
The author(s) shown below used Federal funding provided by the U.S.
Department of Justice to prepare the following resource:

Document Title: DataRobot Model

Author(s): Ted Kwartler

Document Number: 305057

Date Received: July 2022

Award Number: NIJ Recidivism Forecasting Challenge
Winning Paper

This resource has not been published by the U.S. Department of
Justice. This resource is being made publicly available through the
Office of Justice Programs’ National Criminal Justice Reference
Service.

Opinions or points of view expressed are those of the author(s) and
do not necessarily reflect the official position or policies of the U.S.
Department of Justice.

1 How To Use This Document

This document outlines the steps taken and modeling results for the US Department of Justice
Recidivism Challenge. Overall, DataRobot’s AutoML solution was used with some basic
preprocessing code written in R to arrive at the best model submission described herein. It should
be noted that this type of modeling exercise would require great care if put into production. Ethical
and responsible AI means fully understanding the stakeholder impact, system’s limitations,
documenting risks and most importantly risk-mitigation based on severity and likelihood to protect
vulnerable populations. The model described herein is NOT intended for production based on the
ethical considerations and impacts that could be amplified without careful discretion. The extent of
the model’s utility is to understand and provide insights based on the data provided specifically in
terms of accuracy and its relationship to protected features, race and gender, according to
proportional parity.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Table of Contents

• 1 How To Use This Document
• 2 DataRobot Model Development Documentation
• 3 Executive Summary and Model Overview

• 3.1 Model Stakeholders
• 3.2 Model Development Purpose and Intended Use
• 3.3 Model Description and Overview
• 3.4 Overview of Model Results
• 3.5 Model Interdependencies

• 4 Model Data Overview

• 4.1 Feature Association
• 4.2 Data Source Overview and Appropriateness
• 4.3 Input Data Extraction, Preparation, and Quality & Completeness
• 4.4 Data Assumptions

• 5 Model Theoretical Framework and Methodology

• 5.1 Model Development Overview
• 5.2 Model Assumptions
• 5.3 Model Methodology

• 5.3.1 One Hot encoding task
• 5.3.2 Median value-based numeric imputation (V2 with quick median algorithm)
• 5.3.3 Ridit transformer
• 5.3.4 Approximate kernel support vector classifier.

• 5.4 Literature Review and References
• 5.5 Alternative Model Frameworks and Theories Considered
• 5.6 Variable Selection

• 5.6.1 DataRobot Quantitative Analysis
• 5.6.2 Expert Judgement and Variable Selection
• 5.6.3 Final Model Variables
• 5.6.3.1 Model Features and Summary Statistics
• 5.6.3.2 Data Quality Handling Report

• 6 Model Performance and Stability

• 6.1 Model Validation Stability

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

• 6.1.1 Cross Validation Scores
• 6.1.2 Data Partitioning Methodology

• 6.2 Model Performance (Sample Scores)
• 6.3 Sensitivity Testing and Analysis

• 6.3.1 Lift Chart
• 6.3.2 Key Relationships
• 6.3.3 Sensitivity Analysis (Partial Dependence)
• 6.3.4 Accuracy (Receiver Operating Characteristic)
• 6.3.5 Bias and Fairness

• 7 Model Implementation and Output Reporting

• 7.1 Version Control
• 7.2 Scoring Code
• 7.3 Rule-Fit Classification Insights

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

2 DataRobot Model Development
Documentation

The purpose of this document is not to be prescriptive in format and content,
but rather to serve as a guide in creating sufficiently rigorous model
development, implementation, and use documentation. The documentation
should provide enough evidence to show that the components of the model
work as intended, the model is appropriate for its intended purpose, and that it
is conceptually sound. As previously mentioned, the model does not purport to
be an ethical implementation for the life-impacting use case described in the
contest description.

3 Executive Summary and Model Overview

3.1 Model Stakeholders

The model was created as part of a “Recidivism Challenge” presented by the US
Department of Justice.

Model Owner(s): Model ownership is determined by the rules of the publicly
held competition.

Model Developer(s): Ted Kwartler, VP Trusted AI & Harvard University
Extension School Adjunct Professor solely created the model.

Model User(s): It is likely the model will be reviewed, and interesting insights
will be extracted by Department of Justice technical personnel rather than a
production model or application be developed.

Model Validator(s): Model validation was performed by challenge
administrators with results shared online.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

3.2 Model Development Purpose and Intended Use

According to the contest website, The National Institute of Justice’s (NIJ)
“Recidivism Forecasting Challenge” (the Challenge) aims to increase public
safety and improve the fair administration of justice across the United States.
Results from the Challenge will provide critical information to community
corrections departments that may help facilitate more successful reintegration
into society for previously incarcerated persons and persons on parole.

Thus, it is likely not only the predictive power is of interest but also any insights
stemming from the analysis may be of use in the academic-style research being
conducted on recidivism to improve outcomes for affected people.

Data was prepared with ~50 lines of code written in R before being presented
to an automated machine learning system. Within the automated machine
learning application, 74 machine learning model types and accompanying
tuning parameters were fit. These models were sorted according to LogLoss.
The model described in this document represents the best model according to
LogLoss among the 74, without any advanced feature engineering or
enrichment which could have improved results but at the expense of time and
effort. Additionally, an advanced performance indicator was selected to
understand Bias and Fairness within the model. As a result, insights and results
for race and gender according to proportional parity are also provided
alongside standardized model KPIs.

Since the model is not intended to be productionalized, high risk could occur if
the model is used to inform decision making.

3.3 Model Description and Overview
The particular model referenced in this document: Nystroem Kernel SVM Classifier. This model was
developed in a project created with vf0e8f0f7a9b51308 of DataRobot. This model is denoted within
DataRobot by the Project ID: 60b404c9d14c853b8cb15aee and the Model ID:
60b4ffaaeceb345397474965. The project was created on 2021-05-30 21:34:01.

The model development workflow process (i.e., the model blueprint) is detailed in the figure below.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

A Blueprint represents the high-level end-to-end procedure for fitting the model, including any
preprocessing steps, algorithms, and post-processing. It illustrates the many steps involved in
transforming input predictors and targets into a model. Each element (or, “node”) in a blueprint can
represent multiple steps.

The following elements connect to visualize the blueprint:

• One-Hot Encoding
• Missing Values Imputed
• Smooth Ridit Transform
• Nystroem Kernel SVM Classifier

3.4 Overview of Model Results
DataRobot runs performance testing during the model development process to evaluate model
results and reliability. The validation, cross-validation, and holdout (if applicable) out-of-sample
performance scores are presented below, as well as the number of observations for each partition.
The performance metric used for this project was LogLoss and the project included a total of 18,028
observations. An asterisk (*) next to a score, whether validation or holdout, indicates that

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

DataRobot used in-sample predictions to derive the score. (In-samples predictions are those that
include data from the validation or holdout partitions due to sample size used to build the model.)

Scoring Type Score (LogLoss)

cross_validation 0.5558*

holdout 0.5444*

validation 0.5521*

3.5 Model Interdependencies
Understanding interdependent relationships allows for an enhanced understanding of, and
improved ability to manage and aggregate model risk at the company. As constructed, there is no
prediction stacking and subsequent “downstream” models. Prediction stacking was explored where
sophisticated models impute missing values in the training data but the interdependent complexities
weighed against the benefit made the exercise ineffective.

4 Model Data Overview

4.1 Feature Association
DataRobot’s Feature Association Matrix is populated by default by features from DataRobot’s
Informative Features feature list. The Feature Associations matrix provides information on
association strength between pairs of numeric and categorical features that are visually denoted by
the opacity of the color (that is, num/cat, num/num, cat/cat, where lighter shades indicate weaker
association and vice versa) and feature clusters. Clusters, families of features denoted by color on
the matrix, are features partitioned into groups based on their association structure.

Some of the noted benefits of the Feature Association Matrix include:

• Understand the strength and nature of associations within the data;
• Detect families of pairwise association clusters; and,
• Identify clusters of high-association features prior to model building.

The Feature Association Matrix lists up to the top 50 features, selected by Importance Score, on
both the X and Y axes, where the intersection of a feature pair provides an indication of their level
of association. By default, the matrix displays by the Mutual Information values and sorts by the
cluster.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

The following are some general takeaways from looking at the matrix above:

• Each dot represents the association between two features (a feature pair), where the opacity of
the color denotes the pair-wise strength of association.

• Each cluster is represented by a different color.
• The opacity of color indicates the level of association 0 to 1, between the feature pair. Levels are

measured by the set metric, either mutual information or Cramer’s V.
• Shaded gray dots indicate that the two features, while showing some association, are not in the

same cluster.
• White dots represent features that were not categorized into a cluster.
• The target feature, if present, is indicated by two small concentric circles next to the feature

name.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

• Identified clusters include:

4.2 Data Source Overview and Appropriateness
Subject matter expertise has been determined by the contest administrators. The model was built
with the assumption the data is correct, error-free and appropriate for the modeling task. It is likely
the case, as was mentioned in the contest explanation that feature enrichment not just feature
engineering could improve results. However, with anonymized data, enrichment is difficult or
could encourage inadvertent bias by proxy.

The data was obtained from the contest website through webpage download. For example here,

https://data.ojp.usdoj.gov/stories/s/daxx-hznc

https://data.ojp.usdoj.gov/Corrections/NIJ-s-Recidivism-Challenge-Training-Dataset/8tjc-3ibv

4.3 Input Data Extraction, Preparation, and Quality & Completeness

The following R code represents the basic preprocessing of the raw data
with comments included.

