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1 Project Purpose and Background 

Audio analysis of gunshots is based on the observation that the content and quality of gunshot recordings 

are infuenced by frearm and ammunition type, the scene geometry, and the recording device used. Ad-

vanced computational techniques can exploit these facts to answer investigative questions. For example, 

in much the same way that signal processing for human speaker recognition can help reach conclusions 

regarding the gender, age, identity, or national origin of the speaker, it appears possible that similar 

methods may be able to answer frearm specifc questions from audio data. As more crimes are captured 

on audio recordings, more examiners will be asked to answer questions regarding frearm-related audio. 

The completed project aims include the application of advanced computational tools to audio analysis. 

Our approach uses a fne-grained mathematical representation of the frequency spectrum with a series 

of advanced machine learning techniques for clustering and pattern recognition. Several specifc inves-

tigative questions are addressed. The research work was completed by Cadre Research Labs, a scientifc 

computing contract research organization, working in collaboration with experienced frearm examiners 

(Lucien Haag, Mike Haag, Todd Weller). 

2 Project Design 

2.1 Gunshot Audio Background 

When a frearm is discharged several sounds are produced. These include the muzzle blast, a shock wave 

(if the bullet is traveling at supersonic speeds), secondary mechanical sounds, the bullet impact, and 

scattered refections [1, 8]. The muzzle blast refers to the complex acoustic signal arising from the rapid 

ejection of gas from the frearm muzzle. It is short (on the order of milliseconds) and loud (typically 120-

160dB). If the blast is close to the recording device, the volume of the blast may overwhelm the recorder 

resulting in saturation and spectral information loss. Bullets moving faster than the speed of sound will 

produce a shock wave propagating outward from the bullet’s path. Secondary mechanical sounds include 

sounds related to loading, cocking, fring, and ejection mechanics. In contrast to the muzzle blast, these 

mechanical sounds may be low volume and diffcult to pick-up unless the recording device is close to the 

discharged frearm. The bullet impact may be detected but is not typically considered when considering 
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the number of shots fred or the identity of each shot. Finally, any of the described sounds can produce 

refections when the sound wave bounces off a secondary surface [9]. The most common of these is the 

ground refection of the muzzle blast. 

Several secondary factors effect the recorded audio. First, sounds may arrive at the recording device 

in a non-chronological order. That is, depending on the scene geometry, the supersonic shock wave 

may arrive before the muzzle blast [6, 8]. Second, the muzzle blast is highly directional, dependent 

on the azimuth angle formed between the muzzle direction and the recording device. Both the overall 

volume and waveform shape vary from a loud and structured sound when pointed towards the recording 

device (azimuth of 0-degrees) to a quieter less structured waveform when pointed away (azimuth of 

180-degrees) (azimuth angle shown in fgure 3) [1]. Finally, the audio is susceptible to environmental 

conditions (temperature, humidity, wind) and scene geometry (absorption, refection, focusing). The 

recording is also infuenced by the frearm make/model, caliber, and ammunition type. Finally, the 

recording device itself infuences the recording. Each device has a frequency response that describes how 

effciently the device captures sound at different frequencies. The audio fle format may employ lossy 

compression methods which introduce sound artifacts1. While explicit handling of all these variables is 

unrealistic, it is important to be aware of their potential infuence. 

2.2 Project Aims 

The completed work was split into two aims. Aim 1 involved the collection of two datasets. Aim 2 

involved the development and application of advanced computational tools to answer several questions. 

1. Detect gunshots in an audio recording 

2. Compute shot-to-shot timings 

3. Determine the number of frearms present in a recording and assign shots to frearms 

4. Construct a predictive model of the likely class, caliber, and make/model of recorded gun-

shots 

3 Materials and Methods 

This proposal has two primary aims. The frst aim involves Data Collection and Processing. The second 

aim involves Audio Analysis. Each aim will be discussed separately. Methods have been abbreviated to 

conform to the maximum page limit. 
1Compression techniques are defned as being either lossless, which perfectly preserve the original signal, or lossy where 

the original signal is not perfectly preserved. 
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3.1 General Methods and Concepts 

(Aim 1) Data Collection: Dataset 1: The frst dataset includes test fres for approximately twenty frearms 

collected using multiple devices at multiple positions relative to the shooter. Firearms were selected 

based on their commonality, their potential to be used in gun crimes, and the types of sounds they pro-

duce. Several makes, calibers, and frearm types are included. Each gunshot was recorded on four differ-

ent recording devices. These devices include a high-quality Zoom H4N hand-held recorder, an iPhone 

7 smartphone, a Samsung Galaxy S7 smartphone, and a Prima Facie BodyCam which are referred to as 

Zoom, iPhone, Samsung, and Bodycam in the rest of this report. The Zoom device was equipped with 

a ‘fuzzy’ wind-brake designed to reduce the effect of wind noise. To increase effciency, two sets of 

recording devices were obtained allowing the project team to record data from two locations at the same 

time. This halved both the amount of ammunition required and the time required to collect the data. We 

assume that each of the identical devices (e.g., each of the identical iPhones) recorded similarly. 

(Aim 1) Data Collection: Dataset 2: The second dataset includes audio fles extracted from YouTube 

and represents the type of ‘real-world’ data that might be encountered in casework. These fles were 

collected on unknown recording devices, in varying environments, and with a range of background noise. 

(Aim 1) Data Processing: Several pre-existing and newly written software tools were used with Datasets 

1 and 2 to create a large set of individual processed fles. These processed fles include short audio clips 

and spreadsheets of annotations for each fle. These spreadsheets include information such as the start 

and stop time of the individual gunshot as well as the recording device and conditions. This ‘meta-data’ 

was used in ftting our statistical models. Each audio fle was also converted into a single predefned 

sampling rate so that they can be compared. The Zoom, Samsung, and Bodycamera record in stereo and 

the frst channel was used for all analysis. The iPhone records in single channel (mono). All data fles 

were converted to 44.1kHz sampling rate and saved as lossless WAV fles. This sampling rate was selected 

as it is extremely common and is the standard for CD recordings. As technology improves we expect a 

shift to even higher rates. A series of CSV fles were created with individual annotations. For example, 

each experiment recording in Dataset 1 contains six gunshots from a single frearm and the CSV fle lists 

the start and stop times of each gunshot. After splitting each recording such that each individual WAV 

fle contains a single gunshot we created a master CSV which lists details about each fle. For example, 

the frearm, caliber, class, recording position, recording device. This workfow created thousands of fles 

which facilitated our analytic workfow and testing of experiments. 

(Aim 1) Gunshot Representation (Features): Every audio signal can be broken down into one or more 
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component sinusoid waveforms. Even the complex audio of human speech is simply a summation of 

individual sin waves each with different frequencies, start and stop times, and amplitudes (volumes). 

When analyzing an audio waveform it is common practice to consider the individual frequency compo-

nents. Several frequency-based approaches were considered to represent the information content of each 

portion of each audio fle. For example, each fle is split into a sequence of short (10 or 20 millisecond) 

segments (aka windows or clips) and a representation was computed for each segment. Representations 

typically are a summarization of the audio frequencies present in each short segment. These representa-

tions serve as the input to secondary analysis methods. Most representations were based around versions 

of the Mel-Frequency Spectral Coeffcients (MFSCs) [2, 3, 12]. The MFSC computes the audio fre-

quencies present in each short time window within an audio fle and represents these frequencies as a 

vector. For example, the MFSC vector might have ten coeffcients where each coeffcient represents the 

amount of energy present in the window of a specifc frequency band (Figure 1). The closely related 

Mel-Frequency Cepstral Coeffcients (MFCCs) is a variant of the MFSC where an additional step is ap-

plied to attempt to uncorrelate the MFSC coeffcients. Removing this correlation is benefcial when the 

signal is band-limited and some of the MFSC terms are non-informative. The theory of this approach is 

that similar sounds will have similar MFSC (or MFCC) coeffcients. This property is what makes MF-

SCs and MFCCs useful in audio recognition (e.g., speech recognition) and potentially useful in gunshot 

analysis. 

MFSC/MFCCs are often used with delta and delta-delta coeffcients. The delta coeffcients are the 

difference between the coeffcients at different times. The delta term is MFSCt−MFSCt−1 (difference in 

coeffcients at time t and t−1) and the delta-delta coeffcients are (MFSCt −MFSCt−1)−(MFSCt−1 − 

MFSCt−2) (the difference in the difference). Although we explored the use of delta and delta-delta 

terms for each task, we found that explicitly including the straight MFSC terms for multiple consecutive 

windows performed better. The results below therefore did not utilize the delta or delta-delta terms. 

Because muzzle-blasts are extremely short events (typically shorter than 5ms) it is diffcult to mea-

sure the evolution of frequency components over time. That is, if one split a 5ms muzzle-blast into four 

different parts (beginning, middle, middle, and end) then each part would represent 1.25ms and would 

only have 55 sample points (if the original audio was sampled at 44kHz). Therefore, rather than splitting 

each gunshot into extremely short windows (e.g., 1.25ms) we decided to keep gunshots contained within 

a single 10ms target window and to compute MFSC/MFCC components for each window. We also mod-

eled the 10ms before the target window and 500ms after the target window. The 10ms before the target 
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was included to capture the background noise before the gunshot occurred. A trained model can therefore 

take these background frequencies into consideration when evaluating the target 10ms window. In other 

words, ignore the frequencies in the target window that are also present before the target window. The 

500ms after the target window was included to capture the full duration of a gunshot’s sound (including 

echos or delayed response of the recording device). The decision to consider 520ms refects the fact that 

our recording devices, sampling rate, environmental conditions, and physical setup captured waveforms 

that were signifcantly more noisy than that would be collected under ideal conditions. For example, Ma-

her collects beautiful waveforms using high-quality microphones with dynamic range from 46 dB to 178 

dB using a 16-bit recorder at 500kHz sampling [10]. This setup can produce clean waveforms with more 

than 11-times as many samples as we collect (500kHz vs 44.1kHz). For example, two of our recordings 

of the same Colt 1911 (.45 Auto) are shown in Figure 2. Both were recorded at 40m and -30 degrees 

from the shooter. The iPhone recording is typical of those we recorded off cell-phones. The recording 

shows an approximately 5ms muzzle-blast and is followed by noise which slowly decreases to zero over 

about 500ms. The Zoom recording of the same exact gunshot also lasts about 5ms but has essentially no 

noise after the muzzle blast. Because these recordings were collected from the exact same physical event 

and from the same location we assume the differences are due to the recording devices themselves. Each 

device has a different frequency response and ability to handle very loud impulses. 

(Aim 2) Algorithm Analysis: A number of computational methods were explored for each of the inves-

tigated problems. Complete details on each method are beyond the scope of this report. We attempted 

to provide the high-level intuition behind each method and some specifc detail that would be useful 

for those with experience with these methods. All data analysis and methods development projects are 

exploratory in that a multitude of methods, approaches, and variants are considered before settling on a 

method that performs best. In this work, a number of methods were investigated and found to not be use-

ful; many of these methods are not described in this report. A brief description of the primary methods 

appears next. 

Gunshot Analysis (non-neural network based): Several approaches were considered for comparing 

the audio representations to complete each of the proposed tasks. In general, these methods rely on the 

assumption that similar sounds will have similar representations (e.g., either MFSC/MFCC or waveform). 

