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Accomplishments 

Major Goals of the Project 

This project was planned to conduct research on the population genetic issues a ecting the interpre-
tation of forensic DNA profles. The particular topics identifed were: (1) Characterizing population 
structure; (2) Interpreting lineage marker evidence; Extending a continuous approach. To date, we 
have published 27 papers addressing these three topics, and they are now summarized. 

Population Structure 

The interpretation of matching between DNA profles of a person of interest and an item of evidence 
can be undertaken with population genetic models to predict the probability of matching by chance. 
Calculation of matching probabilities is straightforward if allelic probabilities are known, or can 
be estimated, in the relevant population. It is more often the case, however, that the relevant 
population has not been sampled and allele frequencies are available only from a broader collection 
of populations as might be represented in a national or regional database. Variation of allele 
probabilities among the relevant populations is quantifed by the population structure quantity � 
and this quantity a ects matching proportions. 

Worldwide Survey The widely-adopted match probability equations of Balding and Nichols 
(1994) refer to �, the probability two alleles in a population are identical by descent. In Buckleton et 
al. (2016) we clarifed that this probability can be estimated only as a comparison to the probability 
for alleles taken from di erent populations. If the within-population identity probability is written 
as �W and the between-population-pair probability as �B, then we estimate = (�W − �B)/(1− �B). 
We showed that it is , rather than �, needed for match probabilities for a subpopulation when allele 
frequencies are available only from a database representing the whole population. In Wasser et al. 
(2015) we implemented this new estimation procedure to characterize the population structure for 
elephants in Africa, as part of work to identify the sources of seized ivory and combat transnational 
crime. 

In Buckleton et al. (2016) we presented results based on our survey of 250 publications that 
reported allele frequencies at 24 STR loci from 446 populations around the world, representing 
information from nearly a half-million people. The immediate forensic motivation was to present 
values of the population structure parameter � for use in match probability calculations. An estimate 
that used all the data we examined was 0.02, a little higher than is generally used by US forensic 
agencies. The single value of 0.02, however, ignores the concept of reference population we laid 
out in our paper. We found it useful to phrase our work in terms of allelic matching proportions: 
the proportion of alleles taken randomly from a population that have the same type, compared to 
the proportion of allele pairs, one allele from each of two populations, that match. The pairs of 
populations are from a set of populations that include the target population. They may represent 
the ethnicity of the target population, in the way that the FBI Caucasian database represents US 
populations of European ancestry, or they may represent a broad array of populations as would 
be appropriate when the target ethnicity was unknown. The contrast between the former regional 
reference set of populations and the latter global set, was shown in Buckleton et al. (2016). 
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SNPs and SNVs The amount of genetic data collected by forensic scientists worldwide is now 
substantial, with short tandem repeat (STR) frequencies having been reported in this and other 
journals from close to one million people. National o ender databases now have a total of about 
50 million profles, although the possibility of conducting numerical experiments on those data in 
order to address issues such as the dependencies of matching probabilities among loci is presently 
limited to very few countries. Forensic science is turning attention to large-scale genetic data, such 
as those provided for single nucleotide polymorphisms (SNPs) from chip-array technology or single 
nucleotide variants (SNVs) from next-generation sequencing (NGS). The 1000 Genomes project, 
www.1000genomes.org, has already published whole-genome sequence data that includes over 78 
million SNPs. The data will accumulate rapidly from several projects: in the US the National 
Human Genome Research Institute plans to sequence 200,000 people and the National Heart Lung 
and Blood Institute anticipates sequencing another 100,000 people. Similar projects are underway 
in other countries. The implications for forensic science are likely to be substantial, and will include 
the characterization of biogeographical ancestry (BGA) and externally visible characters (EVC) as 
well as enhanced deconvolution of mixtures. Weir and Zheng(2015) explored the use of SNPs or 
SNVs to characterize relatedness on the evolutionary time scale and the immediate family time 
scale: this theme was expanded upon by Weir and Goudet (2017). 

