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• Summary of the project 

o Major goals and objectives 

During life, the microbiome serves important health-related functions including nutrient 

acquisition, pathogen defense, energy salvage, and immune defense training (1). The 

microbiome has also been linked to cardiovascular, metabolic and immune disease, as 

well as mental health disorders via the gut-brain-axis (2). Upon death, microbial 

communities present within and on the body are exposed to radical environmental 

changes, and recent studies have shown that microbial succession among mammalian 

cadavers follows a metabolically predictable progression (3, 4). 

o Research questions 

This study aimed to investigate the extent to which microbial associations among different 

organs in human cadaver can be used to predict manner of death (MOD), postmortem 

interval, and geographic locality of origin. By sampling human cadavers from three 

disparate geographic origins (Finland, Italy, and the United States), we were able to 

ascertain that geographic locality has a significant influence on microbial community 

composition of postmortem tissues, and that despite these differences, commonalities 

may still be identified both among tissues, and individuals that died due to varying causes 

of death (e.g. natural, accidental, homicidal, and suicidal deaths). We were unable to 

detect significant correlations between various samples and the postmortem interval, likely 

due to the fact that the sampling regimen was optimized to capture variation among 

geographic locality, organ type, and manner of death. Significant patterns were observed 

associated with geography and manner of death, which warrant reinforcement from 

additional investigations to elucidate the origin of these associations. 
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o Research design, methods, analytical and data analysis techniques 

The microbiome serves important functions in human health, but post-mortem the 

microbial signatures of colonized organ tissue could also be useful in helping to predict 

the manner of death of cases where this is not known. We surveyed the microbiota (16S 

rRNA V4 amplicon sequencing) of 280 organ tissue samples including liver, blood, brain, 

heart, prostate, spleen and uterus from cadavers in Italy, Finland and the United States 

with confirmed manner of death comprising either accidental death, natural death, 

homicide, and suicide. Unweighted UniFrac (but not weighted UniFrac) was significantly 

different by cadaver ethnicity and age, which suggests that taxa with very low proportions 

may account for the differences observed between these groups. Weighted UniFrac beta 

diversity (but not unweighted UniFrac) was significantly different by manner of death, post-

mortem interval and the body-mass index of the cadaver, suggesting that these 

characteristics affect the proportions of abundant micro-organisms. Different tissues 

exhibit differential associations with bacteria, with the prostate and uterus tissues 

maintaining highly unique microbial composition compared to other organs. For example, 

in Italian cadavers, MLE1-12 was abundant in nearly all tissues, except the prostate and 

uterus. We identified specific bacterial ASVs as biomarkers of either natural or accidental 

death and suicide, but not homicide. While the manner of death may have an impact on 

microbial associations, further investigation under more controlled conditions will be 

needed to validate whether these associations are predictive. 

o Expected applicability of the research 

Forensic microbiology represents a potential emerging discipline in which 

microorganisms serve as forensic tools or trace evidence. Advances in DNA sequencing 

technologies paired with increased understanding of the human microbiome have hinted 

at the possibility that the microbiome could be used as a biomarker of decay (3) and as 
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trace evidence to link individual people to objects they have previously interacted with (5-

9). Recent studies have also shown that the microbiome can be used to estimate the 

amount of time that has elapsed since death, referred to as the post-mortem interval (PMI), 

allowing investigators to establish a potential timeline of death (3, 10-16). 

The microbial composition and abundance associated with internal organ tissues are 

dependent on temperature, manner/cause of death, and PMI, since bacteria have different 

growth optima based on the physicochemical constraints of their environment (17-19). 

Also microbial abundance associated with the body pre-mortem can play a role in decay, 

as a cadaver of an aged adult human, with approximately 40 trillion microbial cells, decays 

more rapidly than a deceased fetus or newborn, which usually have reduced microbial 

colonization density (20). Of course, these trends are contingent upon the medications 

and disease state of the individual. 
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• Outcomes 

  We collected 276 samples of multiple organs from corpses derived from Finland, 

Italy, and the United States (Table 1; Table S1). Sampling spanned postmortem intervals 

(PMIs) of 3.5 to 432 hours (avg = 87.6 hours) and included tissues from cadavers 

corresponding to different manners of death grouped into four categories: accidental death 

(n = 88), natural death (n = 106), homicide (n = 23), and suicide (n = 45) (Table 2). In total, 

4,337,301 16S rRNA V4-5 amplicon sequencing reads were generated from 276 samples, 

comprising 2,204 Absolute Sequence Variants (ASVs). Following sequence deblurring 

and rarefaction analysis (5,000 read cut-off), we identified 1,855 ASVs across 163 

samples, with a range of 239 to 1,413 ASVs across different organs. 

