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Introduction 

 In April 2021 the National Institute of Justice (NIJ) announced a recidivism forecasting 

challenge. The goal of this challenge was for participating teams to develop a model to predict 

future recidivism among a sample of persons released from prison to parole. The primary 

outcome was prediction of re-arrest for any crime at 1, 2, and 3 years post-release. A secondary 

outcome was the development of a “fair and accurate” model that balanced false-positive 

predictions between Black and White individuals. We entered this competition in the small-team 

category under the name “MCHawks”. Our team’s prediction model placed in the following 

categories: 

• First Place: Year 2, Male Parolees 

• First Place: Year 2, Average Accuracy 

• Second Place: Year 2, Female Parolees 

We also placed second, third, and fifth among the “Accounting for Racial Bias Category” in the 

Year 1 and Year 2 categories. Below, we detail the development of our models, discuss the 

features used in building the predictions, and the interpretation of the results. Under our future 

considerations section, we discuss how predictive modelling can best be applied and how 

subsequent competitions can better help guide the development of fair and accurate algorithms.  

Models 

 Predicting recidivism presents a difficult challenge under any circumstance, and the 

development of a reasonable and actionable model presents further challenges. The first major 

question is the selection of an appropriate modeling strategy. A wide variety of models exist for 

prediction purposes – including ordinary least-squares regression, logistic regression, generalized 

additive models, support vector machines, random forests, and gradient boosted models – among 

many others (James, et al., 2013). While logistic regression remains the most popular and tends 

to work well in many circumstances (see: Christodoulou et al., 2019) one of its limitations is that 

it assumes linearity in all model predictors. In cases where there are many potential complex 
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interactions, logistic regression risks underfitting the data. One alternative are tree-based 

methods such as regression or classification trees. These models are often easy to explain and 

have more flexibility than classical approaches. However, individual trees can be very non-

robust – meaning small changes in the data can cause large changes in the final prediction 

(James, et al., 2013). Ensemble approaches, like bagging and boosting, represent an approach 

where many small “weak learners” combine to make a single more effective model. Of these, 

boosting is a general-purpose approach for improving predictive performance and which can 

easily be applied to classification trees. A boosted classification tree is built iteratively by fitting 

feature splits on residuals from prior models. This approach results in many “shallow” trees that, 

combined, often perform better than a single large tree.  

Our winning model for round 2 was fit using a gradient boosted decision tree employing 

XGBoost (Chen & Guestrin, 2016). XGBoost is a widely used algorithm for fitting gradient 

boosted models (GBM) and has a strong track record in various prediction competitions. Prior to 

fitting the model, we first expanded the full training dataset from NIJ into a 18,028 × 135 data 

matrix. For the year 2 predictions we filtered out individuals who were arrested at time 1, leaving 

us with 12,651 observations. No additional variables were added or constructed from the existing 

data. The first step in fitting a GBM is the tuning of the model parameters. This involves 

adjusting key parameters in a way to minimize overfitting (learning too much from the training 

data) and underfitting (learning too little from the training data). In more general terms, this step 

reflects a strategy of balancing bias and variance (James, et al., 2013). We employed a grid 

search strategy, where we iteratively fit models using different combinations of the major 

XGBoost parameters and calculated an estimate of out-of-sample performance via 5-fold cross 

validation. The most important parameters tuned were: 

• max_depth: 6 

• eta: 0.005 

• min_child_weight: 5 

• max_delta_step: 5 

• subsample: .75 

max_depth and min_child_weight control the overall model complexity, eta controls the stepsize 

per iteration, and max_delta_step and subsample help control overfitting. Rather than attempting 

to optimize the Brier score directly, we used area under the curve (AUC) to determine the 

optimally fitting model. The AUC value for this model was approximately .74. We then used this 

dataset to make predictions on the full training dataset.  

Variables 

Feature Importance 

While the final model was fit on all 135 features, only a small subset of these features 

were especially useful for the final prediction. Because the model used does not rely on the 

conventional frequentist framework, we cannot evaluate whether any individual predictor is 

statistically “significant.” However, we can evaluate the individual contribution to the final 

prediction for each feature. To accomplish this, we evaluated the gain and frequency for each 
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feature. Gain represents the proportional contribution of a feature to the overall model, based on 

the reduction in overall error for each of the feature’s splits. Frequency is the percentage of times 

a feature is present in a tree (Molnar, et. al., 2018). Together, these indicate which features are 

most important to the final prediction. Below, Figure 1 displays the gain (blue) and frequency 

(orange) of the top 20 predictors in our model arranged by gain. 

