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ABSTRACT 
 

 Various inorganic nitrogen-containing materials have been exploited for their 

different properties. Several nitride materials are commercially attractive due to their 

mechanical properties making them suitable for ceramic industries and wide bandgaps 

fitting for use as semiconductor and insulator materials, as well as optoelectronics. Nitride 

materials can exhibit versatility in applications such as the use of gallium nitride to make 

blue LEDs, nitrides of titanium and silicon being utilized as medical implants for their 

chemical inertness and hardness, and the heavy use of boron nitride as a solid lubricant 

in the cosmetic industry. Amines have been used as nitrogen-containing organic ligands 

in organometallic complexes that exhibit phenomenal photophysical properties. These 

complexes have been heavily studied for potential applications in optoelectronics and 

chemical sensing. 

  This dissertation will focus on two nitrogen-containing materials that have yet to 

be explored for the potential applications to be discussed. The first is hexagonal-boron 

nitride (h-BN), which was previously mentioned to have a substantial use in the cosmetic 

industry, giving products such as lipstick, foundation, and blush their slick feeling. 

Computational models have shown the possibility of altered electronic properties of defect 

sites in the h-BN sheets. These defect sites will be explored experimentally to determine 

any catalytic activity. Specifically, the hydrogenation reaction using defect-laden 

hexagonal-boron nitride will be investigated. Successful catalysis would add to the short 

list of non-metal catalyst, and provide an alternative catalyst that costs significantly less 

than the traditional metal catalysts commonly used in commercial industries.  
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The second of the two nitrogen-containing materials is a class of metal complexes 

based on organometallic clusters of copper(I) iodide. Copper(I) iodide clusters formed 

with amine ligands have been studied for around four decades and the photophysics 

behind their photoluminescent properties are well understood. Much of the work has been 

done for use as a potential emissive material in the optoelectronics field. They have also 

been studied for applications in the sensing of environmental compounds. Here, research 

will display its use as a novel sensor for narcotic substances.  

This forensic application will be further explored to develop and eventually 

commercialize a complete field drug testing system for law enforcement and crime lab 

use, with the goal to equip law enforcement personnel with a presumptive drug testing 

method that is accurate, easy-to-use, safe, adaptable, and affordable. This system will 

consist of a narcotic drug-indicating test strip, a handheld fluorescence spectrometer 

manufactured in-house using relatively inexpensive parts, and a mobile app that will 

leverage photoemission data of the tested drug samples collected by multiple crime labs 

to provide the ability for sample-to-reference data matching. Law enforcement users 

would have the ability to rapidly identify an unknown substance by applying it to a test 

strip, testing it using the spectrometer, and capturing an image of the resulting 

photoemission and analyzing the spectral profile in search of a match with the support of 

a cloud database.  
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CHAPTER 1: INTRODUCTION AND LITERATURE OVERVIEW 
 

1.1 Mechanochemistry Overview 
 

 Mechanochemistry is the process of using mechanical energy to induce chemical 

reactions. Traditionally, this has been done by grinding chemicals together with a mortar 

and pestle. With the advancement of technology, the application of ball milling to provide 

mechanical grinding has allowed the blossoming field to progress into a new horizon. A 

process that has commonly been used for industrial scale particle reduction and material 

mixing, ball milling has gained traction as a chemical reaction technique in recent times. 

Since the 2000s, mechanochemistry has made its way into the fields of organic synthesis, 

inorganic synthesis, materials synthesis, co-crystal formation, and catalysis.  

 The chemistry behind a mechanochemical reaction lies in the impacts of the ball 

bearings. At impact with other media in the reaction, the reaction material breaks down 

and the surface energy increases enough for a reaction to achieve its activation energy 

barrier and yield products. The kinetic energy of those impacts can be measured by the 

force, equal to the mass and acceleration of the ball bearings during the reaction. The 

forces within the process can be separated into two main types, compressive force and 

shear force. Compressive forces result from head on collisions between ball bearings or 

the ball bearings and the reaction vessel inner surface. Shear forces result from ball 

bearings sliding against each other or the reaction vessel inner surface in a grinding 

manner. Each type may be exclusive or prevalent in different ball milling techniques, 
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which can be advantageous when the goal of an experiment involves particle reduction 

(compressive force) or delamination of layered materials (shear force).  

 

 

Figure 1. Diagram of compressive forces vs. shear forces via ball milling. The red arrows 
represent the direction of impact for each ball bearing. 

 

1.1.1 History of Mechanochemistry 
 

 The use of mechanochemistry can be traced back to prehistoric times, in which 

humans made use of the mortar and pestle to prepare food by grinding materials down 

into smaller pieces. The unintended chemical reactions that are assumed to have 

occurred were not scientifically realized at the time. The first reported use of 

mechanochemistry was around 315 B.C. when cinnabar, a mineral containing mercury(II) 

sulfide, was ground with a copper mortar and pestle to produce mercury. It was not until 

the 19th century that the technique was reported again, when Faraday published his work 

on the reduction of silver chloride to silver metal by grinding it with other metals using a 

mortar and pestle.1-3 In the 1880’s, Belgian chemist Walthère Spring published papers on 
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the compression and its influence on phase changes and chemical reactions. Peers 

disputed his work, citing the lack of knowledge on the role of atmospheric moisture in the 

chemical reactions.2 In the late 19th century, the “father of mechanochemistry”, Matthew 

Carey Lea made advances in the field with his work. Known for his pioneering work on 

the chemistry of photography investigating the effects of static pressure on silver 

materials to develop images, he observed that the mechanical grinding of silver halides 

and mercuric chloride, compounds that did not decompose when heated, resulted in the 

formation of subhalides. This led him to suggest that these reactions were possibly 

induced through mechanical action rather than heat, further laying the foundations of 

mechanochemistry.2, 4 In 1919, Friedrich Wilhelm Ostwald, who won a Nobel Prize for his 

work in catalysis, chemical equilibria, and reaction vessels, first coined the term 

“mechanochemistry” when he stated “Mechanochemistry is a branch of chemistry which 

is concerned with chemical and physico-chemical changes of all states of aggregation 

due to the influence of mechanical energy.”2, 5 From 1914-1918, L.H. Parker made strides 

by building the first mechanochemical reactor. The apparatus was essentially a mortar 

and pestle installed in a desiccator, which would allow for some control of the reaction 

environment. Parker used his reactor to conduct experiments of solid state reactions, 

observing a successful metathesis reaction between sodium carbonate and barium 

sulfate, a repeat of experiments done by Spring in the 1880’s.6 The 1920’s brought along 

the first mechanochemical reactions using organic molecules. Waentig published multiple 

papers regarding the effects of milling on the solubility of cellulose.7 
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 The use of a mortar and pestle is not sufficient to obtain consistent results between 

experiments. Achieving certain particle sizes and applying a known amount of energy 

when grinding would be too difficult via this route. The development and advances in 

milling technology led to an increase in traction for research in mechanochemistry. 

Although early mills were developed for their use in industrial processing, they were 

utilized by some researchers to investigate new applications. In the mid- to late-20th 

century, the use of mechanical grinding made its way into mechanical alloying and 

inorganic synthesis.2 It was not until the early 2000’s the practicality of ball milling was 

extended to organic synthesis and the formation of organic co-crystals.  

 

1.1.2 Milling Equipment 
 

 The components of a ball milling reaction typically consist of a reaction vessel, the 

milling media (ball bearings), and the reaction material. The reaction vessel usually has 

a gasket to prevent leakage of small particles and allow for a gas-tight environment. Ball 

milling processes can be categorized into two classifications based on the force of the 

impacts involved in the process: high-energy and low-energy. A variety of mills are 

available and can be chosen for specific reactions scales and applications. For example, 

all mills can be used for size reduction while one may be better-suited for delamination 

than another. Table 1 shows the common types of mills and the kinds of impacts involved. 

Provided below is a general description of each of the mills, with some details of the 

specific mills used in this work. 
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Table 1. Types of mills and information on resulting impacts of ball bearings for each type.  

Mill Strength of impacts  Type of stress from impacts 

Shaker mill  High-energy (3053 N) Mainly compressive  

Planetary mill Variable Major shear, some compressive 

Pebble or roller mill Low-energy (329 N) Major shear, minor compressive 

Attrition mill Variable (3881 N)  Shear and compressive 

Hybrid - - 

 

 

1.1.2.1 Shaker Mill  
 

 The shaker mill has become common equipment for laboratory-scale 

mechanochemistry research. SPEX® and RETSCH® are two companies that offer 

products in this market. The shaker mill is similar to a paint shaker, in which multiple paint 

colors are added into a paint can and mechanically shaken to obtain a homogeneous 

mixture, or new color. The mill is considered a high-energy process, so it shakes at a 

faster speed than a paint shaker. Various sizes of reaction vials can be purchased to mill 

0.2 grams to 10 grams of reaction material. Setting up a reaction involves a few main 

components of the reaction vessel: vial, cap, gasket or O-ring, and ball bearings. The 

reaction material is charged to the reaction vessel before closing it with the cap. A gasket 

or O-ring between the cap and vial allow for a controlled reaction atmosphere and 

prevents the loss of reaction material as the particle size is reduced during milling. Once 

prepared, the vial is clamped into the vial slot of the mill. When milling, the clamps move 

back and forth in a figure eight movement at approximately 1200 RPM. SPEX® offers the 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 6 

8000M and 8000D models which have one and two vial slots, respectively. A factory stock 

mill typically has a start button and a stop/pause button. When milling has started, the 

duration of the milling is dictated by a timer set by the user. A disadvantage of the shaker 

mill is the lack of ability to increase reaction scales higher than 10 grams. This method is 

not feasible for industrial processes.  

 

 

Figure 2. SPEX mixer mill, also commonly known as a shaker mill. 

 

1.1.2.2 Planetary Mill 
 

 A planetary mill is also a common choice for performing mechanochemical 

reactions. It consists of a larger reaction vessel that allows for reaction scales up to 100 

kg. The vessel is charged with ball bearings and the reaction material, then covered by a 

lid with a gasket in between. The vessel clamps into a slot, and sits upright on a rotating 

platform, that sits on a larger rotating platform that rotates in the opposite direction of the 
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other. This rotation dynamic leads to the ball bearings sliding and grinding against each 

other and the inner walls to apply mostly shear forces to the reaction material.8 Like the 

shaker mill, the duration of milling is controlled by a timer set by the user. A setting that 

can be changed to control certain milling parameters, such as the impact forces of the 

ball bearings, is the rotation speed. Typical planetary mills can be set to speeds up to 700 

RPM. A disadvantage of the planetary mill is its limit of scaling up to industrial-sized 

reactions.  

 

 

Figure 3. Planetary mill. 

 

1.1.2.3 Roller Mill 
 

 The roller mill, also known as the pebble mill, is typically used for laboratory-scale 

and industrial-scale processes for mixing and size reduction. The advantage of this type 
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of mill is that it is more easily scalable than the shaker mill and planetary mill. It consists 

of a cylindrical reaction vessel that sits on its side and rolls on a horizontal axis. The 

vessel is charged with ball bearings and the reaction material before rolling. The milling 

media tumbles like clothes in a dryer, causing the ball bearings to provide shear force as 

they grind against each other and the inner walls with the reaction material in between. 

As the ball bearings creep up the side of vessel, gravity eventually acts on them and 

causes them to fall on top of the others, providing relatively higher energy compressive 

forces. The rolling speed of the mill can be varied to control the force of impacts of the 

ball bearings, although at a high enough speed centripetal forces will prevent the ball 

bearings from tumbling. A laboratory-scale roller mill was custom-built with a gas inlet and 

outlet to allow for the introduction of gas phase reactants into the system and an external 

heating element to conduct experiments at moderately high temperatures.  

 

 

Figure 4. Roller mill, also commonly known as a pebble mill. This mill was customized to 
allow for gas input and external heating. 
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1.1.2.4 Attrition Mill 
 

 

Figure 5. Union Process attrition mill. 
 

The attrition mill is another type of mill that can be designed for either laboratory-

scale or industrial-scale processes. Its components consist of a reaction vessel, lid, ball 

bearings, and stirring tree. The dynamics of attrition milling can be compared to a kitchen 

stand mixer, in which the beater attachment is directly connected to the motor that allows 

the beater to stir ingredients in a mixing bowl. On an attrition mill, the stirring tree is the 

beater attachment, the reaction vessel is the bowl, and the milling media and reaction 

material are the ingredients. Since the motor directly controls the stirring of the ball 

bearings, the mechanical energy provided by the motor correlates with the energy input 
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of the reaction. Union Process® offers mills that can stir at variable speeds between 1 

RPM and 700 RPM. Experiments are conducted with a large amount of ball bearing that 

deliver both high-energy shear forces and impact forces when stirring at high velocities. 

A lid for the reaction vessel was modified with a gasket and gas inlet and outlet to allow 

for the input of gas to the milling process. A cooling jacket or heating jacket can be 

equipped to conduct temperature-controlled experiments. 

 

1.1.3 Milling Conditions 
  

With the application of ball milling to mechanochemical reactions, the ability to 

control the reaction environment is beneficial to learning more about the fundamentals of 

mechanochemistry. Some of the results of pioneering experiments conducted with simple 

grinding techniques, such as using a mortar and pestle, were challenged based on the 

unknown role atmospheric conditions played on the products that were formed. This led 

to L.H. Parker developing his mechanochemical reactor, which minimized the 

atmospheric effects on the reaction system. Technological advances in the 20th century 

have afforded new ways to control reaction conditions during ball milling.  

 

1.1.3.1 Controlling the Atmosphere 
 

 The introduction of oxygen or moisture into mechanochemical reactions can be 

detrimental to reaction yields. Reactions that involve the use of pyrophoric metals or other 

reactants that violently interact with air benefit greatly from a controlled atmosphere. 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 11 

Shaker mill vials and laboratory-scale roller mill reaction vessels are small enough to 

conveniently fit into a glove box. The use of a glove box allows for the preparation of 

reactions under an inert environment. Before bringing the reaction vessel out of the glove 

box to set up in its respective milling apparatus, it is sealed with the help of O-rings to 

retain the inert environment inside the vessel. Modifications to the roller mill and attrition 

mill could allow for the input of other gases from pressurized gas cylinders, such as 

carbon dioxide, nitrogen, propene, etc. This has been useful for mechanochemical 

methods for sugar production from biomass, in the high temperatures caused by friction 

in a high-speed attrition mill reaction would cause the resulting sugars to caramelize in 

the presence of atmospheric oxygen. Conducting the reaction under carbon dioxide would 

permit the toleration of higher temperatures without caramelization in said reaction.  

 

1.1.3.2 Controlling the Temperature 
 

 Temperature changes could come from various sources during the milling process. 

Attrition mill reactions could reach temperatures of over 150 degrees Celsius when milling 

at high speeds due to the friction between the many ball bearing while stirring. In a shaker 

mill, the arms connected to the vial slots swing at 1200 RPM. The mechanical work 

generates heat inside the mill. The reaction itself must be considered when determining 

possible factors for an increase in temperature. Highly exothermic reactions may yield 

undesired products in some cases. On the other hand, certain reactions may need an 

input of additional energy by way of heat to improve the reaction rate and yield. 
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Regardless of the case, controlling the temperature during the milling process can be 

beneficial to the overall reaction.  

For restricting high temperatures, the following options are provided. SPEX® offers 

a freezer mill to perform low temperature milling, equipped with a liquid nitrogen tub to 

cool the reaction vial during the milling process. Options for other types of mills require 

custom modifications to the apparatus. The attrition mill reaction vessel can be equipped 

with a cooling jacket that flows coolant through it.  

 

 

Figure 6. Housing for the custom roller mill, which is equipped with a heating element to 
allow for external heating of the reaction vessel. 

 
For higher milling temperatures, the apparatus of a mill can be equipped with a 

heating element to heat the exterior of the reaction vessel. This is practical for mills in 
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which the reaction vessel is exposed (e.g., roller mill and attrition mill), as opposed to one 

enclosed in steel housing (e.g., shaker mill and planetary mill). 

 

1.1.3.3 Vials and Milling Media for Catalysis 
 

 Shaker mill vials and ball bearings made of various materials are commercially 

available. The most commonly used vials and media are made of stainless steel. Other 

commercially available vials include those that are made of plastic, agate, tungsten 

carbide, alumina, and zirconia. Depending on what reaction material needs to be milled, 

it may be necessary to choose a vial made of harder material. For example, milling silicon 

requires the use of a vial and media made of material with greater hardness, such as 

tungsten carbide. Using a stainless steel vial to mill silicon would damage the vial and 

milling media. Advances in mechanochemistry and its extension to organic synthesis led 

to an interesting discovery. In 2009, James Mack’s work exhibited that Sonagashira 

Coupling reactions, conventionally achieved using a platinum catalyst and copper(I) co-

catalyst, could result in high yields if a copper vial and milling media are used in place of 

copper(I) iodide as the co-catalyst.9  

 

1.1.3.4 Metal-free reactions 
 

 For a proof of concept of a specific project, reaction conditions eliminating the 

presence of metal was necessary. The hydrogenation of olefins is catalyzed by the 

presence of late transition metals, such as iron or nickel. Investigations into metal-free 
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catalysis of the hydrogenation reaction would require the use of reaction vessels made of 

materials that will not inadvertently catalyze the reaction. Therefore, commonly used 

stainless steel reaction vessels and ball bearings are not suitable for metal-free reactions. 

For example, hexagonal boron nitride exhibits catalytic activity when defects are 

introduced to the boron nitride sheets by way of ball milling.10 This mechanical process of 

catalyst activation can be done using a shaker mill method. Using a stainless steel shaker 

mill reaction vial would result in iron and nickel contamination of the boron nitride powder, 

which must be avoided. Ceramic shaker mill vials and ball bearings made of zirconia or 

alumina can be used in place of the stainless steel vials to assure the boron nitride powder 

is metal-free. Once the catalyst is activated, it is used to react hydrogen and an olefin in 

a zirconia roller mill with zirconia milling media.   

