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1 Summary of the project 

1.1 Major Goals and Objectives 

In this research project, we aimed to develop error rate interpretation tools using regression 

on decision scores and using receiver operating characteristic (ROC) regression models. 

In forensics, quantification of error rates in pattern and trace evidence interpretation has been 

a concern raised by the congressionally mandated 2009 National Academy of Science (NAS) 

report Strengthening Forensic Science in the United States: A Path Forward, and more re-

cently, the 2016 President’s Council of Advisors on Science and Technology (PCAST) report 

Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison 

Methods. The 2009 NAS report highlights the need for developing quantifiable measures of 

uncertainty in forensic analyses. This report discusses the determination of error rates in 

forensic evidence, and the 2016 PCAST report discusses the validity and reliability of seven 

feature-based methods. Both reports emphasize the importance of measuring accuracy and 

performance, and transforming subjective feature-comparison methods into objective meth-

ods. The errors in evidence interpretation are mainly errors related to individualization and 

exclusion decisions. Since the presentation by forensic scientists in courts has influence over 

decisions made by the judge and the jury, as consequences of these errors, an innocent person 

could be wrongly accused and a criminal could be mistakenly claimed innocent. 

In response to these recommendations, the black box and white box studies in latent print 

examination and face recognition have been successfully conducted to systematically quantify 

errors in these forensic disciplines. The latent print study by [36] mainly studied examiners’ 

binary decisions of either individualization or exclusion, and presented a systematic study 

on the error rates including false positive rate (FPR) that is the probability of incorrect 

individualization on imposter pairs and false negative rate (FNR) that is the probability of 

incorrect exclusion from the same source. Besides binary decisions, [32] asked examiners to 

provide an ordinal-scale decision score for a pair of images based on their belief on whether 
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the images come from the same source. A score obtained by comparing two images of the 

same source is often referred to as a genuine score, and that obtained by comparing two 

different sources as an imposter score. For the ordinal decision, error rates such as the FPR 

and the FNR are calculated for all possible thresholds. For a specific threshold point, the 

FPR is the percentage of imposter scores greater than the threshold in the non-genuine pairs, 

and the FNR is the percentage of genuine scores less than or equal to the threshold in the 

genuine pairs. As the threshold increases, the FPR decreases while the FNR increases. The 

pairs of 1-FPR and FNR are plotted as the receiver operating characteristic (ROC) curve. 

The area under the ROC curve (AUC) is commonly used to summarize the ROC curve, and 

the discussion of its application in diagnostic medicine and medical imaging can be found in 

textbooks [45, 28] The AUC was used by [32] to assess the examiners error rates. The error 

rates from these latent print and face recognition studies provide a rigorous way to validate 

practices in their respective disciplines. 

These error rates and the ROC curve are obtained by pooling all the decisions from examiners 

or computer algorithms with same-source or different-source pairs. These measures report 

the average error rates across a population of examiners for evidence sources. Ideally, the 

error rates tend to provide guidance for the error rates for interpreting a given evidence 

source if error rates are consistent for sources with various aspects and for examiners with 

various background. However, error rates may not be consistent as [36] found that ”... the 

false positive errors involved latents on the most complex combination of processing and 

substrate included in the study. ... Further research is necessary to identify the attributes 

of prints associated with false positive or false negative errors...”. A more recent study on 

an operational fingerprint database by [39] also found that fingerprint decision scores vary 

with covariates such as subjects’ demographic information (age and gender, etc). In other 

biometrics disciplines such as face recognition, if examining facial images from male subjects 

do not yield the same error rates as examining images from female subjects, it is unclear 

whether the pooled error rates lead to the the same error rates in subgroups of source subjects 
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with different demographics. Besides these covariates for the source subjects, the other set 

of covariates related to forensic examiners may also play an important role in the error rates. 

Fro example, forensic examiners with different training and demographics may not result in 

the same error rates. Hypothetically, more experienced examiners may tend to have higher 

confidence and lower individualization error rates than newly recruited examiners. It would 

be ideal to account for both sets of covariates such as 1) source subjects’ covariate information 

including their demographics and/or source images’ attributes and quality, and 2) examiners’ 

covariate information such as their training background and demographics. The methods to 

be developed in the project will provide general statistical tools to incorporate these two sets 

of covariates in the interpretation of error rates so that the error rates can be personalized to 

source subjects with specific demographic information and examiners with specific training 

background. 

Appropriately accounting for covariates in error rate assessment and evidence interpreta-

tion requires sophisticated statistical analyses with modern statistical concepts and meth-

ods. The recent 2018 NIJ Forensic Science Technology Working Group (TWG) Operation 

Requirements report specifically calls for research and development in “Determination of 

accuracy and reliability of forensic analyses and conclusions, including potential sources of 

error”, and “Practical statistical approaches for the interpretation of forensic evidence” in 

impression, pattern and trace evidence. In this research program we will work within the 

ROC regression framework for error rate quantification by allowing covariates specific to 

source subjects and examiners. We will study statistical techniques by 1) fitting regression 

models in order to relate covariates to decision scores, and 2) by fitting ROC regression 

in order to relate covariates to error rates quantified by the ROC curve. The resulting 

covariate-specific ROC curves in face recognition, handwriting, and latent print databases 

will model the relationship between covariates and decision scores, give the error rates for 

specific values of covariates. The resulting covariate-adjusted ROC curve will provide error 

rates by accounting for covariates. These ROC curves will be compared with the pooled 
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ROC curves studied in the forensic literature. We will then relate these ROC methods to 

LR in terms of trace and pattern evidence interpretation by accounting for covariates. 

1.2 Research questions 

To achieve our main objective, we set out to explore three main research questions: 

1. Develop error rate interpretation tools using regression on decision scores; 

2. Develop error rate interpretation tools using ROC regression models; 

3. Develop evidence interpretation tools based on covariate-specific likelihood ratios. 

1.3 Research design, methods, analytical and data analysis techniques 

1.3.1 Research Question 1: Develop error rate interpretation tools using re-

gression on decision scores 

The ROC curve, which is commonly used in biometric system evaluation studies, and more 

recently, forensic error rate studies, is a plot of the true positive rate (TPR) (i.e., probability 

of identifying a case when the subject is truly diseased) versus false positive rate (FPR) 

(i.e., probability of identifying a case when the subject is not diseased) in dependency of 

the decision threshold. The ROC curve is widely used in radiology, psychophysical and 

medical imaging research for detection performance, military monitoring, and industrial 

quality control [20]. The ROC curve graphs the trade-off between the TPR and FPR under 

different thresholds. It has a variety of appealing properties, and overcomes the limitations 

associated with isolated measurements of TPR and FPR. The ROC curve displays the (FPR, 

TPR)-pairs corresponding to all possible decision thresholds [45, 28]. 

The accuracy of biometric systems or humans in source identification problems can be as-

sessed with the ROC curve when the decision scores are ordinal or continuous. The source 

identification problems aim to determine the link between the known source (suspect) and 

an unknown source (evidence from the crime scene). The identification relates to a speci-

fied source population. In this project, sources are defined as generators of the objects of 

interest (i.e., a person generates of face and handwriting profiles, and a ignitable liquid is 
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Exclusion Individualization Exclusion Individualization 

Figure 1: Schematic overview on notation used for decision scores, error rates, and ROC 
curve. 

a generator of fire debris). Thus, all the evidential objects considered in a given case are 

divided into three subsets as follows: es – a set of objects associated with or generated by a 

specified source; ea – collection of sets of objects each associated with a source of traces in 

an alternative source population; and eu – a set of trace objects that are all from the same 

unknown source. The evidence from the specified source es also includes covariates of the 

source such as the source subject’s demographic information and other source covariates. 

The error rates are related to the decision on the following two propositions for how the 

evidence has arisen: 

Hp: The unknown source evidence eu and the specific source evidence es both originate from 

the specific source; 

Hd: The unknown source evidence eu does not originate from the specific source, but from 

some other source in the alternative source population. 

For each decision score, black-box studies often have a set of multiple covariates capturing 

various attributes, X = (Xs, . . . , Xd), such as 1) demographic properties of the underlying 

subjects (e.g., gender, age, race, . . .), 2) measurement-specific contextual information (e.g., 
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image quality), and 3) information regarding examiners’ background in terms of training 

and experience. The covariate-specific ROC conditional on X = x, i.e., observing a certain 

combination of values for the covariates is defined by ROCx(u) = 1−Fp(F −1(1−u)|x), whered 

Fp and Fd denote the distribution functions of genuine and imposter scores conditional on 

X = x. The diagram in Figure 1 depicts the relationships. 

In case of a single categorical covariate such as gender, age group, or image quality (‘good’, 

‘bad’, ‘ugly’), the covariate-specific ROC curve boils down to stratum-specific ROC curves, 

where the strata are defined by the category levels of the covariate. Examples are provided in 

Figure 2 which contrasts stratum-specific empirical ROC curves to their pooled counterparts 

without distinction between strata. The figure shows that ROC curves can differ markedly 

across strata. Subgroup analysis as displayed in Figure 2 is essentially limited to the case of 
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Figure 2: ROC curves for the GBU data. Left panel: Gender-specific ROC; Middle panel: 
quality-specific ROC; Right panel: age-specific ROC (in terms of year of birth). 

a single covariate with a small number of category levels. Partitioning continuous covariates 

such as age into age categories is problematic since subsequent results depend on the choice 

of the number and range of age subgroups. Similarly, when considering several categorical 

covariates simultaneously, the number of subgroups grows exponentially with the number of 

covariates d. As a result, subgroup is analysis is no longer a suitable approach. 

In addition to having potentially different ROC curves with and without covariates, pooled 

error rates or the pooled ROC curve may also tend to overestimate the error rates or have a 

lower ROC curve. Such an example can be found in Figure 3. When covariate X changes, 
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Figure 3: Covariate-specific ROC vs. pooled ROC. First three panels (from the left): distri-
bution of pooled scores and unpooled scores; rightmost panel: corresponding ROC curves. 

the covariate-specific ROC curves remain the same. Interestingly, the ROC curve by pooling 

all the data together is below both covariate-specific ROC curves. 

It is clear from these figures that ignoring important covariates in the error rate assessment 

may lead to somehow different error rate or ROC interpretation. Ideally, error rates or ROC 

curves should be provided with and without covariates. Regression techniques for the ROC 

curve will be studied in the project. 

1.3.2 Research Question 2: Develop error rate interpretation tools using ROC 

regression models 

Regression modeling can often be enhanced by incorporating additional structural properties 

such as bounds on the regression coefficients, smoothness, or shape constraints. Taking 

advantage of such constraints can often lead to substantial reductions in estimation variance, 

particularly with small samples. In the above setting, it is often appropriate to assume that 

Ti,p is stochastically larger than Tj,d, which is known as stochastic ordering [9, 27, 19]. This 

ensures that the resulting ROC curve is always above the diagonal line. The latter constraint 

is implied by a monotonically increasing likelihood ratio [11, 6, 2]. A sufficient condition to 

ensure stochastic ordering in the location-scale model is μp(x) ≥ μd(x) and  σp(x) =  σd(x) 

for all x. If the location and scale functions are assumed to be linear in a set of unknown 

parameters, these constraints reduce to linear inequality constraints for the parameters, and 

hence are computationally tractable. To give an example, consider a single covariate x 

with range [a, b] for numbers a < b. The constraint μp(x) ≥ μd(x) is then equivalent to 
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(αp − αd)+(βp − βd)z ≥ 0 for all z ∈ [a, b], which by convexity is equivalent to the two linear 

inequality constraints (αp − αd) +  a(βp − βd) ≥ 0, (αp − αd) +  b(βp − βd) ≥ 0. which can 

be integrated seamlessly into parameter estimation for improved statistical efficiency. The 

rationale directly extends to the case of multiple bounded covariates. 

Order constraints 

In the analysis of biometric traits, computer algorithms providing scores that assess agree-

ment between pairs of measurements (e.g., fingerprints or facial images) are typically cal-

ibrated to deliver larger scores for genuine pairs than for imposter pairs. Similarly, in 

biomarker studies, the level of a biomarker indicating the presence of a disease is supposed 

to be larger among diseased than healthy patients. This ordering property can be integrated 

into the location-scale model by requiring that that the locations of the two score distribu-

tions associated with the status variable D are ordered accordingly, regardless of the specific 

values observed for the covariates. This yields the constraint 

μ1(x; b 
∗ ) ≥ μ0(x; b 

∗ ) ⇔ x (b ∗ − b ∗ ) + (b ∗ − b ∗ ) ≥ 0 for all x ∈ X  , (1)1 0 1 0 01 00 

where the equivalence is according to (2) and the associated comment. 

The constraint (1) has recently been studied in [47]. If the random variables e0 and e1 in are 

symmetric about zero, (1) is equivalent to stochastic precedence ordering [2] of the random 

variables T |{D = 0, X  = x} and T |{D = 1, X  = x} for all x ∈ X  . Moreover, in the case of 

identical scale functions in the two status groups, the constraint (1) is equivalent to (ordinary) 

stochastic ordering, i.e., P (T ≥ t|D = 1, X  = x) ≥ P (T ≥ t|D = 0, X  = x) for all t ∈ R 

and all x ∈ X  . Order constraints have received considerable attention in recent literature, 

e.g., [7, 40, 35, 37], including papers discussing such constraints in the context of ROC curve 

modeling [19, 43]. Their incorporation can be beneficial for at least two reasons: first, they 

yield more interpretable results in applications in which those constraints are known to be 

satisfied; second, as shown in [47], they can improve statistical efficiency in settings with low 
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sample size or weak separation of the score distributions in the two populations. 

1.3.3 Research Question 3: Develop evidence interpretation tools based on 

covariate-specific likelihood ratios 

The likelihood ratio (LR) is LR = Pr(Yu, Yp|Hp)/P r(Yu, Yp|Hd) under the propositions. 

Here the numerator is the joint probability mass function or probability density function of 

evidence measurements Yu from unknown source objects and Yp from a known source, under 

the prosecutor’s hypothesis Hp that Yu and Yp come from the same source. The denominator 

is the joint probability or density of Yu and Yp under the defendant’s hypothesis Hd that 

Yu comes from a difference source from Yp. The Bayes factor updates the prior odds as 

follows Pr(Hp|Yu, Yp)/P r(Hd|Yu, Yp) =  LR × Pr(Hp)/P r(Hd), with the last term being the 

prior odds of favoring the prosecutor’s hypothesis Hp relative to the defendant’s hypothesis 

Hd without the knowledge of any evidence. [21] provides an earlier review of the relevant 

statistical methods including LR. 

We use the upper-case letters such as Yu and Yp to denote random variables with probability 

distributions. X denotes covariates characterizing demographics of the known source and 

properties of relevant population. Let these original trace evidence measurements be Yu from 

the unknown source, and Yp from the known source with covariates, Yu and Yp are either 

univariate measurements or vectors of multivariate measurements. Besides the evidence 

measurements, another important dataset, ideally, is ea, in the reference population database. 

The reference population database provides the estimates of marginal density distributions 

and joint distributions of Yu and Yp conditional on the covariates X. Here the covariates X 

can be background information such as demographics on the known source. In the context 

of fire debris, the covariates from the known source could be the container material for 

the ignitable liquid. With the container information, examiners will likely have more precise 

understanding of the fire debris mixture. Thus, the LR conditional on the container type will 

provide a better way to quantify the weigh of the evidence than the LR ignoring the container 

type. Figure 4 provides the diagram of the notations used for evidence, ROC and LR. Note 
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that for trace evidence, the LR can be calculated directly from trace observations, while for 

impression and pattern evidence, the LR is calculated mostly from matching scores. 

Figure 4: Schematic overview on notations used for evidence, ROC, and LR. 

In this project we will work with the multivariate LR which handles multi-dimensional trace 

observations. 

Without conditioning on the covariate Xs, this LR is the same as the Lindley’s LR for 

univariate data. It is commonly assumed that within-source distributions conditional on Yp 

are normal, that is, Yu,i ∼ N(θu, Σ2 ). It is also reasonable to assume that Ys,j |(Xs = x) ∼u 

N(μp(x), Σ2 
p), where μp(x) is a covariate-specific mean. Note that the covariate information 

is available for the known source and not for the unknown source unless covariates of the 

unknown source are witnessed by bystanders. The prior distribution for θu and μp(x) can  

be a normal distribution N(τ, Σθ), or an exponential distribution. The sample conditional 

¯ mean Yu is sufficient statistics for θu. When  Yu,i and Ys,j are from a common source, θu = 

f (Ȳ  
u,Ys|θ)f (θ)dθ

μp(x) =  θ. The LR is then simplified as: LRx = � 
f(Ȳ  

u|θu)f (θu 

� 

)dθu 
� 
f 

¯

(Ȳ  
p|μp(x))f(μp(x))dμp(x) 

. 

Without covariates, several authors [1, 4] let  μp(x) =  θp, and give the explicit form of the LR 

based on the multivariate normal distributions for Yu,i and Ys,j , and  θ’s when the covariance 

matrices are not the same. Without covariates, a kernel estimation can be substituted to 

replace f(θ) in the integration of the numerator and denominator for the LR [23, 1, 4] if  
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the normal assumption for θ is not true. In this project, the investigators will estimate 

the covariate-specific mean μp(x) for subpopulations, and obtain the covariate-specific LR. 

