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PURPOSE 

The ability to resolve, report, and leverage the discrimination potential of heteroplasmy will 

significantly enhance the value of using mitochondrial (mt) DNA analysis in forensic casework 

[1].  A massively parallel sequencing (MPS) approach will allow the community to achieve this 

goal. The first part of our study focused on establishing rates of heteroplasmy for the control 

region (CR) of the mtGenome through MPS analysis of 550 individuals of European ancestry. 

The study was comprised of male and female participants in three age groups (18-29, 30-49, and 

>50 yoa) to evaluate potential gender and age effects on rate estimates.  Rates were assessed on a 

population and nucleotide position (np) basis. The second part of the study evaluated the 

transmission of heteroplasmic sequence variants in three tissue types (blood and buccal cells, 

hair shafts) collected from multiple maternal lineages, and in one case, from an individual 

lineage across multiple generations.  Pipelines and software tools were developed to conduct a 

thorough and complete analysis of the data, which will be available to the forensic community 

before or at the end of the grant period; the code for error assessment of MPS data is provided in 

the Appendix as an example. Collective data were used to evaluate the impact of error rates on 

reporting low-level heteroplasmy, and to calculate heteroplasmy frequency estimates.  Scholarly 

articles have been published and submitted, or are in preparation, including recommendations 

which can be used to develop best practices when conducting mtDNA MPS analysis in forensic 

laboratories. 

EXPERIMENTAL DESIGN & METHODS 

Genomic DNA was collected and isolated from cheek swabs using the Gentra Buccal Cell 

Kit (QIAGEN). Each sample was obtained using an individually wrapped buccal collection 

brush and promptly stored in the supplied cell lysis buffer.  Samples were stable at room 
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temperature for up to two years, although the actual time samples were stored in the lysis buffer 

varied, with no sample stored for more than a period of one month prior to DNA extraction. 

Samples were extracted throughout collection, following the manufacturer protocol, as soon as 

batches of 24 samples became available.  Appendix Table 1 lists metadata for the samples.  Of 

the 550 target samples, 494 samples were collected by our laboratory, and 56 samples were 

provided by Professor Mark Shriver’s laboratory at Penn State.  Genomic DNA was isolated 

from liquid saliva samples collected by the Shriver laboratory using an organic method. 

For the rate study, enrichment of the mtDNA CR was accomplished through amplification of 

a 1 kilobase (kb) target spanning nps 15997-16569 and 1-926 with transposase adapter primers 

[2] or a 2 kb target spanning nps 15600-16569 and 1-960 [3].  Library preparation was conducted 

using the Nextera® XT approach and sequencing was performed on a MiSeq benchtop sequencer 

using a 300 cycle kit (v.2 chemistry) with 150 x 150 paired-end reads.  Sequence data was 

mapped to the revised Cambridge Reference Sequence (rCRS; GenBank ID NC_012920.1) using 

the MiSeq Reporter integrated computer software platform (MSR; v2.1.43 and v2.2.29), which 

operates on a Burrows-Wheeler Aligner (BWA) and the Genome Analysis ToolKit (GATK) for 

variant calling of single nucleotide polymorphisms (SNPs) and short insertions and deletions 

(indels). Secondary analysis of the MSR generated FASTQ data (sequence and quality scores) 

was performed using NextGENe® (v.2.3.3) and GeneMarker® HTS software (v.06162016). 

Additional secondary analysis was achieved using pipelines developed by our laboratory using a 

combination of UNIX line commands and the R environment. 

Transmission was evaluated through whole mtGenome sequencing of a maternal lineage 

consisting of three generations, with multiple family members across each generation; three 

grandparents, seven children, and eight grandchildren, including identical twins.  Two tissue 
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types (blood or buccal cells) were collected from the eighteen family members (36 samples). 

Enrichment was accomplished using long-range PCR (~8.5 kb fragments), library preparation 

via Nextera® XT [4,5], and sequencing on a MiSeq using a 600 cycle reagent kit with 300 x 300 

paired-end reads.  Data for each sample was generated in duplicate for a total of 72 sequencing 

events (plus controls). In addition, a broad assessment of variant transmission in hair shafts was 

conducted for 15 different maternal lineages.  The MPS profile of the mtDNA CR from blood 

and buccal cells was generated for each participant.  Hairs were collected from five individuals 

with no heteroplasmy in their blood and buccal cells, five with low-level heteroplasmy (<10%), 

and five with high-level heteroplasmy (>10%); hairs were collected from five different regions 

of the scalp. The DNA from 2 cm hair shaft cuttings (five hairs from for each participant), was 

extracted using a method developed at Western Carolina University (WCU).  The extraction 

method was assessed as part of a project to compare the yield of extracted DNA when using the 

WCU method in comparison to two methods used by operating forensic laboratories, with the 

WCU method outperforming the other two methods [6].  Enrichment was accomplished using 

the PowerSeq™ Mito System kit from Promega, a prototype, nested 10-plex approach for 

analysis of the CR. The amplicons were prepared for sequencing using the 10-plex library kit, 

and sequencing was performed on the MiSeq using the 600 cycle kit (v.3 chemistry) with 300 x 

300 paired-end reads, for a total of 110 sequencing events (plus controls). 

DATA ANALYSIS 

A critical ingredient necessary for the adoption of an MPS approach in forensic laboratories 

is the availability of a suitable software package for data analysis.  The lack of available software 

solutions became apparent as the labor involved in data analysis was extraordinary during the 

early stages of this project.  Therefore, we collaborated with SoftGenetics, Inc, to develop a 
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software package for forensic researchers and practitioners; GeneMarker® HTS [7,8]. Existing 

software did not allow for the proper alignment of sequence data, producing flawed reports and 

requiring extensive manual analysis to identify and correct the errors.  The regions of sequence 

that are typically difficult to align are homopolymeric stretches and patterns of SNPs and indels, 

both of which can produce inconsistent reporting outcomes. 

