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Accomplishments 
This project aimed to develop and study the effect of computer analytics for public space 

surveillance camera systems. Videos from surveillance cameras have the ability to not only aid in 
post-event investigations but also to improve intervention in live criminal incidents by flagging 
them as they occur. However, when left unmonitored or poorly integrated into police departments, 
surveillance cameras often become useless. Currently, the number of surveillance cameras in the 
U.S. is increasing rapidly, with human monitoring capability unable to keep pace. In this project, 
we developed computer vision analytics for large surveillance camera networks and installed them 
into a Public Safety Visual Analytics Workstation (PSVAW) operating at the Orlando, Florida 
police department (OPD). 

In this report, we cover the tasks in four areas performed during the two and a half years 
(January 2016 – June 2018). First, we have developed and tested algorithms at the University of 
Central Florida’s Center for Research in Computer Vision (CRCV) and Columbia University’s 
Digital Video and Multimedia (DVMM) Lab. Algorithms related to (1) action and event detection 
in videos, (2) video anomaly detection, (3) video summarization, (4) object and attribute retrieval, 
and (5) hashing for efficient information retrieval.  Second, we developed a computer vision 
system GUI that incorporates a set of computer vision modules for the Public Safety Visual 
Analytics Workstation. Specifically, four computer vision modules were integrated into the system 
including anomaly detection, face attribute prediction, body attribute prediction, and action 
detection. Third, we have transferred equipment necessary purchased to employ the PSVAW to 
the Orlando Police Department. Fourth, we report the current status of the field placement 
collaboration in the Orlando Police Department.  

The final report is comprised of five sections.  Descriptions of the underlying logic for the 
developed computer vision algorithms and the results of their evaluations against standard 
computer vision science criteria are reported in section 1.  The Public Safety Visual Analytics 
workstation components and GUI interface is described in section 2.  Descriptions of the PSVAW 
related equipment transferred to the Orlando Police Department are provided in section 3.  The 
field placement is discussed in section 4 and presentations and publications associated with the 
grant are listed in section 5.   

1. Development and Implementation of Computer Vision 
Algorithms 

1.1 Action and Event Detection in Videos 

Tube Convolutional Neural Network (T-CNN). Detection of video events has two parts. 
First is the temporal localization of the event’s start/ending time in long videos. Second is the 
localization of the person and behaviors by setting bounding boxes within video frames. We 
completed the first task of temporal event localization in video streams during the first half of 
Phase 1. During the recent six-month span, we developed an approach for the second task of spatial 
localization and recognition of events within videos utilizing an extension of computer vision deep 
learning. 
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Deep learning has been shown to produce excellent results for image classification and 
object detection. In particular deep learning based approaches have shown superior performance 
on a standardized computer vision assessment employing the “ImageNet” challenge and recent 
impressive successes in use of faster Region-based Convolutional Neural Network (R-CNN) [1] 
for object detection.  However, the impact of deep learning on video analysis for tasks such as 
action detection and recognition has been limited due to complexity of video data and the limited 
number of annotated training videos. 

Previous deep learning based action detection approaches first detect potential frame-level 
action proposals associated with pre-existing popular proposal algorithms (e.g. selective search 
[2]) and labels (i.e., running or jumping) or using action labels assigned through a training process. 
The frame-level action proposals are next associated across frames to generate final action 
detections. In order to capture both spatial and temporal information of an action, two-stream 
networks (a spatial CNN and a motion CNN) have been typically used with the spatial and motion 
information analyzed separately. 

Inspired by Faster R-CNN [1], we proposed Tube Convolutional Neural Network (T-CNN) 
for action detection by leveraging the descriptive power of 3D CNN. To better capture the 
spatiotemporal information of video, we exploited 3D CNN since it was able to capture motion 
characteristics in videos and showed promising results on video action recognition. In our 
approach, an input video was first divided into equal length clips. Then the clips were fed into 
Tube Proposal Network (TPN) and a set of tube proposals were obtained. Next, tube proposals 
from each video clip were linked according to their actionness scores and overlap between adjacent 
proposals to form a complete tube proposal for spatio-temporal action localization in the video. 
Finally, the Tube-of-Interest (ToI) pooling was applied to the linked action tube proposal to 
generate a fixed size feature vector for action label prediction. 

Figure 1. Pipeline and network structure of the T-CNN. 
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Figure 1 shows an overview of the proposed Tube Convolutional Neural Network (T-CNN) 
for action detection. First, an input video was divided into equal length clips of 8 frames and fed 
to Tube Proposal Network to generate tube proposals. Next, these proposals are then linked into 
larger tubes covering full actions and fed to Action Detection network. Finally, the Action 
Detection network employed TOI pooling to recognize and localize the action. 

For the Tube Proposal Network, we first divided the video into 8-frame clips. For each 8-
frame video clip, 3D convolution and 3D pooling were used to extract a spatio-temporal feature 
cube. In 3D CNN, convolution and pooling were performed spatio-temporally preserving the 
temporal information of the input video. Our 3D CNN consisted of seven 3D convolution layers 
and four 3D max-pooling layers. We denoted the kernel shape of 3D convolution/pooling by 
d×h×w, where d, h, w are respectively depth, height and width. In all convolution layers, the kernel 
sizes were 3 × 3 × 3, padding and stride remained as 1. The numbers of filters were 64, 128 and 
256 respectively in the first 3 convolution layers and 512 in the remaining convolution layers. The 
kernel size was set to 1 × 2 × 2 for the first 3D max-pooling layer, and 2×2×2 for the remaining 
3D max-pooling layers. 

Each bounding box (bbx) is associated with an “actionness” score, which measured the 
probability that the bbx corresponded to a valid action. We assigned a binary class label (of being 
an action or not) to each bounding box. Bounding boxes with actionness scores smaller than a 
selected threshold were discarded. In the training phase, the bbx which had an Intersection-over-
Union (IoU) overlap higher than 0.7 with any ground-truth bbx, or had the highest IoU overlap 
with a ground-truth box (the later condition was considered in case the former condition found no 
positive cases) was taken as a positive bounding box proposal. 

Bounding box proposals generated from conv5 feature tube can be used for frame-level 
action detection by bounding box regression. However, due to temporal max pooling (8 frames to 
1 frame), the temporal order of the original 8 frames is lost. Therefore, we used temporal skip 
pooling to inject the temporal order for frame-level detection. Specifically, we mapped each 
positive bounding box generated from conv5 feature cube into conv2 feature cube which had 8 
feature frames/slices. Since these 8 feature slices corresponded to the original 8 frames in a video 
clip, the temporal order was preserved. As a result, if there were 5 bounding boxes in conv5 feature 
cube for example, 5 scaled bounding boxes were mapped to each conv2 feature slice at the 
corresponding locations. This created 5 tube proposals as illustrated in Figure 2, which were paired 
with the corresponding 5 bounding box proposals for frame-level action detection. To form a fixed 
feature maps, ToI pooling was applied to the variable size tube proposals as well as the bounding 
box proposals. Since a tube proposal covers 8 frames in Conv2, the ToI pooled bounding box from 
Conv5 was duplicated 8 times to form a tube. We then applied L2 normalization to the paired two 
tubes, and vectorized and concatenated them. Since we used the C3D model as the pretrained 
model, we applied a 1x1 convolution to match the input dimension of fc6. Three fully-connected 
(FC) layers process each descriptor and produce the output: displacement of height, width and 2D 
center of each bounding box (“bbox”) in each frame. The regression loss measured the differences 
between ground truth and predicted bounding boxes, represented by a 4D vector (∆center-x, 
∆center-y, ∆width, ∆height). The sum of them for all bounding boxes was the regression loss of 
the whole tube. Finally, a set of refined tube proposals by adding the displacements of height, 
width and center were generated as an output from the TPN representing potential spatio-temporal 
action localization of the input video clip. Figure 2 illustrates the proposed Tube Proposal 
Network. 
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Figure 2. The tube proposal network (TPN) takes a 8-frame clip as input and applies 3D 
convolution and max-pooling to extract spatio-temporal features. Conv5 feature cube are used to 
generate bounding box proposals. Those with high actionness scores are mapped to conv2 feature 
cube (contains 8 frames information) at the corresponding positions to get tube proposals. Each 
proposal tube and box pair are aggregated after separate ToI pooling, then bounding box regression 
is performed for each frame. 

Segmentation Tube CNN (ST-CNN). The proposed T-CNN approach was able to detect 
actions in videos and place bounding boxes for localization in each frame. As discussed, T-CNN 
as a top-down approach relies on exhaustive search in the whole frame and appropriate bounding 
boxes selection. It has been shown that bottom-up approaches which directly operate on group of 
pixels e.g. through supervoxel or super pixel segmentation are more efficient for action detection. 
Also, it is obvious that pixel-wise action segmentation maps provide finer human silhouettes than 
bounding boxes, since bounding may also include background pixels. To achieve this goal, we 
developed a ST-CNN (Segmentation Tube CNN) approach to automatically localize and segment 
the silhouette of an actor for action detection. Figure 3 shows the network structure of the proposed 
ST-CNN. It is an end-to-end 3D CNN, which builds upon an encoder-decoder structure for image 
semantic segmentation. Its development starts with a video being divided into 8-frame clips as 
input to the network. On the encoder side, 3D convolution and max pooling were performed. Due 
to 3D max pooling, the spatial and temporal sizes were reduced. In order to generate the pixel-
wise segmentation map for each frame in the original size, 3D up-sampling was used in the decoder 
to increase the resolution of feature maps. To capture spatial and temporal information at different 
scales, a concatenation with the corresponding feature maps from the encoder was employed after 
each 3D up-sampling layer. Finally, a segmentation branch was used for pixel-wise prediction (i.e. 
background or action foreground) for each frame in a clip. The recognition branch takes the 
segmentation maps (output of the segmentation branch), where the foreground segmentation maps 
(action regions) were converted into bounding boxes, and the feature cube of the last concatenation 
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layer (concat1), to extract the feature tube of the action volume. ToI pooling was applied to the 
feature tube and followed by three FC layers for action recognition. The Network architecture of 
ST-CNN is shown in Figure 3. 

Figure 3. The framework of ST-CNN for action detection. An encoder-decoder 3D CNN 
architecture is employed. The segmentation branch produces a binary segmentation map (action 
foreground vs. background) for each frame of the input video clip. The inferred framewise 
bounding boxes (action localization) are based on the foreground pixels.  The feature tube is 
extracted from concat1 as an input to the recognition branch (see the right part of figure 3 for 
details). 