Set the working directory
setwd("~/Desktop/nij")

Identify and read in contest files.
train <- list.files(pattern = 'Training')
test <- list.files(pattern = 'Test')

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

https://data.ojp.usdoj.gov/stories/s/daxx-hznc
https://data.ojp.usdoj.gov/Corrections/NIJ-s-Recidivism-Challenge-Training-Dataset/8tjc-3ibv

testData <- read.csv(test)
trainingData <- read.csv(train)

Intersect the training data columns with test set
keeps <- names(trainingData) %in% names(testData)
NIJ_keeps <- trainingData[,keeps]
NIJ_keeps$Recidivism_Arrest_Year1 <- trainingData$Recidivism_Arrest_Year1
this example code is for round 1,
but changes for other rounds `Recidivism_Arrest_Year2`
write.csv(NIJ_keeps,'NIJ_keeps_phase1.csv' ,row.names = F)
write.csv(testData, 'NIJ_test_phase1.csv', row.names = F)

4.4 Data Assumptions
Data is assumed to be correct for the task description. Data is assumed to be acceptable for privacy
concerns and representative of the population under study. It is not possible to know data
specifics, practitioner assumptions during munging or implications of data collection since it is
provided as part of the contest.

5 Model Theoretical Framework and
Methodology

5.1 Model Development Overview
DataRobot simplifies model development by performing a parallel heuristic search for the best
model or ensemble of models, based on both the characteristics of the data and the prediction
target. While some machine learning techniques tend to consistently outperform others, it is rarely
possible to say in advance which will perform best for a given business problem. Therefore, during
the modeling process, DataRobot develops dozens of independent challenger models, exposes the
details of how these models were built and how they perform, and enables the user to select the
best model for the particular business problem being addressed.

The fundamental workflow within DataRobot for model development is as follows:

• Rapid Data Ingestion: User creates a modeling dataset that includes the prediction target and
loads into DataRobot

• Target Selection: User selects the prediction target; DataRobot detects whether the target is
categorical or continuous. If the target is categorical, DataRobot selects and builds classification
blueprints. If the target is continuous, DataRobot selects and builds regression blueprints.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

DataRobot also selects an optimization performance metric based on the type of supervised
learning problem, which can also be changed by the user

• Automated Data Preparation: DataRobot analyzes the input data and automatically performs
advanced preprocessing steps that are discussed in detail in this document. DataRobot also
automatically partitions the input dataset into learning, validation and holdout dataset; these
can also be defined by the user.

• DataRobot uses information about the selected target variable and predictors to define a set of
candidate blueprints for analysis. It then trains models for each blueprint and ranks them on
the model Leaderboard based on an out-of-sample validation accuracy score.

• Transparent Model Evaluation and Selection: DataRobot has built-in diagnostic tools to assess
model accuracy and performance. Once DataRobot has trained and tested models, users can
access them from the Leaderboard. From there, users can review model accuracy and, using
built-in model diagnostic tools, understand how each independently built model performs.
DataRobot provides many metrics for evaluating model accuracy, such as AUC, Log-Loss and
RMSE. DataRobot's Leaderboard actively tracks performance of candidate models using out-of-
sample data for comparison purposes.

• Model Deployment and Monitoring: Once the final model is selected, DataRobot provides
efficient solutions for deployment (i.e., model implementation) and monitoring. These features
enable the model owner to effectively manage model controls in accordance with Model Risk
Management standards and policies.

5.2 Model Assumptions
Machine learning methods can produce more accurate predictive models than traditional statistical
regression methods because they are more flexible and rely less on statistical assumptions than
traditional regression methods. For instance, ordinary least squares regression requires that the
Gauss Markov assumptions are supported, which ensures that the model is unbiased and efficient.

Traditional statistical regression techniques rely on formal hypothesis testing for variable
significance and feature selection (e.g., t-test, p-value, standard error). These hypothesis tests tend
to have distributional and independence assumptions that may not be supported by the data.
Machine learning methods, on the other hand, offer more flexibility in defining the model structure,
which typically results in better model performance. Because machine learning includes methods
that do not rely on formal hypothesis testing to demonstrate model validity, and because heuristic-
style feature selection methods (e.g., stepwise selection) are not used in most machine learning
approaches, no such distributional assumptions are required. In this case, the only assumption
being made is that the model training data is representative of the future scoring data. Of course,
these assumptions must be closely monitored and tracked by the model's ongoing performance
monitoring process.

A common limitation of machine learning methods is the potential for overfitting. Overfitting occurs
when the model is trained too closely to the underlying training data and does not perform well
out-of-sample. DataRobot utilizes a robust cross-validation and holdout methodology to ensure
model performance is sound, reducing the risk of over-fitting.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

5.3 Model Methodology
The modeling workflow consists of the following elements, which connect to visualize the modeling
blueprint:

• One-Hot Encoding
• Missing Values Imputed
• Smooth Ridit Transform
• Nystroem Kernel SVM Classifier

The following subsections include details for each node of the modeling blueprint.

5.3.1 One Hot encoding task
This transformer will do a binary one-hot (aka one-of-K) coding. One boolean-valued feature is
constructed for each of the possible string values that the feature can take. For inputs with only 2
unique values, only one boolean-valued feature will be constructed

This encoding is needed for feeding categorical data to many estimators, notably linear models and
SVMs.

Type Name Description Best Searched

int card_max An integer that specifies
the maximum number of
unique values values: [1,
99999]

50000

int card_min An integer that specifies
the minimum number of
unique values values: [1,
99999]

1

bool drop_cols drop_cols, If True, drop
last level of each feature
values: [False, True]

False

select flag flag, If all, add highcat-
cols to metadata values:
['None', 'all']

None

int max_features If the total number of
categories created
across all features
exceeds this value, the
top max_features most
frequent categories will
persist. All others will be
either thrown out or

None

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

grouped. A value of
None disables the limit.
values: [1, 999999]

int min_support The minimum number
of records for a category
to be represented in one
hot encoding. If a
category has fewer
counts it will be grouped
with other small
cardinality values
values: [1, 99999]

10

5.3.2 Median value-based numeric imputation (V2 with quick median algorithm)
For a numeric feature, impute rows of missing values with median value (V2).

Impute missing values on numeric variables with their median and create indicator variables to
identify records that were imputed. A quick median algorithm (based on np.partition) is
implemented to compute median feature value.

Imputation strategy:

A numeric feature is imputed with the median value if there are enough finite values in the feature
samples used to train a numeric imputation task (e.g., > t, default: 50) and there are rows with NaN
or infinite values in the samples to be imputed.

After imputation, the imputed numeric features will be scaled if the argument s is set to True. The
feature will use scaled rounding (i.e., rounding to a logarithmic scale).

Imputation indicator:

The indicator column (0, 1) is added to indicate imputed rows if the numeric feature is imputed
with : 1) the median value and with least one row with NaN and 2) at least two unique values.

Example:

An imputation task is initialized with t=2.

Input numeric features of this task:

feature0, feature1, feature2, feature3

1, 2, np.nan, np.nan

2, 3, np.nan, 18

3, 2, np.nan, 16

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

4, 1, 13, 14

20, 1, 45, 46

Output numeric features of this task:

feature0, feature1, feature2, feature2-mi, feature3, feature3-mi

1, 2, 45, 1, 18, 1

2, 3, 45, 1, 18, 0

3, 2, 45, 1, 16, 0

4, 1, 13, 0, 14, 0

20, 1, 45, 0, 46, 0

In the imputation output, median value imputation is run on feature2 and feature3. The feature2-mi
is the indicator column for the imputation on feature2. The feature3-mi is the indicator column for
the imputation on feature3.

Type Name Description Best Searched

bool scale_small True if small values
(range of the numeric
variable is <= 1) are to
be scaled. values: [False,
True]

False

int threshold Minimum number of
required finite elements
in a column to impute
the data onto NaNs and
INFs. values: [1, 99999]

10

5.3.3 Ridit transformer
For a numeric feature, transform it to a ridit score based on percentile rank. The percentile score
will be further adjusted to an interval between -1 and 1. The transformer can be configured to skip
binary feature and date/time derived features. If the sparsity is higher than the sparsity_threshold,
data will be centered to the median and the output will be a sparse matrix.

The ridit transform is an extension of Bross’ (1958) RIDIT scoring method, which suggests the use
of Ridit analysis for data that are ordered but not on an interval scale, such as injury categories.
Bross’ (1958) RIDIT’s procedure is as follows: from a reference population with the same
categories (of injury, for example), determine a “ridit” or score for each category. This category
score is the percentile rank of an item in the reference population and is equal to the number of
items in all lower categories plus one-half the number of items in the subject category, all divided

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

by the population size. By definition, the mean of Bross ridit calculated for the reference population
will always be 0.5.

The ridit transform extends the Bross ridit method by applying the method to numerical values and
normalizing the score such that the mean calculated for the reference population will always be 0
and the score will be in the interval [-1,1].

Intuitively, the ridit transform can be interpreted to be an adjusted percentile score.

Ridit transform is not smooth and variable mapping is not continuous at the bin boundaries.
DataRobot developed a “smooth” version of Ridit mapping, where the mapping inside of each bin is
set to linearly increase to reach the other bin’s starting value. The middle point in the bin
corresponds to the value of the original Ridit algorithm, and the mean of the distribution is still
equal to 0.5. By using such approach, the mapping is continuous and predictions are consistent for
the data values close to the boundary values.

Type Name Description Best Searched

bool skip_bins If True, ridit transform
will skip binary
columns. values:
[False,True]

False

bool skip_date_features If True, ridit transform
will skip extracted
features from the date
column. values:
[False,True]

False

float sparsity_threshold If sparsity level is higher
than the parameter, the
matrix is converted to a
sparse format. values:
[0, 1]

0.25

5.3.4 Approximate kernel support vector classifier.
Support vector machines are a class of “maximum margin” classifiers. They seek to maximize the
separation they find between classes, and can optionally include a penalty function that allows
them to mis-classify some observations for the sake of wider margins between the classes for the
rest of the observations. This makes support vector machine a very robust class of machine
learning models.

SVMs are very efficient in high-dimensional spaces (such as text data), including cases where the
number of dimensions exceeds the number of observations, but unfortunately do not tend to scale
well to a large number of examples.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

SVMs can also make use of a “kernel” function, which allows for a non- linear transformation of the
data before fitting the SVM. These kernel functions can be a very useful way to transform a non-
linear problem into a linear domain.