Careful examination of mtDNA MPS data is important, as illustrated by the publication of 

several high-profile reports that have been deemed in error due to an inability to distinguish 

between heteroplasmy and other sources of mixed data, including those associated with software 

alignment anomalies [9].  In this study, difficulties in alignment, including the separation of 

major and minor allele calls, made the evaluation of heteroplasmic positions a multi-layered 

process requiring numerous repeat analyses.  The MPS data for this study were analyzed a final 

time using GeneMarker® HTS (v.06162016) at a 1% analytical threshold and a 2% (n=537) or 

3% reporting threshold (n=13) for minor sequence variants.  While the data can be evaluated at 

the 1% threshold, we are recommending the use of a reporting (interpretation) threshold of 2%. 

Application of this approach was successful when analyzing MPS data associated with mixtures, 

and generated with the D-Loop Protocol from Illumina [10]. 

The error rate of the collective MPS process was evaluated to establish an analytical 

threshold based on the measured “noise”.  This is a critical step to ensure that reported 

heteroplasmy is reliable.  Major allele calls, by definition, have SNP percentages >50%; it has 

been clearly illustrated that MPS analysis for haplotype determination is concordant with 

traditional Sanger-type sequencing [11].  We chose a conservative approach to assess error rates, 

considering MPS data with nucleotide calls observed in <50% of the sequencing reads as 

assumed error.  This inherently captures all positions of heteroplasmy, ensuring that the error rate 
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is not biased by removal of this data.  Coverage and base call information, for the 230 samples 

used for this analysis, were generated using GeneMarker® HTS and processed using a 

combination of UNIX line commands and R Studio for assumed error assessment.  The MiSeq is 

known to have a low error rate, but the empirical error associated with the combined sequencing 

and alignment procedures has not been established. 

FINDINGS 

A total of 717 buccal samples were collected for this study; 130% of the proposed number. 

MPS data was generated for 569 samples, including 550 individuals of European descent.  As 

expected, a percentage of the individuals who self-reported as European were of other ancestral 

origins (Appendix Table 1). For the purposes of this report, we focused on the 550 Europeans. 

The development and evaluation of GeneMarker® HTS required numerous meetings with the 

team at SoftGenetics, and evaluation of multiple iterations of the developing software over a 12-

month period. The fully developed software was assessed for; 1) proper alignment to a circular 

version of the mtGenome to span the transition point in the mtGenome numbering system, 2) 

consistent reporting associated with the mtGenome numbering system, 3) features for user-

defined filtering and production of meaningful and accurate reports, 4) export of reports to 

address forensic considerations and allow for import into tertiary analysis tools such as EMPOP, 

5) proper alignment of homopolymeric sequences, challenging SNP and indel motifs, and 

identify phylogenetically correct primary haplotypes with minimal user input, and 6) 

identification of heteroplasmic variants with minimal user input.  We included our consultants 

(Walther Parson, University of Innsbruck and Ann Gross, MN BCA) in the development and 

evaluation process at an early stage to address their interests and solicit their feedback.  The 

GeneMarker® HTS software has recently become commercially available, and the team at 
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SoftGenetics has reported to us that the FBI Laboratory has initiated the purchasing process to 

acquire a copy. Thus far, and to the best of our knowledge, the following laboratories in the 

forensic community have evaluated the software, or have expressed interest in the software: CA 

DOJ, MN BCA, OCME, AFDIL, Bode Technology Group, the Netherlands Forensic Institute, 

and the Institute of Legal Medicine Innsbruck Medical University. 

MPS was conducted on the 550 samples and data was analyzed with GeneMarker® HTS. 

Consistent with previous findings [12], ~75% (412) of the 550 haplotypes were unique in the 

dataset, with a total of 460 different haplotypes (~84%).  The slightly elevated values, when 

compared to previous data, reflect expanded analysis of the CR in the current study.  Forty-eight 

haplotypes were shared by more than one individual (48/460=~10.5%); 27 by two individuals, 

12 by three individuals, 4 by four individuals, 2 by five individuals, 1 by six individuals, 1 by 

seven individuals, and 1 by nine individuals. Using the GeneMarker® HTS software resulted in a 

decrease in frequency for the most common sequence profile in the data set (263G, 315.1C, 

16519C); from ~1.3% to ~4% in our previous reports.  The lower frequency is due to the 

improved alignment capabilities of the new software and better resolution of length variants. 

Traditionally, length variants have been largely ignored in MPS data due to alignment challenges 

leading to erroneous typing from miscalled indels, heteroplasmy, and complete substitutions 

[13]. Improved alignment with the GeneMarker® HTS significantly increased the number of 

times length variants were resolved in our samples set, especially related to homopolymeric 

sequences; nps 16182-16193 and 303-315. For example, haplotype 263G, 309.1C, 315.1C, 

16519C was observed nine times and haplotype 263G, 309.1C, 309.2C, 315.1C, 16519C was 

observed six times.  If the additional length heteroplasmy were ignored 263G, 315.1C, 16519 

would be the most common haplotype in our data set with 22 observations (4.0%).  The 
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haplogroups for the 550 individuals were H (268), U (79), J (47), T (47), K (52), and I, M, N, P, 

R, S, V, W and X (57), all with European origins, confirming the ancestral roots of the dataset. 

A quality assessment of the dataset was performed for entry of the haplotypes into EMPOP; 494 

of the 550 profiles were sent to EMPOP for upload, as 54 samples from the Shriver laboratory 

are still being assessed to determine if consent is suitable for upload to a public database, and 2 

samples were presumed duplicates from previous studies. 

