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Abstract 

In comparison to likelihood ratios (LRs), Bayes factors (BFs) have the advantage that uncertainty 
in model parameter values is taken into account in a logical and coherent manner. In forensic 
literature, it is common to calculate BFs for generative models. It is also common to calculate 
LRs for discriminative models, for example using maximum likelihood (ML) estimates of logistic 
regression parameters. In this report, we present an approach to calculate BFs when using logistic 
regression as a model to discriminate between two classes. In logistic regression, the log of the LR 
between the two classes follows a functional form. We will focus on the case where this functional 
form is linear. This is equivalent to the log of the posterior odds of group membership following 
a linear model. We propose the calculation of the BF utilizing the posterior odds ratio, as well as 
using the LR function in the context of Ommen and Saunders, 2021. Using a database of simulated 
observations generated under two diferent models, we can obtain a posterior distribution for the 
parameters of the logistic regression, and use this distribution to obtain the posterior odds of group 
membership for a new observation with unknown membership. This posterior odds ratio can then 
be divided by the prior odds ratio to obtain the corresponding BF. An important note is that by 
constructing the database with a prespecifed number of observations under each model, we are 
fxing the base rates. This removes the Bernoulli sampling process of the labels used to construct the 
likelihood function for the logistic regression, which will be discussed in the context of McLachlan, 
2004. As a result, our discriminative model is an approximation to the latent generative models of 
the two classes. We study the convergence of the BF to the LR for two diferent BF calculations, 
and show that for large sample sizes they both converge. Also, we compare the calculated BFs of 
the two approaches to a reference BF, LR, and the plug-in estimate of the LR. 
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Introduction 

In forensic source identifcation the forensic examiner is tasked with providing a value of evidence 
for some evidence, E, that can allow a decision maker to make a logical and coherent decision 
about the source of E, under two competing sampling models M1 and M2. One way of providing 
this value of evidence for a realization of evidence, e, is through a likelihood ratio (LR) or a Bayes 

f(e|M1)factor (BF), where LR = f(e|M2) 
. From a practical point of view, for the typically chosen priors, 

the BF is generally dampened (i.e. value of evidence closer to 1) compared to its (maximum 
likelihood) LR counterpart. This makes BFs in principle more suitable for automated value of 
evidence calculation than LRs. Logistic regression has been used to provide a calibrated LR and 
to fuse diferent evidential values into a single value of evidence [2]. In this work we discuss using 
logistic regression to obtain a formal BF and discuss the changes in the sampling model implied by 
the use of logistic regression, and study the convergence of the BF to the LR when increasing the 
amount of training data. 

Consider two competing models for the generation of an observation, X, 

M1 : X ∼ F1 
(1)

M2 : X ∼ F2 

where distributions F1 and F2 have density functions fθ,1 and fθ,2 that are parameterized by θ. 
We also assume � � 

fθ,1(x)
log = β0(θ) + β1(θ)x ≡ g(x; θ) (2)

fθ,2(x) 

that is, the natural log of the density ratio follows a linear function. 

Now suppose we have a database with observations X1, . . . , Xn1 ∼ F1 and Xn1+1, . . . , Xn1+n2 ∼ F2. 
We can construct labels zi, for i = 1, . . . , n1 + n2 such that zi = 1 if Xi ∼ F1 and zi = 0 if Xi ∼ F2. 
Now denote the realization of the data set as Dn = {(xi, zi) : i = 1, . . . , n1 + n2}. We control the 
number of samples under each model, and thus the rates at which we encounter observations under 
each model. We can defne an auxiliary probability model. This model is not the true sampling 
model, but a substitute model used to make probabilistic statements about the data. The auxiliary 
probability model is 

Zi ∼ Bernoulli(τ) 

Xi|Zi = 1 ∼ F1 (3) 

Xi|Zi = 0 ∼ F2. 

n1 n2Notice that we have fxed the priors rates to be and in the design of our experiment, n1+n2 n1+n2 

but the likelihood of the auxiliary probability model depends on the parameter τ, which is the 
prior probability of encountering an observation under the frst model. Treating τ as known we 
can proceed to use θ to parameterize the distribution of X and Z under the auxiliary probability 
model. We have Zi|xi ∼ Bernoulli(ζ(xi; θ)), where 

fθ,1(xi)τ 
fθ,2(xi)(1−τ)