Experiment results. We tested our proposed detection methods (T-CNN and ST-CNN) on 
computer vision science benchmark datasets. 

UCF-Sports dataset contains 150 short videos of 10 different sport classes. Videos were 
trimmed and the action and bounding boxes annotations were provided for all frames. We followed 
the standard training and test split to carry out the evaluation. We used the usual IoU criterion and 
generated the ROC curves reported in Figure 4(a) when overlap equals to α = 0.2. Figure 4(b) 
illustrates AUC (Area-Under-Curve) measured with different overlap criterion. In direct 
comparison, our T-CNN clearly outperformed all the competing methods shown. We were unable 
to directly compare the detection accuracy against Peng et al. in the plot, since they did not provide 
ROC and AUC curves. As shown in Table 1, the frame level mAP of our approach outperformed 
Peng et al. in 8 actions out of 10. Moreover, using the same metric, the video mAP of our approach 
reached 95.2 (α = 0.2 and 0.5), while they reported 94.8 (α = 0.2) and 94.7 (α = 0.5). 

J-HMDB consisted of 928 videos with 21 different actions. All the video clips were well 
trimmed. There were three train-test splits and the evaluation was done on the average results over 
the three splits. The comparison of the experimental results is shown in Table 2. We report our 
results using 3 metrics: frame-mAP, the average precision of detection at frame level as in [1=3]; 
video-mAP, the average precision at video level as in [3] with IoU threshold α = 0.2 and α = 0.5. 
Our T-CNN algorithm consistently outperformed the state-of-the-art approaches for all three 
evaluation metrics. 
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Figure 4. The ROC and AUC curves for UCF-Sports dataset are shown in (a) and (b), respectively. 
The results are shown for Jain et al. [38] (green), Tian et al.  (purple), Soomro et al. (blue), Wang 
et al. (yellow), Gkioxari et al. (cyan) and Proposed Method (red). (c) shows the mean ROC curves 
for four actions of THUMOS’14. The results are shown for Sultani et al. (green), the proposed T-
CNN (red) and T-CNN without negative mining (blue). 

Table 1. mAP for each class of UCF-Sports. The IoU threshold α for frame m-AP is fixed to 0.5. 

Table 2. Comparison of the state-of-the-art approaches on J-HMDB. The IoU threshold α for frame 
m-AP is fixed to 0.5. 
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The UCF-101 dataset with 101 actions is commonly used for action recognition and a 
subset (THUMOS’13) of 24 action classes and 3, 207 videos which have spatio-temporal 
annotations were utilized. Similar to other methods, we performed the experiments on the first 
train/test split. We report our results in Table 3 with 3 metrics: frame-mAP, video-mAP (α = 0.2) 
and videomAP (α = 0.5). Our approach again yielded the best performance. Moreover, we also 
report the action recognition results of T-CNN on the above three datasets in Table 4. 

Table 3. Comparison of the state-of-the-art on UCF-101 (24 actions). The IoU threshold α for 
frame m-AP is fixed to 0.5. 

Table 4. Action recognition results of T-CNN on three datasets. 

To further validate the effectiveness of our T-CNN approach for action detection, we 
evaluated it using the untrimmed videos from the THUMOS’14 dataset. The THUMOS’14 spatio-
temporal localization task consisted of 4 classes of actions: baseball pitch, golf swing, tennis swing 
and discus throw. There were about 20 videos per action and each video contained 500 to 3,000 
frames. The videos were divided into a validation set and a test set, but only videos in the test set 
have spatial annotations provided. Therefore, we used samples corresponding to those 4 actions in 
UCF-101 with spatial annotations to train our model. The mean ROC curves of different methods 
for THUMOS’14 action detection are plotted in Figure 4(c). Our method without negative mining 
performed better than the baseline method used by Sultani et al. Additionally, with negative 
mining, the performance was further improved. As a demonstration of our results, we show 
examples of detected action tubes in videos from UCF-Sports, JHMDB, UCF101 (24 actions) and 
THUMOS’14 datasets in Figure 5. Each block corresponds to a different video that was selected 
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from the test set.  Figure 5 shows the highest scoring action tube for each video. 

Figure 5.  Action detection results obtained by T-CNN on UCF-Sports, JHMDB, UCF-101 and 
THUMOS’14. Red boxes show the detections in the corresponding frames, and green boxes show 
ground truth. The predicted labels are overlaid. 

Video object segmentation experiment. We further evaluated our ST-CNN approach on 
the video object segmentation task. Densely Annotated VIdeo Segmentation (DAVIS) 2016 
dataset was specifically designed for the task of video object segmentation. It consisted of 50 
videos with 3455 annotated frames. Consistent with most prior work, we conducted experiments 
on the 480p videos with a resolution of 854 × 480 pixels. Thirty videos were taken for training and 
20 for validation. 

We adopted the same evaluation setting as reported in [4]. There were three parts. Region 
Similarity J , which was obtained by IoU between the prediction and the ground-truth segmentation 
map. Contour Accuracy F measured the contours accuracy performance. Temporal Stability T 
tracked the temporal consistency in a video. For the first two evaluation, we reported the mean, 
recall and decay. For the third one, we reported the average. We compared our results with several 
unsupervised implementations, since our approach did not require any manual annotation or prior 
information about the object to be segmented (defined as unsupervised segmentation). This 
approach was different from the semi-supervised approaches which assumed the ground truth 
segmentation map of the first frame of a test video as given. Unsupervised segmentation 
apparently is a much harder task, but is more practical since it does not require human labelling 
during testing once the segmentation model has been trained. We compared our method with the 
state-of-the-art unsupervised approaches in Table 5. According to the results, our method achieved 
the best performance in all performance metrics. Compared to ARP, the previous state-of-the-art 
unsupervised approach, our method achieved 5% gain in contour accuracy (F) and a 15% gain in 
temporal stability (T ), demonstrating that 3D CNN can effectively take advantage of the temporal 
information in video frames to achieve temporal segmentation consistency. Figure 6 shows the 
quantitative results per video sequence of our approach and the next three top performing methods 
on the DAVIS dataset: ARP, LVO and FSEG. Our approach performed the best on low contrast 
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videos including black-swan, car-roundabout and scooter-black and achieved competitive results 
on other videos. Figure 7 presents the qualitative results on four video sequences. In the first row, 
our results were the most accurate of the four. Our method was the only one which detected the 
wheel rims of the bike. In the second row, ARP performed the best in suppressing background. 
However, only our approach detected both legs of the break dancer. The third row shows that only 
our method was able to accurately segment the tail of the camel. The last row was a challenging 
video because of the smoke and small initial size of the car. ARP missed part of the car, while 
LVO and FSEG mis-classified part of the background as a moving object. However, our method 
segmented out the car completely and accurately from the background smoke in the scene. 

Table 5. Overall results of region similarity (J ), contour accuracy (F) and temporal stability (T ) 
for different approaches. ↑ means higher values better performance, and ↓ means lower values 
equals better performance on each method. 

Figure 6. Comparison of Mean Jaccard index (J ) of different approaches on each of the sequences 
independently. 
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Figure 7. Qualitative results of the proposed approach (red), ARP (yellow), LVO (cyan) and 
FSEG (magenta) on selected frames from DAVIS dataset. 

1.2 Temporal Action Localization with Convolutional-De-
Convolutional (CDC) Networks 

An action / event usually consists of a sequence of sub-actions / sub-events in a specific 
order. Localizing actions in long untrimmed videos has recently drawn considerable interest. The 
goal is to detect an action class, and its starting and end time, for an untrimmed input video. It is 
particularly important in video surveillance analytics. In an online surveillance monitoring setting, 
temporal action localization can detect the start of an action of interest, for example a crime such 
as robbery, and stamp the time when the action/event is complete. In an offline setting, temporal 
action localization can be applied to recorded long untrimmed surveillance videos in a database. It 
allows a law enforcement agent to automatically pinpoint the time duration when an event of 
interest such as a crime happened in a surveillance video. 

Recent temporal action localization approaches were based on segment proposal, i.e., 
proposing a set of intervals and then classifying the content of each interval. However, determining 
a good interval before full understanding of its content was to some degree difficult. We proposed 
a method to determine the action start time and end time after fine-grained analysis of the content 
and determination of which action each frame contained. Per-frame labeling of actions in videos 
can be conventionally done by feeding individual frames into Convolutional Neural Networks 
(CNN) for classification. A recurrent layer can be added on top of such an architecture to utilize 
temporal dependency. However, none of these methods can model motion explicitly. It has been 
shown in C3D [5] that 3D CNNs can successfully model spatiotemporal patterns such as motion 
in videos.  

CDC Model Architecture. In the following, we represented a convolutional feature map 
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as a 4-dimensional tensor with the shape (a, b, c, d), where a, b, c, and d respectively represented 
the number of channels, temporal length, spatial height and spatial width. C3D takes a video clip 
of dimensions (3, 16, 112, 112) as input (RGB channels, 16 frames of 112x112 pixels), encoded it 
gradually to (512, 2, 4, 4) at the end of the pool5 layer, and then by means of fully connected 
layers, encoded it to (C, 1, 1, 1), which was a vector of classification scores per class. In both 
sections of the model (convolutional and fully connected parts), down sampling was done in time 
and space. However, to enable per-frame labeling, we needed to up sample in time to reach (C, 16, 
1, 1), that is, the classification score vectors for each frame. To this end, we replaced the fully 
connected portion of the network with a new set of layers, to which we referred to as Colvolutional-
De-Convolutional layers. 

Our proposed network encoded the (3, 16, 112, 112) input into (512, 2, 4, 4) by a sequence 
of layers identical to C3D, but then gradually up sampled in time while keeping down sampling in 
space until it reached (C, 16, 1, 1). The up sampling was done in literature both by linear up 
sampling (non-trainable), and deconvolutional layers (trainable). In our case however, we needed 
to down sample in space (from 4x4 to 1x1) while up sampling in time. To do this, we proposed 
Convolutional-De-Convolutional layers, which behaved like a convolution in the spatial 
dimensions, and a deconvolution in time. 

Since the CDC layer was not fully connected, the network was categorized as a fully 
convolutional network. In such network architectures, the input tensor shape is not fixed, and the 
output shape was determined based on the input shape. This means the window size did not 
necessarily have to be 16 frames and the model could operate on long untrimmed videos. Hence, 
we applied the network on any input of shape (3, L, 112, 112), where L is the number of frames, 
encode it through convolutional/pooling layers to (512, L/8, 4, 4), and then transformed it using 
CDC layers to (C, L, 1, 1). Figure 8 illustrates how a CDC layer works. 