Prior to analysis of heteroplasmy in our dataset, the average assumed error for each 

nucleotide (A, C, G, and T) was assessed by considering all base call information <50% of the 

read density. The consensus statistic report that is generated by GeneMarker® HTS was 

manipulated in order to combine the forward and reverse reads, the frequency of reads based on 

total coverage was calculated, and the frequencies were transformed back into counts to produce 

the assumed error.  A combination of Terminal and R Studio was used to mine the data and 

calculate the assumed total and individual nucleotide error rates.  A summary of the R Studio 

output is presented in Appendix Table 2. The numbers in the summary table represent a percent 

of the total reads, which can also be described as the number of calls made in error for every 100 

nucleotides assessed. The average total error rate was 0.17±0.06 erroneous base calls for every 

100 nps. The average assumed error for each nucleotide (A, C, G, and T) was 0.04±0.01, 

0.05±0.02, 0.04±0.02, and 0.04±0.01 per 100 nps, respectively.  Appendix Figure 1 is a boxplot 

of the data for each nucleotide position, along with the total combined error (a sum of the error 

rates for the individual nucleotides), illustrating that a significant different between the error 

rates for the individual nucleotides does not exist.  The average total assumed error was well 

below our analytical threshold of 1%, and our reporting threshold of 2%, indicating that 

heteroplasmic positions reported at 2% are clearly above the system noise.  Using this approach 
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has proven to be robust when reporting minor sequence variants, as illustrated through precision 

studies conducted on mtDNA MPS data [10].  We are in the process of developing a tool, that 

will be made available to the forensic community (at no cost), to assess datasets for assumed 

error. It should be noted that development of the final tools was impacted by instability in 

existing laboratory methods and the repeated release of GeneMarker® HTS iterations, extending 

the length of the analysis process. 

Following the final analysis of our MPS dataset, the rate of observing heteroplasmy at a 

reporting threshold of 2% (n=537) was 41.15% (221/537), with 9.87% of individuals exhibiting 

more than one position of heteroplasmy (Appendix Figure 2).  Heteroplasmy was reported a total 

of 292 times, with 78 (26.71%) of the observations having a read frequency of 10-49.93%. 

These 78 sites were observed in 75 individuals, for a rate of 13.64% at Sanger-type sequencing 

(STS) detection levels.  While this is consistent with previous findings [14], it is a high 

frequency given that most of the frequencies were close to 10%, or the limits of STS. 

Interestingly, we saw no significant correlation between rates of heteroplasmy and age 

(Appendix Figure 3) or gender. Lastly, data can become “noisy” given the introduction of low-

level foreign DNA and the sensitivity of mtDNA testing.  To account for this, the threshold was 

raised to 3% for 13 of the 550 samples in the current project. 

A total of 86 nps (~7.7%) exhibited heteroplasmy across the 1,122 sites in the CR.  The most 

prevalent type of heteroplasmy was C/T-based with 172 observations (60.1%), followed by A/G 

(79, 27.6%), A/C (34, 11.9%), and G/T (1, 0.35%). The C/G and A/T transversions produced no 

observations. Overall, the vast majority of nps exhibited no heteroplasmy (~93.3%).  Using a 

crude approach for determining the frequency of heteroplasmy at these nps (3/550 or ~0.55%), a 

likelihood ratio (LR) in a forensic case could be increased by a factor of ~180.  Assuming a LR 
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of 1000 for the haplotype, the presence of heteroplasmy at one of these positions would result in 

an increase in the LR to ~180,000. On the other hand, the np with the highest rate of 

heteroplasmy, 16093 (~6.36%), would result in an increase in the LR to ~15,750.  While this is 

not as impactful, it would still be of benefit to the trier of fact.  We are in the process of assessing 

whether a correlation exists between haplotype and occurrence/position of heteroplasmy. 

Assuming a lack of correlation, reporting heteroplasmy in a case will clearly increase the 

discrimination potential of the testing method. 

We assessed the transmission of mtDNA sequence variants in different tissue types focusing 

on hair shafts, a common source of evidence in forensic cases.  This dataset is in the process of 

being thoroughly analyzed, but preliminary findings suggest that known variants drift rapidly 

between tissue types and different hairs, and new sites of presumed heteroplasmy are revealed 

which may be associated with DNA damage.  In addition, we assessed the transmission of 

mtDNA sequence variants in different tissue types through a multi-generational family study.  As 

expected, we observed reproducible tissue-specific heteroplasmy and differences in 

heteroplasmy between maternal relatives, consistent with previous findings [5].  However, we 

also observed positions of heteroplasmy which appeared to exhibit recurrent mutational events 

that accumulate with age, and that are selected against during germline transmission [15]. 

CRIMINAL JUSTICE IMPACT 

In total, we presented our work on this project at least 12 times over the course of 24 months. 

We organized a one-day workshop in Minneapolis, MN for 32 scientists at the MN BCA and 

other regional laboratories; provided training to MN BCA examiners on MPS data analysis; gave 

oral presentations at 5 different workshops in the U.S. (NC State University/Promega 2015, CA 

DOJ/Promega 2016, OCME/Promega 2016, Indianapolis, IN/Promega 2016, Bode Mid-
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Atlantic/Illumina 2016), reaching scientists from the CA DOJ, OCME, NC State Police, and 

Philadelphia PD; gave oral presentations at 2 different conferences in the U.S. (ISHI 2016, 

AAFS/NIJ Forensic Science R&D Symposium 2016), reaching broad forensic audiences; gave 

oral presentations at 3 different international conferences (ISABS 2015, ISFG 2015, Genetics in 

Forensics Congress 2016), reaching broad groups of international scientists; and gave multiple 

poster presentations. 

Our work with two consultants has ensured that the project is relevant in both National and 

International forensic circles. Ann Gross is a member of SWGDAM and is responsible for 

leading the development of guidelines for mtDNA MPS analysis. We are in the process of 

working with the MN BCA laboratory to help them develop a plan for the implementation of an 

mtDNA MPS method.  Walther Parson is the current President of the International Society for 

Forensic Genetics, and is a leading mitochondrial geneticist. 