 

 

Figure 7. Ceramic reaction vessels and milling media used for metal-free reactions. 
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1.1.4 Practicality for Reaction Scale-Up 
 

 The various milling methods of mechanochemistry provide a practical means to 

scale a reaction from laboratory-sized to industrial-sized processes. Traditional wet 

chemistry reactions require efficient stirring and heating of the reaction solution, which 

may be difficult to scale up due to the necessary optimization of the heat transfer and 

mixing dynamics in a larger reaction. Optimization of mechanochemical reactions can be 

realized more easily with some possible factors to consider. For example, scaling up an 

attrition milling reaction will be used. Attrition milling delivers the easiest route to scale up 

to industrial-sized reactions because the technology is linearly scalable.11 Increasing the 

reaction scale will require a larger reaction vessel and an increase of milling media. 

Attrition milling at high RPM creates enough friction to increase the systems temperature. 

For an industrial scale reaction, this temperature increase must be considered when 

optimizing a reaction done by an attrition milling method. Efficient stirring of the milling 

media must also be studied. A larger reaction will utilize a motor and stirring tree that can 

mechanically move the increase in weight of ball bearings without damage to the tree. 

The key is to translate the impact energies of the milling media observed in a laboratory 

scale reaction to a larger reaction. Discrete element modeling (DEM) can be used to 

simulate the impact energies under specific milling conditions.8 This will also help simulate 

the dynamics in the movement of ball bearings while stirring. Although most 

mechanochemical methods do not require heat and use little to no solvent, the power to 

run the mill requires energy input. Overall, economic assessments of automated industrial 
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processes must be done to determine the cost efficiency of a mechanochemical process 

regarding factors such as energy usage and decrease in solvent use and disposal relative 

to a traditional wet chemistry process. 

 

1.2 Mechanochemical Synthesis 
 

 Ball milling has been a mainstay of techniques in the material processing industry 

since the invention of mechanical ball mills. Traditionally used for homogeneous mixing 

or size reduction, its applications have been expanded into broad areas of chemistry over 

the last half century. Some of those areas are metal alloying12-16, inorganic synthesis16-19, 

material synthesis11, 20-24, organic synthesis16, 25-27, catalysis9, 16, 19, 27-29, and drug 

formulation16, 18, 30. 

 

1.2.1 Synthesis of Inorganic Compounds and Materials 
 

 Mechanochemical investigations started with simple reactions between inorganic 

substrates. In the 1890s, Matthew Carey Lea investigated the effects of mechanical 

grinding on silver halides and mercuric chloride, observing the decomposition of the 

compounds when grinding them in a mortar and pestle.2, 4 From 1914-1918, L.H. Parker 

developed the first mechanochemical reactor.6 This invention allowed him to perform 

solid-solid metathesis reactions between inorganic salts. The current state of 

mechanochemistry has roots that coincide with the invention of the SPEX 8000 mixer mill 

in 1957. The SPEX 8000 became a standard instrument for groups that investigated 
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mechanochemical reactions. In the 1960s, various research groups began to focus on 

mechanochemical methods for both metal alloying and inorganic processing techniques. 

Eventually, the two sub-branches merged to form a community that shared their 

knowledge from their work in mechanochemistry.2 In these early years, 

mechanochemistry was used as a new route to process alloys and metal oxides. Today, 

it is applied to the synthesis of ceramic materials20, processing graphene-based 

materials11, synthesizing metal organic frameworks (MOFs)16, 18, 30, forming 

pharmaceutical co-crystals16, 18, 30, in addition to many other processes. 

 

1.2.2 Reactions in Organic Synthesis 
 

 Mechanical grinding on organic substrates was first investigated in the 1920s, in 

Waentig’s studies on the effects of grinding on cellulose solubility.7 From then, there was 

a gap that saw a lack of notable efforts to extend applications of mechanochemistry to 

organic chemistry. It was not until the 2000s, that research journals experienced an influx 

of literature on mechanochemical routes for organic reactions via ball milling. This 

increase in traction has proved the practicality for using ball milling in organic synthesis. 

Mechanochemistry is accustomed to ties to industrial processes, and it is no different in 

its extension to organic synthesis. The use of mechanochemical methods for synthesis 

has afforded green routes for industrial reactions, an attractive factor to prove their 

feasibility. One of the most significant advantages is that little to no solvent is required for 

a reaction.16 Current methods for organic synthesis require excess amounts of solvent to 

provide a medium to facilitate the reactions, in which most of the solvent is disposed as 
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waste after completion. For industrial scale reactions, the ability to decrease or eliminate 

the use of solvents would be considerably cost-effective.  

Work on reactions within the realm of organic chemistry has been published 

showing successful translations into mechanochemical processes. Among the organic 

reactions that have been done via mechanochemical routes are nucleophilic substitution 

reactions between benzyl halides and nucleophilic group 1 halide salts26, the reduction of 

aldehydes, ketones, and esters to their corresponding alcohols using sodium borohydride 

or lithium aluminum hydride31, the formation of ,-unsaturated esters32, the Nobel Prize-

earning Wittig reaction27, 33, and the Nobel Prize-earning Diels-Alder reaction34. 

Mechanochemistry has also started to become established in organic catalysis. The 

hydrolysis of cellulose has been popular for its potential bioethanol production process. 

Traditional methods involve the use of sulfuric acid solutions or the use of enzymes to 

convert cellulose to glucose, both methods having their disadvantages. A 

mechanochemical method that utilizes kaolin as a solid acid catalyst can convert cellulose 

to simple sugars without the use of solvent in the reaction step.11, 29 This method has led 

to other mechanochemical cellulose to sugar routes.35 Base-catalyzed reactions such as 

the Tishchenko reaction36 and Morita-Baylis-Hillman reaction27, 37 have been realized. 

Mechanochemical metal-catalyzed reactions have also been seen in literature. Work has 

been published on the Nobel Prize-earning Suzuki coupling, which is the palladium-

catalyzed cross coupling of an aryl halide and organoboron species.27-28 Another coupling 

reaction, Sonogashira coupling, was done through ball milling methods.27 This is the cross 

coupling of an aryl halide and terminal alkyne with the help of a palladium catalyst and 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 19 

copper co-catalyst. Copper(I) iodide is typically used as the co-catalyst, but literature 

shows that ball milling in a copper reaction vial eliminates the use of copper(I) iodide to 

successfully yield the product.9  

 

1.3. Catalytic Hydrogenation 
 

 The catalytic addition of hydrogen to unsaturated carbon bonds has served as an 

important process in various industries. The petrochemical industry utilizes it when 

alkenes from the cracking process need to be converted to alkanes. In the pharmaceutical 

industry, the synthesis of some active compounds may require the reduction of pi-bonds 

in steps leading to the final product. Polyunsaturated fatty acids are hydrogenated to 

make food products like peanut butter, margarine, and vegetable oil-based shortening. It 

has proved to be one of the more significant discoveries in science that has been widely 

commercialized to benefit large-scale industrial processes, crediting Paul Sabatier the 

1912 Nobel Prize in chemistry. Hydrogenation is carried out by adding a hydrogen 

molecule, H2, to an unsaturated substrate (i.e. alkene) in the presence of a catalyst that 

provides a reaction path of lower energy in contrast to an uncatalyzed reaction. Group 10 

metals have traditionally been used as hydrogenation catalysts, allowing for the use of 

lower temperatures to achieve bond reduction on an industrial scale. The types of 

catalysts can be separated into two general categories: heterogeneous catalysts and 

homogeneous catalysts. The former, conventionally used for large-scale commercial 

applications, consists of those catalysts that can be separated from the reaction mixture 

following the completion of the reaction. Homogeneous catalysts are those that dissolve 
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in the reaction mixture and result in a single phase at the end of the reaction, making 

them difficult to recover and reuse.  

 

1.3.1 Heterogeneous Metal Catalysts for Hydrogenation 
 

 Since Paul Sabatier’s discovery of their catalytic activity towards the hydrogenation 

reaction, platinum and palladium have been the industrial choice of catalysts for reducing 

unsaturated bonds. In 1912, Sabatier was awarded the Co-Nobel Prize award, along with 

Victor Grignard (who won it for the discovery of Grignard’s Reagent), for his work on the 

innovative process that would improve the hydrogenation reaction. Before the use of 

catalysts, hydrogenation was only possible at high temperatures. In the presence of well-

known cataysts, alkanes can be produced from their preceding alkenes at near-ambient 

temperatures. Although ambient temperature hydrogenation is achievable, large scale 

industrial processes employ elevated temperature conditions to improve catalytic 

efficiency and justify the use of the expensive precious metal catalysts as economically 

feasible. Sabatier’s work on gas-phase hydrocarbons was an extension of the pioneering 

work done in the 1890s by James Boyce, who discovered that the presence of nickel 

could aid in the hydrogenation of cottonseed oil.38-39 This use of heterogeneous catalytic 

hydrogenation on cottonseed oil was further developed to be applied to vegetable oils by 

Wilhelm Normann.40 By using trace nickel, he hydrogenated polyunsaturated fatty acids 

of vegetable oils in what was known as a “fat hardening” process. His work initiated the 

utilization of catalytic hydrogenation in the food industry, which is one of the most 

significant industries that uses hydrogenation.41 
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 Hydrogenation proceeds on the catalytic metal surface by a series of steps (See 

Figure 8). The first step is the physisorption of substrates, alkene and hydrogen 

molecules, on the catalyst surface via Van der Waals forces. The next step is the 

chemisorption of the alkene and hydrogen molecules onto the catalyst surface, forming 

chemical bonds between the substrates and the catalyst surface. Through this bonding, 

the alkene is in equilibrium between pi-bonded and sigma-bonded species, with respect 

to the initial alkene carbons. The carbons of the sigma-bonded species are chemically 

bonded to the catalyst surface. The hydrogen molecule is cleaved and single hydrogen 

atoms are chemically bond to the surface of the catalyst. The following step involves the 

chemisorbed carbon reacting with one of the hydrogens to form a new carbon-hydrogen 

bond, breaking the bond between that carbon and the catalyst surface to yield a semi-

hydrogenated intermediate. The final step, desorption of the substrates, occurs when the 

other chemisorbed carbon reacts with a second hydrogen atom, leading to the addition 

of the hydrogen to the semi-hydrogenated intermediate to form a new carbon-hydrogen 

bond on the second carbon atom and break the bond between that carbon and the surface 

of the catalyst.42 

 

 

Figure 8. Mechanism of catalytic hydrogenation on metal surface. 
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1.3.2 Homogeneous Catalysts for Hydrogenation 
 

 

Figure 9. Mechanism of catalytic hydrogenation via oxidative addition using Wilkinson’s 
catalyst. 

 

Homogeneous catalysts for olefin hydrogenation traditionally employs 

organometallic complexes. Geoffrey Wilkinson’s work on organometallic complexes of 

platinum group metals, which earned him the 1973 Nobel Prize in chemistry, includes his 

discovery of Wilkinson’s catalyst.43 This catalyst, chloridotris(triphenylphosphane)-

rhodium(I), was the first non-ground state metal catalyst for olefin hydrogenation. This 
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opened the door for the discovery of other hydrogenation catalysts based on platinum 

group complexes, such as Schrock-Osborn catalyst44 and Crabtree’s catalyst45.  

 The mechanism of olefin hydrogenation using these catalysts proceeds via three 

mechanisms that differ in their interaction with hydrogen: oxidative addition, heterolytic 

activation, and homolytic activation. For example, hydrogenation using Wilkinson’s 

catalyst (Figure 9) starts with the dissociation of a triphenylphosphine ligand from the 

rhodium complex followed by the oxidative addition of hydrogen (in form of two hydrides 

individually coordinated to the metal) to the rhodium. Then the olefin complexes onto the 

rhodium. With the substrates coordinated to the rhodium, a hydride is transferred to the 

olefin. This is followed by the reductive elimination and transfer of the second hydride 

atom to the olefin, regenerating the catalyst in the process.46 Olefin hydrogenation using 

dischlorotris(triphenyphosphine)ruthenium(II) starts with the complexation of a hydrogen 

molecule (in form of a dihydrogen ligand) to the ruthenium. An amine base is added to 

the reaction to abstract a proton from the hydrogen molecule to form an aminium ion, 

which takes away one of the chloride ligands to result in the trigonal bypyramidal 

RuHCl(PPh)3 - heterolytically activating the hydrogen. From this step, the olefin inserts, 

forming an octahedral intermediate. The hydrogen is transferred to the olefin and reverts 

to a trigonal bypyramidal geometry, followed by a second heterolytic activation of 

hydrogen. This second hydrogen is transferred to the partially hydrogenated olefin to yield 

and eliminate the corresponding alkane from the metal complex.47-48 Hydrogenation by 

way of homolytic activation of hydrogen is rare. As seen in the Iguchi catalyst, it involves 

the formation of transition metal complexes stabilized by radicals. Two Co(CN)5
3- 
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complexes homolytically cleave a hydrogen molecule to yield two COH(CN)5
3-. One 

hydrogen radical is transferred to an olefin, yielding an alkyl radical, followed by a second 

hydrogen radical transfer from the second COH(CN)5
3-. This last step affords the 

corresponding alkane and regenerates the catalyst.49 The last decade has brought along 

novel catalysts for homogeneous hydrogenation that do not require transition metals and 

thus, proceed via different mechanisms. 

 

1.3.3 Frustrated Lewis Pairs (FLPs) and Other Metal-Free Catalysts for Hydrogenation 
 

 The first metal-free catalyst for hydrogenation, known as frustrated Lewis pairs 

(FLPs), was discovered by Stephan in the mid-2000s.50-57 Observations were made of 

hydrogen activation on a compound containing a phosphine with bulky electron-donating 

groups and a borane with bulky electron-withdrawing groups.57 This led to the discovery 

of the activation of other small molecules and the hydrogenation of an olefin.55 The 

mechanism involves the use of a mixture of a bulky nucleophilic species and a bulky 

electrophilic species in the presence of hydrogen and the olefin. The more nucleophilic 

and electrophilic the pair of species, the more active they are. A bulky Lewis base such 

as tri-tert-butylphosphine and a bulky Lewis acid like tris(pentafluorophenyl)borane (seen 

in Figure 10) would not be able to form a Lewis adduct due to the steric constraints of the 

bulky functional groups. A mixture of such FLPs is able to heterolytically cleave a 

hydrogen molecule, with a proton transferring to the phosphorous atom and the remaining 

hydride transferring to the boron atom to form a phosphonium borate salt. The 

subsequent hydrogenation of an olefin is thermodynamically favored, wherein a proton 
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transfer occurs from the phosphourous atom to the olefin followed by a hydride transfer 

from the boron atom to the semi-hydrogenated olefin species.55  

 

 

Figure 10. Representation of hydrogen activation using frustrated Lewis pair. 

 

1.4 Methods for the Presumptive Identification of Illicit Substances 
 

The accurate identification of an illicit substance is vital in the fields of criminalistics 

and law enforcement. The lack of accuracy in the identification process could yield false 

positives or false negatives. This process can be broken up into two types of methods: 

presumptive tests and confirmatory tests. Law enforcement personnel are commonly 

equipped with only presumptive tests in the field while crime lab analysts typically have 

the luxury of access to both types. 
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1.4.1 Traditional Methods for Presumptive Identification of Illicit Substances 
 

Presumptive tests are typically used as the first line of testing to detect the possible 

presence of an illicit substance in a suspected sample. The most popular presumptive 

test used are known as chemical spot tests, which change a specific color in the presence 

of drugs. For example, the Scott test (also known as the cobalt(II) thiocyanate test) will 

turn blue in the presence of cocaine.58 Police use a variety of different chemical spot tests, 

commercially available as NARK II® kits and NIK® kits, to detect illicit drugs and provide 

probable cause for an arrest. These presumptive tests are not widely used as evidence 

in court. Crime lab analysts are responsible for providing solid evidence by confirming 

that the identity of the substance matches with that of the arresting officer’s presumptive 

test results. Confirmatory testing methods are those that provide information on the 

chemical structure of the sample. Those commonly used in crime labs are gas 

chromatography-mass spectrometry, infrared spectroscopy, and Raman spectroscopy. In 

the confirmatory identification of an unknown, analysts may deploy the variety of chemical 

spot tests as a quick screening process to verify the presumptive identity before they 

move forward to the more time-consuming confirmatory methods.  
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Although convenient as a testing method, the chemical spot test method has many 

flaws. News outlets around the US have told stories of people that were arrested due to 

false positives. OTC Cold medicines59, OTC pain relievers59, salt59, quinine59, and sugar59 

will cause some of these tests to yield a false positive for illicit substances. The Scott test 

is known to turn blue not only in the presence of cocaine, but also diphenhydramine, or 

Benadryl.58 The chemicals in the spot tests react with certain functional groups of the 

target analyte, forming a new compound indicated by a color change or formation of 

precipitate. Many different drugs can be categorized into classes by their chemical 

structures (i.e. amphetamines, opioids, barbituates, etc.) in which those in the same class 

share similar functional groups. The lack of selectivity for a chemical spot test may also 

result in false positives (presence of an illicit substance) when testing non-illicit drugs.58, 

60 Another flaw is the ability to keep up with designer drugs that are being introduced 

regularly. It is common for law enforcement to encounter substances and pills they cannot 

presumptively identify, due to the absence of a test that can detect the new drug. These 

new drugs must be studied to develop new presumptive methods to identify them, a 

process that requires time and effort. By the time a method is developed and deployed 

for field use, it is possible that there would be a new popular drug appearing in the 

underground markets that cannot be presumptively detected. Also, drugs on a controlled 

substance list are banned based on their chemical structure. Simply changing a functional 

group on the chemical structure of a banned substance could give rise to a new drug that 

is not controlled, and therefore, technically legal.  
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Figure 11. A typical NIK® kit, one of the brands of color kits used by law enforcement 
agencies to presumptively identify drugs in the field. 

 

1.4.2 Novel Methods for Presumptive Identification of Illicit Substances 
 

 The failings of traditional presumptive drug testing methods bring about the need 

for a better method, especially for use in the field by law enforcement personnel. The 

number of false positives and inability to keep up with the constant introduction of new 

synthetic drugs are significant disadvantages that must be addressed.  