Specifically, μp(x) has a prior distribution such as multivariate normal distribution with 

its mean and covariance parameters calculated from the relevant database. The posterior 

distribution of μp(x) will then estimated from the prior and the evidence measurements from 

the known source. The maximum a posteriori probability estimate of μp(x) will be the mode 

of the posterior distribution. 

The score-based LR is commonly used for the decision scores from the same subjects and 

different subjects in impression and pattern evidence. For impression and pattern evidence, 

[26] developed a summary statistic or comparison methodology, denoted as C(eu, es). The 

realized value of the comparison statistic C(eu, es) =  c is obtained by comparing the control 

samples from a specified (known) source (denoted by es) to the recovered traces from a 

questioned or unknown source (denoted by eu). Similar to Parker, we assume that C(·, ·) is  

a dissimilarity score, with the bigger value of C(·, ·) indicating the less similarity between eu 

and es. It is known that the first derivative of the ROC curve gives the LR when covariates 

are not considered [14, 8]. The connection is similar with covariates. Define fp and fd 

be the density functions of Fp and Fd, respectively. Note that based on definition, the 

densities of Ti,p and Tj,d conditional on the covariates such as subpopulations X = x are 

fp(t|x) =  F (t|x), and fd(t|x) =  Fd(t|x). These densities will be estimated from the relevant p 

database ea – collection of sets of objects each associated with a source of evidence in an 

alternative source population. 

1.4 Expected applicability of the research 

The research provides forensic researchers ready-to-use statistical tools so that covariate-

specific and covariate-adjusted error rate assessment can be implemented for black box stud-

ies in various forensic disciplines. Also, implementing the ordinal decision scores as in [32] 

have more intrinsic information for the error rates than dichotomized binary decisions. Avail-

ability of the computer packages for calculating the ROC curve with and without covariates 
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will provide a useful tool to forensic scientists for the analysis of their black box studies with 

ordinal decision scores. In addition, given that the PI and investigators on the project are 

currently supporting a number of local crime labs, this research will directly impact the guid-

ance they are providing on the error rate interpretation and evidence interpretation. 

2 Participants and other collaborating organizations 

2.1 Individuals involved in the project 

Dr. Larry Tang (PI - University of Central Florida): Dr. Tang’s research background 

in statistics in forensics and criminology, biometrics, and nonparametric methodology 

in high-dimensional settings was crucial to successful completion of the aim involving 

the relationship between ROC curves and likelihood ratios. His work with NIST in bio-

metrics on developing statistical methodology to advance the evaluation of fingerprint 

matching algorithms and to advance the understanding of forensic methods in biomet-

ric matching provided him with the necessary background to supervise completion of 

the project. 

Dr. Danica Ommen (Iowa State University): Dr. Ommen has extensive training and 

expertise in forensic statistics, and computational statistics. Her doctoral research con-

cerned the use of Bayesian likelihood ratio and frequentist likelihood ratio in a forensic 

setting. Her past experiences deriving and evaluating likelihood ratios within complex 

scenarios aided the research group in developing and assessing novel methodologies de-

veloped for complex cases of handwriting evidence. Her expertise in programming and 

Bayesian methodology, as well as her forensic background was especially important to 

the successful completion of the paradigms of evidence interpretation. 

Dr. Christopher Saunders (South Dakota State University): Dr. Saunders has past 

experience with NIH funded projects and Intelligence Community (IC) research fellow-

ships. Since completing his dissertation, Dr. Saunders has focused on providing statis-

tical support to the Intelligence Community, first as an IC Postdoctoral Research Fellow 
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and then as a Research Assistant Professor with the Document Forensics Laboratory 

at George Mason University. In an ongoing collaboration with Gannon Technologies 

Group, he contributed to the development of a highly accurate handwriting based 

identification tool, known as FLASH ID. Dr. Saunders was specifically responsible for 

investigating the accuracy of the handwriting based biometric identification procedures 

as a function of the amount of handwritten text available. Recently Dr. Saunders has 

been focused on the development of forensic likelihood ratios for assessing the strength 

of handwriting evidence. Dr. Saunders’ background in statistical approximation theory 

was highly important in the development of conclusion scales. 

Dr. Martin Slawski (George Mason University): Dr. Slawski has extensive research 

experience in statistical modeling, machine learning, and mathematical optimization 

in statistical settings. His efforts on massive data inference was funded by major 

government agencies. In the project, Dr. Slawski will be developing methods for 

ROC and likelihood ratio estimation with a specific focus on regression modeling, 

particularly quantile regression and stochastic ordering constraints. He will provide 

additional computational support for various aspects of the project. 

Dr. Emanuela Marasco (George Mason University): Dr. Marasco’s research experi-

ence involves Pattern Recognition, Machine Learning, Computer Vision and Biomet-

rics. Her main contribution has focused on design and evaluation of anti-spoofing 

countermeasures in fingerprint recognition systems, and automatic estimators of soft 

biometrics from fingerprints. Dr. Marasco has collaborated on several projects funded 

by the major government funding agencies. Dr. Marasco’s background will be impor-

tant in the implementation of the methods in biometrics data. 

Dr. Semhar Michael (South Dakota State University): Dr. Semhar Michael is an 

applied statistician by training. Her research focuses on computational statistics with 

an emphasis on developing novel methodologies for analyzing datasets in challenging 
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forms. She has addressed problems in clustering of time series, forensic, and text 

data. Her work has been published in peer-reviewed statistics journals and led to 

national paper competition awards. With unstructured data, she worked on a building 

clustering, classification, and sentiment analysis models. In the health sciences, she has 

worked on mixture modeling, spatial clustering, and forecasting projects on datasets 

from Electronic Health Records and South Dakota Department of Health. 

Funded Ph.D. Graduate Student: Dr. Ty Nguyen (University of Central Florida), ad-

vised by Dr. Larry Tang 

Unfunded Graduate Students: Ph.D. students whose research was related to this funded 

project 

• Dr. Xiaochen Zhu (George Mason University): advised by Drs. Larry Tang and 

Martin Slawski 

• Ms. He Qi (George Mason University): advised by Dr. Martin Slawski 

• Mr. Andrew Simpson (South Dakota State University): advised by Drs. Saunders 

and Michael 

• Mr. Dylan Borchert (South Dakota State University): advised by Drs. Saunders 

and Michael 

2.2 Organizations involved in the project 

The work performed for this project has supported the Federal Bureau of Investigation 

Laboratory Division on research projects related to the analysis of forensic evidence from 

improvised explosive devices. NIST has provided rating scores of forensic examiners on 

NIST blackbox facial recognition study for us to implement the developed methods. We are 

fortunate to be able to benefit from their expertise in these areas. 
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3 Outcomes 

3.1 Activities/accomplishments 

During the period of performance, the PI and investigators engaged in virtual meetings to 

update the other participants on research projects, and met at conferences to coordinate and 

conduct collaborative efforts. Overall, this award resulted in the training of 5 graduate stu-

dents in the interpretation of forensic evidence, including 5 PhD graduate students and 1 MS 

graduate student. This award directly resulted in 1 PhD dissertation, 4 peer-reviewed journal 

articles, 2 peer-reviewed conference papers, an R-Shiny app and 21 conference presentations. 

For a detailed list of research products and conference presentations, see Section 4. 

3.2 Results and findings 

3.2.1 Research Question 1: Develop error rate interpretation tools using re-

gression on decision scores 

We denote the upper-case letter X as data which contains covariates as columns and samples 

as rows. X = x is then understood as a specific value of covariates in the data. In the data, 

upper-case R is used to describe the ordinal score whose values are from 1 to L where L is 

called ordinal scale. Also, a binary status is denoted as D where D = 1 or  D = 0 splits 

observations into two sub-classes. Upper-case G is the number of rater groups who give 

ordinal scores as assessing subjects. 

In this project, we use ROC curve to characterize the accuracy of performances. Let Y denote 

a continuous random variable related to scores in evaluation. The general formula of a ROC 

S−1 curve is expressed as a function of FPR as ROC (t) =  S1 0 (t) , t  ∈ (0, 1) where S0 (c) =  

P (Y ≥ c|D = 0)  and  S1 (c) =  P (Y ≥ c|D = 1) are FPR and TPR with threshold c. If  S0 

μ1 − μ0 σ0
and S1 follow normal distributions, it follows ROC (t) = Φ  + Φ−1 (t) , t  ∈ 

σ1 σ1 

(0, 1) where μ0, μ1, σ0, σ1 are the means and the standard deviations of two sub-populations, 

respectively. Then, the AUC also has a explicit form as AUC = Φ  (μ1 − μ0)/ σ1
2 + σ0

2 . 

In the present study, ROCx,g(t) and  AUCx,g are the ROC curve and the corresponding AUC 
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at a specific covariates x of group g with g = 1, · · ·  , G. Covariates in face recognition data 

are raters’ group, age, gender. Also, because ROC curves are built within framework of the 

ordinal regression, their variances are determined by variance of parameters in the model. 

For the sake of making inference easily, we denote ROCx,g (t) and  AUCx,g be the estimated 

ROC curve and AUC at covariate x of group g and estimated parameter γ̂ of the ordinal 

regression. 

A Homogeneity Test 

In this section, we introduce a homogeneity test for ROC curves. Assume that there are G 

rater groups each of which includes J1, J2, · · ·  , JG members assessing K = K0 + K1 subjects 

such as images in medical diagnostics or image pairs in fingerprint or facial recognition. Out 

of K, there  are  K0 non-diseased subjects in medical diagnostic or K0 different sources image 

pairs in fingerprint or facial recognition and K1 diseased or same source ones. Accuracies of 

groups are characterized by ROCx,1(t), · · ·  , ROCx,G(t) or  AUCx,1, · · ·  , AUCx,G respectively. 

The goal is to test homogeneity among groups. The null hypothesis of the test is stated as 

all groups have the same accuracy while the alternative is supported if there exist differences 

among groups. It is noteworthy to mention that the ROC curves are functions of TPR with 

respect to FPR. Therefore, the test is conducted at each fixed FPR. We define a vector as 

Λ = (ROCx,1(t), ROCx,2(t), · · ·  , ROCx,G(t)) . If a new vector ΛC is defined by subtracting 

ROCx,G(t) from  Λ as ΛC = (ROCx,1(t) − ROCx,G(t), · · ·  , ROCx,G−1(t) − ROCx,G(t)) , the 

null hypothesis is now formulated as H0 : ΛC = 0 vs. Ha : ΛC = 0. The relationship between 

ΛC and Λ can be expressed as ΛC = KΛ where K = (IG−1, −1G−1) with an identity matrix 

IG−1 and a vector of one’s 1G−1. In this case, we use ROCG(t) as a reference for comparison 

purpose. In fact, any group can be in charge of the role. With a given data, we need to 

estimate the ROC curves to proceed the test. An estimate of a ROC curve, denoted with 

a hat, can be retrieved nonparametrically or parametrically [44]. With the first approach, 

an empirical ROC curve is obtained. Alternatively, parametric methods need to assume 
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distributional forms for two populations. Thus, ROC curve can be derived analytically. 

In this project, we use the later technique with binormality assumption for scores within 

framework of ordinal regression discussed in the next section. 

ROC Estimators based on Ordinal ROC Regression 

Assume that we want to bridge L-scale ordinal scores R with observable variables comprised 

in a matrix X. Without loss of generality, we denote the first column of X as D which 

is a binary variable of 0 or 1. Then, D splits observations into two sub-groups such as 

diseased and non-diseased status in medical diagnostics, genuine and imposter scores in 

facial recognition. 

We use a location-scale model to estimate the covariate-specific ROC curve. In the model, 

each of outcomes Ri, i  = 1, 2, · · ·  N links to an example which is described by a vector of 

covariates, Xi = {Di, xi1, ..., xip} or {Di, xi} where p is the number of covariates and N is 

the total number of observations. It is noteworthy that out of p covariates, one represents 

for group status of raters. The ordinal ROC regression starts by supposing that discrete 

outcomes R belong to a latent continuous variable T which can be partitioned into sub-

regions by thresholds −  = τ0 < τ1 < · · ·  < τL−1 < τL =  . The outcome R receives the 

value rl if τl−1 < T  ≤ τl. The general formula of ordinal regression can be expressed as 

τl − (α0D + α1x + Dα2x) 
g [ l (R ≤ l|x)] = ,

exp (β0D + β1x + Dβ2x) 

where l = 1, 2, ..., L − 1 and  x denote for any of {xi}N where N = K G Jg is the totali=1 g=1 

number of observations, g (·) is the link function,  l (R ≤ l|x) is the cumulative probability 

that R ≤ l, a vector production, for example α1x, is written as α1x = α11x1 + · · ·  + α1pxp. 

With the probit link, the model is rewritten as 

τl − (α0D + α1x + Dα2x)
 l (R ≤ l|x) = Φ  ,

exp (β0D + β1x + Dβ2x) 
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where Φ (·) is the standard normal cumulative distribution function. With this approach, 

the latent variables for a particular covariate x are normally distributed with means and 

standard deviations described in Table 1. 

Table 1: Ordinal Regression ROC Parameters 

D = 1  D = 0  

Mean μ1 = α0 + (α1 + α2) x μ0 = α1x 

Standard dev. σ1 = exp{β0 + (β1 + β2) x} σ0 = exp{β1x} 

Substitute the means and standard deviations in Table 1, the ROC curve within the frame-

work of ordinal regression for a specific covariate x of group g is finalized as 

α0 + α2x 1 
ROCx,g (t) = Φ  + Φ−1 (t) , t  ∈ (0, 1) . 

exp (β0 + β1x + β2x) exp (β0 + β2x) 

The corresponding AUC is also expressed as 

α0 + α2x 
AUCx,g = Φ  . 

exp (2β0 + 2β1x + 2β2x) + exp  (2β1x) 

ˆ ˆ ˆTo simplify notations, we use γ̂ ≡ τ̂ , α̂0, α̂ 1, α̂ 2, β0, β1, β2 . 

Statistical Property of the Test 

Let Λ̂ , Λ̂ 
C be estimators of Λ and ΛC which can be written as Λ̂ = ROCx,1 (t) , · · ·  , ROCx,G (t) , 

ˆand ΛC = ROCx,1 (t) − ROCx,G (t) , · · ·  , ROCx,G−1 (t) − ROCx,G (t) (t) . The relation-

ship Λ̂ 
C = KΛ̂ still holds for estimators. The test statistic is defined as 

−1 
Ψ =  ΛC VarΛC ΛC . 

The variance VarΛC is dependent on covariance matrix Σγ̂ which is asymptotically approx-
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imated as Σγ0 
. Concatenating all ROCx,g (t) for  g = 1, · · ·  , G  yields to 

 ̂  =   + F (γ̂ − γ0) +  o (γ̂ − γ0)
2 , 

ˆ K ˆwhere F = JROCx,1(t), · · ·  , JROCx,G(t) . Using ΛC = Λ and taking variance both sides 

yields to 

VarΛ̂ 
C = KFΣγ̂ F K , 

where Σγ̂ depends on the sample size. Employing Lemma 1, one can see that  ̂ 
C asymptot-

ically follows a multinormal distribution given by NG−1  C , ΣG−1 = KF Σγ0 
F K . 

Theorem: Under the null hypothesis, Ψ converges in distribution to a Chi-square distri-

bution with G − 1 degrees of freedom χ2 
G−1 and under the alternative, Ψ still converges 

to a Chi-square distribution with the same degrees of freedom but with a non-centrality 

parameter η = ΛC (VarΛC )
−1 ΛC as N −→ . 

Given a significance level α, the null hypothesis is rejected if Ψ > χ2 where χ2 is the G−1,α G−1,α 

critical value of a Chi-square distribution with G − 1 degrees of freedom. Determining non-

centrality parameter occurs in various statistical analysis, such as the analysis of variance for 

tests of homogeneity, Chi squared test for goodness of fit, power analysis. Since the power 

analysis usually relates to the sample size problem, the non-centrality parameter can be used 

to determine the minimum sample size provided the power is supplied. Solution of a power 

problem replies on the availability of the non-centrality of a Chi-squared distribution. Early, 

[16] prepared tables for the non-centrality parameter of a Chi-squared distribution with some 

given values of degree of freedom, significance level and power. Then, [15] calculated the 

minimum sample size for the three most frequently used tests at given power using those 

tables. Next, [34] estimated the non-centrality parameter of a Chi-squared distribution 

by employing the maximum likelihood technique. However, only were the lower and upper 

bounds derived instead of a closed form for the parameter. Thanks to developing of computer 

technology, nowadays we can numerically compute the non-centrality parameter. The power 
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1−β where β is the probability of a type II error is defined as 1−β = P χ2 
G−1 (η) > χ2 

G−1,α . 

With given values of α, β and G, the non-centrality parameter η can be determined by 

solving the equation above. Denote ηβ,α be the solution, using definition of η yields to ηβ,α = 

ΛC (KFΣγ0 F K )
−1 

ΛC . The minimum sample size is determined to obtain ηα,β numerically 

and scanning sample size until the equality is satisfied. 