This implementation of SVM approximates the feature mappings. The advantage of using
approximate explicit feature maps compared to the kernel trick, which makes use of feature maps
implicitly, is that explicit mappings can significantly reduce the cost of learning with large datasets.
Kernel map approximations allow SVMs to run much faster, and scale up to bigger datasets, but
there is a small tradeoff in accuracy.

Usually, higher accuracy is obtained with higher n_components, as it sets the the number of samples
used to construct the basis features and number of features to construct. However, large value for
n_components leads to high memory usage.

This implementation combines kernel map approximations with a LogisticRegression that uses a l2
penalty and a liblinear solver.

Type Name Description Best Searched

multi C Penalty parameter C of
the error term. values:
{'floatgrid': [1e-10,
1e10],'select': ['auto']}

59.9484250319

select approx The kernel
approximation method
to use. values:
['nystroem', 'fourier',
'balanced_nystroem']

balanced_nystroem

multi gamma The parameter of the
RBF-kernel. ‘heuristic’
(For RBF only) from
Caputo et al.[1], i.e. 1 /
(the weighted median
squared distance
between two samples).
‘auto’ creates a grid
around a base gamma
for tuning with grid-
search values:
{'floatgrid': [1e-10,
1e10],'select': ['auto',
'heuristic']}

0.001075780054

multi max_sample The maximum sample
size that can be used for
training. values: {'int':

None

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

[100, 100000],'select':
['None']}

intgrid n_components Is the target
dimensionality of the
feature transform.
values: [1, 10000]

500

int random_state The seed of the pseudo
random number
generator to use when
shuffling the data.
values: [1, int(1e9)]

1234

select smart_sampling if balanced negative
downsampling should
be done when
max_sample is not None.
values: [True, False]

True

floatgrid subsample The fraction of samples
to be used for fitting.
values: [0.01,1]

1.0

float tol Tolerance for stopping
criteria. values: [1e-10,
1e10]

0.0001

5.4 Literature Review and References
• Suits, Daniel B. “Use of dummy variables in regression equations.” Journal of the American

Statistical Association 52.280 (1957): 548-551. http://www.jstor.org/stable/2281705?seq=1
• [1] Acuna, Edgar, and Caroline Rodriguez. “The treatment of missing values and its effect on

classifier accuracy.” Classification, Clustering, and Data Mining Applications. Springer Berlin
Heidelberg, 2004. 639-647. https://link.springer.com/chapter/10.1007/978-3-642-17103-
1_60

• [2] Feelders, Ad. “Handling missing data in trees: Surrogate splits or statistical imputation?”
Principles of Data Mining and Knowledge Discovery. Springer Berlin Heidelberg, 1999. 329-334.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.7991&rep=rep1&type=pdf

• Bross, I. D. J. [1958]. “How to Use Ridit Analysis.” Biornetrics- 14, pg. 18-38.
https://doi.org/10.2307/2527727

• Brockett, Patrick L., and Arnold Levine. “On a characterization of ridits.” The Annals of Statistics
(1977): 1245-1248. https://projecteuclid.org/download/pdf_1/euclid.aos/1176344010

• Caputo, B., Sim, K., Furesjo, F., & Smola, A. “Appearance-based Object Recognition using SVMs:
Which Kernel Should I Use?”. In Proc of NIPS workshop on Statistical methods for
computational experiments in visual processing and computer vision (2002).

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

• Suykens, Johan AK, and Joos Vandewalle. “Least squares support vector machine classifiers.”
Neural processing letters 9.3 (1999): 293-300.
http://bioinformatics.oxfordjournals.org/content/16/10/906.full.pdf

• Chang, Chih-Chung, and Chih-Jen Lin. “LIBSVM: A library for support vector machines.” ACM
Transactions on Intelligent Systems and Technology (TIST) 2.3 (2011): 27.
http://ntucsu.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

• Williams, Christopher, and Matthias Seeger. “Using the Nystrom method to speed up kernel
machines.” Proceedings of the 14th Annual Conference on Neural Information Processing
Systems. No. EPFL-CONF-161322. 2001.
http://infoscience.epfl.ch/record/161322/files/nystroem.pdf

5.5 Alternative Model Frameworks and Theories Considered
As stated by regulatory guidance, comparison with alternative theories and approaches provides
guidance for final model selection and is a fundamental component of a sound modeling process.

DataRobot develops dozens of alternative models, exposes the details of how these models were
built and how they perform, and enables the user to select the best model for the particular
business problem being addressed.

During the model development process, DataRobot considered the following alternative models.
The final model was selected based on model performance as well as an analysis of model
diagnostics and expert business judgment.

The performance metric used for this project was LogLoss. The model types considered during the
model selection process included the following models, which are sorted by the Validation score.

Model Name Validation Score Cross Validation Score Sample Percentage

Light Gradient Boosting
on ElasticNet
Predictions

0.5549 0.5571 100.0

Vowpal Wabbit
Classifier

0.5542 0.5579 63.9949

Vowpal Wabbit
Stagewise Polynomial
Classifier

0.5542 0.5578 63.9949

Vowpal Wabbit Low
Rank Quadratic
Classifier

0.5542 0.5578 63.9949

Regularized Logistic
Regression (L2)

0.5544 0.557 63.9949

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Stochastic Gradient
Descent Classifier

0.5544 0.5573 63.9949

Light Gradient Boosted
Trees Classifier with
Early Stopping

0.5545 0.5578 63.9949

ENET Blender 0.5547 0.5568 63.9949

AVG Blender 0.5547 0.5568 63.9949

Advanced AVG Blender 0.5547 0.5568 63.9949

eXtreme Gradient
Boosted Trees Classifier
with Early Stopping -
Forest (10x)

0.5548 0.5578 63.9949

eXtreme Gradient
Boosted Trees Classifier
with Early Stopping
(learning rate =0.02)

0.5548 0.5586 63.9949

Elastic-Net Classifier
(mixing alpha=0.5 /
Binomial Deviance)

0.5548 0.5572 63.9949

Keras Slim Residual
Neural Network
Classifier using Training
Schedule (1 Layer: 64
Units)

0.5549 N/A 63.9949

Elastic-Net Classifier (L1
/ Binomial Deviance)

0.5549 N/A 63.9949

Elastic-Net Classifier (L2
/ Binomial Deviance)

0.5549 0.557 63.9949

eXtreme Gradient
Boosted Trees Classifier
with Early Stopping

0.5549 N/A 63.9949

Keras Residual AutoInt
Classifier using Training
Schedule (3 Attention
Layers with 2 Heads, 2
Layers: 100, 100 Units)

0.5552 N/A 63.9949

Logistic Regression 0.5554 N/A 63.9949

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Keras Residual Neural
Factorization Machine
Classifier using Training
Schedule (2 Layers: 100,
100 Units)

0.5555 N/A 63.9949

Elastic-Net Classifier
(mixing alpha=0.5 /
Binomial Deviance) with
Unsupervised Learning
Features

0.5555 0.5572 63.9949

Generalized Additive2
Model

0.5556 N/A 63.9949

Generalized Additive
Model

0.556 N/A 63.9949

Keras Deep Self-
Normalizing Residual
Neural Network
Classifier using Training
Schedule (3 Layers: 256,
128, 64 Units)

0.5561 N/A 63.9949

Elastic-Net Classifier (L2
/ Binomial Deviance)
with Binned numeric
features

0.5562 N/A 63.9949

eXtreme Gradient
Boosted Trees Classifier
with Early Stopping and
Unsupervised Learning
Features

0.5564 N/A 63.9949

Gradient Boosted Trees
Classifier with Early
Stopping

0.5569 N/A 63.9949

Gradient Boosted Trees
Classifier

0.5572 N/A 63.9949

eXtreme Gradient
Boosted Trees Classifier
with Early Stopping
(learning rate =0.01)

0.5579 N/A 63.9949

RuleFit Classifier 0.5581 N/A 63.9949

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

TensorFlow Deep
Learning Classifier

0.5592 N/A 63.9949

Keras Slim Residual
Neural Network
Classifier using Adaptive
Training Schedule (1
Layer: 64 Units)

0.5592 N/A 63.9949

Keras Residual Cross
Network Classifier using
Training Schedule (3
Cross Layers, 4 Layers:
100, 100, 100, 100
Units)

0.5595 N/A 63.9949

Dropout Additive
Regression Trees
Classifier (15 leaves)

0.5607 N/A 63.9949

RandomForest Classifier
(Gini)

0.5611 N/A 63.9949

RandomForest Classifier
(Entropy)

0.5613 N/A 63.9949

Eureqa Generalized
Additive Model
Classifier (10000
Generations)

0.562 N/A 63.9949

LightGBM Random
Forest Classifier

0.5623 N/A 63.9949

RandomForest Classifier
(Entropy) (Shallow)

0.5627 N/A 63.9949

ExtraTrees Classifier
(Gini)

0.5647 N/A 63.9949

Gradient Boosted
Greedy Trees Classifier
with Early Stopping

0.5653 N/A 63.9949

Keras Deep Residual
Neural Network
Classifier using Training
Schedule (3 Layers: 512,
64, 64 Units)

0.5658 N/A 63.9949

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Eureqa Generalized
Additive Model
Classifier (1178
Generations)

0.5673 N/A 63.9949

Breiman and Cutler
Random Forest
Classifier

0.57 N/A 63.9949

Decision Tree Classifier
(Gini)

0.5773 N/A 63.9949

Auto-tuned K-Nearest
Neighbors Classifier
(Euclidean Distance)

0.5786 N/A 63.9949

Support Vector
Classifier (Linear
Kernel)

0.5806 N/A 63.9949

Eureqa Classifier
(Default Search: 3000
Generations)

0.5833 N/A 63.9949

Eureqa Classifier (Quick
Search: 250
Generations)

0.5857 N/A 63.9949

Eureqa Generalized
Additive Model
Classifier (40
Generations)

0.5869 N/A 63.9949

Eureqa Classifier
(Instant Search: 40
Generations)

0.5968 N/A 63.9949

Keras Deep Residual
Neural Network
Classifier using Training
Schedule (2 Layers: 512,
512 Units)

0.6979 N/A 63.9949

Keras Wide Residual
Neural Network
Classifier using Training
Schedule (1 Layer: 1536
Units)

0.7134 N/A 63.9949

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Naive Bayes combiner
classifier

0.5759 N/A 15.9973

Majority Class Classifier 0.6095 N/A 15.9973

5.6 Variable Selection
The model's variable selection process includes a balance of quantitative analysis and key domain
knowledge about the underlying business problem (i.e., expert judgment). The subsections below
describe:

• DataRobot Quantitative Analysis: key components related to variable selection that are
automated by DataRobot

• Expert Judgment and Variable Selection: summary of the expert judgment used during the
variable selection process.