 Raman spectroscopy has been one of the many confirmatory techniques large 

crime labs may use to test evidence. Recently, portable Raman spectroscopy-based 

systems have been deployed for presumptive field use. The most popular of devices is 

the Thermo Scientific® TruNarc™ Handheld Analyzers. Different versions of the device 

are marketed to law enforcement that are in narcotics divisions and bomb squad divisions. 
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These handheld devices have a LCD touchscreen and work with an offline database of 

tens of thousands of Raman spectral profiles for various compounds. With the TruNarc™ 

the user can determine the identity of an unknown substance within seconds by placing 

the optical sensor near the sample to scan. The scanning can be done through a plastic 

bag or a glass vial, allowing the tester to avoid touching the sample in most cases. The 

non-contact sampling is also an advantage when considering hazard concerns in 

handling drugs such as fentanyl, which is readily absorbed through the skin and can harm 

the tester if handled without taking proper safety precautions. One major disadvantage of 

the TruNarc™ is its price point. Most agencies do not have the budget to afford one so 

they are left with using the flawed chemical spot tests. Although superior as a testing 

method, wide law enforcement adoption of the portable devices like the TruNarc™ is not 

feasible unless it becomes more affordable. 

  Aptamer-based techniques have made their way into forensic applications. 

Aptamers are oligonucleotides or peptides that can selectively bind to a target substrate. 

Custom-made aptamers have been developed for various applications, notably for new 

sensor technologies. As sensors, the aptamers are intended to yield a signal when they 

bind to a target molecule. In the field of forensic science, aptamers that can detect cocaine 

have been developed. One type will yield a voltage signal and another type will emit light 

in the presence of cocaine.61-63 The disadvantage in using aptamer technology is that 

each sensor is highly selective. Since different substances would require a different 

sensor, new aptamers must be developed for the wide variety of substances. The 
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development of each aptamer can be a long and expensive process, but they are easily 

mass produced once developed.  
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CHAPTER 2: HETEROGENEOUS METAL-FREE HYDROGENATION 
OVER DEFECT-LADEN HEXAGONAL BORON NITRIDE 

 

This work was previously published as “Heterogeneous Metal-Free Hydrogenation 

Over Defect-Laden Boron Nitride” by David J. Nash, David T. Restrepo, Natalia S. Parra, 

Kyle E. Giesler, Rachel A. Penabade, Maral Aminpour, Duy Le, Zhanyong Li, Omar K. 

Farha, James K. Harper, Talat S. Rahman, and Richard G. Blair in ACS Omega, Volume 

1, 2016, pp. 1343-1354 © 2016 American Chemical Society. Reproduced by permission 

of American Chemical Society. 

 

2.1 Introduction 

 
Originally discovered in 1897 by Sabatier, who received a Nobel prize for this work 

in 1912, catalytic hydrogenation is widely used in industry and is heavily utilized in the 

synthesis of many pharmaceutical and agricultural chemicals.1 Although the conversion 

of olefins to alkanes is thermodynamically favored under appropriate conditions, such 

reactions are so sluggish that a catalyst is required to facilitate hydrogenation. It was first 

observed that traces of nickel could mediate the addition of H2 to olefins2 and later that 

palladium, platinum, rhodium, and other precious metals exhibited similar catalytic 

activity, owing to the overlap between the metal d-orbitals and the hydrogen molecular 

orbitals. 

Two disadvantages in the use of these metals are cost and leaching of metals into 

the product. Utilizing nickel-based catalysts, particularly in the hydrogenation of fats, has 
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largely circumvented the problem of cost. However, nickel is readily poisoned by sulfur-

containing compounds when natural fats or decomposition products can introduce 

sulfides into the catalytic system.3 Additionally, unacceptable levels of nickel can leach 

into the final product with nickel levels of 0.1 to 1.5 ppm known to be present in 

hydrogenated oils.4-6 These and other factors have stimulated research efforts to develop 

benign, nonmetallic hydrogenation catalysts. Homogeneous nonmetallic catalysis has 

been developed for a wide range of reactions.7 However, metal-free hydrogenations using 

molecular hydrogen were not realized until 2006 when Stephan and co-workers 

developed the first non-transition-metal system capable of releasing and absorbing 

molecular hydrogen.8 Soon after, the term “frustrated Lewis pair” or FLP was coined to 

describe these systems.9 An explosion of research activity followed.10-12 The key feature 

of an FLP-catalyzed reaction is the formation of a Lewis acid and base that cannot form 

a conventional adduct, either from steric or electronic frustration. Early work showed that 

these FLPs could bind olefins and alkynes.9, 13 By utilizing the interaction with hydrogen 

and other molecules, FLPs have been shown to successfully catalyze the hydrogenation 

of imines, enamines, aldehydes2, 14-15, olefins,16 and alkynes to alkenes.17 More recently, 

carbon dioxide has been reduced over a solid indium oxide-based FLP.18 

Heterogeneous catalytic hydrogenation, which is preferred for large-scale 

industrial processes due to ease of catalyst separation and applicability to continuous 

flow reactions,19 has only been recently reported for metal-free systems with low 

conversion rates.20 Based on our experience with mechanochemical processes and the 

fact that it has been shown that defects in h-BN (dh-BN) can reduce the hydrogen bond 
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order19, we investigated the hydrogenation of a series of olefins over dh-BN. Defects were 

introduced into h-BN and mobilized by performing the hydrogenation reactions using a 

reactor based on a ball mill (Figure 13). To our delight, hydrogenation of a variety of 

substrates was successful under milder conditions than those used for nickel catalysts, 

with better olefin hydrogenation turnover frequencies (TOF) than the best FLP catalysts 

with very low catalyst loadings (Figure 12). 

 

 
Figure 12. Hydrogenation of (E)-1,2-diphenylethene [6] under excess hydrogen at 170˚C 
with different catalyst loadings. Five grams (27.7 mmol) of olefin was used. One gram of 
dh-BN activated for 48 hours under hydrogen (a) and unactivated h-BN coated milling 
media (b) both effectively hydrogenated the olefinic bond. 
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2.2 Experimental 

 

2.2.1 Synthesis of Defect-Laden Hexagonal-Boron Nitride (dh-BN) 

 

Defect-laden h-BN was prepared using three methods. For all methods, pristine h-

BN (Grade PCTF5, Saint-Gobain Ceramic Materials) was first dried at 180˚C under 

dynamic vacuum for 12 hours and transferred to an argon-filled glovebox.  

 

2.2.1.1 Method 1 
 
 

Approximately 2 grams of h-BN were mixed with 0.200 g of lithium (99.9%, Alfa 

Aesar) and reacted via high-energy ball-milling in an 8000M and/or 8000D SPEX 

CertiPrep mixer/mills. Milling vials were constructed from 440C stainless steel with an 

approximate volume of 65 ml. Buna-N quad O-rings were used to maintain a seal during 

milling. Kinetic energy was supplied for 30 minutes with one 12.7 mm stainless steel ball 

weighing approximately 8.0 g. After 30 minutes, two additional 12.7 mm stainless steel 

balls were added and the reaction was milled for an additional 7.5 hours. The resulting 

lithiated solid was subsequently hydrolyzed using excess H2O to remove Li3N, producing 

vacancies in the h-BN sheets. The morphology of this defect-laden h-BN was examined 

via scanning electron microscopy (SEM) performed on a Tescan Vega SBH operating at 

30 kV. 
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2.2.1.2 Method 2 
 
 

Twenty grams of dry h-BN was loaded into a custom pebble mill in an argon-filled 

glovebox. The milling container was constructed of 304 stainless steel. Spherical milling 

media (440C) were added in the following quantities and sizes: (12) 19.1 mm balls, (27) 

12.7 mm balls, and (50) 6.35 mm balls. The mill was run at 60 rpm for 96 hours under 

929 kPa of UHP hydrogen. The milling container was transferred to an argon-filled 

glovebox and the prepared catalyst powder was removed and stored until needed. 

 

2.2.1.3 Method 3 
 
 

Five grams of dry h-BN was loaded into a 65 ml zirconia milling vial. Silicone O-

rings and a custom clamping mechanism were used to maintain a seal during milling. 

Kinetic energy was supplied for 30 minutes with four 12.7 mm zirconia balls weighing 

approximately 5.97 g. The material was removed with plastic tools and at no point in its 

preparation was it exposed to metal. The resulting defect-laden solid was used for 

catalysis without further processing. The morphology of this material is shown in the TEM 

images in Figure 19. It was found that activation by milling alone was just as effective as 

using lithium. Higher energy activation (Method 3) resulted in shorter induction periods 

(Figure 22). All hydrogenation data presented in this manuscript is from mechanically 

activated BN. 
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2.2.2 Hydrogenation 

 

 

2.2.2.1 Reaction Vessel 
 

 
Figure 13. The reaction vessel and reactor has controls for pressure, temperature, and 
mechanical force (a). A close-up of the steel reaction vessel shows the temperature and 
gas control (b). Hydrogen is introduced through the solenoid at the left. Heat is applied 
by a NiChrome element (top center). Temperature is monitored by two thermocouples 
with the larger one on the left also servesing as the control thermocouple for the heating 
element. A drive wheel driven by a pulley or a chain driven sprocket (not pictured) rotates 
the reaction vessel. In order to perform rigorously metal-free reactions, an alumina reactor 
with titanium flanges was implemented (c). The titanium flanges have been anodized to 
reduce hydrogen interaction. 
 

Hydrogenation was performed in a custom pebble mill with gas-tight milling 

containers constructed of 304 stainless steel and high alumina (Figure 13). The reaction 
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vessel is shaped as a double truncated cone to ensure adequate tumbling of the milling 

media. 

 

2.2.2.1.1 Steel 
 

Two 2.75” Conflat flanges (A&N Corporation CF275 flanges with 1.5” bore, 275-

162) were welded onto two 1.5”x3” conical reducers (A&N Corporation 300X150-WCR) 

welded large end to end to produce the reaction vessel in Figure 13. Deublin rotary 

feedthroughs (1005-020-019, 1005 Series, RH and 1005-020-039 , 1005 Series, LH) 

retrofit with Kalrez® O-rings and Krytox™ lubricant (GPL 105) were used to maintain gas 

tight conditions during operation. The feedthroughs were sealed to two 2.75” Conflat 

flanges with 10-32 tapped through holes (A&N Corporation CF275 blank flanges 275-

000). The seal between the feedthrough and the flange was maintained with a copper 

gasket. Stainless steel frits (6-32 threaded) (Applied Porous Materials) were fitted to the 

tapped entry and exit feedthroughs to eliminate the accumulation of dust in the sealing 

surfaces of the feedthroughs. The flange seals were maintained with either two silicone 

or Kalrez® O-rings (ASA -223) depending on the substrate being used at the time. 

Spherical milling media (440C, d=7.67 g/cm3) was added in the following quantities and 

sizes: (12) 19.1 mm balls, (53) 12.7 mm balls, and (86) 6.35 mm balls. 

 

2.2.2.1.2 Alumina 
 

Two alumina reactor designs were implemented. A small ceramic lined reactor with 
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straight sides was constructed by boring holes in the bottom and lid of a high alumina 

crucible (CoorsTek, 99.8%, Part #65540). The crucible was used to line a steel reactor 

with parallel walls and Conflat flanges. High-temperature room temperature vulcanizing 

sealant (RTV, tin-cured) was used to seal the crucible lid onto the body. The steel frits 

were replaced with glass filters. Spherical milling media (yttria-stabilized zirconia, d=6 

g/cm3, Inframat® Advanced Materials™ LLC) was added in the following quantities and 

sizes: (5) 19.1 mm balls, (15) 12.7 mm balls, and (50) 6.35 mm balls. A duplicate of the 

steel reactor, with 6mm walls, was manufactured in high alumina (99.8%) by CoorsTek, 

Inc. Titanium flanges with the same dimensions as the steel flanges, save that the Conflat 

knife edge was replace with an O-ring groove, were machined. Titanium was chosen to 

match the coefficient of thermal expansion of the alumina body and reduce the risk of 

incorporation of catalytically active metals. The titanium flanges were anodized to reduce 

the possibility of hydrogen embrittlement. Flanges were sealed to the alumina body using 

Cotronics Duralco™ 4700 two-part epoxy. A 1 mm thick PTFE shield was placed between 

the frit body and the flange to elimimate media interaction with the flange material. The 

steel frit was covered with a piece of tin-cured silicone tube (I.D.=6.35 mm) to prevent 

media from interacting with the steel of the frit. Spherical milling media (yttria-stabilized 

zirconia, d=6 g/cm3, Inframat® Advanced Materials™ LLC) was added in the following 

quantities and sizes: (12) 20 mm balls, (53) 12.7 mm balls, and (86) 6.35 mm balls. Before 

any hydrogenation, the media and reactor interior were washed with concentrated nitric 

acid and rinsed three times with ultrapure water. 
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2.2.2.2 Control 
 

Temperature was controlled with an Omega CN3000 process controller and a K-

type thermocouple spring mounted to the inlet flange. A wound NiChrome heating 

element embedded in shaped firebrick applied heat. Pressure was monitored with a 

NOSHOK pressure transducer and controlled with a MicroMod 53MC5000 loop controller. 

The mill’s rotational speed was controlled with a 1/3 hp variable speed DC motor coupled 

to the reactor with a steel drive chain. 

 

2.2.2.3 Reactions  
 

Hydrogenation reactions were carried out at temperatures up to 220˚C, pressures 

between 446 and 1135 kPa, and rotary speeds of 66 rpm and 114 rpm. Hydrogenations 

were performed with 5 grams of substrate and trace to 7.5 g of defect-laden h-BN. Trace 

quantities of dh-BN were introduced into the reactor by suspending 1 g of dh-BN in 200 

mL of dry acetone and pouring over the milling media. The wet media was then dried at 

100 ̊ C. The substrates investigated were: propene [1] (Worthington Industries, 95%), allyl 

bromide (Fisher Scientific, 99%), allyl butyl ether (Sigma-Aldrich, 90%), phenylethene 

(Acros Organics, 99%), cyclohexene [2] (Fisher Scientific), octadec-1-ene [3] (Acros 

Organics 90%) , d-limonene (Florida Chemical, technical grade), 1,1-diphenylethene [4] 

(Sigma-Aldrich, 97%), (Z)-1,2-diphenylethene [5] (Alfa-Aesar 97%), (E)-1,2-

diphenylethene [6] (Sigma-Aldrich, 96%), (E)-cinnamic acid [7] (Eastman, Practical 

Grade), (9Z)-Octadec-9-enoic acid [8] (Fisher Scientific, Lab Grade), 
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benzylideneacetophenone [9] (Acros Organics, 97%), and eugenol [10](clove bud oil, 

Nature’s Alchemy, 80-90%).  

 

2.2.2.4 Mechanically Similar Blanks 
 

Dry graphite and dry graphitic carbon nitride (C3N4) were used as blanks with 

mechanical properties similar to BN. Graphitic carbon nitride was prepared by heating 10 

grams of dicyandiamide (Alfa Aesar 99%) for 1 hour in air at 500 ˚C. Two grams of each 

compound were loaded into the reactor in an argon-filled glovebox. Hydrogenation activity 

was examined by milling 20 grams of (E)-cinnamic acid [7] with 2 grams of processed 

graphite at 170˚C, pressures between 446 and 1135 kPa, and rotary speeds of 66 rpm. 

Hydrogenation of propene with graphitic carbon nitride was investigated by milling 2 

grams of g-C3N4 under 425 kPa of an equimolar mixture of hydrogen and propene at 20 

˚C. 

 

2.2.3 Analysis and Characterization of Defect-Laden Hexagonal-Boron Nitride (dh-BN) 
 

2.2.3.1 Active Sites 
 

Active sites were measured by loading the steel reactor with 5 grams of dh-BN and 

pressurizing with 345 kPa of propane, propene, hydrogen, or argon. Surface adsorption 

produced a measureable pressure loss. No pressure loss was observed for argon and 

minimal for hydrogen. Propane (which is expected to physisorb) and propene (which is 
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expected to chemisorb as well as physisorb) both showed pressure loss with more loss 

observed using propene (Figure 14).  

 

Figure 14. Alkenes are chemisorbed and physisorbed onto dh-BN while alkanes are 
merely physisorbed. Propene uptake on dh-BN was used to estimate the number of 
potential active sites on the catalyst surface. The potential active sites represent 27% of 
the adsorption sites. The curves presented are uptake over 5 g of dh-BN and have been 
offset by the unadsorbed moles of gas. 
 

2.2.3.2 Surface Area 
 

BET surface area testing was performed with a Micromeritics Tristar II 3020 

instrument at 77 K. Before measurement, each sample was evacuated on a Smart Vac 

Prep for 5 hours at 50˚C. Surface areas for pristine, defect-laden, and propene adsorbed 

defect-laden BN were measured. 
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2.2.3.3. Temperature Programmed Desorption (TPD) 
 

The TPD experiment was carried out with an Altamira AMI-200 instrument using 

ethene as an adsorbed gas. 

  

2.2.3.4 Solid State NMR 

 

All solid state NMR spectra were acquired on a 500 MHz Agilent narrow bore 

spectrometer operating at 125.68 MHz. A 1.6 mm Agilent T3 probe was employed using 

a spinning speed of 12.0 kHz. A 1H pulse width of 1.0 μs was utilized followed by a 

conventional (i.e. constant amplitude) cross polarization step with a time of 3 ms. SPINAL 

1H decoupling at a frequency of 499.78 MHZ was employed using a 165 pulse of 1.84 

μs. Both spectra were acquired using spectral widths of 29.8 kHz, acquisition times 17.2 

ms and recycle times of 15 s to avoid sample heating. The digital resolution acquired for 

each spectrum was of 58.1 Hz/point. 

