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1   How To Use This Document 

This document outlines the steps taken and modeling results for the US Department of Justice 
Recidivism Challenge.  Overall, DataRobot’s AutoML solution was used with some basic 
preprocessing code written in R to arrive at the best model submission described herein.  It should 
be noted that this type of modeling exercise would require great care if put into production.  Ethical 
and responsible AI means fully understanding the stakeholder impact, system’s limitations, 
documenting risks and most importantly risk-mitigation based on severity and likelihood to protect 
vulnerable populations.  The model described herein is NOT intended for production based on the 
ethical considerations and impacts that could be amplified without careful discretion.  The extent of 
the model’s utility is to understand and provide insights based on the data provided specifically in 
terms of accuracy and its relationship to protected features, race and gender, according to 
proportional parity. 
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2   DataRobot Model Development 
Documentation 

The purpose of this document is not to be prescriptive in format and content, 
but rather to serve as a guide in creating sufficiently rigorous model 
development, implementation, and use documentation. The documentation 
should provide enough evidence to show that the components of the model 
work as intended, the model is appropriate for its intended purpose, and that it 
is conceptually sound.  As previously mentioned, the model does not purport to 
be an ethical implementation for the life-impacting use case described in the 
contest description. 

 

3   Executive Summary and Model Overview 

3.1   Model Stakeholders 

The model was created as part of a “Recidivism Challenge” presented by the US 
Department of Justice. 

Model Owner(s): Model ownership is determined by the rules of the publicly 
held competition. 

Model Developer(s): Ted Kwartler, VP Trusted AI & Harvard University 
Extension School Adjunct Professor solely created the model. 

Model User(s): It is likely the model will be reviewed, and interesting insights 
will be extracted by Department of Justice technical personnel rather than a 
production model or application be developed. 

Model Validator(s): Model validation was performed by challenge 
administrators with results shared online. 
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3.2   Model Development Purpose and Intended Use 

According to the contest website, The National Institute of Justice’s (NIJ) 
“Recidivism Forecasting Challenge” (the Challenge) aims to increase public 
safety and improve the fair administration of justice across the United States. 
Results from the Challenge will provide critical information to community 
corrections departments that may help facilitate more successful reintegration 
into society for previously incarcerated persons and persons on parole. 

Thus, it is likely not only the predictive power is of interest but also any insights 
stemming from the analysis may be of use in the academic-style research being 
conducted on recidivism to improve outcomes for affected people. 

Data was prepared with ~50 lines of code written in R before being presented 
to an automated machine learning system.  Within the automated machine 
learning application, 74 machine learning model types and accompanying 
tuning parameters were fit.  These models were sorted according to LogLoss.  
The model described in this document represents the best model according to 
LogLoss among the 74, without any advanced feature engineering or 
enrichment which could have improved results but at the expense of time and 
effort.  Additionally, an advanced performance indicator was selected to 
understand Bias and Fairness within the model.  As a result, insights and results 
for race and gender according to proportional parity are also provided 
alongside standardized model KPIs. 

Since the model is not intended to be productionalized, high risk could occur if 
the model is used to inform decision making. 

 

3.3   Model Description and Overview 
The particular model referenced in this document: Nystroem Kernel SVM Classifier. This model was 
developed in a project created with vf0e8f0f7a9b51308 of DataRobot. This model is denoted within 
DataRobot by the Project ID: 60b404c9d14c853b8cb15aee and the Model ID: 
60b4ffaaeceb345397474965. The project was created on 2021-05-30 21:34:01. 

The model development workflow process (i.e., the model blueprint) is detailed in the figure below. 
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A Blueprint represents the high-level end-to-end procedure for fitting the model, including any 
preprocessing steps, algorithms, and post-processing. It illustrates the many steps involved in 
transforming input predictors and targets into a model. Each element (or, “node”) in a blueprint can 
represent multiple steps. 

The following elements connect to visualize the blueprint: 

• One-Hot Encoding 
• Missing Values Imputed 
• Smooth Ridit Transform 
• Nystroem Kernel SVM Classifier 

3.4   Overview of Model Results 
DataRobot runs performance testing during the model development process to evaluate model 
results and reliability. The validation, cross-validation, and holdout (if applicable) out-of-sample 
performance scores are presented below, as well as the number of observations for each partition. 
The performance metric used for this project was LogLoss and the project included a total of 18,028 
observations. An asterisk (*) next to a score, whether validation or holdout, indicates that 
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DataRobot used in-sample predictions to derive the score. (In-samples predictions are those that 
include data from the validation or holdout partitions due to sample size used to build the model.) 

Scoring Type Score (LogLoss) 

cross_validation 0.5558* 

holdout 0.5444* 

validation 0.5521* 

3.5   Model Interdependencies 
Understanding interdependent relationships allows for an enhanced understanding of, and 
improved ability to manage and aggregate model risk at the company. As constructed, there is no 
prediction stacking and subsequent “downstream” models.  Prediction stacking was explored where 
sophisticated models impute missing values in the training data but the interdependent complexities 
weighed against the  benefit made the exercise ineffective. 

 

4   Model Data Overview 

4.1   Feature Association 
DataRobot’s Feature Association Matrix is populated by default by features from DataRobot’s 
Informative Features feature list. The Feature Associations matrix provides information on 
association strength between pairs of numeric and categorical features that are visually denoted by 
the opacity of the color  (that is, num/cat, num/num, cat/cat, where lighter shades indicate weaker 
association and vice versa) and feature clusters. Clusters, families of features denoted by color on 
the matrix, are features partitioned into groups based on their association structure. 

Some of the noted benefits of the Feature Association Matrix include: 

• Understand the strength and nature of associations within the data; 
• Detect families of pairwise association clusters; and, 
• Identify clusters of high-association features prior to model building. 

The Feature Association Matrix lists up to the top 50 features, selected by Importance Score, on 
both the X and Y axes, where the intersection of a feature pair provides an indication of their level 
of association. By default, the matrix displays by the Mutual Information values and sorts by the 
cluster. 
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The following are some general takeaways from looking at the matrix above: 

• Each dot represents the association between two features (a feature pair), where the opacity of 
the color denotes the pair-wise strength of association. 

• Each cluster is represented by a different color. 
• The opacity of color indicates the level of association 0 to 1, between the feature pair. Levels are 

measured by the set metric, either mutual information or Cramer’s V. 
• Shaded gray dots indicate that the two features, while showing some association, are not in the 

same cluster. 
• White dots represent features that were not categorized into a cluster. 
• The target feature, if present, is indicated by two small concentric circles next to the feature 

name. 
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• Identified clusters include: 

 

4.2   Data Source Overview and Appropriateness 
Subject matter expertise has been determined by the contest administrators.  The model was built 
with the assumption the data is correct, error-free and appropriate for the modeling task. It is likely 
the case, as was mentioned in the contest explanation that feature enrichment not just feature 
engineering could improve results.  However, with anonymized data, enrichment is difficult or 
could encourage inadvertent bias by proxy. 

The data was obtained from the contest website through webpage download. For example here, 

https://data.ojp.usdoj.gov/stories/s/daxx-hznc 

https://data.ojp.usdoj.gov/Corrections/NIJ-s-Recidivism-Challenge-Training-Dataset/8tjc-3ibv 

 

4.3   Input Data Extraction, Preparation, and Quality & Completeness 

The following R code represents the basic preprocessing of the raw data 
with comments included. 

 

# Set the working directory 
setwd("~/Desktop/nij") 
 
# Identify and read in contest files. 
train    <- list.files(pattern = 'Training') 
test     <- list.files(pattern = 'Test') 
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testData <- read.csv(test ) 
trainingData <- read.csv(train ) 
 
# Intersect the training data columns with test set 
keeps <- names(trainingData) %in% names(testData) 
NIJ_keeps <- trainingData[,keeps] 
NIJ_keeps$Recidivism_Arrest_Year1 <- trainingData$Recidivism_Arrest_Year1  
# this example code is for round 1,  
# but changes for other rounds `Recidivism_Arrest_Year2` 
write.csv(NIJ_keeps,'NIJ_keeps_phase1.csv' ,row.names = F) 
write.csv(testData, 'NIJ_test_phase1.csv', row.names = F) 

4.4   Data Assumptions 
Data is assumed to be correct for the task description.  Data is assumed to be acceptable for privacy 
concerns and representative of the population under study.  It is not possible to know data 
specifics, practitioner assumptions during munging or implications of data collection since it is 
provided as part of the contest. 

 

5   Model Theoretical Framework and 
Methodology 

5.1   Model Development Overview 
DataRobot simplifies model development by performing a parallel heuristic search for the best 
model or ensemble of models, based on both the characteristics of the data and the prediction 
target. While some machine learning techniques tend to consistently outperform others, it is rarely 
possible to say in advance which will perform best for a given business problem. Therefore, during 
the modeling process, DataRobot develops dozens of independent challenger models, exposes the 
details of how these models were built and how they perform, and enables the user to select the 
best model for the particular business problem being addressed. 

The fundamental workflow within DataRobot for model development is as follows: 

• Rapid Data Ingestion: User creates a modeling dataset that includes the prediction target and 
loads into DataRobot 

• Target Selection: User selects the prediction target; DataRobot detects whether the target is 
categorical or continuous. If the target is categorical, DataRobot selects and builds classification 
blueprints. If the target is continuous, DataRobot selects and builds regression blueprints. 
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DataRobot also selects an optimization performance metric based on the type of supervised 
learning problem, which can also be changed by the user 

• Automated Data Preparation: DataRobot analyzes the input data and automatically performs 
advanced preprocessing steps that are discussed in detail in this document. DataRobot also 
automatically partitions the input dataset into learning, validation and holdout dataset; these 
can also be defined by the user. 

• DataRobot uses information about the selected target variable and predictors to define a set of 
candidate blueprints for analysis. It then trains models for each blueprint and ranks them on 
the model Leaderboard based on an out-of-sample validation accuracy score. 