Ultimately, the most important outcome of our project will be publications.  We already have 

one publication in press [7], have a second publication submitted [8], and are in the process of 

writing at least three additional manuscripts [2,6,8].  In addition, the work behind one other 

publication [3] and a manuscript in preparation [10] had a meaningful impact on the outcomes of 

this project, and include information that relates to the project findings.  Therefore, we anticipate 

that at least five publications will result from this project, with at least two additional papers 

directly tied to elements of the project.  Each of our papers provides recommendations that the 

forensic community can use to develop best practices as they implement mtDNA MPS methods 

in their laboratories. Therefore, the outcomes of this project should have a significant impact on 

forensic mtDNA casework and the criminal justice system. 
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CODE FOR ERROR ASSESSMENT IN MPS DATA 

#error estimation 

#terminal to prepare the data for R analyses 

#create folder with all the consensus statistic files 

"#create another, empty folder called ""no_header""" 

#remove the header information from all the consensus statistic files 

"$for file in *.txt; do tail -n +2 $file> ""$(basename $file)_new.txt""; done" 

"#move all the no header files into ""no_header""" 

"#concatonate all the *.txt files in ""no_header""" 

$cat *.txt>PR1All.txt 

#open the file in excel or the like and re-add the header information 

#save the file with the header information and proceed with R script 

R Studio code 

Error assessment 

"The next 11 chunks were run multiple times, each time changing the working directory (i.e. 

Run_1_error_no_header) and changing the text file to read into a table (i.e. PR1All.txt)" 

Load the concatonated data file with header information 

```{r load_file} 
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wdir=getwd() 

"setwd(""~/hetero/Run_4_error_no_header"")" 

"df=read.table(""PR4All.txt"",header=TRUE)" 

``` 

remove positions outside of the control region 

```{r CR_only} 

"df=rbind(subset(df, chr_pos<577), subset(df, chr_pos>16023))" 

``` 

designate positions as categorical instead of integers 

"```{r categorical, include=FALSE}" 

as.factor(df$chr_pos) 

``` 

combine forward and reverse reads 

```{r total_reads} 

df$A<- df$AF + df$AR 

df$C<- df$CF + df$CR 

df$G<- df$GF + df$GR 

df$T<- df$TF + df$TR 

df$del<- df$delF + df$delR 

df$ins<- df$insF + df$insR 
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``` 

remove the columns containing Forward and Reverse read information 

```{r rm_FandR_cols} 

"df <- subset( df, select = -c(AF,AR,CF,CR,GF,GR,TF,TR,delF,delR,insF,insR) )" 

``` 

create a column with calculation of the percent of total coverage at each chr_pos 

```{r percent_cov} 

df$Aper<-df$A/df$coverage*100 

df$Cper<-df$C/df$coverage*100 

df$Gper<-df$G/df$coverage*100 

df$Tper<-df$T/df$coverage*100 

df$del<-df$del/df$coverage*100 

df$ins<-df$ins/df$coverage*100 

``` 

"for a conservative estimate of error, we are going to assume any value greater than 50% is 

called in error.  we will set the threshold at 50% and evaluate all the values as TRUE or FALSE 

based on this threshold" 

```{r threshold_eval} 

thr=50 

df$Athr<-df$Aper<=thr 
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df$Cthr<-df$Cper<=thr 

df$Gthr<-df$Gper<=thr 

df$Tthr<-df$Tper<=thr 

``` 

"Don't really need indel error therefore, evaluating ACGT moving forward " 

"remove all values >50% based on the TRUE FALSE evaluation. since TRUE=1 and FALSE=0, 

any value evaluated as FALSE will not be carried through" 

```{r rm_>50} 

df$AthrV<-df$Aper*df$Athr 

df$CthrV<-df$Cper*df$Cthr 

df$GthrV<-df$Gper*df$Gthr 

df$TthrV<-df$Tper*df$Tthr 

``` 

"to calculate the total assumed error, sum the error associated with ACG&T " 

```{r totAE_1} 

df$TotAEper<-df$AthrV + df$CthrV + df$GthrV + df$TthrV 

``` 

need to covert the calculated percentage of total coverage back into number of calls for each 

nucleotide 

```{r nucleotide_calls} 
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df$TotAEcalls<-df$TotAEper/100*df$coverage 

df$AthrVcalls<-df$AthrV/100*df$coverage 

df$CthrVcalls<-df$CthrV/100*df$coverage 

df$GthrVcalls<-df$GthrV/100*df$coverage 

df$TthrVcalls<-df$TthrV/100*df$coverage 

``` 

to calculate the values for total assumed error and error associated with each nucleotide (ACGT) 

```{r final_error_calcs} 

TotAssumedError<-(sum(df$TotAEcalls))/sum(as.numeric(df$coverage))*100 

Aerror<-(sum(df$AthrVcalls))/sum(as.numeric(df$coverage))*100 

Cerror<-(sum(df$CthrVcalls))/sum(as.numeric(df$coverage))*100 

Gerror<-(sum(df$GthrVcalls))/sum(as.numeric(df$coverage))*100 

Terror<-(sum(df$TthrVcalls))/sum(as.numeric(df$coverage))*100 

TotAssumedError 

Aerror 

Cerror 

Gerror 

Terror 

``` 

boxplot of values generated in error assessment 
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```{r error_boxplot} 

getwd() 

"setwd(""~/hetero/"")" 

"errorValues<-read.csv(""error_summary.csv"", header = TRUE)" 