In this part, we describe our design for simulation. Our data includes ordinal scores, a con-

tinuous variable X1 and discrete covariates representing for rater groups. The latent scores of 

gth group are normally distributed as Tg|(X1, D  = 1)  ∼ N (1 + 2X1 + ψ + ag,  Var (e1)) , and 

Tg|(X1, D  = 0)  ∼ N (1 + X1, Var (e0)), where X1 is uniformly distributed in [0, 1], e0, e1 are 

standard normal distributions. In those equations , parameters ψ, ag and   control the dis-

tance and difference in variances between two normal distributions. Moreover, parameter ag, 

which only depends on the group label is utilized to adjust differences in ROC curves among 

groups. On the other hand, parameter ag is able to control the null and alternative hypothe-

sis. With those distributions, the true ROC curve and the corresponding AUC are expressed 

as ROCtrue x1+√ψ+ag √1 Φ−1 (t)x,g (t) = Φ  
  

+ 
  

t ∈ (0, 1) , First, we examine the consistency 

of estimated ROC curves and AUCs. We assume that all groups have the same number of 

members, i.e. J1 = J2 = · · ·  = JG = J . Hence, term ”sample size” K should be understood 

as the number of samples assigned to each rater. Setting 1 with 10000 data sets are simulated 

in this subsection. In Figure 5, estimated ROC curves and AUCs are depicted with some 

sample sizes where G = 5  and  L = 7 are used. Value of other parameters can be seen in the 

caption. In Fig.5, estimated ROC curves of four selected sample sizes are depicted along with 

the true curve. It is obvious that the larger the sample size is, the closer the estimated curve 

approaches the exact one. In this case, a sample size between 10 and 20 is a reasonably opti-

mal value leading to a consistent ROC curve. Next, in Fig.5b, estimated AUCs with sample 

sizes varying from 5 to 50 is presented. One can see that estimated AUC asymptotically 

converges to the true value. Indeed, the bias of estimators are just around 2% at sample size 

of 5 and less than 1% at 15. Thus, 15 could be consider as asymptotic value of the sample 

21 
This resource was prepared by the author(s) using Federal funds provided by the U.S. 

Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
necessarily reflect the official position or policies of the U.S. Department of Justice.



�
�

 
�

�
�

 
�

��

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

Tr
ue

 P
os

iti
ve

 R
at

e

K=5 
K=10 
K=20 
K=50 
True ROC 

(a) 0.
70

 
0.

72
 

0.
74

 
0.

76
 

0.
78

 
0.

80
 

AU
C ●● 

●● ● ● ● ● ● ● ● ● 

● Estimated AUC 
True AUC 

(b) 
0.0  0.2  0.4  0.6  0.8  1.0  10 20 30 40 50 

False Positive Rate Sample size 

Figure 5: Convergence of ROC curves, AUCs when the sample size changes. G=5, J=10, 
L=7 and ψ = 0.5, and   = 1.5, x1 = 0.5 are used. (a): Estimated ROC curves for four 
selected sample sizes of 5 (dashed black), and 10 (dashed blue), 20 (dashed orange) and 50 
(dahsed pink). Red solid line is the true ROC curve. (b): Dots are estimated AUCs and 
black solid line is the exact AUC of 0.736. 

size. Futhermore, we validate the quality of estimators and their variance by calculating 

the confidence interval coverages of difference in ROC curves and AUCs. Let ΔROC12 (t) =  

ROC2 (t) − ROC1 (t) , ΔAUC12 = AUC2 − AUC1 be the difference in ROC curves or in 

AUCs between the second and the first group. The coverage of ΔROC12 (t) curves is  

the portion of the 10000 curves bounded by the (100 − α) % confidence interval that is� � 

ΔROC12 (t) − Zα × var ΔROC12 (t) , ΔROC12 (t) +  Zα × var ΔROC12 (t) . The 
2 2 

coverage of ΔROC12 (t) at  t1 = 0.3 and  ΔAUC12 with different number of groups and sample 

sizes are presented in Figure 6. 
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Figure 6: Coverage probabilities of the 95% confidence intervals of ΔROC12 curve at FPR 
of 0.3 (a) and of ΔAUC12 (b). The dashed grey line is the nominal level. J=10, L=7 and 
ψ = 0.5, and   = 1.5, x1 = 0.5 are used. 

In Fig.6a, confidence interval coverage of ΔROC12 at FPR of 0.3 is illustrated and those of 

ΔAUC12 are shown in Fig.6b. In both figures, one can see that the portions approach to 

95% starting from the sample size of 100 and get closer when the size increases regardless 

of the number of groups. It is noticeable that the result for ΔROC12 is presented at one 

value of FPR but the similar ones are also obtained at different points on the ROC curves. 

It implies that the convergence occurs for the entire ΔROC12. Moreover, results for other 

pairs are also found analogous to that of ΔROC12. In addition, we compute the probability 

of Type I error of the homogeneity test. In Figure 7, we depict Type I error rate of the test  

for ROC curves at FPR of 0.3 (a) and for AUCs on (b). As seen in Fig.7, regardless of the 

number of group, the Type I error approaches 5% for both of tests using ROC curves and 

AUCs. Analogous results are also retrieved for different values of FPR. 

● G=5 ● G=5 
● G=6 ● G=6 
● G=7 ● G=7(a) (b) 
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Figure 7: Type I error rate for the test for ROCs at FPR of 0.3 (a) and for AUCs (b). The 
dashed grey line is 5% significance level. Parameters are fixed the same as in Figure 6. 

We illustrate calculation of minimum sample sizes given α and β with settings supporting 

for the alternative hypothesis. First, with evenly distributed samples, minimum sample 

sizes to reach a probability of a Type I error of 5% and a power of 80% is demonstrated in 

Table 2. With each setting, the minimum sample size is calculated by using TPR at three 

different FPRs, denoted at t1, t2, t3. Estimated sample size using AUCs is also provided. 

With setting 2, a vector of AUC values is   = (0.736, 0.736, · · ·  , 0.736, 0.829) whose last 
entry is larger than others. With setting 3,   = (0.736, 0.736..., 0.736, 0.829, 0.829) where 

last two identical elements are larger than others. With setting 4 where all elements are 

different,   = (0.736, 0.776, 0.812, 0.844, 0.873, 0.897, 0.918) for seven groups. If less groups 

are needed, for instance five groups, first five elements are used. 
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Table 2: Minimum sample sizes with α = 0.05, β  = 0.2. J=10, L=7 and ψ = 0.5, and 
  = 1.5, x1 = 0.5 are used. FPRs at t1 = 0.3, t2 = 0.5, t3 = 0.7 are selected. 

Setting 2 Setting 3 Setting 4 

G t1 t2 t3 

3 41 47 58  

4  35 37 47  

5  33 35 41  

AUC 

41  

35  

33  

t1 t2 t3 

42 49 68  

30 35 46  

24 28 34  

AUC 

43  

30  

24  

t1 t2 t3 

80 89 115  

37 43  56  

19 24  30  

AUC 

80  

37  

22  

6  

7  

31 34 38  

29 31 36  

31  

29  

21 23 30  

20 22 26  

25  

20  

12 14  

8  10  

19  

13  

12  

8  

As seen in Table 2, with each setting, a larger sample size is needed if a higher FPR is used. 

This can be explained as at higher FPR, the gap between curves are narrower. Furthermore, 

with three settings, the minimum sample sizes retrieved from ROC curves at FPR of 0.3 are 

{ROC}
similar to those from AUCs. That could be because at FPR of 0.3, the gaps in TPRs, ΛC 

{AUC}
and difference in AUCs, ΛC , among rater groups are similar. Next, we investigate the 

scenario in which groups have different number of raters. Denote n1 : n2 : · · ·  : nG be the 

ratio of the number of raters among groups, i.e. J1 = n1J, · · ·  , JG = nGJ . We use setting 

4 with four groups for following calculations. The minimum sample size presented in Table 

3 are the number of samples assigned for each rater. As seen in the table, the minimum 

sample size is sensitive to changes of the ratio. Assume that among four groups, one has 

twice samples than others which is described in first four rows in Table 3. It  is  obvious  that  

which group has more samples influences the total minimum sample size. This finding is also 

seen with different ratios of samples. Once again, the minimum sample sizes retrieved from 

higher FPRs are larger than that from a lower one. Additionally, sample sizes obtained by 

using FPRs of 0.3 is still similar to those from AUCs. 
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Table 3: Minimum sample sizes with different number of raters in groups. α = 0.05, β  = 0.2 
J=10, L=7 and ψ = 0.5, and   = 1.5, x1 = 0.5 are used. FPRs at t1 = 0.3, t2 = 0.5, t3 = 0.7 
are selected. 

Ratio t1 t2 t3 AUC Ratio t1 t2 t3 AUC 

1:1:1:2 28 33 45 29 2:1:1:2 20 23 30 20 

1:1:2:1 37 42 57 37 2:1:2:1 25 28 38 25 

1:2:1:1 35 39 51 35 1:2:3:4 20 24 33 20 

2:1:1:1 26 29 38 26 4:3:2:1 18 19 24 18 

1:1:2:2 29 32 46 29 4:2:2:1 17 19 25 17 

1:2:1:2 26 30 40 26 1:2:2:4 20 24 32 20 

2:2:1:1 25 28 37 25 4:2:1:4 10 11 15 10 

1:2:2:1 34 37 50 34 4:1:2:4 10 12 16 10 

Application of the proposed method to facial recognition Forensic facial examiners 

perform detailed comparisons between images of two faces and determine if the faces are 

from the same person or different people. Examiners’ extensive training and qualifications 

allow them to give expert opinion in court proceedings. Because of facial examiners’ detailed 

comparisons, the field of facial forensics is a pattern-based forensic discipline. Two reports 

identified the necessity to empirically measure error rates for pattern-based disciplines in 

forensics [24, 33]. [32] provided the needed scientific evidence of facial examiners’ ability 

by conducting a study that measured examiners’ accuracy when they performed forensic 

comparisons. To assess examiners’ ability relative to other groups, the study measured the 

accuracy of forensic facial reviewers, super-recognizers, fingerprint examiners, and students. 

Forensic facial reviewers are trained to perform facial comparisons faster than examiners. 

Super-recognizers possess a natural ability to recognize faces. Fingerprint examiners special-

izing in comparing latent fingerprints. Students served as a proxy for the general population. 

Next we give an overview of the methods in [32]. The participants consisted of 57 facial ex-
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aminers, 30 facial reviewers, 13 super-recognizers, 53 fingerprint examiners and 31 students. 

Each participate judged the similarity of the same 20 face-pairs. For each face-pair, par-

ticipants judged the similarity of the two faces on a 7-point scale, with +3 for the highest 

confidence of same person to –3 for the highest confidence of different people. [32] computed 

accuracy at the individual level by computing the AUC for each participant. They reported 

overall group accuracy with the median AUC of the group and compared two groups with 

the Mann-Whitney test. In our analysis, we pool participants for each of the five groups 

and we assume members within the same group have the same accuracy. Using scores as 

outcomes and group status as covariates, we estimate the ROC curves and the corresponding 

AUCs for each group. The two methods produce slightly different results, but overall the 

results from the two studies are consistent. 

We start our analysis by applying our ordinal regression technique to facial recognition 

ratings and estimating the ROCs and AUCs for each of the first subject groups. For the ROCs 

we compute the 95% confidence bands and for the AUC we compute the 95% confidence 

intervals. Figure 8 shows estimated ROCs and AUCs with corresponding 95% confidence 

bands and intervals for each group. Based on the AUC estimates, the facial examiners has 

the highest AUC followed by super-recognizers, facial reviewers, fingerprint examiners, and 

students. This order agrees with [32]. 

Next, we check if the the AUCs and ROCs for five groups are statistically different. We 

formulate this question as a hypothesis test with the null hypothesis that the AUCs (respec-

tively ROCs) for all five groups are statistically the same. If the null hypothesis is not true, 

then at least one of group’s AUCs (respectively ROCs) are statistically different than other 

four groups. First, we test AUCs and for the five groups, then the ROCs. For AUCs, we 

compute the homogeneity test statistic Ψ = 129.2. Since this test statistic is larger than 

χ2 (0.95, df  = 4)  =  9.49, the null hypothesis is rejected with a 95% confidence level, and 

the AUCs are not the same for all five groups. We perform the homogeneity test for the 
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Figure 8: Plot of estimated ROCs and their 95% confidence bands for the five participant 
groups. The upper left panel shows the estimated ROCs for all five groups and the legend 
reports the estimated AUC for each group. The remaining panels plot the ROC and confi-
dence bands for each group individually. In each panel, the solid lines is the estimated ROC, 
the dashed lines are upper and lower bound of the 95% confidence bands, and the legend 
states the group and reports the 95% lower and upper confidence intervals for the AUC. 
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Figure 9: Plots the values of the test statistic Ψ for ROC curves (the blue solid line) ver-
sus FPR. The dashed line is the critical value for the 95% confidence of the Chi-square 
distribution with df=4. 

ROCs, which requires computing the test statistic Ψ for all FPR values. In Figure 9 we plot 

the value of test Ψ as a function of FPR. The test statistic is larger than the critical value 

χ2 (0.95, df  = 4), except for FPR values close to 1. Thus, the ROCs are different for FPRs 

smaller than 0.95 and the same for FPRs greater than 0.95. 

Since the homogeneity tests showed differences among the AUCs and ROCs of the five groups, 

we perform post hoc pairwise comparison. This allows us to identify which groups have 

different AUCs or ROCs. We assess statistical differences between two ROCs, by comparing 

the ROCs at each FPR. For comparing two ROCs, there are three possible conclusions: the 

two ROCs are statistical the same for all FPR, they are statistical different for all FPR, or 

for some FPRs the two ROCs are the same and for some FPRs they are different. In our 

analysis we found all three cases. In most applications, systems operate a low FPRs, and 

our technique allows engineers to focus on the FPR relevant to their applications. Figure 10 

shows the pairwise comparison for four groups: examiners, reviewers, super-recognizers, and 

fingerprint examiners. We start by looking at the pairwise comparison of facial examiners 

and fingerprint examiners, upper-left-hand plot in Figure 10. The horizontal axis corresponds 

to FPR, and the vertical axis reports the ΔTPR, the difference between the two ROCs at 
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Figure 10: Differences between ROC curves of four groups in facial recognition data. The 
horizontal axis corresponds to FPR. The vertical axis reports the ΔTPR, the difference 
between the two ROCs at each FPR. The solid line shows the estimated difference between 
the ROCs. Dashed lines are upper and lower bounds of the 95% confidence band. 

each FPR. The solid line shows the estimated difference between the ROCs’ for the face 

examiners minus the fingerprint examiners. Dashed lines are upper and lower bounds of the 

95% confidence band. For all FPRs, the 95% confidence band, the gray region, is above the 

ΔTPR  = 0 line. Thus, for the entire ROCs, the face examiners and fingerprint examiners 

are statistical different with 95% confidence. 

For facial examiners and super-recognizers, the 95% confidence band contains the ΔTPR  = 0  

line, therefore, the differences between the ROCs is not statistical significant with 95% 

confidence for all FPRs. We get the same findings when comparing facial reviewer and 

super-recognizers. These results are consist with the previous ad-hoc analysis for AUCs that 

found no statistical difference with 95% confidence. For facial examiners and reviewers, the 
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confidence band is not above the ΔTPR  = 0 line, nor does the band contain the ΔTPR  = 0  

line. Instead, for FPR  ≤ 0.15 and FPR  >  0.8, the the band contains the ΔTPR  = 0,  

and for 0.15 < FPR  ≤ 0.8, the the band contains the ΔTPR  = 0 line. Thus, for FPR  ≤ 

0.15 and FPR  >  0.8, the examiners and reviewers have the same accuracy with a 95% 

confidence, and for 0.15 < FPR  ≤ 0.8, the examiners and reviewers have different accuracy 

with a 95% confidence. In the majority of applications, the operating point requires a low 

FPR. Systems general operate at a low FPR to minimize false accusations. The comparison 

between super-recognizers and fingerprint examiners has a similar pattern. For FPR  <  0.6, 

the difference is significant, and for FPR  >  0.6, the difference is not significant–both with 

95% confidence. 

Overall, our conclusions are consistent with [32] , with each having difference strengths. [32] 

concentrated on the accuracy of individual participants and permitted examination of the 

range of accuracy for members of each group. Our analysis treat groups as covariates, and 

analysis produced ROCs with confidence bands and AUCs with confidence intervals . One 

key strength of out approach is the ability to produce results at operationally relevant decision 

thresholds. Since the majority of applications operate at low FPRs, producing results with 

error bands for ROCs will enable examiners, analysts and engineers to concentrate on the 

appropriate FPRs. 