• Transparent Model Evaluation and Selection: DataRobot has built-in diagnostic tools to assess 
model accuracy and performance. Once DataRobot has trained and tested models, users can 
access them from the Leaderboard. From there, users can review model accuracy and, using 
built-in model diagnostic tools, understand how each independently built model performs. 
DataRobot provides many metrics for evaluating model accuracy, such as AUC, Log-Loss and 
RMSE. DataRobot's Leaderboard actively tracks performance of candidate models using out-of-
sample data for comparison purposes. 

• Model Deployment and Monitoring: Once the final model is selected, DataRobot provides 
efficient solutions for deployment (i.e., model implementation) and monitoring. These features 
enable the model owner to effectively manage model controls in accordance with Model Risk 
Management standards and policies. 

5.2   Model Assumptions 
Machine learning methods can produce more accurate predictive models than traditional statistical 
regression methods because they are more flexible and rely less on statistical assumptions than 
traditional regression methods. For instance, ordinary least squares regression requires that the 
Gauss Markov assumptions are supported, which ensures that the model is unbiased and efficient. 

Traditional statistical regression techniques rely on formal hypothesis testing for variable 
significance and feature selection (e.g., t-test, p-value, standard error). These hypothesis tests tend 
to have distributional and independence assumptions that may not be supported by the data. 
Machine learning methods, on the other hand, offer more flexibility in defining the model structure, 
which typically results in better model performance. Because machine learning includes methods 
that do not rely on formal hypothesis testing to demonstrate model validity, and because heuristic-
style feature selection methods (e.g., stepwise selection) are not used in most machine learning 
approaches, no such distributional assumptions are required. In this case, the only assumption 
being made is that the model training data is representative of the future scoring data. Of course, 
these assumptions must be closely monitored and tracked by the model's ongoing performance 
monitoring process. 

A common limitation of machine learning methods is the potential for overfitting. Overfitting occurs 
when the model is trained too closely to the underlying training data and does not perform well 
out-of-sample. DataRobot utilizes a robust cross-validation and holdout methodology to ensure 
model performance is sound, reducing the risk of over-fitting. 
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5.3   Model Methodology 
The modeling workflow consists of the following elements, which connect to visualize the modeling 
blueprint: 

• One-Hot Encoding 
• Missing Values Imputed 
• Smooth Ridit Transform 
• Nystroem Kernel SVM Classifier 

The following subsections include details for each node of the modeling blueprint. 

5.3.1   One Hot encoding task 
This transformer will do a binary one-hot (aka one-of-K) coding. One boolean-valued feature is 
constructed for each of the possible string values that the feature can take. For inputs with only 2 
unique values, only one boolean-valued feature will be constructed 

This encoding is needed for feeding categorical data to many estimators, notably linear models and 
SVMs. 

Type Name Description Best Searched 

int card_max An integer that specifies 
the maximum number of 
unique values values: [1, 
99999] 

50000 

int card_min An integer that specifies 
the minimum number of 
unique values values: [1, 
99999] 

1 

bool drop_cols drop_cols, If True, drop 
last level of each feature 
values: [False, True] 

False 

select flag flag, If all, add highcat-
cols to metadata values: 
['None', 'all'] 

None 

int max_features If the total number of 
categories created 
across all features 
exceeds this value, the 
top max_features most 
frequent categories will 
persist. All others will be 
either thrown out or 

None 
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grouped. A value of 
None disables the limit. 
values: [1, 999999] 

int min_support The minimum number 
of records for a category 
to be represented in one 
hot encoding. If a 
category has fewer 
counts it will be grouped 
with other small 
cardinality values 
values: [1, 99999] 

10 

5.3.2   Median value-based numeric imputation (V2 with quick median algorithm) 
For a numeric feature, impute rows of missing values with median value (V2). 

Impute missing values on numeric variables with their median and create indicator variables to 
identify records that were imputed. A quick median algorithm (based on np.partition) is 
implemented to compute median feature value. 

Imputation strategy: 

A numeric feature is imputed with the median value if there are enough finite values in the feature 
samples used to train a numeric imputation task (e.g., > t, default: 50) and there are rows with NaN 
or infinite values in the samples to be imputed. 

After imputation, the imputed numeric features will be scaled if the argument s is set to True. The 
feature will use scaled rounding (i.e., rounding to a logarithmic scale). 

Imputation indicator: 

The indicator column (0, 1) is added to indicate imputed rows if the numeric feature is imputed 
with : 1) the median value and with least one row with NaN and 2) at least two unique values. 

Example: 

An imputation task is initialized with t=2. 

Input numeric features of this task: 

feature0, feature1, feature2, feature3 

1, 2, np.nan, np.nan 

2, 3, np.nan, 18 

3, 2, np.nan, 16 
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4, 1, 13, 14 

20, 1, 45, 46 

Output numeric features of this task: 

feature0, feature1, feature2, feature2-mi, feature3, feature3-mi 

1, 2, 45, 1, 18, 1 

2, 3, 45, 1, 18, 0 

3, 2, 45, 1, 16, 0 

4, 1, 13, 0, 14, 0 

20, 1, 45, 0, 46, 0 

In the imputation output, median value imputation is run on feature2 and feature3. The feature2-mi 
is the indicator column for the imputation on feature2. The feature3-mi is the indicator column for 
the imputation on feature3. 

Type Name Description Best Searched 

bool scale_small True if small values 
(range of the numeric 
variable is <= 1) are to 
be scaled. values: [False, 
True] 

False 

int threshold Minimum number of 
required finite elements 
in a column to impute 
the data onto NaNs and 
INFs. values: [1, 99999] 

10 

5.3.3   Ridit transformer 
For a numeric feature, transform it to a ridit score based on percentile rank. The percentile score 
will be further adjusted to an interval between -1 and 1. The transformer can be configured to skip 
binary feature and date/time derived features. If the sparsity is higher than the sparsity_threshold, 
data will be centered to the median and the output will be a sparse matrix. 

The ridit transform is an extension of Bross’ (1958) RIDIT scoring method, which suggests the use 
of Ridit analysis for data that are ordered but not on an interval scale, such as injury categories. 
Bross’ (1958) RIDIT’s procedure is as follows: from a reference population with the same 
categories (of injury, for example), determine a “ridit” or score for each category. This category 
score is the percentile rank of an item in the reference population and is equal to the number of 
items in all lower categories plus one-half the number of items in the subject category, all divided 
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by the population size. By definition, the mean of Bross ridit calculated for the reference population 
will always be 0.5. 

The ridit transform extends the Bross ridit method by applying the method to numerical values and 
normalizing the score such that the mean calculated for the reference population will always be 0 
and the score will be in the interval [-1,1]. 

Intuitively, the ridit transform can be interpreted to be an adjusted percentile score. 

Ridit transform is not smooth and variable mapping is not continuous at the bin boundaries. 
DataRobot developed a “smooth” version of Ridit mapping, where the mapping inside of each bin is 
set to linearly increase to reach the other bin’s starting value. The middle point in the bin 
corresponds to the value of the original Ridit algorithm, and the mean of the distribution is still 
equal to 0.5. By using such approach, the mapping is continuous and predictions are consistent for 
the data values close to the boundary values. 

Type Name Description Best Searched 

bool skip_bins If True, ridit transform 
will skip binary 
columns. values: 
[False,True] 

False 

bool skip_date_features If True, ridit transform 
will skip extracted 
features from the date 
column. values: 
[False,True] 

False 

float sparsity_threshold If sparsity level is higher 
than the parameter, the 
matrix is converted to a 
sparse format. values: 
[0, 1] 

0.25 

5.3.4   Approximate kernel support vector classifier. 
Support vector machines are a class of “maximum margin” classifiers. They seek to maximize the 
separation they find between classes, and can optionally include a penalty function that allows 
them to mis-classify some observations for the sake of wider margins between the classes for the 
rest of the observations.  This makes support vector machine a very robust class of machine 
learning models. 

SVMs are very efficient in high-dimensional spaces (such as text data), including cases where the 
number of dimensions exceeds the number of observations, but unfortunately do not tend to scale 
well to a large number of examples. 
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SVMs can also make use of a “kernel” function, which allows for a non- linear transformation of the 
data before fitting the SVM.  These kernel functions can be a very useful way to transform a non-
linear problem into a linear domain. 

This implementation of SVM approximates the feature mappings. The advantage of using 
approximate explicit feature maps compared to the kernel trick, which makes use of feature maps 
implicitly, is that explicit mappings can significantly reduce the cost of learning with large datasets. 
Kernel map approximations allow SVMs to run much faster, and scale up to bigger datasets, but 
there is a small tradeoff in accuracy. 

Usually, higher accuracy is obtained with higher n_components, as it sets the the number of samples 
used to construct the basis features and number of features to construct. However, large value for 
n_components leads to high memory usage. 

This implementation combines kernel map approximations with a LogisticRegression that uses a l2 
penalty and a liblinear solver. 

Type Name Description Best Searched 

multi C Penalty parameter C of 
the error term. values: 
{'floatgrid': [1e-10, 
1e10],'select': ['auto']} 

59.9484250319 

select approx The kernel 
approximation method 
to use. values: 
['nystroem', 'fourier', 
'balanced_nystroem'] 

balanced_nystroem 

multi gamma The parameter of the 
RBF-kernel. ‘heuristic’ 
(For RBF only) from 
Caputo et al.[1], i.e. 1 / 
(the weighted median 
squared distance 
between two samples). 
‘auto’ creates a grid 
around a base gamma 
for tuning with grid-
search values: 
{'floatgrid': [1e-10, 
1e10],'select': ['auto', 
'heuristic']} 

0.001075780054 

multi max_sample The maximum sample 
size that can be used for 
training. values: {'int': 

None 
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[100, 100000],'select': 
['None']} 

intgrid n_components Is the target 
dimensionality of the 
feature transform. 
values: [1, 10000] 

500 

int random_state The seed of the pseudo 
random number 
generator to use when 
shuffling the data. 
values: [1, int(1e9)] 

1234 

select smart_sampling if balanced negative 
downsampling should 
be done when 
max_sample is not None. 
values: [True, False] 

True 

floatgrid subsample The fraction of samples 
to be used for fitting. 
values: [0.01,1] 

1.0 

float tol Tolerance for stopping 
criteria. values: [1e-10, 
1e10] 

0.0001 
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5.5   Alternative Model Frameworks and Theories Considered 
As stated by regulatory guidance, comparison with alternative theories and approaches provides 
guidance for final model selection and is a fundamental component of a sound modeling process. 

