jefferson	County	Regional	Crime	Laboratory

Cayman	Islands	Health	Authority	

Lake	County	Crime	Laboratory

Genetic	Technologies,	Inc.

Bode Technology
Laboratorio	 Biologia e	 Genetica Forense 
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rime	Laboratory	(C

Additionally,	 Johnson County	 Sheriff’s	 Office,	 and Anne	Arundel	Co	Police	Department are
working	on	validating	the	program.

Thus,	we	believe	that Lab	Retriever is	and	will continue	to	be	a useful tool for	the	forensic	 
community.
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Publications	in progress: 
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interpretation of	complex	DNA	profiles.	
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samples.
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Lab	Retriever Training provided to: 
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NMS	Laboratory	(PA)

Westchester	County	Crime	Laboratory (NY)
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Carabinieri	Scientific	Investigations	Department	(RIS),	Rome,	Italy

Cayman	Islands	Health	Services	Authority	Forensic	Science	Laboratory

Allegheny	County	Office	of	the	Medical	Examiner	(PA)

Johnson	County	Sheriff’s	Office	Crime	Laboratory	(KS)

Presentations on 	the	interpretation 	of	challenging	DNA	profiles	at	national	and	 
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Haned,	H,	Gill,	P.,	Lohmueller,	K.,	Inman,	N.,	Rudin,	N.,	 Validation of	 probabilistic	 genotyping
software	for	use	in	forensic	DNA	casework,	AAFS,	New	Orleans,	LA,	February	2017.

Norah	 Rudin.	 A	story	of	samples	and	statistics:	The	history	of	a	forensic	sample, the history
and	current	state	of	forensic	DNA	interpretation	and	statistics	in	the	U.S. Isaac	Newton	
Institute	for	Mathematical	Sciences,	Cambridge,	England,	November	2016.

Keith	Inman.	 A	comparison	of	complex	profiles	analyzed	with	different	software	tools.	Isaac	
Newton	Institute	for	Mathematical	Sciences,	Cambridge,	England, November	2016.

Clare	 Marsden,	 Norah	 Rudin,	 Keith Inman,	 Kirk	 Lohmueller,	2015.	Defining	the	limits	of	
forensic	DNA	profile	interpretation:	An	assessment	of	the	information	content	inherent in	 
complex	mixtures.,	NIST	International	Symposium	on	Forensic	Science	Error	Management,	

Washington	D.C.	

http://scieg.org/uploads/Inman_AAFS_Presentation_Final.pdf

Clare	 Marsden,	Norah	Rudin,	Keith	Inman*,	Kirk	Lohmueller.	Defining	the	limits	of	forensic	
DNA	profile	interpretation:	An	assessment	of	the	information	content	inherent	in	complex	

mixtures.	Platform	presentation	at	the	AAFS	meeting,	Orlando,	FL,	February	2015.

(*Presenter)

http://scieg.org/uploads/Inman_AAFS_Presentation_Final.pdf

Clare	Marsden*,	Norah	Rudin,	Keith	Inman,	Kirk	Lohmueller.	Defining	the	limits	of	forensic	

DNA	profile	interpretation:	An	assessment	of	the	information	content	inherent	in	complex	

mixtures.	Platform	presentation	at	the	California	Association	of	Criminalists,	Rohnert	Park,	

CA	October	2014.	(*Presenter)

Keith	Inman*,	Norah	Rudin*,	Kirk	E	 Lohmueller*.	Probabilistic	software 	workshop: 	Lab	 
Retriever.	Workshop	presenter	at	the	25th	International	Symposium	on	Human	

Identification,	Phoenix,	AZ,	September	2014.	(*Presenter)

(http://scieg.org/uploads/ISHI_2014_Lab_Retriever_FINAL.pdf)

Keith	Inman.	A	practical	solution	to	training	U.S.	forensic	DNA	practitioners	on	

implementing	probabilistic	approaches	to	weighting	forensic	DNA	evidence.	Platform	

presentation	at	the	International	Conference	on	Forensic	Inference	and	Statistics,	the	

Netherlands,	August	2014.

(http://scieg.org/uploads/ICFIS_Inman_2014_Posting.pdf) 
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Norah	Rudin*,	Keith	Inman,	Kirk	E	 Lohmueller.	Lab	Retriever:	A	software	tool	 to	estimate	
the	quantitative	evidential	value	of	complex	DNA	profiles.	Platform	presentation	at	the	

International	Conference	on	Forensic	Inference	and	Statistics,	the	Netherlands,	August	

2014.	 (*Presenter)
(http://scieg.org/uploads/ICFIS_NR_2014_for_scieg_web_site.pdf)

Keith	Inman*,	Norah	Rudin*,	Kirk	E	 Lohmueller*.	Calculating	Likelihood	Ratios	
Incorporating	a	Probability	of 	Drop-out	using	the	free	program	Lab	Retriever.	Workshop at	
the	24th	International	Symposium	on	Human	Identification,	Atlanta,	GA,	October	2013.	

(*Presenter)

(http://scieg.org/uploads/Promega_2013.pdf)

Select	presentations	at	regional	forensic	science	meetings	and	workshops:	 

1) California	Association	of	Criminalists,	May,	2014
2) Mid-Atlantic	Association	of	Forensic	Science,	May	2014
3) North-Eastern	Association	of	Forensic	Science,	May	2014
4) A	special	week-long	workshop	organized	by	the	Midwestern	Association	of	 Forensic	

Science,	June	2014

5) Southern Association	of	Forensic	Science,	September	2014
6) Association	of	Forensic	DNA	Administrators	and	Analysts,	January	2016,	July	15,	2016
South-Western	Association	of	Forensic	Science,	September	2016
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Figure	1:	Probability	of	drop-out	vs.	average	RFUs	for	the	single-source	(SS)	profiles.	 
Each	color 	denotes 	one of	the	three	different individuals	used	to	generate	the	dilution	
series. Solid	lines	denote	the	logistic	regression	curves	fit	to	the	data	(see	Table	7	for the	
parameters	of	the	model). 
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Figure	2:	Probability	of	drop-out	vs.	average	RFUs	for	profiles	with	different	 
numbers	of	contributors.	 Colors	 denote	 the	 different	number	of	contributors	to	each	 
mixture.	2P	denotes	2-person	mixtures.	3P	denotes	3-person	mixtures.	4P	denotes	4-
person	mixtures.	SS	denotes	single-source	samples.	Solid	lines	denote	the	logistic	
regression	curves	 fit	to	 the	 data	(see	 Table	 7	 for	 the	parameters	of	the	model).	
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Figure	3:	Logistic	regression 	curves	for	profiles	with	different	numbers	of	 
contributors.	 Colors	denote	the	different	number	of	contributors	to	each	mixture.	2P	 
denotes	 2-person	mixtures.	3P	denotes	3-person	mixtures.	4P	denotes 	4-person	mixtures.	 
SS	denotes	single-source	samples.	See	Table	7	for	the	parameters. 
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Figure	4:	Comparison of	the	log(LRs)	for	2-person mixtures	 where	the	suspected	 
contributor is	the	true	major	contributor	to	the	mixture. Log(LRs)	were	computed	 
using	3	different	ways	to	estimate	 P(DO).	Each	plot	compares	 log(LRs)	from	two	of	these	
approaches.	The solid line is the diagonal.	Different	colors denote different	quantities of
DNA	and	shapes	denote	different	mixture	ratios. SS	denotes	single-source. 
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Figure	5:	Comparison of	the	log(LRs)	for	2-person mixtures	where	the	 suspected	 
contributor is	the	true	minor contributor to the	 mixture. Log(LRs)	were	computed	
using	3 different	ways	to	estimate	 P(DO). Each	plot	compares	log(LRs)	from	two	of	these	 
approaches.	The solid line is the diagonal.	Different	colors denote different	quantities of
DNA	and	shapes	denote	different	mixture	ratios. SS	denotes	single-source. 
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Figure	6:	Comparison of	the	log(LRs) for	3-person mixtures	where	the	 suspected	 
contributor is	the	true	major contributor to the	 mixture. Log(LRs)	were	computed	
using	3	different	ways	to	estimate	 P(DO).	 Each	plot	compares	log(LRs)	from	two	of	these	
approaches.	The solid line is the diagonal.	Different	colors denote different	quantities	of	
DNA	and	shapes	denote	different	mixture	ratios. SS	denotes	single-source. 
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Figure	7:	Comparison of	the	log(LRs) for	3-person mixtures	where	the	 suspected	 
contributor is	the	true	minor contributor to the	 mixture. Log(LRs)	were	computed	
using 3	different	ways	to	estimate	 P(DO).	 Each	plot	compares	 log(LRs)	from	two	of	these	
approaches.	The solid line is the diagonal.	Different	colors denote different	quantities of
DNA	and	shapes	denote	different	mixture	ratios. SS	denotes	single-source. 
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Figure	8:	Comparison 	of	the	log(LRs) for	4-person 	mixtures	where	the	 suspected	 
contributor	is	the true contributor to the	 mixture. Log(LRs)	were	computed	using	3	
different	ways	to	estimate	 P(DO).	 Each	plot	compares	log(LRs)	from	two	of	these	
approaches.	The	solid	line	is	the	diagonal.	Different	colors	denote	different	quantities	of	
DNA	and	shapes	denote	different	mixture	ratios. SS	denotes	single-source. 
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Figure	10: Log(LRs)	decrease	with	increasing	 P(DO).	 Left:	 2-person	mixtures.	 Right:	 3-
person	mixtures. Bottom:	4-person	mixtures.	The	 P(DO) on	the	x-axis is the true P(DO) for	
the contributor of interest.		In	all	panels,	the	suspected	contributor	is	the	true	minor	
contributor.	The	LRs	compare	the	probability	of	the	evidence	assuming	the	suspected	
contributor	and	1	(or	more)	unknown	contributors	vs.	2	(or	more)	unknown	contributors.	
For	mixtures	with	 P(DO)>0.6,	 there	 is	 a non-negligible	probability	of	a	log(LR)<0	for a	true	 
contributor. 
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Figure 11: Distribution of LRs for simulated mixtures. TC denotes true contributor (red) 
while KNC denotes a known non-contributor (blue). Rows denote the total number of 
contributors in the mixture while columns denote the number of unknowns in the numerator. The 
denominator always contains one additional unknown contributor. Overall, note the good 
separation of LRs between TCs and KNCs. 
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Figure 12: Distribution of LRs for simulated mixtures including only 9 loci. TC denotes true 
contributor (red) while KNC denotes a known non-contributor (blue). Rows denote the total 
number of contributors in the mixture while columns denote the number of unknowns in the 
numerator. The denominator always contains one addition unknown contributor. Overall, the 
separation of LRs between TCs and KNCs is not as good as with 15 loci. 
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Figure	13:	Peak	heights	of	stutter	peaks	and	minor	allele	peaks	as	a	function of	the	 
size	of	the	allele. Note	 that the points	from	stutter	and	 minor	alleles	appear	to	have	
similar	heights	to	each	other. 
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Figure	14:	 Distributions	of	the	peak	heights	for	stutter,	minor,	and	 [minor + stutter] 
peaks	in 	the	 9:1	2-person mixtures. A	total	of	74,	47,	and	124 peaks 	are	in	the	 stutter,	 
minor,	and	 [minor + stutter] distributions,	 respectively.	 
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Figure	15:	Peaks	heights	of	positions	where	minor	alleles	overlapped	with	stutter	 
peaks	(black). Note	that	the	positions	where	stutter	and	minor	peaks	overlap	have	a	
higher	average	height.	However,	the	variance	in	RFU	is	much	larger	for	these	peaks	
compared	to	those	with	just	stutter	or	minor	alleles. 
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Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Figure	16:	 Peak	height	ratios	of	the	stutter	only	and	the	[minor	+	stutter]	peaks.	 Note	 
the 	elevated 	peak	height	ratio 	for 	the [minor 	+	stutter 	peaks].	However,	the	extent	of	this	 
elevation	is	variable. 
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Figure	17:	 The	distribution 	of	 [minor	+	stutter]	peak	heights	is	not	consistent	with	 
the	distribution 	of	the	sum	of	the	minor	peaks	and	the	stutter	peaks.	Blue 	shows 	the	
empirical	 distribution	 of	 the	 [minor	+	stutter]	peak	heights.	Each	gray	curve	represents the	 
distribution	of	the	heights	of	47	peaks,	where	each	peak	is	the	sum	of	a	random	minor	
allele	and	a	random	stutter	peak.	If	the	heights	of	 [minor	+	stutter]	peaks behaved 	in	 an	 
additive	manor,	the	blue	distribution	would	fall	within	the	range	of	the	gray	distributions.	
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Figure	18:	 Graphical	user	interface	for	 Lab Retriever. On	the	leftmost	side,	users	have	
the 	opportunity to 	select	the 	drop-in	probability,	drop-out 	probability,	co-ancestry	
adjustment,	population	allele	frequency	group	and	the	hypotheses	in	the	LR.	The	middle	
section	 shows	 the	 evidence	 profile	 and	 the	 profile	 of	 the	 suspected	 contributors.	 The	 right
section	 shows	 the	 LR	 calculated	 for	 each	 locus,	 as	 well as 	for 	the 	entire 	profile 	for 	three 
major	US	population	groups. 
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Table	1:	Genotypes	of	the	8	individuals	from	which	the	mixtures	were	generated. 