• Final Model Variables: final feature list chosen

5.6.1 DataRobot Quantitative Analysis
A feature list is a defined set of features (variables) that DataRobot can use for modeling. DataRobot
automatically creates three feature lists (described below) for each project. Users, however, can
create customized feature lists that contain a subset of the total feature set, and use the new list to
train new, alternative models. The default lists are described below:

• Informative Features (default): Features that pass a "reasonableness" check that determines
whether they contain useful information. For example, DataRobot excludes features it
determines are low information, such as a column containing all ones, duplicate columns, or a
feature with too few values. The Informative Features list is sorted by each feature's correlation
with the target variable

• Raw Features: All features (variables) in the dataset, including those excluded from the
Informative Features list.

• Univariate Selection: Features that meet a certain threshold for non-linear correlation with the
selected target. DataRobot calculates, for each entry in the Informative features list, the
feature's individual relationship against the target.

Users also have the option to create user-defined feature transformations, which can then be
included in a feature list for model exploration and to determine relative feature importance.
Importance is measured using the information content of the variable; the calculation is done
independently for each feature in the dataset. Features are then ranked on the Leaderboard from
most to least important. This score represents a measure of predictive power using only that
variable to predict the target. The score is measured using the project's accuracy metric that is
defined by either the user (i.e., LogLoss) or the default assigned by DataRobot.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

5.6.2 Expert Judgement and Variable Selection

NA, no manual variable selection was performed, other than exploration of
protected features inclusion or exclusion in the model outcomes. This was
done for exploration rather than expertise.

5.6.3 Final Model Variables
Below are two tables. The first contains a list of the final set of model feature variables, as well as
summary statistics for the Nystroem Kernel SVM Classifier model and the second table contains a
detailed analysis of missing values.

The Model Features and Summary Statistics table provides a brief overview of the summary
statistics of model features. This includes Feature Name, variable type (Var Type), number of
unique values (Unique), Number of missing values (Missing), Mean, Standard Deviation (Std Dev),
Median, Minimum Value (Min), Maximum Value (Max) and Assessment of target leakage risk
(Target Leakage).

5.6.3.1 Model Features and Summary Statistics
Feature Name Var Type Unique Missing Mean Std

Dev
Median Min Max Target

Leakage

Gender Categorical 2 0 N/A N/A N/A N/A N/A Low

Race Categorical 2 0 N/A N/A N/A N/A N/A Low

Age_at_Release Categorical 7 0 N/A N/A N/A N/A N/A Low

Residence_PUMA Numeric 25 0 12.31 7.13 12.0 1.0 25.0 Low

Gang_Affiliated Categorical 2 1724 N/A N/A N/A N/A N/A Low

Supervision_Risk_Score_First Numeric 10 270 6.064 2.39 6.0 1.0 10.0 Low

Supervision_Level_First Categorical 3 974 N/A N/A N/A N/A N/A Low

Education_Level Categorical 3 0 N/A N/A N/A N/A N/A Low

Dependents Numeric 3 4296 0.81 0.82 1.0 0.0 2.0 Low

Prison_Offense Categorical 5 1840 N/A N/A N/A N/A N/A Low

Prison_Years Categorical 4 0 N/A N/A N/A N/A N/A Low

Prior_Arrest_Episodes_Felony Numeric 10 3464 4.41 2.405 4.0 0.0 9.0 Low

Prior_Arrest_Episodes_Misd Numeric 6 4605 2.085 1.68 2.0 0.0 5.0 Low

Prior_Arrest_Episodes_Violent Numeric 3 2174 0.66 0.74 0.0 0.0 2.0 Low

Prior_Arrest_Episodes_Property Numeric 5 3286 1.39 1.305 1.0 0.0 4.0 Low

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Prior_Arrest_Episodes_Drug Numeric 5 1725 1.37 1.31 1.0 0.0 4.0 Low

Prior_Arrest_Episodes_PPViolationCharges Numeric 5 3600 1.45 1.39 1.0 0.0 4.0 Low

Prior_Arrest_Episodes_DVCharges Boolean 2 0 0.17 0.37 0.0 0.0 1.0 Low

Prior_Arrest_Episodes_GunCharges Boolean 2 0 0.26 0.44 0.0 0.0 1.0 Low

Prior_Conviction_Episodes_Felony Numeric 3 3923 0.83 0.78 1.0 0.0 2.0 Low

Prior_Conviction_Episodes_Misd Numeric 4 3391 1.0701 1.067 1.0 0.0 3.0 Low

Prior_Conviction_Episodes_Viol Boolean 2 0 0.32 0.47 0.0 0.0 1.0 Low

Prior_Conviction_Episodes_Prop Numeric 3 3033 0.61 0.75 0.0 0.0 2.0 Low

Prior_Conviction_Episodes_Drug Numeric 2 3804 0.34 0.47 0.0 0.0 1.0 Low

Prior_Conviction_Episodes_PPViolationCharges Boolean 2 0 0.33 0.47 0.0 0.0 1.0 Low

Prior_Conviction_Episodes_DomesticViolenceCharges Boolean 2 0 0.079 0.27 0.0 0.0 1.0 Low

Prior_Conviction_Episodes_GunCharges Boolean 2 0 0.13 0.34 0.0 0.0 1.0 Low

Prior_Revocations_Parole Boolean 2 0 0.094 0.29 0.0 0.0 1.0 Low

Prior_Revocations_Probation Boolean 2 0 0.15 0.35 0.0 0.0 1.0 Low

Condition_MH_SA Boolean 2 0 0.66 0.47 1.0 0.0 1.0 Low

Condition_Cog_Ed Boolean 2 0 0.44 0.5 0.0 0.0 1.0 Low

Condition_Other Boolean 2 0 0.32 0.47 0.0 0.0 1.0 Low

Recidivism_Arrest_Year1 Boolean 2 0 0.3 0.46 0.0 0.0 1.0 N/A

The last column in this table is an assessment of target leakage risk. DataRobot automatically tests
for target leakage on a per- feature basis during the Autopilot process. Target leakage, sometimes
called data leakage, occurs when a model is trained using a dataset that includes information that
would not be available at the time of prediction. This can produce overly optimistic model
performance results during training, given a feature will near-completely describe the target (e.g.,
the number of late payments on a loan as a predictor for loan default at loan application date.)

DataRobot tests for target leakage risk using Alternating Conditional Expectation (ACE) to measure
the association between each feature and the target; the ACE score is normalized using the project
optimization metric so that its value is in the range [0,1]. If above a certain threshold (see below),
DataRobot will create a new feature list with those features flagged and possibly removed, and the
user is notified by a banner in the user interface during modeling. Notably, because the definition of
target leakage is directly tied with prediction time and not strength of association between a
feature and the target, it's possible for DataRobot to not identify all sources of target leakage.
Therefore, to reduce the risk for potential target leakage in the feature list, it's important to apply
subject matter expertise.

The thresholds for target leakage risk are based on a normalized ACE score:

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

• High risk: > 0.975, flagged and removed
• Moderate risk: > 0.85, flagged but not removed
• Low risk: < 0.85, no action

The following table provides a summary of missing values. It includes the name of the feature, its
type, a summary of the missing value count (both number of rows and as a percentage), and
provides information on the type of imputation applied to the feature.

5.6.3.2 Data Quality Handling Report

Feature Name Var Type Missing
Count

Missing
Percentage

Imputation
Name

Imputation
Description

Prior_Arrest_Episodes_Misd Numeric 5733 32 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 2

Dependents Numeric 5437 30 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 1

Prior_Conviction_Episodes_Felony Numeric 4887 27 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 1

Prior_Conviction_Episodes_Drug Numeric 4688 26 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 0

Prior_Arrest_Episodes_PPViolationCharges Numeric 4465 25 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 1

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Prior_Arrest_Episodes_Felony Numeric 4307 24 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 4

Prior_Conviction_Episodes_Misd Numeric 4219 23 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 1

Prior_Arrest_Episodes_Property Numeric 4088 23 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 1

Prior_Conviction_Episodes_Prop Numeric 3799 21 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 0

Prior_Arrest_Episodes_Violent Numeric 2737 15 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 0

Prison_Offense Categorical 2321 13 One-Hot
Encoding

Missing
indicator
treated as
feature

Gang_Affiliated Categorical 2217 12 One-Hot
Encoding

Missing
indicator
treated as
feature

Prior_Arrest_Episodes_Drug Numeric 2110 12 Missing
Values
Imputed

Missing
indicator
treated as
feature,

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Imputed
value: 1

Supervision_Level_First Categorical 1212 7 One-Hot
Encoding

Missing
indicator
treated as
feature

Supervision_Risk_Score_First Numeric 330 2 Missing
Values
Imputed

Missing
indicator
treated as
feature,
Imputed
value: 6

Gender Categorical 0 0 One-Hot
Encoding

Missing
values
ignored

Prior_Arrest_Episodes_DVCharges Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Race Categorical 0 0 One-Hot
Encoding

Missing
values
ignored

Education_Level Categorical 0 0 One-Hot
Encoding

Missing
values
ignored

Condition_Other Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Prior_Conviction_Episodes_DomesticViolenceCharges Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Residence_PUMA Numeric 0 0 Missing
Values
Imputed

Imputed
value: 12

Prior_Revocations_Parole Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Prior_Conviction_Episodes_PPViolationCharges Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Prior_Arrest_Episodes_GunCharges Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Prior_Conviction_Episodes_Viol Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Prior_Conviction_Episodes_GunCharges Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Condition_Cog_Ed Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Prior_Revocations_Probation Numeric 0 0 Missing
Values
Imputed

Imputed
value: 0

Prison_Years Categorical 0 0 One-Hot
Encoding

Missing
values
ignored

Condition_MH_SA Numeric 0 0 Missing
Values
Imputed

Imputed
value: 1

Age_at_Release Categorical 0 0 One-Hot
Encoding

Missing
values
ignored

6 Model Performance and Stability

6.1 Model Validation Stability
To find patterns in a dataset from which it can make predictions, an algorithm must first learn from
a historical example – typically from a historical dataset that contains the output variable you want
to predict. However, if a model is trained too closely on its training data then it may be overfit.
Overfitting is a modeling error that occurs when a model is too closely fit to training data and
therefore performs poorly on out-of-sample data (data that was not used to train the model).
Overfitting generally results in an overly complex model that explains idiosyncrasies and random

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

noise in the training data, rather than the underlying trends that the model was intended to
capture. To avoid overfitting, the best practice is to evaluate model performance on out-of-sample
data. If the model performs very well on in-sample data, (the training data) but poorly on out-of-
sample data, that may be an indication that the model is overfit.