DataRobot develops dozens of alternative models, exposes the details of how these models were 
built and how they perform, and enables the user to select the best model for the particular 
business problem being addressed. 

During the model development process, DataRobot considered the following alternative models. 
The final model was selected based on model performance as well as an analysis of model 
diagnostics and expert business judgment. 

The performance metric used for this project was LogLoss. The model types considered during the 
model selection process included the following models, which are sorted by the Validation score. 

Model Name Validation Score Cross Validation Score Sample Percentage 

Light Gradient Boosting 
on ElasticNet 
Predictions  

0.5549 0.5571 100.0 

Vowpal Wabbit 
Classifier 

0.5542 0.5579 63.9949 

Vowpal Wabbit 
Stagewise Polynomial 
Classifier 

0.5542 0.5578 63.9949 

Vowpal Wabbit Low 
Rank Quadratic 
Classifier 

0.5542 0.5578 63.9949 

Regularized Logistic 
Regression (L2) 

0.5544 0.557 63.9949 
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Stochastic Gradient 
Descent Classifier 

0.5544 0.5573 63.9949 

Light Gradient Boosted 
Trees Classifier with 
Early Stopping 

0.5545 0.5578 63.9949 

ENET Blender 0.5547 0.5568 63.9949 

AVG Blender 0.5547 0.5568 63.9949 

Advanced AVG Blender 0.5547 0.5568 63.9949 

eXtreme Gradient 
Boosted Trees Classifier 
with Early Stopping - 
Forest (10x) 

0.5548 0.5578 63.9949 

eXtreme Gradient 
Boosted Trees Classifier 
with Early Stopping 
(learning rate =0.02) 

0.5548 0.5586 63.9949 

Elastic-Net Classifier 
(mixing alpha=0.5 / 
Binomial Deviance) 

0.5548 0.5572 63.9949 

Keras Slim Residual 
Neural Network 
Classifier using Training 
Schedule (1 Layer: 64 
Units) 

0.5549 N/A 63.9949 

Elastic-Net Classifier (L1 
/ Binomial Deviance) 

0.5549 N/A 63.9949 

Elastic-Net Classifier (L2 
/ Binomial Deviance) 

0.5549 0.557 63.9949 

eXtreme Gradient 
Boosted Trees Classifier 
with Early Stopping 

0.5549 N/A 63.9949 

Keras Residual AutoInt 
Classifier using Training 
Schedule (3 Attention 
Layers with 2 Heads, 2 
Layers: 100, 100 Units) 

0.5552 N/A 63.9949 

Logistic Regression 0.5554 N/A 63.9949 
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Keras Residual Neural 
Factorization Machine 
Classifier using Training 
Schedule (2 Layers: 100, 
100 Units) 

0.5555 N/A 63.9949 

Elastic-Net Classifier 
(mixing alpha=0.5 / 
Binomial Deviance) with 
Unsupervised Learning 
Features 

0.5555 0.5572 63.9949 

Generalized Additive2 
Model 

0.5556 N/A 63.9949 

Generalized Additive 
Model 

0.556 N/A 63.9949 

Keras Deep Self-
Normalizing Residual 
Neural Network 
Classifier using Training 
Schedule (3 Layers: 256, 
128, 64 Units) 

0.5561 N/A 63.9949 

Elastic-Net Classifier (L2 
/ Binomial Deviance) 
with Binned numeric 
features 

0.5562 N/A 63.9949 

eXtreme Gradient 
Boosted Trees Classifier 
with Early Stopping and 
Unsupervised Learning 
Features 

0.5564 N/A 63.9949 

Gradient Boosted Trees 
Classifier with Early 
Stopping 

0.5569 N/A 63.9949 

Gradient Boosted Trees 
Classifier 

0.5572 N/A 63.9949 

eXtreme Gradient 
Boosted Trees Classifier 
with Early Stopping 
(learning rate =0.01) 

0.5579 N/A 63.9949 

RuleFit Classifier 0.5581 N/A 63.9949 
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TensorFlow Deep 
Learning Classifier 

0.5592 N/A 63.9949 

Keras Slim Residual 
Neural Network 
Classifier using Adaptive 
Training Schedule (1 
Layer: 64 Units) 

0.5592 N/A 63.9949 

Keras Residual Cross 
Network Classifier using 
Training Schedule (3 
Cross Layers, 4 Layers: 
100, 100, 100, 100 
Units) 

0.5595 N/A 63.9949 

Dropout Additive 
Regression Trees 
Classifier  (15 leaves) 

0.5607 N/A 63.9949 

RandomForest Classifier 
(Gini) 

0.5611 N/A 63.9949 

RandomForest Classifier 
(Entropy) 

0.5613 N/A 63.9949 

Eureqa Generalized 
Additive Model 
Classifier (10000 
Generations) 

0.562 N/A 63.9949 

LightGBM Random 
Forest Classifier 

0.5623 N/A 63.9949 

RandomForest Classifier 
(Entropy) (Shallow)  

0.5627 N/A 63.9949 

ExtraTrees Classifier 
(Gini) 

0.5647 N/A 63.9949 

Gradient Boosted 
Greedy Trees Classifier 
with Early Stopping 

0.5653 N/A 63.9949 

Keras Deep Residual 
Neural Network 
Classifier using Training 
Schedule (3 Layers: 512, 
64, 64 Units) 

0.5658 N/A 63.9949 
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Eureqa Generalized 
Additive Model 
Classifier (1178 
Generations) 

0.5673 N/A 63.9949 

Breiman and Cutler 
Random Forest 
Classifier 

0.57 N/A 63.9949 

Decision Tree Classifier 
(Gini) 

0.5773 N/A 63.9949 

Auto-tuned K-Nearest 
Neighbors Classifier 
(Euclidean Distance) 

0.5786 N/A 63.9949 

Support Vector 
Classifier (Linear 
Kernel) 

0.5806 N/A 63.9949 

Eureqa Classifier 
(Default Search: 3000 
Generations) 

0.5833 N/A 63.9949 

Eureqa Classifier (Quick 
Search: 250 
Generations) 

0.5857 N/A 63.9949 

Eureqa Generalized 
Additive Model 
Classifier (40 
Generations) 

0.5869 N/A 63.9949 

Eureqa Classifier 
(Instant Search: 40 
Generations) 

0.5968 N/A 63.9949 

Keras Deep Residual 
Neural Network 
Classifier using Training 
Schedule (2 Layers: 512, 
512 Units) 

0.6979 N/A 63.9949 

Keras Wide Residual 
Neural Network 
Classifier using Training 
Schedule (1 Layer: 1536 
Units) 

0.7134 N/A 63.9949 
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Naive Bayes combiner 
classifier 

0.5759 N/A 15.9973 

Majority Class Classifier 0.6095 N/A 15.9973 

5.6   Variable Selection 
The model's variable selection process includes a balance of quantitative analysis and key domain 
knowledge about the underlying business problem (i.e., expert judgment). The subsections below 
describe: 

• DataRobot Quantitative Analysis: key components related to variable selection that are 
automated by DataRobot 

• Expert Judgment and Variable Selection: summary of the expert judgment used during the 
variable selection process. 

• Final Model Variables: final feature list chosen 

5.6.1   DataRobot Quantitative Analysis 
A feature list is a defined set of features (variables) that DataRobot can use for modeling. DataRobot 
automatically creates three feature lists (described below) for each project. Users, however, can 
create customized feature lists that contain a subset of the total feature set, and use the new list to 
train new, alternative models. The default lists are described below: 

• Informative Features (default): Features that pass a "reasonableness" check that determines 
whether they contain useful information. For example, DataRobot excludes features it 
determines are low information, such as a column containing all ones, duplicate columns, or a 
feature with too few values. The Informative Features list is sorted by each feature's correlation 
with the target variable 

• Raw Features: All features (variables) in the dataset, including those excluded from the 
Informative Features list. 

• Univariate Selection: Features that meet a certain threshold for non-linear correlation with the 
selected target. DataRobot calculates, for each entry in the Informative features list, the 
feature's individual relationship against the target. 

Users also have the option to create user-defined feature transformations, which can then be 
included in a feature list for model exploration and to determine relative feature importance. 
Importance is measured using the information content of the variable; the calculation is done 
independently for each feature in the dataset. Features are then ranked on the Leaderboard from 
most to least important. This score represents a measure of predictive power using only that 
variable to predict the target. The score is measured using the project's accuracy metric that is 
defined by either the user (i.e., LogLoss) or the default assigned by DataRobot. 
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5.6.2   Expert Judgement and Variable Selection 

NA, no manual variable selection was performed, other than exploration of 
protected features inclusion or exclusion in the model outcomes. This was 
done for exploration rather than expertise. 

 

5.6.3   Final Model Variables 
Below are two tables. The first contains a list of the final set of model feature variables, as well as 
summary statistics for the Nystroem Kernel SVM Classifier model and the second table contains a 
detailed analysis of missing values. 

The Model Features and Summary Statistics table provides a brief overview of the summary 
statistics of model features. This includes Feature Name, variable type (Var Type), number of 
unique values (Unique), Number of missing values (Missing), Mean, Standard Deviation (Std Dev), 
Median, Minimum Value (Min), Maximum Value (Max) and Assessment of target leakage risk 
(Target Leakage). 