3.2.2 Research Question 2: Develop error rate interpretation tools using ROC 

regression models 

The location-scale model [12] is an established approach for modeling covariate-specific ROC 

curves, which we summarize here. In essence, the location-scale model assumes that in each 

of the two populations indicated by the binary status variable D, the score T can be expressed 

as a location-scale transformation that depends on the covariates. Specifically, the location-

scale model postulates that T = D{μ1(X; b∗)+σ1(X; a ∗) ·e1}+(1−D){μ0(X; b∗)+σ0(X; a ∗) · 1 1 0 0 

e0}. The above equation involves the following quantities: 
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• e0 and e1 are random variables with “location” zero and unit “scale”, where the measure 

of location can be, for example, the population mean or median, and the measure of 

scale can be the standard deviation or the median absolute value of the differences 

from the median (MAD). 

• μj (·) and  σj (·), j ∈ {0, 1}, are referred to as location and scale functions, respectively. 

The latter are assumed to be known functions of the covariates X, and depend on 

unknown parameters b∗ 
j and a ∗ 

j , j ∈ {0, 1}. In this project, we confine ourselves to 

functions having identical form for both values of D and that are linear functions of 

unknown parameters, i.e., 

∗ ∗ ∗ b ∗ μj (x; b 
∗ 
j ) =   (x) j + b ∗ 

0j , σj (x; aj ) = Ψ(x) aj + a0j , j ∈ {0, 1}, (2) 

so that b∗ 
j = (b∗ 

0j , [bj 
∗] ) and a ∗ 

j = (a ∗ 
0j , [a ∗ 

j ] ) . To avoid notational clutter, we 

henceforth assume without loss of generality that  (x) =  x since this can be achieved 

by augmenting x as needed to include additional transformations of the original set of 

covariates. 

In the sequel, homoscedasticity will refer to the case in which σ1 and σ0 do not depend on 

X; otherwise, we shall speak of heteroscedasticity. 

Proposed approach 

A major shortcoming of the composite quantile regression (CQR) is the requirement of 

i.i.d. errors. Consequently, the model associated with CQR is misspecified under het-

eroscedasticity, and the resulting estimates can exhibit substantial bias. Even though CQR 

may be arbitrarily more efficient than plain median regression in the i.i.d. case, the gain in 

efficiency can be rather moderate for common error distributions: for the family of Gaus-

sian scale mixtures, which includes the Laplacian, logistic, and t-distribution among many 

others, the relative efficiency cannot exceed 1.5 (with the upper bound being attained by 
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Figure 11: Ratios of the asymptotic variances of ROC x(u) [maximized over u ∈ (0, 1)] based 
on median regression (MR) and composite quantile regression (CQR) according to Theorem 
2 in [10] for a single covariate with domain X = [0, 1] and different error distributions (N – 
Normal, CN – Contaminated Normal, T – t-distribution, cf. setup). 

the Gaussian distribution) as proved in the supplement [46]. Apart from these statistical 

aspects, CQR is also computationally more involved than median regression. In light of 

the above considerations, the use of the latter is proposed in this project, complemented 

by suitable additions to incorporate 1) the ordering constraint (1) discussed in the previous 

section, and 2) possible heteroscedasticity. Specifically, our approach is based on two-fold 

median regression, the first of which is used to estimate the location functions. Following 

He’s method [17], the second median regression is employed to estimate the scale functions 

by regressing the absolute residuals of the preceding median regression on the given covari-

ates. Subsequently, the base CDFs G0 and G1 are estimated by the corresponding empirical 

CDFs of the resulting rescaled residuals. In combination, this scheme yields estimates of all 

components in the expression for the covariate-specific ROC. In the sequel, we provide more 

detailed accounts of the individual steps. 

For what follows, we suppose that we are given a sample of N triplets {(Ti, Di, xi)}Ni=1 each 

consisting of a continuous score, a {0, 1}-valued status indicator, and covariates. Specifically, 

it assumed that Ti|Di, xi, 1  ≤ i ≤ N , are independent random variables distributed according 

to the location-scale model. Without loss of generality, we assume that the triplets are 

ordered by the value of their status, i.e., Di = 0  for  i = 1, . . . , n  = |{1 ≤ i ≤ N : Di = 0}|, 
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and accordingly Di = 1 for the remaining indices i = n + 1, . . . , n  + m = N . 

Stage I : Solve the median regression problem minβ∈Rd y − Xβ 1 subject to Aβ ≥ 0, 

where y = (Ti)
N
i=1 and X is an N × d matrix, d = 2(p + 1),  whose  i-th row  is  given by  

Xi• = [1  xi Di (xi · Di) ] containing an intercept, status indicator, covariates, and 

interaction terms between the previous two, 1 ≤ i ≤ N . The (system of) linear inequality 

constraints expressed by Aβ ≥ 0 serve as proxy for the ordering constraint imposed on the 

two location functions associated with the status indicator, i.e., μ1(x; b∗ 
1) ≥ μ0(x; b∗ 

0) for  

x ∈ X  in Eq. (1). While the constraint (1) is linear in the parameters for any fixed x, the  

set X could be complex1 , and as a result, would render the constraint difficult to implement. 

There are two possible proxies that yield reductions to linear inequality constraints (cf. Figure 

12 for illustrations): 

(1) Outer approximation: suppose that [lj , uj ] are known upper and lower bounds for the j-th 

covariate, 1 ≤ j ≤ p. Then, the hyperrectangle X := [l1, u1]× . . .× [lp, up] includes X , and  by  

convexity the constraint (1) holds if it holds for the vertices {v }q = {l1, u1}×  . . .  ×{lp, up}=1 

of X , where  q = 2p. Accordingly, the α-th row of A is given by [0p+1 1 v ], α = 1, . . . , q. 

(2) Inner approximation: the constraint is imposed for the observed covariates {xi}N ori=1 

a suitable subset thereof. Accordingly, each row of A is of the form [0p+1 1 xi ]. For 

more examples and a discussion of the merits of the two approximation schemes, we refer to 

[47]. 

Stage II : Let  βM denote the minimizer, and let further r = y − XβM denote the resulting 

residuals. In view of the location-scale model according to (2), the median of |T − μj (x; b∗ 
j )| 

∗ ∗ ∗given D = j, X = x equals σj (x; aj ) = Ψ(x) a + a0j , j  ∈ {0, 1}. This suggests thatj 

the scales can be inferred from median regression of the absolute values of the residuals 

|r|= (|ri|)Ni=1 on Z whose rows are given by [1  zi Di (zi · Di) ] with  zi = Ψ(xi), 1 ≤ i ≤ N . 

1By “complex”, we here mean difficult to characterize in terms of computationally tractable (convex) 
constraints [3]. 

34 
This resource was prepared by the author(s) using Federal funds provided by the U.S. 

Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
necessarily reflect the official position or policies of the U.S. Department of Justice.



�

� � � ��� ��
� � � � � � �� � � � �

�
� � �

Outer approximation Inner approximation 

Figure 12: Illustration of the two constraint set approximation schemes described in the 
text. The dots represent the observed covariate values {xi}Ni=1, here taking values in [0, 1] × 
[0, 1] × {0, 1}, corresponding to two continuous covariates and one binary covariate. The 
gray-shaded areas depict the outer (left) and inner (right) approximations. 

Specifically, we solve the following second median regression problem: 

min �|r|−Zγ 1, (3) 
γ∈R2(s+1) 

where s denotes the dimension of the {zi}N This approach for estimating scale functionsi=1. 

in the presence of heteroscedasticity originates in the quantile regression literature [17], and 

will henceforth be referred to as “He’s method”2 . 

Stage III : Given the output from the previous two stages, we obtain the standardized resid-

uals 

Ti − βM βMri 0 − xi X e0i = = , i  = 1, . . . , n,  
γM γMσ0(xi) 0 + zi X 

ri Ti − β0
M − βM − xi (β

M + βM )D X XD  e1i = = , i  = (n + 1), . . . , N,  
σ1(xi) γM + γM + zi (γ

M + γM )0 D X XD  

where γM denotes the minimizer of (3). The standardized residuals serve as proxy for the 

i.i.d. i.i.d.
centered and scaled errors {e0i}n ∼ G0 and {e1i}N ∼ G1 according to the location-i=1 i=n+1 

scale model for the scores {Ti}N . Let  G0 and G1 denote the empirical CDFs of the {e0i}n 
i=1 i=1 

2We note that the approach does not explicitly enforce non-negative fitted values. However, we did not 
encounter any instances with negative fitted values neither with simulated nor real data. 
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and {e1i}N respectively. Finally, the covariate-specific ROC for X = x is estimatedi=n+1, 

as 

σ0(x) μ1(x) − μ0(x)
G−1ROCx(u) = 1  − G1 0 (1 − u) − , u  ∈ (0, 1),

σ1(x) σ0(x) 

where μ1(x) − μ0(x) =  βM + x βM σ0(x) =  γM +Ψ(x) γX 
M ,D XD, 0 

σ1(x) =  σ0(x) +  γM +Ψ(x) γM 
D XD. 

Modifications 

We here outline two modifications of the approach outlined in the preceding subsection. 

The first modification integrates ordering constraints into CQR and represents a possible 

alternative to Stage I above in homoscedastic settings. The second modification concerns 

non-linear modeling of covariates based on basis functions. 

Order-constrained CQR. We here briefly sketch how the the integration of the order con-

straints in Stage I can be accomplished in a similar way when using the DZ method based 

on CQR. For τ ∈ (0, 1), consider the so-called check loss ρτ : R → R+ defined by u �→ ρτ (u) =  

u{τ − I(u ≤ 0)}, and let further τk = k/(K + 1)  for  K ≥ 1 odd. A CQR-based counterpart 

to the constrained median regression problem is then given by the formulation 

K N�� 
min ρτk (Ti − β0k − xi βX − Di · βDk − Di · xi βXD)  (4)  

k=1 i=1 

subject to Aβ(K+1)/2 ≥ 0, where βk = (β0k βX βDk βXD) , 1 ≤ k ≤ K. (5) 

The above optimization problem can be expressed as a linear program [22]. Note that by 

imposing the constraints Aβk ≥ 0 for all 1 ≤ k ≤ K, median ordering as represented by 

(5) can be strengthened further to incorporate ordering for all quantiles under consideration, 

i.e., Q(τk|D = 1, X  = x) ≥ Q(τk|D = 0, X  = x) for all 1 ≤ k ≤ K given the homoscedastic 

model that underlies CQR. approach in conjunction with the expanded sets of constraints 
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will be referred to as “Order-constrained CQR”. 

Non-linear modeling of covariates. We here provide an outline showing how the order-

constrained median regression formulation in Stage I in the previous subsection can be 

extended to allow for non-linear covariate effects. To keep the exposition simple, we confine 

ourselves to a single continuous covariate with domain X = [0, 1], and present technical 

details in the supplement [46]. The basic idea is to expand the location functions μ0 and μ1 in 

a suitable set of basis functions (in the sequel, we use cubic B-splines given their popularity, 

but this choice is not essential), employ a roughness penalty to enforce smoothness, and 

approximate the order constraint μ1(x) ≥ μ0(x), x ∈ X  , by imposing it over a finite grid 

of points X ⊂ X  . With a quadratic penalty as typically used for splines, the smoothing 

parameter can be chosen efficiently via generalized cross validation-type criteria, building on 

ideas in [38] and  [41]. Specifically, letting {h }L denote the basis functions, the following =1 

optimization problem is solved: 

⎧⎨ 
h (xi)b1 

����� + λ(b0 Pb0 + b1 Pb1) 

⎫⎬ ⎭ 

����� 
����� 

����� �L L� 

i: Di=0 =1 i: Di=1 =1 

� � 
min h (xi)b0 +Ti − Ti − ⎩b0=(b0 ) 

b1=(b1 ) 

L 

subject to (b1 − b0 )h (x) ≥ 0, x  ∈ X , 
� 

=1 

where P is a symmetric positive semidefinite matrix representing a roughness penalty such as 

the integrated squared derivatives of the associated basis function expansions (cf., e.g., [13]), 

λ >  0 is a smoothing parameter, and the constraint serves as proxy for the order constraint 

under consideration. The above optimization problem reduces to quadratic programming 

and is straightforward to solve via modern optimization techniques. 

Applicaiton to biometric data 

In this section, we present an application of our framework to biometric data including 

fingerprint data in the FBI Biometric Collection [18] and the Face Recognition Vendor Test 

[31]. The fingerprint data set is a subset of the FBI Biometric Collection of People (BioCoP) 
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Figure 13: Age-stratified Binormal and pooled ROC curves for the fingerprint dataset. Strat-
ification by age is based on the age of the query subject. 

Next Generation Identification Phase 1 between 2008 and 2009 [18]. Data collection involved 

the acquisition of latent and exemplar fingerprints. The latent fingerprints were friction 

ridge impressions deposited on common materials. Higher-quality exemplar fingerprints were 

acquired under controlled conditions using standard ink and paper methods. The comparison 

scores were generated by comparing latent prints to exemplar prints. The matching scores 

were obtained using the end-to-end latent fingerprint search system recently published by [5]. 

The algorithm does include automated ridge structure cropping, latent image pre-processing, 

feature extraction, feature comparison, and outputs a candidate list. The underlying model 

is robust to poor quality latent fingerprints since it generates a set of virtual minutiae to 

construct a texture template. The resulting data set contains n = 193 genuine pairs and 

m = 40, 304 imposter pairs. 

In Figure 13, we display binormal ROC curves fitted to different age strata (determined 

by the age of the query subject only) in the fingerprint dataset under consideration. The 

“pooled” ROC curve based on the entire data serves as a reference. Figure 13 indicates 

that the age-stratified ROC curves are visibly different across strata, and it is therefore 

appropriate to consider covariate-specific curves, with (logarithm of) age being one of the 

covariates. In addition, we also use gender (binary, with “1” representing “male”) and race (a 

binary indicator for individuals who identify as “white”) as covariates. We also considered 

pairwise interactions of these two variables; after model selection based on the AIC, the 
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interaction between age and race was dropped. Specifically, we propose the following linear 

model. 

Tij =β0 + β1Dij + β2 · Ai + β3 · Aj + β4 · Gi + β5 · Gj + β6 · Ri + β7 · Rj 
+ β8(Ai · Gi) +  β9(Ri · Gi) +  β10(Aj · Gj ) +  β11(Rj · Gj ) +  β12(Ai · Dij ) 

+ β13(Gi · Dij ) +  β14(Ri · Dij ) +  β15(Ai · Gi · Dij ) +  β16(Ri · Gi · Dij ) 

+ Dij �ij1 + (1  − Dij )�ij0. (6) 

Here, we have Dij = 1 when the subject belongs to the genuine group and Dij = 0 otherwise. 

The symbols A, G, and  R represent the logarithm of age, gender, and race, respectively. In 

the above equation, the index i equals the ID of the query subject, and the index j equals 

the index of the gallery subject. Different regression coefficients are assumed in the genuine 

and in the imposter group, hence interaction terms with D are included. Note that only 

interactions for terms associated with the query subject are needed, e.g., Ai · Dij but not 

Aj ·Dij (since if Dij = 1  we  must  have  Ai = Aj and in turn Ai ·Dij = Aj ·Dij ). The random error 

terms {�ij0} and {�ij1} are supposed to be i.i.d. (in particular, independent of all covariates), 

i.e., we consider a homoscedastic model. Examination of the residuals from the regression 

model in (6) did not reveal a departure from homoscedasticity. 

We compare the methods for estimating covariate-specific ROC curves based on model (6). 

Since genuine scores tend to be larger than imposter scores, specific attention is paid to 

the use of the order constraints for MR and CQR3 , respectively, and their effectiveness in 

stabilizing estimation (i.e., achieving variance reduction) compared to the unconstrained 

counterparts. Specifically, we impose the constraint that the linear predictor for genuine 

pairs exceeds the linear predictor of the imposter pairs, uniformly in the observed range for 

age (18 to 73) and all gender-race combinations (cf. supplement [46] the precise form of the 

3For this analysis, we consider a partial CQR model in which the regression coefficients involving the 
model terms Gi and Gj depend on the quantile τ while the coefficients of all other terms are independent of 
τ . 
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corresponding constraint matrix). 

Table 4 reports means, standard deviations, and associated variance ratios of the estimated 

covariate-specific ROC curves for x = (Ai, Aj , Gi, Gj , Ri, Rj ) = (log  x, log x, 1, 1, 1, 1) and x ∈ 

{30, 40, 50} over 1000 bootstrap samples drawn from the original data. 