Relatedness and Population Structure Many population genetic activities, including forensic 
identifcation, rely on appropriate estimates of population structure or relatedness. Weir and Goudet 
(2017) re-cast existing treatments of population structure, relatedness and inbreeding to make 
explicit that the parameters of interest involve di erences of probabilities of identity by descent in 
the target and the reference sets of alleles and so can be negative. They provided simple moment 
estimates of these parameters, phrased in terms of allele matching within and between individuals 
for relatedness and inbreeding, or within and between populations for population structure. A 
multi-level hierarchy of alleles within individuals, alleles between individuals within populations, 
and alleles between populations allows a unifed treatment of relatedness and population structure. 
This particular paper was not supported by NIJ but it is informing our current NIJ work on the 
forensic uses of genetic SNP data being generated by next generation sequencing. 

Lineage Markers 

Y-STR profling makes up a small but important proportion of forensic DNA casework. Often 
Y-STR profles are used when autosomal profling has failed to yield an informative result. Conse-
quently Y-STR profles are often from the most challenging samples. In addition to these points, 
Y-STR loci are linked, meaning that evaluation of haplotype probabilities are either based on overly 
simplifed counting methods or computationally costly genetic models, neither of which extend well 
to the evaluation of mixed Y-STR data. For all of these reasons Y-STR data analysis has not seen 
the same advances as autosomal STR data. In Hall (2016) we examined three datasets of Y-STR 
profles from a population-genetic standpoint, and in Taylor et al. (2016) we provided the basis for 
a continuous analysis. 

Y-STR Database Analyses Hall (2016) analyzed three publicly-available datasets of Y-STR 
profles: the Y-Chromosome Haplotype Reference Database, YHRD, (Willuweit and Roewer, 2013), 
the Human Genome Diversity Project HGDP (Cann et al., 2002), and the data published by Xu 
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et al. (2015). These three databases of Y-STR profles were used to provide estimates of a profle 
probability: the probability an unknown person has that profle. The problem is that, with 10 or 
more alleles at a locus, the number of possible profles quickly exceeds the database size as the 
number of loci increases. It is not uncommon for a profle of interest not to appear in a database, 
and eventually the number of loci makes it likely that a profle occurs once or not all in a database 
unless profles from close relatives such as father-son or brothers are present. Binomial-theory 
confdence limits can provide some guidance to population probabilities from database proportions: 
the upper 95% confdence limit for a profle not seen in a database of size n, for example, is close 
to 3/n, but the same result holds if the profle is based on 7 or 17 or 27 loci. 

The solution to the problem of unobserved autosomal profles has been to assume the constituent 
loci are independent and multiply their probabilities together. The lack or recombination on the 
Y chromosome as been regarded as a reason not to assume independence among loci. However, 
mutation may be assumed to act independently at each locus, so that the dependence among loci 
is not absolute. The usual check on locus independence has been to test for linkage disequilibrium 
for pairs of loci, but Hall (2016) found that an appreciable number of pairs of loci have haplotype 
frequencies not signifcantly di erent from the product of the two single-locus frequencies. 

The two-locus approach does not address the issue of multi-locus profle probabilities and we 
noted the recent introduction of entropy theory into Y-STR calculations (Caliebe et al., 2015; Siegert 
et al., 2015). The entropy of an L-locus profle, where p̃u is the sample frequency of haplotype u, 

P
is HL = − u p̃u ln(p̃u). The extent of inter-locus dependencies can be addressed by frst choosing 
the locus with the largest single-locus entropy. Subsequent loci are added, the (L + 1)th one chosen 
to have the largest conditional entropy HL+1|L = HL+1 − HL. This ensures that loci are added 
according to their information content, and the orders in which they are added for the YHRD 
database are shown in Table 3. If locus L + 1 is independent of loci 1, 2, . . . L, then HL+1|L = HL. 
We found that none of the Y-STR loci are truly independent but that the dependencies have little 
e ect on entropy once the number of loci reaches about 10. There is little additional discriminating 
power beyond 10 loci, suggesting that 10-locus matches indicate membership in a common male 
lineage and, absent mutation, all further loci will match. 

Y-STR profle interpretation Taylor, Bright and Buckleton (2016) introduced a discussion of 
probabilistic genotyping methods for Y-STR profles. They used models developed for autosomal 
STR loci to determine the probability of an observed Y-STR profle given potential contributing 
haplotypes. In doing this, the models allow a “weight” to be given to each potential contributor 
haplotype set that acts as an indication of how well the proposed haplotypes describe the observed 
data. This then lends itself to development of interpretational guidelines. As for autosomal work 
(e.g. Taylor et al., 2013), the Y-STR model employs these mass parameters: 

• Template amount for each of the contributors. 