 

2.2.3.5 Coking 
 

After use in hydrogenation, the dh-BN exhibited colors from white to brown (Figure 

15a). The color deepened at elevated reaction temperatures with little observed color 

change for propene hydrogenations performed at room temperature. This color change 

was due to the incorporation of carbon compounds. This coking was highly fluorescent 
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(Figure 15b). Thermogravimetric analysis was performed on a TA Instruments model 

2050 TGA. The results for coked and pristine materials are shown in Figure 15c. 

 

 
Figure 15. At elevated temperature dehydrogenation reaction produce carbon deposits 
on the catalyst. After use, the dh-BN exhibits a color change from white to pale yellow 
and tan (a). The intensity of the color increases with increasing reaction temperature. 
These deposits are highly fluorescent (b) indicative of coking. Thermogravimetric analysis 
(c) shows the trend of increased coking levels with increased process temperatures. X-
ray photoelectron spectra of the carbon 1s region of h-BN as received (black), after 
inducing defects (red), and after use as a hydrogenation catalyst for the hydrogenation of 
(E)-cinnamic acid [7] (blue) confirmed carbon incorporation (d). 
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2.2.3.6 Gas Chromatography with Mass Sensitive Detection 
 

GC-MS analysis was performed on an Agilent 6850 GC with an Agilent 19091-

433E HP-5MS column (5% phenyl methyl siloxane, 30 m x 250 µm x 0.25 µm nom.) 

coupled with a 5975C VL mass selective detector. Samples were pulled from the reactor, 

dissolved in dichloromethane and filtered through a Whatman 0.2 µm PTFE syringe filter 

before injection. Quantitation of the (E)-cinnamic acid [7] hydrogenation products was 

performed by using external standard solutions of (E)-cinnamic acid [7] (Eastman, 

Practical Grade) and hydrocinnamic acid (Acros Organics, 99%) in dichloromethane.  

Gas samples from propene [1] hydrogenation experiments were obtained by 

venting the reactor into a 50 ml serum vial crimp sealed with a PTFE lined septum. Gas 

was introduced via a 22 gauge needle attached to the vent line and an additional 22 

gauge exit needle that was properly vented. Quantitation of propene/propane ratios was 

performed using external standards consisting of mixtures of propene and propane. 

 

2.2.3.7 ICP-AES 
 

Inductively coupled plasma atomic emission analysis was performed by Saint-

Gobain Advanced Ceramics. Samples of boron nitride before and after activation were 

digested in an oxygen bomb and analyzed for iron and nickel. 
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2.2.3.8 XPS 
 

X-ray photoelectron spectra were recorded on a Physical Electronics 5400 

photoelectron spectrometer with a magnesium source. The spectra of the carbon 1s 

region is presented in Figure 15d.  

 

2.2.3.9 XRD 
 

Powder X-ray diffraction (PXRD) was performed using a Rigaku Multiflex theta–

theta powder X-ray diffractometer with a copper source (Cu Kal = 1.5418 Å). 

Diffractograms were collected from 5 to 80 degrees 2 using 0.010-degree steps and 0.3 

seconds of dwell time. Size and strain were analyzed by applying the method of integral 

breadths70 and constructing a Williamson-Hall plot. Sheet parallel and perpendicular 

diffraction peaks were analyzed separately to obtain in-sheet size and strain and 

intersheet ordering. 

 

2.2.3.10 Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry 
(DSC) 
 

Pristine, defect laden BN, and propene adsorbed samples were studied with a TA 

Instruments 2950 TGA and 2920 DSC. Propene adsorbed samples were prepared by 

loading a 500 ml pressure cell with 2 grams of material in an argon filled glove box. The 

pressure cell was then removed and filled with 310.3 kPa of propene. The sample was 

allowed to equilibrate for 3 days and then removed from the cell and stored in an argon-
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filled glove box. TGA samples were stored in argon filled vials and loaded into the sample 

pan in the air. TGA runs were performed under flowing air. DSC samples were loaded 

into unsealed aluminum pans under argon and loaded into the DSC cell in air. All defect-

laden samples were found to retain their propene even after extended storage at 1 atm. 

 

2.2.4 Computational Modeling of Mechanochemical Hydrogenation Over dh-BN 

 

2.2.4.1 Discrete element modeling 
 

Discrete element models of the milling process were generated using EDEM 

(DEM Solutions Ltd.). The geometry and composition of the reaction vessel was 

investigated using discrete element modeling. Three reaction vessels were investigated: 

steel (Figure 16a, left), high alumina sloped sides (Figure 16a, center), and a high 

alumina with straight sides (Figure 16a, right).  
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Figure 16. Steel and alumina reactors were simulated using DEM. The cross sections of 
these reactors (a) show the geometry differences. Three reaction vessels were 
investigated: steel (a, left), high alumina sloped sides (a, center), and a high alumina with 
straight sides (a, right). Lower forces were generated in the cylindrical reactor (b and c). 
No appreciable hydrogenation was observed in that reactor. Although the sloped reactors 
produce forces with similar magnitudes (b and c), the integral of the compressive forces 
produced over a 10 second time period (d) shows that less force is being applied over 
time. Lower total forces resulted in longer induction periods. 
 

2.2.4.2 TOF 
 

Turnover frequencies were estimated using the minimum of the derivative of each 

substrate’s hydrogen uptake curve as the maximum rate of hydrogenation.  
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2.2.4.3 Computational details 
 

Density functional theory (DFT) calculations were performed to evaluate the binding 

energies and electronic structure of the C2H4 molecule on defect-laden boron nitride 

single layers employing the formalism of the van der Waals density functional (vdW-DF)61-

62 as implemented in the VASP code71-74. In this formalism, the exchange-correlation 

energy is calculated as: ; where  is a semi-local exchange functional 

from the revised generalized-gradient approximation (GGA) in the form of the Perdew-

Burke-Ernzerhof functional (revPBE)75,  is a local correlation energy described within 

the local density approximation,  is the nonlocal correlation energy as described by 

Dion et al. 61. The efficient algorithm proposed by Román-Pérez and Soler76 is responsible 

for making the computation feasible for systems such as ours which contain a large 

number of atoms in the calculational super cell. The projector augmented wave (PAW) 

scheme77-78 is utilized with the potentials taken from the potential-library provided with 

VASP. The electronic wave functions were expanded in a plane wave basis set with a 

cutoff of 500 eV. Given the size of the super cell, a single k-point (Gamma) was deemed 

adequate to sample the Brillouin zone of a (6x6) BN slab with 15 Å vacuum on top of it. 

The systems were optimized so that all force components acting on each atom are smaller 

than 0.01 eV/Å. The lattice parameters of h-BN were optimized to be 2.523 Å (in 

agreement with experimental value of 2.505 Å79.) No temperature or pressure effects 

were included in our DFT calculations. 
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2.2.4.4 Binding Energies  
 

The binding energy is calculated using the formula: EBE=ESystem –(EMol + EBN); 

where ESystem, EMol, and EBN are the total energy of the molecule on the substrate, the 

molecule alone, and of the defective h-BN substrate, respectively. 

 

2.3 Results and Discussion 
  

Defects have been shown to be important features of active catalytic solids.21-23 

and are responsible for the increased activity observed in catalysts prepared 

mechanochemically24 as well as catalysts under the application of mechanical force.25 

These results suggest that a defect-laden solid with regions of electron deficiency and 

excess will interact with olefins and molecular hydrogen to reduce their respective bond 

orders enough to facilitate hydrogenation. Prior work in hydrogen storage examined the 

role of defects in h-BN. DFT calculation shows a favorable binding energy for hydrogen 

on nitrogen vacancies (VN), boron vacancies (VB), boron-nitrogen swap (B/N), boron 

substitution for nitrogen (BN), nitrogen substitution for boron (NB), carbon substitution (BC 

and NC), silicon substitution (NSi and BSi) and Stone-Wales (SW) defects.19 We looked at 

a 2 five-member ring and 2 seven-member ring SW defect. This defect can cause the 

sheet to distort above (SW1) or below the original plane (SW2). SW2 had the most 

favorable interaction with the substrate. Chemisorption of hydrogen (up to 70% of the 

adsorbed hydrogen) is favored over these sites.19, 26 In fact, single sheets and nanotubes 

of BN can absorb up to 4.6 mass% hydrogen.26-27 If h-BN has a high affinity for hydrogen 
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then it may also have one for olefins. We omitted silicon substituted structured and 

examined the 8 remaining defects for affinity for olefin and hydrogen binding (Figures 17 

and 18). We found that 4 of these defects exhibited an affinity for olefins. Binding-energy 

calculations (Table 2) confirm this assertion, with ethene, propene and hydrogen binding 

energies on par with those of metals that possess known hydrogenation activity (Pt, Pd, 

and Ni). Of these defects, BN and VN have a binding energy closest to metals with known 

hydrogenation activity. Olefin binding at SW defects is less favored (desorption may 

reduce availability of activated species) and hydrogen binding is disfavored. Binding at 

VB sites is very favorable for both the olefin and hydrogen and reactivity will be limited. 

Solid-state NMR experiments on propene saturated dh-BN showed a low concentration 

of BN sites and a much higher concentration of VN sites. Additionally, there is evidence 

for VN formation after ball milling and VN are some of the most stable defects in h-BN.28-

30 
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Figure 17. The olefinic bond chemisorbs onto four defect sites in dh-BN. Eight defect 
structures in BN were studied (left). These are (from top left to bottom right): 180° rotation 
of a BN bond (B/N), 90° rotation of a BN bond {Stone-Wales defect} (SW), nitrogen 
substitution for boron (NB), boron substitution for nitrogen (BN), carbon substitution for 
nitrogen (CN), carbon substitution for boron (CB), boron vacancy (VB), and a nitrogen 
vacancy (VN). Gray, green, and pink balls represent nitrogen, boron, and carbon atoms, 
respectively. The light-gray backgrounds indicate the defected areas. Charge-density 
redistribution and top view (right) after the adsorption of C2H4 (a) and C3H6 (b) on BN, SW, 
VB, and VN defects in a BN substrate. Isosurfaces are drawn at 0.01 e/Bohr3. The blue 
and red isosurfaces represent, respectively, the charge-deficit and -accumulation regions. 
(i.e. charge flows from blue to red regions).  
 

 

Figure 18. Binding structure of hydrogen on h-BN with VB (a), VN (b), SW (c), and BN 
(d) defects. Blue, green, and pink balls represent nitrogen, boron, and hydrogen atoms, 
respectively. 
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Table 2. Binding Energy for ethene and propene on h-BN, hydrogen on BN (both 
calculated in this work), ethene on platinum group metals31, hydrogen on Pt(100)32, 
hydrogen on Pd(100)33, and hydrogen on Ni(100)34. No temperature or pressure effects 
were included in these calculations.   

Binding Energy (eV)  

BN Ethene Propene Hydrogen 

VB -3.71 -3.69 -4.95 

VN -1.90 -1.76 -1.43 

SW2 -0.23  -0.35  0.62 

BN -1.95 -2.05 -1.77 

Pt 100 
  

 

di sigma -2.32 
 

-2.88 

pi-top -1.55 
 

 

Pd 100 
  

 

di sigma -0.84 
 

-2.92 

pi-top -0.33 
 

 

Ni 100 
  

 

di sigma -1.76 
 

-2.81 

pi-top -0.82 
 

 

 

2.3.1 Producing Defects 
 

Pristine sheets of h-BN are exceptionally robust and chemically inert,26, 35-36 the 

application of mechanical force is required to induce delamination and introduce point 
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defects.37 By designing a hydrogenation reactor around a pebble mill we have been able 

to study the catalytic activity of defect in h-BN. The continuous grinding motion within the 

mill prevents cluster formation, maximizes the number of few-layer sheets, and induces 

plastic deformation in the catalyst. In order to verify the presence of these sheets and 

defects, transmission electron microscopy was used to characterize the morphology of 

the dh-BN catalyst (Figure 19b and c). Nanosheets are observed by TEM and appear to 

form tubular structures or nano-scrolls as seen in Figure 19c. Although point defects could 

not be imaged directly the material shows significant disruption of the structure (Figure 

19a and b). Powder X-ray diffraction of pristine and defect-laden h-BN (Figures 20 and 

21) shows disorder in the c direction consistent with delamination and retention of order 

in the sheet. Propene uptake experiments (Figure 14) indicate a defect level of 0.46 mol%. 

Integral breadth analysis using the 00l and hk0 peaks found that the average crystalline 

region in the sheet was 6.7 nm with 0.56% strain and the average crystallite size in the c 

direction was 18.3 nm (or 55 h-BN layers) with 0.23% strain. The higher in-sheet strain is 

indicative of defects and confirmed by the TEM images. 
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Figure 19. Transmission electron microscopy images of as received h-BN (A and B) and 
dh-BN (C and D). The as received material is large flakes (A) with well-ordered staking of 
the BN sheets (B). The dh-BN is much smaller and thinner flakes (C) with much less order 
in the c direction. Evidence of delamination and curling of the BN sheet can be seen in C. 
 

 

Figure 20. The as received h-BN is highly crystalline with an intense 002 diffraction peak. 
After activation and hydrogenation of dh-BN, the 002 peak is diminished due to 
disordering in the c-direction. In plane ordering is still present as evident by the increased 
intensity of peaks due to diffraction off of planes with h and k components. 
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Figure 21. The 002 diffraction peak is broadened with an asymmetry toward lower angles. 
This indicates a fraction of the material has large intersheet spacing. This may be due to 
adsorbed molecules or minor distortions in each BN sheet disrupting the stacking 
sequence. 
 

2.3.2 Bulk Scale Experiments 
 

Nearly complete hydrogenation, of substrates without acidic functional groups, 

was achieved with reaction temperatures as low as 20˚C. This temperature is much lower 

than that used for industrial hydroprocessing (300 ˚C – 450 ˚C).38 No aromatic carbons 

were hydrogenated, such as can occur over Raney nickel.39 Benzylideneacetophenone 

was not reduced to an alcohol as with metal–based catalysts. Additionally, no C-H 

activation products were observed, as was reported over nanocrystals of h-BN.27. 

Hydrogenation of phenylethene, a known product of the thermal decomposition of (E)-

cinnamic acid [7], was observed in the by-products of the hydrogenation of (E)-cinnamic 

acid [7] at 170˚C.40 For all substrates, except the two carboxylic acids, upper limits for the 
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turnover frequencies were determined from the steepest slope of the hydrogen uptake 

curve (Figure 22) and propene adsorption studies (Figure 14). For the carboxylic acids, 

TOFs were determined from the product yield and the total reaction time. Turnover 

numbers were calculated assuming deactivation after one reaction, although, we have 

been able to recycle the catalyst three times with minimal loss in catalytic efficiency 

(Figure 23). The results are presented in Table 3 as well as those for other catalytic 

systems. The TOFs over dh-BN are better than that achieved using FLPs for the same 

substrate. Although the internal sheet atoms of a single h-BN layer are relatively inert, 

defects and edges are potentially reactive. In the presence of hydrogen, the edges of the 

dh-BN sheets possess reactive species which reductively aminate carboxylic acids. 

Lower yields of hydrogenation products were realized from reactions with (E)-cinnamic 

acid [7] and (9Z)-Octadec-9-enoic acid [8] as a result of reaction of the carboxylic acid 

group with these edges. This is evidenced by the production of nitriles from these 

reagents (Table 3). Nitriles are produced by reaction of the carboxylic acid with edge 

nitrogens on the dh-BN sheet followed by dehydration. XPS analysis of the catalyst after 

hydrogenation confirmed the presence of carbon on the surface (Figure 15d) and TGA 

analysis of the catalyst after propene hydrogenation shows that coking is reduced at lower 

temperatures (Figure 15c). 
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Figure 22. Hydrogenation of propene [1] with an excess of hydrogen at 220˚C. Two grams 
of catalyst and 37.9 mmol of propene [1] were used. The reaction using dh-BN activated 
in a large batch had slower kinetics (black trace) than that using dh-BN activated in a 
smaller batch (gray trace). 
 

 

Figure 23. Starting with pristine BN (Initial), induction periods reduce and hydrogenation 
rates increase with each recycle. Continued propene [1] hydrogenation was observed 
after 3 recycles of the catalyst. Activation continued through the first two uses and by 
the 2nd and 3rd recycle the catalytic rate reached its maximum. 

 

2.3.3 Metal-free Hydrogenation 
 

Small amounts of metal impurities can lead to the observation of anomalous 

catalytic activity41 and hydrogenation over stainless steel has recently been observed.42 
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Mechanical processing can introduce metals into the material through wear of the media 

and vessel. The two main components of the steel used are iron and nickel. Both of these 

metals can be active toward hydrogenation. Nickel is a known hydrogenation catalyst and 

iron acts as a catalyst when in the nanoparticle form.43-44 In a previous study using 

graphite, iron was not incorporated into the product even after extended milling times.45 

Inductively coupled plasma atomic emission analysis of the boron nitride before and after 

activation indicated that little metal incorporation occurred. The starting material is 

marketed for cosmetic use and has no detectable iron or nickel. After activation, the 

material had 7 ppm iron and 10 ppm nickel.  

 

2.3.4 Mechanically Equivalent Blank 
 

The effect of this small amount of metal contamination was examined by 

substituting graphite and graphitic C3N4 for boron nitride. Both have mechanical 

properties similar to boron nitride and will exhibit wear behavior. Although graphite is a 

suitable support for iron and nickel catalysts it lacks the electronic structure needed for 

hydrogen and alkene binding. Graphitic C3N4 is closer chemically to h-BN. Both were 

processed under hydrogen in the same manner as the boron nitride and then used in a 

(E)-cinnamic acid [7] hydrogenation reactions at 170˚C and propene [1] hydrogenations 

at 20 ˚C. No hydrogen uptake or hydrogenation products were observed.  
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2.3.5 Rigorously Metal-Free Implementation 
 

To further eliminate the possibility of metal-mediated hydrogenation, a metal-free 

(alumina) reactor was constructed (Figure 13c). Additionally, propene was chosen as a 

substrate as it would be free from metal impurities that may be found in liquid or solid 

substrates. Initially, propene [1] was hydrogenated with 90% efficiency after a much 

longer induction period.  

 

Table 3. Hydrogenation yields, TOFs, and single use TONs of various substrates over 
defect-laden h-BN and other catalytic systems with a mill speed of 66 RPM unless 
otherwise specified. All information was derived from steel reactor data. 