Table 4: Mean and standard deviation (SD) of ROC x(u) for different ages x and false 
accept rates u for the facial recognition data based on 1k bootstrap iterations. MR : median 
regression; OMR : order-constrained median regression; CQR : composite quantile regression; 
OCQR : order-constrained composite quantile regression. The column VR contains the ratios 
of the variance of MR relative to one of the three other methods (larger values correspond 
to improved efficiency relative to MR). 

x 30 40 50 
u Method mean SE VR mean SE VR mean SE VR 

0.05 

MR 
OMR 
CQR 
OCQR 

0.454 
0.445 
0.455 
0.449 

0.088 
0.080 
0.085 
0.079 

– 
1.21 
1.09 
1.27 

0.542 
0.520 
0.540 
0.523 

0.100 
0.081 
0.096 
0.078 

– 
1.54 
1.07 
1.62 

0.612 
0.586 
0.608 
0.587 

0.108 
0.083 
0.108 
0.082 

– 
1.69 
1.00 
1.69 

0.1 

MR 
OMR 
CQR 
OCQR 

0.542 
0.528 
0.541 
0.530 

0.094 
0.088 
0.089 
0.085 

– 
1.15 
1.11 
1.22 

0.640 
0.618 
0.636 
0.618 

0.087 
0.070 
0.087 
0.071 

– 
1.52 
0.99 
1.51 

0.700 
0.680 
0.696 
0.681 

0.099 
0.080 
0.100 
0.081 

– 
1.54 
0.97 
1.50 

0.15 

MR 
OMR 
CQR 
OCQR 

0.609 
0.594 
0.605 
0.595 

0.080 
0.075 
0.079 
0.075 

– 
1.13 
1.02 
1.13 

0.694 
0.676 
0.691 
0.677 

0.083 
0.068 
0.084 
0.068 

– 
1.50 
0.97 
1.47 

0.745 
0.730 
0.744 
0.732 

0.095 
0.078 
0.096 
0.079 

– 
1.46 
0.97 
1.45 

0.2 

MR 
OMR 
CQR 
OCQR 

0.655 
0.638 
0.651 
0.640 

0.072 
0.069 
0.073 
0.070 

– 
1.08 
0.96 
1.05 

0.729 
0.715 
0.727 
0.717 

0.081 
0.065 
0.082 
0.066 

– 
1.52 
0.97 
1.49 

0.777 
0.765 
0.777 
0.768 

0.091 
0.076 
0.092 
0.076 

– 
1.44 
0.97 
1.43 

0.25 

MR 
OMR 
CQR 
OCQR 

0.690 
0.675 
0.687 
0.677 

0.067 
0.064 
0.068 
0.064 

– 
1.10 
0.96 
1.08 

0.760 
0.747 
0.759 
0.750 

0.077 
0.063 
0.079 
0.063 

– 
1.52 
0.97 
1.51 

0.803 
0.794 
0.803 
0.797 

0.088 
0.073 
0.089 
0.073 

– 
1.45 
0.98 
1.44 

Figure 14 shows contour plots of the variance ratios of the estimated covariate-specific curves. 

This observation is consistent with similar results in our simulations: the variance reduction 

achieved by the order constraint particularly concerns regions of the covariate domain where 

less data is observed. 

The face recognition data set contains similarity scores of human face pairs along with several 

covariates including the study subjects’ gender and age as well as image quality (a combined 
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Figure 14: Contour plots of the bootstrap variance ratios of MR vs. OMR for the estimated 
covariate-specific ROC in different ranges of FAR (Left: FAR range in [0, 1], and Middle: 
“zoom-in” for the FAR range [0, 0.2]. Contour lines corresponding to relative efficiencies less 
than 1.4 are not shown; in the white regions, the variance ratios take values in (0.9, 1.4). 
Right: Histogram and kernel density estimate of the age distribution in the underlying finger 
print dataset. 

rating for each pair of images) according to the categories “good”, “bad”, and “ugly”. The 

data set has been used for various purposes such as the validation of facial recognition 

algorithms [25, 42] and the study of the influence of image quality on accuracy [30]. 

The covariates observed with each matching score are given by age, gender, and image 

quality. As mentioned in the introduction of this section, the latter takes values according 

to the three categories “good”, “bad”, and “ugly”. We note that different from the other 

covariates, the variable image quality is recorded only once for each comparison rather than 

in terms of a covariate pair. Accordingly, for each image pair, we let Bij and Uij denote 

the two dummy variables associated with the image quality categories “bad” and “ugly”, 

respectively. As in the previous subsection, Ai and Aj denote the logarithm of the ages of 

the query and gallery subject, respectively; Gi and Gj denote the corresponding values of 

gender (binary, with “1” representing “male”). Examination of the residuals resulting from 

the fit of the regression model given below suggests that a heteroscedastic model depending 

on image quality is more appropriate than a homoscedastic model. Specifically, the model 
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under consideration can be expressed as 

Tij =β0 + β1Dij + β2 · Ai + β3 · Aj + β4 · Gi + β5 · Gj + β6 · Bij + β7 · Uij 
+ β8(Ai · Dij ) +  β9(Gi · Dij ) +  β10(Bij · Dij ) +  β11(Uij · Dij ) 

+ α1(Bij , Uij )Dij �ij1 + α0(Bij , Uij )(1 − Dij )�ij0, (7) 

where the {�ij0}, {�ij1} are each i.i.d. errors and α0(0, 0), α0(1, 0), α0(0, 1), α1(0, 0), α1(1, 0), 

α1(0, 1) are non-negative scale coefficients depending on genuine/imposter status (subscript) 

and the two values for the above dummy variables (parentheses). 

Model (7) and the resulting covariate-specific ROC curves are estimated based on our three-

stage approach without the order constraints; the order constraint is omitted in order to be 

able to study the impact of the proposed heteroscedastic adjustment alone. For comparison, 

we also fit the corresponding homoscedastic model in which α1 and α0 do not depend on 

image quality. The corresponding comparison with order constraints can be found in the 

supplement [46]. 

In order to investigate the sensitivity of the homoscedasticity assumption, we evaluate the 

differences of the estimated ROC curves under a heteroscedastic and homoscedastic model, 

respectively. Table 8 lists both relative and absolute differences of the averages values (over 

10k bootstrap samples) of the ROC curves for selected values of the FAR (0.05, 0.1, and 0.2) 

and covariates x = (Ai, Aj , Gi, Gj , Bij , Uij ) = (log  x, log x, g, g, b, u) with  x = 50  and  g, b, u ∈ 

{0, 1}. Table 8 shows that a homoscedastic model tends to produce larger ROC values. 

Differences are most pronounced for the image quality categories “good” and “bad”, with 

relative differences exceeding 30% for FAR = 0.05, and are less noticeable for the category 

“ugly”. Figure 16 provides a visual comparison on the logit scale. The plots highlight the 

differences of the ROC curves for small FAR. While the use of the heteroscedastic approach 

generic entails higher variability, Table 8 shows that the increase in variance is moderate, 

with MR+ having an efficiency of at least .63 relative to MR+ . 
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Table 5 gives the results of the estimated mean difference for different qualities. We note that 

the results of WLS and CQR are similar and RRQ has a larger SD than other methods. 

Table 5: Bias and SD of the estimated mean difference for the facial recognition data for 
different qualities. (WLS: weighted least square; RRQ: restricted regression quantiles; CQR: 
composite quantile regression; GCQR: grouped composite quantile regression.) 

quality good bad ugly 
method bias SD VR bias SD VR bias SD VR 
WLS 0.14 0.90 1.00 0.13 0.93 1.00 0.01 1.15 1.00 
RRQ 0.52 1.21 0.55 0.02 1.27 0.54 1.15 1.44 0.63 
CQR -0.03 0.89 1.02 0.01 0.91 1.04 0.29 1.19 0.93 

Table 8 shows the bias and SD of the covariate-specific ROC over 1000 bootstrap iterations 

for different qualities and different FPR. We do not recommend using the CQR method in a 

heteroscedastic model since it is highly bias. On the contrary, the bias using HM is relatively 

small, and the loss in statistical efficiency relative to WLSx is moderate. 

Table 6: Bias and SD of the covariate-specific ROC for different qualities and different 
values of u for the facial recognition data. (WLSx: grouped weighted least square; HM: He’s 
method; CQR: composite quantile regression) 

quality good bad ugly 
u Method bias SD VR bias SD VR bias SD VR 

0.1 
WLSx 

HM 
CQR 

-0.034 
0.102 
-0.300 

0.119 
0.080 
0.089 

1.00 
2.17 
1.77 

-0.033 
-0.114 
-0.262 

0.089 
0.103 
0.081 

1.00 
0.74 
1.20 

0.037 
0.048 
-0.108 

0.088 
0.104 
0.035 

1.00 
0.72 
6.36 

0.3 
WLSx 

HM 
CQR 

-0.010 
0.010 
-0.182 

0.050 
0.036 
0.095 

1.00 
1.91 
0.28 

0.051 
-0.007 
-0.251 

0.121 
0.134 
0.085 

1.00 
0.81 
1.99 

0.026 
0.078 
-0.197 

0.098 
0.138 
0.096 

1.00 
0.51 
1.04 

0.5 
WLSx 

HM 
CQR 

0.009 
0.009 
-0.101 

0.024 
0.024 
0.059 

1.00 
1.03 
0.17 

0.011 
-0.010 
-0.291 

0.066 
0.076 
0.103 

1.00 
0.76 
0.41 

-0.084 
0.015 
-0.315 

0.119 
0.118 
0.084 

1.00 
1.02 
2.03 

0.7 
WLSx 

HM 
CQR 

0.021 
0.018 
-0.015 

0.019 
0.021 
0.042 

1.00 
0.78 
0.20 

0.003 
0.001 
-0.137 

0.058 
0.063 
0.101 

1.00 
0.86 
0.33 

-0.022 
0.068 
-0.203 

0.115 
0.092 
0.099 

1.00 
1.56 
1.35 

0.9 
WLSx 

HM 
CQR 

-0.003 
-0.010 
-0.019 

0.008 
0.015 
0.019 

1.00 
0.28 
0.74 

-0.033 
-0.030 
-0.112 

0.035 
0.032 
0.065 

1.00 
1.24 
0.30 

0.024 
0.094 
0.075 

0.064 
0.060 
0.109 

1.00 
1.15 
0.35 

In addition to the values of the ROC curves, we also compare their (approximate) derivatives, 

which bear a close relationship with likelihood ratios (i.e., the ratio of the density of the scores 

in the genuine population over the density of the scores in the imposter population). Since the 
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Table 7: Mean, standard errors (SE), absolute differences (AD) of the mean, relative dif-
ferences (RD) of the mean, and variance ratio (VR) of the covariate-specific ROC values 
based on median regression (MR) vs. median regression followed by He’s method (MR+) for  
Ai = Aj = log 20 based on 10k bootstrap sample. 

gender male female 
quality FAR method mean SE AD RD VR mean SE AD RD VR 

good 

0.05 
MR 
MR+ 

0.644 
0.527 

0.149 
0.207 

0.118 0.22 0.52 
0.570 
0.469 

0.167 
0.101

0.204 
0.22 0.67 

0.1 
MR 
MR+ 

0.731 
0.653 

0.126 
0.165 

0.078 0.12 0.58 
0.665 
0.597 

0.152 
0.068

0.175 
0.11 0.76 

0.2 
MR 
MR+ 

0.829 
0.783 

0.082 
0.109 

0.046 0.06 0.57 
0.787 
0.743 

0.104 
0.045

0.124 
0.06 0.71 

bad 

0.05 
MR 
MR+ 

0.139 
0.109 

0.067 
0.095 

0.030 0.28 0.49 
0.113 
0.089 

0.070 
0.025

0.088 
0.28 0.64 

0.1 
MR 
MR+ 

0.199 
0.172 

0.087 
0.117 

0.027 0.16 0.56 
0.161 
0.139 

0.093 
0.023

0.110 
0.16 0.71 

0.2 
MR 
MR+ 

0.337 
0.314 

0.118 
0.145 

0.023 0.08 0.67 
0.273 
0.249 

0.127 
0.023

0.145 
0.09 0.77 

ugly 

0.05 
MR 
MR+ 

0.094 
0.091 

0.050 
0.072 

0.003 0.04 0.48 
0.072 
0.068 

0.041 
0.004

0.055 
0.07 0.55 

0.1 
MR 
MR+ 

0.135 
0.144 

0.067 
0.102 

0.009 0.07 0.43 
0.104 
0.108 

0.056 
0.004

0.079 
0.04 0.52 

0.2 
MR 
MR+ 

0.236 
0.251 

0.102 
0.140 

0.015 0.06 0.53 
0.187 
0.189 

0.086 
0.002

0.110 
0.01 0.61 

Table 8: Mean, standard errors (SE), absolute differences (AD) of the mean, relative dif-
ferences (RD) of the mean, and variance ratio (VR) of the covariate-specific ROC values 
based on median regression (MR) vs. median regression followed by He’s method (MR+) for  
Ai = Aj = log 50 based on 10k bootstrap sample. 

gender male female 
quality FAR method mean SE AD RD VR mean SE AD RD VR 

good 

0.05 
MR 
MR+ 

0.642 
0.545 

0.009 
0.009 

0.097 0.18 1.01 
0.595 
0.499 

0.167 
0.095

0.009 
0.19 1.06 

0.1 
MR 
MR+ 

0.702 
0.648 

0.008 
0.008 

0.055 0.08 1.05 
0.661 
0.607 

0.152 
0.054

0.008 
0.09 1.08 

0.2 
MR 
MR+ 

0.787 
0.754 

0.007 
0.007 

0.033 0.04 1.08 
0.755 
0.722 

0.104 
0.033

0.007 
0.05 1.10 

bad 

0.05 
MR 
MR+ 

0.261 
0.195 

0.008 
0.007 

0.066 0.34 1.10 
0.213 
0.157 

0.009 
0.057

0.006 
0.36 1.14 

0.1 
MR 
MR+ 

0.326 
0.287 

0.008 
0.008 

0.039 0.14 0.99 
0.274 
0.237 

0.008 
0.038

0.008 
0.16 1.02 

0.2 
MR 
MR+ 

0.442 
0.431 

0.009 
0.010 

0.010 0.02 0.93 
0.387 
0.373 

0.008 
0.014

0.009 
0.04 0.94 

ugly 

0.05 
MR 
MR+ 

0.191 
0.209 

0.006 
0.008 

0.018 0.10 0.69 
0.149 
0.162 

0.005 
0.014

0.006 
0.09 0.66 

0.1 
MR 
MR+ 

0.249 
0.286 

0.007 
0.009 

0.036 0.15 0.68 
0.200 
0.233 

0.006 
0.033

0.008 
0.16 0.63 

0.2 
MR 
MR+ 

0.360 
0.395 

0.009 
0.010 

0.035 0.10 0.77 
0.305 
0.338 

0.008 
0.034

0.009 
0.11 0.73 
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estimated ROC curves are not differentiable, its derivatives are approximated via difference 

quotients. Specifically, we compute the (approximate) log-likelihood ratios (LLRs) 

ROCx(u + h) − ROCx(u − h)
LLRx(u) = log  u ∈ (0, 1),

2h 

for h = 0.01. In the above equation, u corresponds to the FAR. 

The ROC in this function is estimated using covariate-specific ROC curve (average over 

10,000 bootstrap iterations) based on the heteroscedastic or homoscedastic fits. 
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Figure 15: Covariate-specific ROC curves (after applying the logit transformation to the 
TAR) with 95% pointwise uncertainty intervals (shaded areas) based on MR (solid line) vs. 
MR+ (dashed line) for age 50 over 10k bootstrap iterations. MR : median regression; MR+: 
median regression followed by He’s method. Best seen in color. 

3.2.3 Research Question 3: Develop evidence interpretation tools based on 

covariate-specific likelihood ratios 

In order to access the likelihood ratio, we use the relationship between ROC curve and 

likelihood ratio In order to access the likelihood ratio, we use the relationship between ROC 

curve and likelihood ratio. Accordingly, we first calculate the derivative of the covariate-
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Figure 16: The absolute mean difference for the estimation of covariate-specific ROC curves 
of MR vs. HM at age {20, 25, 30, 35, 40, 45, 50} over 10k bootstrap iterations. MR : median 
regression – homoscedastic fit; HM : He’s method – heteroscedastic fit. Best seen in color. 

specific ROC-curve: 

F −1 S−1(1−u)−μ(x,1;β∗) (u)−μ(x,1;β∗)1 0,x 1 0,xG1 G1σ1(x;α∗) σ1(x;α∗) σ1(x;α∗) σ1(x;α∗)1 1 1 1ROCx(u) =  = , u  ∈ (0, 1), (8)
F −1 S−1(1−u)−μ(x,0;β∗) (u)−μ(x,0;β∗)1 0,x 1 0,xG0 G0σ0(x;α∗) σ0(x;α∗) σ0(x;α∗) σ0(x;α∗)0 0 0 0 

where g0 = G0 and g1 = G1 denote the PDFs of e0 and e1. 