Sample A-365* B-483 C-497 D-555 E-681 F-788 G-805 H-985 

D8S1179 13,15 13 13,14 13 13,14 12,16 15 14,15 

D21S11 28,30 26,29 31.2,32.2 30,32.2 29,31.2 28,30 29 30,30.2 

D7S820 11 10,12 11 12,13 7,11 10,11 12 9,10 

CSF1PO 10,12 11,12 10,11 10,12 10,11 10,12 11,12 10,11 

D3S1358 14,15 14,15 15 15,18 14,17 17 16,19 15 

TH01 6,9.3 9.3,7 6,7 6,9.3 9.3 6,9.3 9,10 7,8 

D13S317 10,12 11,15 8,13 10,13 8,12 10,11 9,11 10,11 

D16S539 9,12 12,13 11,13 9,11 9,11 9,12 9,12 11,14 

D2S1338 20,21 16 22,25 24,26 17,24 18,20 18,24 17,20 

D19S433 14 13,14 14,15 15,15.2 13,14 13,14 14.2,16.2 15,16.2 

vWA 17,18 16,17 16 16,18 16,17 17 14,16 17 

TPOX 8,10 8,10 8,11 8,12 8,11 8 9,11 8 

D18S51 13,18 12 16 13,15 12,16 14,15 13,16 13,17 

AMEL X,Y X,X X,X X,X X,Y X,Y X,Y X,X 

D5S818 11,12 12 11 11,12 11 13,14 7,9 11,12 

FGA 19,24 21,25 22,24 19,22 20,21 21,24 22,23 23,25 

*	 - Letter	=	Used	to	code	sample;	Number	=	anonymization	code 
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Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Table	2:	 Total	DNA,	mixture	ratio,	and	individual	DNA	contribution	for	2-person	mixtures	
	 	

2	 person	 		 		

Major	ng/minor	
Total	DNA	 (ng)	 Mix	ratio	

ng	

0.5	 	1:1	 0.25/0.25	

		 	2:1	 0.33/0.17	

		 	4:1	 0.4/0.1	

		 	9:1	 0.45/0.05	

		
	 	

0.1	 	1:1	 0.05/0.05	

		 	2:1	 0.067/0.033	

	4:1	 0.08/0.02			

	9:1	 0.09/0.01	

		

		

	 	
0.05	 	1:1	 0.025/0.025	

		 	2:1	 0.033/0.017	

		 	4:1	 0.04/0.01	

		 	9:1	 0.045/0.005	

		 	
0.03	 	1:1	 0.015/0.015	

		 	2:1	 0.02/0.01	

	4:1	 0.024/0.006	

		

		

	9:1	 0.027/0.003	

		

For	each	 2-person	
		 		

Major	donor/	
mixture:	 	minor	donor	

Max	#		homozygous	peaks	 C-497	

		
/Max	 #	heterzygous	peaks	 /E-681	

Max	#	heterozygous	peaks/	 E-681	
Max	#	homozygous	peaks	 /C-497	

		

Max	#	homozygous	peaks/	 C-497	
Max	#	homozygous	peaks	 /B-483	

		

Max	#	heterozygous	peaks/	 E-681	
Max	#	heterozygous	peaks	 /D-555	

		

Maximizing	#	of	peaks	in	stutter	position	 E-681	
for	minor	donor	 /D-555	

		

Minimizing	#	of	peaks	in	stutter	position	 A-365	
for	minor	donor	 /D-555	

		

	 48 



	

 

	 		 		

	 	 	 	
	 	

	 	

	 	 	 	

		 	 	 	

		 	 	 	

		 	 	 	

		
	

	 	 	 	

		 	 	 	

		 	 	 	

		 	 	 	

		
	

	 	 	 	

		 	 	 	

		 	 	 	

		 	 	 	

		 		 		

	 	
	

	 	
	 	 	

		

	 		 	 	
	 	 	

	

		

	 	 	 	
	 	 	

	

		

	 	 	 	
	 	 	

	

		

	 	 	 	
	 	 	

	

  

Table 3: Total	DNA,	mixture	ratio,	and	individual	DNA	contribution	for	 3-person	mixtures 

3	 person 

Total DNA	 (ng) 

0.5 

Mix ratio 

1:1:1 

2:2:1 

6:3:1 

8:1:1 

Major ng/minor 
ng/minor ng 

0.165/0.165/0.165 

0.2/0.2/0.1 

0.3/0.15/0.05 

0.4/0.05/0.05 

0.1 1:1:1 

2:2:1 

6:3:1 

8:1:1 

0.033/0.033/0.033 

0.04/0.04/0.02 

0.06/0.03/0.01 

0.08/0.01/0.01 

0.03 1:1:1 

2:2:1 

6:3:1 

8:1:1 

0.0099/0.0099/0.0099 

0.012/0.012/0.006 

0.018/0.009/0.003 

0.024/0.003/0.003 

For each	 3-person Major donor 
mixture: //2	 minor donors 

Max # homozygous peaks
//Max	 # heterzygous peaks 

Max # heterozygous peaks
//Max	 # homozygous peaks 

Max # homozygous peaks
//Max	 # homozygous peaks 

Max # heterozygous peaks
//Max	 # heterozygous peaks 

C-497//D-555/E-681 

E-681//C-497/B-483 

C-497//B-483/H-985 

D-555//E-681/A-365 
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Table 4: Total	DNA,	mixture	ratio,	and	individual	DNA	contribution	for	 4-person	mixtures 

4	 person 
Total DNA	 (ng) Mix ratio Amounts of DNA (ng per donor) 

0.5 1:1:1:1 0.125/0.125/0.125/0.125 

0.1 1:1:1:1 0.025/0.025/0.025/0.025/ 

0.05 1:1:1:1 0.0125/0.0125/0.0125/0.0125/ 

0.03 1:1:1:1 0.0075/0.0075/0.0075/0.0075/ 

4	 person	 samples 985/805/788/483 
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Table	5:	Numbers	of	peaks	in	stutter	positions	between	pairs	of	contributors 

A-365 B-483 C-497 D-555 E-681 F-788 G-805 H-985 

A-365 8/9 5/8 3/6 9/5 6/4 6/7 10/8 

B-483 8/8 6/8 9/6 9/6 4/6 6/8 

C-497 5/6 9/3 9/3 3/9 3/12 

D-555 13/4 7/5 6/8 3/8 

E-681 3/9 3/9 3/9 

F-788 7/6 10/6 

G-805 9/4 

Sample	mixtures	can	be	constructed	in	two	ways:	 
1. Samples	in	the top	row as	the	major	donor	and	 samples	 in	the	 first	column	 as	 the	 

minor;	 
2. Samples	in	the	first	column	 as	the	major	donor	and	 samples	in	 the	 top row	as	 the	 

minor.	 
The	number	to	the	left of	the	“/”	denotes	the	number	of	peaks	in	the	minor	donor	in	stutter	 
position	to	a	peak	from	the	major	donor	in	 condition	1.	The	number	to	the	right	 of	the	“/”	 
denotes	the	number	of	peaks	in	the	minor	donor	in	stutter	position	to	a	peak	from	the	major	 
donor	in	condition	2. For	example,	when	sample	B-483	is	the	major	donor	and	A-365	is	the	 
minor,	8	peaks	in	A-365	are	in	stutter	positions	to	peaks	in	B-483,	while	9	peaks	in	 B-483 are	 
in	stutter	position	when	A-365	is	the	major	and	B-483	is	the	minor.	 
The	samples	indicated	in	bold/italic/underline	were	chosen	to	use	in	the	stutter	experiment.	 
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Table	6:	Run-specific	analytical	thresholds 

Dye Minimum Maximum 

Blue 10 20 

Green 12 18 

Yellow 16 24 

Red 18 30 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
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Table 7: Logistic regression parameter estimates from different types of samples 

Sample Intercept Slope 

Single-source 3.40412105 -0.07042581 

2-person	mixture 2.04937860 -0.06985159	 

3-person	mixture 2.28445971 -0.06933856	 

4-person	mixture 2.92274972 -0.06864481 
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Table	8:	 Distribution	of	the	log(LRs)	for	empirical	mixtures	where	the	suspected	contributor	 
did	not	contribute	to	the	mixture	(i.e.	is	a	known	non-contributor). 
Mixture Number	of	 

%	 log(LR)>0 %	 log(LR)>1 %	 log(LR)>2 Max	 log(LR) 
comparisons 

2	 person 1,810,000 0.0835 0.0143 0.0023 1403 
3	 person 1,000,000 0.3890 0.0536 0.0052 6516 
4	 person 80,000 0.9583 0.1288 0.0050 1290 

Table	 9:	Details	of	hypotheses	investigated	when	calculating	LRs	for	different	mixtures.		 