Figure 8. Illustration of receptive fields for (a) regular convolutional layer (b) 
convolution followed for deconvolution (c) the Convolutional-De-Convolutional 
layer. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 
  

  
 

 
  

   
   

    
  

   
  

  
  

 

 
  

 

 
 

In the proposed network, we used three CDC layers in order to perform the mentioned 
transformation. The detailed illustration of the proposed architecture is depicted in Figure 9. The 
specification of CDC layers was chosen so that pre-trained FC6 and FC7 layers of the original 
C3D could be reused. 

We fine-tuned this network on the validation set of THUMOS’14 dataset. This dataset 
consisted of untrimmed videos annotated by intervals with specific start and end time and action 
class. We converted these annotations to per-frame labels, by considering segment-level action 
classes for all frames inside the segment and defining a background class for all other frames. After 
fine-tuning, the model learned to classify each frame. To detect action intervals, we started by 
applying action proposals with high recall, then applied per-frame labeling inside each proposed 
window and used that to modify the proposed boundaries. This still relied on a good action 
proposal method, which we intended to circumvent. However, this was what currently showed the 
best results. Thus, an algorithm that does not rely on action proposal will entail further research. 
Figure 10 explains our detection procedure in more detail. 

Figure 9. Proposed network architecture with three CDC layers. 

Figure 10. Proposed method of action interval detection. 
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Evaluation results. We evaluated the proposed method on the THUMOS’14 action 
detection challenge. The algorithm had to process untrimmed videos and provide a list of tuples 
of start time, end time, and action class. Each detected interval was considered correct if it 
reasonably overlapped with a ground truth interval and matched its action class. The overlap was 
considered enough, if the Intersection over Union (IOU) of the detected interval and true interval 
was more than a selected threshold. To prevent scoring of redundant detections, two detected 
intervals could not be matched to the same ground truth interval.  

We compared our results on the THUMOS’14 challenge with some baselines as well as 
recent state-of-the-art methods. The results are summarized in Table 6, where CDC shows 
significant improvement over a variety of state-of-the-art works. An example of the model output 
is depicted in Figure 11. Our implementation of the CDC network on an average machine with an 
NVIDIA TITAN X GPU performs at 500 frames per second. This means it could concurrently 
process video streams captured by 20 cameras at a frame rate of 25 FPS in real-time. 

Figure 11. Visualization of an example input and output and the process of refining the proposed 
interval. 

Table 6. Mean Average Precision for different methods at different IoUs. 
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1.3 Weakly Supervised Anomaly Detection in Videos 

Surveillance cameras are increasingly used in public places including streets, intersections, 
banks, shopping malls, and other locations to increase public safety. One critical task in video 
surveillance is detecting anomalous events such as traffic accidents, crimes or illegal activities. By 
definition, anomalous events rarely occur compared to normal activities and it is tedious and 
expensive for human operators to view entire videos in order to determine interesting but 
anomalous activities. Therefore, a key component of the PSVAW system is the automatic video 
anomaly detection. 

As real-world anomalous events are rare, complicated, and diverse, it is impossible to list 
all possible anomalous events. Therefore, it is desirable that the anomaly detection algorithm not 
rely on prior information about events.  Typically, sparse coding based approaches represent the 
current state-of-the-art anomaly detection methods. These methods assume that only the small 
initial portion of a video contains normal events, and therefore the initial video portion is used to 
build a “normal event” dictionary. The main assumption underlying anomaly detection is that 
anomalous events cannot be re-constructed from the normal event dictionary.  Their uniqueness in 
comparison to the normal events identify them as anomalies. 

Although such unsupervised approaches are appealing, they are based on the assumption 
that any pattern, which deviates from the learned normal patterns would be considered an anomaly. 
However, this assumption may not hold true because it is very difficult or impossible to accurately 
define the normal region of a video which takes all possible normal behavior patterns into account. 
More importantly, the boundary between normal and anomalous behavior is often ambiguous. 
Under realistic conditions such as time of day, the same behavior could be a normal under some 
conditions or anomalous behavior under different conditions. Therefore, employing training data 
of normal and anomalous events can make an anomaly detection system more accurate. 

Along these lines, we developed an anomaly detection algorithm using weakly labeled 
training videos. That is, we only know the video-level labels, i.e., a video was normal with no 
anomaly or it contained an imbedded anomaly at an unknown temporal location within the video 
file.  This was an effective approach because we could easily annotate a large number of videos 
by only assigning video-level labels. To formulate a weakly supervised learning approach, we 
resorted to multiple instance learning (MIL). Specifically, we learned to identify and locate 
anomalies through a deep MIL framework by treating normal and anomalous surveillance videos 
as conceptual bags and short segments of each video as instances in a bag. Based on training 
videos, our approach automatically learned an anomaly-ranking model. During testing, a long 
untrimmed video was divided into segments and fed to our deep network, which assigned an 
anomaly score for each video segment and was generalizable with the capacity to detect any 
anomalous event. 

In our approach, we quantified anomaly detection as a regression problem.  We wanted 
anomalous video segments to have higher anomaly scores than the normal segments.  The most 
direct approach would be to use a ranking loss, which encourages high score for anomalous video 
segments as compared to normal segments. However, in the absence of video segment level 
annotations (videos were only weekly labeled as containing or not containing anomalies), this was 
not possible. Instead, the following multiple instance ranking objective function was employed: 
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where 𝐵𝐵+  and 𝐵𝐵− represent positive and negative bags,  𝑉𝑉𝑠𝑠+  and 𝑉𝑉𝑠𝑠− represent anomalous and 
normal video segment and 𝑓𝑓(𝑉𝑉𝑠𝑠+) and 𝑓𝑓(𝑉𝑉𝑠𝑠−) represent their predicted scores, respectively. In this 
MIL ranking loss, the error was back propagated from the maximum scored video segments in 
both positive and negative bags. By training on a large number of positive and negative bags, the 
computer vision software learned a generalized model to predict high scores for anomalous 
segments in positive bags. The framework of our approach is illustrated in Figure 12. 

Figure 12. The flow diagram of the proposed anomaly detection approach. Given the positive 
(containing anomaly somewhere) and negative (containing no anomaly) videos, we divide each of 
them into multiple temporal video segments. Then, each video is represented as a bag and each 
temporal segment represents an instance in the bag. After extracting C3D features [36] for video 
segments, we train a fully connected neural network by utilizing a novel ranking loss function 
which computes the ranking loss between the highest scored instances (shown in red) in the 
positive bag and the negative bag. 

Due to the limitations of previous datasets, we constructed a new large-scale dataset to 
evaluate our method. It consisted of long untrimmed surveillance videos which covered 13 real-
world anomalies including Abuse, Arrest, Arson, Assault, Accident, Burglary, Explosion, 
Fighting, Robbery, Shooting, Stealing, Shoplifting, and Vandalism. These anomalies were selected 
because they have a significant impact on public safety. To ensure the quality of our dataset, we 
trained ten annotators (having different levels of computer vision expertise) to collect the dataset. 
We searched videos on YouTube and LiveLeak using text search queries (with slight variations 
e.g. “car crash”, “road accident”) of each anomaly. In order to retrieve as many videos as possible, 
we also used text queries in different languages (e.g. French, Russian, Chinese, etc.) for each 
anomaly. We removed videos which fell into any of the following conditions: manually edited, 
prank videos, not captured by CCTV cameras, taken from newscasts, captured using a hand-held 
camera, and containing compilations. We also discarded videos in which the anomaly was not 
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clear. With the above video pruning constraints, 950 unedited real-world surveillance videos with 
clear anomalies and 950 normal videos were collected, for a total of 1900 videos. In Figure 13, we 
show four frames of example video from each anomaly. 

Annotation. For our anomaly detection method, only video-level labels were required for 
training. However, in order to evaluate its performance on testing videos, we needed to know the 
temporal annotations, i.e. the start and ending frames of the anomalous event in each testing 
anomalous video. To this end, we assigned the same videos to multiple annotators to label the 
temporal extent of each anomaly. The final temporal annotations were obtained by averaging 
annotations of different annotators. The complete dataset was finalized after intense efforts 
covering several months. Regarding the creation of training and testing sets, we divided our dataset 
into two parts: the training set consisted of 800 normal and 810 anomalous videos (details shown 
in Table 7) and the testing set included the remaining 150 normal and 140 anomalous videos. Both 
training and testing sets contained all 13 anomalies at various temporal locations in the videos with 
some of the videos having multiple anomalies. 

Figure 13. Examples of different anomalies from the training and testing videos in our dataset. 
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Table 7. Number of videos of each anomaly in our dataset. Numbers in brackets represent the 
number of videos in the training set. 

Experiment results. We compared our method with two state-of-the-art approaches for 
anomaly detection. Lu et al. proposed dictionary-based approach to learn the normal behaviors and 
reconstruction errors to detect anomalies. Following their code, we extracted 7000 cuboids from 
each of the normal training video and compute gradient based features in each volume. After 
reducing the feature dimension using PCA, we generated the dictionary using sparse 
representation. Hasan et al. proposed a fully convolutional feedforward deep auto-encoder based 
approach to learn local features and classifier. Using their implementation, we trained the network 
on normal videos using a temporal window of 40 frames. Reconstruction error was used to measure 
anomaly. We also used a binary SVM classifier as a baseline method. Specifically, we treated all 
anomalous videos as one class and normal videos as another class. C3D features were computed 
for each video, and a binary classifier was trained with linear kernel. For testing, this classifier 
provided the probability of each video clip being anomalous. The quantitative comparisons in 
terms of ROC and AUC are shown in Figure 14 and Table 8. 

We also compared the results of our approach with and without smoothness and sparsity 
constraints. The results showed that our approach significantly outperformed the existing methods. 
Particularly, our method achieved much higher true positive rates than other methods under low 
false positive rates e.g. 0.1-0.3. The binary classifier results demonstrated that traditional action 
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recognition approaches cannot be used for anomaly detection in real-world surveillance videos. 
This was because our dataset contained long untrimmed videos where an anomaly mostly occurs 
for a short period of time. Therefore, the features extracted from these untrimmed training videos 
were not discriminative enough for the anomalous events. In the experiments, binary classifier 
produced very low anomaly scores for almost all testing videos. Dictionary learning based method 
was not robust enough to discriminate between normal and anomalous pattern. In addition to 
producing the low reconstruction error for normal portion of the videos, it also produced low 
reconstruction error for anomalous part. Hasan et al. method learned normal patterns quite well. 
However, it tended to produce high anomaly scores for new normal patterns. Our method 
performed significantly better than Hasan et al. and demonstrated its effectiveness while it 
emphasizing that training using both anomalous and normal videos is indispensable for a robust 
anomaly detection system. 