[Reference 

Number] / 

Compound 

Reactant Product(s)  Rxn 

Tem

p (˚C) 

TOF (s-1)/ TON Yield/Comment 

[1] Propene   20 

200 

1.25 x 10-3/16.10 

4.15 x 10-3/90.69 

100%; 114 RPM 

100% 

[2] 

Cyclohexene 
  

20 2.88 x 10-4/15.88 100%; 114 RPM 

 

[3] octadec-1-

ene 

  150 

220 

6.51 x 10-5/3.92 

1.86 x 10-4/11.19 

35% at 150 ˚C 

100% at 220 ˚Ca 

[4] 1,1-

diphenylethene   

170 1.17 x 10-3/21.07 

 

97% 

[5] (Z)-1,2-

diphenylethene  
 

170 1.41 x 10-3/14.49 

 

100% 

[6] (E)-1,2-

diphenylethene   

135 

 

 

170 

1.09 x 10-3/5.00 

1.15 x 10-3/13.47 

 

99% 

99% 
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 [7] (E)-

cinnamic acid   

170 1.19 x 10-4/10.28 55.1% 

hydrocinnamic 

acid after 

catalyst recycle 

[8] (9Z)-

Octadec-9-

enoic acid 

 

 

170 5.79 x 10-5/5.00 58% oleyl nitrile, 

33% stearyl 

nitrile, 10% 

oleylamide [9] 

benzylidene-

acetophenone 

  

240 1.56 x 10-4/13.56 90% 

[10] eugenol 

  

240  65% 

1,1-

diphenylethene   

Roo

m 

Temp

. 

5.73 x 10-5/4.95 

 

99% 

20 mol% 

(C6F5)3B•(C6F5)P

h2P16 

1,1-

diphenylethene 
  

Roo

m 

Temp

. 

1.21 x 10-4/17.4 

 

87% 

5 mol% 

(C6F5)3B• 

pTol2NMe16 

 

(E)-N-

benzylidene-2-

methylpropan-

2-amine 

  

Roo

m 

Temp

. 

2.61 x 10-1/470 47% 

0.1 mol% 

[((MeCNCl)2C)B

C8H14] 

[B(C6F5)4]46 1-methyl-1,2-

diphenylethene 

 

  

23 5.22 x 10-3/18.79 Fe-dinitrogen 

complex47 

cyclohexene 
  

20 3.2 x 10-1 to  

6.6 x 10-1 

 

Ni on various 

supports48 

benzene 
  

50-

170 

4 x 10-3 to  

1.6 x 10-1 

 

Ni on various 

supports38 

Cyclooctene 
  

80 6 x 10-5/38 graphene20 

a After addition of 5 mass% fumed silica. 
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2.3.6 Mechanical Factors Affecting Induction Periods and Reaction Rates 
 

Discrete element models of the reactors used in this study indicated that the 

compressive forces achieved in both the steel and alumina reactors were comparable. 

However, the total amount of compressive force delivered over a 10 second time period 

was significantly less for the alumina reactor (Figure 16d). Without activation, a significant 

induction period (over 16 hours, Figure 23) was observed. The initial activation step that 

produces dh-BN was performed with 20 grams of material. At such high loading the 

impacts of the media are dampened. By activating a smaller amount (5 grams) of boron 

nitride the induction period was eliminated and stoichiometric yields were obtained 

(Figure 2). 

Defects, which are stable up to 900˚C,49 can be produced during hydrogenation or 

in a pretreatment step. However, they must be mobile in order for the bound hydrogen 

and olefin to interact. Defects are mobile under plastic deformation,50 which occurs when 

the yield strength of a material is exceeded. The motion of defects in h-BN nanotubes has 

been observed under applied load51 as well as modeled in h-BN sheets52 and the forces 

generated during milling can be sufficient to exceed the compressive yield strength of h-

BN (41.3 MPa). However, the generation of high forces during milling requires the efficient 

transfer of mechanical force to the dh-BN. Therefore, the rheological properties, of the 

reaction mixture during hydrogenation, are an important factor. There must be media 

(ball)-media impacts or media-wall impacts in order for force to be transferred to the 

reaction. This occurs as frictional forces allow the media to climb up the wall of the rotating 

reactor. At a certain point gravity wins out and the media tumbles. Liquids, such as 
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octadec-1-ene [3], lower the impact forces by reducing the friction and eliminating 

tumbling. They are effectively lubricants. If tumbling is reduced or eliminated, impact 

forces are reduced and the amount of plastic deformation experienced by the dh-BN 

catalyst is limited. Consequently, lower hydrogenation yields were obtained when pure 

octadec-1-ene [3] was utilized. DEM models showed that the lowered coefficients of 

restitution, static friction, and rolling friction produced by lubrication significantly reduced 

the number of high force impacts. By adding 5 mass% fumed silica the lubricity of the 

mixture was greatly reduced and hydrogenation proceeded rapidly. 

 

2.3.7 Surface Analyses, Bound Species, and Sites 
 

Two separate samples were prepared and 13C isotropic spectra were acquired for 

each. The first sample was exposed to propene under a pressure of 310 kPa for 4 days 

while a second sample was exposed to small quantities of propene present in our Ar-filled 

glovebox (partial pressure <100 Pa or 4.5 ppt). Both samples show some uptake of 

propene, as best observed by the presence of methyl signals from 5–30 ppm (Figure 24). 

The surface area of the parent BN was 5 m2/g. After activation by milling in a zirconia vial, 

the surface area increased to 340 m2/g and decreased to 270 m2/g upon exposure to 

propene. This suggests that propene tightly binds to a fraction of the adsorption sites or 

0.70% mass% of the catalyst.  
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Figure 24. 13C solid state NMR of dh-BN exposed to high and low partial pressures of 
propene. The peaks around 25 ppm are due to the methyl carbon on propene and shows 
4 distinct binding modes. The peaks at 62 and 83 ppm are likely due to partial oxidation 
of the bound propene molecule. The spectra were obtained using a cross polarization 
technique. 
 

The presence of five distinct CH3 resonances in each sample indicates that 

multiple environments are available to propene. This is consistent with the presence of at 

least 5 structurally unique defect sites. A tentative assignment of each site can be made 

based on prior work establishing that methyl groups at lower frequencies represent those 

most sterically imposed upon by neighboring sites.53-55 A summary of C–HX steric 

interactions (X = N or B) for each structural model is given in Table 4. Site 1 represented 

by the signal near 7 ppm is only occupied at low surface coverages and, based on 13C 

shift, is expected to display the most significant steric interactions with neighboring atoms. 

This resonance is thus assigned to structural model BN with 4 C–HX interactions < 3.0 

Å. In contrast, the narrow resonance near 10 ppm (2) is exclusively occupied in the 

sample exposed to high pressure. Structural model VB is consistent with this resonance 
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as it has 3 C–HX with the shortest interaction distance. The two sites with signals at 17 

and 25 ppm (resonances 3 and 4, respectively) are found in both samples and are 

therefore occupied regardless of the preparation condition. Site 3 is consistent with VN, 

while site 4 is tentatively assign to model SW2 with 2 C–HX contacts < 3.0 Å. It is notable 

that the resonance near 17 ppm is also more strongly represented in the pressurized 

sample. Site 5 near 30 ppm is the least sterically involved with neighboring sites and is 

thus assigned to structural model SW1 with 1 C–HX interaction < 3.0 Å. 

 
Table 4. Close contacts with CH3 hydrogens in structures modeled and olefin bond length. 
SW1 and SW2 both consist of two 5-member rings and two 7-member rings. SW1 is 
distorted away from the substrate and SW2 is distorted toward the substrate. 

Model Close 
contactsa 

Distance (Å) Olefin Bond 
Length (Å) 

Alkane C-C none none 1.54 

Alkene C=C none none 1.34 

SW1 C–Ha
…B11 2.89 1.340 

BN C–Ha
…N74 2.90 1.456 

 C–Ha
…B7 2.86  

 C–Hb
…B37 2.91  

 C–Hb
…B2 2.95  

SW2 C–Ha
…B35 2.86 1.537 

 C–Hb
…B2 2.81  

VN C–Ha
…B35 2.84 1.566 

 C–Ha
…N64 2.88  

 C–Hb
…B35 2.77  

VB C–Ha
…N69 2.72 1.568 

 C–Hb
…N69 2.79  

 C–Hb
…B34 2.80  

aNumbering refers to model structures. 
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Overall, these 13C NMR results suggest that there are at least 5 structurally distinct 

sites and that some are solely or preferentially occupied at higher pressures. We note 

that the olefinic carbons are also observed in the spectrum at 107 ppm (tentatively 

assigned as CH) and at 122–127 ppm (CH2). These are less useful for analysis due to 

the low signal-to-noise ratio, but help to verify the presence of propene. Curiously, in both 

samples an additional resonance is observed at 62 ppm and 83 ppm in the high and low 

pressure samples, respectively. This is consistent with the formation of two distinct 

species containing a C–O bond, perhaps from oxidation of the double bond after the 

sample was briefly exposed to air when transferred to the NMR. This is consistent with 

DSC in air, which shows an exotherm at 62˚C (Figure 25) whereas the TPD of material 

not exposed to air shows a desorption peak at 287˚C (Figure 26).  

 

 

Figure 25. DSC of h- and dh-BN before and after exposure to 310.3 kPa of propene. The 
exotherm observed in the propene adsorbed dh-BN (solid red trace) corresponds to 181.4 
kJ/mol. 
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Figure 26. Temperature programmed desorption of ethene on dh-BN. The desorption 
profile is similar to that from defect-laden surfaces. 56-57 
 

2.3.8 Catalytically Active Defects and Reaction Mechanism 
 

Hydrogenation over traditional metal catalysts proceeds through the Horiuti-

Polanyi mechanism where the olefin adsorbs onto a hydrogenated catalyst surface, 

hydrogen migrates to the  carbon of the olefin, and the free alkane is reductively 

eliminated from the surface.58 This is significantly different from the mechanism of olefin 

activation using an FLP. In an FLP system, hydrogenation proceeds via three steps, 

addition of molecular hydrogen to an FLP, olefin protonation to form a carbocation, and 

hydride transfer to the carbocation.59 This also differs from hydrogenation observed over 

acid zeolites where the olefin first reacts with an acidic proton to form a transient 

carbonium ion.60 In order to understand this process it is useful to evaluate the binding 

energies and electronic structure of the propene molecule on the boron nitride substrate. 

Ethene (C2H4), the simplest possible molecule with such a bond, and propene were 

investigated. First-principles electronic structure calculations of a C2H4 and C3H8 

molecule on a single h-BN layer were employed by utilizing the Van der Waals density 
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functional (vdW-DF)61-62. It quickly became clear that these olefins do not chemisorb onto 

pristine h-BN sheets. This was also noted for hydrogen adsorption on h-BN sheets, which 

is at best weakly favored.19 Olefin chemisorption occurs at four of the eight defects 

investigated.  

The effect these defects have on the carbon double bond can be elucidated by 

focusing on hybridization of the olefinic carbons interacting with the defect. A comparison 

of the charge density along a vertical plane passing through the two C atoms with those 

for gas phase C2H4 and C2H6 illustrates the substrate’s effect (Figure 27). When ethene 

or propene chemisorb onto a BN defect, its C atoms partially retain their original sp2 

hybridization (C=C), but when the molecule adsorbs on a SW, VB, or VN defect, its C 

atoms rehybridize to sp3
 (C-C), facilitating hydrogenation and desorption of C2H6. The 

results also hold for the adsorption of propene on defect-laden BN. Coupled with the 

previously calculated binding modes of H2 on h-BN19 defects, this data suggest that the 

hydrogenation mechanism is closer to the Horiuti-Polanyi mechanism for olefin 

hydrogenation over metals than that proposed for FLP catalyzed hydrogenation or acid-

zeolite catalyzed hydrogenation. The significant difference between hydrogen bound to 

defects on a h-BN sheet and to a metal surface is that the resultant protons bound to the 

surface are confined to the region by the defect.  
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Figure 27. Electronic density cross-sections plotted along the vertical plane, passing 
through the center of the two carbon atoms of gas phase (A) ethene (C2H4) and (B) ethane 
(C2H6), and of (C) C2H4/dh-BN for the defects BN, SW, VN and VB. Contours are drawn in 
a linear scale (9 contours from 0 to 0.27 e/bohr3). It can be seen that the electronic density 
of ethene on dh-BN exhibit similar structure as that of C3H6, indicating reduction of the 
bond order of the C-C bond in the adsorbed ethene. 
 

It is difficult to unambiguously identify the active site and hydrogenation 

mechanism. This is mainly due to the fact that there are many possible defects on the 

surface from the dynamic nature of the milling process. Based on the binding energies of 

propene, the calculated C=C bond lengths, SSNMR data, and on previous studies of the 

binding of hydrogen on defects in h-BN, it is most likely that hydrogenation occurs over 

VN. The calculated binding energy of propene is on par with catalytic metals (Table 2). 

The C-C bond length of adsorbed propene (1.566 Å) is closer to the C-C bond length in 

propane (Table 4). The reaction pathway of propene hydrogenation on this defect is 

shown in Figure 28. The minimum energy path for such hydrogenation starts by the 

practically barrierless adsorption of propene (with a barrier of 5 meV), followed by the 

dissociative adsorption of H2 with a barrier of 0.52 eV to form co-adsorption state (C3H6* 

+ 2H*) with a co-adsorption binding energy of 2.22 eV. C3H6*, then picks up an atomic 
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hydrogen (H*) to form CH2CH2CH3*. This reaction has a barrier of 0.50 eV. C3H7* will then 

react with the remaining H* to form propane. This reaction faces a large barrier of 1.53 

eV (148 kJ/mol). An alternative pathway for forming co-adsorption state is also calculated. 

In this pathway, the dissociative adsorption of H2 occurs first, with a barrier of 1.01 eV, 

follow by the adsorption of propene with a barrier of 0.37 eV. Hydrogenation over a VB 

faces a much larger barrier of 3.67 eV (Figure 29). 

 

 

Figure 28. The largest barrier in the minimum energy pathway of propene hydrogenation 
over VN is 1.53 eV (148 kJ/mol). Zero potential energy corresponds to propene and 
hydrogen in the gas phase without any interaction with h-BN. Thick horizontal bars 
represent intermediate states. The barrier (in eV) for each elementary reaction step is 
calculated using the Climbing Image Nudged Elastic Band method63 and shown by the 
number (eV) between the states. * denote adsorbed species. The inserts are structures 
(a) of co-adsorbed propene and hydrogen (C3H6* + 2H*) and (b) the intermediate state 
C3H7*. 
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Figure 29. Energies of the intermediate species formed during the hydrogenation of 
ethene interacting with hydrogen bound to a VB. The highest barrier is 3.67 eV or 354 
kJ/mol. 

 

It is worth noting that the calculated barriers are low enough for facile reactions at 

experimental condition (room temperature and the application of mechanical force). 

Reactions with activation energies between 95 and 134 kJ/mol have been driven 

mechanochemically64-68 and our computed maximum barrier is not far outside this range. 

Our calculated barrier lies between that for propene hydrogenation over zeolites (58-90 

kJ/mol)60 and the hydrogenation of propene over a silica-supported Zn(II) catalyst (191 

kJ/mol).69 

 

2.4 Conclusion 
 

A new metal-free heterogeneous hydrogenation catalyst has been realized 

through the introduction of defects into h-BN sheets. Stoichiometric yields were obtained 
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for both simple olefins (propene [1]) and complex olefins (benzylideneacetophenone [9]) 

with TOFs 1-2 orders of magnitude better than catalytic hydrogenation of the same olefin 

over metal-free FLP and graphene catalysts. Superior selectivity was observed, with 

minimal dehydrogenation and no cracking products produced at low temperatures. 

Through the application of a rigorously metal-free reactor, we confirmed that the observed 

hydrogenation is due to dh-BN and not introduced metal impurities. DFT calculations 

show that the olefinic bond in ethene and propene is weakened over four types of defect 

sites: boron substitution for nitrogen (BN), nitrogen (VN) vacancies, boron (VB) vacancies, 

and Stone-Wales defects. The binding energy for olefins and hydrogen at the VN defect 

is on par with those of metals currently used for catalytic hydrogenation. It is most likely 

that the majority of catalytic activity is due to VN defects. The use of metal-free 

hydrogenation catalysts will reduce the risks associated with incorporation of metals into 

hydrogenation products. 
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CHAPTER 3: PHOTOLUMINESCENT COPPER(I) IODIDE CLUSTER 
COMPOUNDS FOR THE NOVEL DETECTION AND IDENTIFICATION OF 

HETEROCYCLIC AMINES OF FORENSIC INTEREST 
 
 

3.1 Introduction 
 

 The ability to conclusively identify an unknown compound that may be an illicit drug 

or other substance of abuse is crucial in the criminalistics and law enforcement fields. 

Current methods of identification include GC-MS, LC-MS, thin-layer chromatography, 

infrared spectroscopy, Raman spectroscopy, microcrystal tests, and chemical spot tests.1 

Mass spectrometry methods are most commonly used as a confirmatory identification 

method in the crime lab, and only rarely as an on-site presumptive test. Portable GC-MS 

devices tend to be too expensive and too large to put into the hands of every field agent 

or police officer. These instruments, in the sense of compactness, are portable relative to 

their laboratory desktop counterparts, but are still so large that they need to be transported 

by vehicle. Raman spectroscopy and infrared spectroscopy are other identification 

techniques usually used in the crime lab. Handheld systems leveraging Raman 

spectroscopy have been developed, but are expensive, making it unfeasible for most law 

enforcement agencies to afford multiple units. Accordingly, color tests are used for on-

site, presumptive drug detection.2 They are used as well for the rapid screening of illicit 

drugs in crime labs. Conventional color tests are highly subjective due to their 

dependence on the ability of the analyst accurately to match the color of the product of a 

reaction between the color test reagent and the analyte with that corresponding to a 

specific drug on a color chart. One source of misidentification is that the color produced 
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under the test may fail to distinguish a target compound (e.g., cocaine with Scott reagent) 

from one that is not of forensic interest (e.g., Benadryl® with Scott reagent).3 Another 

problem conventional drug detection methods are ill-equipped to confront is the constant 

introduction of new synthetic drugs and designer drugs each year. Given the variety of 

previously unidentified compounds being continually introduced into the underground 

drug market, chemical color tests would not be advantageous because there is no 

familiarity to the resulting reactions with each chemical reagent. Most commercial color 

test reagents are analyte-specific, therefore developing a new test for every novel drug is 

not viable due to the time and effort it would take. With hundreds of known drugs, chances 

are high for more than one drug to yield indistinguishable results when using a given color 

test reagent. Confirmatory tests would be the only option for identification. Color tests 

also destroy the sample. This is a significant disadvantage in the case that a trace amount 

of substance is being tested and still needs to be sent to the crime lab for confirmation on 

the identity. There are also safety concerns in regard to these field color test kits, in which 

many of the reagents are hazardous chemicals, such as concentrated acids. Police 

personnel may be poorly trained in handling these chemicals with care, which may lead 

to injuries on the job.  