Figure 1. Top 20 Features, by Gain and Frequency 

 

Among these, the five most important features were: (1) the number of jobs, per-year, 

while on parole, (2) the percentage of days employed while on parole, (3) the average number of 

days on parole between drug tests, (4), their supervision risk score, and (5) the percentage of 

drug tests positive for THC/marijuana. Interestingly, race (white vs. black) is not among even the 

top 20 predictors in the model. Based on this, the first feature might represent an irregular work 

history - for example, an individual who cannot hold a steady job - while the second feature 

reflects largely a more consistent work history. Below, Figure 2 displays the accumulated local 

effects (ALE) for these top 5 predictors. An ALE plot presents the change in predictions over a 
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grid of values using data instances within plausible ranges present in the data. For example: In 

Figure 2 it is evident that as the proportion of days employed increases from 50% to 100%, the 

probability of re-arrest decreases substantially. 

Figure 2. Accumulated Local Effects, Top 5 Features 

 

Finally, we can also examine the effect of all variables on an individual’s prediction 

using Shapely values. A Shapely value computes the average contribution for a feature across all 

possible combinations. For example, for an individual observation, it determines the contribution 

of each feature between the actual prediction and the mean prediction. This can be useful to 

determine why the model predicts high or low values for individual observations (Molnar, et. al., 

2018). Consider the following problem: we have predictions for two individuals. One individual 

is given a very high prediction of recidivism at .783, while another individual is given a very low 

prediction of recidivism at 0.009. What about these individuals is different that makes their score 

differ by so much? Using Shapely values, we can determine the individual factors that determine 

their risk scores. For simplicity, we examine just the top 5 most important features however 

nearly all variables play some part in an individual’s prediction score. On the other hand, the 

low-risk individual’s prediction was largely predicated on a stable work history (employed_days 

= 1), low job turnover (employed_jobs = 0.26), and older age (age_48_older = 1). Using Shapely 

values can help analysts understand what factors play the largest role in their individual 

prediction.  
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Figure 3. Shapely Values for Two Individuals, Top 5 Factors 

 

Fair and Accurate Threshold 

 For the “fair and accurate” metric, the contest required the use of a .5 threshold for a 

positive prediction. In this case, all individuals who received a prediction of .5 or higher would 

be forecast in the recidivism category. While seemingly logical, this threshold is likely overly 

simplistic. In real-world practice, choosing thresholds for classification problems require 

balancing the cost of wrongfully classifying an observation. For example, setting the metric to a 

.5 threshold misclassifies nearly 84% of individuals who were arrested at time 2 as “false 

negatives” (not predicted to be arrested, but were arrested). Lowering the threshold to .35 

reduces the false negative rate to 66%, but also increases the percentage of false positives to 

13%. Below, a series of confusion matrixes illustrate that selection of the threshold has 

significant impacts on all four outcomes. It should be clear that there is no ‘best’ option here – 

rather the given thresholds should consider real-world costs, as well as factoring in domain 

knowledge and expertise.  
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Figure 4. Confusion Matrix, by Threshold Value 

 

For scoring purposes, the fair and accurate score was calculated as (1 − 𝐵𝑆) ∗ 𝐹𝑃 where 

BS is the model Brier score, and FP is the difference in false-positive rates between black and 

white individuals. These were separately scored based on a prediction threshold of .5. In order to 

meet the fair and accurate requirement outlined in the NIJ contest, we biased our predictions to 

never exceed .499. This means all individuals were, in the fair and accurate category, never 

forecast to recidivate and, therefore, were never misclassified as a false-positive. Indeed, if no 

one is forecast to be arrested, then the false-positive rate is exactly 0. In addition, because 

predictions from our model rarely exceeded .5, biasing these predictions to .4999 and under did 

not substantially impact our overall Brier score.  