DataRobot uses standard modeling techniques to validate model performance and ensure that
overfitting does not occur. DataRobot used a robust model k-fold cross-validation framework to
test the out-of-sample stability of a model's performance. In addition to the cross-validation
partitioning, DataRobot uses a holdout sample to further test out-of-sample model performance
and ensure the model is not overfit.

The following procedure was used during development to insure that overfitting did not occur:

• DataRobot set aside 20.00222% of the training data as a holdout dataset. This dataset is used to
verify that the final model performs well on data that has not been touched throughout the
training process.

• For further model validation, the remainder of the data is divided into 5 cross validation
partitions. To compensate for the overhead when working with large datasets, DataRobot first
trains models on a smaller part of the data and uses only one cross-validation fold to evaluate
model performance. Then, for the highest performing models, DataRobot increases the subset
sizes. This results in only the best model being trained on the total cross-validation partition.
For those models, DataRobot completes 5-fold cross-validation training and scoring. As a result,
the mean score of complete model cross-validation is calculated across all folds. Those models
that did not perform well will not have a cross-validation score. Instead, because they only had
a "one-fold" validation, their score is reported in the Validation column.

The following figure summarizes the CV process used by DataRobot, where the blue denotes
79.99778% of the data available for training, which is then divided into 5-folds for cross-validation
and and red denotes the holdout sample.

DataRobot calculates the Cross Validation scores for each of the training data partitions or folds.
The project metric used to calculate the score is LogLoss.

6.1.1 Cross Validation Scores
Fold Cross Validation Score (LogLoss)

Fold 1 0.55214

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Fold 2 0.56329

Fold 3 0.54673

Fold 4 0.56017

Fold 5 0.55674

6.1.2 Data Partitioning Methodology
Because the distribution of the target in a binary classification project may be imbalanced, the
modeling partitions were randomly selected using a stratified sample to preserve the distribution
of the target for each partition.

6.2 Model Performance (Sample Scores)
As an additional layer of model validity, DataRobot not only evaluated the statistical metrics
underlying the model, but also performed testing on in-sample records.

The performance metric used for this project was LogLoss. The model performance results are
presented below for in-sample testing:

Scoring Type Score (LogLoss)

cross_validation 0.5558*

holdout 0.5444*

validation 0.5521*

6.3 Sensitivity Testing and Analysis

6.3.1 Lift Chart
The Lift Chart sorts and groups numeric feature values into equal sized bins, depicting how well a
model segments the target population and how capable it is of predicting the target, This helps the
user to visualize model accuracy for each bin. The chart is sorted by predicted values -- lowest to
highest predictions, for example -- which provides transparency to the model performance for
different ranges of values of the target variable. Looking at the Lift Chart, the left side of the curve
indicates where the model predicted a low score on one section of the population while the right
side of the curve indicates where the model predicted a high score. The model Lift Chart is
presented in the figure below.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

The points on the Lift Chart indicate the average percentage in each bin. The "Predicted" blue line
displays the average prediction score for the rows in that bin. The "Actual" orange line displays the
actual percentage for the rows in that bin. In general, the steeper the Actual line is, and the more
closely the Predicted line matches the actual line, the better the model. A close relationship
between these two lines is indicative of the predictive accuracy of the model; a consistently
increasing line is another good indicator of satisfactory model performance.

6.3.2 Key Relationships
Feature Impact, which is available for all model types, works by altering input data and observing
the effect on a models score. This technique is sometimes called Permutation Importance. The
Feature Impact for a given column measures how much worse a models error score would be if
DataRobot made predictions after randomly shuffling that column (while leaving other columns
unchanged). DataRobot normalizes the scores so that the value of the most important feature
column is first and the other subsequent features are normalized to it.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Feature Name Impact Normalized Impact Unnormalized

Age_at_Release 1.0 0.0349

Gang_Affiliated 0.2808 0.0098

Prison_Years 0.2085 0.0073

Prior_Arrest_Episodes_Felony 0.2056 0.0072

Prior_Arrest_Episodes_Property 0.1085 0.0038

Condition_MH_SA 0.0815 0.0028

Prior_Revocations_Parole 0.0758 0.0026

Prior_Arrest_Episodes_Misd 0.0707 0.0025

Supervision_Risk_Score_First 0.0672 0.0023

Residence_PUMA 0.0533 0.0019

Prior_Conviction_Episodes_Drug 0.0521 0.0018

Gender 0.0476 0.0017

Prior_Revocations_Probation 0.0415 0.0014

Prior_Arrest_Episodes_Drug 0.0413 0.0014

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Prison_Offense 0.04 0.0014

Race 0.0388 0.0014

Prior_Arrest_Episodes_PPViolationCharges 0.0363 0.0013

Prior_Conviction_Episodes_Felony 0.0322 0.0011

Prior_Conviction_Episodes_Misd 0.0291 0.001

Dependents 0.0286 0.001

Prior_Conviction_Episodes_Prop 0.0267 0.0009

Condition_Other 0.0227 0.0008

Prior_Conviction_Episodes_PPViolationCharges 0.0213 0.0007

Education_Level 0.0197 0.0007

Prior_Conviction_Episodes_Viol 0.017 0.0006

Prior_Arrest_Episodes_DVCharges 0.0113 0.0004

Prior_Conviction_Episodes_GunCharges 0.0113 0.0004

Prior_Arrest_Episodes_GunCharges 0.0106 0.0004

Prior_Arrest_Episodes_Violent 0.007 0.0002

Prior_Conviction_Episodes_DomesticViolenceCharges 0.0049 0.0002

Supervision_Level_First 0.0015 0.0001

Condition_Cog_Ed 0.0015 0.0001

6.3.3 Sensitivity Analysis (Partial Dependence)
In the case of linear regression, we can gain considerable insight into the structure and
interpretation of the model by examining its coefficients. For more complex models like support
vector machines, random forests, or the blenders considered here, no comparably simple
parametric description is available, making the interpretation of these models more difficult. To
address this difficulty for his gradient boosting machine, Friedman (2001) proposed the use of
partial dependence plots. Partial dependence plots show the average partial relationship between a
set of predictors and the predicted response. The partial dependence plots below capture the top
features in our model, as measured by Feature Impact.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Age_at_Release

Gang_Affiliated

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Prison_Years

The orange circles depict, for the selected feature, the average target value for the aggregated
feature values. The blue crosses depict, for the selected feature, the average prediction for a specific
value. From the graph you can see that DataRobot also averages the predicted feature values.
Comparing the actual and predicted points can identify segments where model predictions differ
from observed data. This typically occurs when the segment size is small. In those cases, for
example, some models may predict closer to the overall average.

The yellow partial dependence data points depict the marginal effect of a feature on the target
variable after accounting for the average effects of all other predictive features. It indicates how,
holding all other variables constant, the value of this feature affects your prediction. DataRobot
holds constant the values of all columns in the sample except the feature of interest. The value of
the feature of interest is then reassigned to each possible value, calculating the average predictions
for the sample at each setting. These values help determine how the value of each feature affects the
target. The shape of the yellow data points describes the model's view of the marginal relationship
between the selected feature and the target.

6.3.4 Accuracy (Receiver Operating Characteristic)
A confusion matrix is a table that reports true versus predicted values. The name "confusion
matrix" refers to the fact that the matrix makes it easy to see if the model is confusing two classes
(consistently mislabeling one class as another class). The table below presents key sensitivities that
support the creation of a confusion matrix.

F1 Score True Positive Rate False Positive
Rate

True Negative
Rate

Positive
Predictive Value

Negative
Predictive Value

Accuracy Matthews
Correlation
Coefficient

0.5265 0.8161 0.5457 0.4543 0.3886 0.8532 0.5622 0.2557

Where,

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

• F1 Score: A measure of the model's accuracy, computed based on precision and recall.
• True Positive Rate: Sensitivity or recall. The ratio of true positives (correctly predicted as

positive) to all actual positives.
• False Positive Rate: Fallout. The ratio of false positives to all actual negatives.
• True Negative Rate: Specificity. The ratio of true negatives (correctly predicted as negative) to

all actual negatives.
• Positive Predictive Value: Precision. For all the positive predictions, the percentage of cases in

which the model was correct.
• Negative Predictive Value: For all the negative predictions, the percentage of cases in which the

model was correct.
• Accuracy: The percentage of correctly classified instances.
• Matthews Correlation Coefficient: Measure of model quality when the classes are of very

different sizes (unbalanced).

The Receiver Operating Characteristic (ROC) Curve allows the user to explore classification,
performance, and statistics related to a selected model at any point on the probability scale.
Because choosing the best model can be based on a number of parameters, it is important to
understand whether the classification performance of a particular model meets predetermined
specifications. The ROC Curve plots the true positive rate against the false positive rate for a given
data source. The two important characteristics of the curve to consider are the area under the curve
(AUC) and the shape of the curve. The AUC is a metric for binary classification that considers all
possible thresholds and summarizes performance in a single value.