The following methods are utilized in the experiments below; note that each of these are established 

methods and a full description of the approach and theory does not ft in this report. In many cases 

we utilize a training set to ft the model and then a testing set to evaluate the model (additional detail 
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below). Samples in the training set are labeled. For example a label for a 10ms window could be that 

it contains a gunshot or that it does not contain a gunshot. Another label could be that the gunshot is 

from a pistol or that it is from a rife. The samples in the testing set have their labels hidden and it is 

the job of the algorithm to predict the label using the learned model. The following methods were tested 

in this work; however, only a few were found to work in this application. k-Nearest Neighbors (kNN): 

In kNN each sample point in the test set is assigned the label that is most common among its k most 

similar samples in the training set. Gaussian Mixture Models (GMM): A GMM models the training 

set by ftting one or more Gaussian (normal) distributions to the labeled training points. These Gaussians 

represent probability distributions for each label. A sample in the testing set is labeled by determining 

the most likely label according to the ft probability distribution. Logistic Regression (LR): A logistic 

regression model can be used to assign a dichotomous label (one where there are only two labels, e.g., 

gunshot or non-gunshot). LR computes a weighted sum of one or more independent variables (e.g., the 

components of the MFSC/MFCC or waveform). Linear Discriminant Analysis (LDA) [4, 11] is based 

on the more widely known Principal Component Analysis (PCA) and is a linear method for clustering 

points based on their assigned labels. A weighted combination of each sample’s features are used to 

map each sample to a location in a lower-dimensional space where similarly labeled samples are close 

together and differently labeled samples are far apart. For example, these approaches may assign labels 

based on the magnitude of specifc components; for example, the presence of a specifc low-frequency 

band may support the assignment of label X. The model learns the weights and support provided by each 

component. LDA performed the best for most of the applications listed below. 

The problem of determining the number of frearms present in a recording is a variant on the above 

setup. When determining the number of frearms present (and the assignment of which gunshot cor-

responds to which frearm) a training set is not explicitly utilized. Instead, the gunshots of a single 

recording are analyzed as a group where each gunshot is a sample. The goal of the algorithm is to deter-

mine the number of clusters (e.g., labels) that best ft the data and then assign these labels to the samples. 

One way of determining the number of clusters is to consider the quality of the clustering that results 

when the algorithm is forced to use exactly k labels (for k = 0 . . . n). k-Means: k-means performs a 

clustering to identify k clusters. It randomly assigns k cluster centers and then iteratively optimizes the 

placement of these cluster centers based on the samples. After the cluster centers have been placed we 

can evaluate the quality of the clustering by determining the variance within a cluster. The gapstatis-

tic [13] allows us to identify which k affords the largest relative improvement compared to k − 1. If no 
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k provides a signifcant improvement compared to k − 1 then the best k is assumed to be one. Ideally, 

each cluster contains gunshots for a single frearm. In some cases when a recording has gunshots from 

multiple similar sounding frearms the k-means approach may place gunshots from two frearms in a 

single cluster. 

Gunshot Analysis (neural network based): Neural networks have recently enjoyed success in speech 

and other pattern recognition tasks. Deep Neural Networks (DNNs) are mathematical models very loosly 

structured after biological neural networks. Neural networks are a complex topic and the description 

provided here only scratches the surface; references are provided for the interested reader. In a DNN, 

an input is presented at the input (or frst) layer, information in the form of activations fow through 

a series of connected layers (via series of mathematical operations), and end up at the output layer. 

The output layer contains k output nodes each corresponding to one of k different output labels. The 

internal structure of the DNN (comprising a set of nodes and unknown numerical weights) is setup such 

that when a member of label X is presented on the input layer that the internal activations induce the 

strongest output activation on the output node corresponding to label X . Although this sounds like magic, 

the mathematical operations are relatively simple and mainly consist of multiplications and additions. 

Training a network consists of learning the internal structure and weights that result in the correct output 

node being activated for each input. This training is done iteratively, using batches of training data. For 

each batch of training data, the weights of the hidden units are updated. The updating process uses an 

optimizer. Each pass through all the training data is called an epoch. For each successive epoch, we 

repeat this process with the same training data, but using the model weights from the end of the previous 

epoch. In the problem of gunshot detection, the input layer is the representation of the audio window 

under consideration and the output layer contains two nodes (corresponding to the labels of gunshot and 

non-gunshot). Countless papers have been written on the topic, an excellent contemporary book on Deep 

Neural Networks is Goodfellow et. al. [5]. One particular model of deep learning which has been utilized 

in audio processing is the Long Short-Term Memory (LSTM) model [7]. An audio LSTM breaks longer 

audio signals into a sequence of sounds (which can be thought of as phonemes) which together constitute 

a word. This concept of breaking a long sound into a sequence of shorter sounds unfortunately is not 

applicable to the analysis of gunshots given their extremely short duration. 

(Aim 2) Training/Testing: Many computational methods within the feld of machine learning ft a model 

to a set of training data and then evaluate the performance of the ft model a second, different, set of 

testing data. The work performed here is considered ‘supervised’ learning in that annotations (or labels) 
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are required for both the training and testing data. In our case, the annotations include the exact time 

location of the gunshot in the recording as well as the frearm make, class, and caliber. The annotations 

of the training data are shown to the algorithm and are used while ftting the model. The annotations of 

the testing data are hidden from the model as the model’s task is to predict the labels. We use the labels 

of the testing data as the ‘answer key’ against which we evaluate performance. It is therefore important 

that the training and testing sets contain different data. If the two sets contained the same data then the 

performance on the testing data would not necessarily be indicative of real-world performance. That is, 

rather than learn the association between features and labels, the algorithm could over-ft and memorize 

the label for a given sample. A non-technical example would be testing a classroom of students; if the 

practice exam and the fnal exam both contained the same questions, it would not be a great measure of 

how much the students had learned as it may measure how well they could memorize the practice exam. 

In many of the experiments below the data is split into training and testing. We randomly selected all 

recordings from all frearms from the following four geometries to be the testing set: 20m 180-degrees, 

20m 60-degrees, 3m 0-degrees, 12m 75-degrees. The remaining sixteen geometries listed in Figure 3 

comprise the training set. This results in an 80%/20% training/testing split. Finally, our datasets had 

signifcant class imbalance between the number of windows with gunshots and the number without gun-

shots. We therefore used a standard machine learning technique of subsampling to only train on a random 

fraction of the non-gunshots but use all the gunshots. 

3.2 Specifc Methods for Each Application 

In this section we discuss the analytic methods used to address each of the four main questions (gun-

shot detection, shot-to-shot timings, determine number of frearms present and gunshot assignment, and 

predicting frearm class, caliber, and make/model. 

Gunshot Detection: Several approaches were evaluated for the detection of gunshots within a recording. 

These included GMMs, kNN, LR, and LDA. We found that LDA with a hard preflter achieved the best 

performance. For each target 10ms window we used the following feature set. First, we considered 

four sequential windows including the 10ms window of interest, the 10ms before the window of interest, 

and the 500ms after the window of interest (split into two 250ms windows). For each window we 

computed 35 MFSC coeffcients and an energy. The energy (or volume) of a window was computed as 

the normalized magnitude of the power-spectrum2. Overall these four windows span 520ms (just over 
2The volume of a window can be computed by summing the terms of the power-spectrum. The power-spectrum is the 
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half a second) and are represented by a 140-dimensional MFSC vector and a 4-dimensional energy vector 

(Figure 4). The following two methods were evaluated using our datasets and results are reported below: 

• Method 1: Audio fles were split into a sequence of 10ms non-overlapping windows. Each window 

was evaluated as to its likelihood of being a gunshot. We constructed a method with two stages. 

The frst stage performs a hard flter and looks for three consecutive windows (centered at the 

10ms window of interest at time t) where the volume increases (between time t − 1 and t) and then 

decreases (from time t to t + 1). Windows not following this ‘short-impulse’ profle are marked 

as non-gunshot. Windows meeting the short-impulse profle are then evaluated by volume. That 

is, the audio must reach at least 70% of the maximum allowed recording volume. Note that in 

most cases microphones are designed to record normal human-friendly volumes. Since gunshots 

are much louder than human-friendly sounds they almost invariably saturate the recording device. 

The one exception is a frearm recorded at a signifcant distance. These at-a-distance gunshots 

often are somewhat nondescript and often sound like generic pops; it is signifcantly more diffcult 

to identify these poorly recorded quiet gunshots. Windows meeting the short-impulse profle and 

volume threshold are considered ‘candidate’ gunshots are continue on to stage two. The second 

stage only considers windows emerging from the frst stage as candidate gunshots. A model was 

built using Linear Discriminant Analysis (LDA) as described above. The two stage approach is as 

follows: 

– Stage 1: Preflter each window t for candidate gunshots by looking for impulses. If the 

volume increases then decreases over three consecutive windows and if the window at time 

t has a volume at least 70% of the maximum then the segment is considered a candidate and 

is evaluated in stage 2. 

– Stage 2: Use LDA to assign a label of gunshot or non-gunshot for each candidate gunshot 

coming out of stage 1. 

• Method 2: The second method utilizes a deep Deep Neural Network (DNN). The input repre-

sentation of each target 10ms window is similar to that described above (140 MFSCs and 4 en-

ergy terms). For our DNNs, we considered a variety of network architectures (confguration of 

intermediate or hidden layers) and found that the best-performing choice has three intermediate 

layers with 80, 40, 10, and 5 hidden units, respectively. Internal nodes use the rectifed linear unit 

energy of a waveform split by its different frequency components. 
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(ReLU) activation function. The output layer has two nodes (with a softmax activation) corre-

sponding to the labels of gunshot and non-gunshot. We utilized the Keras machine learning suite 

(http://www.keras.io) to implement the networks and trained the model using the Adam 

optimizer. Unlike with the LDA model, we did not utilize impulse flters with the DNN model. 

The hypothesis is that the neural network model would explicitly learn to detect impulses. 

As described for our non-neural network approach, class imbalance was also an issue in our DNN 

implementations. For our DNN models, we downsampled negatives to achieve a 5:1 ratio of non-

gunshots to gunshots. Moreover, we also reweighted the loss function according to this class 

imbalance during training. That is, there was more of a training penalty incurred when making an 

error on a gunshot than a non-gunshot. 

Shot-to-Shot Timings: A small number of experiments were conducted with semi-automatic or fully-

automatic frearms to explore the shot-to-shot timings of each. For these experiments the time of each 

gunshot was manually identifed and the shot-to-shot times computed using simple subtraction. 

Determine Number of Firearms Present and Shot Assignment: In contrast to the described MFSC 

approaches, the determination of the number of frearms present and shot assignment problem directly 

compared the audio waveform of two gunshots. That is, after the individual gunshots had been identi-

fed in the source audio fle (either manually or using the gunshot detection methods described above) 

each identifed gunshot was compared to every other identifed gunshot to determine how similar they 

were. The most successful method for this comparison uses the maximum cross-correlation (CCFmax) 

between the two waveforms. This involves frst normalizing the magnitude of each signal’s waveform 

and then shifting one signal against the second to identify the position where the two waveforms have 

the highest correlation. Under our normalization method identical signals will have a CCFmax of 2.0 

while completely uncorrelated signals will have a CCFmax of 0 (completely anticorrelated signals will 

have a score of -2.0). Our normalization approach involves normalizing the two waveforms being com-

pared at the same time; this allows us to differentiate two waveforms with similar frequency components 

but different volumes (e.g., two similar frearms located at different distances to the recording device). 

The drawback of comparing complete waveforms using the CCF is that all frequency components are 

compared including both those that are informative and those that are distracting for differentiation. 

For an audio fle with multiple gunshots, we frst identify all the gunshots, then for every pair of 

gunshots we compute their similarity using the CCF as computed over the 520ms windows described 
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above (10ms centered at the muzzle blast, 10ms before, and 500ms after, Figure 4). For k gunshots 

we have k∗(k−1) pairwise comparisons. A hierarchical clustering is then performed which predicts two 2 

gunshots as having come from the same frearm if they are suffciently similar. We found that a similarity 

threshold of 1.7 worked well. That is, two gunshots with a pairwise CCFmax > 1.7 are assigned to the 

same frearm. If all correlations are less than 1.7 we adjust the max threshold lower and consider the 

most similar gunshot; however, clustering this way assumes that each frearm is fred at least twice. At 

the end of this clustering it’s possible for the gunshots to all be in the same cluster (indicating that a 

single frearm was present), in two clusters (indicating that two frearms were present), or in k clusters 

(indicating that k frearms were present). 