• Degradation, which models the decay with respect to molecular weight in template for each 
of the contributors. 

• Amplifcation eÿciency, to allow for the observed amplifcation levels of each locus. 

• A replicate amplifcation multiplier. This e ectively scales all peaks up or down between 
replicates. 
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The total allelic product from an allele is split between back stutter, forward stutter and allelic 
peak. Given the mass parameters the height of allelic peaks are expected to be independent within 
and between loci. Stutter peaks are dependent on their parent peak heights, but given this they are 
also expected to be independent within and between loci. This allows the deconvolution to occur 
in a locus by locus manner as described by Taylor et al. (2013), rather than having to consider the 
entire haplotype or haplotypic mixture as a whole entity. In this way the deconvolution of Y-STR 
data becomes very similar to that of autosomal STR data. 

Continuous Approach 

We have made several advances to the interpretation of STR profles when they are regarded as 
being continuous indicators of DNA abundance as opposed to a binary present/absent call for spe-
cifc alleles. A probabilistic approach enhances the interpretation of multiple-contributor profles, 
and our methodological research has informed the commercial STRmixTM software package that is 
being implemented by several US forensic agencies. Probabilistic genotyping refers to the use of 
software and computer algorithms to apply biological modeling, statistical theory, and probability 
distributions to infer the probability of the profle from single source and mixed DNA typing results 
given di erent contributor genotypes. The software weighs potential genotypic solutions for a mix-
ture by utilizing more DNA typing information and accounting for uncertainty in random variables 
within the model, such as peak heights, rather than a stochastic or dropout threshold. 

Low-template DNA The sensitivity and resolution of modern DNA profling hardware is such 
that forensic laboratories generate more data than they have resources to analyze. One coping 
mechanism is to set a threshold, above the minimum required by instrument noise, so that weak 
peaks are screened out. In binary interpretations of forensic profles, the impact of this threshold 
(sometimes called an analytical threshold - AT) was minimal as interpretations were often limited 
to a clear major component. With the introduction of continuous typing systems, the interpretation 
of weak minor components of mixed DNA profles is possible and consequently the consideration 
of peaks just above or just below the analytical threshold becomes relevant. Taylor, Buckleton et 
al. (2017) investigated the occurrence of low-level DNA profle information, specifcally that which 
falls below the analytical threshold. We investigated how it can be dealt with and the consequences 
of each choice in the framework of continuous DNA profle interpretation systems. Where appro-
priate we illustrated how these can be implemented using the probabilistic interpretation software 
STRmixTM . We demonstrated a feature of STRmixTM that allows the analyst to guide the software, 
using human observation that there is a low-level contributor present, through user-designated prior 
distributions for contributor mixture proportions. 

A set of low template mixed DNA profles with known ground truths was examined by Taylor 
and Buckleton (2015) using software that utilized peak heights (STRmixTM V2.3) and an adapted 
version that did not use peak heights and mimicked models based on a drop-out probability (known 
as semi-continuous or ’drop’ models) (STRmixTM lite). The use of peak heights increased the LR 
when Hp was true in the vast majority of cases. The e ect was most notable at moderate template 
levels but was also present at quite low template levels. There is no level at which we can say that 
height information is totally uninformative. Even at the lowest levels the bulk of the data show 
some improvement from the inclusion of peak height information. 
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Peak Height Variability In forensic DNA analysis a DNA extract is amplifed using polymerase 
chain reaction (PCR), separated using capillary electrophoresis and the resulting DNA products 
are detected using fuorescence. Sampling variation occurs when the DNA molecules are aliquotted 
during the PCR setup stage and this translates to variability in peak heights in the resultant elec-
tropherogram or between electropherograms generated from a DNA extract. Beyond the variability 
caused by sampling variation it has been observed that there are factors in generating the DNA 
profle that can contribute to the magnitude of variability observed, most notably the number of 
PCR cycles. Taylor, Buckleton and Bright (2016) investigated a number of factors in the generation 
of a DNA profle to determine which contribute to levels of peak height variability. 