Below is the ROC curve for this model based on crossValidation.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

The Prediction Distribution graph shown below illustrates the distribution of actual distribution
density in relation to the threshold (a dividing line for interpretation of the graph). Every prediction
to the left of the dividing line is classified as false and every prediction to the right of the dividing
line is classified as true. Therefore, this graph illustrates how well the model discriminates between
prediction classes.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

6.3.5 Bias and Fairness
DataRobot's Bias and Fairness testing identifies whether the model exhibits biased behavior
towards any classes in the dataset's protected features, based on the selected definition of fairness.
Protected features and the fairness metric are chosen before Autopilot is started. DataRobot also
provides a workflow that guides you towards an appropriate definition of fairness for the specific
use case.

DataRobot's Bias and Fairness feature includes two model-level insights:

• Per-Class Bias, which shows whether the model is treating certain protected groups differently
as measured by the selected fairness metric. This identifies if there is biased behavior, and if so,
how that bias manifests, but not why.

• Cross-Class Data Disparity, which shows how different protected classes differ in their data
distribution. This offers deeper insight into why the model is treating groups differently.

Together, these insights can help identify potential mitigation strategies for bias in the dataset and
model, such as improving data collection or data sampling for specific groups.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Bias and Fairness testing was used in this project. The selected protected features were Race,
Gender. The favorable target outcome was 0. The selected fairness metric was proportionalParity.
The fairness threshold was set at 0.95.

Proportional Parity measures fairness by Equal Representation, and it is best suited for cases when
you want representation to be normalized based on the population sizes of your protected classes.
This metric measures whether your model's predictions are equivalent across each of the protected
classes, in terms of the relative percentage of each population that receives favorable and
unfavorable predictions. Note that metrics that measure Equal Representation can encourage your
model to depart from the target distributions learned during training, which could lead to tradeoffs
against measured accuracy metrics. This can be useful, however, if the model should make
decisions based on bias and fairness rather than decisions that would be made from uninfluenced
training data.

The Per-Class Bias graph shows whether the model exhibits biased behavior across protected
features. The top fairness score across each protected class is scaled to 1.0, and the fairness scores
for every other class are scaled relative to that value. If the fairness score for a class crosses the
selected fairness threshold, the bar for that class is shown in red. If DataRobot used in-sample
predictions to derive the model's performance scores (see Overview of Model Results), the
fairness scores were calculated using in-sample validation data.

If there is not enough data for a class, its score is still calculated, but the bar for that class is shown
in gray. The heuristic for whether a class does not have enough data is the following:

• If the class has <100 rows in the validation data, then it does not have enough data.
• If the class has between 100 and 1,000 rows in the validation data, but has fewer than <10% of

the rows of the majority class, then it does not have enough data.
• If the class has >1,000 rows, then it has enough data.

The following figure is the Per-Class Bias graph for each protected feature in this project:

Race

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Gender

The Cross-Class Data Disparity graph shows how different protected classes differ in their data
distribution, in order to understand why the model treats each class differently based on the
dataset. The X-axis depicts the feature importance of each feature in the dataset, while the Y-axis
shows the Population Stability Index (PSI) for that feature compared across the two selected classes
of the protected feature. The higher the feature importance, the more important that feature is to
the model. The higher the PSI, the more differences there are for that feature across each of the two
classes.

The following figure is the Cross-Class Data Disparity graph for each protected feature, comparing
the class with the highest fairness score against the class with the lowest fairness score within each
respective protected feature. If no chart is present, the feature did not have any classes with
sufficient data.

7 Model Implementation and Output
Reporting

7.1 Version Control
DataRobot handles model and project version control automatically by tagging each model on the
Leaderboard with a unique Model ID. The Model ID represents a single instance of a model type,
feature list, sample size, and set of tuning parameter values. DataRobot also maintains unique
Project IDs for each project, allowing accessibility to all models built for the project dataset.
DataRobot's version control allows for reproducibility and traceability of the models it creates,
which greatly increases the auditability of the model development process.

Users may also export scoring code which is an approximation. The DataRobot Prime scoring code
is based on a Nystroem Kernel SVM trained on ~64% of the data. Scoring code is easy to deploy,
test, and maintain on a variety of platform.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

7.2 Scoring Code
The Prime Model is shown here:

Number of Rules Log Loss Validation Values

26 .570280

53 .558987

114 .556109

177 .554765

208 .554610

364 .554453

618 .554349

An example 26 rule set scoring code file is shown below.

-*- coding: UTF-8 -*-
Copyright @2021. DataRobot, Inc. All Rights Reserved. Permission to use, copy, modify,
and distribute this software and its documentation is hereby granted, provided that the
above copyright notice, this paragraph and the following two paragraphs appear in all copies,
modifications, and distributions of this software or its documentation. Contact DataRobot,
225 Franklin Street, Boston, MA, United States 02110, support@datarobot.com
for more details.

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

IN NO EVENT SHALL DATAROBOT BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, ARISING OUT OF THE USE OF THIS
SOFTWARE AND ITS DOCUMENTATION BASED ON ANY THEORY OF LIABILITY, EVEN IF DATAROBOT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS".
DATAROBOT SPECIFICALLY DISCLAIMS ANY AND ALL WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DATAROBOT HAS NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

-*- coding: utf-8 -*-

Copyright 2021 DataRobot, Inc. and its affiliates.

All rights reserved.

DataRobot, Inc. Confidential.

This is unpublished proprietary source code of DataRobot, Inc.
and its affiliates.

The copyright notice above does not evidence any actual or intended
publication of such source code.

import calendar
from datetime import datetime
from collections import namedtuple
import re
import sys
import time
import os

import numpy as np
import pandas as pd

PY3 = sys.version_info[0] == 3
if PY3:
 string_types = str,
 text_type = str
 long_type = int
else:
 string_types = basestring,
 text_type = unicode
 long_type = long

def predict(row):
 Age_at_Release = row[u'Age_at_Release']
 Gang_Affiliated = row[u'Gang_Affiliated']
 Gender = row[u'Gender']
 Prison_Offense = row[u'Prison_Offense']
 Prison_Years = row[u'Prison_Years']
 round_Condition_Cog_Ed = np.float32(row[u'Condition_Cog_Ed'])
 round_Condition_MH_SA = np.float32(row[u'Condition_MH_SA'])
 round_Prior_Arrest_Episodes_DVCharges = np.float32(row[u'Prior_Arrest_Episodes_DVCharges'])
 round_Prior_Arrest_Episodes_Felony = np.float32(row[u'Prior_Arrest_Episodes_Felony'])
 round_Prior_Arrest_Episodes_Felony_mi = np.float32(row[u'Prior_Arrest_Episodes_Felony-mi'])
 round_Prior_Arrest_Episodes_Misd_mi = np.float32(row[u'Prior_Arrest_Episodes_Misd-mi'])
 round_Prior_Arrest_Episodes_PPViolationCharges_mi =
np.float32(row[u'Prior_Arrest_Episodes_PPViolationCharges-mi'])
 round_Prior_Arrest_Episodes_Property = np.float32(row[u'Prior_Arrest_Episodes_Property'])
 round_Prior_Arrest_Episodes_Property_mi = np.float32(row[u'Prior_Arrest_Episodes_Property-mi'])
 round_Prior_Conviction_Episodes_Misd = np.float32(row[u'Prior_Conviction_Episodes_Misd'])
 round_Prior_Conviction_Episodes_Misd_mi = np.float32(row[u'Prior_Conviction_Episodes_Misd-mi'])
 round_Prior_Revocations_Parole = np.float32(row[u'Prior_Revocations_Parole'])
 round_Supervision_Risk_Score_First = np.float32(row[u'Supervision_Risk_Score_First'])
 return sum([
 -0.7836640,