ζ(xi; θ) = E(Zi|xi) = , (4)
fθ,1(xi)τ1 + fθ,2(xi)(1−τ ) 
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using the logit link function we have � � 
τ 

logit(τ(xi; θ)) = β0(θ) + β1(θ)xi + log . (5)
1 − τ 

Thus the log posterior odds follows the same functional form as the log LR, but shifted by the log 
prior odds. To recover β0(θ) + β1(θ)xi, we can correct the log odds using the prior rates induced 
by the design of the database � � 

n1
β0(θ) + β1(θ)xi ≈ logit(τ(xi; θ)) − log . (6) 

n2 

Now our auxiliary likelihood is fθ(x, z) = fθ(z|x)fθ(x), but we do no not want to impose any 
distributional assumption on X other than the linear model assumption. Thus there is no clear 
way to express the mixture components in fθ(x), without putting stricter assumptions on the 
distribution of X. This mixture also contains the components needed for the BF of interest. An 
advantage of using logistic regression is we focus on fθ(z|x), because these two likelihoods share the 
same ML estimates [1], but may have diferent shapes. This diference in likelihoods will become 
important in the evaluation of the posterior distribution of θ, which is needed in the evaluation of 
the BF, where 

fθ(z|x)π(θ|x)
π(θ|x, z) = R . (7)

fθ(z|x)dΠ(θ|x) 

The posterior density π(θ|x) requires the likelihood fθ(x), which as stated earlier is unavailable 
without further assumptions being placed on the distribution of X. However, we can calculate the 
posterior of the logistic regression coefcients as 

fθ(z|x)π(θ)
π(θ|x, z) = R (8)

fθ(z|x)dΠ(θ) 

utilizing only the likelihood fθ(z|x). We will discuss the implications of using this auxiliary proba-
bility model and dropping this extra term in the likelihood to obtain a formal BF. 

Methods 

∗Given a new observation x known to arise under one of the models with unknown label Z∗ , one 
method to get the BF utilizes the posterior odds ratio, where the BF is the posterior odds divided 
by the prior odds. That is � 

π(Z∗ = 1|x ∗, Dn) π(Z∗ = 1)
BF1 = (9)

π(Z∗ = 0|x ∗, Dn) π(Z∗ = 0) 

To get the posterior odds we frst need to posterior probability of group membership by using Z 
∗ π(Z ∗ = 1|x ∗ , Dn) = ζ(x ; θ)dΠ(θ|x ∗ , Dn). (10) 

Now we can obtain the posterior distribution of θ using the law of total probability 

π(θ|x ∗ , Dn) = π(θ|x ∗ , Z ∗ = 1, Dn)π(Z ∗ = 1|x ∗ , Dn) 
(11) 

+ π(θ|x ∗ , Z ∗ = 0, Dn)π(Z ∗ = 0|x ∗ , Dn). 
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To simplify the derivation of the BF consider 

A = π(Z ∗ = 1|x ∗ , Dn), (12a)Z 
∗ B = τ(x ; θ)dΠ(θ|x ∗ , Z ∗ = 1, Dn), (12b) Z 
∗ C = τ(x ; θ)dΠ(θ|x ∗ , Z ∗ = 0, Dn). (12c) 

Combining (10), (11), and (12) we get A = AB + (1 − A)C, assuming that π(Z∗ = 0|x ∗, Dn) = 
∗1 − π(Z∗ = 1|x ∗, Dn). This assumption follows if we believe x could only be generated under one 

C A /n1of the two models. Solving for A we have A = 1−B+C , and fnally BF1 = . We notice that1−A n2 

this calculation requires the evaluation of two integrals, which are both able to be estimated using 
∗Monte Carlo integration, each requiring posterior samples of the parameters with x assumed to 

be generated under one of the models. 