Figure 14. ROC comparison of binary classifier (blue), Lu et al. (cyan), Hasan et al.  (black), 
proposed method without constraints (magenta) and with constraints (red). 

Table 8. AUC comparison of various approaches on our dataset. 
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In Figure 15, we present qualitative results of our approach on eight videos. (a)-(d) show 
four videos with anomalous events. Our method provides successful and timely detection of those 
anomalies by generating high anomaly scores for the anomalous frames. (e) and (f) are two normal 
videos. Our method produced low anomaly scores (close to 0) throughout the entire video, yielding 
zero false alarm for the two normal videos. We also illustrate two failure cases in (g) and (h). 
Specifically, (g) is an anomalous video containing a burglary event (person entering an office 
through a window). Our method failed to detect the anomalous part because of the darkness of the 
scene (a night video). Also, it generated false alarms mainly due to occlusions by flying insects in 
front of camera. In (h), our method produced false alarms due to people suddenly gathering to 
watch a street relay race, failing to identify the normal group activity. 

Figure 15. Qualitative results of our method on testing videos. Colored window shows ground 
truth anomalous region. (a), (b), (c) and (d) show videos containing animal abuse (beating a dog), 
explosion, road accident, and shooting, respectively. (e) and (f) show normal videos with no 
anomaly. (g) and (h) present two failure cases of our anomaly detection method. 
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Our dataset can be used as an anomalous activity recognition benchmark since we have 
event labels for the anomalous videos during data collection, but which were not used for our 
anomaly detection method discussed above. For activity recognition, we used 50 videos from each 
event and divided them into 75/25 ratio for training and testing. We provided two baseline results 
for activity recognition on our dataset based on a 4-fold cross validation. For the first baseline, we 
constructed a 4096-D feature vector by averaging C3D [36] features from each 16-frames clip 
followed by an L2-normalization. The feature vector was used as input to a nearest neighbor 
classifier. The second baseline was the Tube Convolutional Neural Network (TCNN) which 
introduced the tube of interest (ToI) pooling layer to replace the 5-th 3d-max-pooling layer in C3D 
pipeline. The ToI pooling layer aggregated features from all clips and output one feature vector 
for a whole video. Therefore, it was an end-to-end deep learning based video recognition approach. 
The quantitative results are given in Table 9. These state-of-the-art action recognition methods 
performed poorly on this dataset. It was because the videos were long untrimmed surveillance 
videos with low resolution. In addition, there were large intra-class variations due to changes in 
camera viewpoint and illumination, and background noise. Therefore, our dataset was a unique 
and challenging dataset for anomalous activity recognition. 

Table 9. Activity recognition results of C3D and TCNN. 

1.4 Query-focused Extractive Video Summarization 

We also developed a user-oriented video summarization approach which incorporated 
high-level supervised information. Rich Web images and videos provided (weak) priors for 
defining user-oriented importance of the visual content in a video. For instance, the car images on 
the Web revealed the canonical views of the cars, which should therefore be given special attention 
in video summarization. The advantages of leveraging high-level supervised information in video 
summarization over merely low-level cues is that the system developers were able to better infer 
the system users’ needs. It was more desirable to design a system based on user’s input such that 
the system’s sensitivities approached the users’. 

In our query-focused video summarization, a query referred to one or more concepts (car, 
weapon) that were both user-nameable and machine-detectable. The decision to add a video shot 
to the output summary final depended on both the relevance between the shot and the query and 
the importance of the shot in the context of the video. To tackle this problem, we developed a 
probabilistic model, Sequential and Hierarchical Determinantal Point Process (SH-DPP), and 
efficient learning and inference supportive algorithms. Our SH-DPP summarizer  conveniently 
handled extremely long videos and online streaming videos. The logic of our approach is illustrated 
in Figure 16. 
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Figure 16. Query-focused video summarization and our approach to this problem. 

We tested our query-focused video summarization approach on the UT Egocentric (UTE) 
dataset [6] and TV episodes [7]. The UTE dataset included four daily life ego centric videos, each 
3–5 hours long, and the TV episodes contained four videos, each roughly 45 minutes long. These 
two datasets were very different in nature. The videos in UTE were long and recorded in an 
uncontrolled environment from the first-person view. As a result, many of the visual scenes were 
repetitive and unnecessary in a user summary. In contrast, the TV videos were episodes of TV 
series and from a third person’s viewpoint.  The scenes were hence controlled and concise. A good 
summarizer should be able to function well in both scenarios. We evaluated our system generated 
video summary by contrasting it against the “ground truth” summary. The video summaries were 
mapped to text paragraphs and then compared by the ROUGE-SU metric. 

Table 10 shows the results of different summarizers for the query focused video 
summarization when the patient and impatient users supply bi-concept queries. An immediate 
observation was that our SH-DPP was able to generate better overall summaries as our average F-
scores were higher than the others’. Furthermore, our method was able to adapt itself to two 
essentially different datasets, the UTE daily life egocentric videos and TV episodes. 
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Table 10. Results of query-focused video summarization with bi-concept queries. 

1.5 Unsupervised Action Discovery and Localization in Videos 

The problem of action recognition is to classify a video by assigning a label from a given 
set of annotated action classes (in comparison, action localization involves the detection of the 
spatio-temporal extent of a recognized action). Existing action recognition and localization 
approaches heavily rely on strong supervision in the form of training videos that have been 
manually collected, labeled and annotated. These approaches learn to detect an action using 
manually annotated bounding boxes and recognize action class labels from training data. Since 
supervised methods have the spatio-temporally annotated ground truth at their disposal, they can 
take advantage of learning detectors and classifiers by fine-tuning over the training data. 

However, due to the difficulty of video annotation supervised algorithms have some 
disadvantages compared to unsupervised approaches. First, a video may consist of several actions 
in a complex cluttered background. Second, video level annotation in a supervised setting involves 
manually labeling the location (bounding box), the class of each action, and the temporal 
boundaries of each action, a time consuming set of tasks. Third, actions vary spatio-temporally 
(i.e. in height, width, spatial location and temporal length) resulting in various tubelet 
deformations. Fourth, different people may have a different understanding of the temporal extent 
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of an action, generating bias errors. Given the abundance of unlabeled videos available on the 
Internet, unsupervised learning approaches provided a promising alternative. 

In this project, we developed an algorithm to automatically discover action classes by 
discriminatively clustering a group of unlabeled training videos. Our approach began by selecting 
a strongly coherent subset called a dominant set within each cluster, and trained a classifier for 
each action cluster to iteratively assign an action class to all videos. Next, using these action 
classes, we used a Knapsack approach to annotate actions in training videos. In this approach, we 
segmented the video into supervoxels and used a combinatorial optimization framework to select 
the supervoxels that belonged to the actor performing the action. Hence, we automatically obtained 
the ground truth, the action class labels and the actor bounding box annotations, for the training 
videos and generated an action classifier to perform Unsupervised Action Localization (see Figure 
17). 

Figure 17. We tackled the problem of Unsupervised Action Localization without any action class 
labels or bounding box annotations, where a given collection of unlabeled videos contain multiple 
action classes. First, the proposed method discovers action classes by discriminative clustering 
using dominant sets (e.g. green and purple contours show clusters for kicking and diving actions, 
respectively) and then applies a variant of knapsack problem to determine spatio-temporal 
annotations of discovered actions (yellow bounding boxes). These annotations and action classes 
are used together to train an action classifier and perform Unsupervised Action Localization. 

In our proposed approach, we first aimed to discover action classes from a set of unlabeled 
videos. We started by computing local feature similarity between videos to apply spectral 
clustering. Then, within each cluster, we constructed an undirected graph to extract a dominant 
set. This subset was used to train a Support Vector Machine (SVM) classifier within each cluster 
and discriminatively select videos from the non-dominant set to assign to one of the clusters in an 
iterative manner. 
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Given discovered action classes from our discriminative clustering approach, our aim was 
to annotate the action within each training video in every cluster. We began by over-segmenting a 
video into supervoxels, where every supervoxel either belonged to the foreground action or the 
background. Our goal was to select a group of supervoxels that collectively represented an action. 
We achieved this goal by solving the 0-1 Knapsack problem: Given a set of items (supervoxels), 
each with a weight (volume of a supervoxel) and a value (score of a supervoxel belonging to an 
action), determine the subset of items to include in a collection, so that the total weight was less 
than a given limit and total value was as high as possible. This combinatorial optimization problem 
would select supervoxels in a video based on their individual scores, resulting in a degenerate 
solution, where selected supervoxels were not spatio-temporally connected throughout the video. 
Therefore, we proposed a variant of the knapsack problem with temporal constraints that enforced 
the annotated action to be well-connected and the weight limit ensured the detected volume was 
the size of an actor in the video. Since, the solution to the knapsack problem resulted in a single 
action annotation, we solved this problem iteratively to generate multiple annotations that satisfied 
the given constraints (see Figure 18). 

Figure 18. This figure shows the proposed knapsack approach: (a) Given an input video we extract 
supervoxel (SV) segmentation. (b) Each supervoxel is assigned a weight (spatio-temporal volume) 
and a value (score of belonging to the foreground action). (c) A graph Gn is constructed using 
supervoxels as nodes. (d) Temporal constraints are defined for the graph to ensure contiguous 
selection of supervoxels from start (σ) to end (τ) of an action. (e) Knapsack optimization is applied 
to select a subset of supervoxels having maximum value, constrained by total weight (volume of 
the action) and temporal connectedness. (f) The knapsack process is repeated for more action 
annotations. (g) Annotations represented by action contours. 

