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Recidivism Forecasting Challenge 
Anuar Assamidanov 

Problem Statement 

The Recidivism Challenge aims to improve the ability to forecast recidivism using person- 

and place-based variables with the goal of improving outcomes for those serving a 

community supervision sentence. We hope through the Challenge to encourage discussion on 

the topics of reentry, bias/fairness, measurement, and algorithm advancement. In addition to 

the Challenge data provided, NIJ encourages contestants to consider a wide range of potential 

supplemental data sources that are available to community corrections agencies to enhance 

risk determinations, including the incorporation of dynamic place-based factors along with 

the common static and dynamic risk factors. NIJ is interested in models that accurately 

identify risk for all individuals on community supervision. In order to do this, contestants will 

need to present risk models that recognize gender specific differences and do not exacerbate 

racial bias that may exist.  

Under this Challenge, NIJ is providing a large sample accompanied with rich data amendable 

for additional data to be paired with it. NIJ expects that new and more nuanced information 

will be gained from the Challenge and help address high recidivism among persons under 

community supervision. Findings could directly impact the types of factors considered when 

evaluating risk of recidivism and highlight the need to support people in specific areas related 

to reincarceration. Additionally, the Challenge could provide guidance on gender specific 

considerations and strategies to account for racial bias during risk assessment.   

The Challenge uses data from the State of Georgia about persons released from prison to 

parole supervision for the period January 1, 2013 through December 31, 2015. Contestants 

will submit forecasts (percent likelihoods) of whether individuals in the dataset recidivated 

within one year, two years, or three years after release. 
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Project Overview 

In this project, I analyzed and predicted the likelihood of recidivism using profile data. To 

accomplish that, I performed Logistic regression, Random Forest Classifier, XGBoost, 

LightGBM, and Catboost algorithms and evaluated performance. I divided the project into 

six main parts. I went through the Exploratory Data Analysis, Feature Engineering, Model 

Building, Model Evaluation, Feature Importance, and Inference.  

Exploratory Data Analysis 

The dataset has 53 columns and 18028 rows. The data includes individual- and place-based 

variables that capture the supervision case information, prison case information, prior 

Georgia criminal history, prior Georgia community supervision history, Georgia board of 

pardons and paroles conditions of supervision, and supervision activities. The columns in the 

data are deemed to be a proxy for the already-established profile of respondents. They can be 

used to accentuate the salience of person-based and place-based recidivism forecasting.  

Our primary outcome variable is recidivism. The table below shows the percentage and 

number of recidivated people in the sample of the 18028 population. It occurs the percent 

decreases by each year from 29.8 to 19 percent. Overall, within three years, 57.9% are 

recidivated. 
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 Recidivism Year 1 Recidivism Year 2 Recidivism Year 3 Overall  

Number of 

Recidivated 

People/Percentage  

5377 (29.8%) 3253 (25.7%) 1791 (19%) 10421 (57.9%) 

Male 4920 (31.1%) 2889 (26.5%) 1601 (20%) 9410 (59.5%) 

Female 457 (20.6%) 364 (20.7%) 190 (13.6%) 1011 (45.6%) 

Black 3198 (31%) 1830 (25.7%) 1048 (19.8%) 6076 (58.9%) 

White 2179 (28.2%) 1423 (25.7%) 743 (18.1%) 4345 (56.3%) 

Total Number of 

Observation 

18028 12651 9398 18028 

Table 1. Descriptive Statistics of the data 

I divide the table into gender and race categories to see how the recidivism varies on those 

variables of interest. It occurs that the male population is substantially higher than the female. 

Recidivism rate conditioning on gender differs 11-7% each year, meaning that the male 

population tends to re-offend more than the female population. Furthermore, the number of 

black populations recidivated is higher than the white population. However, the percentage of 

recidivism with race category has almost the same value in each year.  To sum up, we can see 

that recidivism within three years exceeds 40% for each variable in Table 1.  

Feature Engineering 

In this part, I will explain how I extracted features from raw data, potentially improving the 

performance of machine learning algorithms. Overall, in this project, I did not find that 

feature engineering produces substantial improvement in the results, meaning that the power 

of model learning and extracting insight was better than the human manipulation of the data.  

I have done all feature engineering to deal with missing data, converting booleans into 

integers, converting categorical variables into a dummy, and converting decimals into 

integers.  
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Initially, I converted the outcome variables into a dummy variable. It will transform our 

research question into the likelihood of recidivism based on the given variables. This dummy 

transformation gives us a great opportunity to effectively apply classification algorithms like 

Logistic Regression, Random Forest, Gradient Boosting, Neural Networks, etc.  