Total #	 of 

Hypothesis* contributor 
s	 to the	 

Contributors	 conditioned 
under H1 ** 

Contributors conditioned 
under H2 

mixture 

h21 2 C1, C2 C2 + 1 UNK 

h22 2 C1 2	 UNK 

h31 3 C1,	C2,	C3 C2, C3 + 1 UNK 

h32 3 C1,	C2 +	 1	 UNK C2 + 2 UNK 

h33 3 C1 +	 2	 UNK 3	 UNK 

h41 4 C1,	C2,	C3,	C4 C2, C3, C4 + 1 UNK 

h42 4 C1,	C2,	C3 +	 1	 UNK C2, C3 + 2 UNK 

h43 4 C1,	C2 + 2 	UNK C2 + 3 UNK 

h44 4 C1 +	 3	 UNK 4	 UNK 

h51 5 C1,	C2,	C3,	C4,	C5 C2, C3, C4, C5 + 1 UNK 

h52 5 C1,	C2,	C3,	C4 + 1 	UNK C2, C3, C4 + 2 UNK 

h53 5 C1,	C2,	C3 + 2 	UNK C2, C3 + 3 UNK 

h54 5 C1,	C2 + 3 	UNK C2 + 4 UNK 

h55 5 C1 +	 4	 UNK 5	 UNK 

*	Hypotheses	were	named	as	follows:	h[number	of	contributors	in	the	mixture][number	of	 
unknown	contributors	in	H2].	In	other	words,	h21	means	[2	contributors	to	the	 
mixture][1unknown	contributor	in	H2].	 
**	C1	represents	the	hypothesized	contributor,	i.e.	the	conditioned	contributor	for	whom	the	 
weight	of	evidence	is	being	assessed.		 In	order	to	calculate	LR	for	a	known	non-contributor,	C1	 
was	replaced	with	KNC.	UNK	=	an	unknown	contributor. 
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Table	 10:	 LR	 values	derived	for	different	mixtures	and	hypotheses	(see	 Table	 9 for	notation)	 
for	TC	and	KNC	with	a complete	 15	locus	profile. 

Percentage of replicates Percentage of 
where TC LR replicates 

where KNC LR 
>	 1 >	 1000 >	 1	 million >	 1 >1000 

LR 
h21 100 

h22 100 

h31 100 

h32 100 

h33 100 

h41 100 

h42 100 

h43 100 

h44 100 

h51 100 

h52 99.99 

h53 99.97 

h54 99.97 

h55 100 

Total 99.99 

100.00 

100.00 

100.00 

99.95 

99.80 

100.00 

98.23 

96.01 

93.47 

99.91 

90.69 

82.81 

75.38 

68.54 

93.20 

100.00 

99.80 

99.98 

87.72 

63.96 

97.75 

54.36 

29.43 

15.97 

79.31 

28.03 

12.38 

6.00 

3.47 

55.58 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0.01 0 

0.02 0 

0.02 0 

0 0 

0.09 0.01 

0.19 0.02 

0.21 0.01 

0.21 0.01 
0.05 0.004 
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Table	11:		Proportion	of	replicates	generating	LR	<	1	for	TC	at	1,	2,3,4	and	5	or	more	loci	by	 
hypothesis	based	on	a	complete	15	locus	profile (see	Table	 9 for	hypothesis	notation). 

TC has LR < 1 at 
Hypothesis 1+ loci 2+ loci 3+ loci 4+ loci 5+ loci 

h21 0 0 0 0 0 
h22 44.15 10.12 1.49 0.17 0.04 
h31 0 0 0 0 0 
h32 77.22 40.95 15.64 4.01 0.73 
h33 73.74 36.97 12.41 2.98 0.52 
h41 0 0 0 0 0 
h42 89.18 63.29 34.84 13.83 3.87 
h43 89.65 62.55 33.04 13.15 4.05 
h44 86.22 55.94 26.9 9.88 2.5 
h51 0 0 0 0 0 
h52 93.56 72.32 44.74 21.52 8.27 
h53 95.65 79.28 52.93 28.31 11.39 
h54 94.78 76.66 49.63 24.9 9.89 
h55 93.44 72.73 43.83 21.09 7.4 
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	varying. mixture. ratios. and. DNA. concentrations,. at. with. at. least. 5. replicate. amplifications. of.each.sample,. that.could.be.made. available .for .use .by.the .forensic. DNA community. 

	Figure
	2.. Materials.and.methods 
	Overview 
	Overview 

	Here. we. generated. a series. of. 819. mixtures,. many of. which. were. low-template. for. which drop-out was. a possibility.. We also created dilutions series of 3 of the single-source. samples. used. to. create. the. mixtures.. Sample. collection,. extraction,. and. typing. were. performed.at.Cal.State.University.East.Bay.Design of the study 
	The. parameters. typically. considered. to. contribute. the. greatest. difficulty. in. assessing. the. weight. of. evidence. in. complex. samples. include. allelic. drop-out,. the. number.of. contributors,. shared. alleles,. mixture. ratios,. and. stutter.. In. order. to investigate. the. effectof. these. parameters. in. Aims. 2 and 4,. we. produced. a. well-characterized. set. of. mixed. samples.. These. samples. consisted. of. known. types. combined. in. defined ratios. We. varied.the. total. amount. of. 
	Each. sample. was. amplified. 5. times.. The. total. number. of. mixed. samples. generated.from.this.matrix.was. 819..The.total.number.of.alleles.detected.was.over. 31,500..
	Sample.Collection
	All. samples. were. collected. with. informed. consent. and. were. anonymized. to. ensure.the. privacy. of. the. contributing. subjects. in. accordance. with. the. UCLA. and. CSUEB. IRB.. Two.sterile. buccal swabs. were. collected. from. each. of. eight. student. volunteers.. Once. collected,.the. swabs. were. allowed. to. air. dry,. sealed. in. a. manila. envelope. and. stored. frozen. until.used.. The.genotypes.of.the.8.individuals.are.shown.in.Table.1. 
	Sample.Extraction
	A. separate. sterile. scalpel was. used. to. bisect each. swab and. one. half. of. the. swab was. placed. into. a. sterile. microfuge. tube.. The. Qiagen. DNEasy. kit. was. used. to. extract. each. sample,. following. the. manufacturer’s. protocol.. Briefly,. each. sample. was. mixed. with. PBS,.proteinase. K, and. AL. Buffer. and. incubated. for. 10. min. at. 56. Each. sample. was. mixed. with.200µL ethanol,. and. then. placed. into. a. DNEasy. spin. column.. The. samples. were. centrifuged.at. 8,000. rpm.
	A. separate. sterile. scalpel was. used. to. bisect each. swab and. one. half. of. the. swab was. placed. into. a. sterile. microfuge. tube.. The. Qiagen. DNEasy. kit. was. used. to. extract. each. sample,. following. the. manufacturer’s. protocol.. Briefly,. each. sample. was. mixed. with. PBS,.proteinase. K, and. AL. Buffer. and. incubated. for. 10. min. at. 56. Each. sample. was. mixed. with.200µL ethanol,. and. then. placed. into. a. DNEasy. spin. column.. The. samples. were. centrifuged.at. 8,000. rpm.
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	AW1. buffer. at. 8,000. rpm. for. 1. min.,. and. again. with. AW2.buffer. at. 14,000. rpm. for. 3. min.,.discarding. the. eluate. each. time.. DNA. was. eluted. from. the. column. with. Buffer. AE,.incubating. the. spin. tube. for. 1. min. at. RT,. and. then. centrifuging. for. 1. min. at. 8,000. rpm..Samples.were.stored.frozen.when.not. in. use...

	Figure
	Quantitation.
	Human. DNA. Quantification. Kit. (Life. Technologies,. Foster. City,. CA). on. either. aBio-Rad. Laboratories. 2or. an. ABI. Prism7000. Real. Time. PCR. instrument,following. each. manufacturer’s. protocols.. Instrument. data. was. interpreted. by. eitherOpticon. 3quantitation.software.or.SDS.software...
	The. DNA. quantity. of. the. samples. was. estimated. using. the. Quantifiler
	®
	..
	..
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	Opticon
	®
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	Mixture .preparation.
	Dilutions. (500,100,50,30,. 10. and. 5. pg). of. three. single-source. samples. were. prepared .to. estimate.the.probability.of.drop-out..
	.
	.
	.

	Five. replicates. of. two,. three. and. four. person. mixtures. were. prepared. in. Tris/EDTA. buffer .(TE)..The.combinations.prepared.are. summarized.in. Tables.2-4..
	-4
	.

	Two. person. mixtures. were. prepared. in. ratios. of. 1:1,. 2:1,. 4:1,. and. 9:1.. .Each. mixture.was.amplified.using.a .total.DNA. input.of. 500,. 100,. 50,.and .30.pg.(Table.2)..
	.

	The. two-person. mixture. set. combinations. were. designed. to. produce. extreme. examples. of. one. of. two. parameters,. heterozygosity. or. overlapin. stutter. positions,. as. follows:.
	.
	.

	Max.#. homozygous.peaks/Max.#.heterzygous.peaks
	.

	Max.#.heterozygous .peaks/Max.#.homozygous.peaks
	.

	Max.#.homozygous.peaks/Max.#.homozygous.peaks
	.

	Max.#.heterozygous .peaks/Max.#.heterozygous .peaks
	.

	Maximizing.#.of.peaks.in.stutter.position.for.minor.donor
	.

	Minimizing.#.of.peaks.in.stutter.position.for.minor.donor
	.

	Three. person. mixture. ratios. were:1:1:1,. 2:2:1,. 6:3:1,. 8:1:1.. Each. was. amplified.using.total.input.DNA.of.500,. 100,. 50,. and .30 .pg.(Table.3)..
	.

	The. three. person. mixture. sets. were. designed. to. produce. extreme. combinations. of.heterozygosity:.
	.