Prediction of Model of Class and Caliber: As with the other problems above, we considered several 

methods including GMMs and kNN; however, the best performance was achieved using LDA on the 

140-dimensional MFSC values with four energy terms computed over four sequential windows of 10ms, 

10ms, 250ms, and 250ms. A training / testing split was used as described in the results section. We 

predicted class, caliber, and make/model. 

4 Data Results and Analysis 

In this section we summarize the experimental results. 

(Aim 1A) Data Collection: Dataset 1: Gunshot recordings for twenty frearms under twenty conditions 

were collected in rural eastern Arizona. The collection site is a fat, treeless, remote environment away 

from highway, aircraft, and city sounds. Unfortunately, during the recording weekend there was intermit-

tent wind at the shoot site. The wind had minimal effect on the Zoom device but signifcantly impacted 

the BodyCam recordings to the extent that even after processing the BodyCam recordings were deemed 

unworthy of analysis. The selected frearms are listed in Table 1. Test set 1 contains three subsets. The 

frst subset includes recordings of the twenty frearms collected at the twenty locations shown in Fig-

ure 3. These recording locations vary from a distance of 0m to 40m and an azimuth angle of -30 to 

180 degrees. Six gunshots were recorded for each frearm at each location. Note that there were a few 

combinations of frearm and recording location that were not collected. This either occurred because of 

ammunition limitations, time limitations, or failure of the recording device that was only noticed after 

the recording session. The second subset includes recordings with two or three different frearms within 

the same audio fle (Figure 5 and Tables 6 and 7). The third and fnal subset includes special conditions 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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including supersonic, rapidly fred semi-automatic, and fully automatic frearms. Approximately 13,400 

gunshot recordings were collected across all conditions and devices. 

A second dataset (Dataset 2) containing ‘real-world’ test fres extracted from YouTube videos was 

also obtained. Videos were identifed containing the keywords shown in Table 2. Slight variants on each 

keyword were allowed. The recording environment (indoors or outdoors) and relative recording position 

(near or far) were noted for each recording. The recording quality of these videos was generally much 

lower than that of Dataset 1. The collected data was used as described below. 

(Aim 1B) Data Processing: All audio fles of Datasets 1 and 2 were processed as described above. 

The initial video fles were split by experiment, the audio was extracted for each experiment, and then 

converted to single audio channel at 44.1kHz and saved in the lossless WAV format. For experiments 

where we needed individual gunshots for training, we manually went through and split each WAV fle 

into individual fles each approximately 1-2 seconds long and containing a single gunshot. 

(Aim 1C) Website: A simple website was created to house Dataset 1 and the associated metadata fles. 

The site at www.CadreForensics.com/audio provides a small amount of background informa-

tion on the data, the NIJ disclaimer, and allows visitors to download the data. Users are required to 

provide contact information so we can keep track of the number and distribution of those using the data. 

(Aim 2A) Gunshot Detection Method 1: Method 1 utilizes an energy-based pre-flter to look for loud 

impulses and an LDA model to differentiate loud impulse gunshots from loud impulse non-gunshots. The 

combined results for the Zoom, iPhone, and Samsung recordings are presented in Table 3. An 80%/20% 

training/testing split was used. Note that the use of the loud impulse flter signifcantly cuts down on 

the number of false positives (i.e., falsely detected gunshots). However, this impulse detection flter 

also reduces the number of detected gunshots (i.e., the true positive rate). The YouTube rows show the 

performance of the model trained on the Zoom, iPhone, and Samsung data but evaluated on the YouTube 

recordings. The YouTube data has a larger number of false positives, likely due to the fact that most of 

these recordings are taken close to the shooter and are very loud. The impulse flter greatly improves 

the performance on the YouTube dataset. Approximately 84% of the gunshots in the YouTube set are 

detected with this model. 

(Aim 2A) Gunshot Detection Method 2: Method 2 utilized a deep neural network based off MFSC 

and energy terms. We considered datasets for Zoom, Samsung, and iPhone devices as well as a dataset 

drawn from YouTube audio. We trained our DNN model with a batch size of 10 examples over 100 

training epochs. Several models were trained. First, we trained one model for each device using the 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.

www.CadreForensics.com/audio
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same 80%/20% training/testing split as used in method 1. As in Method 1, we also considered training 

on all three devices together (referred to as the ‘combined’ model). Results are presented for the three 

devices, the combined model, and the YouTube dataset in Table 4. The results on the Zoom, iPhone, 

and Samsung data are arguably better than method 1 above. Method 2 does not use a impulse flter yet 

the detection performance is comparable to Method 1 when a flter is used. This suggests that the DNN 

model has learned to detect impulses. 

Overall, all of our models achieve fair to good accuracy. A few general conclusions can be made. For 

method 1, the impulse flters do a good job of reducing false positives but have the unwanted effect of 

reducing the true positive rate. The performance is also effected by the fact that gunshots are a rare 

occurrence in our datasets which induces class imbalance and a potentially biased model. The neural 

network approach, (Method 2) agnostically learns this imbalance and thus the false negative rate is likely 

to be higher in the noisier datasets. When considering results broken out by frearm for each test set (not 

shown), the false positive identifcations are fairly evenly spread across the frearms present in the test 

set. In contrast, false negative identifcations clearly appear in test sets for lower caliber frearms which 

tended to have far lower volumes. This effect is more pronounced for the Zoom device, which tended to 

attenuate the recordings. 

The generalized performance on the YouTube set is slightly better in Method 2. The YouTube set 

contained a lot of frearms recorded up-close and signifcantly more background noise than our core sets. 

It is interesting that Method 2 was better able to handle these differences. Overall, Method 2 may be 

a better approach than Method 1; however, both methods may have diffculty generalizing to the full 

range of recording devices and environments encountered in actual casework. The initial performance is 

promising and more research is required. 

(Aim 2A) Gunshot Timing: Eight datasets were used to determine shot-to-shot timings. The experi-

ments, number of shots, average shot-to-shot timing, and variance of shot-to-shot timing is reported in 

Table 5. Although this was a small part of our project the results were as expected in that quickest and 

most consistent shot-to-shot times were found on the fully-automatic Colt M16 rife. Analyzed record-

ings were made on the Zoom handheld device at 20m and -30 degrees although any position would have 

produced the same results. 

(Aim 2B) Number of Firearms Present and Annotation: Forty six datasets with one, two, or three 

frearms were analyzed. Each dataset was recorded with the Zoom handheld device at one of six different 

geometries (Figure 5). Geometry A refers to a single frearm. Geometries B and F have multiple different 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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frearms at the same physical position. Geometry C is unique in that the recording device is down 

range and thus the recorded volumes are likely very loud compared with the other geometries where the 

recording device is 20 meters behind the shooters. Geometry D is a moving scenario where the second 

shooter takes a series of steps between each shot carefully moving from 10 meters to 20 meters from the 

frst shooter. Geometry E has three frearms each at a different position. Geometry G has two frearms at 

one position and a third frearm at a second position. 

Overall the algorithm performs extremely well under these recording scenarios. Table 6 shows the 

results of the single frearm experiments. Only two mistakes are made on this set. The Bolt Action 22 is 

mistakenly heard as two different types of sounds likely due to the variability in the audio produced by 

the bolt action mechanism itself. A second error is one of the M&P 40s where the algorithm felt two of 

the shots sounded different enough to predict a second frearm. For the two and three frearm experiments 

(Table 7) the results were equally strong. The algorithm correctly identifed two frearms for all frearm 

sets at geometries B and D. Mistakes were only made with geometry C. This is the setup where the 

recording device is down range and therefore we expect that the gunshots saturate the recordings and 

therefore all sound the same, thereby resulting in only a single frearm detected. Note that these three 

experiments (012G, 013G, and 014G) would be extremely diffcult under any geometry as 012G and 

014G each include two of the same make/model frearm and 013G includes two highly similar 9mm 

frearms. Perhaps most surprising and impressive is the ability of the algorithm to detect two frearms 

for experiments 010G and 011G as these experiments have two identical frearms are the same position. 

What might be detected here are effects of the two different shooters. The two shooters have slightly 

different height, stance, and apparel. After shooting the frst shooter asymmetrically stepped aside. Since 

we were recording behind the shooters it’s possible these effects infuenced the recording. The algorithm 

also correctly identifed three frearms for all the three frearm experiments. 

We note that these results are not perfect and that this approach will not yet generalize to success in 

random crime scene videos. In none of the experiments did we move the recording device. Movement 

is likely in video grabbed from a cell-phone. Although geometry D had one moving shooter they moved 

slowly and over a limited range. During an actual crime it’s likely that movement is wildly erratic. The 

best results (and those reported here) came from the handheld Zoom device. While this is not a high-

frequency sampling device with fancy microphone it did collect signifcantly cleaner recordings than 

the cell-phones in our study. Overall these results are extremely promising but in its current form the 

algorithm is likely to have diffculty in real-world scenarios. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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(Aim 2C) Class, Caliber, and Make/Model Prediction: The goals of class, caliber, and make/model 

prediction were quite ambitious and we only expected modest recognition performance. We used the 

same 140-dimensional MFSC vector with 4-dimensional energy vector to describe each gunshot. LDA 

was used to cluster based on class, caliber, or make/model. The same training and testing splits as 

above were used to test the model. The data has three class labels: revolver, pistol, and rife. The data 

has ten calibers (.22LR, .380 Auto, .38 SPL, .357 MAG, 9mm Luger, .40 S&W, .45 Auto, .223R/5.56, 

7.62x39, .308W/7.62). The data has 18 make/models (frearms 1-20 in Table 1). Therefore, random 

guessing would have an accuracy of 33% for class prediction, 10% for caliber prediction, and 5.5% for 

make/model prediction. The results listed by frearm class subset (revolver, pistol, or rife) as collected 

on the Zoom device are shown in Table 8). All results are signifcantly better than random guessing. 

Class prediction is the easiest of the three objectives and the results are fairly decent on both the 

training and testing sets. This suggests that the model is generalizable. For example, 97% of the pistols 

in the training set are correctly predicted to be pistols and 88% of the pistols in the testing set are correctly 

predicted to be pistols. The results for caliber and make prediction show signs of over-ftting in that the 

training performance is signifcantly better than testing performance. Despite these signs there are still 

several promising results. For example, the model is able to predict the caliber of pistols with 69% 

accuracy on the training set and 43% on the testing set. The make/model of a pistol is only predicted 

with 25% accuracy on the testing set; however, this is still signifcantly better than the 5.5% expected by 

random guessing. Overall, the performance is very promising. 

5 Scholarly Products Produced 

The primary product of the proposed research is the presentation of our results and progress. We plan 

on writing up our results for publication. We aim to submit a journal version of our grant fnal report to 

either the AFTE journal or the Journal of Forensic Science. We also produced what is to our knowledge 

the largest publicly available set of gunshot recordings. The data is freely available from our website. 

The site requires users to create an account so that we can keep track of the number of individuals who 

have downloaded the data. The website is available at: www.CadreForensics.com/audio 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.

www.CadreForensics.com/audio
https://308W/7.62


16 NIJ Final Summary - Cadre Research Labs - June 2018 

6 Summary 

We successfully completed the proposed aims during the project period. Towards Aim 1, we collected 

a large set of gunshot audio recordings for approximately twenty different frearms. Recordings were 

collected on several different devices. We also assembled a large set of ‘real-world’ gunshot recordings 

from a popular social-media sharing site. Because we only have rights to our own data, we made all 

our audio data publicly available through a simple download website. Towards Aim 2, we developed 

and evaluated several algorithmic approaches for the analysis of gunshot audio data. Through the year 

we continued collaboration with academic and government colleagues. We are preparing our results for 

publication in a journal article. 