Experiment results. We evaluated our Unsupervised Action Discovery and Localization 
approach on five datasets: 1) UCF Sports 2) JHMDB, 3) Sub-JHMDB 4) THUMOS13, and 5) 
UCF101. The experimental setup, evaluation metrics, and an analysis of quantitative and 
qualitative results are provided.  We report localization results with Area Under Curve (AUC) of 
ROC (Receiver Operator Characteristic) at varying overlap threshold with the ground truth. 
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Unsupervised Action Discovery: The proposed approach discovered the action labels in 
training videos of five datasets. We compared the performance of our approach with: K-Means, 
K-Medoids, Shi and Malik (S&M), Dominant Sets (DS), Spectral Clustering (SC) and the state-
of-the-art DAKM clustering methods. We followed DAKM’s experimental setup and evaluation, 
by setting the number of clusters to be the number of action classes in each dataset. The clustering 
results are reported in Table 11. The numbers in the table indicates the action clustering accuracy 
(%). Clustering on all datasets was performed using C3D features, except for UCF Sports where 
we also report results using iDTF features for comparison. Table 11 shows that our approach 
resulted in superior performance across all five datasets. Overall, the results indicate that 
unsupervised clustering of human actions is a challenging problem and that known techniques 
such as K-Means, K-Medoids and NCuts do not perform well. Significant improvement over 
Dominant Sets and Spectral Clustering reflects the strength of our iterative approach.  We 
attributed this improvement to our use of dominant sets to select a subset of coherent videos to 
train a SVM and to discriminatively learn to cluster actions. We observed the highest performance 
on UCF Sports, which contained distinct scenes and motion in the dataset, as compared to JHMDB 
and UCF101, that had complex human motion, independent of scene, and large intra-class 
variability. 

Table 11. This table shows action discovery results using C3D on training videos of: 1) UCF Sports 
2) Sub-JHMDB, 3) JHMDB, 4) THUMOS13, and 5) UCF101. We also report a comparison of 
C3D and iDTF features on UCF Sports. 

Unsupervised Action Annotation: We independently evaluated the quality of annotations 
to localize actions by assuming perfect action class labels compared to a weakly-supervised 
approach. We show the strength of our Knapsack annotation approach by performing significantly 
better (∼ 7%) than the published state-of-the-art weakly-supervised method of Ma et al. in Table 
12. 
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Table 12. A comparison of localization performance with weakly-supervised approach on UCF 
Sports. 

Unsupervised Action Localization: We show localization performance using AUC 
curves for (a) UCF Sports (b) JHMDB, (c) Sub-JHMDB, and (d) THUMOS13 in Figure 19. The 
difference in performance was attributed to the supervised versus unsupervised nature of the 
methods. The results highlight that the proposed method performed competitively to the state-of-
the-art supervised methods that use video level class labels as well as ground truth bounding box 
annotations. In comparison we did not use such information.  With our action discovery approach 
and knapsack for localization, we were able to perform better than some of the supervised methods 
on UCF Sports. Supervised baseline results have been reported by Wang et al. on Sub-JHMDB 
and Soomro et al. on UCF Sports, JHMDB and THUMOS13. These baselines were computed by 
generating bounding boxes and connecting them spatio-temporally. A classifier trained on ground 
truth annotations and iDTF features was applied for recognition. Our approach outperformed these 
baselines on all datasets in an unsupervised manner and at higher overlap thresholds.  

Figure 19. AUC of the proposed Unsupervised Action Localization approach, along with existing 
supervised methods on (a) UCF Sports, (b) JHMDB, (c) SubJHMDB and (d) THUMOS13. 
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Our qualitative results are shown in Figure 20 with action localization (yellow) and ground 
truth (green bounding box). In the case of low contrast and slow-motion the underlying supervoxel 
approach merged the actor with the background, therefore, when knapsack limited the localization 
to a specific actor volume, our approach failed to localize (Figure 20). 

Figure 20 This figure shows qualitative results for the proposed approach on UCF Sports, Sub-
JHMDB, JHMDB, and THUMOS13 datasets (rows one thru four). The action localization is 
shown by yellow contour and ground truth bounding box in green. Row five shows a failure case 
from the JHMDB dataset. 

1.6 Human Semantic Parsing for Person-related Attribute Prediction 

An important and frequent law enforcement task is the identification of a specific 
individual in a database. Often, an investigator is looking for a person based upon some 
background knowledge of ‘face attributes’ such as “wearing hat”, “goatee”, “mustache”, etc. Upon 
a query submitted by the investigator, such an attribute-based search will significantly reduce the 
number of irrelevant images presented to the investigator, thereby speeding up the investigation. 
These visual attributes human describable and machine detectable. Attributes are semantically 
meaningful tools to describe objects, scenes, actions, and events. We developed an algorithm for 
predicting both face attributes and body attributes from images. 

To perform attribute prediction, we fed an image to a fully convolutional neural network 
which generated feature maps that were ready to be aggregated and passed to a classifier. However, 
global pooling was agnostic to where, in the spatial domain, the attribute-discriminative activations 
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occurred. Hence, instead of propagating the attribute signal to the entire spatial domain, we 
funneled them into the semantic regions. By doing so, our model learned where to attend and how 
to aggregate the feature map activations. We refer to this approach as Semantic Segmentation-
based Pooling (SSP) where activations at the end of the attribute prediction pipeline are pooled 
within different semantic regions. Alternatively, we incorporated the semantic region proposals to 
earlier layers of the attribute prediction network with a gating mechanism. Specifically, we 
augmented max pooling operations such that they did not mix activations that resided in different 
semantic regions. We gated the activation output of the last convolution layer prior to the max 
pooling by element-wise multiplying with the semantic region proposals. This generated multiple 
versions of the activation maps that were masked differently and presumably discriminatively for 
various attributes. We refer to this approach as Semantic Segmentation-based Gating (SSG) (see 
Figure 21). 

Since the semantic region proposals were not available for the attribute benchmarks, we 
estimated them using a deep semantic segmentation network. Once trained, the network was able 
to provide localization cues in the form of semantic region proposals (decoder output) that 
decomposed the spatial domain of an image into mutually exclusive semantic regions. 

Network Architectures. We used Inception-V3 as the convolutional backbone for both 
our semantic segmentation and attribute prediction models. Its architecture was 48 layers deep and 
used global average pooling instead of fully-connected layers which allowed operating on arbitrary 
input image sizes. InceptionV3 had a total output stride of 32. However, to maintain low 
computation cost and memory utilization, the size of activation maps quickly reduced by a factor 
of 8 in the first seven layers. This was done by two convolution and one max pooling layer that 
operate with the stride of 2. The network followed by three blocks of Inception layers separated 
by two grid reduction modules. Spatial resolution of the activations remained intact within the 
Inception blocks, while grid reduction modules halved the activation size and increased the number 
of channels. 

Evaluation. We evaluated our attribute prediction models on multiple benchmarks. 
Specifically, we used CelebA and LFWA for facial attributes while benchmarking on WIDER 
Attribute and Berkeley Attributes of People for person attribute prediction. 

We compared our method with existing state-of-the-art attribute prediction techniques on 
the CelebA data. To prevent confusion and to have a fair comparison, Table 13 reports the 
performances in two separate columns distinguishing the experiments that were conducted on the 
original image set from those where the pre-cropped image set was used. We see that our base 
model with global average pooling and a more modern architecture not only outperformed our 
earlier average pooling model but also the semantic segmentation based ones. 

Experimental results indicated that under different settings and evaluation protocols, our 
semantic segmentation-based pooling and gating mechanisms can be effectively used to boost the 
facial attribute prediction performance. That is particularly important given that our global average 
pooling baselines already beat the existing state-of-the-art methods. To see if SSP and SSG are 
complementary to each other, we also report their combination where the corresponding 
predictions were simply averaged. We observed that combination further boosts performance. 
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To investigate the importance of aggregating features within the semantic regions, we 
replaced the global average pooling in our basic model with the spatial pyramid pooling layer [10]. 
We used a pyramid of two levels and refer to this baseline as SPPNet. While aggregating the output 
activations in different locations, SPPNet did not align its pooling regions according to the 
semantic context that appears in the image. This was in direct contrast with the intuition behind 
our methods. Experimental results shown in Table 13 confirm that simply pooling the output 
activations at multiple locations was not sufficient. In fact, it resulted in a lower performance than 
global average pooling. This verified that the improvement obtained by our proposed models was 
due to their content aware pooling/ gating mechanisms. 

Balanced Classification Accuracy. Given significant imbalance in the attribute classes, 
we used average precision instead of classification accuracy/error to evaluate attribute prediction. 
Instead, Huang et al.  adopted a balanced accuracy measure. To see if our approach was superior 
to Huang and colleagues’ under balanced accuracy measure, we fine-tuned our models with the 
weighted (imbalance level) binary cross entropy loss. From Table 13, we observe from the under 
balanced accuracy measure that all the variations of our model outperformed by large margins 
Huang et al. 

Figure 21. Left: Standard convolution layer followed by max pooling. Middle: Semantic Segmentation-
based Gating architecture. Right: Semantic Segmentation-based Pooling architecture. 
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Table 13. Attribute prediction performance evaluated by the classification error, average precision 
and balanced classification accuracy on the CelebA original and pre-cropped image sets. 
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To better understand the effectiveness of our approach, we report experimental results on 
the LFWA dataset in Table 14. We observed that all the models which exploit localization cues 
improve our basic model. Specifically, SSP + SSG achieves considerably performed better than 
the average pooling basic model with 1.86% in classification error and 2.59% in the average 
precision. Our best model also outperformed all other state of- the-art methods. 

Table 14. Attribute prediction performance evaluated by the classification error and the average 
precision (AP) on LFWA dataset. 

1.7 Semi-supervised Action Recognition/Retrieval by Hashing 

We developed a semi-supervised learning method for action recognition/retrieval using a 
limited number of instances. The method only required a small number of training samples, similar 
to the scenario in which the law enforcement analyst interactively chooses and labels a few videos 
of interest and the system learns a model based on both the few labeled videos as well as the large 
number of unlabeled videos available in a database. This approach effectively reduces the time 
burden on human monitors.  

Our method consisted of training a deep neural network using stochastic gradient descent 
with supervised and unsupervised graph-based losses simultaneously. We defined two 
unsupervised losses based on relational (graph-based) information. We also successfully 
incorporated compact hashing methods to significantly reduce the complexity involved in building 
large graphs that were required in the graph-based semi-supervised learning process. The details 
about our graph-based learning for deep neural networks approach follow. 

The input data was a graph (see Figure 22), the nodes of which were video segments which 
needed to be classified and edges (connecting lines) which represented some level of similarity 
between nodes. Accordingly, the existence of an edge between two nodes reflected that they should 
be similarly classified. Given a query which consisted of semantic labels for a set of nodes, we 
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trained a model which classified the labeled nodes the most accurately while also being smooth 
with respect to the graph. These two constraints transferred to the standard supervised 
classification loss and graph smoothness loss in our model training. 