Table 1. Sampling by geographic location and organ, post-

rarefaction 

  Organ 

Location Blood Brain Heart Liver Prostate Spleen Uterus 

Finland 0 0 0 20 0 0 0 

Italy 0 10 9 13 13 10 5 

USA 6 9 11 47 0 10 0 

Total 6 19 20 80 13 20 5 

 

Table 2. Sampling by manner of death and geographic locality, post-rarefaction, 

with PMI statistics; undetermined MOD (n=2) excluded from analyses. 
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(n) (n) (n) (hrs) (hrs) (hrs) 

Finland 6 12 0 2 48 192 108 42.3 

Italy 20 24 3 13 24 432 112 96.4 

USA 31 29 9 12 3.5 240 37.8 47.8 

Total 57 65 12 27     

Alpha diversity, calculated as observed number (richness) of ASVs and the Shannon 

diversity index, differed significantly between some but not all organs and varied by locality 

(both, p < 0.05, Kruskal-Wallis). Post-hoc tests (corrected for multiple comparisons using 

the Benjamini-Hochberg method) revealed that among Italian subjects, the prostate and 

uterus differed significantly from all other organs (brain, heart, liver, and spleen) in both 

observed richness (p < 0.05, Dunn’s Test) and Shannon diversity (p < 0.05, Dunn’s Test), 

but they did not differ significantly from each other (Fig. 1A and 1B). Among subjects from 

the United States (USA), the only organs that differed significantly by Shannon diversity 

were heart and liver (p = 0.032, Dunn’s Test), and no organs differed significantly by 

observed richness (Fig.1A). A comparison of alpha diversity measures for liver samples 

from all three localities (Finland, Italy, USA) identified significant differences in both 

observed richness and Shannon diversity between liver tissue from Finland and the USA 

(p < 0.05, Dunn’s Test), and Finland and Italy (p < 0.05, Dunn’s Test), but not between 

Italian and US livers (Fig. 1C). 
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Figure 1. Variation in alpha diversity by organ type, A) comparing observed ASV richness 

between organs from different localities, B) comparing Shannon diversity index between 

organs from different localities. Asterisks indicate significant difference between groups 

based on post-hoc Dunn’s Tests, p < 0.05. 

 

Alpha diversity differed significantly by manner of death among USA organs (p < 0.05, 

Kruskal-Wallis), but not among Italian or Finnish organs. Among USA organs, observed 

richness differed significantly between accidental deaths and homicides (p < 0.0177, 

Dunn’s Test), accidental deaths and suicides (p < 0.0002, Dunn’s Test), and natural 
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deaths and suicides (p < 0.0005, Dunn’s Test), but not between homicides and suicides, 

natural deaths and accidents, or natural deaths and homicides (Fig. 2A). Also among USA 

organs, Shannon diversity differed significantly between accidental deaths and suicides 

(p < 0.0001, Dunn’s Test), natural deaths and homicides (p < 0.008, Dunn’s Test), and 

natural deaths and suicides (p = 0.000, Dunn’s Test), but not between homicides and 

suicides, natural deaths and accidents, or accidental deaths and homicides (Fig. 2B). 

 

Figure 2. Variation in alpha diversity by manner of death, A) comparing observed ASV 

richness between manners of death from different localities, B) comparing Shannon 
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diversity index between manners of death from different localities. Asterisks indicate 

significant difference between groups based on post-hoc Dunn’s Tests, p < 0.05. 