Robustness of Results Cooper et al. (2015) examined the concordance in profle interpretation 
of three crime samples by twenty di erent analysts across twelve di erent international labora-
tories using STRmixTM . The three profles selected for this study exhibited a range of template 
and complexity. Although the use of probabilistic software has compelled a level of concordance 
between di erent analysts, there remain di erences within profle interpretation, particularly with 
the objective assignment of the number of contributors to profles. 

Software Validation Bright, Evett at al. (2015) described a set of experiments which may be 
used to internally validate in part probabilistic interpretation software. These experiments included 
both single source and mixed profles calculated with and without dropout and drop-in and studies 
to determine the reproducibility of the software with replicate analyses. The experiments used three 
software packages: STRmixTM , LRmix, and Lab Retriever. to demonstrate profle examples where 
the expected answer may be calculated and we provided all calculations. 

In 2015 the Scientifc Working Group on DNA Analysis Methods published the SWGDAM 
Guidelines for the Validation of Probabilistic Genotyping Systems. STRmixTM is probabilistic geno-
typing software that employs a continuous model of DNA profle interpretation. Bright et al. (2016) 
described the developmental validation activities of STRmixTM following the SWGDAM guidelines. 
They addressed the underlying scientifc principles, and the performance of the models with respect 
to sensitivity, specifcity and precision and results of interpretation of casework type samples. This 
work demonstrated that STRmixTM is suitable for its intended use for the interpretation of single 
source and mixed DNA profles. 

STRmixTM is one of several software packages to employ continuous analyses, and we note the 
comments by the President’s Council of Advisors on Science and Technology (PCAST) in 2016: 
“These probabilistic genotyping software programs clearly represent a major improvement over 
purely subjective interpretation.” The PCAST report went on to say “However, they still require 
careful scrutiny to determine (1) whether the methods are scientifcally valid, including defning the 
limitations on their reliability (that is, the circumstances in which they may yield unreliable results) 
and (2) whether the software correctly implements the methods. This is particularly important 
because the programs employ di erent mathematical algorithms and can yield di erent results 
for the same mixture profle.” Accordingly, we coordinated a large multi-laboratory validation 
study, and published results (Moretti et al., 2017) that should allay the reservations in the PCAST 
report. Dr Moretti presented some of these results at the 2017 International Symposium on Human 
Identifcation (ISHI). 

The Moretti et al. (2017) study used lab-specifc parameters and more than 300 single-source 
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and mixed contributor profles. Simulated forensic specimens, including constructed mixtures that 
included DNA from two to fve donors across a broad range of template amounts and contributor 
proportions, were used to examine the sensitivity and specifcity of the system via more than 60,000 
tests comparing hundreds of known contributors and non-contributors to the specimens. Condi-
tioned analyses, concurrent interpretation of amplifcation replicates, and application of an incorrect 
contributor number were also performed to further investigate software performance and probe the 
limitations of the system. In addition, the results from manual and probabilistic interpretation of 
both prepared and evidentiary mixtures were compared. 

Using weights assigned to the various genotypes or genotype sets, STRmixTMcalculates LRs, 
which are the probability of the DNA evidence under two opposing hypotheses referred to as H1 

and H2. An LR greater than 1 provides support for a specifed person of interest as a contributor to 
the DNA evidence (H1), whereas an LR less than 1 provides support that the person of interest is 
not a contributor (H2). An LR of 1 provides no greater support for either proposition. To indicate 
the e ects of variation in the various processed leading to electropherogram, STRmixTMproduces a 
distribution of values and the (say) 5th percentile of this distribution can be reported (analogous 
to a lower confdence limit). 

The fndings in this study show that STRmixTMis suÿciently robust for implementation in 
forensic laboratories, o ering numerous advantages over historical methods of DNA profle analysis 
and greater statistical power for the estimation of evidentiary weight, and can be used reliably 
in human identifcation testing. With few exceptions, likelihood ratio results refected intuitively 
correct estimates of the weight of the genotype possibilities and known contributor genotypes. This 
comprehensive evaluation provides a model in accordance with SWGDAM recommendations for 
internal validation of a probabilistic genotyping system for DNA evidence interpretation. 