We also notice that we have access to the LR function 

λ(θ) = exp{β0(θ) + β1(θ)x ∗ }. (13) 

Now similar to Ommen and Saunders we have another way to calculate the BF, where the BF is 
equal to the LR function integrated with respect to the posterior given the denominator model is 
true [3]. This is Z 

∗ ∗ BF2 = exp{β0(θ) + β1(θ)x ∗ }dΠ(θ|x , z = 0, Dn). (14) 

This form of the BF only requires the evaluation of one integral, which is also in the form to be 
estimated using Monte Carlo integration. 

Simulation 

To compare these two forms for the BF, a simulation study is used to compare with a ground truth 
model known to comply with the logistic regression assumptions. The sampling model used for the 
simulation study is 

M1 : X ∼ N(µ1, σ
2) 

(15) 
M2 : X ∼ N(µ2, σ

2) 

where µ1 and µ2 are real numbers, and σ2 > 0 is known. We have θ = {µ1, µ2, σ}. It is important 
to note that the log linear assumption is met as � � 

2 2fθ,1(x) µ − µ µ1 − µ2
log = 2 1 + x. (16)

fθ,2(x) 2σ2 σ2 

Assigning prior distributions to µ1 and µ2 as follows 

µ1 ∼ N(δ1, νσ
2) 

(17) 
µ2 ∼ N(δ2, νσ

2) 

where δ1 and δ2 are real numbers and ν > 0. Now with the assumption that the prior distributions 
∗of θ does not change depending on which model generated x , we have the BF utilizing the true 

sampling model is 
π(x ∗|Dn, Z∗ = 1)

BFT RUE = , (18)
π(x ∗|Dn, Z∗ = 0) 
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which is a ratio of posterior predictive densities. We have that 

x ∗ |(Dn, Z ∗ = 1) ∼ N (η1, γ1) 
(19) 

x ∗ |(Dn, Z ∗ = 0) ∼ N (η2, γ2) 

where � �−1 � � 
1 ni δi nix̄i

ηi = + + (20)
νσ2 σ2 νσ2 σ2 

and � �−11 ni
γi = + + σ2 . (21)

νσ2 σ2 

Here x̄i is the sample mean of the samples generated under model Mi for i = 1, 2. 

The frst simulation is used to study the convergence of the BF calculations to the LR empirically. 
This simulation is implemented according to Algorithm 1. We will use varying samples sizes fxed 
to be the same under both models. That is to study the behavior of the calculations as n = n1 = n2 

increases. 

Algorithm 1 Convergence Simulation 

inputs: µ1 = 1.5, µ2 = 0, σ = 1, δ1 = 1.5, δ2 = 0, ν = 10 
∗for x ∈ {−1.5, 0, 0.75, 1.5, 3} do 

for increasing n do 
Repeat 30 times 
1. Generate n samples from N(µ1, σ

2) and n samples from N(µ2, σ
2). 

2. Draw 100,000 posterior samples of β(θ) under M1 and M2 [4]. 
3. Compute BF1, BF2, and LR. 
4. Store BF1, BF2, LR, and n. 

end for 
end for 

The second simulation, according to Algorithm 2, is used to compare the diferent value of evidence 
calculations. We use n1 = 500 and n2 = 1000 to compare the calculations. 

Algorithm 2 Comparison Simulation 

inputs: µ1 = 1.5, µ2 = 0, σ = 1, δ1 = 1.5, δ2 = 0, ν = 10 
∗for x ∈ {−1.5, 0, 0.75, 1.5, 3} do 

Repeat 100 times 
1. Generate n1 = 500 samples from N(µ1, σ

2) and n2 = 1000 samples from N(µ2, σ
2). 

2. Draw 100,000 posterior samples of β(θ) under M1 and M2 [4]. 
3. Compute BF1, BF2, BFT RUE , LR, and the plug-in estimate of the LR and store. 

end for 

Results 

The results of the simulations are displayed in Figure 1. The left panels shows the results of the 
∗simulation according to Algorithm 1. From top to bottom the value of x takes on the values 
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−1.5, 0, 0.75, 1.5, and, 3. The dashed blue line is the true value of the LR utilizing the true pa-
rameter values. The quantiles of the BF1 replicates given the sample size were estimated using a 
quantile regression with log10(BF ) modeled using a cubic B-spline basis expansion on sample size 
with 5 degrees of freedom. The sample size, n, is displayed on a log scale for better illustration. 
The shaded region is the interquartile range (IQR) with a median curve in the middle. The max-
imum and minimum lines are 1.5 ∗ IQR added and subtracted from the third and frst quartiles 
respectively, and any points lying outside of the maximum and minimum lines are plotted as red 
points. We do not display the results using BF2 as the results are almost identical. 