Figure 22. Semi-supervised Action Recognition/Retrieval by Hashing Example Graph. Each node 
represents a segment of video. The large nodes are labeled and the rest are unlabeled. Different 
colors show different action categories. An example of positive and negative pairs is provided. 

To ensure the smoothness of the model with respect to the graph, we defined two 
unsupervised losses based on relational (graph-based) information given that relational labels 
usually do not require human supervision and can be computed automatically. As illustrated in 
Figure 22, a positive pair were two nodes that should be classified similarly and a negative pair 
were two nodes that should not be paired. The first loss, named “pairwise smoothness loss”, 
encouraged positive pairs of nodes to be relatively close in the feature space, while negative pairs 
were set further apart. In a large graph, the number of possible pairs was impractical for exhaustive 
optimization. Instead, we randomly sampled batches of pairs using random walks [11] and updated 
the parameters based on each batch. The second loss was called the K nearest neighbors (KNN) 
smoothness loss. Specifically, we used locally linear embedding (LLE) [12] to learn an embedding 
where each node can be linearly reconstructed by its K nearest neighbors in the graph. Figure 23 
and Figure 24 show the proposed models with these two smoothness losses, respectively. 
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Figure 23. The Siamese network of the proposed model with pairwise smoothness loss. 

Figure 24. The Siamese network of the proposed model with KNN smoothness loss. 
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The performance of the model relied on the information within the relational data, i.e., the 
graph. To this end, we proposed two new graph construction approaches. We first built a KNN 
graph with edges representing similarities in the feature space (i.e. C3D [5]). However, computing 
a KNN graph was computationally expensive, as it involved computing pairwise distances between 
all edges. To make this problem tractable, we utilized hashing to convert features from the 
continuous space to hamming space. More specifically, we used Iterative Quantization (ITQ [14]) 
to convert 4096-dimensional data points into 1024-bit codes. Then we computed pairwise 
hamming distances using simple XOR operations which significantly sped up the analysis. We 
also developed an object re-identification graph, in which two videos were connected if they shared 
the same object. For example, if a video containing a black van was of interest, it was more likely 
for other videos with a black van to be of interest as well. To make a graph using object re-
identification, we first generated object tube proposals from each video segment and extracted 
CNN features from them. Then we used ITQ to hash the features into 1024-bit codes and connected 
videos containing objects closer than a threshold in the hamming distance. Figure 25 depicts two 
examples of matched objects.  Videos containing those objects were semantically related to each 
other and probably shared the same activity. 

Figure 25. Example pairs of objects that have been matched in the object graph, one pair in the top 
and another in the bottom row. 

For experimental purposes, we also used a hypothetical graph which was made by 
connecting nodes with the same action category. This graph is unrealistic because it required labels 
for all nodes. However, we used this graph to show that our model works best if the graph was 
exactly consistent with the semantics. 

To evaluate the performance of our semi-supervised learning approach for action 
recognition/retrieval, the UCF101 dataset [15] was employed which contained 13320 trimmed 
videos from 101 action categories. We used the first training split of this dataset which contains 
9537 videos to build the graph. Since the input to the C3D model was a 16-frame tube, we 
randomly sampled a 16-frame clip from each video and discarded the rest. The graph therefore 
had 9537 nodes, each of which was a 16-frame clip from one of the UCF101 training videos. For 
the edges we used the KNN graph (K=7) as previously described. We compared three methods. 
The baseline was trained using only the supervised loss using the small labeled set that was 
provided, denoted by Supervised Only. The other two methods were semi-supervised methods 
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which respectively used the pairwise and the KNN smoothness losses in addition to the supervised 
loss, denoted by SemiSup: RandWalk and SemiSup: LLE, respectively. We also constructed the 
ground truth graph for comparison, denoted by SemiSup: RandWalk (GTruth Graph). 

In the experiment, we randomly sampled 𝑚𝑚 nodes from each class, and considered them 
as labeled nodes. The rest were treated as unlabeled in the training phase. For evaluation, we 
performed both transductive and inductive tests. In the transductive test, we reported the prediction 
accuracy over the unlabeled nodes of the graph, which were used in training. In inductive test, we 
applied the learnt model to predict the action classes in test videos that had not been seen in the 
training process, thus making it a more challenging task. We report in Figure 26 and figure 27 the 
classification accuracy for each test, which is the number of correct classifications divided by the 
total. 

In the surveillance application, the detection of the activity of interest both in the historical 
data and in real-time streams was a goal. In the former, the graph could be computed offline for 
all existing video clips. Thus, the task was to classify nodes that were already part of the graph. In 
real-time applications however, there might not be time to add a new video clip to the graph as it 
might involve re-computation of distances. Therefore, the task was to classify video clips that were 
not already part of the graph. In the transductive case, we expected higher performance because 
the model was fitted to data it had already processed during training. 

Figure 26. Transductive test results. 
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Figure 27. Inductive test results. 

Figs. 26 and 27 illustrate the results for transductive and inductive tests, respectively. As 
can be seen, both semi-supervised methods outperformed the supervised baseline in all queries. 
The pairwise smoothness was slightly better than KNN, which could be due to the fact that in the 
pairwise smoothness we performed random walks which could explore the manifold structure of 
the data better. Another fact is that the learned semi-supervised model using the ground truth graph 
significantly outperformed other methods. Confirming the potential of our combined graph-based 
learning and deep neural network method, if the graph conveys more semantically consistent 
information, the model was capable of learning and performing classification tasks better. 

Figure 28. Example results for retrieving action class “walking with dog”. Each row shows top 5 
results, respectively using 1, 3, and 5 labeled instances per class. The green bounding boxes 
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indicate the corrected results and red boxes indicate the incorrect results.  

Figure 29 Example results for retrieving action class “playing violin”. Each row shows top 5 
results, respectively using 1, 3, and 5 labeled instances per class. The green bounding boxes 
indicate the corrected results and red boxes indicate the incorrect results. 

For the semi-supervised method with pairwise loss on KNN graph, we additionally 
illustrate example action retrieving results in Figs. 28 and 29. Consider the three rows of images 
in Figure 28.   In the first row, we trained a model using one labeled sample per class. Then we 
applied the model on the test videos and retrieved the top 5 videos having the highest confidence 
being from the same class of actions, in this example “walking with dog”. From each retrieved 
video, we displayed a key frame in the figure. The next two rows in Figure 20 present the result 
for models trained using respectively 3 and 5 labels per class. Figure 29 illustrates similar results 
for the action class “playing violin”. As the results indicate, the more labeled samples used during 
training, the more accurate the inductive results were. Direct practical law enforcement application 
from our methods will be faster and more accurate identification and location of actions of interest 
in long video streams.   

1.8 Summary 

The developed algorithms for various vision tasks have been extensively evaluated using 
the standard benchmark datasets and their efficacy have been validated. As compared to the 
existing methods, the experimental results show our developed methods achieved superior 
performance. To further test our methods for real-world scenarios, we integrated four computer 
vision modules, namely anomaly detection, face attribute prediction, body attribute prediction, and 
action detection, into our public safety visual analytics workstation. The details are given in the 
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next section. 

2. Public Safety Visual Analytics Workstation 

We developed a computer vision system GUI that incorporates different computer vision 
modules for Public Safety Visual Analytics which has been installed in a dedicated workstation in 
the Orlando Police Department surveillance camera monitoring room. Specifically, four computer 
vision modules were integrated into the system: anomaly detection, face attribute prediction, body 
attribute prediction, and action detection. The main GUI is shown in Figure 30. The GUI is 
implemented using the Python programming language. In the following discussion, we show the 
functionality of each individual module.  

Figure 30. The main interface GUI of the computer vision work system. 

Face attribute prediction module 
The face attribute module predicts attributes of a face image. Currently, we support the 

following face attributes: 
'5 O’Clock Shadow', 'Arched Eyebrows', 'Attractive', 'Bags Under Eyes', 'Bald', 'Bangs', 'Big Lips', 
'Big Nose', 'Black Hair', 'Blond Hair', 'Blurry', 'Brown Hair', 'Bushy Eyebrows', 'Chubby', 'Double 
Chin', 'Eyeglasses', 'Goatee', 'Gray Hair', 'Heavy Makeup', 'High Cheekbones', 'Male', 'Mouth 
Slightly Open', 'Mustache', 'Narrow Eyes', 'No Beard', 'Oval Face', 'Pale Skin',  'Pointy Nose', 
'Receding Hairline', 'Rosy Cheeks', 'Sideburns', 'Smiling', 'Straight Hair', 'Wavy Hair', 'Wearing 
Earrings', 'Wearing Hat', 'Wearing Lipstick', 'Wearing Necklace', 'Wearing Necktie', and 'Young' 
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Below we provide an example of a face attribute prediction result in Figure 31. Given an 
image, the algorithm predicts the probability (between 0 and 1) of each face attribute. As seen in 
this example, the algorithm was able to predict the probabilities of different face attribute 
accurately. For example, the algorithm predicts the man had “no beard” with a probability of 0.99, 
and a 0.99 probability for “mouth slightly open”.  

Figure 31. Face attribute prediction.  

Body attribute prediction module 

Similar to the face attribute prediction, the body attribute module predicts attributes of a 
full body image. Currently, the algorithm predicts the following face attributes: 
'male', 'longhair', 'sunglasses', 'hat', 't-shirt', 'long sleeve', 'formal', 'shorts', 'jeans', 'long pants', 
'skirt', 'facemask', 'logo', and 'stripe'. 

Figure 32 shows an example of the body attribute prediction results based on a surveillance 
image. Although the resolution of the surveillance image was low, our algorithm was able to 
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accurately predict key body attributes such as “male”, “t-shirt”, and “shorts”, demonstrating that 
the algorithm can successfully be deployed for real-world camera surveillance applications.  

Figure 32. Body attribute prediction.  

Anomaly detection module 

The anomaly detection module aims to automatically detect anomalous events such as 
traffic accidents, crimes, or illegal activities in surveillance videos. It addresses the law 
enforcement need to rapidly identify events and correctly respond to them.  In addition it 
significantly reduces the time and effort of human monitors. A practical anomaly detection system 
will signal activity in a timely fashion that deviates from normal patterns and provide the time 
window of the anomaly. Our system processes video continuously, for example in 2 second time 
windows, and predicts an anomaly score for that 2-second video segment between 0 (low 
probability of anomaly) and 1 (high probability of anomaly). A probability threshold can be set for 
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the anomaly score such as 0.5 where only events that score higher than 0.5will generate an alert 
flag indicating an anomaly. 