	Max.#..homozygous.peaks/Max.#.heterzygous .peaksMax.#.heterozygous.peaks/Max.#.homozygous.peaksMax.#.homozygous.peaks/Max.#.homozygous.peaksMax.#.heterozygous .peaks/Max.#.heterozygous .peaks
	.
	.
	.
	.

	The. four. person. mixture. sets. were. all. ratios. of. 1:1:1:1,. with. no. specific. goalof. stutter. or. heterozygosity.. Again,. each. was. amplified. using. total. input. DNA. of.500,. 100,. 50,.and .30 .pg.(Table.4)..
	.

	STR.amplification.and.detection.
	PCR. system. 9700. (Life. Technologies).. For. STR. amplification,. 25µLvolumes. of. each. ratio/template.amount/replicate. were. prepared. in. 96-well. plates.. Replicateswerepreparedusing. theIdentifilerPlus. Amplification. Kit. (Life. Technologies). following. the. manufacturer’s. protocols. [6].. PCR. conditions. for. the. IdentifilerPlusKit. were. 11. min. at. 95°C.for. initial. incubation,. 28. cycles. of. 20. sec. at. 94°C.for. denaturation,. 3. min. at. 59°C.for.annealing,.and.30.min.at.60°C .for.fi
	Thermal. cycling. was. performed. using. the. GeneAmp
	®
	.
	.

	.
	.
	.
	.
	.
	AmpFlSTR
	®
	.
	.

	®
	.

	..
	..

	.

	STR.detection.and.typing.
	Typing. of. PCR. products,. including. the. kit. positive. control. and. one. or. more. negative.control. samples,wascarriedout. in. 96-well. plates. on. a. 3130. Genetic. Analyzer. (Life. Technologies).. Each. samples. was. injected. for. 5.sec. at.3kV. and. data.collected. for. 12. –.18. minutes. (depending. on. the. temperature. in. the. laboratory)..The. data.were. analyzed. using. ID-X.(Life .Technologies).. 
	.
	.
	.
	GeneMapper
	®
	.
	.

	Color-specific. analyticalthresholds. were. established. on. aper-runbasis. by.estimating. the. baseline. as. 2x. the. maximum. noise. peak. from. one. or. more. of. three.negative.PCR. reaction. controls. run. with. each. amplification. plate.. The. range. of. analytical. thresholds.for. all.of. the. runs. calculated. in. this. way.are .presented in.Table.6.
	.
	.
	.
	.

	3.. Results
	.

	The. typing. data. will. be. made. publicly. available. in. the. near.future..The. availability.will. bepostedon. theSCIEGweb. site(the.non-profit. entity. that. houses)as.well. as.on. the.university. web. sites. of. Professors. Lohmueller. and. Inman.. .Announcements.will.also.be.disseminated.through.various.professional.news.outlets..
	.
	.
	.
	.
	.
	.
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	B..Aim.2:.Evaluation .of.estimated.drop-out.probabilities.in .mixed.samples.
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	1..Background.and.Significance
	.

	Wehaveshown. in. previouslypublishedwork. [39]that. a. logisticregression. approach.[34,35].can. be. used. to. model. the. relationship. between. allelic. drop-out.and. peak.heights. in. an. evidence. profile.. This. logistic. equation. can. then. be. used. to. estimate. the. dropoutprobabilityforan. evidentiaryprofilebasedon. therelevant. peak. heights.. In. that. 
	Wehaveshown. in. previouslypublishedwork. [39]that. a. logisticregression. approach.[34,35].can. be. used. to. model. the. relationship. between. allelic. drop-out.and. peak.heights. in. an. evidence. profile.. This. logistic. equation. can. then. be. used. to. estimate. the. dropoutprobabilityforan. evidentiaryprofilebasedon. therelevant. peak. heights.. In. that. 
	.
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	.
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	foundational work, we fit the. logistic. curve. to. single-source. LT-DNA. profiles. with. 10,. 30,. and.100.pg.of.DNA..

	We. then. evaluated. the. performance. of. our. estimate. of. the. drop-out probability [39]..To. do. this,. we. compared. the. LRs. calculated. using. the. estimated. drop-out probabilities. to.the LRs calculated using. the true drop-out probabilities.. These. calculations. were. performed. for. 2. different. scenarios. for. each. low-template. profile:. 1). the. hypothesized.contributor. was. the. true. contributor,. and. 2). the. hypothesized. contributor. was. a. random.individual. simulated. from. a. p
	-
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	While these results are certainly encouraging,. further work. was required. to. assess.the. performance. of. the. estimated. drop-out. probabilities. when. applied. to. mixtures.. It. wasunclear. whether. these. estimates. would show the same. level. of. robustness. in. mixed. samples. as. they. showed. in. the. single-source. samples.. Before. we began. this project,. nosystematic. evaluation. of. the. performance. of. estimated. drop-out probabilities. for. low-template.mixtures had.been.published.. 
	2..Results 
	In.order .to.fill.the.gap. in knowledge .described .above,.we .conducted .a.detailed analysis .of allelic drop-out using. the.data.generated.in.Aim.1.of.this.project.
	Characterization of. drop-out and.estimation.of.drop-out .probabilities 
	We first. used logistic regression. to. model. the. relationship. between. the. proportion. of. alleles. that dropped-out. from. each. profile. and. the. average. RFUs. of. the. peaks. in. that.profile.. When. considering. single-source. LT. samples,. little. drop-out was. observed. when. the.average RFUs were >150. RFUs. (Figure 1).. It is. noteworthy. that, for. the. single-source. datawe. analyzed. data. from. three. different. individuals,. each. with. different. multi-locus genotypes,. the. logistic. r
	We next. performed. a. similar. analysis. for. 2. to. 4-person. mixtures.. Importantly,. when.computing. the. average. RFUs. and. the. proportion. of. alleles. that. dropped. out,. we. considered.just. heterozygous. peaks unique. to. the. specified contributor(s).. Furthermore,. we. did. not.include. peaks. in stutter. positions. for. the. logistic. regression. analysis. because. such. peaks may contain. contributions. from. both stutter and alleles from. the. low-level. contributor (further explored. in. A
	We next. performed. a. similar. analysis. for. 2. to. 4-person. mixtures.. Importantly,. when.computing. the. average. RFUs. and. the. proportion. of. alleles. that. dropped. out,. we. considered.just. heterozygous. peaks unique. to. the. specified contributor(s).. Furthermore,. we. did. not.include. peaks. in stutter. positions. for. the. logistic. regression. analysis. because. such. peaks may contain. contributions. from. both stutter and alleles from. the. low-level. contributor (further explored. in. A
	in. profiles. that show an. average minor. contributor. peak. height. >150 RFUs (Figure. 2)..Below. about. 150 RFU,. drop-out decreases. in. direct proportion. to. the. average. peak heightof. the. profile.. We. note. that. the. logistic. regression. curves. for. the. different. number. of. contributors. appear. qualitatively. similar. to. each. other,. though there. is. a. small. amount. of.variability (Figures. 2. and. 3).. This. finding. argues. that,. for a. given. average. peak. height. of. a.particula

	Figure
	Evaluation.of.estimated.drop-out.probabilities.for.mixtures
	The. analysis. described. above. modeled. the. relationship. between. drop-out and. peakheights. using. logistic. regression.. This. logistic. regression. model. can. be. used. to. estimate. the)). from. an. evidentiary. sample. using. the. average. peak. heights.from. the. evidentiary. sample.. Before this approach can confidently be applied to mixed.samples,. we. need. to. evaluate. its. performance.. To. do. this,. we. examined. the. LRs. obtained.when. using. the true contributor (TC) for. each. of. the
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	Focusing on the. 2-person. mixtures,. we. compared. the. log(LRs). for. TCs when. ) using. the. three. different. approaches described above (Figures 4 and 5).. Here. we. considered. the. following. hypotheses. in. the. LR:. H1:. Suspected. contributor. +. 1.unknown. contributor;. H2:. 2. unknown. contributors.. Overall,. the. LRs. estimated. using. the. 3.different ()s. are. remarkably. similar. to. each. other (Figures. 4. and. 5).. However,. for. some.)s were. smaller. than. those. ). When. the. TC was. 
	Focusing on the. 2-person. mixtures,. we. compared. the. log(LRs). for. TCs when. ) using. the. three. different. approaches described above (Figures 4 and 5).. Here. we. considered. the. following. hypotheses. in. the. LR:. H1:. Suspected. contributor. +. 1.unknown. contributor;. H2:. 2. unknown. contributors.. Overall,. the. LRs. estimated. using. the. 3.different ()s. are. remarkably. similar. to. each. other (Figures. 4. and. 5).. However,. for. some.)s were. smaller. than. those. ). When. the. TC was. 
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	(Figure. 4).. When. the. suspected. contributor. was. the. minor. contributor,. this. effect. was. ) estimated. from. the. 2-person mixtures. than those. using the. single-source. samples. (Figure. 5).. When. the. TC was. the. major. contributor,. all. LRs. )s were never. more. than. 2. orders. of. magnitude. larger than. those. using. the. true. benchmark. () (Figure. 4).. When the. TC was. the. minor. )s were no. more. than. 2. ) (Figure.5).
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	Figure
	Turning. to. the. 3-person. mixtures,. we. considered. the. following. hypotheses. in. the.LR:. H1:. Suspected. contributor. and. 2. unknown contributors;. H2:. 3. unknown contributors.) in. this. situation. were. quite. similar. to. each. other (Figures 6. and. 7).. Note. that. for. certain. samples,.) estimated. from. the single-source. samples. tend. to. be. smaller. than. those. from. the. benchmark. ().. For. 95%. of. the. cases. when. the. TC. is. the. ) were. not. more. than 2. ) (Figure. 6)..Importa
	Generally,. we. also. found. that. the. log(LRs). estimated using. the. three. types of 
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	For. the. 4-person. mixtures,. we. considered. the. following. hypotheses. in. the. LR:. H1:.Suspected. contributor and. 3. unknown. contributors;. H2:. 4. unknown. contributors.. In. general. the. patterns. observed. for the. 4-person. mixtures. mimicked. those. for. the. 2. and. 3)were.similar.to.each.other (Figure.8)..
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	We note that. for. 17. 2-person. mixtures. and. 14. 3-person. mixtures, the log(LR) for thetrue contributor is <0 (Figures 5-7),. suggesting. that the. true. contributor. is. not present in.the. mixture.. This. tends. to. occur. more. often. for. the. 2. and. 3-person. mixtures. when. the. true.contributor. is. the. minor. contributor.. Because. we. observe. this. trend. regardless. of. which ), and see. the. same. pattern. even. when. using. the. benchmark. (),.).. To. explore. this. effect. further,. we. 
	way. we. estimate. 
	P
	(
	D
	O
	P
	D
	O
	this. effect. is. likely. not. caused. by. imprecise. or. biased. estimation. of. 
	P
	(
	D
	O
	P
	D
	O
	cases,. regardless. of. which. 
	P
	(
	D
	O
	P
	D
	O
	Lab.Retriever. 
	P
	D
	O
	mixture. when. the. different. contributors. may. have. different. 
	P
	(
	D
	O
	P
	D
	O