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 0.37256620433804371606 * (Gang_Affiliated == u'true'),
 0.15772129275608168242 * (not Age_at_Release == u'48 or older' and
 round_Supervision_Risk_Score_First > 5.5 and
 round_Prior_Arrest_Episodes_Felony > 3.5 and
 round_Prior_Arrest_Episodes_Property > 0.5),
 -0.060051188770255940763 * (not Age_at_Release == u'18-22' and
 not Gang_Affiliated == u'true' and
 not Prison_Offense == u'Violent/Sex' and
 round_Prior_Arrest_Episodes_Misd_mi <= 0.5),
 -0.14498758158451227618 * (not Age_at_Release == u'18-22' and
 not Age_at_Release == u'23-27' and
 not Age_at_Release == u'28-32' and
 round_Prior_Arrest_Episodes_Felony_mi <= 0.5),
 0.072043591804937884282 * (not Gang_Affiliated == u'nan' and
 not Prison_Offense == u'Drug' and
 not Prison_Offense == u'Violent/Sex' and
 round_Prior_Conviction_Episodes_Misd > 0.5),
 -0.1249952311698017543 * (not Age_at_Release == u'18-22' and
 not Age_at_Release == u'23-27' and
 round_Prior_Arrest_Episodes_Felony_mi <= 0.5 and
 round_Prior_Revocations_Parole <= 0.5),
 0.033367633163220514203 * (not Gang_Affiliated == u'nan' and
 not Prison_Offense == u'Drug' and
 not Prison_Offense == u'Violent/Sex' and
 round_Condition_MH_SA > 0.5),
 -0.023592064033514756338 * (not Gang_Affiliated == u'true' and
 not Prison_Years == u'1-2 years' and
 not Prison_Years == u'Less than 1 year' and
 round_Supervision_Risk_Score_First <= 7.5),
 0.024209256976055588961 * (not Gender == u'F' and
 not Prison_Years == u'Greater than 2 to 3 years' and
 not Prison_Years == u'More than 3 years' and
 round_Prior_Revocations_Parole <= 0.5),
 -0.047775336991488510929 * (Prison_Years == u'More than 3 years'),
 -0.087856394958524458572 * (not Age_at_Release == u'18-22' and
 not Age_at_Release == u'23-27' and
 not Age_at_Release == u'28-32' and
 round_Prior_Conviction_Episodes_Misd_mi <= 0.5),
 0.048024656901445736401 * (round_Prior_Arrest_Episodes_PPViolationCharges_mi),
 -0.17961466192724451219 * (not Age_at_Release == u'18-22' and
 round_Prior_Arrest_Episodes_Property <= 2.5 and
 round_Prior_Arrest_Episodes_Property_mi <= 0.5 and
 round_Prior_Conviction_Episodes_Misd_mi <= 0.5),
 0.12317817121832205784 * (not Gang_Affiliated == u'nan' and
 round_Supervision_Risk_Score_First > 4.5 and
 round_Prior_Arrest_Episodes_Property > 0.5 and
 round_Condition_MH_SA > 0.5),
 -0.0031956770818259050589 * (not Age_at_Release == u'18-22' and
 not Age_at_Release == u'23-27' and
 round_Prior_Arrest_Episodes_DVCharges <= 0.5 and
 round_Prior_Revocations_Parole <= 0.5),
 -0.03906985781076699471 * (Age_at_Release == u'48 or older'),
 -0.047760750334888309176 * (not Age_at_Release == u'23-27' and
 not Prison_Years == u'Less than 1 year' and
 round_Supervision_Risk_Score_First <= 7.5 and
 round_Prior_Arrest_Episodes_Felony_mi <= 0.5),
 -0.0050209196486393856823 * (not Age_at_Release == u'43-47' and
 round_Prior_Arrest_Episodes_Felony <= 5.5 and
 round_Prior_Arrest_Episodes_Felony_mi <= 0.5 and
 round_Prior_Arrest_Episodes_Property <= 1.5),
 -0.078673671380399462505 * (not Age_at_Release == u'18-22' and
 not Age_at_Release == u'23-27' and
 round_Prior_Arrest_Episodes_Misd_mi <= 0.5 and
 round_Prior_Revocations_Parole <= 0.5),
 0.0017857096035336934153 * (not Prison_Years == u'More than 3 years' and
 round_Supervision_Risk_Score_First > 6.5 and
 round_Prior_Conviction_Episodes_Misd > 0.5),
 0.0075601401994730855344 * (round_Prior_Arrest_Episodes_Felony),
 -0.0089114767176659732961 * (not Prison_Years == u'1-2 years' and

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 not Prison_Years == u'Less than 1 year' and
 round_Supervision_Risk_Score_First <= 7.5 and
 round_Prior_Revocations_Parole <= 0.5),
 0.057556400616113528868 * (not Age_at_Release == u'48 or older' and
 round_Prior_Arrest_Episodes_PPViolationCharges_mi > 0.5),
 -0.052407605139358409696 * (not Gang_Affiliated == u'true' and
 round_Prior_Arrest_Episodes_Property <= 1.5 and
 round_Prior_Conviction_Episodes_Misd <= 1.5 and
 round_Prior_Conviction_Episodes_Misd_mi <= 0.5),
 -0.01367717953231029418 * (not Age_at_Release == u'18-22' and
 not Prison_Offense == u'nan' and
 round_Prior_Arrest_Episodes_Property <= 2.5 and
 round_Prior_Arrest_Episodes_Property_mi <= 0.5),
 -0.0046171086683386404828 * (not Gang_Affiliated == u'true' and
 not Prison_Years == u'Less than 1 year' and
 round_Condition_Cog_Ed <= 0.5)])

def get_type_conversion():
 return {
 u'Prior_Arrest_Episodes_PPViolationCharges': {'convert_func': parse_nonstandard_na,
'convert_args': None},
 u'Prior_Arrest_Episodes_Property': {'convert_func': parse_nonstandard_na, 'convert_args': None},
 u'Prior_Conviction_Episodes_Misd': {'convert_func': parse_nonstandard_na, 'convert_args': None},
 u'Prior_Arrest_Episodes_Felony': {'convert_func': parse_nonstandard_na, 'convert_args': None},
 u'Prior_Arrest_Episodes_Misd': {'convert_func': parse_nonstandard_na, 'convert_args': None},}
INDICATOR_COLS = [u'Prior_Arrest_Episodes_Felony', u'Prior_Arrest_Episodes_Misd',
u'Prior_Arrest_Episodes_PPViolationCharges', u'Prior_Arrest_Episodes_Property',
u'Prior_Conviction_Episodes_Misd']

IMPUTE_VALUES = {
 u'Condition_Cog_Ed': 0.000000,
 u'Condition_MH_SA': 1.000000,
 u'Prior_Arrest_Episodes_DVCharges': 0.000000,
 u'Prior_Arrest_Episodes_Felony': 4.000000,
 u'Prior_Arrest_Episodes_Misd': 2.000000,
 u'Prior_Arrest_Episodes_PPViolationCharges': 1.000000,
 u'Prior_Arrest_Episodes_Property': 1.000000,
 u'Prior_Conviction_Episodes_Misd': 1.000000,
 u'Prior_Revocations_Parole': 0.000000,
 u'Supervision_Risk_Score_First': 6.000000,}

def bag_of_words(text):
 """ set of whole words in a block of text """
 if type(text) == float:
 return set()

 return set(word.lower() for word in
 re.findall(r'\w+', text, re.UNICODE | re.IGNORECASE))

def parse_date(x, date_format):
 """ convert date strings to numeric values. """
 try:
 # float values no longer pass isinstance(x, np.float64)
 if isinstance(x, (np.float64, float)):
 x = long_type(x)
 if '%f' in date_format and date_format.startswith('v2'):
 temp = str(x)
 if re.search('[\+-][0-9]+$', temp):
 temp = re.sub('[\+-][0-9]+$', '', temp)

 date_format = date_format[2:]
 dt = datetime.strptime(temp, date_format)
 sec = calendar.timegm(dt.timetuple())
 return sec * 1000 + dt.microsecond // 1000
 elif '%M' in date_format:
 temp = str(x)
 if re.search('[\+-][0-9]+$', temp):

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 temp = re.sub('[\+-][0-9]+$', '', temp)

 return calendar.timegm(datetime.strptime(temp, date_format).timetuple())
 else:
 return datetime.strptime(str(x), date_format).toordinal()
 except:
 return float('nan')

def parse_percentage(s):
 """ remove percent sign so percentage variables can be converted to numeric """
 if isinstance(s, float):
 return s
 if isinstance(s, int):
 return float(s)
 try:
 return float(s.replace('%', ''))
 except:
 return float('nan')

def parse_nonstandard_na(s):
 """ if a column contains numbers and a unique non-numeric,
 then the non-numeric is considered to be N/A
 """
 try:
 ret = float(s)
 if np.isinf(ret):
 return float('nan')
 return ret
 except:
 return float('nan')

def parse_length(s):
 """ convert feet and inches as string to inches as numeric """
 try:
 if '"' in s and "'" in s:
 sp = s.split("'")
 return float(sp[0]) * 12 + float(sp[1].replace('"', ''))
 else:
 if "'" in s:
 return float(s.replace("'", '')) * 12
 else:
 return float(s.replace('"', ''))
 except:
 return float('nan')

def parse_currency(s):
 """ strip currency characters and commas from currency columns """
 if not isinstance(s, text_type):
 return float('nan')
 s = re.sub(u'[\$\u20AC\u00A3\uFFE1\u00A5\uFFE5]|(EUR)', '', s)
 s = s.replace(',', '')
 try:
 return float(s)
 except:
 return float('nan')

def parse_currency_replace_cents_period(val, currency_symbol):
 try:
 if np.isnan(val):
 return val
 except TypeError:
 pass
 if not isinstance(val, string_types):
 raise ValueError('Found wrong value for currency: {}'.format(val))
 try:
 val = val.replace(currency_symbol, "", 1)
 val = val.replace(" ", "")

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 val = val.replace(",", "")
 val = float(val)
 except ValueError:
 val = float('nan')
 return val

def parse_currency_replace_cents_comma(val, currency_symbol):
 try:
 if np.isnan(val):
 return val
 except TypeError:
 pass
 if not isinstance(val, string_types):
 raise ValueError('Found wrong value for currency: {}'.format(val))
 try:
 val = val.replace(currency_symbol, "", 1)
 val = val.replace(" ", "")
 val = val.replace(".", "")
 val = val.replace(",", ".")
 val = float(val)
 except ValueError:
 val = float('nan')
 return val

def parse_currency_replace_no_cents(val, currency_symbol):
 try:
 if np.isnan(val):
 return val
 except TypeError:
 pass
 if not isinstance(val, string_types):
 raise ValueError('Found wrong value for currency: {}'.format(val))
 try:
 val = val.replace(currency_symbol, "", 1)
 val = val.replace(" ", "")
 val = val.replace(",", "")
 val = val.replace(".", "")
 val = float(val)
 except ValueError:
 val = float('nan')
 return val

def parse_numeric_types(ds):
 """ convert strings with numeric types (date, currency, etc.)
 to actual numeric values """
 TYPE_CONVERSION = get_type_conversion()
 for col in ds.columns:
 if col in TYPE_CONVERSION:
 convert_func = TYPE_CONVERSION[col]['convert_func']
 convert_args = TYPE_CONVERSION[col]['convert_args']
 ds[col] = ds[col].apply(convert_func, args=convert_args)
 return ds

def sanitize_name(name):
 safe = name.strip().replace("-", "_").replace("$", "_").replace(".", "_")
 safe = safe.replace("{", "_").replace("}", "_")
 safe = safe.replace('"', '_')
 safe = safe.replace("\n", "_")
 safe = safe.replace("\r", "_")
 return safe

def rename_columns(ds):
 new_names = {}
 existing_names = set()
 blank_index = 0
 for old_col in ds.columns:
 col = sanitize_name(old_col)