We found that we were fairly successful in being able to identify gunshots, extremely successful 

in being able to determine the number of different frearms present, and moderately successful in the 

challenge of recognizing frearm class, caliber, make/model. During this investigation we evaluated the 

performance of a number of contemporary machine learning algorithms. These algorithms were selected 

based on their performance on other pattern recognition tasks. They include linear and non-linear meth-

ods based on both frequency-based and time-based representations. Overall, during this short project we 

successfully demonstrated that useful information is indeed contained within gunshot audio recordings; 

however, the information is diffcult to extract from lower-quality recordings such as cell-phones and 

body cameras. High-quality recordings such as custom microphone arrays and high-sampling rate de-

vices may provide the highest quality data and therefore the best chance of success towards information 

extraction. The results of our preliminary investigations are just a small step towards the development of 

a useful tool for law enforcement and forensic examiners. The results are extremely promising and we’re 

optimistic on the future of this application. With further development these methods may become useful 

to practitioners. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Appendix 
Implications for Criminal Justice Policy and Practice 

Our primary impact has been supporting the hypothesis that useful information is contained within the 

audio recordings of gunshots. Our work product includes what is to our knowledge the largest collection 

of publicly available gunshot audio data. These recordings are now available on our website. Our results 

and the availability of our data may serve as a next-step towards a fully automated gunshot analysis 

system. By publishing our results and making our data available, we are enabling other researchers to 

build on our progress. 

Our work directly addresses several aims of the NIJ’s Applied Research and Development in Foren-

sic Science for Criminal Justice Purposes program. Specifcally we have developed measurement and 

analytic techniques, grounded in mathematical science that are able to provide accurate quantitative sam-

ple comparison. This work benefts the criminal justice system and their ability to extract frearm related 

information from evidence. For example, our work is a step towards being able to determine the number 

of frearms present in a recording and providing the critical piece of information regarding which frearm 

fred frst. In this project, we collaborated with three frearms examiners (Todd Weller, Lucien Haag, 

and Michael Haag). Todd and Luke are currently private practitioners and Mike is an examiner at the 

Albuquerque police department. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Figures and Tables 
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1) High Standard Sport King (SpKing22) [.22LR, Pistol] This semi-automatic pistol can be fred very 
rapidly giving the impression that the shots are from a full automatic frearm 

2) S&W 34-1 (S&W22) [.22LR, Revolver] Different in design and operation from semi-automatic pistols but 
can discharge the same cartridges as the High Standard pistol 

3) Ruger 10/22 ] (Ruger22) [.22LR, Carbine] Common rife can discharge subsonic and supersonic .22LR 
ammunition as well as the same ammunition as fred in the previous frearms 

4) Remington 33 Bolt-Action Rife (BoltAction22) [.22LR, Rife] A bolt action rife, fring the same ammu-
nition as the Ruger 10/22, lacks the sounds produced by the cycling of the Ruger’s semi-automatic 
mechanism 

5) Lorcin L380 (Lorcin380) [.380 Auto, Pistol] Common semi-automatic handguns often involved in gang 
and drive-by shootings, they are of straight blowback design and have very few moving parts 

6) S&W 10-8 (S&W38) [.38SPL, Revolver] Other than the possible sound of cocking the hammer of a re-
volver, they only produce the sound of the discharge, can use subsonic and supersonic ammunition 

7) Ruger Blackhawk (Ruger357) [.357 MAG, Revolver] Similar to .38SPL except that .357 Magnum re-
volvers are higher powered, producing very loud discharges and launching bullets at supersonic ve-
locities 

8) Glock 19 (Glock9A) [9mm Luger, Pistol] Common handguns, particularly with law enforcement, some 
makes have different systems of operation which could produce unique sounds 

9) Glock 19 (Glock9B) [9mm Luger, Pistol] (Duplicate of Firearm 8) 
10) Sig P225 (Sig9) [9mm Luger, Pistol] Common handguns, particularly with law enforcement, some makes 

have different systems of operation which could produce unique sounds 
11) M&P 40 (M&P40A) [.40 S&W, Pistol] Common handguns, particularly with law enforcement 
12) M&P 40 (M&P40B) [.40 S&W, Pistol] (Duplicate of Firearm 11) 
13) HK USP Compact (HK40) [.40 S&W, Pistol] Common handguns, particularly with law enforcement 
14) Glock 21 (Glock45) [.45 Auto, Pistol] Large caliber handguns popular with law enforcement, each has a 

different system of operation which could produce unique sound 
15) Colt 1911 A1 (Colt45) [.45 Auto, Pistol] Large caliber handguns popular with law enforcement, each has 

a different system of operation which could produce unique sound 
16) Kimber Tactical Custom (Kimber45) [.45 Auto, Pistol] Large caliber handguns popular with law en-

forcement, each has a different system of operation which could produce unique sound 
17) M16A1 AR15 (M16223)[.223R/5.56, Rife] Bolt-action very common semi-automatic with law enforce-

ment and civilian shooters. Have been used in some high profle crimes. 
18) WASR 10/63 AK47 (WASR762) [7.62x39mm, Carbine] Numerous semi-automatic versions of the AK47 

in circulation, would allow the cyclic rate and shot-to-shot time intervals of full automatic fre 
19) Winchester M14 (Win308) [.308W/7.62, Rife] Most common caliber for military and police snipers 
20) Remington 700 (Remington308) [.308W/7.62, Rife] Another common caliber for military snipers and 

long range shooters, produces a very loud discharge 
21) Rock River LAR-15 (RockRiver300) [.300 Blackout, Rife] 
22) Russian SKS (SKS762) [7.62x39mm, Rife] 
23) PWS MK107 Mod 1 (PWS762) [7.62x39mm, Pistol] 

Table 1: Firearm List. Firearms 1 through 20 were used in most experiments. Firearms 21, 22, and 23 were used 
in select experiments. Name in parentheses is the short name used in other result tables. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Figure 1: Features. Cartoon example of computing an MFSC feature vector for an audio waveform. The frequency spectrum 
of each window is computed via the Fourier Transform. The power in each frequency band is quantifed and converted into a 
vector (array). In this simplifed example, the selected window is represented by the 10 numbers in the vector at the right. Note 
that this is an extremely simplifed example, frequency bands often overlap and have nonlinear spacing and weights. 

10ms 10ms 250ms 250ms10ms 10ms 250ms 250ms

5ms5ms

iPhoneZoom

Figure 2: Colt 1911 Gunshots. The same Colt 1911 (.45 Auto) gunshot recorded at 40 meters and -30 degrees from the 
shooter on the Zoom (left) and iPhone (right). The Zoom recording is relatively clean with little extent beyond the muzzle-
blast. The iPhone recording is more noisy with echos and refections lasting 500ms past the muzzle-blast. Close-ups (bottom 
row) show the 5ms centered on the muzzle-blast. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Baseline Experiments (Single Firearm)

Bodycam only
All 4 devices
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Figure 3: Collection Geometries for Single Firearm Experiments. Recordings were collected at twenty differ-
ent locations (distance and azimuth angle shown). The shooter was located in the center (red triangle). All shots 
were towards the target (shown at right). All four recording devices were used at each primary location (yellow 
stars) and secondary location (purple circles). Only the body camera was recorded on the shooter (red triangle). 
The Zoom, iPhone, and Samsung were recorded on the ground at 3 meters and zero-degrees (green triangle). 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Figure 4: MFSC and Energy Representation. The window at time t is represented with four MFSC terms (35 
in each of four windows) and four Energy terms (1 from each of the four corresponding windows). 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Firearm Type Number of Audio Files Approx Number of Gunshots 
High Standard Sport King 22 22 132 
Ruger Blackhawk 357 Revolver 150 900 
Smith & Wesson 22 Revolver 80 480 
Ruger 10/22 Carbine 137 822 
Remington 22LR 130 780 
Lorcin 380 21 126 
Smith & Wesson 38 Special Revolver 93 558 
Glock 19 9mm 132 792 
Sig Sauer P225 9mm 50 300 
Smith & Wesson M&P 40 135 810 
Heckler & Koch USP Compact 40 49 294 
Glock 21 45 Auto 150 900 
Colt 1911 45 Auto 115 690 
Kimber Tactical Custom 45 Auto 66 396 
Colt M16 A1 223R 5.56 75 450 
Romarm WASR 10/63 308 50 300 
Winchester M14 308 45 270 
Remington 700 308 63 378 

Table 2: Dataset 2 (YouTube). Where “Smith & Wesson” is listed, we also searched for “S&W”, similarly we 
accepted “H&K” for Heckler & Koch 

Train Test Filters TNR FPR FNR TPR 
Zoom Zoom No 99.98% (37413) 0.02% (6) 0.50% (2) 99.50% (399) 
Zoom Zoom Yes 100.00% (37419) 0.00% (0) 34.66% (139) 65.34% (262) 
iPhone iPhone No 99.96% (41723) 0.04% (18) 1.81% (8) 98.19% (435) 
iPhone iPhone Yes 100.00% (41739) 0.00% (2) 4.97% (22) 95.03% (421) 
Samsung Samsung No 99.93% (28682) 0.07% (7) 1.99% (6) 98.01% (295) 
Samsung Samsung Yes 100.00% (28702) 0.00% (1) 10.96% (33) 89.04% (268) 
Combined Combined No 99.37% (99262) 0.63% (632) 0.57% (11) 99.43% (1928) 
Combined Combined Yes 99.97% (99860) 0.03% (34) 12.22% (237) 87.78% (1702) 
Combined YouTube No 78.85% (2159) 21.15% (579) 1.51% (12) 98.49% (782) 
Combined YouTube Yes 99.05% (2712) 0.95% (26) 15.99% (127) 84.01% (667) 

Table 3: Gunshot Detection (LDA Model). Table lists the detection results for the testing sets both with and 
without the use of the impulse detection flters. The frst six rows show the results for training and testing on the 
same recording device. The fnal four rows train on a Combined set including data from the Zoom, iPhone, and 
Samsung recordings. The fnal two rows show the results of the combined model when tested on the YouTube 
dataset. In all tables: TNR: True Negative Rate, FPR: False Positive Rate, FNR: False Negative Rate, TPR: True 
Positive Rate. For each result the percentage and absolute number of windows are listed. For example, the model 
trained and tested on the Combined datasets without impulse flters correctly classifes 99.37% of the non-gunshot 
windows as non-gunshots and 99.43% of the gunshot windows as gunshots. The FPR and FNR columns indicate 
non-gunshots which are thought to be gunshots and gunshots thought to be non-gunshots respectively. 
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Train Test Pos Neg TNR FPR FNR TPR 
Zoom Zoom 407 63125 99.96% (63099) 0.04% (26) 5.90% (24) 94.10% (383) 
iPhone iPhone 449 70008 99.82% (69885) 0.18% (123) 0.22% (1) 99.78% (448) 
Samsung Samsung 307 47587 100.00% (47586) 0.00% (1) 1.95% (6) 98.05% (301) 
Combined Combined 1163 180720 99.83% (180407) 0.17% (313) 0.69% (8) 99.31% (1155) 
Combined YouTube 793 24842 96.70% (24022) 3.30% (820) 2.77% (22) 97.23% (771) 

Table 4: Gunshot Detection (Neural Network Model). Overall results for each of the neural network models 
on the testing sets. The frst three results rows (Zoom, iPhone, Samsung) were trained on data from the specifed 
device and tested using different recordings from the same device. In the fourth and ffth rows the term ‘Combined’ 
refers to a combined set of Zoom, iPhone, and Samsung recordings. The fourth row, is trained on all three devices 
and tested on different recordings from all three devices. Finally, the last row was trained on all three devices and 
tested on the YouTube dataset. Pos, Neg: The number of positive and negative examples in the set. 