5.6.3.1   Model Features and Summary Statistics 
Feature Name Var Type Unique Missing Mean Std 

Dev 
Median Min Max Target 

Leakage 

Gender Categorical 2 0 N/A N/A N/A N/A N/A Low 

Race Categorical 2 0 N/A N/A N/A N/A N/A Low 

Age_at_Release Categorical 7 0 N/A N/A N/A N/A N/A Low 

Residence_PUMA Numeric 25 0 12.31 7.13 12.0 1.0 25.0 Low 

Gang_Affiliated Categorical 2 1724 N/A N/A N/A N/A N/A Low 

Supervision_Risk_Score_First Numeric 10 270 6.064 2.39 6.0 1.0 10.0 Low 

Supervision_Level_First Categorical 3 974 N/A N/A N/A N/A N/A Low 

Education_Level Categorical 3 0 N/A N/A N/A N/A N/A Low 

Dependents Numeric 3 4296 0.81 0.82 1.0 0.0 2.0 Low 

Prison_Offense Categorical 5 1840 N/A N/A N/A N/A N/A Low 

Prison_Years Categorical 4 0 N/A N/A N/A N/A N/A Low 

Prior_Arrest_Episodes_Felony Numeric 10 3464 4.41 2.405 4.0 0.0 9.0 Low 

Prior_Arrest_Episodes_Misd Numeric 6 4605 2.085 1.68 2.0 0.0 5.0 Low 

Prior_Arrest_Episodes_Violent Numeric 3 2174 0.66 0.74 0.0 0.0 2.0 Low 

Prior_Arrest_Episodes_Property Numeric 5 3286 1.39 1.305 1.0 0.0 4.0 Low 
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Prior_Arrest_Episodes_Drug Numeric 5 1725 1.37 1.31 1.0 0.0 4.0 Low 

Prior_Arrest_Episodes_PPViolationCharges Numeric 5 3600 1.45 1.39 1.0 0.0 4.0 Low 

Prior_Arrest_Episodes_DVCharges Boolean 2 0 0.17 0.37 0.0 0.0 1.0 Low 

Prior_Arrest_Episodes_GunCharges Boolean 2 0 0.26 0.44 0.0 0.0 1.0 Low 

Prior_Conviction_Episodes_Felony Numeric 3 3923 0.83 0.78 1.0 0.0 2.0 Low 

Prior_Conviction_Episodes_Misd Numeric 4 3391 1.0701 1.067 1.0 0.0 3.0 Low 

Prior_Conviction_Episodes_Viol Boolean 2 0 0.32 0.47 0.0 0.0 1.0 Low 

Prior_Conviction_Episodes_Prop Numeric 3 3033 0.61 0.75 0.0 0.0 2.0 Low 

Prior_Conviction_Episodes_Drug Numeric 2 3804 0.34 0.47 0.0 0.0 1.0 Low 

Prior_Conviction_Episodes_PPViolationCharges Boolean 2 0 0.33 0.47 0.0 0.0 1.0 Low 

Prior_Conviction_Episodes_DomesticViolenceCharges Boolean 2 0 0.079 0.27 0.0 0.0 1.0 Low 

Prior_Conviction_Episodes_GunCharges Boolean 2 0 0.13 0.34 0.0 0.0 1.0 Low 

Prior_Revocations_Parole Boolean 2 0 0.094 0.29 0.0 0.0 1.0 Low 

Prior_Revocations_Probation Boolean 2 0 0.15 0.35 0.0 0.0 1.0 Low 

Condition_MH_SA Boolean 2 0 0.66 0.47 1.0 0.0 1.0 Low 

Condition_Cog_Ed Boolean 2 0 0.44 0.5 0.0 0.0 1.0 Low 

Condition_Other Boolean 2 0 0.32 0.47 0.0 0.0 1.0 Low 

Recidivism_Arrest_Year1 Boolean 2 0 0.3 0.46 0.0 0.0 1.0 N/A 

The last column in this table is an assessment of target leakage risk. DataRobot automatically tests 
for target leakage on a per- feature basis during the Autopilot process. Target leakage, sometimes 
called data leakage, occurs when a model is trained using a dataset that includes information that 
would not be available at the time of prediction. This can produce overly optimistic model 
performance results during training, given a feature will near-completely describe the target (e.g., 
the number of late payments on a loan as a predictor for loan default at loan application date.) 

DataRobot tests for target leakage risk using Alternating Conditional Expectation (ACE) to measure 
the association between each feature and the target; the ACE score is normalized using the project 
optimization metric so that its value is in the range [0,1]. If above a certain threshold (see below), 
DataRobot will create a new feature list with those features flagged and possibly removed, and the 
user is notified by a banner in the user interface during modeling. Notably, because the definition of 
target leakage is directly tied with prediction time and not strength of association between a 
feature and the target, it's possible for DataRobot to not identify all sources of target leakage. 
Therefore, to reduce the risk for potential target leakage in the feature list, it's important to apply 
subject matter expertise. 

The thresholds for target leakage risk are based on a normalized ACE score: 
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• High risk: > 0.975, flagged and removed 
• Moderate risk: > 0.85, flagged but not removed 
• Low risk: < 0.85, no action 

The following table provides a summary of missing values. It includes the name of the feature, its 
type, a summary of the missing value count (both number of rows and as a percentage), and 
provides information on the type of imputation applied to the feature. 

5.6.3.2   Data Quality Handling Report 

Feature Name Var Type Missing 
Count 

Missing 
Percentage 

Imputation 
Name 

Imputation 
Description 

Prior_Arrest_Episodes_Misd Numeric 5733 32 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 2 

Dependents Numeric 5437 30 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 1 

Prior_Conviction_Episodes_Felony Numeric 4887 27 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 1 

Prior_Conviction_Episodes_Drug Numeric 4688 26 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 0 

Prior_Arrest_Episodes_PPViolationCharges Numeric 4465 25 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 1 
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Prior_Arrest_Episodes_Felony Numeric 4307 24 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 4 

Prior_Conviction_Episodes_Misd Numeric 4219 23 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 1 

Prior_Arrest_Episodes_Property Numeric 4088 23 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 1 

Prior_Conviction_Episodes_Prop Numeric 3799 21 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 0 

Prior_Arrest_Episodes_Violent Numeric 2737 15 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 0 

Prison_Offense Categorical 2321 13 One-Hot 
Encoding 

Missing 
indicator 
treated as 
feature 

Gang_Affiliated Categorical 2217 12 One-Hot 
Encoding 

Missing 
indicator 
treated as 
feature 

Prior_Arrest_Episodes_Drug Numeric 2110 12 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
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Imputed 
value: 1 

Supervision_Level_First Categorical 1212 7 One-Hot 
Encoding 

Missing 
indicator 
treated as 
feature 

Supervision_Risk_Score_First Numeric 330 2 Missing 
Values 
Imputed 

Missing 
indicator 
treated as 
feature, 
Imputed 
value: 6 

Gender Categorical 0 0 One-Hot 
Encoding 

Missing 
values 
ignored 

Prior_Arrest_Episodes_DVCharges Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Race Categorical 0 0 One-Hot 
Encoding 

Missing 
values 
ignored 

Education_Level Categorical 0 0 One-Hot 
Encoding 

Missing 
values 
ignored 

Condition_Other Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Prior_Conviction_Episodes_DomesticViolenceCharges Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Residence_PUMA Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 12 

Prior_Revocations_Parole Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 
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Prior_Conviction_Episodes_PPViolationCharges Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Prior_Arrest_Episodes_GunCharges Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Prior_Conviction_Episodes_Viol Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Prior_Conviction_Episodes_GunCharges Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Condition_Cog_Ed Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Prior_Revocations_Probation Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 0 

Prison_Years Categorical 0 0 One-Hot 
Encoding 

Missing 
values 
ignored 

Condition_MH_SA Numeric 0 0 Missing 
Values 
Imputed 

Imputed 
value: 1 

Age_at_Release Categorical 0 0 One-Hot 
Encoding 

Missing 
values 
ignored 

6   Model Performance and Stability 

6.1   Model Validation Stability 
To find patterns in a dataset from which it can make predictions, an algorithm must first learn from 
a historical example – typically from a historical dataset that contains the output variable you want 
to predict. However, if a model is trained too closely on its training data then it may be overfit. 
Overfitting is a modeling error that occurs when a model is too closely fit to training data and 
therefore performs poorly on out-of-sample data (data that was not used to train the model). 
Overfitting generally results in an overly complex model that explains idiosyncrasies and random 
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noise in the training data, rather than the underlying trends that the model was intended to 
capture. To avoid overfitting, the best practice is to evaluate model performance on out-of-sample 
data. If the model performs very well on in-sample data, (the training data) but poorly on out-of-
sample data, that may be an indication that the model is overfit. 

DataRobot uses standard modeling techniques to validate model performance and ensure that 
overfitting does not occur. DataRobot used a robust model k-fold cross-validation framework to 
test the out-of-sample stability of a model's performance. In addition to the cross-validation 
partitioning, DataRobot uses a holdout sample to further test out-of-sample model performance 
and ensure the model is not overfit. 

The following procedure was used during development to insure that overfitting did not occur: 

• DataRobot set aside 20.00222% of the training data as a holdout dataset. This dataset is used to 
verify that the final model performs well on data that has not been touched throughout the 
training process.  

• For further model validation, the remainder of the data is divided into 5 cross validation 
partitions. To compensate for the overhead when working with large datasets, DataRobot first 
trains models on a smaller part of the data and uses only one cross-validation fold to evaluate 
model performance.  Then, for the highest performing models, DataRobot increases the subset 
sizes. This results in only the best model being trained on the total cross-validation partition. 
For those models, DataRobot completes 5-fold cross-validation training and scoring. As a result, 
the mean score of complete model cross-validation is calculated across all folds. Those models 
that did not perform well will not have a cross-validation score. Instead, because they only had 
a "one-fold" validation, their score is reported in the Validation column.  