Evaluating (8) at  S0,x(t), t ∈ R, we obtain the covariate-specific likelihood ratio conditional 

on X = x: 

t−μ(x,1;β∗)g1σ0(x; α∗) σ1(x;α∗)
LRx(t) = ROCx(S0,x(t)) = 0 , t  ∈ R. (9)

σ1(x; α∗ t−μ(x,0;β∗)
1) g0 σ0(x;α∗) 

Estimator based on the Location-Scale Model 

In particular, the equation (9) suggests the following approach for estimation: 
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(i) Estimate μ(x, 0; β∗) and  μ(x, 1; β∗): 

In the simplest setting, X represents a single continuous covariate and XD  = (X1 ·D, · · ·  , Xp · 
D) , μ(X, D, β∗) is the following linear function in β∗ = (β∗, β∗ , β∗ , β∗ )0 D X XD  

μ(X, D; β ∗ ) =  β0 
∗ + β ∗ D + β ∗ X + β ∗ XD  (10)D X XD  

Define �0 = σ0e0 and �1 = σ1e1, then  T = μ(X, D; β∗) +  Dσ1(X; α1 
∗)e1 + (1  − D)σ0(x; σ0 

∗)e0 

can be written as T = μ(X, D; β∗) +  Dσ1e1 + (1  − D)σ0e0, substituting μ(X, D; β∗) by  

μ(X, D; β), we get the residual: 

�i = (1  − Di) Ti − μ(xi, 0; β) + Di Ti − μ(xi, 1; β) , i  = 1, · · ·  , N,  (11) 

(ii) Estimate σ0(x, α0 
∗) and  σ1(x; α∗ 

1): 

Without loss of generality, we assume that Di = 0,  for  i = 1, · · ·  , n0; Di = 1,  for  i = 

n0 + 1, · · ·  , N . Since �0 = σ0e0 and �1 = σ1e1, the corresponding CDFs Γ0(·) =  G0(·/σ0) 
and Γ1(·) =  G1(·/σ1) are estimated by the following equations, respectively: Γ0(·) =  

1 n0 ·−� 1 N ·−�K α0i , and  Γ1(·) =  K α1i . 
n0h i=1 h n1h i=n0+1 h 

t−μ1(x)In summary, for location-scale model, we have F0,x and F1,x, F1,x(t) =  F1 , and  
σ1(x) 

t−μ0(x)F0,x(t) =  F0 Assume σ1(x) ≡ c1 > 0 independent of x, and  σ0(x) ≡ c0 > 0 in-
σ0(x) 

t−μ1(x) t−μ0(x)dependent of x, then, F1,x(t) =  F1 = G1(t − μ1(x)), and F0,x(t) =  F0 = 
σ1(x) σ0(x) 

G0(t − μ0(x)). So, the estimate process was estimate μ1, μ0 using regression(least squares), 

compute the residual from regression, estimate Γ0 and Γ1 from the (standardized) residu-

als. 

Logistic Regression Model 

We estimate the covariate-specific likelihood ratio using other models other than the location-

scale model, like the logistic regression model. We compare of location-scale model and the 

logistic regression model to see whether the logistic regression model is more robust than 
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the location-scale model to estimate the covariate-specific likelihood ratio. 

� �� 
P (D = 1|X = x)

LRx(t) = exp  h(t) +  x T Ψ − log . (12)
P (D = 0|X = x) 

where, h is a smooth baseline function, Ψ ∈ Rp are regression coefficients associated with the 

P (D=1|X=x)covariates, XT Ψ is some factor depending on covariate X, log  will henceforth
P (D=0|X=x) 

referred to as ”correction term”. If the probability of D|X is independent of X, P (D = 

1|X = x) =  P (D = 0|X = x) =  c, for  c ∈ (0, 1), then LRx(t) =  eh(t) · exT Ψ+log(c). In  

h(t) xT Ψ+cgeneral, this can be written as LRx(t) =  e · e ∗ 
, the correction term is constant. We 

are considering this model because it is a convenient model. There is no interaction between 

LRx(t)X and t. If we look at the ratio of likelihood ratio 
LR , x and x represent two values of 

x ∗(t) 

covariance, this ratio does not depend on t, it only depends on x and x , so for any given 

value of t the ratio will be the same. This has non-crossing property, which is also one of 

the major criticism of the Cox model. The non-crossing property has been indicated in the 

figure 17. 

Figure 17: Imposter and genuine scores separated by a threshold based on continuous test 
scores. 
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This implies the following logistic regression model: 

� � 
P (D = 1|T = t, X = x)

log = h(t) +  x T Ψ =:  η(t, x). (13)
P (D = 0|T = t, X = x) 

h(t)+xT ΨeSo, D|T,X  ∼ Bernoulli expit(h(t) +  xT Ψ) , where expit(h(t) +  xT Ψ) = . 
h(t)+xT Ψ1+e 

h(t)+xT Ψe 
P (D = 1|X = x) =  fT |X=x(t)dtdt. h(t)+xT Ψ1 +  e 

Real Data Analysis 

We evaluate facial recognition data with covariates age (2004-yob) and gender using the 

proposed method. The facial recognition dataset from Face Recognition Vendor Test (FRVT) 

by Phillips [29]. 

Figure 18: Bootstrap mean and SD of LR based on real data analysis. Results of Covariate-
specific LR using location-scale model, naive logistic regression, and generalized linear mixed 
model and compare with Pooled LR. new is represent the generalized linear mixed model. 

In figure 18 we plot the log-likelihood ratio and also add the mean and standard deviations 

over the 1000 bootstrap replications. In each bootstrap replication, the value of Likelihood 

ratio is estimated using the location-scale model, näıve logistic regression, generalized linear 
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mixed model which are considered covariates, and compared with Pooled LR, which is ignore 

covariates. Age and gender are considered as multiple covariates in our study. We can denote 

the naive logistic regression as the old method and the generalized linear mixed model as the 

new method. For the new method, we use glmer function in R to fit the model. Instead of 

estimating the parameters (β and σ) separately, we estimate the value of log(LR) directly. 

The sample sizes in both groups are the same, i.e., n = m = 1000. 

After fitting the regression models, we have compared the location-scale model, näıve logistic 

regression, generalized linear mixed model, and the pooled likelihood ratio in figure 18. We  

have presented three approaches for estimating (score-based) likelihood ratios to account 

for covariates. These covariate-specific likelihood ratios can be much more appropriate than 

pooled likelihood ratios. The plot shows that the likelihood ratio can be noticeably influenced 

by the covariate. 

4 Artifacts 

4.1 List of products (e.g., publications, conference papers, technologies, web-

sites, databases), including locations of these products on the Internet or 

in other archives or databases 

1. The statistical package for the ROC regression methods was made publicly available 

as a R Shiny app at https://tynguyen.shinyapps.io/Ordinal_ROC/. User guides 

are written in plain language so that forensic scientists will be able to implement the 

developed tools. 

2. Zhu, X., Slawski, M., Phillips, P.J. and Tang, L.L., 2021. Order-constrained roc re-

gression with application to facial recognition. Technometrics, 63:3, 343-353, https: 

//www.tandfonline.com/doi/abs/10.1080/00401706.2020.1785549. 

3. Marasco, E., He, M., Tang, L., Sriram, S. (2021). Accounting for Demographic Differ-

entials in Forensic Error Rate Assessment of Latent Prints via Covariate-Specific ROC 

Regression. In Computer Vision and Image Processing: 5th International Conference, 
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CVIP 2020, Prayagraj, India, December 4-6, 2020, (pp. 338-350). Springer Singapore. 

(The paper won the Best Paper Award). 

4. Zhu, X., Slawski, M., Phillips, P.J. and Tang, L.L., 2023. A Framework for Covariate-

Specific ROC Curve Estimation, with Application to Biometric Recognition. Annals 

of Applied Statistics, Accepted. 

5. Hahn, C.A., Tang, L.L., Yates, A.N. and Phillips, P.J., 2022. Forensic facial examiners 

versus super-recognizers: Evaluating behavior beyond accuracy. Applied Cognitive 

Psychology, 36(6), pp.1209-1218. https://doi.org/10.1002/acp.4003. 

6. Marasco, E., He, M., Tang, L. and Sriram, S., 2022. Demographic-Adapted ROC Curve 

for Assessing Automated Matching of Latent Fingerprints. Springer Nature Computer 

Science), 3(3), p.190. 

7. Marasco, E., He, M., Tang, L. and Tao, Y., 2022, March. Demographic Effects in 

Latent Fingerprint Matching and their Relation to Image Quality. In 2022 7th Inter-

national Conference on Machine Learning Technologies (ICMLT) (pp. 170-179). 

8. Simpson, A., Michael, S., Borchet, D., Saunders, C., and Tang, L., 2023, Modeling sub-

populations for hierarchically structured data. Under revision at Statistical Analysis 

and Data Mining. 

9. Borchet, D., Michael, S., Simpson, A., Saunders, C., and Tang, L., 2023, Effects 

of prescreening for likelihood ratio approaches in the forensic identification of source 

problem. To be submitted to Science and Justice. 

4.2 Data sets generated 

Not applicable 

4.3 Dissemination activities 

Conference Presentations 

December 2020 - Dr. Martin Slowski gave an invited talk, titled “Univariate Likelihood 
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Ratio Estimation via Mixture of Beta Distributions” at 2020 ICSA Applied Statistics 

Symposium 

December 2020 - Dr. Xiaochen Zhu, with Drs Tang and Slawski as co-authors, gave a 

presentation, titled “Order-Constrained ROC Regression with Application to Facial 

Recognition” at 2020 ICSA Applied Statistics Symposium 

June 2021 - Ty Nguyen, the GRA supported by this grant, gave an oral presentation, 

titled “Quantifying Uncertainty in Classification Accuracy”, at the Crossing Forensic 

Borders Global Lecture Series. 

August 2021 - Dr. Tang gave an oral presentation, titled “Covariate-Adjusted ROC Curves: 

An Introduction and Application to Characterizing Hidden Behavior in Biometric 

Matching System” at 2021 Joint Statistical Meetings 

August 2021 - Dr. Ommen gave an oral presentation, titled “Machine Learning Methods 

for Dependent Data Resulting from Forensic Evidence Comparisons” at 2021 Joint 

Statistical Meetings 

August 2021 - Dr. Saunders served as a discussant in the session, titled “Bias and Inter-

pretability in Biometrics for Forensic Science” at 2021 Joint Statistical Meetings 

September 2021 - Dr. Saunders gave an oral presentation, titled “The Effect of Latent 

Structures on Forensic Values of Evidence”, at 2021 ICSA Applied Statistics Sympo-

sium in September 2021 

September 2021 - Ms. He Qi, who is supervised by Dr. Slawski, gave an oral presentation, 

titled “Approaches to Likelihood Ratio Estimation for Forensic Evidence Interpreta-

tion” at 2021 ICSA Applied Statistics Symposium 

September 2021 - Ty Nguyen who is supported by this grant, gave an oral presentation, 

titled “Homogeneity test for ordinal ROC regression and application to facial recogni-

tion”, at 2021 ICSA Applied Statistics Symposium 
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September 2021 - Dr. Ommen gave an oral presentation, titled “Constructing Coher-

ent Score-Based Likelihood Ratios that Account for Rarity” at 2021 ICSA Applied 

Statistics Symposium 

Feburary 2022 - Dr. Tang gave an oral presentation, titled “Assessing Error Rates in Mul-

tiple Examiner Groups Using Regression Methods” at 2022 Forensic Science Research 

and Development (RD) Symposium 

Feburary 2022 - Dr. Tang and his Ph.D. student, Ngoc-Ty Nguyen, gave an oral presen-

tation, titled “Ordinal Regression for Error Rates in a Black-Box Face Recognition 

Study” at AAFS 

Feburary 2022 - Dr. Tang gave a workshop on “Determining Sufficiency for the Identifi-

cation of Gasoline” at AAFS in Feburary 2022 

March 2022 - Drs. Marasco and Tang’s PhD students gave an oral presentation titled 

“Demographic Effects in Latent Fingerprint Matching and their Relation to Image 

Quality” at the ACM International Conference on Machine Learning Technologies in 

March 2022 

March 2022 - Dr. Saunders gave an invited keynote presentation titled “An Overview Of 

The Forensic Identification Of Source Problem” at the XIII COLOQUIO NACIONAL 

DE ESTAD ́ISTICA Escuela de Estad́ıstica - Facultad de Ciencias 

February 2022 - Dylan Borchert and Andrew Simpson presented two poster presentations 

at the 2022 South Dakota State University Data Science Symposium titled ”An Alpha-

based Prescreening Methodology for a Common but Unknown Source Likelihood Ratio 

with Different Subpopulation Structures” and ”Identifying Subpopulations of a Hier-

archical Structured Data using a Semi-Supervised Mixture Modeling Approach”. 

August 2022 - Dr. Tang and his student gave an oral presentation, titled “A Survey of 

Likelihood Ratio Method Development and Implementation Across Multiple Forensic 
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Disciplines” at Joint Statistical Meetings 

August 2022 - Ms. He Qi, who is supervised by Dr. Slawski, gave an oral presentation, ti-

tled “Approaches to Likelihood Ratio Estimation for Forensic Evidence Interpretation” 

at 2022 Joint Statistical Meetings 

August 2022 - Dr. Tang and his student gave an oral presentation, titled “Homogeneity 

Test for Ordinal ROC Regression and Application to Facial Recognition” at Joint 

Statistical Meetings 

August 2022 - Drs. Ommen and Tang gave an oral presentation, titled “Interpretation of 

Handwriting Evidence Using Error Rates and Score-Based Likelihood Ratios” at Joint 

Statistical Meetings 

Feburary 2023 - Drs. Ommen and Saunders gave an oral presentation, titled “ Statistical 

Discrimination Methods for Forensic Source Interpretation: The Application to Mi-

cromorphometric Feature Measurement of Aluminum Powders Used in Explosives” at 

the American Academy of Forensic Sciences meeting 

June 2023 - Dr. Michael gave an oral presentation, titled “Modeling heterogeneity in hier-

archically structured data for source identification problems” at the 2023 International 

Indian Statistical Association Annual Conference 

June 2023 - Dylan Borchert gave a poster presentation, titled “A prescreening method-

ology for the use of likelihood ratios with subpopulation structures in the alternative 

source population” at the 2023 International Indian Statistical Association Annual 

Conference 

June 2023 - Dr. Michael gave an oral presentation, titled “Detection and Characteriza-

tion of Subpopulations and the Study of Algorithmic Bias in Forensic Identification 

of Source Problems” at the 2023 International Conference on Forensic Inference and 

Statistics 
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Seminars/Workshops 

August 2021 - Dr. Saunders organized a topic-contributed session at 2021 Joint Statistical 

Meetings for this project 

September 2021 - Dr. Slawski organized and chaired an invited session “Advances in 

Forensic Statistics” at 2021 ICSA Applied Statistics Symposium in September 2021. 
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	1 Summary of the project 
	1 Summary of the project 
	1.1 Major Goals and Objectives 
	1.1 Major Goals and Objectives 
	In this research project, we aimed to develop error rate interpretation tools using regression on decision scores and using receiver operating characteristic (ROC) regression models. 
	In forensics, quantiﬁcation of error rates in pattern and trace evidence interpretation has been a concern raised by the congressionally mandated 2009 National Academy of Science (NAS) report Strengthening Forensic Science in the United States: A Path Forward, and more recently, the 2016 President’s Council of Advisors on Science and Technology (PCAST) report 
	-

	Forensic Science in Criminal Courts: Ensuring Scientiﬁc Validity of Feature-Comparison Methods. The 2009 NAS report highlights the need for developing quantiﬁable measures of uncertainty in forensic analyses. This report discusses the determination of error rates in forensic evidence, and the 2016 PCAST report discusses the validity and reliability of seven feature-based methods. Both reports emphasize the importance of measuring accuracy and performance, and transforming subjective feature-comparison metho
	-

	In response to these recommendations, the black box and white box studies in latent print examination and face recognition have been successfully conducted to systematically quantify errors in these forensic disciplines. The latent print study by [36] mainly studied examiners’ binary decisions of either individualization or exclusion, and presented a systematic study on the error rates including false positive rate (FPR) that is the probability of incorrect individualization on imposter pairs and false nega
	Figure
	the images come from the same source. A score obtained by comparing two images of the 
	same source is often referred to as a genuine score, and that obtained by comparing two diﬀerent sources as an imposter score. For the ordinal decision, error rates such as the FPR and the FNR are calculated for all possible thresholds. For a speciﬁc threshold point, the FPR is the percentage of imposter scores greater than the threshold in the non-genuine pairs, and the FNR is the percentage of genuine scores less than or equal to the threshold in the genuine pairs. As the threshold increases, the FPR decr
	These error rates and the ROC curve are obtained by pooling all the decisions from examiners or computer algorithms with same-source or diﬀerent-source pairs. These measures report the average error rates across a population of examiners for evidence sources. Ideally, the error rates tend to provide guidance for the error rates for interpreting a given evidence source if error rates are consistent for sources with various aspects and for examiners with various background. However, error rates may not be con
	Figure
	with diﬀerent demographics. Besides these covariates for the source subjects, the other set 
	of covariates related to forensic examiners may also play an important role in the error rates. Fro example, forensic examiners with diﬀerent training and demographics may not result in the same error rates. Hypothetically, more experienced examiners may tend to have higher conﬁdence and lower individualization error rates than newly recruited examiners. It would be ideal to account for both sets of covariates such as 1) source subjects’ covariate information including their demographics and/or source image
	Appropriately accounting for covariates in error rate assessment and evidence interpretation requires sophisticated statistical analyses with modern statistical concepts and methods. The recent 2018 NIJ Forensic Science Technology Working Group (TWG) Operation Requirements report speciﬁcally calls for research and development in “Determination of accuracy and reliability of forensic analyses and conclusions, including potential sources of error”, and “Practical statistical approaches for the interpretation 
	Appropriately accounting for covariates in error rate assessment and evidence interpretation requires sophisticated statistical analyses with modern statistical concepts and methods. The recent 2018 NIJ Forensic Science Technology Working Group (TWG) Operation Requirements report speciﬁcally calls for research and development in “Determination of accuracy and reliability of forensic analyses and conclusions, including potential sources of error”, and “Practical statistical approaches for the interpretation 
	-
	-

	ROC curves studied in the forensic literature. We will then relate these ROC methods to LR in terms of trace and pattern evidence interpretation by accounting for covariates. 