"boxplot(errorValues[,2:6])" 

``` 
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TABLES & FIGURES 

Table 1: Metadata for the 550 European data set, including gender, age, and threshold applied. 

We collected 717 buccal samples; 130% of expected.  The following is a list of reasons for 

omission of 167 collected samples from our analysis: 24 samples failed the DNA extraction step, 

presumably due to poor collection; 95 samples were of non-European ancestry, as reported by 

the donor; 17 samples were of non-European ancestry, as uncovered through our laboratory 

analysis; 15 samples were reported as relatives of a donor; and 16 samples were contaminated. 

Female Male 
18‐29 30‐49 50+ Tot. Female 18‐29 30‐49 50+ Total Male 

No. samples 2% threshold 145 102 52 299 74 99 65 238 
No. samples 3% threshold  2 2 3 7 1 5 0 6 

Table 2: Output summary of the average assumed error rates calculated using R Studio for data 

taken from four MiSeq runs that represented 230 samples.  Error rates presented as an estimation 

of the number of calls made in error per 100 nucleotides.  TotAE is the total assumed error, and 

A, C, G, and Terror represent the error for each nucleotide. 

Tot. Assumed Error A Error C Error G Error T Error 
Run1 0.13 0.03 0.04 0.04 0.03 
Run2 0.22 0.04 0.07 0.06 0.05 
Run3 0.23 0.05 0.07 0.06 0.05 
Run4 0.12 0.03 0.04 0.02 0.03 
Averge 0.18 0.04 0.05 0.05 0.04 
Standard Deviation 0.06 0.01 0.02 0.02 0.01 
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Fig 1: Boxplot of assumed error generated using R Studio.  Total assumed error (TotAE) and 

nucleotide error (A, C, G, and Terror) is on the x-axis with the number of base calls in error per 

100 nucleotides on the y-axis. 
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Figure 2: Rates of heteroplasmy on a per individual basis (n=537).  The vast majority of 

individuals (90.12%) have either no heteroplasmy (58.84%) or one site of heteroplasmy 

(31.28%). 

Figure 3: Rates of heteroplasmy on a per individual basis (n=537), and when considering the age 

of the individual. 
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	PURPOSE 
	PURPOSE 
	The ability to resolve, report, and leverage the discrimination potential of heteroplasmy will significantly enhance the value of using mitochondrial (mt) DNA analysis in forensic casework [1].  A massively parallel sequencing (MPS) approach will allow the community to achieve this goal. The first part of our study focused on establishing rates of heteroplasmy for the control region (CR) of the mtGenome through MPS analysis of 550 individuals of European ancestry. The study was comprised of male and female 
	>

	Genomic DNA was collected and isolated from cheek swabs using the Gentra Buccal Cell Kit (QIAGEN). Each sample was obtained using an individually wrapped buccal collection brush and promptly stored in the supplied cell lysis buffer.  Samples were stable at room 
	Genomic DNA was collected and isolated from cheek swabs using the Gentra Buccal Cell Kit (QIAGEN). Each sample was obtained using an individually wrapped buccal collection brush and promptly stored in the supplied cell lysis buffer.  Samples were stable at room 
	temperature for up to two years, although the actual time samples were stored in the lysis buffer varied, with no sample stored for more than a period of one month prior to DNA extraction. Samples were extracted throughout collection, following the manufacturer protocol, as soon as batches of 24 samples became available.  Appendix Table 1 lists metadata for the samples.  Of the 550 target samples, 494 samples were collected by our laboratory, and 56 samples were provided by Professor Mark Shriver’s laborato

	Figure
	For the rate study, enrichment of the mtDNA CR was accomplished through amplification of a 1 kilobase (kb) target spanning nps 15997-16569 and 1-926 with transposase adapter primers 
	[2]or a 2 kb target spanning nps 15600-16569 and 1-960 [3].  Library preparation was conducted using the Nextera XT approach and sequencing was performed on a MiSeq benchtop sequencer using a 300 cycle kit (v.2 chemistry) with 150 x 150 paired-end reads.  Sequence data was mapped to the revised Cambridge Reference Sequence (rCRS; GenBank ID NC_012920.1) using the MiSeq Reporter integrated computer software platform (MSR; v2.1.43 and v2.2.29), which operates on a Burrows-Wheeler Aligner (BWA) and the Genome 
	®
	® 
	®

	Transmission was evaluated through whole mtGenome sequencing of a maternal lineage consisting of three generations, with multiple family members across each generation; three grandparents, seven children, and eight grandchildren, including identical twins.  Two tissue 
	Transmission was evaluated through whole mtGenome sequencing of a maternal lineage consisting of three generations, with multiple family members across each generation; three grandparents, seven children, and eight grandchildren, including identical twins.  Two tissue 
	types (blood or buccal cells) were collected from the eighteen family members (36 samples). Enrichment was accomplished using long-range PCR (~8.5 kb fragments), library preparation via Nextera XT [4,5], and sequencing on a MiSeq using a 600 cycle reagent kit with 300 x 300 paired-end reads.  Data for each sample was generated in duplicate for a total of 72 sequencing events (plus controls). In addition, a broad assessment of variant transmission in hair shafts was conducted for 15 different maternal lineag
	®
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	DATA ANALYSIS 
	DATA ANALYSIS 
	A critical ingredient necessary for the adoption of an MPS approach in forensic laboratories is the availability of a suitable software package for data analysis.  The lack of available software solutions became apparent as the labor involved in data analysis was extraordinary during the early stages of this project.  Therefore, we collaborated with SoftGenetics, Inc, to develop a 
	A critical ingredient necessary for the adoption of an MPS approach in forensic laboratories is the availability of a suitable software package for data analysis.  The lack of available software solutions became apparent as the labor involved in data analysis was extraordinary during the early stages of this project.  Therefore, we collaborated with SoftGenetics, Inc, to develop a 
	software package for forensic researchers and practitioners; GeneMarker HTS [7,8]. Existing software did not allow for the proper alignment of sequence data, producing flawed reports and requiring extensive manual analysis to identify and correct the errors.  The regions of sequence that are typically difficult to align are homopolymeric stretches and patterns of SNPs and indels, both of which can produce inconsistent reporting outcomes. 
	®


	Figure
	Careful examination of mtDNA MPS data is important, as illustrated by the publication of several high-profile reports that have been deemed in error due to an inability to distinguish between heteroplasmy and other sources of mixed data, including those associated with software alignment anomalies [9].  In this study, difficulties in alignment, including the separation of major and minor allele calls, made the evaluation of heteroplasmic positions a multi-layered process requiring numerous repeat analyses. 
	®

	The error rate of the collective MPS process was evaluated to establish an analytical threshold based on the measured “noise”.  This is a critical step to ensure that reported heteroplasmy is reliable.  Major allele calls, by definition, have SNP percentages >50%; it has been clearly illustrated that MPS analysis for haplotype determination is concordant with traditional Sanger-type sequencing [11].  We chose a conservative approach to assess error rates, considering MPS data with nucleotide calls observed 