The following figure summarizes the CV process used by DataRobot, where the blue denotes 
79.99778% of the data available for training, which is then divided into 5-folds for cross-validation 
and and red denotes the holdout sample. 

 

DataRobot calculates the Cross Validation scores for each of the training data partitions or folds. 
The project metric used to calculate the score is LogLoss. 

6.1.1   Cross Validation Scores 
Fold Cross Validation Score (LogLoss) 

Fold 1 0.55214 
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Fold 2 0.56329 

Fold 3 0.54673 

Fold 4 0.56017 

Fold 5 0.55674 

6.1.2   Data Partitioning Methodology 
Because the distribution of the target in a binary classification project may be imbalanced, the 
modeling partitions were randomly selected using a stratified sample to preserve the distribution 
of the target for each partition. 

6.2   Model Performance (Sample Scores) 
As an additional layer of model validity, DataRobot not only evaluated the statistical metrics 
underlying the model, but also performed testing on in-sample records. 

The performance metric used for this project was LogLoss. The model performance results are 
presented below for in-sample testing: 

Scoring Type Score (LogLoss) 

cross_validation 0.5558* 

holdout 0.5444* 

validation 0.5521* 

6.3   Sensitivity Testing and Analysis 

6.3.1   Lift Chart 
The Lift Chart sorts and groups numeric feature values into equal sized bins, depicting how well a 
model segments the target population and how capable it is of predicting the target, This helps the 
user to visualize model accuracy for each bin. The chart is sorted by predicted values -- lowest to 
highest predictions, for example -- which provides transparency to the model performance for 
different ranges of values of the target variable. Looking at the Lift Chart, the left side of the curve 
indicates where the model predicted a low score on one section of the population while the right 
side of the curve indicates where the model predicted a high score. The model Lift Chart is 
presented in the figure below. 
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The points on the Lift Chart indicate the average percentage in each bin. The "Predicted" blue line 
displays the average prediction score for the rows in that bin. The "Actual" orange line displays the 
actual percentage for the rows in that bin. In general, the steeper the Actual line is, and the more 
closely the Predicted line matches the actual line, the better the model. A close relationship 
between these two lines is indicative of the predictive accuracy of the model; a consistently 
increasing line is another good indicator of satisfactory model performance. 

6.3.2   Key Relationships 
Feature Impact, which is available for all model types, works by altering input data and observing 
the effect on a models score. This technique is sometimes called Permutation Importance. The 
Feature Impact for a given column measures how much worse a models error score would be if 
DataRobot made predictions after randomly shuffling that column (while leaving other columns 
unchanged). DataRobot normalizes the scores so that the value of the most important feature 
column is first and the other subsequent features are normalized to it. 
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Feature Name Impact Normalized Impact Unnormalized 

Age_at_Release 1.0 0.0349 

Gang_Affiliated 0.2808 0.0098 

Prison_Years 0.2085 0.0073 

Prior_Arrest_Episodes_Felony 0.2056 0.0072 

Prior_Arrest_Episodes_Property 0.1085 0.0038 

Condition_MH_SA 0.0815 0.0028 

Prior_Revocations_Parole 0.0758 0.0026 

Prior_Arrest_Episodes_Misd 0.0707 0.0025 

Supervision_Risk_Score_First 0.0672 0.0023 

Residence_PUMA 0.0533 0.0019 

Prior_Conviction_Episodes_Drug 0.0521 0.0018 

Gender 0.0476 0.0017 

Prior_Revocations_Probation 0.0415 0.0014 

Prior_Arrest_Episodes_Drug 0.0413 0.0014 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



Prison_Offense 0.04 0.0014 

Race 0.0388 0.0014 

Prior_Arrest_Episodes_PPViolationCharges 0.0363 0.0013 

Prior_Conviction_Episodes_Felony 0.0322 0.0011 

Prior_Conviction_Episodes_Misd 0.0291 0.001 

Dependents 0.0286 0.001 

Prior_Conviction_Episodes_Prop 0.0267 0.0009 

Condition_Other 0.0227 0.0008 

Prior_Conviction_Episodes_PPViolationCharges 0.0213 0.0007 

Education_Level 0.0197 0.0007 

Prior_Conviction_Episodes_Viol 0.017 0.0006 

Prior_Arrest_Episodes_DVCharges 0.0113 0.0004 

Prior_Conviction_Episodes_GunCharges 0.0113 0.0004 

Prior_Arrest_Episodes_GunCharges 0.0106 0.0004 

Prior_Arrest_Episodes_Violent 0.007 0.0002 

Prior_Conviction_Episodes_DomesticViolenceCharges 0.0049 0.0002 

Supervision_Level_First 0.0015 0.0001 

Condition_Cog_Ed 0.0015 0.0001 

6.3.3   Sensitivity Analysis (Partial Dependence) 
In the case of linear regression, we can gain considerable insight into the structure and 
interpretation of the model by examining its coefficients. For more complex models like support 
vector machines, random forests, or the blenders considered here, no comparably simple 
parametric description is available, making the interpretation of these models more difficult. To 
address this difficulty for his gradient boosting machine, Friedman (2001) proposed the use of 
partial dependence plots. Partial dependence plots show the average partial relationship between a 
set of predictors and the predicted response. The partial dependence plots below capture the top 
features in our model, as measured by Feature Impact. 
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The orange circles depict, for the selected feature, the average target value for the aggregated 
feature values. The blue crosses depict, for the selected feature, the average prediction for a specific 
value. From the graph you can see that DataRobot also averages the predicted feature values. 
Comparing the actual and predicted points can identify segments where model predictions differ 
from observed data. This typically occurs when the segment size is small. In those cases, for 
example, some models may predict closer to the overall average. 

The yellow partial dependence data points depict the marginal effect of a feature on the target 
variable after accounting for the average effects of all other predictive features. It indicates how, 
holding all other variables constant, the value of this feature affects your prediction. DataRobot 
holds constant the values of all columns in the sample except the feature of interest. The value of 
the feature of interest is then reassigned to each possible value, calculating the average predictions 
for the sample at each setting. These values help determine how the value of each feature affects the 
target. The shape of the yellow data points describes the model's view of the marginal relationship 
between the selected feature and the target. 

6.3.4   Accuracy (Receiver Operating Characteristic) 
A confusion matrix is a table that reports true versus predicted values. The name "confusion 
matrix" refers to the fact that the matrix makes it easy to see if the model is confusing two classes 
(consistently mislabeling one class as another class). The table below presents key sensitivities that 
support the creation of a confusion matrix. 

F1 Score True Positive Rate False Positive 
Rate 

True Negative 
Rate 

Positive 
Predictive Value 

Negative 
Predictive Value 

Accuracy Matthews 
Correlation 
Coefficient 

0.5265 0.8161 0.5457 0.4543 0.3886 0.8532 0.5622 0.2557 

Where, 
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• F1 Score: A measure of the model's accuracy, computed based on precision and recall. 
• True Positive Rate: Sensitivity or recall. The ratio of true positives (correctly predicted as 

positive) to all actual positives. 
• False Positive Rate: Fallout. The ratio of false positives to all actual negatives. 
• True Negative Rate: Specificity. The ratio of true negatives (correctly predicted as negative) to 

all actual negatives. 
• Positive Predictive Value: Precision. For all the positive predictions, the percentage of cases in 

which the model was correct. 
• Negative Predictive Value: For all the negative predictions, the percentage of cases in which the 

model was correct. 
• Accuracy: The percentage of correctly classified instances. 
• Matthews Correlation Coefficient: Measure of model quality when the classes are of very 

different sizes (unbalanced). 

The Receiver Operating Characteristic (ROC) Curve allows the user to explore classification, 
performance, and statistics related to a selected model at any point on the probability scale. 
Because choosing the best model can be based on a number of parameters, it is important to 
understand whether the classification performance of a particular model meets predetermined 
specifications. The ROC Curve plots the true positive rate against the false positive rate for a given 
data source. The two important characteristics of the curve to consider are the area under the curve 
(AUC) and the shape of the curve. The AUC is a metric for binary classification that considers all 
possible thresholds and summarizes performance in a single value. 

Below is the ROC curve for this model based on crossValidation. 
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The Prediction Distribution graph shown below illustrates the distribution of actual distribution 
density in relation to the threshold (a dividing line for interpretation of the graph). Every prediction 
to the left of the dividing line is classified as false and every prediction to the right of the dividing 
line is classified as true. Therefore, this graph illustrates how well the model discriminates between 
prediction classes. 
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6.3.5   Bias and Fairness 
DataRobot's Bias and Fairness testing identifies whether the model exhibits biased behavior 
towards any classes in the dataset's protected features, based on the selected definition of fairness. 
Protected features and the fairness metric are chosen before Autopilot is started. DataRobot also 
provides a workflow that guides you towards an appropriate definition of fairness for the specific 
use case. 

DataRobot's Bias and Fairness feature includes two model-level insights: 

• Per-Class Bias, which shows whether the model is treating certain protected groups differently 
as measured by the selected fairness metric. This identifies if there is biased behavior, and if so, 
how that bias manifests, but not why. 

• Cross-Class Data Disparity, which shows how different protected classes differ in their data 
distribution. This offers deeper insight into why the model is treating groups differently. 

Together, these insights can help identify potential mitigation strategies for bias in the dataset and 
model, such as improving data collection or data sampling for specific groups. 
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Bias and Fairness testing was used in this project. The selected protected features were Race, 
Gender. The favorable target outcome was 0. The selected fairness metric was proportionalParity. 
The fairness threshold was set at 0.95. 

Proportional Parity measures fairness by Equal Representation, and it is best suited for cases when 
you want representation to be normalized based on the population sizes of your protected classes. 
This metric measures whether your model's predictions are equivalent across each of the protected 
classes, in terms of the relative percentage of each population that receives favorable and 
unfavorable predictions. Note that metrics that measure Equal Representation can encourage your 
model to depart from the target distributions learned during training, which could lead to tradeoffs 
against measured accuracy metrics. This can be useful, however, if the model should make 
decisions based on bias and fairness rather than decisions that would be made from uninfluenced 
training data. 