Variability of Software Results Some of probabilistic genotyping software solutions utilize 
Markov chain Monte Carlo techniques (MCMC). They will not produce an identical answer after 
repeat interpretations of the same evidence profle because of the Monte Carlo aspect. This is a new 
source of variability within the forensic DNA analysis process. In Bright, Stevenson et al. (2015) we 
explored the size of the MCMC variability within the interpretation software STRmixTMcompared 
to other sources of variability in forensic DNA profling including PCR, capillary electrophoresis 
load and injection, and the makeup of allele frequency databases. The MCMC variability within 
STRmixTMwas shown to be the smallest source of variability in this process. 

Other Topics 

Database Matches Matching DNA profles of an accused person and a crime scene trace are 
one of the most common forms of forensic evidence. A number of years ago the so-called DNA 
controversy was concerned with how to quantify the value of such evidence. Given its importance, 
the lack of understanding of such a basic issue was quite surprising and concerning. Deriving the 
equation for the likelihood ratio of a DNA database match in a much more direct and simple way 
is the topic covered in Berger et al. (2015). As it is much easier to follow it is hoped that this 
derivation will contribute to the understanding. 
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DNA Interpretation Methods Curran and Weir (2016) provided a review of recent work in 
forensic DNA interpretation for the statistics community, ending with a description of modeling work 

Rthat informs commercial software products such as STRmixTMand TrueAllele . Such continuous 
interpretation software reduces interpretation variability by removing many binary decisions from 
the interpretation process. The software works with the raw epg information, and analysts are 
not required to specifcally designate alleles, pair genotypes, or decide whether peaks are stutters 
or not. Sophisticated Bayesian modeling and signifcant computing is used to provide an LR. A 
natural consequence of this is that the ability to see the steps that went into the calculation of 
the LR has been removed. There is a natural fear of the “black box” nature of modern methods. 
However, realistically, there are plenty of other scientifc procedures that require signifcant scientifc 
knowledge and training to fully understand how they work. For example, the gene sequencers that 
produce the epg required knowledge of biochemistry, mass spectrometry, physics, quantum optics, 
signal processing for their development but users of such equipment are not expected to be familiar 
with all these felds. We trust these machines because they have been subjected to many studies 
which have been published in peer-reviewed scientifc literature. We use them because they are the 
best methods we have. The same is true for advanced statistical methods for the interpretation of 
DNA. 

Expanded CODIS Core Allele distributions for twenty-three autosomal short tandem repeat 
(STR) loci (D1S1656, D2S441, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D10S1248, D12S391, 
D13S317, D16S539, D18S51, D19S433, D21S11, D22S1045, CSF1PO, FGA, Penta D, Penta E, SE33, 
TH01, TPOX and vWA) were reported in Moretti et al. (2016) for samples of Caucasians, South-
western Hispanics, Southeastern Hispanics, African Americans, Bahamians, Jamaicans, Trinida-
dians, Chamorros, Filipinos, Apaches, and Navajos. The data are included in the FBI PopStats 
software for calculating statistical estimates of DNA typing results and cover the expanded CODIS 
Core STR Loci required of U.S. laboratories that participate in the National DNA Index System 
(NDIS). 

Factor of 10 Gittleson et al. (2017) gave an update of the classic experiments that led to the 
view that profle probability assignments are usually within a factor of 10 of each other. The data 
used in this study consisted of 15 Identifler loci collected from a wide range of forensic populations. 
Following Budowle et al. (1994), the terms cognate and non-cognate are used. The cognate database 
is the database from which the profles are simulated. The profle probability assignment was 
usually larger in the cognate database. In 44%-65% of the cases, the profle probability for 15 
loci in the non-cognate database was within a factor of 10 of the profle probability in the cognate 
database. This proportion was between 60% and 80% when the FBI and NIST data were used as the 
non-cognate databases. A second experiment compared the match probability assignment using a 
generalized database and recommendation 4.2 from NRC II (the Balding-Nichols match probability) 
with a proxy for the matching proportion developed using subpopulation allele frequencies and the 
product rule. The fndings support that the 4.2 assignment has a large conservative bias. These 
results are in agreement with previous research results. 