Firearm Pull Type Number Shots Mean (ms) Variance 
High Standard Sport King .22LR ‘Rattle Finger’ Pistol 11 125 9 
High Standard Sport King .22LR Semi-Auto Pistol 5 238 6 
Glock 19 9mm Semi-Auto Pistol 9 213 23 
Sig Sauer P225 9mm Semi-Auto Pistol 8 249 88 
Smith & Wesson M&P .40 S&W Semi-Auto Pistol 10 200 58 
Colt M16 A1 .223R/5.56 Full-Auto Rife 9 70 4 
Smith & Wesson .38 SPL Semi-Auto Revolver 6 263 12 
PWS Pistol 7.62x39mm Semi-Auto Pistol 10 178 14 

Table 5: Shot-to-Shot Timings. Table lists the frearms used and the shot-to-shot timings. ‘Rattle-fnger’ is a 
method where a stiffened trigger fnger is rattled between the trigger and trigger guard to simulate full-auto fre; 
the method can only be used on certain frearms. Compare the rattle-fnger timings to those of normal operation 
for the Sport King. As expected, the fully-automatic Colt M16 has the smallest mean shot-to-shot timing with the 
smallest variance. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
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Figure 5: Collection Geometries for Dual Firearm Experiments. Recordings were collected at two different 
locations for each geometry (only one geometry is shown here). Yellow stars indicate the position of the recording 
devices and the arrow indicates the direction the microphones were pointed. Geometries are referenced in Tables 6 
and 7. Recording devices were at 180 degrees and 20 meters for all geometries except B where the recording 
device was in front of the shooter (0 degrees 30 meters). The position of frearm 1 (red), frearm 2 (green), and 
frearm 3 (purple) are shown. In geometries B and F all frearms are at the same position. Geometry D presents a 
moving scenario where frearms 2 moves from a distance of 10 meters from the shooter to 20 meters. 
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Exp. Geometry FA1 Detected FA Correct FA Assignment 
081A A SpKing22 1 6/6 100% 
082A A S&W22 1 5/5 100% 
083A A Ruger22 1 6/6 100% 
084A A BoltAction22 2 4/6 66% 
085A A Lorcin380 1 6/6 100% 
086A A S&W38 1 6/6 100% 
087A A Ruger357 1 6/6 100% 
088A A Glock9A 1 6/6 100% 
089A A Glock9B 1 6/6 100% 
090A A Sig9 1 6/6 100% 
091A A M&P40A 2 4/6 66% 
092A A M&P40B 1 6/6 100% 
093A A HK40 1 6/6 100% 
094A A Glock45 1 6/6 100% 
095A A Colt45 1 6/6 100% 
096A A Kimber45 1 6/6 100% 
097A A M16223 1 6/6 100% 
098A A WASR762 1 6/6 100% 
099A A Win308 1 6/6 100% 
100A A Remington308 1 6/6 100% 

Table 6: Number of Firearm Detection and Shot Assignments (Single Firearm). Table lists the experiment 
identifer, the geometry of the shooter (see Figure 5), and the frearm. Detected FA is the number of frearms 
detected by our algorithm and Correct FA Assignment is the number of gunshots that are correctly assigned to 
each frearm. For example in experiment 81A there was one frearm detected and all six shots were attributed to 
this frearm. Results get more interesting in Table 7. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
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Exp. Geometry FA1 FA2 Detected FA Correct FA Assignment 
001G B SpKing22 Ruger357 2 8/8 100% 
002G B SpKing22 Glock9B 2 8/8 100% 
003G B Glock9A BoltAction22 2 7/8 88% 
004G B Glock9A Sig9 2 8/8 100% 
005G B M&P40A HK40 2 8/8 100% 
006G B Glock9A M&P40A 2 8/8 100% 
007G B SpKing22 WASR762 2 8/8 100% 
008G B Glock9B M16223 2 8/8 100% 
009G B Colt45 M16223 2 8/8 100% 
010G B Glock9A Glock9B 2 8/8 100% 
011G B M&P40A M&P40B 2 8/8 100% 
019G B M16223 RockRiver300 2 8/8 100% 
012G 
013G 
014G 

C 
C 
C 

Glock9A 
Glock9A 
M&P40A 

Glock9B 
Sig9 

M&P40B 

1 
1 
1 

5/10 50% 
5/10 50% 
5/10 50% 

015G D WASR762 SpKing22 2 10/10 100% 
016G D Glock9A M&P40A 2 10/10 100% 
017G D Ruger357 Glock9B 2 10/10 100% 
018G D Glock9A Glock9B 2 10/10 100% 

Exp. Geometry FA1 FA2 FA3 Detected FA Correct FA Assignment 
001I E SpKing22 Glock9A Glock45 3 11/11 100% 
002I E Glock9A Glock45 RockRiver300 3 11/11 100% 
003I E S&W22 M&P40A Colt45 3 11/11 100% 
004I E Glock9A Glock9B WASR762 3 11/11 100% 
005I F SKS762 WASR762 PWS762 3 9/9 100% 
006I F SKS762 Glock9A PWS762 3 9/9 100% 
007I G SKS762 WASR762 PWS762 3 9/9 100% 

Table 7: Number of Firearm Detection and Shot Assignments (Two Firearms, top) (Three Firearms, bot-
tom). Table lists the experiment identifer, the geometry of the shooters (see Figure 5), and the frearms. Detected 
FA is the number of frearms detected by our algorithm and Correct FA Assignment is the number of gunshots that 
are correctly assigned to each frearm. For example in experiment 001G there were two frearms detected and all 
eight shots are correctly assigned to their respective frearms. 

Prediction Subset Train Accuracy Test Accuracy 
Class Revolver 0.74 0.56 
Class Pistol 0.97 0.88 
Class Rife 0.90 0.81 

Caliber Revolver 0.86 0.51 
Caliber Pistol 0.69 0.43 
Caliber Rife 0.88 0.58 

Make-Model Revolver 0.85 0.53 
Make-Model Pistol 0.62 0.25 
Make-Model Rife 0.76 0.48 

Table 8: Class, Caliber, and Make Predictions. On this challenging task the performance is signifcantly better 
than random chance. As expected, the performance on the training set is better than on the testing set. Class 
prediction is easier than caliber or make prediction and the results are better. Results are shown for the Zoom 
recordings. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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	When a frearm is discharged several sounds are produced. These include the muzzle blast, a shock wave (if the bullet is traveling at supersonic speeds), secondary mechanical sounds, the bullet impact, and scattered refections [1, 8]. The muzzle blast refers to the complex acoustic signal arising from the rapid ejection of gas from the frearm muzzle. It is short (on the order of milliseconds) and loud (typically 120160dB). If the blast is close to the recording device, the volume of the blast may overwhelm t
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	the number of shots fred or the identity of each shot. Finally, any of the described sounds can produce refections when the sound wave bounces off a secondary surface [9]. The most common of these is the ground refection of the muzzle blast. 
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	Several secondary factors effect the recorded audio. First, sounds may arrive at the recording device in a non-chronological order. That is, depending on the scene geometry, the supersonic shock wave may arrive before the muzzle blast [6, 8]. Second, the muzzle blast is highly directional, dependent on the azimuth angle formed between the muzzle direction and the recording device. Both the overall volume and waveform shape vary from a loud and structured sound when pointed towards the recording device (azim
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	The completed work was split into two aims. Aim 1 involved the collection of two datasets. Aim 2 involved the development and application of advanced computational tools to answer several questions. 
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	3 Materials and Methods 
	3 Materials and Methods 
	This proposal has two primary aims. The frst aim involves Data Collection and Processing. The second aim involves Audio Analysis. Each aim will be discussed separately. Methods have been abbreviated to conform to the maximum page limit. 
	Compression techniques are defned as being either lossless, which perfectly preserve the original signal, or lossy where the original signal is not perfectly preserved. 
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	3.1 General Methods and Concepts 
	: Dataset 1: The frst dataset includes test fres for approximately twenty frearms collected using multiple devices at multiple positions relative to the shooter. Firearms were selected based on their commonality, their potential to be used in gun crimes, and the types of sounds they produce. Several makes, calibers, and frearm types are included. Each gunshot was recorded on four different recording devices. These devices include a high-quality Zoom H4N hand-held recorder, an iPhone 7 smartphone, a Samsung 
	: Dataset 1: The frst dataset includes test fres for approximately twenty frearms collected using multiple devices at multiple positions relative to the shooter. Firearms were selected based on their commonality, their potential to be used in gun crimes, and the types of sounds they produce. Several makes, calibers, and frearm types are included. Each gunshot was recorded on four different recording devices. These devices include a high-quality Zoom H4N hand-held recorder, an iPhone 7 smartphone, a Samsung 
	(Aim 1) Data Collection
	-
	-
	(Aim 1) Data Collection
	(Aim 1) Data Processing

	component sinusoid waveforms. Even the complex audio of human speech is simply a summation of individual sin waves each with different frequencies, start and stop times, and amplitudes (volumes). When analyzing an audio waveform it is common practice to consider the individual frequency components. Several frequency-based approaches were considered to represent the information content of each portion of each audio fle. For example, each fle is split into a sequence of short (10 or 20 millisecond) segments (
	-
	-
	-
	-


	Figure
	MFSC/MFCCs are often used with delta and delta-delta coeffcients. The delta coeffcients are the difference between the coeffcients at different times. The delta term is MFSCt−MFSCt−1 (difference in coeffcients at time t and t−1) and the delta-delta coeffcients are (MFSCt −MFSCt−1)−(MFSCt−1 − MFSCt−2) (the difference in the difference). Although we explored the use of delta and delta-delta terms for each task, we found that explicitly including the straight MFSC terms for multiple consecutive windows perform
	Because muzzle-blasts are extremely short events (typically shorter than 5ms) it is diffcult to measure the evolution of frequency components over time. That is, if one split a 5ms muzzle-blast into four different parts (beginning, middle, middle, and end) then each part would represent 1.25ms and would only have 55 sample points (if the original audio was sampled at 44kHz). Therefore, rather than splitting each gunshot into extremely short windows (e.g., 1.25ms) we decided to keep gunshots contained within
	Because muzzle-blasts are extremely short events (typically shorter than 5ms) it is diffcult to measure the evolution of frequency components over time. That is, if one split a 5ms muzzle-blast into four different parts (beginning, middle, middle, and end) then each part would represent 1.25ms and would only have 55 sample points (if the original audio was sampled at 44kHz). Therefore, rather than splitting each gunshot into extremely short windows (e.g., 1.25ms) we decided to keep gunshots contained within
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	was included to capture the background noise before the gunshot occurred. A trained model can therefore take these background frequencies into consideration when evaluating the target 10ms window. In other words, ignore the frequencies in the target window that are also present before the target window. The 500ms after the target window was included to capture the full duration of a gunshot’s sound (including echos or delayed response of the recording device). The decision to consider 520ms refects the fact
	(Aim 2) Algorithm Analysis
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	Figure
	Gunshot Analysis (non-neural network based): Several approaches were considered for comparing the audio representations to complete each of the proposed tasks. In general, these methods rely on the assumption that similar sounds will have similar representations (e.g., either MFSC/MFCC or waveform). The following methods are utilized in the experiments below; note that each of these are established methods and a full description of the approach and theory does not ft in this report. In many cases we utilize
	Gunshot Analysis (non-neural network based): Several approaches were considered for comparing the audio representations to complete each of the proposed tasks. In general, these methods rely on the assumption that similar sounds will have similar representations (e.g., either MFSC/MFCC or waveform). The following methods are utilized in the experiments below; note that each of these are established methods and a full description of the approach and theory does not ft in this report. In many cases we utilize
	below). Samples in the training set are labeled. For example a label for a 10ms window could be that it contains a gunshot or that it does not contain a gunshot. Another label could be that the gunshot is from a pistol or that it is from a rife. The samples in the testing set have their labels hidden and it is the job of the algorithm to predict the label using the learned model. The following methods were tested in this work; however, only a few were found to work in this application. k-Nearest Neighbors (

	Figure
	The problem of determining the number of frearms present in a recording is a variant on the above setup. When determining the number of frearms present (and the assignment of which gunshot corresponds to which frearm) a training set is not explicitly utilized. Instead, the gunshots of a single recording are analyzed as a group where each gunshot is a sample. The goal of the algorithm is to determine the number of clusters (e.g., labels) that best ft the data and then assign these labels to the samples. One 
	The problem of determining the number of frearms present in a recording is a variant on the above setup. When determining the number of frearms present (and the assignment of which gunshot corresponds to which frearm) a training set is not explicitly utilized. Instead, the gunshots of a single recording are analyzed as a group where each gunshot is a sample. The goal of the algorithm is to determine the number of clusters (e.g., labels) that best ft the data and then assign these labels to the samples. One 
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	k provides a signifcant improvement compared to k − 1 then the best k is assumed to be one. Ideally, each cluster contains gunshots for a single frearm. In some cases when a recording has gunshots from multiple similar sounding frearms the k-means approach may place gunshots from two frearms in a single cluster. 