The Per-Class Bias graph shows whether the model exhibits biased behavior across protected 
features. The top fairness score across each protected class is scaled to 1.0, and the fairness scores 
for every other class are scaled relative to that value. If the fairness score for a class crosses the 
selected fairness threshold, the bar for that class is shown in red. If DataRobot used in-sample 
predictions to derive the model's performance scores (see Overview of Model Results), the 
fairness scores were calculated using in-sample validation data. 

If there is not enough data for a class, its score is still calculated, but the bar for that class is shown 
in gray. The heuristic for whether a class does not have enough data is the following: 

• If the class has <100 rows in the validation data, then it does not have enough data. 
• If the class has between 100 and 1,000 rows in the validation data, but has fewer than <10% of 

the rows of the majority class, then it does not have enough data. 
• If the class has >1,000 rows, then it has enough data. 

The following figure is the Per-Class Bias graph for each protected feature in this project: 

Race 

 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



Gender 

 

The Cross-Class Data Disparity graph shows how different protected classes differ in their data 
distribution, in order to understand why the model treats each class differently based on the 
dataset. The X-axis depicts the feature importance of each feature in the dataset, while the Y-axis 
shows the Population Stability Index (PSI) for that feature compared across the two selected classes 
of the protected feature. The higher the feature importance, the more important that feature is to 
the model. The higher the PSI, the more differences there are for that feature across each of the two 
classes. 

The following figure is the Cross-Class Data Disparity graph for each protected feature, comparing 
the class with the highest fairness score against the class with the lowest fairness score within each 
respective protected feature. If no chart is present, the feature did not have any classes with 
sufficient data. 

7   Model Implementation and Output 
Reporting 

7.1   Version Control 
DataRobot handles model and project version control automatically by tagging each model on the 
Leaderboard with a unique Model ID. The Model ID represents a single instance of a model type, 
feature list, sample size, and set of tuning parameter values. DataRobot also maintains unique 
Project IDs for each project, allowing accessibility to all models built for the project dataset. 
DataRobot's version control allows for reproducibility and traceability of the models it creates, 
which greatly increases the auditability of the model development process. 

Users may also export scoring code which is an approximation.  The DataRobot Prime scoring code 
is based on a Nystroem Kernel SVM trained on ~64% of the data. Scoring code is easy to deploy, 
test, and maintain on a variety of platform.    
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7.2   Scoring Code 
The Prime Model is shown here: 

 

 

Number of Rules Log Loss Validation Values 

26 .570280 

53 .558987 

114 .556109 

177 .554765 

208 .554610 

364 .554453 

618 .554349 

 

An example 26 rule set scoring code file is shown below. 

# 
# -*- coding: UTF-8 -*- 
# Copyright @2021. DataRobot, Inc. All Rights Reserved. Permission to use, copy, modify, 
# and distribute this software and its documentation is hereby granted, provided that the 
# above copyright notice, this paragraph and the following two paragraphs appear in all copies, 
# modifications, and distributions of this software or its documentation. Contact DataRobot, 
# 225 Franklin Street, Boston, MA, United States 02110, support@datarobot.com 
# for more details. 
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# 
# IN NO EVENT SHALL DATAROBOT BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, 
# OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, ARISING OUT OF THE USE OF THIS 
# SOFTWARE AND ITS DOCUMENTATION BASED ON ANY THEORY OF LIABILITY, EVEN IF DATAROBOT HAS BEEN 
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
# 
# THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". 
# DATAROBOT SPECIFICALLY DISCLAIMS ANY AND ALL WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  DATAROBOT HAS NO 
# OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. 
# 
 
# -*- coding: utf-8 -*- 
# 
# Copyright 2021 DataRobot, Inc. and its affiliates. 
# 
# All rights reserved. 
# 
# DataRobot, Inc. Confidential. 
# 
# This is unpublished proprietary source code of DataRobot, Inc. 
# and its affiliates. 
# 
# The copyright notice above does not evidence any actual or intended 
# publication of such source code. 
 
import calendar 
from datetime import datetime 
from collections import namedtuple 
import re 
import sys 
import time 
import os 
 
import numpy as np 
import pandas as pd 
 
PY3 = sys.version_info[0] == 3 
if PY3: 
    string_types = str, 
    text_type = str 
    long_type = int 
else: 
    string_types = basestring, 
    text_type = unicode 
    long_type = long 
 
def predict(row): 
    Age_at_Release = row[u'Age_at_Release'] 
    Gang_Affiliated = row[u'Gang_Affiliated'] 
    Gender = row[u'Gender'] 
    Prison_Offense = row[u'Prison_Offense'] 
    Prison_Years = row[u'Prison_Years'] 
    round_Condition_Cog_Ed = np.float32(row[u'Condition_Cog_Ed']) 
    round_Condition_MH_SA = np.float32(row[u'Condition_MH_SA']) 
    round_Prior_Arrest_Episodes_DVCharges = np.float32(row[u'Prior_Arrest_Episodes_DVCharges']) 
    round_Prior_Arrest_Episodes_Felony = np.float32(row[u'Prior_Arrest_Episodes_Felony']) 
    round_Prior_Arrest_Episodes_Felony_mi = np.float32(row[u'Prior_Arrest_Episodes_Felony-mi']) 
    round_Prior_Arrest_Episodes_Misd_mi = np.float32(row[u'Prior_Arrest_Episodes_Misd-mi']) 
    round_Prior_Arrest_Episodes_PPViolationCharges_mi = 
np.float32(row[u'Prior_Arrest_Episodes_PPViolationCharges-mi']) 
    round_Prior_Arrest_Episodes_Property = np.float32(row[u'Prior_Arrest_Episodes_Property']) 
    round_Prior_Arrest_Episodes_Property_mi = np.float32(row[u'Prior_Arrest_Episodes_Property-mi']) 
    round_Prior_Conviction_Episodes_Misd = np.float32(row[u'Prior_Conviction_Episodes_Misd']) 
    round_Prior_Conviction_Episodes_Misd_mi = np.float32(row[u'Prior_Conviction_Episodes_Misd-mi']) 
    round_Prior_Revocations_Parole = np.float32(row[u'Prior_Revocations_Parole']) 
    round_Supervision_Risk_Score_First = np.float32(row[u'Supervision_Risk_Score_First']) 
    return sum([ 
        -0.7836640, 
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            0.37256620433804371606 * (Gang_Affiliated == u'true'), 
            0.15772129275608168242 * (not Age_at_Release == u'48 or older' and  
                                     round_Supervision_Risk_Score_First > 5.5 and  
                                     round_Prior_Arrest_Episodes_Felony > 3.5 and  
                                     round_Prior_Arrest_Episodes_Property > 0.5), 
          -0.060051188770255940763 * (not Age_at_Release == u'18-22' and  
                                     not Gang_Affiliated == u'true' and  
                                     not Prison_Offense == u'Violent/Sex' and  
                                     round_Prior_Arrest_Episodes_Misd_mi <= 0.5), 
           -0.14498758158451227618 * (not Age_at_Release == u'18-22' and  
                                     not Age_at_Release == u'23-27' and  
                                     not Age_at_Release == u'28-32' and  
                                     round_Prior_Arrest_Episodes_Felony_mi <= 0.5), 
           0.072043591804937884282 * (not Gang_Affiliated == u'nan' and  
                                     not Prison_Offense == u'Drug' and  
                                     not Prison_Offense == u'Violent/Sex' and  
                                     round_Prior_Conviction_Episodes_Misd > 0.5), 
            -0.1249952311698017543 * (not Age_at_Release == u'18-22' and  
                                     not Age_at_Release == u'23-27' and  
                                     round_Prior_Arrest_Episodes_Felony_mi <= 0.5 and  
                                     round_Prior_Revocations_Parole <= 0.5), 
           0.033367633163220514203 * (not Gang_Affiliated == u'nan' and  
                                     not Prison_Offense == u'Drug' and  
                                     not Prison_Offense == u'Violent/Sex' and  
                                     round_Condition_MH_SA > 0.5), 
          -0.023592064033514756338 * (not Gang_Affiliated == u'true' and  
                                     not Prison_Years == u'1-2 years' and  
                                     not Prison_Years == u'Less than 1 year' and  
                                     round_Supervision_Risk_Score_First <= 7.5), 
           0.024209256976055588961 * (not Gender == u'F' and  
                                     not Prison_Years == u'Greater than 2 to 3 years' and  
                                     not Prison_Years == u'More than 3 years' and  
                                     round_Prior_Revocations_Parole <= 0.5), 
          -0.047775336991488510929 * (Prison_Years == u'More than 3 years'), 
          -0.087856394958524458572 * (not Age_at_Release == u'18-22' and  
                                     not Age_at_Release == u'23-27' and  
                                     not Age_at_Release == u'28-32' and  
                                     round_Prior_Conviction_Episodes_Misd_mi <= 0.5), 
           0.048024656901445736401 * (round_Prior_Arrest_Episodes_PPViolationCharges_mi), 
           -0.17961466192724451219 * (not Age_at_Release == u'18-22' and  
                                     round_Prior_Arrest_Episodes_Property <= 2.5 and  
                                     round_Prior_Arrest_Episodes_Property_mi <= 0.5 and  
                                     round_Prior_Conviction_Episodes_Misd_mi <= 0.5), 
            0.12317817121832205784 * (not Gang_Affiliated == u'nan' and  
                                     round_Supervision_Risk_Score_First > 4.5 and  
                                     round_Prior_Arrest_Episodes_Property > 0.5 and  
                                     round_Condition_MH_SA > 0.5), 
         -0.0031956770818259050589 * (not Age_at_Release == u'18-22' and  
                                     not Age_at_Release == u'23-27' and  
                                     round_Prior_Arrest_Episodes_DVCharges <= 0.5 and  
                                     round_Prior_Revocations_Parole <= 0.5), 
           -0.03906985781076699471 * (Age_at_Release == u'48 or older'), 
          -0.047760750334888309176 * (not Age_at_Release == u'23-27' and  
                                     not Prison_Years == u'Less than 1 year' and  
                                     round_Supervision_Risk_Score_First <= 7.5 and  
                                     round_Prior_Arrest_Episodes_Felony_mi <= 0.5), 
         -0.0050209196486393856823 * (not Age_at_Release == u'43-47' and  
                                     round_Prior_Arrest_Episodes_Felony <= 5.5 and  
                                     round_Prior_Arrest_Episodes_Felony_mi <= 0.5 and  
                                     round_Prior_Arrest_Episodes_Property <= 1.5), 
          -0.078673671380399462505 * (not Age_at_Release == u'18-22' and  
                                     not Age_at_Release == u'23-27' and  
                                     round_Prior_Arrest_Episodes_Misd_mi <= 0.5 and  
                                     round_Prior_Revocations_Parole <= 0.5), 
          0.0017857096035336934153 * (not Prison_Years == u'More than 3 years' and  
                                     round_Supervision_Risk_Score_First > 6.5 and  
                                     round_Prior_Conviction_Episodes_Misd > 0.5), 
          0.0075601401994730855344 * (round_Prior_Arrest_Episodes_Felony), 
         -0.0089114767176659732961 * (not Prison_Years == u'1-2 years' and  
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                                     not Prison_Years == u'Less than 1 year' and  
                                     round_Supervision_Risk_Score_First <= 7.5 and  
                                     round_Prior_Revocations_Parole <= 0.5), 
           0.057556400616113528868 * (not Age_at_Release == u'48 or older' and  
                                     round_Prior_Arrest_Episodes_PPViolationCharges_mi > 0.5), 
          -0.052407605139358409696 * (not Gang_Affiliated == u'true' and  
                                     round_Prior_Arrest_Episodes_Property <= 1.5 and  
                                     round_Prior_Conviction_Episodes_Misd <= 1.5 and  
                                     round_Prior_Conviction_Episodes_Misd_mi <= 0.5), 
           -0.01367717953231029418 * (not Age_at_Release == u'18-22' and  
                                     not Prison_Offense == u'nan' and  
                                     round_Prior_Arrest_Episodes_Property <= 2.5 and  
                                     round_Prior_Arrest_Episodes_Property_mi <= 0.5), 
         -0.0046171086683386404828 * (not Gang_Affiliated == u'true' and  
                                     not Prison_Years == u'Less than 1 year' and  
                                     round_Condition_Cog_Ed <= 0.5)    ]) 
 