	The error rate of the collective MPS process was evaluated to establish an analytical threshold based on the measured “noise”.  This is a critical step to ensure that reported heteroplasmy is reliable.  Major allele calls, by definition, have SNP percentages >50%; it has been clearly illustrated that MPS analysis for haplotype determination is concordant with traditional Sanger-type sequencing [11].  We chose a conservative approach to assess error rates, considering MPS data with nucleotide calls observed 
	is not biased by removal of this data.  Coverage and base call information, for the 230 samples used for this analysis, were generated using GeneMarker HTS and processed using a combination of UNIX line commands and R Studio for assumed error assessment.  The MiSeq is known to have a low error rate, but the empirical error associated with the combined sequencing and alignment procedures has not been established. 
	®
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	FINDINGS 
	FINDINGS 
	A total of 717 buccal samples were collected for this study; 130% of the proposed number. MPS data was generated for 569 samples, including 550 individuals of European descent.  As expected, a percentage of the individuals who self-reported as European were of other ancestral origins (Appendix Table 1). For the purposes of this report, we focused on the 550 Europeans. 
	The development and evaluation of GeneMarker HTS required numerous meetings with the team at SoftGenetics, and evaluation of multiple iterations of the developing software over a 12month period. The fully developed software was assessed for; 1) proper alignment to a circular version of the mtGenome to span the transition point in the mtGenome numbering system, 2) consistent reporting associated with the mtGenome numbering system, 3) features for user-defined filtering and production of meaningful and accura
	®
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	5) proper alignment of homopolymeric sequences, challenging SNP and indel motifs, and identify phylogenetically correct primary haplotypes with minimal user input, and 6) identification of heteroplasmic variants with minimal user input.  We included our consultants (Walther Parson, University of Innsbruck and Ann Gross, MN BCA) in the development and evaluation process at an early stage to address their interests and solicit their feedback.  The GeneMarker HTS software has recently become commercially avail
	5) proper alignment of homopolymeric sequences, challenging SNP and indel motifs, and identify phylogenetically correct primary haplotypes with minimal user input, and 6) identification of heteroplasmic variants with minimal user input.  We included our consultants (Walther Parson, University of Innsbruck and Ann Gross, MN BCA) in the development and evaluation process at an early stage to address their interests and solicit their feedback.  The GeneMarker HTS software has recently become commercially avail
	®

	SoftGenetics has reported to us that the FBI Laboratory has initiated the purchasing process to acquire a copy. Thus far, and to the best of our knowledge, the following laboratories in the forensic community have evaluated the software, or have expressed interest in the software: CA DOJ, MN BCA, OCME, AFDIL, Bode Technology Group, the Netherlands Forensic Institute, and the Institute of Legal Medicine Innsbruck Medical University. 

	Figure
	MPS was conducted on the 550 samples and data was analyzed with GeneMarker HTS. Consistent with previous findings [12], ~75% (412) of the 550 haplotypes were unique in the dataset, with a total of 460 different haplotypes (~84%).  The slightly elevated values, when compared to previous data, reflect expanded analysis of the CR in the current study.  Forty-eight haplotypes were shared by more than one individual (48/460=~10.5%); 27 by two individuals, 12 by three individuals, 4 by four individuals, 2 by five
	MPS was conducted on the 550 samples and data was analyzed with GeneMarker HTS. Consistent with previous findings [12], ~75% (412) of the 550 haplotypes were unique in the dataset, with a total of 460 different haplotypes (~84%).  The slightly elevated values, when compared to previous data, reflect expanded analysis of the CR in the current study.  Forty-eight haplotypes were shared by more than one individual (48/460=~10.5%); 27 by two individuals, 12 by three individuals, 4 by four individuals, 2 by five
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	haplogroups for the 550 individuals were H (268), U (79), J (47), T (47), K (52), and I, M, N, P, R, S, V, W and X (57), all with European origins, confirming the ancestral roots of the dataset. A quality assessment of the dataset was performed for entry of the haplotypes into EMPOP; 494 of the 550 profiles were sent to EMPOP for upload, as 54 samples from the Shriver laboratory are still being assessed to determine if consent is suitable for upload to a public database, and 2 samples were presumed duplicat

	Figure
	Prior to analysis of heteroplasmy in our dataset, the average assumed error for each nucleotide (A, C, G, and T) was assessed by considering all base call information <50% of the read density. The consensus statistic report that is generated by GeneMarker HTS was manipulated in order to combine the forward and reverse reads, the frequency of reads based on total coverage was calculated, and the frequencies were transformed back into counts to produce the assumed error.  A combination of Terminal and R Studi
	Prior to analysis of heteroplasmy in our dataset, the average assumed error for each nucleotide (A, C, G, and T) was assessed by considering all base call information <50% of the read density. The consensus statistic report that is generated by GeneMarker HTS was manipulated in order to combine the forward and reverse reads, the frequency of reads based on total coverage was calculated, and the frequencies were transformed back into counts to produce the assumed error.  A combination of Terminal and R Studi
	®
	The average total error rate was 0.17±0.06 erroneous base calls for every 
	0.04±0.01
	0.05±0.02
	0.04±0.02
	, and 0.04±0.01 per 100 nps, respectively.  

	has proven to be robust when reporting minor sequence variants, as illustrated through precision studies conducted on mtDNA MPS data [10].  We are in the process of developing a tool, that will be made available to the forensic community (at no cost), to assess datasets for assumed error. It should be noted that development of the final tools was impacted by instability in existing laboratory methods and the repeated release of GeneMarker HTS iterations, extending the length of the analysis process. 
	®


	Figure
	Following the final analysis of our MPS dataset, the rate of observing heteroplasmy at a reporting threshold of 2% (n=537) was 41.15% (221/537), with 9.87% of individuals exhibiting more than one position of heteroplasmy (Appendix Figure 2).  Heteroplasmy was reported a total of 292 times, with 78 (26.71%) of the observations having a read frequency of %. These 78 sites were observed in 75 individuals, for a rate of 13.64% at Sanger-type sequencing (STS) detection levels.  While this is consistent with prev
	10-49.93

	A total of 86 nps (~7.7%) exhibited heteroplasmy across the 1,122 sites in the CR.  The most prevalent type of heteroplasmy was C/T-based with 172 observations (60.1%), followed by A/G (79, 27.6%), A/C (34, 11.9%), and G/T (1, 0.35%). The C/G and A/T transversions produced no observations. Overall, the vast majority of nps exhibited no heteroplasmy (~93.3%).  Using a crude approach for determining the frequency of heteroplasmy at these nps (3/550 or ~0.55%), a likelihood ratio (LR) in a forensic case could 
	A total of 86 nps (~7.7%) exhibited heteroplasmy across the 1,122 sites in the CR.  The most prevalent type of heteroplasmy was C/T-based with 172 observations (60.1%), followed by A/G (79, 27.6%), A/C (34, 11.9%), and G/T (1, 0.35%). The C/G and A/T transversions produced no observations. Overall, the vast majority of nps exhibited no heteroplasmy (~93.3%).  Using a crude approach for determining the frequency of heteroplasmy at these nps (3/550 or ~0.55%), a likelihood ratio (LR) in a forensic case could 