	Figure
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	Lab.Retriever be a. useful. heuristic. to determine whether a. LR. calculation. i too. small.. It. is. important. to. note. that. these. experiments do. not. include. an. assumed. contributor. to. the. mixture.. If,. however,. case. circumstances. suggest. it. is. appropriate. to.assume. a. contributor,. then,. in. the. case. of. a. 2-person. mixture,. the. drop-out probability. will only. be. applied. to. the. single. unknown. contributor,. possibly. mitigating. this. problem.. Future.developments of will.
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	To. assess. the. ability. of. to correctly exclude individuals who did not. contribute. to. a. mixture,. we. compared. the. mixtures. generated. from. Aim. 1. to. a. series. of.known. non-contributors. (KNCs).. These. known. non-contributors. were. simulated. from. an.allele. frequency. database. (see. below. for. Aim. 3. as. well. as. Lohmueller. et. al.. [39] andMarsden. et. al.. [31]).. We. then. computed. log(LRs). comparing. each. of. these. 10,000. known.non-contributors. to. each. of. our. mixtures u
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	3..Conclusions 
	We assessed patterns of allelic. drop-out in. 819 low-template. mixed. samples. of. 1-4.contributors.. Overall, we found that,. given. the average RFUs,. drop-out tended. to. behave.similarly,. regardless. of. the. number. of. contributors. in. the. sample.. Further,. for. a. given.) tended to yield log(LR)s for the true).. ),. if. anything,. tended. to. understate. the. weight. of. the.evidence. in. a. limited. number. of. cases.. Approximately 95%. of. the. LRs computed. using. the) were not more. than. 2
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	C..Aim.3:.Compute.and.evaluate.results.of.Likelihood.Ratios.(LR).for.complex. mixtures. 
	C..Aim.3:.Compute.and.evaluate.results.of.Likelihood.Ratios.(LR).for.complex. mixtures. 
	1..Background.and.Significance 
	Figure
	Even. without. the. added. complication. of. potential. drop-out. in. LT. samples,. at. least.two. factors. may. reduce. the. information. content. of. multi-contributor. mixed. samples. First,.many. of. the. alleles. at. a. particular. locus. may be. present. in. the. evidence. sample.. As. such,. the.ability. to. exclude. people. as. contributors. to. the. mixture. is. diminished.. Second,. two. or. more.contributors. to. the. mixture. may. share. the. same. alleles.. Thus,. it. is. more. difficult. to. i
	Before we started this project,. a small. body. of. work suggested that,. especially for mixtures,. some. proportion. of. true. non-contributors. will generate. LRs. >1. [3,39].. If. complex.mixtures. generate. LRs. <1. (i.e.. suggesting. that. the. hypothesized. contributor. is. not a true.contributor. to. the. evidence). even. when. all of. the suspected. contributor’s. alleles. are. present. in. the. evidence. profile,. then. this. may. be. important. evidence. that. should. be.carefully. considered. in.
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	Therefore, further work. was. required. to. assess. how often LRs. fall below 1, the.magnitude. of. the. difference,. and. even. if. an. LR. of. 1. should. be. considered. the. default. neutral.point. Additionally, we wanted to. assess. the. distribution. of. LRs. in. complex. mixtures. when.the hypothesized contributor is a. true contributor and when. the hypothesized contributor is. a known. non-contributor.. To. fill this. void,. we. have. conducted. a. simulation. study. to. 
	Therefore, further work. was. required. to. assess. how often LRs. fall below 1, the.magnitude. of. the. difference,. and. even. if. an. LR. of. 1. should. be. considered. the. default. neutral.point. Additionally, we wanted to. assess. the. distribution. of. LRs. in. complex. mixtures. when.the hypothesized contributor is a. true contributor and when. the hypothesized contributor is. a known. non-contributor.. To. fill this. void,. we. have. conducted. a. simulation. study. to. 
	investigate. the. performance. of. LRs. in. complex. mixtures. of. up. to. 5. contributors. These.results.will.enable.a.more.accurate.interpretation.of.LRs.produced.for.complex.mixtures.

	Figure
	2..Results 
	The. objective. of. Aim. 3. was. to. assess. how. well. LR. approaches. perform. at. distinguishing. true. contributors. (TC). from. known. non-contributors. (KNC). for.DNA. mixtures. with. 2-5. contributors.. To. achieve. this, we. simulated. a. set. of. 10,000. complex.mixture replicate. sets assuming. no. drop-out.. Individual genotype. profiles. were. simulated.using. the. program. R,. by. sampling. two. alleles. for. each. locus. from. a. multinomial. distribution.with. the. parameters. 2. and. p,. whe
	-

	Then. for. each. mixture set,. we. computed. LRs. (using. the freely. available. program.DNAMIX,. when: 1). a. TC was. compared. to. the.mixture,. and. 2). a. KNC was. compared. to. the. mixture.. The. TC was. one. of. the. multilocus.genotypes. that went. into. the. mixture,. in. each. case. the. sample. designated. C1.. For each. simulated. mixture,. we. compared. one. TC (C1). and one KNC (C6),. varying. the. number. of.assumed. donors.. In. all,. 280,000. LRs. were. computed. for. this. portion. of. the
	http://genomine.org/dnamix/index.html). 

	We. found. that. LRs. could. reliably. distinguish. true. contributors. from. KNC,. even. with.a. 5. contributor. mixture. in. which a. high level. of allele sharing. exists. (Figure. 11).. Moreover,.we showed that. LRs have a. low. false negative rate,. with TCs to. a. complex. mixture. rarelygenerating a. LR <. 1. (7 of. 140,000 replicates), and then. only. for complex. mixtures. with. 5. contributors. in. which the. numerator. hypothesis. includes. one. or. more. unknown. contributor (Table. 10). Similar
	For. some. complex. samples,. not. all. loci. will. amplify. to produce detectable alleles(locus. dropout).. We. wanted. to. know. the. effect. that. a. reduced. number. of. loci. would. have.on. the overlap. of LR distributions for. TCs and KNCs in. such. a. circumstance.. We. assessed.this situation based on. a. 9 locus Profiler. Plus. profile.. Similar. to. the. 15. locus. complete.profile. (Figure. 11),. separation. in. the. distribution. of. LRs from. TCs and KNCs was good 
	For. some. complex. samples,. not. all. loci. will. amplify. to produce detectable alleles(locus. dropout).. We. wanted. to. know. the. effect. that. a. reduced. number. of. loci. would. have.on. the overlap. of LR distributions for. TCs and KNCs in. such. a. circumstance.. We. assessed.this situation based on. a. 9 locus Profiler. Plus. profile.. Similar. to. the. 15. locus. complete.profile. (Figure. 11),. separation. in. the. distribution. of. LRs from. TCs and KNCs was good 
	when. based. on. a 9. locus. profile. (Figure. 12).. Notably, however,. a. greater overlap. in. the. distributions was observed,. as TC. LR. values. were lower,. and KNC values higher, than. for. the 15 locus profiles.. This. is particularly. apparent. as. the. number. of. contributors. and. number. of. unknowns. in. the. numerator. increases.. For. example,. 88%. of. replicates. for. a. 3person. mixture. with. 1. unknown. in. the. numerator. yielded. LR. >. 1. million. when. using. a.complete. 15. locus. p
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	How commonly.do.TC.yield.LR.<.1.at.individual.loci? 
	As. discussed. above,. we. found. that. 7/140,000 replicates. yielded. LRs <. 1. for. TCs.. All. of. these. examples. were. associated. with. 5. person. mixtures. with. 1. or. more. unknown. contributors in. the. numerator.. We. investigated. how frequently. LRs <. 1. were. found. at when. based on. a. 15 locus profile.. While hypotheses with 0 unknowns always gave a. LR. > 1 at. all. loci,. for other hypotheses a. large proportion. of replicates generated. a locus with a LR <. 1. For. example, ~. 45% of re
	individual. loci 

	3.. Conclusions 
	Overall,. we find that. simulated. mixtures. containing. all alleles. of. the. input profiles,. and including. up. to. 5. contributors, provide. a. substantial. amount. of. information.. It. is. possible. to. distinguish. between. true. contributors and non-contributors quite. reliably,.using. a. LR. framework. that. does. not. include. information. about. peak. heights.. As. such,. while.overlapping. of. alleles. (allele sharing,. sometimes. called. “stacking”). may. complicate. the.deconvolution. of. mixt
	The. results. of. this. part of. the. project were. published. in Marsden. et. al.. (2016) [31].. Please.see.that publication.for.additional .technical .details.and.discussion.of.our.findings. 
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	D.. Aim 4:. Evaluation of.the.role.of.stutter.in .mixture.interpretation. 
	1..Background.and.Significance 
	Figure
	A. characteristic. of. Short. Tandem. Repeat. (STR). amplification. is. the. loss. or. gain. of. repeat. units [60,61].. The. frequency. of. these. events. is. inversely. proportional to. the. repeat length. Thus. dinucleotide. repeats. show the. highest occurrence of. “stutter” peaks. and the frequency. decreases as the repeat. length increases to tri-,. tetra,. and. pentanucleotide. repeats.. The. most. prevalent. event. is. the. loss. of. one. repeat. unit,. however. thegain. of. one. repeat. unit. is. o
	in. vitro 
	-

	While. stutter. peaks. pose. no. problem. to. interpreting. single-source. profiles,. they. can.confound. the. interpretation of. mixtures,. in. particular. those. in. which. a. minor. component. is.present. in. the. same. RFU. range. as. the. stutter. peaks. of. a. major. contributor [40–42].. It. is. often. assumed. that. for. such. overlapping. alleles, the contribution of. the. minor. allele. and. the. stutter peak. are directly additive. Little. work. has. been. performed. to. address. this. important.
	We.have.included.mixtures.designed.specifically.to.address.this.question (Table.5).. 
	2..Results 
	As.a.simple.first.pass,.data.from.all.template.amounts.were.used.and.alleles.representing three different.conditions .were identified: 
	1. 
	1. 
	1. 
	Alleles.solely.from.the.minor donor 

	2. 
	2. 
	Peaks.due.to.stutter.only 

	3. 
	3. 
	Peaks.from.the.minor.donor.that.occur.in.stutter.positions.for.the.major.donor[minor+.stutter]..