def get_type_conversion(): 
    return { 
        u'Prior_Arrest_Episodes_PPViolationCharges': {'convert_func': parse_nonstandard_na, 
'convert_args': None}, 
        u'Prior_Arrest_Episodes_Property': {'convert_func': parse_nonstandard_na, 'convert_args': None}, 
        u'Prior_Conviction_Episodes_Misd': {'convert_func': parse_nonstandard_na, 'convert_args': None}, 
        u'Prior_Arrest_Episodes_Felony': {'convert_func': parse_nonstandard_na, 'convert_args': None}, 
        u'Prior_Arrest_Episodes_Misd': {'convert_func': parse_nonstandard_na, 'convert_args': None},} 
INDICATOR_COLS = [u'Prior_Arrest_Episodes_Felony', u'Prior_Arrest_Episodes_Misd', 
u'Prior_Arrest_Episodes_PPViolationCharges', u'Prior_Arrest_Episodes_Property', 
u'Prior_Conviction_Episodes_Misd'] 
 
IMPUTE_VALUES = { 
    u'Condition_Cog_Ed': 0.000000, 
    u'Condition_MH_SA': 1.000000, 
    u'Prior_Arrest_Episodes_DVCharges': 0.000000, 
    u'Prior_Arrest_Episodes_Felony': 4.000000, 
    u'Prior_Arrest_Episodes_Misd': 2.000000, 
    u'Prior_Arrest_Episodes_PPViolationCharges': 1.000000, 
    u'Prior_Arrest_Episodes_Property': 1.000000, 
    u'Prior_Conviction_Episodes_Misd': 1.000000, 
    u'Prior_Revocations_Parole': 0.000000, 
    u'Supervision_Risk_Score_First': 6.000000,} 
 
 
def bag_of_words(text): 
    """ set of whole words  in a block of text """ 
    if type(text) == float: 
        return set() 
 
    return set(word.lower() for word in 
               re.findall(r'\w+', text, re.UNICODE | re.IGNORECASE)) 
 
 
def parse_date(x, date_format): 
    """ convert date strings to numeric values. """ 
    try: 
        # float values no longer pass isinstance(x, np.float64) 
        if isinstance(x, (np.float64, float)): 
            x = long_type(x) 
        if '%f' in date_format and date_format.startswith('v2'): 
            temp = str(x) 
            if re.search('[\+-][0-9]+$', temp): 
                temp = re.sub('[\+-][0-9]+$', '', temp) 
 
            date_format = date_format[2:] 
            dt = datetime.strptime(temp, date_format) 
            sec = calendar.timegm(dt.timetuple()) 
            return sec * 1000 + dt.microsecond // 1000 
        elif '%M' in date_format: 
            temp = str(x) 
            if re.search('[\+-][0-9]+$', temp): 
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                temp = re.sub('[\+-][0-9]+$', '', temp) 
 
            return calendar.timegm(datetime.strptime(temp, date_format).timetuple()) 
        else: 
            return datetime.strptime(str(x), date_format).toordinal() 
    except: 
        return float('nan') 
 
 
def parse_percentage(s): 
    """ remove percent sign so percentage variables can be converted to numeric """ 
    if isinstance(s, float): 
        return s 
    if isinstance(s, int): 
        return float(s) 
    try: 
        return float(s.replace('%', '')) 
    except: 
        return float('nan') 
 
def parse_nonstandard_na(s): 
    """ if a column contains numbers and a unique non-numeric, 
        then the non-numeric is considered to be N/A 
    """ 
    try: 
        ret = float(s) 
        if np.isinf(ret): 
            return float('nan') 
        return ret 
    except: 
        return float('nan') 
 
def parse_length(s): 
    """ convert feet and inches as string to inches as numeric """ 
    try: 
        if '"' in s and "'" in s: 
            sp = s.split("'") 
            return float(sp[0]) * 12 + float(sp[1].replace('"', '')) 
        else: 
            if "'" in s: 
                return float(s.replace("'", '')) * 12 
            else: 
                return float(s.replace('"', '')) 
    except: 
        return float('nan') 
 
def parse_currency(s): 
    """ strip currency characters and commas from currency columns """ 
    if not isinstance(s, text_type): 
        return float('nan') 
    s = re.sub(u'[\$\u20AC\u00A3\uFFE1\u00A5\uFFE5]|(EUR)', '', s) 
    s = s.replace(',', '') 
    try: 
        return float(s) 
    except: 
        return float('nan') 
 
 
def parse_currency_replace_cents_period(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
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        val = val.replace(",", "") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
 
def parse_currency_replace_cents_comma(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(".", "") 
        val = val.replace(",", ".") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
 
def parse_currency_replace_no_cents(val, currency_symbol): 
    try: 
        if np.isnan(val): 
            return val 
    except TypeError: 
        pass 
    if not isinstance(val, string_types): 
        raise ValueError('Found wrong value for currency: {}'.format(val)) 
    try: 
        val = val.replace(currency_symbol, "", 1) 
        val = val.replace(" ", "") 
        val = val.replace(",", "") 
        val = val.replace(".", "") 
        val = float(val) 
    except ValueError: 
        val = float('nan') 
    return val 
 
def parse_numeric_types(ds): 
    """ convert strings with numeric types (date, currency, etc.) 
        to actual numeric values """ 
    TYPE_CONVERSION = get_type_conversion() 
    for col in ds.columns: 
        if col in TYPE_CONVERSION: 
            convert_func = TYPE_CONVERSION[col]['convert_func'] 
            convert_args = TYPE_CONVERSION[col]['convert_args'] 
            ds[col] = ds[col].apply(convert_func, args=convert_args) 
    return ds 
 
def sanitize_name(name): 
    safe = name.strip().replace("-", "_").replace("$", "_").replace(".", "_") 
    safe = safe.replace("{", "_").replace("}", "_") 
    safe = safe.replace('"', '_') 
    safe = safe.replace("\n", "_") 
    safe = safe.replace("\r", "_") 
    return safe 
 
def rename_columns(ds): 
    new_names = {} 
    existing_names = set() 
    blank_index = 0 
    for old_col in ds.columns: 
        col = sanitize_name(old_col) 
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        if col == '': 
            col = 'Unnamed: %d' % blank_index 
            blank_index += 1 
        if col in existing_names: 
            raise ValueError('Duplication detected. Column with name=[' 
                         + old_col + '] was preprocessed to[' 
                         + col + '] that already exists') 
        existing_names.add(col) 
        new_names[old_col] = col 
    ds.rename(columns=new_names, inplace=True) 
    return ds 
 
def add_missing_indicators(ds): 
    for col in INDICATOR_COLS: 
        ds[col + '-mi'] = ds[col].isnull().astype(int) 
    return ds 
 
def impute_values(ds): 
    for col in ds: 
        if col in IMPUTE_VALUES: 
            ds.loc[ds[col].isnull(), col] = IMPUTE_VALUES[col] 
    return ds 
 
BIG_LEVELS = { 
    u'Gang_Affiliated': [ 
        u'false', 
        u'true', 
    ], 
    u'Gender': [ 
        u'F', 
        u'M', 
    ], 
    u'Prison_Years': [ 
        u'1-2 years', 
        u'Greater than 2 to 3 years', 
        u'Less than 1 year', 
        u'More than 3 years', 
    ], 
    u'Prison_Offense': [ 
        u'Drug', 
        u'Other', 
        u'Property', 
        u'Violent/Non-Sex', 
        u'Violent/Sex', 
    ], 
    u'Age_at_Release': [ 
        u'18-22', 
        u'23-27', 
        u'28-32', 
        u'33-37', 
        u'38-42', 
        u'43-47', 
        u'48 or older', 
    ], 
} 
 