	of 1000 for the haplotype, the presence of heteroplasmy at one of these positions would result in an increase in the LR to ~180,000. On the other hand, the np with the highest rate of heteroplasmy, 16093 (~6.36%), would result in an increase in the LR to ~15,750.  While this is not as impactful, it would still be of benefit to the trier of fact.  We are in the process of assessing whether a correlation exists between haplotype and occurrence/position of heteroplasmy. Assuming a lack of correlation, reportin

	Figure
	We assessed the transmission of mtDNA sequence variants in different tissue types focusing on hair shafts, a common source of evidence in forensic cases.  This dataset is in the process of being thoroughly analyzed, but preliminary findings suggest that known variants drift rapidly between tissue types and different hairs, and new sites of presumed heteroplasmy are revealed which may be associated with DNA damage.  In addition, we assessed the transmission of mtDNA sequence variants in different tissue type
	In total, we presented our work on this project at least 12 times over the course of 24 months. We organized a one-day workshop in Minneapolis, MN for 32 scientists at the MN BCA and other regional laboratories; provided training to MN BCA examiners on MPS data analysis; gave oral presentations at 5 different workshops in the U.S. (NC State University/Promega 2015, CA DOJ/Promega 2016, OCME/Promega 2016, Indianapolis, IN/Promega 2016, Bode Mid
	In total, we presented our work on this project at least 12 times over the course of 24 months. We organized a one-day workshop in Minneapolis, MN for 32 scientists at the MN BCA and other regional laboratories; provided training to MN BCA examiners on MPS data analysis; gave oral presentations at 5 different workshops in the U.S. (NC State University/Promega 2015, CA DOJ/Promega 2016, OCME/Promega 2016, Indianapolis, IN/Promega 2016, Bode Mid
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	Atlantic/Illumina 2016), reaching scientists from the CA DOJ, OCME, NC State Police, and Philadelphia PD; gave oral presentations at 2 different conferences in the U.S. (ISHI 2016, AAFS/NIJ Forensic Science R&D Symposium 2016), reaching broad forensic audiences; gave oral presentations at 3 different international conferences (ISABS 2015, ISFG 2015, Genetics in Forensics Congress 2016), reaching broad groups of international scientists; and gave multiple poster presentations. 

	Figure
	Our work with two consultants has ensured that the project is relevant in both National and International forensic circles. Ann Gross is a member of SWGDAM and is responsible for leading the development of guidelines for mtDNA MPS analysis. We are in the process of working with the MN BCA laboratory to help them develop a plan for the implementation of an mtDNA MPS method.  Walther Parson is the current President of the International Society for Forensic Genetics, and is a leading mitochondrial geneticist. 
	Ultimately, the most important outcome of our project will be publications.  We already have one publication in press [7], have a second publication submitted [8], and are in the process of writing at least three additional manuscripts [2,6,8].  In addition, the work behind one other publication [3] and a manuscript in preparation [10] had a meaningful impact on the outcomes of this project, and include information that relates to the project findings.  Therefore, we anticipate that at least five publicatio
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	Figure
	CODE FOR ERROR ASSESSMENT IN MPS DATA #error estimation #terminal to prepare the data for R analyses #create folder with all the consensus statistic files "#create another, empty folder called ""no_header""" #remove the header information from all the consensus statistic files "$for file in *.txt; do tail -n +2 $file> ""$(basename $file)_new.txt""; done" 
	"#move all the no header files into ""no_header""" "#concatonate all the *.txt files in ""no_header""" $cat *.txt>PR1All.txt 
	#open the file in excel or the like and re-add the header information #save the file with the header information and proceed with R script 
	R Studio code 
	Error assessment "The next 11 chunks were run multiple times, each time changing the working directory (i.e. Run_1_error_no_header) and changing the text file to read into a table (i.e. PR1All.txt)" 
	Load the concatonated data file with header information ```{r load_file} 
	Figure
	wdir=getwd() "setwd(""~/hetero/Run_4_error_no_header"")" "df=read.table(""PR4All.txt"",header=TRUE)" ``` 
	remove positions outside of the control region ```{r CR_only} "df=rbind(subset(df, chr_pos<577), subset(df, chr_pos>16023))" ``` 
	designate positions as categorical instead of integers "```{r categorical, include=FALSE}" as.factor(df$chr_pos) ``` 
	combine forward and reverse reads ```{r total_reads} df$A<- df$AF + df$AR df$C<- df$CF + df$CR df$G<- df$GF + df$GR df$T<- df$TF + df$TR df$del<- df$delF + df$delR df$ins<- df$insF + df$insR 
	Figure
	``` 
	remove the columns containing Forward and Reverse read information ```{r rm_FandR_cols} "df <- subset( df, select = -c(AF,AR,CF,CR,GF,GR,TF,TR,delF,delR,insF,insR) )" ``` 
	create a column with calculation of the percent of total coverage at each chr_pos ```{r percent_cov} df$Aper<-df$A/df$coverage*100 df$Cper<-df$C/df$coverage*100 df$Gper<-df$G/df$coverage*100 df$Tper<-df$T/df$coverage*100 df$del<-df$del/df$coverage*100 df$ins<-df$ins/df$coverage*100 ``` 
	"for a conservative estimate of error, we are going to assume any value greater than 50% is called in error.  we will set the threshold at 50% and evaluate all the values as TRUE or FALSE based on this threshold" ```{r threshold_eval} thr=50 df$Athr<-df$Aper<=thr 
	Figure
	df$Cthr<-df$Cper<=thr df$Gthr<-df$Gper<=thr df$Tthr<-df$Tper<=thr ``` "Don't really need indel error therefore, evaluating ACGT moving forward " 
	"remove all values >50% based on the TRUE FALSE evaluation. since TRUE=1 and FALSE=0, any value evaluated as FALSE will not be carried through" ```{r rm_>50} df$AthrV<-df$Aper*df$Athr df$CthrV<-df$Cper*df$Cthr df$GthrV<-df$Gper*df$Gthr df$TthrV<-df$Tper*df$Tthr ``` 
	"to calculate the total assumed error, sum the error associated with ACG&T " ```{r totAE_1} df$TotAEper<-df$AthrV + df$CthrV + df$GthrV + df$TthrV ``` 
	need to covert the calculated percentage of total coverage back into number of calls for each nucleotide ```{r nucleotide_calls} 
	Figure
	df$TotAEcalls<-df$TotAEper/100*df$coverage df$AthrVcalls<-df$AthrV/100*df$coverage df$CthrVcalls<-df$CthrV/100*df$coverage df$GthrVcalls<-df$GthrV/100*df$coverage df$TthrVcalls<-df$TthrV/100*df$coverage ``` 
	to calculate the values for total assumed error and error associated with each nucleotide (ACGT) ```{r final_error_calcs} TotAssumedError<-(sum(df$TotAEcalls))/sum(as.numeric(df$coverage))*100 Aerror<-(sum(df$AthrVcalls))/sum(as.numeric(df$coverage))*100 Cerror<-(sum(df$CthrVcalls))/sum(as.numeric(df$coverage))*100 Gerror<-(sum(df$GthrVcalls))/sum(as.numeric(df$coverage))*100 Terror<-(sum(df$TthrVcalls))/sum(as.numeric(df$coverage))*100 TotAssumedError Aerror Cerror Gerror Terror 
	``` 
	boxplot of values generated in error assessment 
	Figure
	```{r error_boxplot} getwd() "setwd(""~/hetero/"")" "errorValues<-read.csv(""error_summary.csv"", header = TRUE)" "boxplot(errorValues[,2:6])" ``` 
	Figure
	TABLES & FIGURES Table 1: Metadata for the 550 European data set, including gender, age, and threshold applied. We collected 717 buccal samples; 130% of expected.  The following is a list of reasons for omission of 167 collected samples from our analysis: 24 samples failed the DNA extraction step, presumably due to poor collection; 95 samples were of non-European ancestry, as reported by the donor; 17 samples were of non-European ancestry, as uncovered through our laboratory analysis; 15 samples were report
	Table
	TR
	Female 
	Male 