We see that as the number of background objects increases the distribution of the BF collapses 
around the true value of the LR. We see that at the point where LR(x ∗) = 1 or analogously 

∗log10(LR(x ∗)) = 0, at x = 0.75, the distribution of BF values is narrower in the small sample 
size range. We also see that at this point the median of the BF values is close to the true value of 

∗the LR even at small samples sizes. As we move x away from this point the BF values are more 
conservative, meaning the median of the BF1 replicates is closer to 1 than the true value of the 
LR. 

∗The right panels show the results of the simulation according to Algorithm 2. The value of x 
again changes from the top to bottom in the same fashion as in the left panels. Again, the blue 
line shows the true value of the LR. The box plots moving left to right show the distributions of 
BFT RUE , BF1, BF2, and the plug-in estimate of the LR using logistic regression. 

We see that the distribution of BF1 and BF2 are wider than the distribution of BFT RUE likely due 
to the term being dropped from the likelihood of the auxiliary probability model. We see that BF1 

and BF2 behave similarly and are centered on the true value of the LR. We again see that when 
∗ x = 0.75 the median of the BF1 and BF2 replicates are around the true value of the LR. As we 

∗ move x away from this point the median values are more conservative. 

Discussion 

The two methods to obtain a BF using logistic regression behave similarly. In both cases there 
is more variation than the BF that utilizes the true generative model, but the distribution of BF 
replicates are centered near the true value of the LR. Empirically these BF values converges to the 
LR, which is a desired property. This is promising, as we can utilize methods such as Bayesian 
neural networks or other methods that provide posterior probabilities of group membership to 
estimate functional forms of the log density ratio to obtain a formal BF. 

7 
This resource was prepared by the author(s) using Federal funds provided by the U.S. 

Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
necessarily reflect the official position or policies of the U.S. Department of Justice.



DOJ/NIJ Travel Support Report 

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
3

−
2

−
1

0
1

x ∗ =  −1.5

lo
g 1

0(
⋅)

log10(n)

−
1.

7
−

1.
6

−
1.

5
−

1.
4

−
1.

3

x ∗ =  −1.5

lo
g 1

0(
⋅)

BF BF1 BF2 Plug−in

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
1.

5
−

0.
5

0.
0

0.
5

x ∗ =  0

lo
g 1

0(
⋅)

log10(n)
−

0.
60

−
0.

50
−

0.
40

x ∗ =  0

lo
g 1

0(
⋅)

BF BF1 BF2 Plug−in

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
1.

0
−

0.
5

0.
0

0.
5

x ∗ =  0.75

lo
g 1

0(
⋅)

log10(n)

−
0.

04
0.

00
0.

04
x ∗ =  0.75

lo
g 1

0(
⋅)

BF BF1 BF2 Plug−in

1.0 1.5 2.0 2.5 3.0 3.5 4.0−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

x ∗ =  1.5

lo
g 1

0(
⋅)

log10(n)

0.
40

0.
45

0.
50

0.
55

x ∗ =  1.5

lo
g 1

0(
⋅)

BF BF1 BF2 Plug−in

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−
1

0
1

2
3

4

x ∗ =  3

lo
g 1

0(
⋅)

log10(n)

1.
3

1.
4

1.
5

1.
6

1.
7

x ∗ =  3

lo
g 1

0(
⋅)

BF BF1 BF2 Plug−in

Figure 1: The left column shows the distribution of BF1 as n = n1 = n2 increases. The right column shows the distribution 
of the diferent values of evidence when n1 = 500 and n2 = 1000. The blue dashed line is the true value of the LR. 
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