Regarding missing values, to my knowledge, lightGBM and CatBoost will ignore missing 

values during a split, then allocate them to whichever side reduces the loss the most. 

However, for other models, manually dealing with missing values improved model 

performance. It seems like if I set missing values to -99, it produces the best results. I did not 

see any improvement in imputing missing values to mean, median, or model. 

Model 

In this part I will briefly explain the machine learning model that I used in this project.  

Logistic Regression 

Logistic Regression is a transformation of a linear regression using the sigmoid function. The 

vertical axis stands for the probability for a given classification and the horizontal axis is the 

value of x. It assumes that the distribution of y|x is Bernoulli distribution. (1)  

Random Forest 

Random forest is a supervised learning algorithm. The "forest" it builds, is an ensemble of 

decision trees, usually trained with the “bagging” method. The general idea of the bagging 

method is that a combination of learning models increases the overall result. (2) 

Xgboost 

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, 

flexible and portable. It implements machine learning algorithms under the Gradient 

Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, 

GBM) that solve many data science problems in a fast and accurate way. (3) 

LightGBM 
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LightGBM is a gradient boosting framework that uses tree-based learning algorithms. It is 

designed to be distributed and efficient with the following advantages: Faster training speed 

and higher efficiency, Lower memory usage, and Better accuracy, Support of parallel, 

distributed, and GPU learning, and Capable of handling large-scale data. (4) 

Catboost 

CatBoost is an algorithm for gradient boosting on decision trees. It is developed by Yandex 

researchers and engineers, and is used for search, recommendation systems, personal 

assistant, self-driving cars, weather prediction and many other tasks at Yandex and in other 

companies, including CERN, Cloudflare, Careem taxi. It is in open-source and can be used 

by anyone. (5) 

Model Building 

In this section, I will use the prediction of the third year as a case study to explain how I 

approached this project. So, the outcome variable is the recidivism of the respondent after 

three years post-incarceration.  I built several machine learning models and analyzed their 

results. 

I start with the most basic, a logistic regression, which predicts the likelihood of recidivism. 

Logistic regression would serve as our baseline. Following that, I have performed Random 

Forest Classifier, Xgboost, LightGBM, and Catboost algorithms. To evaluate training set 

performance, I have implemented Stratified K-fold Cross-Validation Method. This technique 

is a variation of KFold that returns stratified folds. Since there are many categorical variables 

in our data, the folds preserve the percentage of samples for each categorical variable.  

To boost the performance of the algorithms, I have implemented a hyperparameter tuning 

exercise. I applied the grid search method, which is a process that searches exhaustively 

through a manually specified subset of the hyperparameter space of the given algorithm. I 

used the "pruning" technique to stop training earlier when the learning curve was much worse 
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than the best-known result. The algorithm selected parameters based on the ROC-AUC 

evaluation metrics. I gathered models with optimized hyperparameters into an array.  Overall, 

I have made 19 models: one Logistic regression, three Random Forest Classifiers, and five 

LightGbm, Xgboost, and Catboost. 

 I incorporated these models to make one generalized prediction called the stacking method. 

Stacking is a way of combining multiple models that introduces the concept of a meta learner 

(6). This classifier fits base classifiers, each on random subsets of the original dataset, and 

then aggregates their predictions to form a final prediction (either by voting or by averaging). 

The point of stacking is to explore a space of different models for the same problem. The idea 

is that you can attack a learning problem with varying types of models capable of learning 

some part of the problem but not the whole space. So you can build multiple different 

learners and use them to make an intermediate prediction, one prediction for each learned 

model. Then you add a new model which learns from the intermediate predictions the same 

target. This final model is said to be stacked on top of the others, hence the name. Thus, you 

might improve your overall performance, and often you end up with a model which is better 

than any individual intermediate model (7). The main takeaway from all these steps is to 

create a generalized outcome that will not overfit your training set. 

I split the original dataset into a Training and Holdout dataset. Let training go onwards into 

the upcoming loop and save holdout until the last part in the forthcoming loop. I made a for 

loop with KFold Cross-Validation where k=5. In each iteration, I split the Training dataset 

into training and validation datasets. I called them X_train, y_train, X_valid, and y_valid. 

The red parts in Figure 1 represent X_train and y_train, while the green represents X_valid 

and y_valid. I trained the current model on X_train and y_train. 