The developed anomaly detection model was trained using our collected UCF Criminal 
Activities Dataset. The left side of Figure 33 displays the anomaly score of each video frame (on 
the right of the figure), which will be a value between 0 and 1. The higher anomaly score of a 
frame, the higher probability of an anomalous event within that frame. As depicted in Figure 33, 
the anomaly scores were very low (close to 0) when normal activities were present, but approached 
1 when a road accident (an anomalous event) occurred in the video. Our anomaly detection system 
processes video data and generates scores at 35 frames per second, enabling real-time throughput. 
Oor system can also report the temporal localization of anomalous events (e.g. time stamps of the 
beginning and end of an event) in a post-event video analysis stage.. 

Figure 33. Anomaly detection example. 

Action detection module 

The goal of action detection is to detect every occurrence of a given action within a long 
video, and to localize each detection in space and time. The action localization was achieved by 
setting bounding boxes within video frames. To simultaneously analyze the spatio-temporal 
information from video, in our approach we have employed an end-to-end deep network 
architecture for action detection in video called “Tube Convolutional Neural Network” (T-CNN). 
The architecture is a unified network that directly applies to an input video and is able to recognize 
and localize action tubes based on 3D convolution features. The interface of the action detection 
module is presented in Figure 34. 
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Figure 34. The interface of the action detection module. Each thumbnail represents an example of 
action detection (e.g. burglary, fight, etc.) in one video.  

Our action detection algorithm produces action detection results when a video file is 
clicked on. Below, a few outpurs from our action detection system results are exemplified in Figure 
35. As can be seen, our method correctly located the action within the demonstrative frames.  
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Figure 35. Action detection results. 

We demonstrated the four function computer vision workstation (PSVAW) at the Orlando 
Police Department’s IRIS camera monitoring room on June 12, 2018. Feedback following the 
presentation indicated that OPD personnel planned to incorporate the computer vision capability 
into their operations.  Discussion focused on staffing and policies and how to best proceed post 
grant with fully utilizing the workstation in daily police operations. 

3. Equipment Purchased 

We purchased 10 cameras and related items needed to establish a community computer 
vision enhanced camera network in Orlando, Florida (see Table 15).  The cameras are set to be 
installed in the Orlando Rosemont neighborhood.   As of January 1, 2017 the City of Orlando 
Technology Management Division (TM) acquired oversight over all camera and camera network 
technology in the city.  While resulting in needed streamlining and updating of multiple Orlando 
camera networks including the IRIS camera network operated by the Orlando Police Department, 
the centralization of camera technologies resulted in project delays as new policies and camera 
network technologies were implemented. New updated “memo of understanding” (MOU), “non-
disclosure agreement” (NDA), and “scope of project” documents had to be negotiated and 
prepared prior to installation of the OPD computer vision workstation.  Establishment of a new 
community camera network was also delayed due to a move to and re-establishment of the Orlando 
Police Department’s IRIS camera monitoring room in the new department headquarters.  The 
move to the new building in combination with local construction projects resulted in the significant 
disruption and downtime of the existing police IRIS camera network.  The purchase of cameras 
and support technology was additionally delayed by a lag in camera equipment specifications from 
the City of Orlando Technology Management Division.  Orlando TM focused on re-establishing 
and updating the pre-existing camera network links while simultaneously selecting and testing new 
camera models associated with significant equipment order delays and computer vision 
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workstation installation. 

Item Part# Quantity Description 

TCD IRIS Cabinet N/A 10 

Base Weather proof 
Cabinet with filter, 
mounting 
plate/rail, and lock and 
Key 

Surge Protector DT-LAN-CAT6 10 

AXIS - Wall/Pole Mount T91L61 10 

AXIS - PTZ Camera Q6128-E 10 

Cisco IE1000 Switch IE-1000-4P2S-LM 10 

Cisco IE Power Supply PWR-IE170W-PC-AC 10 

Fiber SFP Module (Optics) GLC-LG-SMD 20 
Ocularis Enterprise Camera 

License 
Product Code: OC-ENT-1C 10 

Table 15. A list of camera items purchased. 

Due to the above unanticipated delays, all equipment purchased for this project was 
transferred to the Orlando Police Department prior to June 26, 2018. The equipment include: 1. 
10 Axis cameras and 10 camera cabinets; 2) Dell PowerVault MD3060e storage; 3. Digital Storm 
customized workstation; 4. Dell PowerEdge R730 Server. 

The 10 Axis cameras have been installed in the following locations in Orlando area: 

• Kirkman/Vineland (Northeast corner) 
• Vineland/Turkey Lake (Northwest corner) 

• Turkey Lake/Hollywood (Southwest corner) 

• Hollywood/Universal (Northwest corner) 

• Universal/Major (Southwest corner) 

• Major/Kirkman (Northwest corner) 

• Universal/Turkey Lake (Southeast corner) 

• Vineland/Conroy (Southeast corner) 

• Vineland/LB McLeod (Southwest corner) 

The Digital Storm customized workstation was delivered to the OPD IRIS monitoring 
room on June 26, 2018 and on-site testing commenced. The server and storage equipment 
associated with the workstation were installed in the OPD server room. Figure 36 shows the 
software interface to display the real-time video streams from 9 IRIS cameras. The video streams 
are constantly recorded to dedicated local hard drivers and available for computer vision analysis. 
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Figure 36. Software interface to display the real-time video streams of 9 OPD surveillance 
cameras. 
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4. Field Study 

Parallel to the development of computer vision algorithms appropriate for law enforcement 
needs, the foundation for the field test and evaluation has been set. Three elements of the field 
evaluation were established. First, a pre-computer vision survey of Orlando Police Department 
personnel has been conducted. Second, a set of interviews with OPD IRIS camera monitors and 
other agency stakeholders involved in the operation of the existing departmental camera network 
have been administered. Third, a computerized data set composed of information derived from 
the “video work requests” forms maintained by the Orlando Police Department has been prepared 
and a strategy to follow investigations into the local criminal justice system to examine for 
potential impacts from the addition of computer vision capabilities to the agency’s camera network 
explored. Brief descriptions of the pre-computer vision personnel surveys and interviews and 
video work requests are provided. 

OPD Personnel Survey and Interviews. The pre-computer vision cameras personnel 
survey and interviews measured attitudes and expectations regarding computer vision enabled 
cameras and their implementation. A ten minute online survey was conducted through an OPD 
dedicated email system and sent to all sworn members of the department. It was available for six 
weeks during September and October, 2016. In addition to officer demographics, respondents 
were asked about the usefulness of computer vision for policing, the impact they expected 
computer vision to have on their own, suspect, and citizen behaviors, and their expected impact on 
investigations, deterrence, and case adjudications. 

Respondents. At survey administration, the Orlando Police Department had 744 sworn 
personnel with 409 officers responding. Regarding gender, the entire department was 83% male 
and was 64% white, 16% African American, and 17% Hispanic. Although not a rigorous scientific 
sample, the sample’s respondent characteristics closely matched the department’s distributions 
with the sample comprised of 83.9% males, 60.0% white, 15.8% Hispanic, and 13.9% African 
American providing an acceptable level of agency representativeness. The sample ranged in age 
from 23 to 66 years old with a medium age of 41. The sample further reflected a well-educated 
department with just over half of the sample (52%) holding a bachelor’s degree and 16% having 
graduate degrees. The average number of years of service in the Orlando Police Department for 
respondents was 13.5 years. Across the agency a majority (64%) of the sample respondents were 
assigned to patrol and an additional 33% assigned to specialized units totally 97% of sworn 
personnel. Three percent (3%) held administrative positions. These distributions followed 
comparable departmental figures of 6% administration and 94% sworn officers. 

Overall, respondents reported that their behavior would not change when they were in front 
of a computer vision enabled camera. As shown in Table 16, a large majority of the respondents 
(84.8%) reported that they would not be more likely to ignore minor offenses when in the presence 
of a computer vision enabled camera. Almost three quarters (74.6%) of the officers believed that 
computer vision enabled cameras would not alter their use of force against subjects compared with 
just 5.1% who stated they would reduce their level of force. Asking subjects to move into the view 
of a camera was the only officer behavior that the officers implied may change. Forty three percent 
of officers reported they would ask someone to move into the camera’s field of view; 42.5% were 
unsure if they would ask a subject to move into the camera’s view. Regarding the respondent’s 
beliefs about citizens’ behavior and computer vision, the large majority similarly saw behavior 
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changes as unlikely. Only a quarter (25.7%) of officers believed that the computer vision enhanced 
cameras would improve the behavior of citizens they encountered. 

Table 16. Selected OPD Personnel Expectations regarding Computer Vision Capable Cameras on Officer Behaviors. 

More Less Unchanged 

Likelihood of making an arrest 4.6% 4.2% 91.2% 
Likelihood to be by the book 16.9% .5% 82.5% 
Likelihood to ignore minor offense 5.1% 10.1% 84.8% 
Move someone to camera’s view 42.5% 24.7% 32.8% 

Officers’ responses were mixed when examining questions regarding the impact of 
computer vision on police officer discretion (see Table 17).  A little less than a third believed that 
computer vision cameras would result in less officer discretion with another third believing that 
the cameras would not result in reduced officer discretion. However, OPD personnel were more 
in agreement with the expectation that computer vision enabled cameras would result in higher 
levels of administrative supervision of patrol officers. About 1 in 5 disagreed that computer vision 
would result in higher levels of supervision while about twice that amount agreed that it would 
increase supervision. Along similar lines, about one/fifth reported that computer vision would be 
more useful for supervisors and administration than for line officers. 

Table 17. Selected OPD Personnel Expectations regarding Computer Vision Capable Cameras on Officer 
Discretion. 

Agree Disagree 

More useful for administrators 
Greater supervision of patrol 
Less officer discretion 

23.7% 
36.9% 
28.1% 

22/0% 
19.4% 
27.3% 

To a large degree as shown in Table 18, OPD officers hold positive expectations about 
computer vision’s impact on handling patrol decisions and situations.  Respondents indicated that 
they expected computer vision enabled cameras to be effective for identifying suspects and solving 
crimes. Officers were more mixed in their belief that computer vision enabled cameras would be 
effective in detecting sick or injured people; a bit under one-sixth reported it would not be effective 
while 4 of 10 indicated it would be effective. Lastly, one of five respondents believed that 
computer vision cameras would scare off potential offenders. Regarding officer safety, computer 
vision cameras were perceived as likely to have little impact on police officer safety with 4 of 10 
respondents disagreeing that the cameras would make them feel safer. 