	Figure
	Gunshot Analysis (neural network based): Neural networks have recently enjoyed success in speech and other pattern recognition tasks. Deep Neural Networks (DNNs) are mathematical models very loosly structured after biological neural networks. Neural networks are a complex topic and the description provided here only scratches the surface; references are provided for the interested reader. In a DNN, an input is presented at the input (or frst) layer, information in the form of activations fow through a serie
	Gunshot Analysis (neural network based): Neural networks have recently enjoyed success in speech and other pattern recognition tasks. Deep Neural Networks (DNNs) are mathematical models very loosly structured after biological neural networks. Neural networks are a complex topic and the description provided here only scratches the surface; references are provided for the interested reader. In a DNN, an input is presented at the input (or frst) layer, information in the form of activations fow through a serie
	(Aim 2) Training/Testing

	are required for both the training and testing data. In our case, the annotations include the exact time location of the gunshot in the recording as well as the frearm make, class, and caliber. The annotations of the training data are shown to the algorithm and are used while ftting the model. The annotations of the testing data are hidden from the model as the model’s task is to predict the labels. We use the labels of the testing data as the ‘answer key’ against which we evaluate performance. It is theref

	Figure
	In many of the experiments below the data is split into training and testing. We randomly selected all recordings from all frearms from the following four geometries to be the testing set: 20m 180-degrees, 20m 60-degrees, 3m 0-degrees, 12m 75-degrees. The remaining sixteen geometries listed in Figure 3 comprise the training set. This results in an 80%/20% training/testing split. Finally, our datasets had signifcant class imbalance between the number of windows with gunshots and the number without gunshots. 
	-


	3.2 Specifc Methods for Each Application 
	3.2 Specifc Methods for Each Application 
	In this section we discuss the analytic methods used to address each of the four main questions (gunshot detection, shot-to-shot timings, determine number of frearms present and gunshot assignment, and predicting frearm class, caliber, and make/model. 
	-

	: Several approaches were evaluated for the detection of gunshots within a recording. These included GMMs, kNN, LR, and LDA. We found that LDA with a hard preflter achieved the best performance. For each target 10ms window we used the following feature set. First, we considered four sequential windows including the 10ms window of interest, the 10ms before the window of interest, and the 500ms after the window of interest (split into two 250ms windows). For each window we computed 35 MFSC coeffcients and an 
	Gunshot Detection
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	Figure
	half a second) and are represented by a 140-dimensional MFSC vector and a 4-dimensional energy vector (Figure 4). The following two methods were evaluated using our datasets and results are reported below: 
	• 
	• 
	• 
	• 
	Method 1: Audio fles were split into a sequence of 10ms non-overlapping windows. Each window was evaluated as to its likelihood of being a gunshot. We constructed a method with two stages. The frst stage performs a hard flter and looks for three consecutive windows (centered at the 10ms window of interest at time t) where the volume increases (between time t − 1 and t) and then decreases (from time t to t +1). Windows not following this ‘short-impulse’ profle are marked as non-gunshot. Windows meeting the s

	– 
	– 
	– 
	Stage 1: Preflter each window t for candidate gunshots by looking for impulses. If the volume increases then decreases over three consecutive windows and if the window at time t has a volume at least 70% of the maximum then the segment is considered a candidate and is evaluated in stage 2. 

	– 
	– 
	Stage 2: Use LDA to assign a label of gunshot or non-gunshot for each candidate gunshot coming out of stage 1. 



	• 
	• 
	Method 2: The second method utilizes a deep Deep Neural Network (DNN). The input representation of each target 10ms window is similar to that described above (140 MFSCs and 4 energy terms). For our DNNs, we considered a variety of network architectures (confguration of intermediate or hidden layers) and found that the best-performing choice has three intermediate layers with 80, 40, 10, and 5 hidden units, respectively. Internal nodes use the rectifed linear unit 
	-
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	Figure
	(ReLU) activation function. The output layer has two nodes (with a softmax activation) corresponding to the labels of gunshot and non-gunshot. We utilized the Keras machine learning suite () to implement the networks and trained the model using the Adam optimizer. Unlike with the LDA model, we did not utilize impulse flters with the DNN model. The hypothesis is that the neural network model would explicitly learn to detect impulses. 
	-
	http://www.keras.io

	As described for our non-neural network approach, class imbalance was also an issue in our DNN implementations. For our DNN models, we downsampled negatives to achieve a 5:1 ratio of non-gunshots to gunshots. Moreover, we also reweighted the loss function according to this class imbalance during training. That is, there was more of a training penalty incurred when making an error on a gunshot than a non-gunshot. 
	: A small number of experiments were conducted with semi-automatic or fully-automatic frearms to explore the shot-to-shot timings of each. For these experiments the time of each gunshot was manually identifed and the shot-to-shot times computed using simple subtraction. 
	Shot-to-Shot Timings

	: In contrast to the described MFSC approaches, the determination of the number of frearms present and shot assignment problem directly compared the audio waveform of two gunshots. That is, after the individual gunshots had been identifed in the source audio fle (either manually or using the gunshot detection methods described above) each identifed gunshot was compared to every other identifed gunshot to determine how similar they were. The most successful method for this comparison uses the maximum cross-c
	Determine Number of Firearms Present and Shot Assignment
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	For an audio fle with multiple gunshots, we frst identify all the gunshots, then for every pair of gunshots we compute their similarity using the CCF as computed over the 520ms windows described 
	For an audio fle with multiple gunshots, we frst identify all the gunshots, then for every pair of gunshots we compute their similarity using the CCF as computed over the 520ms windows described 
	above (10ms centered at the muzzle blast, 10ms before, and 500ms after, Figure 4). For k gunshots we have pairwise comparisons. A hierarchical clustering is then performed which predicts two 
	k∗(k−1) 
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	gunshots as having come from the same frearm if they are suffciently similar. We found that a similarity threshold of 1.7 worked well. That is, two gunshots with a pairwise CCFmax > 1.7 are assigned to the same frearm. If all correlations are less than 1.7 we adjust the max threshold lower and consider the most similar gunshot; however, clustering this way assumes that each frearm is fred at least twice. At the end of this clustering it’s possible for the gunshots to all be in the same cluster (indicating t
	: As with the other problems above, we considered several methods including GMMs and kNN; however, the best performance was achieved using LDA on the 140-dimensional MFSC values with four energy terms computed over four sequential windows of 10ms, 10ms, 250ms, and 250ms. A training / testing split was used as described in the results section. We predicted class, caliber, and make/model. 
	Prediction of Model of Class and Caliber



	4 Data Results and Analysis 
	4 Data Results and Analysis 
	In this section we summarize the experimental results. : Dataset 1: Gunshot recordings for twenty frearms under twenty conditions were collected in rural eastern Arizona. The collection site is a fat, treeless, remote environment away from highway, aircraft, and city sounds. Unfortunately, during the recording weekend there was intermittent wind at the shoot site. The wind had minimal effect on the Zoom device but signifcantly impacted the BodyCam recordings to the extent that even after processing the Body
	In this section we summarize the experimental results. : Dataset 1: Gunshot recordings for twenty frearms under twenty conditions were collected in rural eastern Arizona. The collection site is a fat, treeless, remote environment away from highway, aircraft, and city sounds. Unfortunately, during the recording weekend there was intermittent wind at the shoot site. The wind had minimal effect on the Zoom device but signifcantly impacted the BodyCam recordings to the extent that even after processing the Body
	(Aim 1A) Data Collection
	-
	-

	including supersonic, rapidly fred semi-automatic, and fully automatic frearms. Approximately 13,400 gunshot recordings were collected across all conditions and devices. 

	Figure
	A second dataset (Dataset 2) containing ‘real-world’ test fres extracted from YouTube videos was also obtained. Videos were identifed containing the keywords shown in Table 2. Slight variants on each keyword were allowed. The recording environment (indoors or outdoors) and relative recording position (near or far) were noted for each recording. The recording quality of these videos was generally much lower than that of Dataset 1. The collected data was used as described below. 
	: All audio fles of Datasets 1 and 2 were processed as described above. The initial video fles were split by experiment, the audio was extracted for each experiment, and then converted to single audio channel at 44.1kHz and saved in the lossless WAV format. For experiments where we needed individual gunshots for training, we manually went through and split each WAV fle into individual fles each approximately 1-2 seconds long and containing a single gunshot. : A simple website was created to house Dataset 1 
	: All audio fles of Datasets 1 and 2 were processed as described above. The initial video fles were split by experiment, the audio was extracted for each experiment, and then converted to single audio channel at 44.1kHz and saved in the lossless WAV format. For experiments where we needed individual gunshots for training, we manually went through and split each WAV fle into individual fles each approximately 1-2 seconds long and containing a single gunshot. : A simple website was created to house Dataset 1 
	(Aim 1B) Data Processing
	(Aim 1C) Website
	www.CadreForensics.com/audio 
	-
	(Aim 2A) Gunshot Detection Method 1
	(Aim 2A) Gunshot Detection Method 2

	same 80%/20% training/testing split as used in method 1. As in Method 1, we also considered training on all three devices together (referred to as the ‘combined’ model). Results are presented for the three devices, the combined model, and the YouTube dataset in Table 4. The results on the Zoom, iPhone, and Samsung data are arguably better than method 1 above. Method 2 does not use a impulse flter yet the detection performance is comparable to Method 1 when a flter is used. This suggests that the DNN model h

	Figure
	Overall, all of our models achieve fair to good accuracy. A few general conclusions can be made. For method 1, the impulse flters do a good job of reducing false positives but have the unwanted effect of reducing the true positive rate. The performance is also effected by the fact that gunshots are a rare occurrence in our datasets which induces class imbalance and a potentially biased model. The neural network approach, (Method 2) agnostically learns this imbalance and thus the false negative rate is likel
	The generalized performance on the YouTube set is slightly better in Method 2. The YouTube set contained a lot of frearms recorded up-close and signifcantly more background noise than our core sets. It is interesting that Method 2 was better able to handle these differences. Overall, Method 2 may be a better approach than Method 1; however, both methods may have diffculty generalizing to the full range of recording devices and environments encountered in actual casework. The initial performance is promising
	The generalized performance on the YouTube set is slightly better in Method 2. The YouTube set contained a lot of frearms recorded up-close and signifcantly more background noise than our core sets. It is interesting that Method 2 was better able to handle these differences. Overall, Method 2 may be a better approach than Method 1; however, both methods may have diffculty generalizing to the full range of recording devices and environments encountered in actual casework. The initial performance is promising
	(Aim 2A) Gunshot Timing
	-
	-
	(Aim 2B) Number of Firearms Present and Annotation

	frearms at the same physical position. Geometry C is unique in that the recording device is down range and thus the recorded volumes are likely very loud compared with the other geometries where the recording device is 20 meters behind the shooters. Geometry D is a moving scenario where the second shooter takes a series of steps between each shot carefully moving from 10 meters to 20 meters from the frst shooter. Geometry E has three frearms each at a different position. Geometry G has two frearms at one po

	Figure
	Overall the algorithm performs extremely well under these recording scenarios. Table 6 shows the results of the single frearm experiments. Only two mistakes are made on this set. The Bolt Action 22 is mistakenly heard as two different types of sounds likely due to the variability in the audio produced by the bolt action mechanism itself. A second error is one of the M&P 40s where the algorithm felt two of the shots sounded different enough to predict a second frearm. For the two and three frearm experiments
	We note that these results are not perfect and that this approach will not yet generalize to success in random crime scene videos. In none of the experiments did we move the recording device. Movement is likely in video grabbed from a cell-phone. Although geometry D had one moving shooter they moved slowly and over a limited range. During an actual crime it’s likely that movement is wildly erratic. The best results (and those reported here) came from the handheld Zoom device. While this is not a high-freque
	Figure
	: The goals of class, caliber, and make/model prediction were quite ambitious and we only expected modest recognition performance. We used the same 140-dimensional MFSC vector with 4-dimensional energy vector to describe each gunshot. LDA was used to cluster based on class, caliber, or make/model. The same training and testing splits as above were used to test the model. The data has three class labels: revolver, pistol, and rife. The data has ten calibers (.22LR, .380 Auto, .38 SPL, .357 MAG, 9mm Luger, .4
	(Aim 2C) Class, Caliber, and Make/Model Prediction
	7.62x39, .308W/7.62). 