 A promising avenue to explore for developing a more reliable and adaptable 

method for detecting illicit drugs is afforded by photoluminescent d10 metal cluster 

compounds, specifically those formed with copper(I) halides. One of the most commonly 

studied structures of these kinds of clusters is the tetranuclear cubane form M4X4L4, in 

which M is a d10 metal, X is a countering anion, and L is an organic ligand - an amine or 
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phosphine, each of which coordinates to one of the metal atoms via its nitrogen or 

phosphorous atoms.4-8 This coordination forms new charge-transfer excited states 

between the MX cluster and the ligands. Photoluminescence results from the interactions 

among the states generated between M and L, X and L, M and M, and M and X.6, 9-13 In 

addition to this cubane cluster, different kinds of coordination can occur to form 

mononuclear14-16, dinuclear16-17, octahedral tetranuclear16, 18-19, hexanuclear20-22, or 

heptanuclear23 clusters, infinite polymers of the formula (MLX)∞
17, 19, and even structures 

of 2-dimensional24 and 3-dimensional25 coordination networks. The coordination is 

dependent on the reaction stoichiometric ratio between the metal halide and organic 

ligand. For higher metal nuclearity, the ratio of MX to ligand must be greater than or equal 

to 1, and for lower nuclearity, less than 1. Some d10 metals are less promising for the 

formation of photoluminescent clusters than others. Although silver(I),26-28 gold(I),26-27 

zinc(II),26-27, 29 cadmium(II),26-27, 29 and mercury(II)26 all can form complexes with amines, 

the resulting complexes with monodentate amines do not photo emit in the visible range. 

Complexes formed between copper(I) halides and derivatives of pyridine, however, have 

been shown to photoemit across a much broader range that includes the visible 

spectrum.5-6, 26-27, 30-34 Copper(I) iodide (CuI) in particular, as we shall see, shows promise 

in the detection of common substances of abuse and illicit drugs. The fact d10 metals can 

form photoluminescent compounds with amines provides a way to detect alkaloids and 

synthetic amine drugs on the basis of their emission spectra. A reference database of 

spectral profiles of such clusters would be highly useful for presumptively identifying illicit 

drugs. 
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Figure 30. Structure of the cubane form of Cu4X4L4 cluster. 
 

Current chemical color tests cannot distinguish between cocaine and 

phenylcyclidine (PCP). Worse yet, they can confuse Benadryl® with cocaine.3 

Additionally, benzylpiperazine (BZP) is an illicit drug that cannot be detected by 

conventional color tests.  The method we have developed has been shown to yield 

distinguishable presumptive results between PCP and cocaine, and further, detect the 

presence of BZP. Other cyclic amine compounds, including common illicit substances of 

abuse and many that contain structural building blocks of many recreational drugs, such 

as piperidine, piperazines, and opiates were also tested and yielded distinct spectral 

profiles for each. The ability to identify piperidine-based compounds and opiates would 

provide a potential route for presumptively identifying fentanyl and heroin, in a time the 

U.S. is facing an ongoing opiate epidemic that has led to the deaths of over 28,000 people 

in 2014.35 It is reasonable to expect that CuI cluster compounds formed with different 

heterocyclic nitrogen-containing ligands will exhibit individualized spectral profiles, 

providing a means to build a reference database of luminescence emission spectra for 
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illicit and commonly-abused drugs. This reference database would allow for rapid 

presumptive testing in the crime lab and, potentially, the field. In this work, we present our 

findings on the photoluminescent spectra of clusters formed between CuI and various 

heterocyclic amines of forensic interest and suggest the practicality of using this data for 

their positive presumptive identification.  

 

3.2 Experimental 
 

3.2.1 Materials and Methods 
 

 The following chemicals were reagent grade: Copper(I) iodide, acetonitrile, 

absolute ethanol, methanol, methylene chloride, piperidine, piperazine, 1-(3-

trifluoromethylphenyl)piperazine, 1-(4-trifluoromethylphenyl)piperazine, 1-(4-

methylbenzyl)piperazine, 1-(4-tert-butylbenzyl)piperazine, 1-benzylpiperzine (1 mg/ml 

analytical standard solution), dextromethorphan HCl, caffeine, quinine sulfate dihydrate, 

DABCO, hexamine, xanthine, theophylline, theobromine, cinnarizine, indole, 1-

methylindole, 3-methylindole, norephedrine. 

 All of the following illicit substances (except for BZP, in which a 1 mg/ml DEA-

exempted solution was used) were tested at California State University-Los Angeles. 

Cocaine, PCP, morphine, N-phenethylpiperidinone, and 4-methoxybutyryl fentanyl. 
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3.2.2 Synthesis of Copper(I) Iodide Clusters 
 

For each analyte, the following protocol was used. A saturated solution of CuI in 

acetonitrile was prepared by mixing 0.0302 g of CuI for every 1 ml of acetonitrile to make 

a 0.158 M solution. The solution was stirred for 10 minutes to dissolve the CuI. 2 mg/ml 

analyte solutions were prepared in acetonitrile. Dissolution was achieved by sonication of 

the solution for 1 minute. CuI-analyte samples were prepared in a 12 x 8 polypropylene 

round-bottom black microplate with 500 μl wells. 150 μl of the saturated CuI solution was 

added to a well, followed by 150 μl of analyte solution. The solvent was allowed to 

evaporate overnight. All data for the CuI-analyte clusters represent the mixture of the 

saturated CuI solution and 2 mg/ml analyte solution unless otherwise specified (by 

another concentration or stoichiometric ratio). 

 CuI and amines are known to coordinate in several manners to yield different 

geometries depending on the reaction stoichiometry.14-25 Much of the pioneering research 

on photoluminescent CuI clusters investigated the tetranuclear cubane structures 

produced by reacting 1:1 stoichiometric amounts of CuI to ligand. The photoluminescent 

properties of CuI clusters of different nuclearities have been scarcely studied, but the 

limited literature available shows that they may exhibit altered photoluminescent 

behavior.36 Our CuI clusters were prepared using analyte solutions of 2 mg/ml, which 

when converted to molarity with respect to the analytes used, amount to a considerably 

smaller concentration than that of the saturated CuI solution (0.158 M). Therefore, when 

the CuI and analyte solutions are mixed together, the stoichiometric ratio is well below 

1:1 for CuI to analyte. Because of this, it is possible for our method of CuI cluster synthesis 
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to form clusters of higher nuclearity and alternate photoluminescent properties. In order 

to provide a standard to compare the resulting photoluminescence data to, CuI-analyte 

mixtures of 4:1 stoichiometric ratios were prepared in solvent. A successful reaction was 

typically indicated by a rapid change in color of the solution, the formation of a precipitate, 

or both. Samples were prepared in a 12 x 8 polypropylene round-bottom black microplate 

with 500 μl wells. The solutions were shaken to ensure their precipitate did not settle, then 

250 μl of the CuI-analyte mixtures were added to the wells. The solvent was allowed to 

evaporate overnight.  

 

3.2.3 Limit of Detection (LOD) Studies 
 

 Analyte solutions with the concentration of 2 mg/ml, or 2000 ppm, were prepared 

by mixing 3 mg of analyte with 1.5 ml of acetonitrile. Dissolution was achieved through 

sonication of the solution for 1 minute. The 2000 ppm solution was serial diluted to obtain 

solutions of the concentrations 1000, 100, 10, and 1 ppm. A saturated CuI solution was 

prepared. CuI-analyte samples were prepared for LOD studies in a 12 x 8 polypropylene 

round-bottom black microplate with 500 μl wells. 150 μl of the saturated CuI solution was 

added to a well, followed by 150 μl of analyte solution. The solvent was allowed to 

evaporate overnight. The limit of detection was determined by the presence of a 

photoemission signal comparable to that of the 4:1 stoichiometric CuI to analyte solution.  
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3.2.4 Testing Illicit Substances 
 

 Illicit substances were prepared and tested with CuI following the LOD studies 

method. Various stoichiometric ratio solutions were not prepared, due to the limited 

amount of illicit sample available.    

  

3.2.5 Photoluminescence Analysis 
 

 Photoluminescence emission spectra for non-illicit substances were obtained 

using a TECAN Infinite® M200 PRO microplate reader with the following settings: 

excitation wavelength at 255 nm scanning for emission from 280 nm to 850 nm, mode: 

top, manual gain: 75, lag time: 0 μs, integration time: 20 µs, number of flashes: 5, settle 

time: 0 ms, step: 1 nm, z-position: 20000 μm, and the temperature set at 27.0 degrees 

Celsius. The microplates used were 12 x 8 polypropylene black round-bottom with 500 μl 

wells.  

 Photoluminescence emission spectra for illicit substances were obtained using a 

Molecular Devices Spectramax® i3x set up with the same parameters as the TECAN 

Infinite® M200 Pro.  

 Spectral profiles were established through Gaussian peak fitting, determining the 

CuI-analyte cluster peak location and full width-half max (FWHM).  
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3.3 Results and Discussion 
 

 

Figure 31. Chemical structures of various substances of forensic interest, as well as 
some of their analogues. Many of them contain a piperidine ring (green circle) or 
piperazine ring (blue circle) in their structure. 
 

3.3.1 Copper(I) Iodide 
 

 Samples of CuI were prepared by adding saturated CuI solution to a well and 

allowing the solvent to evaporate overnight. The resulting CuI crystals normally exhibited 

one luminescence emission peak around 420 nm under UV radiation of 255 nm shown in 

Figure 32. An issue that was encountered was the consistency of peaks in the CuI PL 

spectrum. The recrystallization of CuI out of solution was not done in a controlled 

environment following our methods, which led to the inconsistent appearance of a red 

emission band in the PL spectra. These red emission bands have been investigated by 
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various research groups making CuI thin films or growing single crystals of CuI. We have 

observed the appearance of a broad band with peaks around 680 nm and 720 nm. The 

consensus explanation behind the cause of this low energy band is the oxidation of the 

iodide atoms and subsequent formation of iodide vacancies, giving rise to the peak at 680 

nm, and further oxidation of the iodide vacancies to form trace amounts of Cu2O on the 

surface of the CuI, giving rise to the peak seen at 720 nm.37-41 Because this emission 

band may possibly overlap the PL emission peaks of the CuI-analyte clusters, it is 

necessary to explore ways to control and minimize the peaks that stem from the vacancy 

formation.     

   

 

Figure 32. Normalized PL spectrum of CuI at 255 nm excitation, after recrystallization 
from a saturated acetonitrile solution. 

 

3.3.2 Piperidine, Piperazine, and Piperazine Analogues 
 

 Piperidine is a six-membered heterocyclic ring with one nitrogen. The ring is found 

in the chemical structure of illicit drugs such as fentanyl, opiates, cocaine, and PCP. In 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 94 

recent times, fentanyl has contributed to an epidemic of overdoses throughout the US 

due to its high potency as a pain killer and its use as a common adulterant in heroin. 

Piperazine is a heterocyclic amine with two nitrogens at the 1 and 4 positions in a six-

membered ring. It is a structure that is prevalent in many pharmaceutical drugs. It is also 

found in an illicit substance that is used recreationally called benzylpiperazine. Until 2013, 

there was no existing presumptive method to detect BZP. The method that was 

discovered by Philp, et al., uses sodium 1,2-naphthoquinone-4-sulphonate (NQS).42 

Although practical for detecting the presence of piperazine-based compounds, it yields 

subjective results between similarly structured piperazine analogues and the reagent is 

not highly shelf-stable.42   

 

 

Figure 33. Normalized PL spectra of a) piperidine, CuI-piperidine cluster, and 4:1 CuI-
piperidine cluster (the 4:1 CuI cluster spectra were used as a reference for comparison 
with the CuI-piperidine) and b) Piperazine, CuI-Piperazine cluster, and 4:1 CuI-piperazine 
cluster. 
 

The piperazine analogues tested were 1-(4-tert-butylbenzyl)piperazine (TBZP), 1-

(4-methylbenzyl)piperazine (MBZP), 1-(3-trifluoromethylphenyl)piperazine (3TFMPP), 
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and 1-(4-trifluoromethylpheynl)piperazine (4TFMPP). The latter two derivatives are 

isomers of each other that differ in the position of a trifluoromethyl group on the phenyl 

ring. 1-(3-trifluormethylphenyl)piperazine, commonly used as an adulterant in ecstasy 

mixtures,  was a controlled substance in the US until 2004. 

 The normalized PL emission strectra for piperidine and CuI-piperidine clusters is 

shown in Figure 33a. Piperidine exhibited an emission peak around 385 nm. The 

spectrum of the CuI-Piperidine cluster, (clusters formed from the mixture of 150 μl of 

saturated CuI solution and 150 μl of a 2 mg/ml piperidine solution) consisted of one peak 

at 587 nm, which closely concurred with the spectrum of the 4:1 CuI-Piperidine (clusters 

formed from a 4:1 stoichiometric mixture of CuI and piperidne in solution). Figure 33b 

shows the spectra for piperazine and CuI-piperazine clusters. Piperazine photoemits 

around 320 nm and CuI-Piperazine spectra consist of a major peak at about 650 nm. 

Some discrepancies are observed between CuI-Piperazine and 4:1 CuI-Piperazine. The 

spectrum of CuI-Piperazine exhibited a second peak around 420 nm, which is attributed 

to the presence of unreacted CuI. The major peak of 4:1 CuI-piperazine deviated from 

the Gaussian curve seen in CuI-Piperazine, exhibiting an obscure smaller peak around 

580 nm. The peak correlates with the broad peak observed in the PL spectrum of the 

clusters formed from a 1:1 stoichiometric mixture of CuI and piperazine. The presence of 

this peak in 4:1 CuI-Piperazine may be evident of the unintended formation of various 

kinds of CuI clusters with distinct PL characteristics. 
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Figure 34. Normalized PL spectra of a) MBZP, CuI-MBZP cluster, and 4:1 CuI-MBZP 
cluster, b) TBZP, CuI-TBZP cluster, and 4:1 CuI-TBZP cluster, c) 4TFMPP, CuI-4TFMPP 
cluster, and 4:1 CuI-4TFMPP cluster, and d) 3TFMPP, CuI-3TFMPP cluster, and 4:1 CuI-
3TFMPP cluster. 
 

 The spectral peaks of the piperazine analogues tested with CuI closely compare 

to their 4:1 counterparts. The CuI clusters with MBZP, TBZP, 4TFMPP, and 3TFMPP 

yielded PL peaks at approximately 498 nm, 505 nm, 586 nm, and 609 nm, respectively 

(Figure 34). The results between CuI-4TFMPP and CuI-3TFMPP show that two 

compounds with a structural difference as small as the position of a common functional 

group between them, can be distinguished spectroscopically by their respective CuI 

clusters. This capability would be significant in the presumptive identification of new 

designer drugs that are introduced into the illegal drug market.  
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3.3.3 DABCO and Hexamine 
 

 DABCO (1,4-diazabicyclo[2.2.2]octane) and hexamine (1,3,5,7-

tetraazatricyclo[3.3.1.13,7]decane) are polycyclic compounds with six-membered rings 

containing nitrogen atoms. There is no known forensic interest for DABCO, but hexamine 

is a precursor to RDX, an explosive. Both compounds were chosen to observe the 

interaction of CuI with other heterocyclic amines and its resulting PL behaviour. The CuI 

clusters with DABCO and hexamine photoemitted around 614 nm and 600 nm, 

respectively (Figure 35).  

  

 

Figure 35. Normalized PL spectra of a) DABCO, CuI-DABCO cluster, and 4:1 CuI-
DABCO cluster and b) hexamine, CuI-hexamine cluster, and 4:1 CuI-hexamine cluster. 

 

3.3.4 Substances of Forensic Interest 
 

 Caffeine, quinine, and dextromethorphan (DM) are adulterants commonly found in 

street samples of illicit drugs. Caffeine and quinine are cutting agents for heroin, caffeine 
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is also found in cocaine, while dextromethorphan is used to cut ecstasy.43 All three 

substances can be purchased over-the-counter. The CuI clusters with quinine sulfate 

dihydrate, caffeine, and dextromethorphan HCl resulted in major PL peaks around 605 

nm, 688 nm, and 563 nm, respectively (Figure 36).  

 

 

Figure 36. Normalized PL spectra of a) quinine and CuI-quinine cluster, b) caffeine and 
CuI-caffeine cluster, and c) DM and CuI-DM cluster. 
 

 As previously mentioned, 1-benzylpiperazine (BZP) is an illicit piperazine 

compound with no feasible presumptive test for identification. A 1 mg/ml (1000 ppm) 

solution was tested with CuI and it resulted in a cluster with a PL peak around 609 nm 
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(Figure 37). Although this peak location was very close to that of CuI-3TFMPP, the 

spectral peaks can be distinguished by their full width-half max (FWHM) measurements. 

CuI-BZP peak resulted in a FWHM of 128.01 nm while the FWHM of CuI-3TFPP peak 

was 120.24 nm, a large enough difference to distinguish the two by eye.  

 

 

Figure 37. Normalized PL spectra of BZP and CuI-BZP. 
 

 Traditional color tests yield indistinguishable results when testing for cocaine and 

PCP. When tested with CuI, each illicit substance yields distinguishable spectral profiles 

(Figure 38). Note that the for the following illicit substances tested, the peak location and 

FWHM were not obtained due to the excessive noise in spectral data. The data is 

presented to show the general peaks of the of the resulting CuI clusters, while further 

experiments must be conducted to overcome the issue of noise in the data (which may 

be due to a poor detector in the instrument). Also, all of the following illicit substances 

tested were samples once seized by local (Los Angeles-area) law enforcement agencies, 

not reagent grade standards. The purity of each sample was not known, so adulterant 
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interference may be a possibility during the data collection. All spectra were obtained of 

illicit substances tested at a 2000 ppm concentration in acetonitrile. 

 

 

Figure 38. Normalized PL spectra for CuI clusters with cocaine-HCl (black) and PCP 
(red). 
   