 
SMALL_NULLS = { 
    u'Gender': 1,  
    u'Age_at_Release': 1,  
    u'Prison_Years': 1,  
} 
 
 
VAR_TYPES = { 
    u'Age_at_Release': 'C', 
    u'Condition_Cog_Ed': 'N', 
    u'Condition_MH_SA': 'N', 
    u'Gang_Affiliated': 'C', 
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    u'Gender': 'C', 
    u'Prior_Arrest_Episodes_DVCharges': 'N', 
    u'Prior_Arrest_Episodes_Felony': 'N', 
    u'Prior_Arrest_Episodes_Misd': 'N', 
    u'Prior_Arrest_Episodes_PPViolationCharges': 'N', 
    u'Prior_Arrest_Episodes_Property': 'N', 
    u'Prior_Conviction_Episodes_Misd': 'N', 
    u'Prior_Revocations_Parole': 'N', 
    u'Prison_Offense': 'C', 
    u'Prison_Years': 'C', 
    u'Supervision_Risk_Score_First': 'N', 
} 
 
 
def combine_small_levels(ds): 
    for col in ds: 
        if BIG_LEVELS.get(col, None) is not None: 
            mask = np.logical_and(~ds[col].isin(BIG_LEVELS[col]), ds[col].notnull()) 
            if np.any(mask): 
                ds.loc[mask, col] = 'small_count' 
        if SMALL_NULLS.get(col): 
            mask = ds[col].isnull() 
            if np.any(mask): 
                ds.loc[mask, col] = 'small_count' 
        if VAR_TYPES.get(col) == 'C' or VAR_TYPES.get(col) == 'T': 
            mask = ds[col].isnull() 
            if np.any(mask): 
                if ds[col].dtype == float: 
                    ds[col] = ds[col].astype(object) 
                ds.loc[mask, col] = 'nan' 
    return ds 
 
# N/A strings in addition to the ones used by Pandas read_csv() 
NA_VALUES = ['null', 'na', 'n/a', '#N/A', 'N/A', '?', '.', '', 'Inf', 'INF', 'inf', '-inf', '-Inf', '-
INF', ' ', 'None', 'NaN', '-nan', 'NULL', 'NA', '-1.#IND', '1.#IND', '-1.#QNAN', '1.#QNAN', '#NA', '#N/A 
N/A', '-NaN', 'nan'] 
 
# True/False strings in addition to the ones used by Pandas read_csv() 
TRUE_VALUES = ['TRUE', 'True', 'true'] 
FALSE_VALUES = ['FALSE', 'False', 'false'] 
 
DEFAULT_ENCODING = 'utf8' 
 
REQUIRED_COLUMNS = 
[u"Age_at_Release",u"Condition_Cog_Ed",u"Condition_MH_SA",u"Gang_Affiliated",u"Gender",u"Prior_Arrest_Epis
odes_DVCharges",u"Prior_Arrest_Episodes_Felony",u"Prior_Arrest_Episodes_Misd",u"Prior_Arrest_Episodes_PPVi
olationCharges",u"Prior_Arrest_Episodes_Property",u"Prior_Conviction_Episodes_Misd",u"Prior_Revocations_Pa
role",u"Prison_Offense",u"Prison_Years",u"Supervision_Risk_Score_First"] 
 
 
def validate_columns(column_list): 
    if set(REQUIRED_COLUMNS) <= set(column_list): 
        return True 
    else : 
        raise ValueError("Required columns missing: %s" % 
                         (set(REQUIRED_COLUMNS) - set(column_list))) 
 
def convert_bool(ds): 
    TYPE_CONVERSION = get_type_conversion() 
    for col in ds.columns: 
        if VAR_TYPES.get(col) == 'C' and ds[col].dtype in (int, float): 
            mask = ds[col].notnull() 
            ds[col] = ds[col].astype(object) 
            ds.loc[mask, col] = ds.loc[mask, col].astype(text_type) 
        elif VAR_TYPES.get(col) == 'N' and ds[col].dtype == bool: 
            ds[col] = ds[col].astype(float) 
        elif ds[col].dtype == bool: 
            ds[col] = ds[col].astype(text_type) 
        elif ds[col].dtype == object: 
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            if VAR_TYPES.get(col) == 'N' and col not in TYPE_CONVERSION: 
                mask = ds[col].apply(lambda x: x in TRUE_VALUES) 
                if np.any(mask): 
                    ds.loc[mask, col] = 1 
                mask = ds[col].apply(lambda x: x in FALSE_VALUES) 
                if np.any(mask): 
                    ds.loc[mask, col] = 0 
                ds[col] = ds[col].astype(float) 
            elif TYPE_CONVERSION.get(col) is None: 
                mask = ds[col].notnull() 
                ds.loc[mask, col] = ds.loc[mask, col].astype(text_type) 
    return ds 
 
def get_dtypes(): 
    return {a: object for a, b in VAR_TYPES.items() if b == 'C'} 
 
def predict_dataframe(ds): 
    return ds.apply(predict, axis=1) 
 
def run_dataframe(ds): 
    ds = rename_columns(ds) 
    ds = convert_bool(ds) 
    validate_columns(ds.columns) 
    ds = parse_numeric_types(ds) 
    ds = add_missing_indicators(ds) 
    ds = impute_values(ds) 
    ds = combine_small_levels(ds) 
    prediction = 1/(1 + np.exp(-predict_dataframe(ds))) 
    return prediction 
 
 
def run(dataset_path, output_path, encoding=None): 
    if encoding is None: 
        encoding = DEFAULT_ENCODING 
 
    ds = pd.read_csv(dataset_path, na_values=NA_VALUES, low_memory=False, 
                     dtype=get_dtypes(), encoding=encoding) 
 
    prediction = run_dataframe(ds) 
    prediction_file = output_path 
    prediction.name = 'Prediction' 
    prediction.to_csv(prediction_file, header=True, index_label='Index') 
 
 
def _construct_parser(): 
    import argparse 
 
    parser = argparse.ArgumentParser(description='Make offline predictions with DataRobot Prime') 
 
    parser.add_argument( 
        '--encoding', 
        type=str, 
        help=('the encoding of the dataset you are going to make predictions with. ' 
              'DataRobot Prime defaults to UTF-8 if not otherwise specified. See the ' 
              '"Codecs" column of the Python-supported standards chart ' 
              '(https://docs.python.org/2/library/codecs.html#standard-encodings) ' 
              'for possible alternative entries.'), 
        metavar='<encoding>' 
    ) 
    parser.add_argument( 
        'input_path', 
        type=str, 
        help=('a .csv file (your dataset); columns must correspond to the ' 
              'feature set used to generate the DataRobot Prime model.'), 
        metavar='<data_file>' 
    ) 
    parser.add_argument( 
        'output_path', 
        type=str, 
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        help='the filename where DataRobot writes the results.', 
        metavar='<output_file>' 
    ) 
 
    return parser 
 
 
def _parse_command(args): 
    parser = _construct_parser() 
    parsed_args = parser.parse_args(args[1:]) 
 
    if parsed_args.encoding is None: 
        sys.stderr.write('Warning: For input data encodings other than UTF-8, ' 
                         'search "Prime examples" in the DataRobot Users Guide at 
https://app.datarobot.com/docs/users-guide/index.html') 
        parsed_args.encoding = DEFAULT_ENCODING 
 
    return parsed_args 
 
 
if __name__ == '__main__': 
    args = _parse_command(sys.argv) 
    run(args.input_path, args.output_path, encoding=args.encoding) 

7.3   Rulefit Classification Insights 
As part of the extensive DataRobot model search, various project insights can be obtained.  Here are 
the top 10 rulefit explanations for cohorts in the data. 

Rule Lift Mean Rel. 
Target 

Mean Target Observations 
[%] 

Age_at_Release == "18-22" & 
Age_at_Release != "33-37" & 
Gang_Affiliated == "true" 

0.80714873 

 

1.80714873 

 

0.539325843 

 

3.08492201 

 

Age_at_Release == "18-22" & 
Gang_Affiliated == "true" 

0.80714873 

 

1.80714873 

 

0.539325843 

 

3.08492201 

 

Gang_Affiliated == "true" & 
Supervision_Level_First == "Specialized" 

0.695562739 

 

1.695562739 

 

0.506024096 

 

5.75389948 

 

Gang_Affiliated == "true" & 
Prior_Arrest_Episodes_PPViolationCharges 
<= 1.5 & Condition_MH_SA > 0.5 

0.68379645 

 

1.68379645 

 

0.502512563 

 

6.897746967 

 

Gang_Affiliated == "true" & 
Prior_Arrest_Episodes_Felony > 1.5 

0.631393811 

 

1.631393811 

 

0.486873508 

 

14.52339688 

 

Education_Level != "At least some college" 
& Gang_Affiliated == "true" 

0.616523459 

 

1.616523459 

 

0.482435597 

 

14.80069324 
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Age_at_Release == "18-22" & 
Prior_Arrest_Episodes_Felony > 2.5 

0.612393353 

 

1.612393353 

 

0.481203008 

 

4.610051993 

 

Gang_Affiliated == "true" 0.575520533 

 

1.575520533 

 

0.470198675 

 

15.70190641 

 

Age_at_Release == "18-22" & 
Residence_PUMA > 10.5 & 
Prior_Arrest_Episodes_Felony > 1.5 

0.539536052 

 

1.539536052 

 

0.459459459 

 

3.847487002 

 

Gang_Affiliated == "true" & Dependents <= 
1.5 

0.535762679 1.535762679 0.458333333 13.3102253 
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