	Figure

	1.2 Research questions 
	1.2 Research questions 
	To achieve our main objective, we set out to explore three main research questions: 
	1. 
	1. 
	1. 
	Develop error rate interpretation tools using regression on decision scores; 

	2. 
	2. 
	Develop error rate interpretation tools using ROC regression models; 

	3. 
	3. 
	Develop evidence interpretation tools based on covariate-speciﬁc likelihood ratios. 



	1.3 Research design, methods, analytical and data analysis techniques 
	1.3 Research design, methods, analytical and data analysis techniques 
	1.3.1 Research Question 1: Develop error rate interpretation tools using regression on decision scores 
	-

	The ROC curve, which is commonly used in biometric system evaluation studies, and more recently, forensic error rate studies, is a plot of the true positive rate (TPR) (i.e., probability of identifying a case when the subject is truly diseased) versus false positive rate (FPR) (i.e., probability of identifying a case when the subject is not diseased) in dependency of the decision threshold. The ROC curve is widely used in radiology, psychophysical and medical imaging research for detection performance, mili
	The accuracy of biometric systems or humans in source identiﬁcation problems can be assessed with the ROC curve when the decision scores are ordinal or continuous. The source identiﬁcation problems aim to determine the link between the known source (suspect) and an unknown source (evidence from the crime scene). The identiﬁcation relates to a speciﬁed source population. In this project, sources are deﬁned as generators of the objects of interest (i.e., a person generates of face and handwriting proﬁles, and
	-
	-

	Figure
	Exclusion Individualization Exclusion Individualization 
	Figure 1: Schematic overview on notation used for decision scores, error rates, and ROC curve. 
	a generator of ﬁre debris). Thus, all the evidential objects considered in a given case are divided into three subsets as follows: es – a set of objects associated with or generated by a speciﬁed source; ea – collection of sets of objects each associated with a source of traces in an alternative source population; and eu – a set of trace objects that are all from the same unknown source. The evidence from the speciﬁed source es also includes covariates of the source such as the source subject’s demographic 
	Hp: The unknown source evidence eu and the speciﬁc source evidence es both originate from the speciﬁc source; 
	Hd: The unknown source evidence eu does not originate from the speciﬁc source, but from some other source in the alternative source population. 
	For each decision score, black-box studies often have a set of multiple covariates capturing various attributes, X =(Xs,...,Xd), such as 1) demographic properties of the underlying subjects (e.g., gender, age, race, ...), 2) measurement-speciﬁc contextual information (e.g., 
	Figure
	image quality), and 3) information regarding examiners’ background in terms of training 
	and experience. The covariate-speciﬁc ROC conditional on X = x, i.e., observing a certain combination of values for the covariates is deﬁned by ROCx(u)=1−Fp(F (1−u)|x), where
	−1

	d Fp and Fd denote the distribution functions of genuine and imposter scores conditional on X = x. The diagram in Figure 1 depicts the relationships. 
	In case of a single categorical covariate such as gender, age group, or image quality (‘good’, ‘bad’, ‘ugly’), the covariate-speciﬁc ROC curve boils down to stratum-speciﬁc ROC curves, where the strata are deﬁned by the category levels of the covariate. Examples are provided in Figure 2 which contrasts stratum-speciﬁc empirical ROC curves to their pooled counterparts without distinction between strata. The ﬁgure shows that ROC curves can diﬀer markedly across strata. Subgroup analysis as displayed in Figure
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	Figure 2: ROC curves for the GBU data. Left panel: Gender-speciﬁc ROC; Middle panel: quality-speciﬁc ROC; Right panel: age-speciﬁc ROC (in terms of year of birth). 
	a single covariate with a small number of category levels. Partitioning continuous covariates such as age into age categories is problematic since subsequent results depend on the choice of the number and range of age subgroups. Similarly, when considering several categorical covariates simultaneously, the number of subgroups grows exponentially with the number of covariates d. As a result, subgroup is analysis is no longer a suitable approach. 
	In addition to having potentially diﬀerent ROC curves with and without covariates, pooled error rates or the pooled ROC curve may also tend to overestimate the error rates or have a lower ROC curve. Such an example can be found in Figure 3. When covariate X changes, 
	Figure
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	Figure 3: Covariate-speciﬁc ROC vs. pooled ROC. First three panels (from the left): distribution of pooled scores and unpooled scores; rightmost panel: corresponding ROC curves. 
	-

	the covariate-speciﬁc ROC curves remain the same. Interestingly, the ROC curve by pooling all the data together is below both covariate-speciﬁc ROC curves. 
	It is clear from these ﬁgures that ignoring important covariates in the error rate assessment may lead to somehow diﬀerent error rate or ROC interpretation. Ideally, error rates or ROC curves should be provided with and without covariates. Regression techniques for the ROC curve will be studied in the project. 
	1.3.2 Research Question 2: Develop error rate interpretation tools using ROC regression models 
	Regression modeling can often be enhanced by incorporating additional structural properties such as bounds on the regression coeﬃcients, smoothness, or shape constraints. Taking advantage of such constraints can often lead to substantial reductions in estimation variance, particularly with small samples. In the above setting, it is often appropriate to assume that Ti,p is stochastically larger than Tj,d, which is known as stochastic ordering [9, 27, 19]. This ensures that the resulting ROC curve is always a
	Regression modeling can often be enhanced by incorporating additional structural properties such as bounds on the regression coeﬃcients, smoothness, or shape constraints. Taking advantage of such constraints can often lead to substantial reductions in estimation variance, particularly with small samples. In the above setting, it is often appropriate to assume that Ti,p is stochastically larger than Tj,d, which is known as stochastic ordering [9, 27, 19]. This ensures that the resulting ROC curve is always a
	(αp − αd)+(βp − βd)z ≥ 0 for all z ∈ [a, b], which by convexity is equivalent to the two linear inequality constraints (αp − αd)+ a(βp − βd) ≥ 0, (αp − αd)+ b(βp − βd) ≥ 0. which can be integrated seamlessly into parameter estimation for improved statistical eﬃciency. The rationale directly extends to the case of multiple bounded covariates. 

	Figure
	Order constraints 
	In the analysis of biometric traits, computer algorithms providing scores that assess agreement between pairs of measurements (e.g., ﬁngerprints or facial images) are typically calibrated to deliver larger scores for genuine pairs than for imposter pairs. Similarly, in biomarker studies, the level of a biomarker indicating the presence of a disease is supposed to be larger among diseased than healthy patients. This ordering property can be integrated into the location-scale model by requiring that that the 
	-
	-
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	1
	∗ 
	0
	∗ 
	∗ 
	∗ 
	∗ 
	∗ 

	1 0 10 0100 
	where the equivalence is according to (2) and the associated comment. 
	The constraint (1) has recently been studied in [47]. If the random variables eand ein are symmetric about zero, (1) is equivalent to stochastic precedence ordering [2] of the random variables T |{D =0,X = x} and T |{D =1,X = x} for all x ∈X . Moreover, in the case of identical scale functions in the two status groups, the constraint (1) is equivalent to (ordinary) stochastic ordering, i.e., P (T ≥ t|D =1,X = x) ≥ P (T ≥ t|D =0,X = x) for all t ∈ R and all x ∈X . Order constraints have received considerable
	The constraint (1) has recently been studied in [47]. If the random variables eand ein are symmetric about zero, (1) is equivalent to stochastic precedence ordering [2] of the random variables T |{D =0,X = x} and T |{D =1,X = x} for all x ∈X . Moreover, in the case of identical scale functions in the two status groups, the constraint (1) is equivalent to (ordinary) stochastic ordering, i.e., P (T ≥ t|D =1,X = x) ≥ P (T ≥ t|D =0,X = x) for all t ∈ R and all x ∈X . Order constraints have received considerable
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	sample size or weak separation of the score distributions in the two populations. 

	Figure
	1.3.3 Research Question 3: Develop evidence interpretation tools based on covariate-speciﬁc likelihood ratios 
	The likelihood ratio (LR) is LR = Pr(Yu,Yp|Hp)/P r(Yu,Yp|Hd) under the propositions. Here the numerator is the joint probability mass function or probability density function of evidence measurements Yu from unknown source objects and Yp from a known source, under the prosecutor’s hypothesis Hp that Yu and Yp come from the same source. The denominator is the joint probability or density of Yu and Yp under the defendant’s hypothesis Hd that Yu comes from a diﬀerence source from Yp. The Bayes factor updates t
	We use the upper-case letters such as Yu and Yp to denote random variables with probability distributions. X denotes covariates characterizing demographics of the known source and properties of relevant population. Let these original trace evidence measurements be Yu from the unknown source, and Yp from the known source with covariates, Yu and Yp are either univariate measurements or vectors of multivariate measurements. Besides the evidence measurements, another important dataset, ideally, is ea, in the re
	Figure
	that for trace evidence, the LR can be calculated directly from trace observations, while for 
	impression and pattern evidence, the LR is calculated mostly from matching scores. 
	Figure 4: Schematic overview on notations used for evidence, ROC, and LR. 
	In this project we will work with the multivariate LR which handles multi-dimensional trace observations. 
	Without conditioning on the covariate Xs, this LR is the same as the Lindley’s LR for univariate data. It is commonly assumed that within-source distributions conditional on Yp are normal, that is, Yu,i ∼ N(θu, Σ). It is also reasonable to assume that Ys,j |(Xs = x) ∼
	2 

	u N(μp(x), Σ), where μp(x) is a covariate-speciﬁc mean. Note that the covariate information is available for the known source and not for the unknown source unless covariates of the unknown source are witnessed by bystanders. The prior distribution for θu and μp(x)can be a normal distribution N(τ, Σθ), or an exponential distribution. The sample conditional ¯ 
	2 
	p

	mean Yu is suﬃcient statistics for θu.When Yu,i and Ys,j are from a common source, θu = f (Y¯ u,Ys|θ)f (θ)dθ
	μp(x)= θ. The LR is then simpliﬁed as: LRx = . . . Without covariates, several authors [1, 4]let μp(x)= θp, and give the explicit form of the LR based on the multivariate normal distributions for Yu,i and Ys,j ,and θ’s when the covariance matrices are not the same. Without covariates, a kernel estimation can be substituted to replace f(θ) in the integration of the numerator and denominator for the LR [23, 1, 4]if 
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	the normal assumption for θ is not true. In this project, the investigators will estimate 
	the covariate-speciﬁc mean μp(x) for subpopulations, and obtain the covariate-speciﬁc LR. Speciﬁcally, μp(x) has a prior distribution such as multivariate normal distribution with its mean and covariance parameters calculated from the relevant database. The posterior distribution of μp(x) will then estimated from the prior and the evidence measurements from the known source. The maximum a posteriori probability estimate of μp(x) will be the mode of the posterior distribution. 
	The score-based LR is commonly used for the decision scores from the same subjects and diﬀerent subjects in impression and pattern evidence. For impression and pattern evidence, 
	[26] developed a summary statistic or comparison methodology, denoted as C(eu,es). The realized value of the comparison statistic C(eu,es)= c is obtained by comparing the control samples from a speciﬁed (known) source (denoted by es) to the recovered traces from a questioned or unknown source (denoted by eu). Similar to Parker, we assume that C(·, ·)is a dissimilarity score, with the bigger value of C(·, ·) indicating the less similarity between eu and es. It is known that the ﬁrst derivative of the ROC cur
	d

	p database ea – collection of sets of objects each associated with a source of evidence in an alternative source population. 

	1.4 Expected applicability of the research 
	1.4 Expected applicability of the research 
	The research provides forensic researchers ready-to-use statistical tools so that covariate-speciﬁc and covariate-adjusted error rate assessment can be implemented for black box studies in various forensic disciplines. Also, implementing the ordinal decision scores as in [32] have more intrinsic information for the error rates than dichotomized binary decisions. Availability of the computer packages for calculating the ROC curve with and without covariates 
	-
	-

	Figure
	will provide a useful tool to forensic scientists for the analysis of their black box studies with 
	ordinal decision scores. In addition, given that the PI and investigators on the project are currently supporting a number of local crime labs, this research will directly impact the guidance they are providing on the error rate interpretation and evidence interpretation. 
	-



	2 Participants and other collaborating organizations 
	2 Participants and other collaborating organizations 
	2.1 Individuals involved in the project 
	2.1 Individuals involved in the project 
	Dr. Larry Tang (PI -University of Central Florida): Dr. Tang’s research background in statistics in forensics and criminology, biometrics, and nonparametric methodology in high-dimensional settings was crucial to successful completion of the aim involving the relationship between ROC curves and likelihood ratios. His work with NIST in biometrics on developing statistical methodology to advance the evaluation of ﬁngerprint matching algorithms and to advance the understanding of forensic methods in biometric 
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	Dr. Danica Ommen (Iowa State University): Dr. Ommen has extensive training and expertise in forensic statistics, and computational statistics. Her doctoral research concerned the use of Bayesian likelihood ratio and frequentist likelihood ratio in a forensic setting. Her past experiences deriving and evaluating likelihood ratios within complex scenarios aided the research group in developing and assessing novel methodologies developed for complex cases of handwriting evidence. Her expertise in programming a
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	Dr. Christopher Saunders (South Dakota State University): Dr. Saunders has past experience with NIH funded projects and Intelligence Community (IC) research fellowships. Since completing his dissertation, Dr. Saunders has focused on providing statistical support to the Intelligence Community, ﬁrst as an IC Postdoctoral Research Fellow 
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	and then as a Research Assistant Professor with the Document Forensics Laboratory 
	at George Mason University. In an ongoing collaboration with Gannon Technologies Group, he contributed to the development of a highly accurate handwriting based identiﬁcation tool, known as FLASH ID. Dr. Saunders was speciﬁcally responsible for investigating the accuracy of the handwriting based biometric identiﬁcation procedures as a function of the amount of handwritten text available. Recently Dr. Saunders has been focused on the development of forensic likelihood ratios for assessing the strength of han
	Dr. Martin Slawski (George Mason University): Dr. Slawski has extensive research experience in statistical modeling, machine learning, and mathematical optimization in statistical settings. His eﬀorts on massive data inference was funded by major government agencies. In the project, Dr. Slawski will be developing methods for ROC and likelihood ratio estimation with a speciﬁc focus on regression modeling, particularly quantile regression and stochastic ordering constraints. He will provide additional computa
	Dr. Emanuela Marasco (George Mason University): Dr. Marasco’s research experience involves Pattern Recognition, Machine Learning, Computer Vision and Biometrics. Her main contribution has focused on design and evaluation of anti-spooﬁng countermeasures in ﬁngerprint recognition systems, and automatic estimators of soft biometrics from ﬁngerprints. Dr. Marasco has collaborated on several projects funded by the major government funding agencies. Dr. Marasco’s background will be important in the implementation
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	Dr. Semhar Michael (South Dakota State University): Dr. Semhar Michael is an applied statistician by training. Her research focuses on computational statistics with an emphasis on developing novel methodologies for analyzing datasets in challenging 
	Dr. Semhar Michael (South Dakota State University): Dr. Semhar Michael is an applied statistician by training. Her research focuses on computational statistics with an emphasis on developing novel methodologies for analyzing datasets in challenging 
	forms. She has addressed problems in clustering of time series, forensic, and text data. Her work has been published in peer-reviewed statistics journals and led to national paper competition awards. With unstructured data, she worked on a building clustering, classiﬁcation, and sentiment analysis models. In the health sciences, she has worked on mixture modeling, spatial clustering, and forecasting projects on datasets from Electronic Health Records and South Dakota Department of Health. 
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	Funded Ph.D. Graduate Student: Dr. Ty Nguyen (University of Central Florida), advised by Dr. Larry Tang 
	-

	Unfunded Graduate Students: Ph.D. students whose research was related to this funded project 
	• 
	• 
	• 
	Dr. Xiaochen Zhu (George Mason University): advised by Drs. Larry Tang and Martin Slawski 

	• 
	• 
	Ms. He Qi (George Mason University): advised by Dr. Martin Slawski 

	• 
	• 
	Mr. Andrew Simpson (South Dakota State University): advised by Drs. Saunders and Michael 

	• 
	• 
	Mr. Dylan Borchert (South Dakota State University): advised by Drs. Saunders and Michael 



	2.2 Organizations involved in the project 
	2.2 Organizations involved in the project 
	The work performed for this project has supported the Federal Bureau of Investigation Laboratory Division on research projects related to the analysis of forensic evidence from improvised explosive devices. NIST has provided rating scores of forensic examiners on NIST blackbox facial recognition study for us to implement the developed methods. We are fortunate to be able to beneﬁt from their expertise in these areas. 
	Figure