I made predictions on the test dataset X_valid and evaluate it with the y_valid. I extended an 

array of the predictions for the whole training dataset. I called them out of sample 
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predictions. I run these out of sample predictions for all algorithms stated above. Eventually, 

I got 19 out of the sample predicted arrays. I used them as new features for the new training 

dataset composed of 19 features and outcome variables.  Then, I run Ridge Regression to 

predicted based on these input variables. I also did the Kfold cross-validation technique the 

same as above, but I run a fitted model on the Holdout dataset. I have chosen five folds and 

created five predicted outcome variables from the holdout dataset. After that, I took a mean 

of these five predicted outcome variables, my final predicted recidivism probability. 

 

 

Figure 1. The illustration of K-Fold Cross Validation and Stacking method  

Model Evaluation 

To achieve a decent score and find out the best hyperparameters, I run an overall 16015 trials 

using the cutting-edge Python Library of Optuna. Then, I have chosen the best one from 

Logistic Regression, three from Random Forest, and five from LightGBM, CatBoost, and 
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XGboost.  The decision from the chosen numbers comes from personal experience working 

with these algorithms. 

In this part, I would like to explain the results of each model and what score I got.  From 

Table 2, we can see that the best performance comes from CatBoost. From my observation, I 

noticed that fairness and accuracy results are highly correlated with the AUC score. 

Therefore, we can rely on the AUC score, which comes with each algorithm in Python 

Library.   

 Model I Model II Model 

III 

Model IV Model V Trials 

Logistic Regression 0.668     15 

Random Forest  0.681 0.6801 0.6804   100 

LightGBM 0.681922 0.681967 0.682350 0.682453 0.682980 500 

CatBoost 0.708976 0.708665 0.703801 0.701938 0.703322 500 

XGBoost 0.6889 0.6881 0.6879 0.6875 0.6871 500 

Table 2. AUC result of the algorithms 

As I previously mentioned, I choose all of these algorithms out of sample results to run the 

Stacking method. From this method, we can see that overall it is lower than the best 

performing Catboost method. Assuming stacking will take the best part of each algorithm and 

performs generalized result, I have chosen to stack as my outcome.   

 Fold I Fold II Fold III Fold IV Fold V Overall Metrics 

Stacking 0.6843 0.6956 0.7004 0.7126 0.70731 0.6996 

Table 3. AUC score of Stacking Method 
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Inference 

 

  Feature I Feature II Feature III Feature IV Feature V 

Logistic 

Regression 

Age at Release 

18-22 

Age at 

Release 48 or 

older 

Gang Affiliated Age at Release 43-47 Age at Release 

23-27 

Random 

Forest  

Jobs Per Year Percent Days 

Employed 

Avg Days per Drug 

Test 

Prior Arrest Episodes PP 

Violation Charges 

Supervision Risk 

Score First 

LightGBM Avg Days per 

Drug Test 

Jobs Per 

Year 

Percent Days 

Employed 

Supervision Risk Score 

First 

Residence 

PUMA 

CatBoost Jobs Per Year Avg Days 

per Drug 

Test 

Percent Days 

Employed 

Age at Release Supervision Risk 

Score First 

XGBoost Prior Arrest pp 

violation 

Charges 

Gang 

Affiliated 

Prior Conviction 

Episodes Misd 

Violation Instruction Prior Arrest 

Episodes Misd 

Table 4. AUC result of the algorithms 

In this part, I would like to go over the feature importance analysis. According to the table, 

we can see that each model has its own top five most important features.  Feature importance 

is determined by a mean decrease in impurity for decision tree-based models and logs odd 

coefficients for Logistic Regression. As we can see, the LightGBM and CatBoost have more 

similarities in features, but the order is not the same. Since the core base of these models is 

gradient boosting techniques, thus AUC scores are also close. 

Furthermore, Logistic Regression has completely different features, which is reasonable since 

it has low predictability than the gradient boosting techniques.  As can be seen from Table 4, 

job-related variables like the number of jobs per year and percent days employed have the 
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highest correlation. The idea comes together with Kevin Schnepel (2018) where he examines 

“good jobs” and asks how their presence influences recidivism. Prior criminal history records 

such as prior misdemeanor and violation charges have shown high importance in the 

XGboost model. Average Days on Parole Between Drug Tests tend to be helpful to achieve 

good predictability in Catboost and LightGBM.  Overall, the main take from these models is 

these features are highly correlated with the outcome variable of recidivism. 
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