GlobalFilerTM Frequencies Taylor, Bright et al. (2017) reported GlobalFilerTM assigned au-
tosomal allele proportions for Caucasian, Asian, self-declared Aboriginal and pure Aboriginal pop-
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ulations from Australia and Caucasian and Eastern and Western Polynesian populations from New 
Zealand. Population sample sizes vary from 122 to 528. All populations underwent tests for the pres-
ence of allelic dependencies (i.e. departures from the expectations of Hardy-Weinberg and linkage 
equilibrium) and some large dependencies were observed in the Australian Aboriginal populations. 
We provided allele frequency fles for all populations examined. 

Hd-true Testing The performance of any model used to analyze DNA profle evidence should 
be tested using simulation, large scale validation studies based on ground-truth cases, or alignment 
with trends predicted by theory. Taylor, Buckleton and Evett (2015) investigated a number of 
diagnostics to assess the performance of the model using defense hypothesis Hd true tests. Of 
particular focus in this work is the proportion of comparisons to non-contributors that yield a 
likelihood ratio (LR) higher than or equal to the likelihood ratio of a known contributor (LRPOI), 
designated as p, and the average LR for Hd true tests. Theory predicts that p should always be 
less than or equal to 1/LRPOI and hence the observation of this in any particular case is of limited 
use. A better diagnostic is the average LR for Hd true which should be near to 1. 

Hd-true testing is a way of assessing the performance of a model, or DNA profle interpretation 
system. These tests involve simulating DNA profles of non-donors to a DNA mixture and calculat-
ing a likelihood ratio (LR) with one proposition postulating their contribution and the alternative 
postulating their non contribution. Following Turing it is possible to predict that “The average LR 
for the Hd-true tests should be one”. This suggests a way of validating software. 

A limitation with Hd-true tests, when non-donor profles are generated at random (or in ac-
cordance with expectation from allele frequencies), is that the number of tests required depends 
on the discrimination power of the evidence profle. If the Hd-true tests are to fully explore the 
genotype space that yields non-zero LRs then the number of simulations required could be in the 
10 s of orders of magnitude (well outside practical computing limits). We describe here the use of 
importance sampling, which allows the simulation of rare events to occur more commonly than they 
would at random, and then adjusting for this bias at the end of the simulation in order to recover 
all diagnostic values of interest. Importance sampling, although having been employed by others for 
Hd true tests, is largely unknown in forensic genetics. Taylor, Curran and Buckleton (2017) took 
time to explain how importance sampling works, the advantages of using it and its application to 
H-d true tests. They concluded by showing that employing an importance sampling scheme brings 
Hd-true testing ability to all profles, regardless of discrimination power. 

ISFG Recommendations on Software Validation The use of biostatistical software programs 
to assist in data interpretation and calculate likelihood ratios is essential to forensic geneticists and 
part of the daily case work fow for both kinship and DNA identifcation laboratories. Previous 
recommendations issued by the DNA Commission of the International Society for Forensic Genetics 
(ISFG) covered the application of biostatistical evaluations for STR typing results in identifcation 
and kinship cases, and this is now being expanded to provide best practices regarding validation and 
verifcation of the software required for these calculations. With larger multiplexes, more complex 
mixtures, and increasing requests for extended family testing, laboratories are relying more than 
ever on specifc software solutions and suÿcient validation, training and extensive documentation 
are of upmost importance. 

In Coble et al. (2016) we presented recommendations for the minimum requirements to validate 
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biostatistical software to be used in forensic genetics. We distinguished between developmental 
validation and the responsibilities of the software developer or provider, and the internal validation 
studies to be performed by the end user. Recommendations for the software provider address, 
for example, the documentation of the underlying models used by the software, validation data 
expectations, version control, implementation and training support, as well as continuity and user 
notifcations. For the internal validations the recommendations include: creating a validation plan, 
requirements for the range of samples to be tested, Standard Operating Procedure development, 
and internal laboratory training and education. To ensure that all laboratories have access to a 
wide range of samples for validation and training purposes the ISFG DNA commission encourages 
collaborative studies and public repositories of STR typing results. 

Likelihood Ratio Variability Curran (2016) argued that, given our current state of knowledge, 
reporting uncertainty in the likelihood ratio is best practice. This may in time be replaced by 
reporting a Bayes factor, but we are currently unable to do this in all but the simplest of examples. 