Very similar to the findings in Mohler and Porter (2021), we evaluated different models 

attempting to optimize this fairness metric directly in the loss function in each round. We found 

that while such a loss could be estimated for the in-sample data, out of sample data did not 

produce better results on the fairness metric compared to simply truncating the scores below the 

0.5 threshold. This is partially because even if a model is trained to be fair on a particular 

sample, there is always some variance in the predictions applying that model to new data. In 

particular among the female sample, only a very small number of individuals in the unbiased 

predictions were above the 0.5 threshold.  

For a simplified example, the out of sample prediction may only have 10 white and 10 

black females above the 0.5 threshold. The actual results may subsequently then be 6/10 white 

recidivate and 8/10 black recidivate. This is a difference of 20% in the false positive rate 

between the two groups and would penalize the overall Brier score by a very large margin. 

(Although is very weak evidence of differences in the false positive rates between the groups due 

to the small sample size.) Winning solutions typically only bested each other in the 3rd or 4th 

decimal place, whereas such a false positive penalty could easily shift the final metric by a tenth 

(or much more). The penalty to the Brier score to simply bias the predicted probabilities to be 
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under 0.5 is much smaller than the potential variance due to randomness in the fairness metric – 

which no matter what modelling strategy one employs will never be able to be perfectly balance 

in future predictions. This is further exacerbated in samples with very few individuals classified 

in the high risk category. 

Future Considerations 

 One important factor to note is the performance of other, similar models. A competing 

model using a logistic regression with L1 regularization performed nearly as well as the 

considerably more complex XGBoost model. While this logistic regression model did not place 

in the top 5 for any of the accuracy categories, its performance on test data was remarkably 

similar. Given that tuning and running complex GBMs can consume significant time, more 

simple alternatives may work nearly as well. That being said, XGBoost remains relatively fast, 

and even faster GBMs are now available - for example, Microsoft’s LightGBM (Ke, et al., 

2017). Another major consideration is the development of interpretable machine learning 

models. Relying on diagnostic plots like ALE or Shapely values can provide a more intuitive 

view into the inner workings of the model. In addition, it helps users to understanding why 

specific individuals are assigned a risk value. 

 In terms of future considerations for the fairness metric, there are two obvious issues with 

the current metric as proposed by NIJ. First, the threshold of 0.5 to categorize an individual as 

high risk is likely misinformed. One would need to conduct a cost-benefit analysis to how such 

predictions will be used by criminal justice agents to determine what an appropriate threshold 

would be. For instance, if these are used to assign more intensive supervision for parolees, there 

is a limit on how many individuals can be assigned high risk. One may then take the threshold 

that approximately fills up this queue based on historical values.  

Another approach would be to conduct a cost-benefit analysis on a case by case basis. 

The cost of assigning more intensive supervision (both in terms of labor costs for the agency, as 

well as for costs of the additional government oversight to the parolee) should be balanced with 

the estimated benefits of that assignment (e.g. reduced recidivism). This may produce a threshold 

either much higher or much lower than simply a probability of 0.5. Given the difficulty of 

conducting such a cost benefit analysis, future competitions may estimate such metrics at 

different thresholds and average overall results together.  

A second consideration is the fairness metric considered itself. The multiplicative term 

results in large variances, whereas historical fairness penalties to model terms tend to be additive 

(Mohler & Porter, 2021). So here a slight change to the metric we believe would be more 

appropriate in practice: 

𝐵𝑆 + 𝜆 ⋅ 𝐹𝑃 

Where lambda is a term to adjust how much one penalizes the false penalty term relative to the 

Brier score. Given the typical differences among solutions on the leaderboard for the 

competition, a lambda value of 0.1 could still result in meaningful shifts among winning 
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solutions but result in much less variance in the overall score due to small sample differences in 

the FP rate between groups. 

 This however does not solve the problem of determining overall if a model succeeds or 

fails in producing racially equitable outcomes (for whatever metric one wishes to use). One may 

consider such questions entirely separately from accuracy of the model, instead of blending 

accuracy and fairness results together. We believe an important future research goal is 

determining metrics to not only build such models, but to monitor those models as used in 

practice. While minor deviations from false positive rates in small samples may not signify 

problems, where to draw the line in practice and how to determine if equitable outcomes are 

being achieved in real life, noisy data are more difficult. 
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