	Only. the. 9:1. mixtures. produced. peaks. of. similar. height. in. both. the. stutter. peaks andminor. donor. alleles. The. average. peak. height. for. the. minor. donor. alleles. was. 55 (,.while the average height for. stutter. peaks. was. 50 (.. The. distribution. of. the. heights.for. both. types. of. peaks. appears. visually. similar (Figure. 13).. In. addition. to. the. concordance.of. means. of. the. peak. heights,. the. full. distributions. of. the. stutter. and. minor. peaks. appear. to.be similar
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	For. those. peaks. from. the. minor. donor. that. occur. in. stutter. positions. of. alleles. from.the. major. donor,. a. clear. increase. in. RFU. is. seen in. some,. but. not. all,. samples (Figure. 15).More. important,. RFU. values. for. the. [minor. +. stutter]. peaks. are. clearly. more. variable than.for. either. alone,. exhibiting values. both. lower. and. higher. than. either. the. minor. or. stutter.peaks show separately.. The. average. RFU. of. these. peaks. is. 76 (. The. [minor+stutter]. peak he
	For. those. peaks. from. the. minor. donor. that. occur. in. stutter. positions. of. alleles. from.the. major. donor,. a. clear. increase. in. RFU. is. seen in. some,. but. not. all,. samples (Figure. 15).More. important,. RFU. values. for. the. [minor. +. stutter]. peaks. are. clearly. more. variable than.for. either. alone,. exhibiting values. both. lower. and. higher. than. either. the. minor. or. stutter.peaks show separately.. The. average. RFU. of. these. peaks. is. 76 (. The. [minor+stutter]. peak he
	! =. 66)

	medians. of. all. three. distributions. are. similar. (45,. 46,. and. 49. RFUs. for. the. minor,. stutter,.and [minor+stutter]. distributions, respectively), the. long tail is. driving the. higher. average.RFUs. for. the. [minor+stutter]. peaks. Another. way. to. visualize. this. difference. is. to. plot. the.peak. height. ratios. of. the. stutter. only. and. the. [minor. +. stutter]. peaks. (Figure. 16;. trend linesadded).. The. peak. height. ratio. is. higher. for. the. [minor. +. stutter]. peaks,. althou

	Figure
	If. stutter. and. minor. peaks. were. truly. additive,. then. the. heights. of. the. [minor+stutter] peaks. could. be. modeled. by. summing. the. heights. of. the. stutter. and. the.minor. peaks. together.. To. test. the. additive. model,. we. randomly. sampled 47. minor. peaks.and 47 stutter peaks (we. have. 47. [minor+stutter]. peaks. in. the. distribution. shown in. blue. in. Figure. 17).. The. height. of. a. stutter. peak. was. added. to. each. minor. allele. peak,. giving. a.distribution. of. 47. heigh
	3..Conclusions 
	Our data. demonstrate that. minor. donor. alleles in. a. stutter. position. of. a. major. donor. peak. be. elevated. above. the. normally. expected. stutter. peak. height.. However,. this. is. not.always the case;. some. [minor. +. stutter]. peaks. fall below. the lowest. stutter peaks detected..The. average. RFU. of. the stutter peaks for. all. template. amounts. was. about. 50,. while. the.average. RFU. for. the. [minor. +. stutter]. peaks. was. 76.. However, the range of variation. was greater. for. the.
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	Figure
	It. is. possible. that. the. wide. range. of. [minor. +. stutter]. peak. heights. is. related. to. a.difference. in. the. repeat sequence. between. the. stutter. peak and. the minor. donor. allele,. as.outlined.in.Bright et al..2013 [40]..That.possibility.was.not.investigated.in.this.study..
	For. mixed. samples,. a. common. practice. among. practitioners. is. to. subtract. some. statistical value. related. to. expected. stutter. (maximum. stutter. or. average. stutter,. for.example). from. the. peak. in. a. stutter position,. and designate. that peak. as representing a true.DNA. allele. present. in. the. DNA. source. if. the. remaining. RFU. value. is. above. the. analytical.threshold.. The data. developed here suggests that. this is unwise,. as the height. of a. peak.resulting.from.a.true.mino
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	1..Background.and.Significance 
	While. the. theoretical. foundation. for. calculating. LRs. for. complex. DNA. samples. has.existed. for. some. time,. at. the. time. our. project. began,. no. freely. available,. transparent,. anduser-friendly. software. was. available. that. forensic. DNA. analysts. could. use. to. perform. the.calculations.. Some. programs. provide. a. graphical. user. interface,. but. are. opaque,. difficult. to.use. and/or require. a. substantial. monetary. investment. (e.g.. TrueAllele®). Others,. while somewhat. more
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	2..Results 
	During this. project, we. have. made. a. number. of. substantive improvements. to. our.program.. While. the. program. is. based. on. R. code. originally. published by Balding. and. Buckleton [5],. includes a. number. of. important. technical. advances.. We. recoded. the. program. in. C++. to. allow. for. substantially. faster. run. times when.considering. hypotheses. involving. multiple. unknown. contributors.. In. this work,. the. graphical. user interface. (GUI). has. been. completely. rewritten. to. repl
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	contributors. would be difficult.. However,. we. have. overcome. this. technical. challenge. by.replacing. the. nested. “for”. loops. with. a. computationally. efficient. dynamic. programming.algorithm. that. can. efficiently. handle. hypotheses. involving. up. to. 4. unknown. contributors. in.the. denominator. within. seconds.. The. details. of. this. algorithm. may. be. found. in. the.Supplementary Notes of our publication. on. [10]. We now. report. a number of additional. improvements. that. have. been. 
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	We.have.published.detailed.description.of.the.methodology.used.in. in. [10]. The.program.is.freely.available.for.download.from.the.website. (.)
	Lab Retriever 
	BMC. Bioinformatics 
	www.scieg.org).and.the.code,.which.follows.GNU.licensing,.is.available.on.GitHub 
	https://github.com/SCIEG/LabRetriever

	3..Conclusions 
	At. present,. a number. of. software. solutions. are. available to aid in. the interpretation.of. challenging. forensic. DNA. profiles.. These. programs. use. different. summaries. of. the. DNA.profile. data,. make. different. modeling. assumptions,. require. different. computationalresources, and. have. different. levels. of. accessibility and transparency in. licensing.. To. this. end,. we. continue. to. develop. and. support ,. a. freely. available. open-source. software solution. to aid forensic analyst
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	Additionally,. Johnson County. Sheriff’s. Office,. and Anne.Arundel.Co.Police.Department areworking.on.validating.the.program.

	Figure
	Thus,.we.believe.that is.and.will continue.to.be.a useful tool for.the.forensic. community.
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	Figure.1:.Probability.of.drop-out.vs..average.RFUs.for.the.single-source.(SS).profiles.. 
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	Figure.5:.Comparison of.the.log(LRs).for.2-person mixtures.where.the. suspected. contributor is.the.true.minor contributor to the. mixture. Log(LRs).were.computed.using.3 different.ways.to.estimate. P(DO). Each.plot.compares.log(LRs).from.two.of.these. approaches..The solid line is the diagonal..Different.colors denote different.quantities ofDNA.and.shapes.denote.different.mixture.ratios. SS.denotes.single-source. ●●●●●●●●●●●●● ● ● ●● ●●●● ● ●● ●●● ●●● ● ● ● ●●●●● ●●● ●● ● ● ● ● ● −5 0 5 10 15 20 25 −5 0 5 
	Figure
	● ●● ●● ● ●●● ● ●●● ●● ●●● ●● ● ● ●● ●● ●● ●● ●● 0 10 20 30 −5 0 5 10 15 20 25 Log(LR) using True P(DO ) Log(LR) using P(DO ) from SS● Ratio 8:1:1 6:3:1 2:2:1 1:1:1 Total DNA 0.03 0.05 0.1 0.5 ● ●● ●● ● ●●● ● ● ● ● ●● ●●● ●● ● ● ●● ●● ●● ●● ●● 0 10 20 30 −5 0 5 10 15 20 25 30 Log(LR) using True P(DO )Log(LR) using P(DO ) from mixture● Ratio 8:1:1 6:3:1 2:2:1 1:1:1 Total DNA 0.03 0.05 0.1 0.5 ● ●●●● ● ●●● ● ● ● ● ●● ●●● ●● ● ● ●● ●●●● ●● ●● −5 0 5 10 15 20 25 −5 0 5 10 15 20 25 30 Log(LR) using SS P(DO) Log(
	Figure.6:.Comparison of.the.log(LRs) for.3-person mixtures.where.the. suspected. contributor is.the.true.major contributor to the. mixture. 
	Log(LRs).were.computed.

	).. Each.plot.compares.log(LRs).from.two.of.these.approaches..The solid line is the diagonal..Different.colors denote different.quantities.of.DNA.and.shapes.denote.different.mixture.ratios. SS.denotes.single-source. 
	using.3.different.ways.to.estimate. 
	P
	(
	D
	O

	Figure
	Log(LR) using P(DO) from SS 
	−5 0 5 101520 
	●● ●● ● ● ●●●●●●● ●● ●● ●● ● ● ● ●●●●●● ●● ● Ratio 8:1:1 6:3:1 2:2:1 1:1:1 Total DNA 0.03 0.05 0.1 0.5 
	●●●● ● ● ●● ●●●● ● ●● ●● ● ●● ● ● ●●●●●● ●● −5 0 5 10 15 20 Log(LR) using P(DO ) from mixture● Ratio 8:1:1 6:3:1 2:2:1 1:1:1 Total DNA 0.03 0.05 0.1 0.5 
	−5 0 5 10152025 −5 0 5 10152025 
	Log(LR) using True P(DO ) Log(LR) using True P(DO ) 
	Figure.7:.Comparison of.the.log(LRs) for.3-person mixtures.where.the. suspected. contributor is.the.true.minor contributor to the. mixture. Log(LRs).were.computed.using 3.different.ways.to.estimate. P(DO).. Each.plot.compares. log(LRs).from.two.of.these.approaches..The solid line is the diagonal..Different.colors denote different.quantities ofDNA.and.shapes.denote.different.mixture.ratios. SS.denotes.single-source. ●●●● ● ● ●●●●●●● ●● ●● ● ●● ● ● ●●●●●● ●● −5 0 5 10 15 20 −5 0 5 10 15 20 Log(LR) using SS P(
	Figure
	Log(LR) using P(DO) from SS 
	10 12 14 16 
	● ● ●● ● ● ● ● 
	● Ratio 1:1:1:1 
	● 
	10121416 10121416 
	Log(LR) using True P(DO ) Log(LR) using True P(DO ) 
	● ● ●● ● ●
	● Ratio 1:1:1:1 
	● 
	Figure
	10 12 14 16 Log(LR) using P(DO ) from mixture 
	Total DNA 0.03 0.05 0.1 0.5 
	Total DNA 0.03 0.05 0.1 0.5 
	● ● ●● ●●● ● 10 12 14 16 10 12 14 16 Log(LR) using SS P(DO) Log(LR) using P(DO ) from mixture ● Ratio 1:1:1:1 Total DNA 0.03 0.05 0.1 0.5 
	Figure.8:.Comparison .of.the.log(LRs) for.4-person .mixtures.where.the. suspected. contributor.is.the true contributor to the. mixture. 
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	Figure.10: Log(LRs).decrease.with.increasing. P(DO)
	.. Left:. 2-person.mixtures.. Right:. 3
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	) on.the.x-axis is the true () for.the contributor of interest...In.all.panels,.the.suspected.contributor.is.the.true.minor.contributor..The.LRs.compare.the.probability.of.the.evidence.assuming.the.suspected.contributor.and.1.(or.more).unknown.contributors.vs..2.(or.more).unknown.contributors..For.mixtures.with. ()>0.6,. there. is. a non-negligible.probability.of.a.log(LR)<0.for a.true. contributor. 
	person.mixtures. Bottom:.4-person.mixtures..The. 
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	Figure
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	Figure