	Class prediction is the easiest of the three objectives and the results are fairly decent on both the training and testing sets. This suggests that the model is generalizable. For example, 97% of the pistols in the training set are correctly predicted to be pistols and 88% of the pistols in the testing set are correctly predicted to be pistols. The results for caliber and make prediction show signs of over-ftting in that the training performance is signifcantly better than testing performance. Despite these

	5 Scholarly Products Produced 
	5 Scholarly Products Produced 
	The primary product of the proposed research is the presentation of our results and progress. We plan on writing up our results for publication. We aim to submit a journal version of our grant fnal report to either the AFTE journal or the Journal of Forensic Science. We also produced what is to our knowledge the largest publicly available set of gunshot recordings. The data is freely available from our website. The site requires users to create an account so that we can keep track of the number of individua
	www.CadreForensics.com/audio 

	Figure

	6 Summary 
	6 Summary 
	We successfully completed the proposed aims during the project period. Towards Aim 1, we collected a large set of gunshot audio recordings for approximately twenty different frearms. Recordings were collected on several different devices. We also assembled a large set of ‘real-world’ gunshot recordings from a popular social-media sharing site. Because we only have rights to our own data, we made all our audio data publicly available through a simple download website. Towards Aim 2, we developed and evaluate
	We found that we were fairly successful in being able to identify gunshots, extremely successful in being able to determine the number of different frearms present, and moderately successful in the challenge of recognizing frearm class, caliber, make/model. During this investigation we evaluated the performance of a number of contemporary machine learning algorithms. These algorithms were selected based on their performance on other pattern recognition tasks. They include linear and non-linear methods based
	-
	-

	Figure

	Appendix 
	Appendix 
	Implications for Criminal Justice Policy and Practice 
	Our primary impact has been supporting the hypothesis that useful information is contained within the audio recordings of gunshots. Our work product includes what is to our knowledge the largest collection of publicly available gunshot audio data. These recordings are now available on our website. Our results and the availability of our data may serve as a next-step towards a fully automated gunshot analysis system. By publishing our results and making our data available, we are enabling other researchers t
	Our work directly addresses several aims of the NIJ’s Applied Research and Development in Forensic Science for Criminal Justice Purposes program. Specifcally we have developed measurement and analytic techniques, grounded in mathematical science that are able to provide accurate quantitative sample comparison. This work benefts the criminal justice system and their ability to extract frearm related information from evidence. For example, our work is a step towards being able to determine the number of frear
	-
	-
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	Figures and Tables 
	Figure
	1) High Standard Sport King (SpKing22) [.22LR, Pistol] This semi-automatic pistol can be fred very rapidly giving the impression that the shots are from a full automatic frearm 
	2) S&W 34-1 (S&W22) [.22LR, Revolver] Different in design and operation from semi-automatic pistols but can discharge the same cartridges as the High Standard pistol 
	3) Ruger 10/22 ] (Ruger22) [.22LR, Carbine] Common rife can discharge subsonic and supersonic .22LR ammunition as well as the same ammunition as fred in the previous frearms 
	4) Remington 33 Bolt-Action Rife (BoltAction22) [.22LR, Rife] A bolt action rife, fring the same ammunition as the Ruger 10/22, lacks the sounds produced by the cycling of the Ruger’s semi-automatic mechanism 
	-

	5) Lorcin L380 (Lorcin380) [.380 Auto, Pistol] Common semi-automatic handguns often involved in gang and drive-by shootings, they are of straight blowback design and have very few moving parts 
	6) S&W 10-8 (S&W38) [.38SPL, Revolver] Other than the possible sound of cocking the hammer of a revolver, they only produce the sound of the discharge, can use subsonic and supersonic ammunition 
	-

	7) Ruger Blackhawk (Ruger357) [.357 MAG, Revolver] Similar to .38SPL except that .357 Magnum revolvers are higher powered, producing very loud discharges and launching bullets at supersonic velocities 
	-
	-

	8) Glock 19 (Glock9A) [9mm Luger, Pistol] Common handguns, particularly with law enforcement, some makes have different systems of operation which could produce unique sounds 
	9) Glock 19 (Glock9B) [9mm Luger, Pistol] (Duplicate of Firearm 8) 
	10) Sig P225 (Sig9) [9mm Luger, Pistol] Common handguns, particularly with law enforcement, some makes have different systems of operation which could produce unique sounds 
	11) M&P 40 (M&P40A) [.40 S&W, Pistol] Common handguns, particularly with law enforcement 
	12) M&P 40 (M&P40B) [.40 S&W, Pistol] (Duplicate of Firearm 11) 
	13) HK USP Compact (HK40) [.40 S&W, Pistol] Common handguns, particularly with law enforcement 
	14) Glock 21 (Glock45) [.45 Auto, Pistol] Large caliber handguns popular with law enforcement, each has a different system of operation which could produce unique sound 
	15) Colt 1911 A1 (Colt45) [.45 Auto, Pistol] Large caliber handguns popular with law enforcement, each has a different system of operation which could produce unique sound 
	16) Kimber Tactical Custom (Kimber45) [.45 Auto, Pistol] Large caliber handguns popular with law enforcement, each has a different system of operation which could produce unique sound 
	-

	17) M16A1 AR15 (, Rife] Bolt-action very common semi-automatic with law enforcement and civilian shooters. Have been used in some high profle crimes. 
	M16223)[.223R/5.56
	-

	18) WASR 10/63 AK47 (WASR762) [7.62x39mm, Carbine] Numerous semi-automatic versions of the AK47 in circulation, would allow the cyclic rate and shot-to-shot time intervals of full automatic fre 
	19) Winchester M14 (Win308) [., Rife] Most common caliber for military and police snipers 
	308W/7.62

	20) Remington 700 (Remington308) [., Rife] Another common caliber for military snipers and long range shooters, produces a very loud discharge 
	308W/7.62

	21) Rock River LAR-15 (RockRiver300) [.300 Blackout, Rife] 
	22) Russian SKS (SKS762) [7.62x39mm, Rife] 
	23) PWS MK107 Mod 1 (PWS762) [7.62x39mm, Pistol] 
	Table 1: Firearm List. Firearms 1 through 20 were used in most experiments. Firearms 21, 22, and 23 were used in select experiments. Name in parentheses is the short name used in other result tables. 
	Figure
	Figure
	Figure 1: Features. Cartoon example of computing an MFSC feature vector for an audio waveform. The frequency spectrum of each window is computed via the Fourier Transform. The power in each frequency band is quantifed and converted into a vector (array). In this simplifed example, the selected window is represented by the 10 numbers in the vector at the right. Note that this is an extremely simplifed example, frequency bands often overlap and have nonlinear spacing and weights. 
	Figure
	Figure 2: Colt 1911 Gunshots. The same Colt 1911 (.45 Auto) gunshot recorded at 40 meters and -30 degrees from the shooter on the Zoom (left) and iPhone (right). The Zoom recording is relatively clean with little extent beyond the muzzle-blast. The iPhone recording is more noisy with echos and refections lasting 500ms past the muzzle-blast. Close-ups (bottom row) show the 5ms centered on the muzzle-blast. 
	Figure
	Figure
	Figure 3: Collection Geometries for Single Firearm Experiments. Recordings were collected at twenty different locations (distance and azimuth angle shown). The shooter was located in the center (red triangle). All shots were towards the target (shown at right). All four recording devices were used at each primary location (yellow stars) and secondary location (purple circles). Only the body camera was recorded on the shooter (red triangle). The Zoom, iPhone, and Samsung were recorded on the ground at 3 mete
	-

	Figure
	Figure
	Figure 4: MFSC and Energy Representation. The window at time t is represented with four MFSC terms (35 in each of four windows) and four Energy terms (1 from each of the four corresponding windows). 
	Figure
	Firearm Type 
	Firearm Type 
	Firearm Type 
	Number of Audio Files 
	Approx Number of Gunshots 

	High Standard Sport King 22 
	High Standard Sport King 22 
	22 
	132 

	Ruger Blackhawk 357 Revolver 
	Ruger Blackhawk 357 Revolver 
	150 
	900 

	Smith & Wesson 22 Revolver 
	Smith & Wesson 22 Revolver 
	80 
	480 

	Ruger 10/22 Carbine 
	Ruger 10/22 Carbine 
	137 
	822 

	Remington 22LR 
	Remington 22LR 
	130 
	780 

	Lorcin 380 
	Lorcin 380 
	21 
	126 

	Smith & Wesson 38 Special Revolver 
	Smith & Wesson 38 Special Revolver 
	93 
	558 

	Glock 19 9mm 
	Glock 19 9mm 
	132 
	792 

	Sig Sauer P225 9mm 
	Sig Sauer P225 9mm 
	50 
	300 

	Smith & Wesson M&P 40 
	Smith & Wesson M&P 40 
	135 
	810 

	Heckler & Koch USP Compact 40 
	Heckler & Koch USP Compact 40 
	49 
	294 

	Glock 21 45 Auto 
	Glock 21 45 Auto 
	150 
	900 

	Colt 1911 45 Auto 
	Colt 1911 45 Auto 
	115 
	690 

	Kimber Tactical Custom 45 Auto 
	Kimber Tactical Custom 45 Auto 
	66 
	396 

	Colt M16 A1 223R 5.56 
	Colt M16 A1 223R 5.56 
	75 
	450 

	Romarm WASR 10/63 308 
	Romarm WASR 10/63 308 
	50 
	300 

	Winchester M14 308 
	Winchester M14 308 
	45 
	270 

	Remington 700 308 
	Remington 700 308 
	63 
	378 


	Table 2: Dataset 2 (YouTube). Where “Smith & Wesson” is listed, we also searched for “S&W”, similarly we accepted “H&K” for Heckler & Koch 
	Train 
	Train 
	Train 
	Test 
	Filters 
	TNR 
	FPR 
	FNR 
	TPR 

	Zoom 
	Zoom 
	Zoom 
	No 
	99.98% (37413) 
	0.02% (6) 
	0.50% (2) 
	99.50% (399) 

	Zoom 
	Zoom 
	Zoom 
	Yes 
	100.00% (37419) 
	0.00% (0) 
	34.66% (139) 
	65.34% (262) 

	iPhone 
	iPhone 
	iPhone 
	No 
	99.96% (41723) 
	0.04% (18) 
	1.81% (8) 
	98.19% (435) 

	iPhone 
	iPhone 
	iPhone 
	Yes 
	100.00% (41739) 
	0.00% (2) 
	4.97% (22) 
	95.03% (421) 