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 if col == '':
 col = 'Unnamed: %d' % blank_index
 blank_index += 1
 if col in existing_names:
 raise ValueError('Duplication detected. Column with name=['
 + old_col + '] was preprocessed to['
 + col + '] that already exists')
 existing_names.add(col)
 new_names[old_col] = col
 ds.rename(columns=new_names, inplace=True)
 return ds

def add_missing_indicators(ds):
 for col in INDICATOR_COLS:
 ds[col + '-mi'] = ds[col].isnull().astype(int)
 return ds

def impute_values(ds):
 for col in ds:
 if col in IMPUTE_VALUES:
 ds.loc[ds[col].isnull(), col] = IMPUTE_VALUES[col]
 return ds

BIG_LEVELS = {
 u'Gang_Affiliated': [
 u'false',
 u'true',
],
 u'Gender': [
 u'F',
 u'M',
],
 u'Prison_Years': [
 u'1-2 years',
 u'Greater than 2 to 3 years',
 u'Less than 1 year',
 u'More than 3 years',
],
 u'Prison_Offense': [
 u'Drug',
 u'Other',
 u'Property',
 u'Violent/Non-Sex',
 u'Violent/Sex',
],
 u'Age_at_Release': [
 u'18-22',
 u'23-27',
 u'28-32',
 u'33-37',
 u'38-42',
 u'43-47',
 u'48 or older',
],
}

SMALL_NULLS = {
 u'Gender': 1,
 u'Age_at_Release': 1,
 u'Prison_Years': 1,
}

VAR_TYPES = {
 u'Age_at_Release': 'C',
 u'Condition_Cog_Ed': 'N',
 u'Condition_MH_SA': 'N',
 u'Gang_Affiliated': 'C',

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 u'Gender': 'C',
 u'Prior_Arrest_Episodes_DVCharges': 'N',
 u'Prior_Arrest_Episodes_Felony': 'N',
 u'Prior_Arrest_Episodes_Misd': 'N',
 u'Prior_Arrest_Episodes_PPViolationCharges': 'N',
 u'Prior_Arrest_Episodes_Property': 'N',
 u'Prior_Conviction_Episodes_Misd': 'N',
 u'Prior_Revocations_Parole': 'N',
 u'Prison_Offense': 'C',
 u'Prison_Years': 'C',
 u'Supervision_Risk_Score_First': 'N',
}

def combine_small_levels(ds):
 for col in ds:
 if BIG_LEVELS.get(col, None) is not None:
 mask = np.logical_and(~ds[col].isin(BIG_LEVELS[col]), ds[col].notnull())
 if np.any(mask):
 ds.loc[mask, col] = 'small_count'
 if SMALL_NULLS.get(col):
 mask = ds[col].isnull()
 if np.any(mask):
 ds.loc[mask, col] = 'small_count'
 if VAR_TYPES.get(col) == 'C' or VAR_TYPES.get(col) == 'T':
 mask = ds[col].isnull()
 if np.any(mask):
 if ds[col].dtype == float:
 ds[col] = ds[col].astype(object)
 ds.loc[mask, col] = 'nan'
 return ds

N/A strings in addition to the ones used by Pandas read_csv()
NA_VALUES = ['null', 'na', 'n/a', '#N/A', 'N/A', '?', '.', '', 'Inf', 'INF', 'inf', '-inf', '-Inf', '-
INF', ' ', 'None', 'NaN', '-nan', 'NULL', 'NA', '-1.#IND', '1.#IND', '-1.#QNAN', '1.#QNAN', '#NA', '#N/A
N/A', '-NaN', 'nan']

True/False strings in addition to the ones used by Pandas read_csv()
TRUE_VALUES = ['TRUE', 'True', 'true']
FALSE_VALUES = ['FALSE', 'False', 'false']

DEFAULT_ENCODING = 'utf8'

REQUIRED_COLUMNS =
[u"Age_at_Release",u"Condition_Cog_Ed",u"Condition_MH_SA",u"Gang_Affiliated",u"Gender",u"Prior_Arrest_Epis
odes_DVCharges",u"Prior_Arrest_Episodes_Felony",u"Prior_Arrest_Episodes_Misd",u"Prior_Arrest_Episodes_PPVi
olationCharges",u"Prior_Arrest_Episodes_Property",u"Prior_Conviction_Episodes_Misd",u"Prior_Revocations_Pa
role",u"Prison_Offense",u"Prison_Years",u"Supervision_Risk_Score_First"]

def validate_columns(column_list):
 if set(REQUIRED_COLUMNS) <= set(column_list):
 return True
 else :
 raise ValueError("Required columns missing: %s" %
 (set(REQUIRED_COLUMNS) - set(column_list)))

def convert_bool(ds):
 TYPE_CONVERSION = get_type_conversion()
 for col in ds.columns:
 if VAR_TYPES.get(col) == 'C' and ds[col].dtype in (int, float):
 mask = ds[col].notnull()
 ds[col] = ds[col].astype(object)
 ds.loc[mask, col] = ds.loc[mask, col].astype(text_type)
 elif VAR_TYPES.get(col) == 'N' and ds[col].dtype == bool:
 ds[col] = ds[col].astype(float)
 elif ds[col].dtype == bool:
 ds[col] = ds[col].astype(text_type)
 elif ds[col].dtype == object:

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 if VAR_TYPES.get(col) == 'N' and col not in TYPE_CONVERSION:
 mask = ds[col].apply(lambda x: x in TRUE_VALUES)
 if np.any(mask):
 ds.loc[mask, col] = 1
 mask = ds[col].apply(lambda x: x in FALSE_VALUES)
 if np.any(mask):
 ds.loc[mask, col] = 0
 ds[col] = ds[col].astype(float)
 elif TYPE_CONVERSION.get(col) is None:
 mask = ds[col].notnull()
 ds.loc[mask, col] = ds.loc[mask, col].astype(text_type)
 return ds

def get_dtypes():
 return {a: object for a, b in VAR_TYPES.items() if b == 'C'}

def predict_dataframe(ds):
 return ds.apply(predict, axis=1)

def run_dataframe(ds):
 ds = rename_columns(ds)
 ds = convert_bool(ds)
 validate_columns(ds.columns)
 ds = parse_numeric_types(ds)
 ds = add_missing_indicators(ds)
 ds = impute_values(ds)
 ds = combine_small_levels(ds)
 prediction = 1/(1 + np.exp(-predict_dataframe(ds)))
 return prediction

def run(dataset_path, output_path, encoding=None):
 if encoding is None:
 encoding = DEFAULT_ENCODING

 ds = pd.read_csv(dataset_path, na_values=NA_VALUES, low_memory=False,
 dtype=get_dtypes(), encoding=encoding)

 prediction = run_dataframe(ds)
 prediction_file = output_path
 prediction.name = 'Prediction'
 prediction.to_csv(prediction_file, header=True, index_label='Index')

def _construct_parser():
 import argparse

 parser = argparse.ArgumentParser(description='Make offline predictions with DataRobot Prime')

 parser.add_argument(
 '--encoding',
 type=str,
 help=('the encoding of the dataset you are going to make predictions with. '
 'DataRobot Prime defaults to UTF-8 if not otherwise specified. See the '
 '"Codecs" column of the Python-supported standards chart '
 '(https://docs.python.org/2/library/codecs.html#standard-encodings) '
 'for possible alternative entries.'),
 metavar='<encoding>'
)
 parser.add_argument(
 'input_path',
 type=str,
 help=('a .csv file (your dataset); columns must correspond to the '
 'feature set used to generate the DataRobot Prime model.'),
 metavar='<data_file>'
)
 parser.add_argument(
 'output_path',
 type=str,

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

 help='the filename where DataRobot writes the results.',
 metavar='<output_file>'
)

 return parser

def _parse_command(args):
 parser = _construct_parser()
 parsed_args = parser.parse_args(args[1:])

 if parsed_args.encoding is None:
 sys.stderr.write('Warning: For input data encodings other than UTF-8, '
 'search "Prime examples" in the DataRobot Users Guide at
https://app.datarobot.com/docs/users-guide/index.html')
 parsed_args.encoding = DEFAULT_ENCODING

 return parsed_args

if __name__ == '__main__':
 args = _parse_command(sys.argv)
 run(args.input_path, args.output_path, encoding=args.encoding)

7.3 Rulefit Classification Insights
As part of the extensive DataRobot model search, various project insights can be obtained. Here are
the top 10 rulefit explanations for cohorts in the data.

Rule Lift Mean Rel.
Target

Mean Target Observations
[%]

Age_at_Release == "18-22" &
Age_at_Release != "33-37" &
Gang_Affiliated == "true"

0.80714873

1.80714873

0.539325843

3.08492201

Age_at_Release == "18-22" &
Gang_Affiliated == "true"

0.80714873

1.80714873

0.539325843

3.08492201

Gang_Affiliated == "true" &
Supervision_Level_First == "Specialized"

0.695562739

1.695562739

0.506024096

5.75389948

Gang_Affiliated == "true" &
Prior_Arrest_Episodes_PPViolationCharges
<= 1.5 & Condition_MH_SA > 0.5

0.68379645

1.68379645

0.502512563

6.897746967

Gang_Affiliated == "true" &
Prior_Arrest_Episodes_Felony > 1.5

0.631393811

1.631393811

0.486873508

14.52339688

Education_Level != "At least some college"
& Gang_Affiliated == "true"

0.616523459

1.616523459

0.482435597

14.80069324

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

Age_at_Release == "18-22" &
Prior_Arrest_Episodes_Felony > 2.5

0.612393353

1.612393353

0.481203008

4.610051993

Gang_Affiliated == "true" 0.575520533

1.575520533

0.470198675

15.70190641

Age_at_Release == "18-22" &
Residence_PUMA > 10.5 &
Prior_Arrest_Episodes_Felony > 1.5

0.539536052

1.539536052

0.459459459

3.847487002

Gang_Affiliated == "true" & Dependents <=
1.5

0.535762679 1.535762679 0.458333333 13.3102253

This resource was prepared by the author(s) using Federal funds provided by the U.S.
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not

necessarily reflect the official position or policies of the U.S. Department of Justice.