	Figure
	2 contributor mixture 
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	Likelihood Ratio 
	Figure 11: Distribution of LRs for simulated mixtures. TC denotes true contributor (red) while KNC denotes a known non-contributor (blue). Rows denote the total number of contributors in the mixture while columns denote the number of unknowns in the numerator. The denominator always contains one additional unknown contributor. Overall, note the good separation of LRs between TCs and KNCs. 
	Figure
	0 UNK numerator 1 UNK numerator 
	TC 
	Figure

	10000 
	KNC 
	8000 6000 4000 2000 0
	Figure
	2 contributor mixture 
	Frequency 
	2 UNK numerator 3 UNK numerator 4 UNK numerator 4 contributormixture Frequency 0 2000 4000 6000 8000 10000 Frequency 0 2000 4000 6000 8000 10000 Frequency 0 2000 4000 6000 8000 10000 5 contributormixture 3 contributormixture 
	Likelihood Ratio 
	Figure 12: Distribution of LRs for simulated mixtures including only 9 loci. TC denotes true contributor (red) while KNC denotes a known non-contributor (blue). Rows denote the total number of contributors in the mixture while columns denote the number of unknowns in the numerator. The denominator always contains one addition unknown contributor. Overall, the separation of LRs between TCs and KNCs is not as good as with 15 loci. 
	Figure
	Figure
	Figure.13:.Peak.heights.of.stutter.peaks.and.minor.allele.peaks.as.a.function of.the. 
	Note. that the points.from.stutter.and. minor.alleles.appear.to.have.similar.heights.to.each.other. 
	size.of.the.allele. 

	Figure
	0.000 0.005 0.010 0.015 Density Stutter Minor Minor+Stutter 
	0 100 200 300 400 RFUs 
	Figure.14:. Distributions.of.the.peak.heights.for.stutter,.minor,.and. [minor + stutter] 
	A.total.of.74,.47,.and.124 peaks .are.in.the. stutter,. minor,.and. [minor + stutter] distributions,. respectively.. 
	peaks.in .the. 9:1.2-person mixtures. 

	Figure
	Figure
	Figure.15:.Peaks.heights.of.positions.where.minor.alleles.overlapped.with.stutter. 
	Note.that.the.positions.where.stutter.and.minor.peaks.overlap.have.a.higher.average.height..However,.the.variance.in.RFU.is.much.larger.for.these.peaks.compared.to.those.with.just.stutter.or.minor.alleles. 
	peaks.(black). 

	Figure
	Figure
	Figure.16:. Peak.height.ratios.of.the.stutter.only.and.the.[minor.+.stutter].peaks.. 
	Note. 

	the .elevated .peak.height.ratio .for .the [minor .+.stutter .peaks]..However,.the.extent.of.this. elevation.is.variable. 
	Figure
	Density 0.000 0.010 0.020 
	Minor+Stutter Additive 
	0 100 200 300 400 500 
	RFUs 
	.
	Figure.17:. The.distribution .of. [minor.+.stutter].peak.heights.is.not.consistent.with. the.distribution .of.the.sum.of.the.minor.peaks.and.the.stutter.peaks.
	.Blue .shows .the.

	empirical. distribution. of. the. [minor.+.stutter].peak.heights..Each.gray.curve.represents the. distribution.of.the.heights.of.47.peaks,.where.each.peak.is.the.sum.of.a.random.minor.allele.and.a.random.stutter.peak..If.the.heights.of. [minor.+.stutter].peaks behaved .in. an. additive.manor,.the.blue.distribution.would.fall.within.the.range.of.the.gray.distributions.
	.

	Figure
	Figure.18:. Graphical.user.interface.for. Lab Retriever. 
	On.the.leftmost.side,.users.have.

	the .opportunity to .select.the .drop-in.probability,.drop-out .probability,.co-ancestry.adjustment,.population.allele.frequency.group.and.the.hypotheses.in.the.LR..The.middle.section. shows. the. evidence. profile. and. the. profile. of. the. suspected. contributors.. The. rightsection. shows. the. LR. calculated. for. each. locus,. as. well as .for .the .entire .profile .for .three major.US.population.groups. 
	Figure
	Table.1:.Genotypes.of.the.8.individuals.from.which.the.mixtures.were.generated. 
	Sample A-365* B-483 C-497 D-555 E-681 F-788 G-805 H-985 
	D8S1179 
	13,15 13 13,14 13 13,14 12,16 15 14,15 
	D21S11 
	28,30 26,29 31.2,32.2 30,32.2 29,31.2 28,30 29 30,30.2 
	D7S820 
	11 10,12 11 12,13 7,11 10,11 12 9,10 
	CSF1PO 
	10,12 11,12 10,11 10,12 10,11 10,12 11,12 10,11 
	D3S1358 
	14,15 14,15 15 15,18 14,17 17 16,19 15 
	TH01 
	6,9.3 9.3,7 6,7 6,9.3 9.3 6,9.3 9,10 7,8 
	D13S317 
	10,12 11,15 8,13 10,13 8,12 10,11 9,11 10,11 
	D16S539 
	9,12 12,13 11,13 9,11 9,11 9,12 9,12 11,14 
	D2S1338 
	20,21 16 22,25 24,26 17,24 18,20 18,24 17,20 
	D19S433 
	14 13,14 14,15 15,15.2 13,14 13,14 14.2,16.2 15,16.2 
	vWA 
	17,18 16,17 16 16,18 16,17 17 14,16 17 
	TPOX 
	8,10 8,10 8,11 8,12 8,11 8 9,11 8 
	D18S51 
	13,18 12 16 13,15 12,16 14,15 13,16 13,17 
	AMEL 
	X,Y X,X X,X X,X X,Y X,Y X,Y X,X 
	D5S818 
	11,12 12 11 11,12 11 13,14 7,9 11,12 
	FGA 
	19,24 21,25 22,24 19,22 20,21 21,24 22,23 23,25 
	*. -Letter.=.Used.to.code.sample;.Number.=.anonymization.code 
	Figure
	Table.2:. Total.DNA,.mixture.ratio,.and.individual.DNA.contribution.for.2-person.mixtures
	.
	.

	.

	.
	2. person..Major.ng/minor
	.
	.
	.
	.

	Total.DNA. (ng)Mix.ratio
	Total.DNA. (ng)Mix.ratio
	.
	.

	ng
	.


	0.5.1:10.25/0.25..2:10.33/0.17..4:10.4/0.1..9:10.45/0.05.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.
	.

	0.1.1:10.05/0.05
	.
	.
	.
	.
	.

	..2:10.067/0.033
	.
	.
	.

	.4:10.08/0.02
	.
	.

	.
	.

	.9:10.09/0.01.
	.
	.
	.

	.
	.

	0.05.1:10.025/0.025..2:10.033/0.017.
	.
	.
	.
	.
	.
	.
	.
	.
	.

	.4:10.04/0.01..9:10.045/0.005
	.
	.
	.
	.
	.

	.
	.

	0.03.1:10.015/0.015
	.
	.
	.
	.

	..2:10.02/0.01
	.
	.
	.

	.4:10.024/0.006.
	.
	.
	.

	.
	.
	.

	.9:10.027/0.003
	.
	.


	.For.each. 2-person
	.For.each. 2-person
	.
	.

	..
	.
	.


	Major.donor/
	Major.donor/
	.

	mixture:
	.

	.
	minor.donor
	.


	Max.#..homozygous.peaks
	.

	C-497
	.

	.
	.

	/Max. #.heterzygous.peaks
	/Max. #.heterzygous.peaks
	.

	/E-681
	.


	Max.#.heterozygous.peaks/
	.

	E-681Max.#.homozygous.peaks
	.
	.

	/C-497
	.

	.
	.

	Max.#.homozygous.peaks/
	.

	C-497
	.

	Max.#.homozygous.peaks
	Max.#.homozygous.peaks
	.

	/B-483
	.


	.
	.

	Max.#.heterozygous.peaks/
	.

	E-681Max.#.heterozygous.peaks
	.
	.

	/D-555
	.

	.
	.

	Maximizing.#.of.peaks.in.stutter.position
	.

	E-681
	.

	for.minor.donor
	.

	/D-555
	.

	.
	.

	Minimizing.#.of.peaks.in.stutter.position
	.

	A-365
	.

	for.minor.donor
	.

	/D-555
	.

	.
	.