Mixture Interpretation The evaluation and interpretation of forensic DNA mixture evidence 
faces greater interpretational challenges due to increasingly complex mixture evidence. Such chal-
lenges include: casework involving low quantity or degraded evidence leading to allele and locus 
dropout; allele sharing of contributors leading to allele stacking; and di erentiation of PCR stutter 
artifacts from true alleles. There is variation in statistical approaches used to evaluate the strength 
of the evidence when inclusion of a specifc known individual(s) is determined, and the approaches 
used must be supportable. There are concerns that methods utilized for interpretation of complex 
forensic DNA mixtures may not be implemented properly in some casework. Similar questions are 
being raised in a number of U.S. jurisdictions, leading to some confusion about mixture interpreta-
tion for current and previous casework. 

Key elements necessary for the interpretation and statistical evaluation of forensic DNA mixtures 
were described by Bieber et al. (2016). Given the most common method for statistical evaluation 
of DNA mixtures in many parts of the world, including the USA, is the Combined Probability of 
Inclusion/Exclusion (CPI/CPE). Exposition and elucidation of this method and a protocol for use 
is the focus of this article. Formulae and other supporting materials were provided. This description 
should help reduce the variability of interpretation with application of this methodology and thereby 
improve the quality of DNA mixture interpretation throughout the forensic community. 

Multiplexes In response to requests from the forensic community, commercial companies are 
generating larger, more sensitive, and more discriminating STR multiplexes. These multiplexes are 
now applied to a wider range of samples including complex multi-person mixtures. In parallel there 
is an overdue reappraisal of profle interpretation methodology. Aspects of this reappraisal include: 
1. The need for a quantitative understanding of allele and stutter peak heights and their variability; 
2. An interest in reassessing the utility of smaller peaks below the often used analytical threshold; 
3. A need to understand not just the occurrence of peak drop-in but also the height distribution of 
such peaks; 4. A need to understand the limitations of the multiplex-interpretation strategy pair 
implemented. 

Taylor, Bright, McGovern et al. (2015) presented a full scheme for validation of a new mul-
tiplex that is suitable for informing modern interpretation practice. They predominantly used 
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GlobalFilerTM as an example multiplex but suggested that the aspects investigated here are funda-
mental to introducing any multiplex in the modern interpretation environment. 

Number of Contributors The probability that multiple contributors are detected within a 
forensic DNA profle improves as more highly polymorphic loci are analyzed. The assignment of the 
correct number of contributors to a profle is important when interpreting the DNA profles. Coble 
et al. (2015) investigated the probability of a mixed DNA profle appearing as having originated 
from a fewer number of contributors for the African American, Asian, Caucasian and Hispanic US 
populations. They investigated a range of locus confgurations from the proposed new CODIS set. 
These theoretical calculations were based on allele frequencies only and ignore peak heights. They 
showed that the probability of a higher order mixture (fve or six contributors) appearing as having 
originated from one less individual is high. This probability decreases as the number of loci tested 
increases. 

Wildcard Designations Forensic DNA databases are powerful tools used for the identifcation 
of persons of interest in criminal investigations. Typically, they consist of two parts: (1) a database 
containing DNA profles of known individuals and (2) a database of DNA profles associated with 
crime scenes. The risk of adventitious or chance matches between crimes and innocent people 
increases as the number of profles within a database grows and more data is shared between 
various forensic DNA databases, e.g. from di erent jurisdictions. 

The DNA profles obtained from crime scenes are often partial because crime samples may be 
compromised in quantity or quality. When an individual’s profle cannot be resolved from a DNA 
mixture, ambiguity is introduced. A wild card, F, may be used in place of an allele that has dropped 
out or when an ambiguous profle is resolved from a DNA mixture. 

Variant alleles that do not correspond to any marker in the allelic ladder or appear above or 
below the extent of the allelic ladder range are assigned the allele designation R for rare allele. 
R alleles are position specifc with respect to the observed/unambiguous allele. The F and R 
designations are made when the exact genotype has not been determined. The F and R designation 
are treated as wild cards for searching, which results in increased chance of adventitious matches. 
In Tvedbrink et al. (2015) we investigated the probability of adventitious matches given these two 
types of wild cards. 
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