 

Using linear regression of alpha diversity against PMI, the only significant associations 

observed were among Italian spleens (observed richness: p = 0.016, R2 = 0.48) and 

Finnish livers (Shannon Index: p = 0.021, R2 = 0.22). Similarly, we found little evidence for 

a correlation between BMI and bacterial alpha diversity among organs, with the exception 

of the Italian prostate (observed richness: p = 0.019, R2 = 0.35; Shannon Index: p = 3.58 

e -05, R2 = 0.62) and the US spleen (Shannon Index: p = 0.017, R2 = 0.47). 

 Analysis of beta diversity, using unweighted UniFrac, found a strong effect of 

geographic locality on postmortem bacterial community composition (Fig. 3A), whereby 

the microbial composition and compositional proportion were significantly different 

between each country (PERMANOVA: unweighted UniFrac, p = 0.001, R2 = 0.18; 

weighted UniFrac, p = 0.001, R2 = 0.12). No clear differences in beta diversity were visible 

by organ type (Fig. 3B) or organ type within each country, except for the uterus and 

prostate differing from all other organs in Italy (Fig. 3C), although, organ was technically 

a significant predictor of beta diversity (PERMANOVA: unweighted UniFrac, p = 0.001, R2 

= 0.08; weighted UniFrac, p = 0.001, R2 = 0.06). Controlling for locality as a confounding 

variable, PERMANOVA analyses of weighted and unweighted UniFrac diversity metrics 

identified several variables significantly associated with microbial beta diversity, though 

these variables differed between the two metrics (Table 3). For unweighted UniFrac, 

significant variables included ethnicity and age (p < 0.05, PERMANOVA). For weighted 

UniFrac, significant variables included manner of death, PMI, and BMI (p < 0.05, 

PERMANOVA).  
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Figure 3. PCoA plots of unweighted UniFrac beta diversity, A) labeled by geographic 

locality, B) labeled by organ, and C) labeled by organ and faceted by geographic locality 

(Finland not included, as only liver was sampled). 

 

Table 3. PERMANOVA analysis assessing marginal effects of variables 

on weighted and unweighted UniFrac beta diversity, controlling for 

geographic locality (ADONIS, strata = locality); asterisk indicates 

Bonferroni adjust p-value < 0.05. 
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Unweighted 

UniFrac 
     

Sex 1 0.41 0.01 1.7 0.36 

Ethnicity 3 4.03 0.09 5.46 0.006* 

Age - 0.77 0.02 2.95 0.012* 

Manner of death 3 1.2 0.03 1.57 0.096 

PMI - 0.37 0.01 1.49 0.56 

BMI - 0.41 0.01 1.65 0.26 

      
Weighted UniFrac 

     
Organ 6     

Sex 1 0.07 0.01 2.32 0.35 

Ethnicity 3 0.37 0.06 3.85 0.73 

Age - 0.1 0.02 3.23 0.14 

Manner of death 3 0.23 0.04 2.33 0.006* 

PMI - 0.11 0.02 3.41 0.018* 

BMI - 0.14 0.02 4.21 0.006* 

 Analysis of composition of microbiomes (ANCOM) between different localities, 

organs, and manners of death identified significant differences in relative abundance 

(measured as the log2fold change in 16S rRNA ASV read counts) of multiple bacterial 

taxa. Assessing differences between localities (controlling for age, sex, BMI, PMI, 

ethnicity, and organ), we found that Finnish cadavers exhibited enrichment of two ASVs 

in the class Bacilli, as well ASVs belonging to the Alphaproteobacteria and 

Gammaproteobacteria, relative to cadavers from Italy and the United States (p < 0.05, 

ANCOM). Among Italian cadavers we observed enrichment for ASVs in the classes 

Saprospirae, 4C0d-2 (phylum Cyanobacteria), Betaproteobacteria, 
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Gammaproteobacteria, and Gemmatimonadetes (p < 0.05, ANCOM). And among US 

cadavers, we observed a significant enrichment in ASVs annotated to the class Clostridia, 

as well as enrichment of several ASVs belonging to the classes Alphaproteobacteria, 

Bacilli and Bacteroidia (p < 0.05, ANCOM) (Fig. 4).  
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Figure 4. ANCOM – log2fold change in relative abundance between different cadaver 

localities, controlling for age, sex, ethnicity, BMI, PMI, and organ as covariates. ASVs are 

colored by bacterial class.  