	Table 3: Total.DNA,.mixture.ratio,.and.individual.DNA.contribution.for. 3-person.mixtures 
	3. person Total DNA. (ng) 0.5 
	3. person Total DNA. (ng) 0.5 
	3. person Total DNA. (ng) 0.5 
	Mix ratio 1:1:1 2:2:1 6:3:1 8:1:1 
	Major ng/minor ng/minor ng 0.165/0.165/0.165 0.2/0.2/0.1 0.3/0.15/0.05 0.4/0.05/0.05 

	0.1 
	0.1 
	1:1:1 2:2:1 6:3:1 8:1:1 
	0.033/0.033/0.033 0.04/0.04/0.02 0.06/0.03/0.01 0.08/0.01/0.01 

	0.03 
	0.03 
	1:1:1 2:2:1 6:3:1 8:1:1 
	0.0099/0.0099/0.0099 0.012/0.012/0.006 0.018/0.009/0.003 0.024/0.003/0.003 


	For each. 3-person Major donor mixture: //2. minor donors 
	C-497//D-555/E-681 
	Table
	Max # homozygous peaks//Max. # heterzygous peaks 
	Max # homozygous peaks//Max. # heterzygous peaks 

	Max # heterozygous peaks//Max. # homozygous peaks 
	Max # heterozygous peaks//Max. # homozygous peaks 

	Max # homozygous peaks//Max. # homozygous peaks 
	Max # homozygous peaks//Max. # homozygous peaks 

	Max # heterozygous peaks//Max. # heterozygous peaks 
	Max # heterozygous peaks//Max. # heterozygous peaks 



	E-681//C-497/B-483 
	C-497//B-483/H-985 
	D-555//E-681/A-365 
	Figure
	Table 4: Total.DNA,.mixture.ratio,.and.individual.DNA.contribution.for. 4-person.mixtures 
	4. person 
	4. person 
	4. person 

	Total DNA. (ng) 
	Total DNA. (ng) 
	Mix ratio 
	Amounts of DNA (ng per donor) 

	0.5 
	0.5 
	1:1:1:1 
	0.125/0.125/0.125/0.125 

	0.1 
	0.1 
	1:1:1:1 
	0.025/0.025/0.025/0.025/ 

	0.05 
	0.05 
	1:1:1:1 
	0.0125/0.0125/0.0125/0.0125/ 

	0.03 
	0.03 
	1:1:1:1 
	0.0075/0.0075/0.0075/0.0075/ 

	TR
	4. person. samples 
	985/805/788/483 


	Figure
	Table.5:.Numbers.of.peaks.in.stutter.positions.between.pairs.of.contributors 
	Table
	TR
	A-365 
	B-483 
	C-497 
	D-555 
	E-681 
	F-788 
	G-805 
	H-985 

	A-365 
	A-365 
	8/9 
	5/8 
	3/6 
	9/5 
	6/4 
	6/7 
	10/8 

	B-483 
	B-483 
	8/8 
	6/8 
	9/6 
	9/6 
	4/6 
	6/8 

	C-497 
	C-497 
	5/6 
	9/3 
	9/3 
	3/9 
	3/12 

	D-555 
	D-555 
	13/4 
	7/5 
	6/8 
	3/8 

	E-681 
	E-681 
	3/9 
	3/9 
	3/9 

	F-788 
	F-788 
	7/6 
	10/6 

	G-805 
	G-805 
	9/4 


	Sample.mixtures.can.be.constructed.in.two.ways:. 
	1. 
	1. 
	1. 
	Samples.in.the top.row as.the.major.donor.and. samples. in.the. first.column. as. the. minor;. 

	2. 
	2. 
	Samples.in.the.first.column. as.the.major.donor.and. samples.in. the. top row.as. the. 


	minor.. The.number.to.the.left of.the.“/”.denotes.the.number.of.peaks.in.the.minor.donor.in.stutter. position.to.a.peak.from.the.major.donor.in. condition.1..The.number.to.the.right. of.the.“/”. denotes.the.number.of.peaks.in.the.minor.donor.in.stutter.position.to.a.peak.from.the.major. donor.in.condition.2. For.example,.when.sample.B-483.is.the.major.donor.and.A-365.is.the. minor,.8.peaks.in.A-365.are.in.stutter.positions.to.peaks.in.B-483,.while.9.peaks.in. B-483 are. in.stutter.position.when.A-365.is.the
	Figure
	Table.6:.Run-specific.analytical.thresholds 
	Dye Minimum Maximum 
	Blue 10 20 Green 12 18 Yellow 16 24 Red 18 30 
	Figure
	Table 7: Logistic regression parameter estimates from different types of samples 
	Sample 
	Sample 
	Sample 
	Intercept 
	Slope 

	Single-source 
	Single-source 
	3.40412105 
	-0.07042581 

	2-person.mixture 
	2-person.mixture 
	2.04937860 
	-0.06985159. 

	3-person.mixture 
	3-person.mixture 
	2.28445971 
	-0.06933856. 

	4-person.mixture 
	4-person.mixture 
	2.92274972 
	-0.06864481 


	Figure
	Table.8:. Distribution.of.the.log(LRs).for.empirical.mixtures.where.the.suspected.contributor. did.not.contribute.to.the.mixture.(i.e..is.a.known.non-contributor). 
	Mixture Number.of. 
	Mixture Number.of. 
	%. log(LR)>0 %. log(LR)>1 %. log(LR)>2 Max. log(LR) 
	comparisons 

	2. person 
	2. person 
	2. person 
	1,810,000 
	0.0835 
	0.0143 
	0.0023 
	1403 

	3. person 
	3. person 
	1,000,000 
	0.3890 
	0.0536 
	0.0052 
	6516 

	4. person 
	4. person 
	80,000 
	0.9583 
	0.1288 
	0.0050 
	1290 


	Table. 9:.Details.of.hypotheses.investigated.when.calculating.LRs.for.different.mixtures... 
	Total #. of 
	Total #. of 
	Total #. of 

	Hypothesis* 
	Hypothesis* 
	contributor s. to the. 
	Contributors. conditioned under H1 ** 
	Contributors conditioned under H2 

	TR
	mixture 

	h21 
	h21 
	2 
	C1, C2 
	C2 + 1 UNK 

	h22 
	h22 
	2 
	C1 
	2. UNK 

	h31 
	h31 
	3 
	C1,.C2,.C3 
	C2, C3 + 1 UNK 

	h32 
	h32 
	3 
	C1,.C2 +. 1. UNK 
	C2 + 2 UNK 

	h33 
	h33 
	3 
	C1 +. 2. UNK 
	3. UNK 

	h41 
	h41 
	4 
	C1,.C2,.C3,.C4 
	C2, C3, C4 + 1 UNK 

	h42 
	h42 
	4 
	C1,.C2,.C3 +. 1. UNK 
	C2, C3 + 2 UNK 

	h43 
	h43 
	4 
	C1,.C2 + 2 .UNK 
	C2 + 3 UNK 

	h44 
	h44 
	4 
	C1 +. 3. UNK 
	4. UNK 

	h51 
	h51 
	5 
	C1,.C2,.C3,.C4,.C5 
	C2, C3, C4, C5 + 1 UNK 

	h52 
	h52 
	5 
	C1,.C2,.C3,.C4 + 1 .UNK 
	C2, C3, C4 + 2 UNK 

	h53 
	h53 
	5 
	C1,.C2,.C3 + 2 .UNK 
	C2, C3 + 3 UNK 

	h54 
	h54 
	5 
	C1,.C2 + 3 .UNK 
	C2 + 4 UNK 

	h55 
	h55 
	5 
	C1 +. 4. UNK 
	5. UNK 


	*.Hypotheses.were.named.as.follows:.h[number.of.contributors.in.the.mixture][number.of. unknown.contributors.in.H2]..In.other.words,.h21.means.[2.contributors.to.the. mixture][1unknown.contributor.in.H2].. **.C1.represents.the.hypothesized.contributor,.i.e..the.conditioned.contributor.for.whom.the. weight.of.evidence.is.being.assessed... In.order.to.calculate.LR.for.a.known.non-contributor,.C1. was.replaced.with.KNC..UNK.=.an.unknown.contributor. 
	Figure
	Table. 10:. LR. values.derived.for.different.mixtures.and.hypotheses.(see. Table. 9 for.notation). for.TC.and.KNC.with.a complete. 15.locus.profile. 
	Percentage of replicates 
	Percentage of replicates 
	Percentage of replicates 
	Percentage of 

	where TC LR 
	where TC LR 
	replicates 

	TR
	where KNC LR 

	>. 1 >. 1000 >. 1. million 
	>. 1 >. 1000 >. 1. million 
	>. 1 >1000 


	LR 
	h21 h22 h31 h32 h33 h41 h42 h43 h44 h51 
	100 
	100 
	100 
	100 
	100 
	100 
	100 
	100 
	100 
	100 

	99.99 99.97 99.97 
	h52 
	h53 
	h54 

	h55 Total 
	100 

	99.99 
	100.00 100.00 100.00 99.95 99.80 100.00 98.23 96.01 93.47 99.91 90.69 82.81 75.38 68.54 93.20 
	100.00 100.00 100.00 99.95 99.80 100.00 98.23 96.01 93.47 99.91 90.69 82.81 75.38 68.54 93.20 
	100.00 99.80 99.98 87.72 63.96 97.75 54.36 29.43 15.97 79.31 28.03 12.38 6.00 3.47 55.58 

	0 
	0 
	0 
	0 

	0 
	0 
	0 

	0 
	0 
	0 

	0 
	0 
	0 

	0 
	0 
	0 

	0 
	0 
	0 

	0.01 
	0.01 
	0 

	0.02 
	0.02 
	0 

	0.02 
	0.02 
	0 

	0 
	0 
	0 

	0.09 
	0.09 
	0.01 

	0.19 
	0.19 
	0.02 

	0.21 
	0.21 
	0.01 

	0.21 
	0.21 
	0.01 

	0.05 
	0.05 
	0.004 


	Figure
	Table.11:..Proportion.of.replicates.generating.LR.<.1.for.TC.at.1,.2,3,4.and.5.or.more.loci.by. hypothesis.based.on.a.complete.15.locus.profile (see.Table. 9 for.hypothesis.notation). 
	TC has LR < 1 at 
	TC has LR < 1 at 
	TC has LR < 1 at 

	Hypothesis 
	Hypothesis 
	1+ loci 
	2+ loci 
	3+ loci 
	4+ loci 
	5+ loci 

	h21 
	h21 
	0 
	0 
	0 
	0 
	0 

	h22 
	h22 
	44.15 
	10.12 
	1.49 
	0.17 
	0.04 

	h31 
	h31 
	0 
	0 
	0 
	0 
	0 

	h32 
	h32 
	77.22 
	40.95 
	15.64 
	4.01 
	0.73 

	h33 
	h33 
	73.74 
	36.97 
	12.41 
	2.98 
	0.52 

	h41 
	h41 
	0 
	0 
	0 
	0 
	0 

	h42 
	h42 
	89.18 
	63.29 
	34.84 
	13.83 
	3.87 

	h43 
	h43 
	89.65 
	62.55 
	33.04 
	13.15 
	4.05 

	h44 
	h44 
	86.22 
	55.94 
	26.9 
	9.88 
	2.5 

	h51 
	h51 
	0 
	0 
	0 
	0 
	0 

	h52 
	h52 
	93.56 
	72.32 
	44.74 
	21.52 
	8.27 

	h53 
	h53 
	95.65 
	79.28 
	52.93 
	28.31 
	11.39 

	h54 
	h54 
	94.78 
	76.66 
	49.63 
	24.9 
	9.89 

	h55 
	h55 
	93.44 
	72.73 
	43.83 
	21.09 
	7.4 


	Figure
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