	Samsung 
	Samsung 
	Samsung 
	No 
	99.93% (28682) 
	0.07% (7) 
	1.99% (6) 
	98.01% (295) 

	Samsung 
	Samsung 
	Samsung 
	Yes 
	100.00% (28702) 
	0.00% (1) 
	10.96% (33) 
	89.04% (268) 

	Combined 
	Combined 
	Combined 
	No 
	99.37% (99262) 
	0.63% (632) 
	0.57% (11) 
	99.43% (1928) 

	Combined 
	Combined 
	Combined 
	Yes 
	99.97% (99860) 
	0.03% (34) 
	12.22% (237) 
	87.78% (1702) 

	Combined 
	Combined 
	YouTube 
	No 
	78.85% (2159) 
	21.15% (579) 
	1.51% (12) 
	98.49% (782) 

	Combined 
	Combined 
	YouTube 
	Yes 
	99.05% (2712) 
	0.95% (26) 
	15.99% (127) 
	84.01% (667) 


	Table 3: Gunshot Detection (LDA Model). Table lists the detection results for the testing sets both with and without the use of the impulse detection flters. The frst six rows show the results for training and testing on the same recording device. The fnal four rows train on a Combined set including data from the Zoom, iPhone, and Samsung recordings. The fnal two rows show the results of the combined model when tested on the YouTube dataset. In all tables: TNR: True Negative Rate, FPR: False Positive Rate, 
	Figure
	Train 
	Train 
	Train 
	Test 
	Pos 
	Neg 
	TNR 
	FPR 
	FNR 
	TPR 

	Zoom 
	Zoom 
	Zoom 
	407 
	63125 
	99.96% (63099) 
	0.04% (26) 
	5.90% (24) 
	94.10% (383) 

	iPhone 
	iPhone 
	iPhone 
	449 
	70008 
	99.82% (69885) 
	0.18% (123) 
	0.22% (1) 
	99.78% (448) 

	Samsung 
	Samsung 
	Samsung 
	307 
	47587 
	100.00% (47586) 
	0.00% (1) 
	1.95% (6) 
	98.05% (301) 

	Combined 
	Combined 
	Combined 
	1163 
	180720 
	99.83% (180407) 
	0.17% (313) 
	0.69% (8) 
	99.31% (1155) 

	Combined 
	Combined 
	YouTube 
	793 
	24842 
	96.70% (24022) 
	3.30% (820) 
	2.77% (22) 
	97.23% (771) 


	Table 4: Gunshot Detection (Neural Network Model). Overall results for each of the neural network models on the testing sets. The frst three results rows (Zoom, iPhone, Samsung) were trained on data from the specifed device and tested using different recordings from the same device. In the fourth and ffth rows the term ‘Combined’ refers to a combined set of Zoom, iPhone, and Samsung recordings. The fourth row, is trained on all three devices and tested on different recordings from all three devices. Finally
	Firearm 
	Firearm 
	Firearm 
	Pull Type 
	Number Shots 
	Mean (ms) 
	Variance 

	High Standard Sport King .22LR 
	High Standard Sport King .22LR 
	‘Rattle Finger’ Pistol 
	11 
	125 
	9 

	High Standard Sport King .22LR 
	High Standard Sport King .22LR 
	Semi-Auto Pistol 
	5 
	238 
	6 

	Glock 19 9mm 
	Glock 19 9mm 
	Semi-Auto Pistol 
	9 
	213 
	23 

	Sig Sauer P225 9mm 
	Sig Sauer P225 9mm 
	Semi-Auto Pistol 
	8 
	249 
	88 

	Smith & Wesson M&P .40 S&W 
	Smith & Wesson M&P .40 S&W 
	Semi-Auto Pistol 
	10 
	200 
	58 

	Colt M16 A1 .223R/5.56 
	Colt M16 A1 .223R/5.56 
	Full-Auto Rife 
	9 
	70 
	4 

	Smith & Wesson .38 SPL 
	Smith & Wesson .38 SPL 
	Semi-Auto Revolver 
	6 
	263 
	12 

	PWS Pistol 7.62x39mm 
	PWS Pistol 7.62x39mm 
	Semi-Auto Pistol 
	10 
	178 
	14 


	Table 5: Shot-to-Shot Timings. Table lists the frearms used and the shot-to-shot timings. ‘Rattle-fnger’ is a method where a stiffened trigger fnger is rattled between the trigger and trigger guard to simulate full-auto fre; the method can only be used on certain frearms. Compare the rattle-fnger timings to those of normal operation for the Sport King. As expected, the fully-automatic Colt M16 has the smallest mean shot-to-shot timing with the smallest variance. 
	Figure
	Figure
	Figure 5: Collection Geometries for Dual Firearm Experiments. Recordings were collected at two different locations for each geometry (only one geometry is shown here). Yellow stars indicate the position of the recording devices and the arrow indicates the direction the microphones were pointed. Geometries are referenced in Tables 6 and 7. Recording devices were at 180 degrees and 20 meters for all geometries except B where the recording device was in front of the shooter (0 degrees 30 meters). The position 
	Figure
	Exp. 
	Exp. 
	Exp. 
	Geometry 
	FA1 
	Detected FA 
	Correct FA Assignment 

	081A 
	081A 
	A 
	SpKing22 
	1 
	6/6 100% 

	082A 
	082A 
	A 
	S&W22 
	1 
	5/5 100% 

	083A 
	083A 
	A 
	Ruger22 
	1 
	6/6 100% 

	084A 
	084A 
	A 
	BoltAction22 
	2 
	4/6 66% 

	085A 
	085A 
	A 
	Lorcin380 
	1 
	6/6 100% 

	086A 
	086A 
	A 
	S&W38 
	1 
	6/6 100% 

	087A 
	087A 
	A 
	Ruger357 
	1 
	6/6 100% 

	088A 
	088A 
	A 
	Glock9A 
	1 
	6/6 100% 

	089A 
	089A 
	A 
	Glock9B 
	1 
	6/6 100% 

	090A 
	090A 
	A 
	Sig9 
	1 
	6/6 100% 

	091A 
	091A 
	A 
	M&P40A 
	2 
	4/6 66% 

	092A 
	092A 
	A 
	M&P40B 
	1 
	6/6 100% 

	093A 
	093A 
	A 
	HK40 
	1 
	6/6 100% 

	094A 
	094A 
	A 
	Glock45 
	1 
	6/6 100% 

	095A 
	095A 
	A 
	Colt45 
	1 
	6/6 100% 

	096A 
	096A 
	A 
	Kimber45 
	1 
	6/6 100% 

	097A 
	097A 
	A 
	M16223 
	1 
	6/6 100% 

	098A 
	098A 
	A 
	WASR762 
	1 
	6/6 100% 

	099A 
	099A 
	A 
	Win308 
	1 
	6/6 100% 

	100A 
	100A 
	A 
	Remington308 
	1 
	6/6 100% 


	Table 6: Number of Firearm Detection and Shot Assignments (Single Firearm). Table lists the experiment identifer, the geometry of the shooter (see Figure 5), and the frearm. Detected FA is the number of frearms detected by our algorithm and Correct FA Assignment is the number of gunshots that are correctly assigned to each frearm. For example in experiment 81A there was one frearm detected and all six shots were attributed to this frearm. Results get more interesting in Table 7. 
	Figure
	Exp. 
	Exp. 
	Exp. 
	Geometry 
	FA1 
	FA2 
	Detected FA 
	Correct FA Assignment 

	001G 
	001G 
	B 
	SpKing22 
	Ruger357 
	2 
	8/8 100% 

	002G 
	002G 
	B 
	SpKing22 
	Glock9B 
	2 
	8/8 100% 

	003G 
	003G 
	B 
	Glock9A 
	BoltAction22 
	2 
	7/8 88% 

	004G 
	004G 
	B 
	Glock9A 
	Sig9 
	2 
	8/8 100% 

	005G 
	005G 
	B 
	M&P40A 
	HK40 
	2 
	8/8 100% 

	006G 
	006G 
	B 
	Glock9A 
	M&P40A 
	2 
	8/8 100% 

	007G 
	007G 
	B 
	SpKing22 
	WASR762 
	2 
	8/8 100% 

	008G 
	008G 
	B 
	Glock9B 
	M16223 
	2 
	8/8 100% 

	009G 
	009G 
	B 
	Colt45 
	M16223 
	2 
	8/8 100% 

	010G 
	010G 
	B 
	Glock9A 
	Glock9B 
	2 
	8/8 100% 

	011G 
	011G 
	B 
	M&P40A 
	M&P40B 
	2 
	8/8 100% 

	019G 
	019G 
	B 
	M16223 
	RockRiver300 
	2 
	8/8 100% 

	012G 013G 014G 
	012G 013G 014G 
	C C C 
	Glock9A Glock9A M&P40A 
	Glock9B Sig9 M&P40B 
	1 1 1 
	5/10 50% 5/10 50% 5/10 50% 

	015G 
	015G 
	D 
	WASR762 
	SpKing22 
	2 
	10/10 100% 

	016G 
	016G 
	D 
	Glock9A 
	M&P40A 
	2 
	10/10 100% 

	017G 
	017G 
	D 
	Ruger357 
	Glock9B 
	2 
	10/10 100% 

	018G 
	018G 
	D 
	Glock9A 
	Glock9B 
	2 
	10/10 100% 


	Exp. 
	Exp. 
	Exp. 
	Geometry 
	FA1 
	FA2 
	FA3 
	Detected FA 
	Correct FA Assignment 

	001I 
	001I 
	E 
	SpKing22 
	Glock9A 
	Glock45 
	3 
	11/11 100% 

	002I 
	002I 
	E 
	Glock9A 
	Glock45 
	RockRiver300 
	3 
	11/11 100% 

	003I 
	003I 
	E 
	S&W22 
	M&P40A 
	Colt45 
	3 
	11/11 100% 

	004I 
	004I 
	E 
	Glock9A 
	Glock9B 
	WASR762 
	3 
	11/11 100% 

	005I 
	005I 
	F 
	SKS762 
	WASR762 
	PWS762 
	3 
	9/9 100% 

	006I 
	006I 
	F 
	SKS762 
	Glock9A 
	PWS762 
	3 
	9/9 100% 

	007I 
	007I 
	G 
	SKS762 
	WASR762 
	PWS762 
	3 
	9/9 100% 


	Table 7: Number of Firearm Detection and Shot Assignments (Two Firearms, top) (Three Firearms, bottom). Table lists the experiment identifer, the geometry of the shooters (see Figure 5), and the frearms. Detected FA is the number of frearms detected by our algorithm and Correct FA Assignment is the number of gunshots that are correctly assigned to each frearm. For example in experiment 001G there were two frearms detected and all eight shots are correctly assigned to their respective frearms. 
	-

	Prediction 
	Prediction 
	Prediction 
	Subset 
	Train Accuracy 
	Test Accuracy 

	Class 
	Class 
	Revolver 
	0.74 
	0.56 

	Class 
	Class 
	Pistol 
	0.97 
	0.88 

	Class 
	Class 
	Rife 
	0.90 
	0.81 

	Caliber 
	Caliber 
	Revolver 
	0.86 
	0.51 

	Caliber 
	Caliber 
	Pistol 
	0.69 
	0.43 

	Caliber 
	Caliber 
	Rife 
	0.88 
	0.58 

	Make-Model 
	Make-Model 
	Revolver 
	0.85 
	0.53 

	Make-Model 
	Make-Model 
	Pistol 
	0.62 
	0.25 

	Make-Model 
	Make-Model 
	Rife 
	0.76 
	0.48 


	Table 8: Class, Caliber, and Make Predictions. On this challenging task the performance is signifcantly better than random chance. As expected, the performance on the training set is better than on the testing set. Class prediction is easier than caliber or make prediction and the results are better. Results are shown for the Zoom recordings. 
	Figure
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