 Analysis of differences in bacterial relative abundance between organs (controlling 

for age, sex, BMI, PMI, ethnicity, and locality) found increased proportion of a single 

Clostridia ASV (family Peptostreptococcaceae) in the blood, and a single 

Gammaproteobacteria in the heart (family Pseudomonadaceae, Pseudomonas sp.). 

Among brain tissue, several bacterial taxa were found to be underrepresented relative to 

all other organs, and none were found to be significantly enriched. Both liver and spleen 

exhibited an increased relative abundance of a bacterial ASVs in the class 4C0d-2 (order 

MLE1-12, unknown family), as well as Sphingomonas yabuuchiae (family 

Sphingomonadaceae). Other bacterial ASVs enriched in both the liver and spleen included 

those from classes Betaproteobacteria (specifically a single ASV in the family 

Rhodocyclaceae), Clostridia (specifically a single ASV in the family 

Peptostreptococcaceae), and Saprospirae (specifically two ASVs in the family 

Chitinophagaceae, and one ASV in the genus Sediminibacterium). The liver and prostate 

were both enriched for two ASVs in the class Bacteroidia, one in the family 

Comamonadaceae (genus Limnohabitans) and another in the family Oxalobacteraceae 

(unknown genus). The liver alone was enriched for several bacterial taxa not seen in other 

organs, including a Clostridia ASV in the family Lachnospiraceae (genus Blautia), an 

Alphaproteobacteria ASV in the order Rhizobiales (unknown family), and a 

Gammaproteobacteria in the family Enterobacteriaceae (genus Salmonella). Uterine 

tissues were enriched for only two ASVs, which were not found to be enriched in any other 

organs, including a single ASV in the class Bacilli (family Lactobacillaceae, genus 

Lactobacillus) and a single ASV in the class Gammaproteobacteria (family 

Enterobacteriaceae, unknown genus). Lastly, among prostate tissues we found a 
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significant underrepresentation of the same 4C0d-2 ASV (order MLE1-12) observed in 

both liver and spleen, and a single Clostridia ASV (family Lachnospiraceae, unknown 

genus) relative to all other organs (except for brain, which was also depauperate with 

respect to the 4C0d-2 ASV) (Fig. 5). 
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Figure 5. ANCOM – log2fold change in relative abundance between different organs, 

controlling for age, sex, ethnicity, BMI, PMI, and locality as covariates. ASVs are colored 

by bacterial class.  
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 Several unique associations between ASVs and manner of death (controlling for 

age, sex, BMI, PMI, ethnicity, locality, and organ) were observed. For natural deaths, this 

included an enrichment of the same ASV in class 4C0d-2 (order MLE1-12) mentioned 

previously, as well as enrichment for single ASVs in the classes Bacilli (family 

Lactobacillaceae, Lactobacillus zeae), Gammaproteobacteria (family Enterobacteriaceae, 

unknown genus), and Saprospirae (family Chitinophagaceae, genus Sediminibacterium). 

Among victims of accidental death, a single Bacilli ASV (order Lactobacillales, unknown 

family) and Gammaproteobacteria (family Enterobacteriaceae, unknown genus) were 

enriched. Homicide victims did not exhibit enrichment of any bacterial taxa but exhibited 

a decreased abundance of ten different ASVs belonging to the class Bacilli, as well as 

ASVs in the classes Bacteroidia (family Prevotellaceae, Prevotella melaninogenica), 

Clostridia (family Veillonelliceae, Veillonella dispar), and Gammaproteobacteria (family 

Enterobacteriaceae, genus Salmonella) relative to other samples. Lastly, victims of suicide 

showed a similar decrease in the same Gammaproteobacteria ASV (family 

Enterobacteriaceae, Salmonella) as homicide victims, as well as decreases in another 

gammaproteobacterium ASV (family Pseudomonadaceae, genus Pseudomonas), and 

two ASVs in the class Clostridia (family Peptostreptococcaceae, unknown genus, and 

family Ruminococcaceae, Faecalibacterium prausnitzii). Other Clostridia ASVs were 

enriched in suicide victims, including two ASVs in the family Lachnospiraceae (genus 

Blautia), and one in the family Clostridiaceae (genus Clostridium). The only ASV belonging 

to class Alphaproteobacteria (order Rhizobiales) with significantly different relative 

abundance among manner of death categories was found to be enriched in suicide victims 

as well (Fig. 6). 
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Figure 6. ANCOM – log2fold change in relative abundance between different manners of 

death, controlling for age, sex, ethnicity, BMI, PMI, organ, and locality as covariates. ASVs 

are colored by bacterial class.  