 

Figure 39. Normalized PL spectra of morphine and CuI-morphine. 
 

Morphine was tested to determine if opiods would form photoluminescent clusters 

with CuI. Figure 39 shows that the CuI-morphine cluster exhibits a broad PL in the visible 
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range. The results of CuI-morphine and the CuI-DM are promising in the development of 

presumptive identification methods for other morphinan-based substances, which include 

popular recreational opiods like heroin, oxycodone, hydrocodone, and codeine. 

 Fentanyl is a synthetic opiate that is commonly available commercially in painkiller 

medications and illegally, as it is synthesized in clandestine labs for illegal distribution, 

especially as an additive to heroin. N-phenethylpiperidinone (NPP), a fentanyl precursor, 

and 4-methoxybutyryl fentanyl (4MB-fentanyl), a popular fentanyl analogue, are 

commonly encountered by law enforcement in the field. Each were tested with CuI, 

resulting in clusters yielding distinguishable spectral signals compared to the respective 

analytes by themselves (Figure 40). These results show promise in the ability for CuI to 

be capable of also detecting and identifying fentanyl and its analogues. 

 

 

Figure 40. Normalized PL spectra of (a) NPP and CuI-NPP and (b) 4MB-fentanyl and 
CuI-4MB-fentanyl. 
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3.3.5 Other substances (Indoles, xanthines, amphetamines, and sterically-hindered 
amines 

 

 To the best of our knowledge, literature only shows the formation of the 

luminescent Cu4I4L4 cluster to occur between CuI and heterocyclic amines as the ligands. 

In addition to our work, some acyclic amines were tested but did not result in 

photoluminescent clusters with CuI. Also, heterocyclic aromatic amines were used, 

yielding mixed results.  

 Indole rings are found in the chemical structures of many synthetic cannabinoids, 

especially JWH cannabinoids, as well as the popular psychedelic drugs LSD and 

dimethyltryptophan (DMT). Basic indole analogues failed to form PL clusters with CuI, 

using our method. Indole, 1-methylindole, and 3-methylindole were all tested.   

 Caffeine, part of the xanthine family of compounds, formed a cloudy white 

precipitate that photoemits in the visible range under UV irradiation. Its interaction with 

CuI is physically evident. When the product is dried, it has a cotton fiber-like appearance. 

When xanthine, theophylline, and theobromine are mixed with CuI, there is no physical 

indication of cluster formation. Photoluminescence measurements indicate the presence 

of starting material and no apparent peak for a CuI-amine cluster in the visible range. 

Xanthines have low solubility in the common organic solvents we employed, which may 

be a reason why CuI-xanthine clusters were difficult to produce, if possible. Further 

experiments of the different xanthines with CuI refluxed in 1:1 volume solutions of 

acetonitrile-methanol, acetonitrile-ethanol, acetonitrile-water, acetonitrile-methylene 

chloride, and acetonitrile-acetone failed to yield photoluminescent products, with the 
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exception of caffeine. Further investigations are essential for the determination of the 

factors that favor CuI cluster formation with only caffeine, and none of the other xanthine 

compounds. 

 Amines in which the nitrogen is not part of a cyclic ring were tested and did not 

form photoluminescent products with CuI. Triethylamine, ethylenediamine, aniline, 

dodecylamine, di-n-decylamine, diphenylamine, and dicyclohexylamine were among the 

amines of non-forensic interest tested. Additionally, norephedrine was selected for its 

amphetamine structure and did not result in the formation of photoluminescent products. 

Based on these results, we predict CuI, as-is, is not capable of detecting commonly 

abused amphetamines such as methamphetamine and ecstasy.  

 Cinnarizine was expected to form a cluster with CuI, based on the presence of a 

piperazine ring in its structure. Instead, it did not react with CuI. Steric and inductive 

effects from the functionalities on each nitrogen of the piperazine ring may be factors that 

prevent the adduct formation between the nitrogen atoms and iodide atoms.  

 

3.3.6 Limit of detection (LOD) 
 

A vital figure of merit for any presumptive drug testing method is the limit of 

detection. In many cases, law enforcement and crime scene investigators may encounter 

trace amounts of substances that may lead to inconclusive results using conventional 

presumptive test kits. Situations in which remnants of the drug sample is on the surface 

of a syringe needle or other drug paraphernalia require a test that is capable of accurately 
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detecting drugs at a low concentration. Table 5 shows the LOD for several of the 

substances tested.   

 

3.3.7 Spectral Peak Analysis 
 

 Gaussian peaks were fitted for notable photoemission peaks from spectral data of 

the samples to obtain their full width-half max (FWHM), in addition to their peak location 

(Table 5). With the spectral information, spectral profiles can be assigned to the analyte 

clusters formed with CuI, allowing for the potential use as reference data in a library 

database for substances of forensic interest.  

 
Table 5. Major spectral peak location and FWHM of CuI clusters with various amines 
tested obtained by Gaussian peak fitting and the limit of detection (LOD), showing the 
ability for the method to detect various amines at low concentrations. 

Sample Peak FWHM LOD (ppm) 

CuI 419.9 31.1  
CuI-TBZP 504.8 125.3 1000 

CuI-MBZP 498.4 123.9 2000 

CuI-Piperidine 587.2 114.2 2000 

CuI-Piperazine 649.6 155.2 100 

CuI-3TFMPP 609.0 120.2 1 

CuI-4TFMPP 586.2 115.5 1 

CuI-Hexamine 599.8 112.9 10 

CuI-DABCO 613.8 171.4 100 

CuI-BZP 608.9 128.0 1000 

CuI-DM 563.2 184.3 10 

CuI-Quinine  604.8 122.8 2000 

CuI-Caffeine 687.6 132.5 1 
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3.4 Conclusion 
 

 Our copper(I) iodide test is shown to serve as a promising tool for forensic 

applications, specifically the presumptive identification of some common substances of 

abuse. The future implementation of this method into crime labs can provide analysts with 

a process for high-throughput drug screening, which can cut down on the time spent on 

the analysis of drug evidence and allow them to potentially get through more cases. 

Microplate readers are affordable relative to the common instruments used in crime labs, 

such as GCMS, LCMS, Raman spectrometers, and infrared spectrometers, so the 

adoption is more feasible than innovative methods performed using NMR instrumentation. 

The use of this method as a field test would require the development of a portable 

luminescence spectrometer and mobile access to a library database. This would give law 

enforcement officers a much-needed rapid, accurate, and safe test to identify suspected 

drugs on-site. Current results show the promise of using CuI to identify illicit substances 

that contain piperidine rings in their chemical structure, as well as piperazine-based 

drugs. Further experiments must be carried out on various illicit compounds to show that 

this method can presumptively identify substances law enforcement personnel and crime 

lab analysts encounter on a regular basis. This method, as-is, has not been able to detect 

acyclic amines (i.e. amphetamines and MDMA), indole-based compounds, xanthines, 

and sterically-hindered amines. Theoretical calculations have provided an explanation for 

the resulting photoluminescence emission due to the interaction between the surfaces of 

CuI and BZP.44 More investigations via DFT can point to why the non-detectable 

substances do not yield photoluminescent products using this method and could 
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potentially provide an alternative route for successful presumptive identification. The 

ability for this method to analyze drug mixtures also requires further investigation, for most 

street samples are typically adulterated.  
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CHAPTER 4: INTEGRATING BASIC RESEARCH WITH APP-BASED 
ANALYSIS 

 

4.1 Project Scope 
 

 The scope of this project focuses on the development of an alternative drug testing 

method for crime lab and law enforcement use. This method consists of a three-

component system: a drug-indicating test strip, a handheld fluorescence spectrometer, 

and a mobile app that contains a reference spectral database for substances of forensic 

interest. This solution is intended to provide a simple, accurate, precise, rapid, and 

affordable drug testing method to the criminalistics and law enforcement communities.  

 To understand the necessity for a new drug testing system, the current state of 

drug testing must be explained. From a legal perspective, methods of drug testing can be 

classified into two types. Presumptive methods, one of the types, are normally used by 

law enforcement personnel in the field to provide probable cause to arrest a person in 

possession of an illicit substance. The most common method used is the color test. In 

using color tests, the suspected substance is added to a pouch that contains a specific 

color test reagent. For example, Scott test for cocaine detection is a mixture of cobalt(II) 

thiocyanate in hydrochloric acid. Once the suspected substance and color test reagent 

are mixed, a specific color change will indicate the presence of an illicit substance. The 

resulting color is subject to human interpretation and matched against a color chart to 

presumptively identify the suspected substance. The subjectivity of the results is a source 

of false positives. Literature has also shown the possibility of false positives due to non-
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illicit samples, such as salt, sugar, and nutmeg, yielding similar results as illicit substances 

when using certain color tests. The validity of color tests is an issue that has the potential 

to widely affect the ecosystem between citizens and the law enforcement entities. If an 

officer relies on a false positive result, an innocent citizen will get arrested causing the 

officer to spend man hours doing paperwork on the wrongful arrest. The suspected drug 

sample will eventually be sent to the crime lab, in which the crime lab analysts spend 

more time to correctly identify the substance since they were initially misled to believe it 

was a different substance. The wrongfully arrested citizen can also litigate against the law 

enforcement agency, which can lead to public attorneys spending unnecessary man 

hours on the case and possibly settling with the plaintiff. The countless man hours spent 

between the arresting officer, the crime lab analyst, and perchance the attorneys, along 

with the possibility of a monetary settlement to the wrongfully arrested, ultimately wastes 

the money of the tax-paying citizens. A better alternative for field drug testing will not only 

help law enforcement officers in the realm of accurate drug identification, but may also 

increase the work efficiency of the different parties involved and prove itself cost-efficient.1 

 The second type, known as confirmatory methods, typically follows the use of 

presumptive methods. After an arresting police officer seizes a suspected drug sample, 

that sample will be sent to the crime lab for further analysis. The objective of confirmatory 

methods is to positively determine the chemical identity of the suspected sample. Since 

the presumptive color tests cannot positively identify the sample, the crime lab analysts 

are responsible for either confirming or disproving the initial presumptive test results 

through various analytical techniques. Most crime labs follow testing criteria for the 
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determination of a positive identification set by SWGDRUG.2 This requires the crime lab 

analyst to obtain a positive identification of an illicit substance in the suspected sample 

via a combination of techniques. These techniques are categorized as A, B, and C (see 

Table 6). A positive identification is realized by a minimum of one of the following: 

• Positive detection or identification of a drug by two category A techniques 

• Positive detection or identification of a drug by one category A technique and one 

category B technique 

• Positive detection or identification of a drug by one category A technique and one 

category C technique 

• Positive detection or identification of a drug by three category B techniques  

• Positive detection or identification of a drug by two category B techniques and one 

category C technique 

 
Table 6. Categories of recommended analytical techniques used for drug analysis.2 

Category A Category B Category C 

Infrared spectroscopy Capillary electrophoresis Color tests 

Mass spectrometry Gas chromatography Fluorescence spectroscopy 

NMR spectroscopy Ion mobility spectrometry Immunoassay 

Raman spectroscopy Liquid chromatography Melting point 

X-ray diffractometry Microcrystalline tests Ultraviolet spectroscopy 

 Pharmaceutical identifiers  

 Thin layer chromatography  

 For cannabis only: 
Macroscopic and microscopic 
examination 

 

 

For all categories, it is required that the sample must be tested along with a standard to 

assure validity of substance identification. Category A methods provide information 
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specific to the chemical structure of the sample, and are therefore deemed the most 

reliable of the three categories. In contrast to category A methods, results for category B 

and category C methods are more dependent on method conditions (i.e. solvent used, 

chromatography parameters, irradiation wavelength for spectroscopic techniques, etc.) 

and can vary in degree of subjectivity. In crime labs, color tests are also used and the 

results are ultimately leveraged as evidence in a court case. Note that the initial color test 

conducted by the police officers are considered “presumptive” while the crime lab analysts 

use the same test as one of the many techniques to confirm the identity of the suspected 

sample. This is because in crime labs highly trained and experienced analysts conduct 

the tests following strict testing criteria, thus providing more reliable results. 

 Overall, efficiency can be increased with the adoption of new testing methods that 

can provide rapid, accurate results. Law enforcement officers can benefit from a 

presumptive test that is easy to use and yield non-subjective results. In other words, a 

test that eliminates the requirement of human interpretation of results would be valuable. 

With accurate results from the initial presumptive test, the confirmation of sample identity 

by the crime lab personnel will be more straightforward due the decrease in initial 

misidentifications by the law enforcement officers and subsequent time-consuming 

corrective measures taken by the crime lab analysts.  

This project proposes the development of a new drug identification method based 

on UV photoluminescence spectroscopy. For field use, a three-component drug 

identification system consisting of a handheld UV fluorescence spectrometer, drug-

indicating test strip, and mobile app that leverages a reference database will be 
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developed. The handheld drug identification system would provide law enforcement 

officers the capability to more easily and accurately identify suspected drugs on-site 

compared to conventional presumptive methods. This method would yield definitive 

results, using electronic software to interpret the data instead of requiring the user to do 

it. Crime lab analysts can use this method as a rapid screening test, preceding any other 

analytical technique used to identify the sample.  

The objective of this project is to integrate prior research on novel drug 

identification techniques based on photoluminescence spectroscopy into a mobile app 

designed to assist in the process of drug identification by law enforcement and crime lab 

personnel. Although the contributions to forensic science research, specifically in drug 

analysis, has seen a great deal of effort from academia, the criminalistics community has 

not widely adopted many new techniques into common crime lab practices. The 

reluctance to implement new techniques may be due to the lack of feasibility in using 

certain methods. For example, there are methods of drug identification that involve using 

NMR. NMR requires an expensive instrument and highly-skilled users to provide chemical 

structure information, while techniques such as IR spectroscopy, Raman spectroscopy, 

and XRD, which are easier for a user to operate, can provide data just as vital for drug 

identification. Thus, with the development of a novel drug identification technique, it is 

necessary to research and validate the market to ensure market adoption.     
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4.2 Customer Discovery and Market Validation 
 

4.2.1 Market Research 
 

The U.S. is facing a decades-long fight against controlled substance abuse, 

spending substantial amounts of public capital and resources at the federal, state and 

local levels, at a time when public spending budgets are under extreme pressure. So far, 

the results are discouraging. According to the Centers for Disease Control, there were 

over 47,000 drug-induced overdose deaths in 2014, roughly a third greater than deaths 

resulting from motor vehicle accidents or firearms, making it the leading cause of injury 

death in the U.S.3 Overdose deaths have surpassed these other causes in every year 

since 2008, and the trend has continued to increase while that for the other two causes 

has been roughly stagnant. In 2014, prescription opioid painkillers and heroin accounted 

for over 28,000 drug poisoning deaths in the U.S., accounting for roughly 61 percent of 

the total drug poisoning deaths as they continue to increase in usage over other 

substances of abuse. For these reasons, the DEA has ranked opioids the number one 

drug threat to the U.S.3-4 The Drug Enforcement Agency (DEA) estimates that there are 

1.4 million active street, prison, and outlaw motorcycle gang members in the U.S. who 

derive the majority of their illegal revenue through street-level drug trafficking and 

distribution.3 To continue to fight the catastrophic situation, the U.S. 2017 budget 

requested $9.7 billion in federal spending for domestic law enforcement to combat illegal 

drugs.5  Given that the DEA only accounts for approximately 2.2% of all law enforcement 

drug arrests, spending by state and local governments on drug enforcement is estimated 
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to be much greater than federal spending. The majority of spending goes toward funding 

law enforcement, prosecutions, and corrections, with the intent of equipping each entity 

with the necessary manpower and tools to effectively serve their roles against illegal drug 

abuse. Public funds for illegal drug law enforcement must be spent efficiently, for the legal 

action which is grounded on illegitimate presumptive evidence due to false positive results 

from the flawed color tests wastes not only the time, effort, and resources of law 

enforcement and crime lab personnel, but that of the judicial process as well.  

One route to help the enforcement of illegal drugs is to provide law enforcement 

officers with better resources for field drug testing. They are first in line in the chain of 

custody once a suspected drug sample is seized. The time and effort expended on 

proceeding activities can be highly dependent on the presumptive test results conducted 

by the arresting officer. Following the officer along the chain of custody of the evidence is 

a crime lab analyst. Many crime labs are backlogged as it is6, and thus could use 

resources that could increase their case efficiency. An accurate presumptive test result 

can make the tasks of the crime lab analysts and prosecutors more easily and quickly 

attainable. Additionally, it would be profoundly impactful on the lives and families of 

innocent individuals caught up in this process. 

 

4.2.2 Customer Discovery and Validation through NSF I-Corps™ 
 

Customer discovery was conducted through the NSF I-Corps™ program in order 

to validate the existence of a sustainable market for the proposed technology. Between 

a regional I-Corps™ cohort at the University of Central Florida in 2015 and a National I-
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Corps™ cohort in San Francisco in 2016, over 200 potential customers and key partners 

were interviewed. The concept of the drug testing system was originally developed with 

the intent to commercialize it and market it to the law enforcement and crime lab customer 

segments, and as expected, these two segments proved to be the most promising of the 

various markets surveyed. 

In 2008, there were roughly 765,000 badged and sworn full-time personnel in state 

and local law enforcement across nearly 18,000 agencies. Non-badged full-time 

personnel accounted for another roughly 369,000, and another 120,000 full time federal 

personnel were authorized to make arrests.7 According to the National Narcotics Officers’ 

Associations’ Coalition, an estimated 55,000 of the sworn personnel are narcotics officers 

and agents.8 In 2015, law enforcement in the U.S. made close to 1.5 million drug-related 

arrests.9 Many jurisdiction require probable cause provided by a positive presumptive 

drug identification for law enforcement officers to make an arrest. Research resulting from 

interviews with state and local law enforcement conducted during regional and National 

NSF I-Corps™ cohorts concluded that both badged and non-badged personnel are 

known to use field drug test kits. Further deduction from interviews indicates that narcotics 

officers and agents, who encounter illegal drugs on a regular basis, are the most frequent 

users of field drug tests. Additionally, there are over 400 publicly funded crime labs in the 

U.S. that received upward of 3.8 million total cases in 2014, in which close to a third of 

the case load were drug cases.6 The heavy reliance on inconsistent presumptive testing 

methods by a large law enforcement customer segment, on the local, state, and federal 

levels, would suggest that there is an untapped commercial market for a field drug testing 
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solution. With support from the criminalistics community, the necessity for a better field 

drug testing method for law enforcement can be realized, allowing for the potential 

commercial exploitation of the market. 