Table 18. Selected OPD Personnel Expectations regarding the Effectiveness of Computer Vision Capable Cameras. 
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Not at all A little/somewhat Very 

For identifying suspects 3.3% 45.1% 23.1% 
For detecting injured people 16.0% 37.6% 6.2% 
For solving crimes 3.4% 52.8% 16.6% 
For reducing citizen complaints 8.8% 49.0% 23.7% 

Respondents were unsure about how the computer vision enabled cameras would impact 
case processing (see Table 19). Officers were equally divided regarding whether computer vision 
would reduce the number of court appearances for officers and only about a third believed that 
computer vision cameras would result in more guilty pleas. However, respondents strongly felt 
that computer vision enabled cameras would be a valuable source of case evidence. However, the 
majority disagreed or were unsure about whether computer vision would speed the processing of 
criminal cases. 

Table 19.  Selected OPD Personnel Expectations regarding the Impact of Computer Vision Capable Cameras on Case 
Processing. 

Agree Disagree 

Speeding criminal cases 29.1% 17.8% 
Valuable source of evidence 71.8%  4.3% 
Fewer court appearances 27.2% 27.2% 
More guilty pleas 34.6% 18.5% 

Overall, OPD personnel were welcoming and comfortable with the idea of computer vision 
enhanced cameras. Six of 10 respondents welcomed computer vision cameras to the Orlando 
Police Department while only 1 0f 10 did not. Similarly, more officers (4 of 10) were comfortable 
working with computer vision cameras compared with a minority (1 of 10) who were not. This 
initial personnel survey reflects a general ‘wait-and-see’ attitude toward computer vision’s utility 
among respondents.  

Supplementing the department wide survey, a number of stake-holder interviews were 
conducted which explored in depth pre-existing attitudes and perceptions regarding computer 
vision and its utility for law enforcement. The interview protocol for each interview covered eight 
substantive areas: the interviewee’s prior knowledge of computer vision, their perceived utility of 
computer vision, their expectations regarding computer vision impact on officer safety and on 
officer field behaviors, computer vision impact on police use of force, computer vision impact on 
case processing and investigations, and lastly concerns with computer vision use and the level of 
support for adoption of computer vision personally, among OPD sworn officers, and across the 
OPD Department. 

In general, the interviewees mirrored the larger OPD personnel survey results. For both 
interviewees and surveyed OPD personnel there existed limited prior knowledge of computer 
vision with meeting with UCF Computer Vision Center persons cited as the main and sole source 
of knowledge. There was however a strong belief that computer vision had tremendous potential 
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as a technical enhancement for law enforcement, particularly for security and investigations. There 
existed substantive support for the addition of a computer vision capability to the department’s 
existing camera network. There was little expectation that computer vision would impact officer 
field behaviors or use of force beyond any effects already generated by the pre-existing OPD 
surveillance camera network. This perception existed despite the fact that interviewees generally 
acknowledged that the OPD IRIS camera system was under-monitored and not well maintained. 
Concerning the resolution of use-of-force complaints there was an expectation that computer 
vision would help more than hinder officers by recording incidents more completely and reducing 
false reports of inappropriate use of force against officers. There were no explicitly stated concerns 
regarding computer vision. The expected benefits concentrated in improved monitoring and 
capturing of useful video and an increase in speed and accuracy in processing video. In general, 
the dominate view was that computer vision would be a positive upgrade to the department’s 
existing ‘dumb’ camera system. It was not expected to have significant across the board impacts 
on behaviors but was expected to have substantial administrative and investigative benefits. 

Figure 37. OPD Video Work Requests. 

Video Work Requests. The second baseline data set collected for a field evaluation was 
the OPD “video work requests” (see Figure 37). A separate video work request was generated and 
filed each time video was requested by OPD personnel, the State Attorney’s or Public Defender’s 
office, or private attorneys or citizens. Information from the paper records of all video work 
requests since 2012 through October 2017 were entered into a computerized data file to be updated 
following substantial field operation. A total of 1,863 video work requests that pre-date the 
installation of computer vision at OPD were compiled and provided the empirical history of the 
utilization of the IRIS camera system before computer vision. The data provided a trend line for 
the number of requests over time and a measure of time in minutes spent on each individual 
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request. Pre-computer vision time spent on video work requests averaged a bit more than half an 
hour with the medium amount of time being 20 minutes. The most common amount of time spend 
on a request was 15 minutes, but the time spent processing video work requests ranged from a low 
of 1 minute to a high of 11 hours. Following a sufficient operational time period, the assessment 
of whether CV substantially improved processing time will be addressed. 

As seen in Figure 37, requests per month show a long-term decline linked back to the 
under-utilization of the OPD IRIS system due to chronic monitor shortages and camera 
maintenance issues.  Requests per month averaged 22 with a significant downward slope (B = -
.223, p = .046) over the course of the data. Since late 2016, monthly video work requests averaged 
less than 20 per month. The downward trend reflects camera downtimes as the system aged and 
uneven staffing of the IRIS monitoring room, but also to some extent the actual use and perceived 
usefulness of the IRIS camera system by local criminal justice professionals.  The video work 
request temporal flow clearly reflected the IRIS camera network suffered a decline in use over 
time due to issues that were felt to have prompted the department’s interest in acquiring a computer 
vision capability.  

In sum, the general takeaway from the pre-computer vision camera assessment was that 
there existed little organizational resistence to the adoption and trial of computer vision software 
that co-existed with a long term decling use of the police department’s public space camera 
network.  Department personnel were largely supportive and anticipated more benefits than 
concerns regarding this technology and there existed an expectation that computer vision enhnced 
cameras would reverse the declining utilization of the IRIS camera network.   

5. Workshop Presentations 

5.1 Academy of Criminal Justice Sciences convention, Kansas City, Mo., March 22 to 
March 25, 2017.  

Two contributions at the Academy of Criminal Justice Sciences (ACJS) convention were 
presented.  March 24, Professor Surette presented a paper at a panel on Crime Prevention 
Approaches: Security and Technology titled “Computer Vision Enhanced Surveillance Cameras: 
A Field Test and Demonstration.” In addition, University of Central Florida Criminal Justice 
Ph.D. student, Matthew Stephenson, contributed to the conference poster session a poster 
presentation (see below) titled “Man Versus Machine” which provided an overview of the project. 
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5.2 International Association of Chiefs of Police (IACP) Technology Convention, St 
Louis, MO., May 22-24, workshop “Adding Computer Vision to Pre-Existing Police 
Surveillance Camera Networks. 

The workshop addressed the growth of camera surveillance of public spaces having out-
paced the ability of human monitors to effectively monitor the camera networks.  Three issues 
were addressed.  First, computer vision algorithms for real-world law enforcement were 
demonstrated.  Second, the Orlando Police Department’s expectations for implementing a 
computer vision capability into a pre-existing camera network were presented.  Third, plans for a 
field evaluation of the computer vision enhanced camera network were outlined.         

5.3 National Institute of Justice/RAND Workshop on Video Analytics and Sensor 
Fusion, Washington, D.C., July 12-13, 2017. 

Principle Investigator, Professor Shah, and OPD grant liaison, Sgt. Paul Sanderlin, attended 
the NIJ workshop on “video analytics and sensor fusion” on July 12-13 in Washington, DC as part 
of an expert panel assembled to develop a roadmap for innovation in video analytics and sensor 
fusion technologies aimed at public safety needs. The roadmap will help guide research and 
development on these technologies over the next 5 years for NIJ and other organizations. This 
panel was sponsored by the US Department of Justice (DOJ) National Institute of Justice. 

Products 

We listed all the published papers that are supported by this grant. 
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A. Sharghi, B. Gong, and M. Shah, Query-Focused Extractive Video 
Summarization, Proceedings of the European Conference on Computer Vision (ECCV), 
Amsterdam, Netherlands, Oct. 2016. 

Hou, Rui, Chen Chen, and Mubarak Shah. "Tube convolutional neural network (T-CNN) 
for action detection in videos." IEEE international conference on computer vision. 2017. 

Khurram Soomro, Mubarak Shah, Unsupervised Action Discovery and Localization in 
Videos, Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, 
Italy, October 2017. 

Shou, Z., Chan, J., Zareian, A., Miyazawa, K., & Chang, S. F. (2017, July). Cdc: 
Convolutional-de-convolutional networks for precise temporal action localization in untrimmed 
videos. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on (pp. 
1417-1426). IEEE. 

Mahdi M.Kalayeh, Boqing Gong and Mubarak Shah, Improving Facial Attribute 
Prediction using Semantic Segmentation, in Proceedings of IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR 2017), Honolulu, HI, July 22-25, 2017. 

Haroon Idrees, Raymond Surette, Mubarak Shah, Enhancing Camera Surveillance using 
Computer Vision: A Research Note, Policing: an International Journal of Police Strategies & 
Management, (Policing), Vol. 41 No. 2, 2018. 

Khurram Soomro, Haroon Idrees, Mubarak Shah, Online Localization and Prediction of 
Actions and Interactions, IEEE Transactions on Pattern Analysis and Machine 
Intelligence,(TPAMI), 2018. 

R. Hou, C. Chen, and M. Shah, An End-to-end 3D Convolutional Neural Network for 
Action Detection and Segmentation in Videos, Cornell University Library, arXiv:1712.01111 
[cs.CV], 2018. 

We also have a manuscript under review entitled "A Developing Point of View: 
Computer Vision Applications for Police" to The Police Journal: Theory, Practice and 
Principles. 
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Conclusion 
In summary, this report discusses the multiple tasks that have been performed across the 

entire project period from January 2016 to June 2018. This includes the development of computer 
vision algorithms for different tasks of interest; integration of computer vision analytics into a 
Public Safety Visual Analytics Workstation (PSVAW); purchase and transfer of equipment 
consisting of 10 cameras, one computer server, and one computer workstation; and multiple 
professional presentations of our research. The project cumulated with a well-received 
demonstration of the developed computer vision capabilities and workstation to the Orlando Police 
Department staff at project’s conclusion. Currently, OPD is considering means to continue to staff 
the workstation in partnership with UCF and negotiations with OPD regarding on-going utilization 
of the PSVAW and the department’s computer vision capability are in progress.  
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