	18‐29 
	18‐29 
	30‐49 
	50+ 
	Tot. Female 
	18‐29 
	30‐49 
	50+ 
	Total Male 

	No. samples 2% threshold 
	No. samples 2% threshold 
	145 
	102 
	52 
	299 
	74 
	99 
	65 
	238 

	No. samples 3% threshold 
	No. samples 3% threshold 
	2 
	2 
	3 
	7 
	1 
	5 
	0 
	6 


	Table 2: Output summary of the average assumed error rates calculated using R Studio for data taken from four MiSeq runs that represented 230 samples.  Error rates presented as an estimation of the number of calls made in error per 100 nucleotides.  TotAE is the total assumed error, and A, C, G, and Terror represent the error for each nucleotide. 
	Table
	TR
	Tot. Assumed Error 
	A Error 
	C Error 
	G Error 
	T Error 

	Run1 
	Run1 
	0.13 
	0.03 
	0.04 
	0.04 
	0.03 

	Run2 
	Run2 
	0.22 
	0.04 
	0.07 
	0.06 
	0.05 

	Run3 
	Run3 
	0.23 
	0.05 
	0.07 
	0.06 
	0.05 

	Run4 
	Run4 
	0.12 
	0.03 
	0.04 
	0.02 
	0.03 

	Averge 
	Averge 
	0.18 
	0.04 
	0.05 
	0.05 
	0.04 

	Standard Deviation 
	Standard Deviation 
	0.06 
	0.01 
	0.02 
	0.02 
	0.01 


	Figure
	Fig 1: Boxplot of assumed error generated using R Studio.  Total assumed error (TotAE) and nucleotide error (A, C, G, and Terror) is on the x-axis with the number of base calls in error per 100 nucleotides on the y-axis. 
	Figure
	Percent of Data Set 70% 60% 50% 40% 30% 20% 10% 0% 59% 31% 6.89% 2.61% 0.37% 0.00% Zero 1 site 2 site 3 site 4 site 5 site Number of Heteroplasmic Positions per Individual 
	Figure
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