 

 

Figure 41. An initial market evaluation of the law enforcement customer segments.  
 

Overall, customer discovery with potential customers within the law enforcement 

and crime lab segments revealed the following needs associated with field drug testing 

by law enforcement: simplicity, rapid response, accuracy, definitive, safe, and affordable. 

This revelation insinuates that many within law enforcement understand that conventional 

methods are inadequate in countering the current illegal drug problem in the U.S. 
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4.2.3 Competing Technology in Commercial Market 
 

4.2.3.1 Color Tests 
 

Law enforcement is generally dependent on unreliable field drug tests and that 

have hardly changed in decades. State laws commonly require an arrest to be supported 

by probable cause, and color tests are typically employed to establish probable cause 

when illegal substances are involved. Because of the nature, complexity, and unreliability 

of the color tests, law enforcement reported via customer interviews that this technology 

is complex, slow, unreliable, subject to human variability, and potentially hazardous. The 

kits are commercially available for around $1 to $2 each, are non-reusable, and the 

method may require multiple test kits to be used before a positive result can be obtained 

for a suspected sample. The two most common brands of color tests are NARK II® kits 

and NIK® kits, manufactured by Sirchie® and Safariland®, respectively.  

Through customer discovery during the NSF National I-Corps program, we learned 

that the more experienced a law enforcement officer is in using these color tests, the more 

likely it is for the officer to have a negative opinion toward these test kits. Specifically, 

narcotics officers and agents do not like the conventional color tests and believe that there 

is a need for a better method of identifying drugs in the field. One of the common criticisms 

by the more experienced users interviewed was that they would often accidentally cut 

themselves when breaking the reagent-containing glass vials inside the plastic pouches 

of the color test kits. A bigger safety problem is that many police officers were not properly 

trained to use the color tests. So aside from determining whether the test results are valid 
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or not, many officers did not know that the test kits may contain hazardous chemicals 

such as corrosive acids, increasing the probability for nuisance injuries that law 

enforcement agencies must subsequently deal with.   

 

 

Figure 42. A 2-step NARK II® color test kit to test for synthetic cannabinoids. The test 
pouch on the right has been opened, showing a glass capsule filled with the test chemical 
reagent. 

 

4.2.3.2 Handheld Raman Systems 
 

A more technologically advanced alternative for presumptive drug identification in 

the field is the handheld device based on Raman spectrometers. The most popular of the 

bunch commercially available is the TruNarc™, supplied by Thermo Fisher Scientific. 

With the help of its reference database, this device is advertised to have the ability to 

identify over 30 thousand chemical compounds, including most of the common illegal 

drugs law enforcement regularly encounters. The sample preparation and testing is 
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typically simple for the user and can obtain a positive identification of the suspected drug 

sample in less than a minute. The device does the analysis and provides the user with 

the name of the identified substance on a LCD screen, eliminating the need for human 

interpretation and thus, decreasing the subjectivity of test results. Although this 

technology possesses superior capabilities compared to color tests, according to the law 

enforcement personnel responsible for deciding which drug testing method their agency 

uses, the biggest issue with this method is the price of the device. They are available for 

around $30,000 per unit. This price is not affordable for most law enforcement agencies, 

whose annual budgets for drug testing kits are less than the price of one device. 

Affordability must be emphasized in the development and commercialization of a new 

drug testing method in order to achieve widespread market adoption.  

 

 

Figure 43. The Thermo Fisher Scientific TruNarc™ being used to identify a rock of crack 
cocaine in a plastic bag. 
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4.2.4 Business Model Canvas: Product-Market Fit 
 

 A product-market fit is how well a product and its features, and thus its value 

propositions, satisfy the needs of a specific customer segment.  

 

4.2.4.1 Customer Segments 

 

 The most promising market to initially target would be the law enforcement market. 

Law enforcement officers currently rely on a flawed drug testing method that has not seen 

much improvement in decades. This market can be broken down into three separate 

customer segments: Upper-level and mid-level management within law enforcement 

agencies, narcotics officers and agents, and the patrol officers.  

 Upper-level and mid-level management within an agency consists of personnel in 

supervising roles, such as sheriffs, chiefs, commissioners, and unit commanders. Those 

that hold these positions have a certain degree of authority to make decisions, depending 

on the position. An important decision the commercialization of this technology is 

dependent on is which method of drug identification the agency’s officers and agents are 

using in field. During customer interviews, those in management spoke on the issues with 

using color tests. The ones that were most vocal about the issues were the supervisors 

and commanders of narcotics units, which is expected since their workers use the color 

tests on a regular basis and they have vast experience in using the flawed method as 

well. The narcotics unit supervisors and commanders may either have the authority to 

decide whether the agency uses an alternative drug identification method that is better or 
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they may have a strong influence on that decision-making process, so it is vital to the 

commercialization of the technology to have the support of management within the law 

enforcement agencies. 

 Another very important market to garner support from is the customer segment 

consisting of the narcotics officers and agents. Of all the sworn-in and badged officers or 

agents within an agency, they have the most expertise and experience on illegal drugs 

and their methods of identification. They have the most concerns about the use of color 

tests and understand that a better method is necessary for them to do their jobs more 

effectively. They have a very strong influence on their superior’s decision for the agency 

to use an alternative method, making them major end users. Another reason to have their 

support is to get their input on what requirements they need in a drug identification 

method, which would be collected through a beta testing phase.  

 Patrol officers and deputies represent the customer segment that is least aware of 

the necessity for a better field drug identification method. This segment covers a wide 

range of different experience levels regarding the color tests. Through the customer 

interviews, it was concluded that the more experienced the officer was in using the color 

test the more complaints they had about the method, and vice-versa. The less 

experienced officers typically felt that color tests were sufficient in field drug identification. 

Although they represent the largest market of potential end users of the three law 

enforcement customer segments, the opinions of patrol officers and deputies are a lower 

priority than the other two. They do not have organizational power and usually do not 

have strong influence on the decisions of management regarding the use of alternative 
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drug identification methods. Focusing on gaining the support of narcotics officers and 

agents and management for the technology would be the best approach to eventually 

achieve widespread market adoption. 

 

4.2.4.2 Value Propositions 
 

 The value propositions are the features of the product that would meet the needs 

of the end users. This information would help determine the requirements for the 

development of the minimum viable product (MVP). In the case of the drug identification 

technology, there were five value propositions that were conveyed from potential 

customer interviews: 

• A method that provides accurate results 

• A method that is easy to use 

• A method that is safer to use 

• A method that can adapt to the ever-changing illegal drug environment 

• A method that is affordable relative to other electronic-based devices 

 

Accurate drug identification test results are vital to the operation of illegal drug law 

enforcement. The job of a police officer requires attention to detail and awareness of their 

surroundings at all times for their own safety, due to the dangers they potentially face in 

their line of work. When testing a suspected drug sample, they have the task of 

simultaneously monitoring the suspect or suspects. An inaccurate drug test result can 
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bring about multiple trials when testing the suspected sample, taking up more time and 

effort in testing the drug. Accurate and precise tests can make the process more efficient 

in regards to the number of trials and time spent to determine the identity of the suspected 

sample, allowing for a rapid decision to be made to either arrest the suspect (or suspects) 

or let them go. The more time spent on the process, the less time the officer is spending 

on other duties, such as patrolling. For color tests, the source of false positives could be 

from several issues. First, the test requires the user to determine the color of a result, 

which makes the test highly subjective since different people may perceive colors 

differently.10 Another issue is that users are not always trained properly to use the color 

tests, which can lead to human error-caused false positives. Lastly, color tests are not 

specific for their target compound. Non-illicit substances (tea, salt, spearmint, olive oil, 

etc.) are known to yield false positives.11-13 There are no established statistics on the rate 

of false positives for color tests, but even just one such result can ultimately become 

costly for the wrongfully arrested person, law enforcement agency, crime lab, and judicial 

entities, so the minimization of false positive results must be emphasized.    

 A drug testing method with easy directions for use would have benefits like that of 

an accurate drug testing method. As previously mentioned, the lack of law enforcement 

training in using color tests may be a source of false positives. With no consistent 

standard operating procedure used by all law enforcement agencies, police officers may 

be skipping important steps for the test. A method with an easy standard operating 

procedure will require less user training and allow the user to confidently test a sample. 

The color test method can become complicated when testing for certain drugs. Some 
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drugs require a series of multiple tests just to presumptively detect their presence. For a 

law enforcement officer that is not sufficiently trained, the process could be confusing. A 

simple process would cut down the testing time and rate of false positives.  

 Safety is a key issue that law enforcement officers deal with when using color tests. 

There are three common hazards they may encounter during the process of testing 

samples. Users, especially those without sufficient training, may not know that the 

chemical reagents in the plastic pouches of the color test kits frequently consists of a 

corrosive acid solution. Because of this, injuries have occurred, in which users would 

conduct the test without the proper personal protection equipment (PPE) or do the test 

over their laps and spill some of the reagent on themselves. Another safety issue lies in 

the packaging of the test kits. Common color test kits are available as a plastic pouch 

encasing small glass capsules of the reagents. The procedure requires the user to break 

these capsules through the plastic pouch by hand, to release and mix the reagent with 

the sample. This step has led to users injuring themselves when the broken glass 

capsules cut through the plastic pouch and into their hands. To avoid this, some users 

use pens, instead of their hands, to push down on and break the capsules. A third safety 

issue is the improper handling of certain drugs. Fentanyl has been a significant contributor 

to the recent opiate epidemic. It is a synthetic painkiller that is 80 times more potent than 

morphine and is a common additive found in heroin.14-15 If a law enforcement officer is 

testing heroin and handles a sample without PPE, it is possible that some of the sample 

can get on their skin. Heroin samples are dangerous if they contain fentanyl, because 

fentanyl will readily absorb through the skin. Doses of even milligram amounts are said 
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to be fatal. The minimization, or ideally the elimination, of any of these safety hazards 

would be key value propositions that would be attractive to the law enforcement customer 

segments.   

 The illegal drug market is always changing. Some common drugs have remained 

prevalent over the decades, such as cocaine and heroin, while others seem to phase out 

of popularity over a few years, but there are always new formulations of different drugs 

being introduced to the illegal drug market. In the 1980s, crack cocaine became a popular 

form of cocaine made from free basing cocaine HCl salt. It contributed to a devastating 

drug epidemic wherein its residual effects remain.16-18 The drug epidemic of current times 

involves the well-known family of opioids. Opioids are naturally or synthetically derived 

from opium. Many opioids have strong analgesic effects and have been leveraged by 

pharmaceutical companies for successful commercial sales.19 Painkillers such as 

codeine, hydrocodone, oxycodone, and morphine have been used in medicine for 

decades. These drugs are known to be highly addictive, in which prolonged medical use 

may lead to recreational use.20 These opioid-class pharmaceutical drugs are legal to 

possess with a prescription. Heroin, a DEA schedule I drug, is a recreational opioid with 

a “high potential for abuse” and “no medical use”. Heroin has always been a problem for 

law enforcement, but of late, it has been at the center of the opiate epidemic. Even worse, 

it is commonly found to be laced with fentanyl, an extremely potent synthetic opiate itself. 

Fentanyl is one of the strongest painkiller narcotics of medical use15 and due to its 

popularity, clandestine labs have managed ways to synthesize for illegal use. The 

combination of the two, in addition to the other opiate drugs, have led to over 28,000 fatal 
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overdoses in 2014.4 Police offers have stated that the color test methods have difficulties 

in testing black tar heroin. Also with the available color tests, there is no easy way to 

presumptively detect the presence of fentanyl. Sirchie® has developed a method, but a 

positive presumptive identification requires a series of multiple NARK II™ color tests. 

Even handheld Raman systems have trouble identifying the black tar heroin due to the 

mixture of impurities in the drug.21 Additionally, another class of drugs known as “designer 

drugs” have run rampant worldwide. Designer drugs, many used recreationally and 

commonly as “party drugs”, are structural analogues of controlled substances. New drugs 

with ecstasy-like or other psychoactive effects are synthesized to circumvent legal 

constraints, flooding the illegal drug market with many substances that are difficult, or 

even impossible, to enforce. A controlled substance typically has a known chemical 

structure, as well as both presumptive and confirmatory methods to identify them. When 

a new compound is encountered in the field, law enforcement officers are not readily-

equipped with a presumptive test to positively identify whatever the substance is, making 

it difficult to provide probable cause for an arrest. If relying on color tests, the development 

of a new presumptive test could take years to develop, due to the lack of research efforts 

for new presumptive drug tests. Handheld Raman systems are capable of simple method 

development for designer drugs, wherein the identification of drugs is reliant on the 

support of a library database. Once a new drug is encountered, crime lab analysts can 

use confirmatory techniques to determine its chemical identity, and obtain its Raman 

spectral profile. That spectral profile could be quickly implemented into the handheld 

systems, giving law enforcement officers the ability to presumptively identify that drug in 
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the field. This ability to adapt to the constant introduction of new dangerous drugs is very 

valuable for law enforcement in their task to enforce illegal drug laws.  

 Superior methods of field drug identification exist in handheld Raman systems, but 

they are too expensive for most law enforcement agencies to afford and effectively equip 

their officers. Price points for these devices range from $10,000 to $35,000 depending on 

the brand. This leaves most law enforcement agencies and their officers with no other 

choice but to use color test kits in the field. Color tests are only $1 to $2, a justification for 

law enforcement agencies choosing to periodically purchase multiple kits at low prices 

over paying a large sum for the cost of the handheld Raman systems. Providing them 

with a superior alternative that is also affordable would be commercially attractive to this 

market.  

 Considering these five value propositions in the development of new drug testing 

technology will be the best approach in attaining a product-market fit. Law enforcement 

users currently deal with many issues regarding field drug testing that they have 

expressed, and a solution that eliminates those issues would make a case for commercial 

viability.   

 

4.3 Background on Drug Identification Technology Based on Photoluminescent Drug 
Indicators 

 

The technology is based on fluorescence spectroscopy, with the development of 

a handheld fluorescence spectrometer that works with a mobile app database and 

photoluminescent drug indicators. The drug indicators are test strips containing a 
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substance that interacts with narcotic compounds to yield a photoluminescence signal. 

The fluorescence spectrometer will be built using relatively inexpensive parts, to keep the 

cost under $200 per unit. The main components, a UV excitation source to irradiate the 

test strip, a dispersive element to separate the colors of the light emission, and mirrors to 

direct the resulting colors to be projected onto a surface, will be encased in a 3D-printed 

plastic housing. A mobile app would be used to capture an image of the resulting colors 

emitted and ultimately determine the identity of the tested sample by matching the 

spectral profile with that of a standard in the library database.  

 

 

Figure 44. A prototype version of the handheld fluorescence spectrometer.  

 

4.4 Mobile App Development 
 

A major obstacle to overcome to achieve success with the drug identification 

system will be the development of a properly functioning software in the mobile app. The 

software component will be responsible for the data analysis of the samples that are 
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tested. The following will be a description of the first version of the mobile app, developed 

in 2016 to serve as a prototype to be used with the spectrometer component.  

 

4.4.1 Application Maps 
 

An application map was designed for the mobile app, to determine what screens 

were necessary and how the user would navigate through the app. It was established that 

two different modes of the app would be required for two kinds of users, a “Street Mode” 

and a “Lab Mode”. The user will be able to select the desired mode at the Login screen. 

 

 

Figure 45. The Home screen of the mobile app. 
  

“Street Mode” (seen in Figure 47) is anticipated for use by law enforcement personnel in 

field. Once the user logs in and gets to the Home screen (Figure 45), they will be able to 

select from the following: Settings, Browse, Help, or Logout with a footer consisting of 

three buttons for Home, Capture & Identify, and Archive. For sample testing purposes, 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 133 

Capture & Identify directs the user to a photo capturing screen, which allows them to 

capture an image of the resulting photoemission of the test strip from the fluorescence 

spectrometer. Once the image is captured, the user can accept the photo for it to be 

subsequently converted into spectral data and matched to a reference data set in the 

cloud database. If there is no match, the user will be notified. If there is a match, the user 

will be directed to a Results screen containing the test results. From here, the user can 

access the Information screen (seen in Figure 46), which provides the common 

pseudonyms of the substance or substances present in the sample and key information 

about them (i.e. legal status, appearance, what they are commonly mixed with, etc.). Each 

accepted image is archived by date and time to allow the user to refer to it, by pressing 

the Archive button in the footer, for evidence booking or reporting purposes.   

 

 

Figure 46. The Information screen after a positive match.  
 

This resource was prepared by the author(s) using Federal funds provided by the U.S. 
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 134 

 

Figure 47. Application app for “Street mode”. 
 

“Lab Mode” (seen in Figure 48) is intended for crime lab personnel use. It will 

contain all the features and capabilities available in “Street Mode”, as well as the addition 

of a few advanced ones. The main difference between the two is that the user will have 

the ability to add new data sets to the reference database after the Capture & Identify 

process through the New Substance screen. This is vital to the development and the 

anticipated constant update of the library database. Only allowed personnel, crime lab 

analysts, will be able to access “lab mode” and utilize this option. With the need to adapt 

to the ever-changing illegal drug environment, this will allow crime labs to quickly acquire 
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data on new drugs and implement them into the reference database so that law 

enforcement in the field have the ability to identify and enforce laws on the possession of 

new drugs. Another difference from “Street Mode” is that the user can view the spectral 

data once the image is processed. The importance that was considered in planning the 

two modes was to assure that law enforcement users were provided the features that 

were necessary to help them in the field, excluding all of the extra features provided in 

“Lab Mode”. “Street Mode” is a simplified mode of the app which is intended to be 

operated as conveniently as possible, even to a poorly trained user.    

 

 

Figure 48. Application map for “Lab Mode”. 
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The keys to the mobile app will be its algorithms for converting the image to 

spectral data and then matching it to references in the database. Eliminating human 

interpretation of the results will provide consistent results in the practice of drug 

identification. 
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