A previous microbial survey of internal organ tissues (e.g., brain, heart, liver, and 

spleen) of four cadavers, associated with a homicide, suicide, over-dose, and accidental 

death cases, demonstrated that the obligate anaerobe, Clostridium was found in cadavers 

of varying PMIs, while the facultative anaerobe, Lactobacillus, was more abundant in 

cadavers with shorter PMIs (Javan et al., 2016b). Other investigations performed 

exploratory analyses of bacteria present in mouth and rectal scrapings taken at the onset 

and end of the bloat stage of corpses decomposing in a natural setting (32). However, 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



internal organs were not sampled across time points in this study. Another postmortem 

microbiome study of 33 bodies was conducted using bacterial culturing and reverse 

transcriptase quantitative PCR (RT-qPCR) techniques to profile the microbes in blood, 

liver, portal vein, mesenteric lymph node, and pericardial fluid, and identified 21 genera, 

with the most abundant being  Staphylococcus sp., Streptococcus sp., Clostridium sp., 

Enterococcus sp., and Escherichia sp. (33)  

 We identified many different taxa as being associated with manner of death, 

including Lactobacillus, Enterobacteriaceae, Sediminibacterium, Blautia, Rhizobiales, and 

Clostridium. In several recent postmortem microbiome studies, the clostridia were 

observed to proliferate post-mortem (11, 12), potentially in part due to an increase in 

available nutrients and energy obtained from fermentation reactions (34). Most Clostridium 

spp. grow strictly in the absence of oxygen and a doubling time of 7.4 minutes (35) which 

may explain why they so easily colonize the still anaerobic body cavity post-mortem. The 

presence of species of Lactobacillus, Enterobacteriaceae, and Blautia may be similarly 

explained. However, the enrichment of Sediminibacterium and Rhizobiales in natural 

deaths and suicides respectively, which are traditionally associated with soil, is harder to 

understand but may represent colonization by environmental bacteria.  

• Artifacts 

List of products: 

• The Postmortem Clostridium Effect in Human Decomposition https://emerging-

researchers.org/projects/123-5/  

• Editorial. Life and Death: New Perspectives and Applications in Forensic Science - 

https://www.frontiersin.org/articles/10.3389/fevo.2021.725046/full 

• Professional presentations at professional conferences and online webinar series. 
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• Effects of Extended Postmortem Interval on Microbial Communities in Organs of the 

Human Cadaver - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752770/ 

•  The roles of medical examiners in the COVID-19 era: a comparison between the 

United States and Italy - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7882048/ 

•  Identification of cadaveric liver tissues using thanatotranscriptome biomarkers 

https://www.nature.com/articles/s41598-020-63727-9 

• Life and death: A systematic comparison of antemortem and postmortem gene 

expression 

https://www.sciencedirect.com/science/article/abs/pii/S0378111920300184 

Data sets generated (broad descriptions will suffice) 

The genetic sequencing datasets presented in this study can be found in the European 

Bioinformatics Institute - The EBI Accession Number is PRJEB41511. This dataset 

includes all the 16S rRNA sequencing data acquired during this study. 

Dissemination activities 

Results of this project have provided a framework for the Forensic Technology Center 

of Excellence Webinar Series, which Dr. Lutz led. Results were also prepared for 

publication in peer-reviewed forensic science journals and were presented to the 

forensic scientific community by Dr. Javan at the annual scientific meeting of the 

American Academy of Forensic Sciences. 

• https://www.rti.org/rti-press-publication/2020-nij-rd-symposium/fulltext.pdf 

• http://hbcunetwork.com/content/340334/alabama-state-university-forensic-majors-

win-national-science-foundation-travel-awards 

• Dr. Javan presented at the 73rd annual scientific meeting of the American 

Academy of Forensic Sciences (AAFS) in 2021. We have also published 5 papers.  
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