	3 Outcomes 
	3 Outcomes 
	3.1 Activities/accomplishments 
	3.1 Activities/accomplishments 
	During the period of performance, the PI and investigators engaged in virtual meetings to update the other participants on research projects, and met at conferences to coordinate and conduct collaborative eﬀorts. Overall, this award resulted in the training of 5 graduate students in the interpretation of forensic evidence, including 5 PhD graduate students and 1 MS graduate student. This award directly resulted in 1 PhD dissertation, 4 peer-reviewed journal articles, 2 peer-reviewed conference papers, an R-
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	3.2 Results and ﬁndings 
	3.2 Results and ﬁndings 
	3.2.1 Research Question 1: Develop error rate interpretation tools using regression on decision scores 
	-

	We denote the upper-case letter X as data which contains covariates as columns and samples as rows. X = x is then understood as a speciﬁc value of covariates in the data. In the data, upper-case R is used to describe the ordinal score whose values are from 1 to L where L is called ordinal scale. Also, a binary status is denoted as D where D =1or D = 0 splits observations into two sub-classes. Upper-case G is the number of rater groups who give ordinal scores as assessing subjects. 
	In this project, we use ROC curve to characterize the accuracy of performances. Let Y denote a continuous random variable related to scores in evaluation. The general formula of a ROC 
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	curve is expressed as a function of FPR as ROC (t)= S(t) ,t ∈ (0, 1) where S(c)= 
	1
	0 
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	P (Y ≥ c|D =0) and S(c)= P (Y ≥ c|D = 1) are FPR and TPR with threshold c.If S
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	and Sfollow normal distributions, it follows ROC (t)=Φ +Φ(t) ,t ∈ 
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	σσ(0, 1) where μ,μ,σ,σare the means and the standard deviations of two sub-populations, respectively. Then, the AUC also has a explicit form as AUC =Φ (μ− μ)/. In the present study, ROCx,g(t)and AUCx,g are the ROC curve and the corresponding AUC 
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	at a speciﬁc covariates x of group g with g =1, ··· ,G. Covariates in face recognition data 
	are raters’ group, age, gender. Also, because ROC curves are built within framework of the ordinal regression, their variances are determined by variance of parameters in the model. For the sake of making inference easily, we denote ROCx,g (t)and AUCx,g be the estimated ROC curve and AUC at covariate x of group g and estimated parameter γˆ of the ordinal regression. 
	A Homogeneity Test 
	In this section, we introduce a homogeneity test for ROC curves. Assume that there are G rater groups each of which includes J,J, ··· ,JG members assessing K = K+ Ksubjects such as images in medical diagnostics or image pairs in ﬁngerprint or facial recognition. Out of K,there are Knon-diseased subjects in medical diagnostic or Kdiﬀerent sources image pairs in ﬁngerprint or facial recognition and Kdiseased or same source ones. Accuracies of groups are characterized by ROCx,1(t), ··· ,ROCx,G(t)or AUCx,1, ···
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	distributional forms for two populations. Thus, ROC curve can be derived analytically. 
	In this project, we use the later technique with binormality assumption for scores within framework of ordinal regression discussed in the next section. 
	ROC Estimators based on Ordinal ROC Regression 
	Assume that we want to bridge L-scale ordinal scores R with observable variables comprised in a matrix X. Without loss of generality, we denote the ﬁrst column of X as D which is a binary variable of 0 or 1. Then, D splits observations into two sub-groups such as diseased and non-diseased status in medical diagnostics, genuine and imposter scores in facial recognition. 
	We use a location-scale model to estimate the covariate-speciﬁc ROC curve. In the model, each of outcomes Ri,i =1, 2, ··· N links to an example which is described by a vector of covariates, Xi = {Di,xi1, ..., xip} or {Di, xi} where p is the number of covariates and N is the total number of observations. It is noteworthy that out of p covariates, one represents for group status of raters. The ordinal ROC regression starts by supposing that discrete outcomes R belong to a latent continuous variable T which ca
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	τl − (αD + αx + Dαx) 
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	g [φl (R ≤ l|x)] = ,
	exp (βD + βx + Dβx) 
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	where l =1, 2, ..., L − 1and x denote for any of {xi}where N = K Jg is the total
	N 
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	i=1 g=1 
	number of observations, g (·) is the link function, φl (R ≤ l|x) is the cumulative probability that R ≤ l, a vector production, for example αx, is written as αx = αx+ ··· + αpxp. With the probit link, the model is rewritten as 
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	φl (R ≤ l|x)=Φ ,
	exp (βD + βx + Dβx) 
	exp (βD + βx + Dβx) 
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	where Φ (·) is the standard normal cumulative distribution function. With this approach, the latent variables for a particular covariate x are normally distributed with means and standard deviations described in Table 1. 
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	Table 1: Ordinal Regression ROC Parameters 
	Table
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	D =1 
	D =0 

	Mean 
	Mean 
	μ1 = α0 +(α1 + α2) x 
	μ0 = α1x 

	Standard dev. 
	Standard dev. 
	σ1 =exp{β0 +(β1 + β2) x} 
	σ0 =exp{β1x} 


	Substitute the means and standard deviations in Table 1, the ROC curve within the framework of ordinal regression for a speciﬁc covariate x of group g is ﬁnalized as 
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	α+ αx 1 
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	ROCx,g (t)=Φ +Φ(t) ,t ∈ (0, 1) . 
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	exp (β+ βx + βx) The corresponding AUC is also expressed as 
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	To simplify notations, we use γˆ ≡ τˆ,αˆ, αˆ , αˆ ,β, β, β. 
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	Statistical Property of the Test 
	Let Λ, ΛC be estimators of Λ and ΛC which can be written as Λ= ROCx,1 (t) , ··· , ROCx,G (t) , ˆ
	ˆ 
	ˆ 
	ˆ

	and ΛC = ROCx,1 (t) − ROCx,G (t) , ··· , ROCx,G−1 (t) − ROCx,G (t)(t) . The relationship ΛC = KΛstill holds for estimators. The test statistic is deﬁned as 
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	Ψ= ΛC VarΛC Λ. 
	C 

	The variance VarΛC is dependent on covariance matrix Σγˆ which is asymptotically approx
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	imated as Σγ. Concatenating all ROCx,g (t)for g =1, ··· ,G yields to 
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	ˆ
	Λ = Λ+F(γˆ − γ)+ o (γˆ − γ), 
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	where F = JROC(t), ··· ,JROC(t) . Using ΛC = Λ and taking variance both sides yields to 
	x,1
	x,G

	VarΛC =KFΣγˆ FK , 
	ˆ 

	where Σγˆ depends on the sample size. Employing Lemma 1, one can see that ΛC asymptotically follows a multinormal distribution given by NG−1 ΛC , ΣG−1 = KF ΣγFK . Theorem: Under the null hypothesis, Ψ converges in distribution to a Chi-square distribution with G − 1 degrees of freedom χand under the alternative, Ψ still converges to a Chi-square distribution with the same degrees of freedom but with a non-centrality parameter η = ΛC (VarΛC )Λas N −→∞. 
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	Given a signiﬁcance level α, the null hypothesis is rejected if Ψ >χwhere χis the 
	2 
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	G−1,α G−1,α 
	critical value of a Chi-square distribution with G − 1 degrees of freedom. Determining non-centrality parameter occurs in various statistical analysis, such as the analysis of variance for tests of homogeneity, Chi squared test for goodness of ﬁt, power analysis. Since the power analysis usually relates to the sample size problem, the non-centrality parameter can be used to determine the minimum sample size provided the power is supplied. Solution of a power problem replies on the availability of the non-ce
	[16] prepared tables for the non-centrality parameter of a Chi-squared distribution with some given values of degree of freedom, signiﬁcance level and power. Then, [15] calculated the minimum sample size for the three most frequently used tests at given power using those tables. Next, [34] estimated the non-centrality parameter of a Chi-squared distribution by employing the maximum likelihood technique. However, only were the lower and upper bounds derived instead of a closed form for the parameter. Thanks 
	[16] prepared tables for the non-centrality parameter of a Chi-squared distribution with some given values of degree of freedom, signiﬁcance level and power. Then, [15] calculated the minimum sample size for the three most frequently used tests at given power using those tables. Next, [34] estimated the non-centrality parameter of a Chi-squared distribution by employing the maximum likelihood technique. However, only were the lower and upper bounds derived instead of a closed form for the parameter. Thanks 
	1−β where β is the probability of a type II error is deﬁned as 1−β = Pχ(η) >χ. With given values of α, β and G, the non-centrality parameter η can be determined by solving the equation above. Denote ηβ,α be the solution, using deﬁnition of η yields to ηβ,α = ΛC (KFΣγFK)Λ. The minimum sample size is determined to obtain ηα,β numerically and scanning sample size until the equality is satisﬁed. 
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	In this part, we describe our design for simulation. Our data includes ordinal scores, a continuous variable Xand discrete covariates representing for rater groups. The latent scores of ggroup are normally distributed as Tg|(X,D =1) ∼ N (1+2X+ ψ + ag,φVar (e)) , and Tg|(X,D =0) ∼ N (1 + X, Var (e)), where Xis uniformly distributed in [0, 1], e,eare standard normal distributions. In those equations , parameters ψ, ag and φ control the distance and diﬀerence in variances between two normal distributions. More
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	(t)=Φ + t ∈ (0, 1) , First, we examine the consistency of estimated ROC curves and AUCs. We assume that all groups have the same number of members, i.e. J= J= ··· = JG = J. Hence, term ”sample size” K should be understood as the number of samples assigned to each rater. Setting 1 with 10000 data sets are simulated in this subsection. In Figure 5, estimated ROC curves and AUCs are depicted with some sample sizes where G =5 and L = 7 are used. Value of other parameters can be seen in the caption. In Fig.5, es
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	0.0 0.2 0.4 0.6 0.8 1.0 10 20 30 40 50 False Positive Rate Sample size 
	Figure 5: Convergence of ROC curves, AUCs when the sample size changes. G=5, J=10, L=7 and ψ =0.5, and φ =1.5, x=0.5 are used. (a): Estimated ROC curves for four selected sample sizes of 5 (dashed black), and 10 (dashed blue), 20 (dashed orange) and 50 (dahsed pink). Red solid line is the true ROC curve. (b): Dots are estimated AUCs and black solid line is the exact AUC of 0.736. 
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	size. Futhermore, we validate the quality of estimators and their variance by calculating the conﬁdence interval coverages of diﬀerence in ROC curves and AUCs. Let ΔROC(t)= ROC(t) − ROC(t) , ΔAUC= AUC− AUCbe the diﬀerence in ROC curves or in AUCs between the second and the ﬁrst group. The coverage of ΔROC(t)curvesis the portion of the 10000 curves bounded by the (100 − α) % conﬁdence interval that is
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	coverage of ΔROC(t)at t=0.3and ΔAUCwith diﬀerent number of groups and sample sizes are presented in Figure 6. 
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	Figure 6: Coverage probabilities of the 95% conﬁdence intervals of ΔROCcurve at FPR of 0.3 (a) and of ΔAUC(b). The dashed grey line is the nominal level. J=10, L=7 and ψ =0.5, and φ =1.5, x=0.5 are used. 
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	In Fig.6a, conﬁdence interval coverage of ΔROCat FPR of 0.3 is illustrated and those of ΔAUCare shown in Fig.6b. In both ﬁgures, one can see that the portions approach to 95% starting from the sample size of 100 and get closer when the size increases regardless of the number of groups. It is noticeable that the result for ΔROCis presented at one value of FPR but the similar ones are also obtained at diﬀerent points on the ROC curves. It implies that the convergence occurs for the entire ΔROC. Moreover, resu
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	Figure 7: Type I error rate for the test for ROCs at FPR of 0.3 (a) and for AUCs (b). The dashed grey line is 5% signiﬁcance level. Parameters are ﬁxed the same as in Figure 6. 
	We illustrate calculation of minimum sample sizes given α and β with settings supporting for the alternative hypothesis. First, with evenly distributed samples, minimum sample sizes to reach a probability of a Type I error of 5% and a power of 80% is demonstrated in Table 2. With each setting, the minimum sample size is calculated by using TPR at three diﬀerent FPRs, denoted at t,t,t. Estimated sample size using AUCs is also provided. With setting 2, a vector of AUC values is Λ = (0.736, 0.736, ··· , 0.736,
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	Table 2: Minimum sample sizes with α =0.05,β =0.2. J=10, L=7 and ψ =0.5, and φ =1.5, x=0.5 are used. FPRs at t=0.3,t=0.5,t=0.7 are selected. 
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	Setting 2 
	Setting 2 
	Setting 2 
	Setting 3 
	Setting 4 

	G t1 t2 t3 3414758 4 353747 5 333541 
	G t1 t2 t3 3414758 4 353747 5 333541 
	AUC 41 35 33 
	t1 t2 t3 424968 303546 242834 
	AUC 43 30 24 
	t1 t2 t3 8089115 3743 56 1924 30 
	AUC 80 37 22 
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	As seen in Table 2, with each setting, a larger sample size is needed if a higher FPR is used. This can be explained as at higher FPR, the gap between curves are narrower. Furthermore, with three settings, the minimum sample sizes retrieved from ROC curves at FPR of 0.3 are 
	{ROC}
	similar to those from AUCs. That could be because at FPR of 0.3, the gaps in TPRs, Λ
	C 

	{AUC}
	and diﬀerence in AUCs, Λ, among rater groups are similar. Next, we investigate the scenario in which groups have diﬀerent number of raters. Denote n: n: ··· : nG be the ratio of the number of raters among groups, i.e. J= nJ, ··· ,JG = nGJ. We use setting 4 with four groups for following calculations. The minimum sample size presented in Table 3 are the number of samples assigned for each rater. As seen in the table, the minimum sample size is sensitive to changes of the ratio. Assume that among four groups,
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	Table 3: Minimum sample sizes with diﬀerent number of raters in groups. α =0.05,β =0.2 J=10, L=7 and ψ =0.5, and φ =1.5, x=0.5 are used. FPRs at t=0.3,t=0.5,t=0.7 are selected. 
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	Application of the proposed method to facial recognition Forensic facial examiners perform detailed comparisons between images of two faces and determine if the faces are from the same person or diﬀerent people. Examiners’ extensive training and qualiﬁcations allow them to give expert opinion in court proceedings. Because of facial examiners’ detailed comparisons, the ﬁeld of facial forensics is a pattern-based forensic discipline. Two reports identiﬁed the necessity to empirically measure error rates for p
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	aminers, 30 facial reviewers, 13 super-recognizers, 53 ﬁngerprint examiners and 31 students. 
	Each participate judged the similarity of the same 20 face-pairs. For each face-pair, participants judged the similarity of the two faces on a 7-point scale, with +3 for the highest conﬁdence of same person to –3 for the highest conﬁdence of diﬀerent people. [32] computed accuracy at the individual level by computing the AUC for each participant. They reported overall group accuracy with the median AUC of the group and compared two groups with the Mann-Whitney test. In our analysis, we pool participants for
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	We start our analysis by applying our ordinal regression technique to facial recognition ratings and estimating the ROCs and AUCs for each of the ﬁrst subject groups. For the ROCs we compute the 95% conﬁdence bands and for the AUC we compute the 95% conﬁdence intervals. Figure 8 shows estimated ROCs and AUCs with corresponding 95% conﬁdence bands and intervals for each group. Based on the AUC estimates, the facial examiners has the highest AUC followed by super-recognizers, facial reviewers, ﬁngerprint exam
	Next, we check if the the AUCs and ROCs for ﬁve groups are statistically diﬀerent. We formulate this question as a hypothesis test with the null hypothesis that the AUCs (respectively ROCs) for all ﬁve groups are statistically the same. If the null hypothesis is not true, then at least one of group’s AUCs (respectively ROCs) are statistically diﬀerent than other four groups. First, we test AUCs and for the ﬁve groups, then the ROCs. For AUCs, we compute the homogeneity test statistic Ψ = 129.2. Since this t
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	Figure 8: Plot of estimated ROCs and their 95% conﬁdence bands for the ﬁve participant groups. The upper left panel shows the estimated ROCs for all ﬁve groups and the legend reports the estimated AUC for each group. The remaining panels plot the ROC and conﬁdence bands for each group individually. In each panel, the solid lines is the estimated ROC, the dashed lines are upper and lower bound of the 95% conﬁdence bands, and the legend states the group and reports the 95% lower and upper conﬁdence intervals 
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	Figure 9: Plots the values of the test statistic Ψ for ROC curves (the blue solid line) versus FPR. The dashed line is the critical value for the 95% conﬁdence of the Chi-square distribution with df=4. 
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	ROCs, which requires computing the test statistic Ψ for all FPR values. In Figure 9 we plot the value of test Ψ as a function of FPR. The test statistic is larger than the critical value χ(0.95,df = 4), except for FPR values close to 1. Thus, the ROCs are diﬀerent for FPRs smaller than 0.95 and the same for FPRs greater than 0.95. 
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	Since the homogeneity tests showed diﬀerences among the AUCs and ROCs of the ﬁve groups, we perform post hoc pairwise comparison. This allows us to identify which groups have diﬀerent AUCs or ROCs. We assess statistical diﬀerences between two ROCs, by comparing the ROCs at each FPR. For comparing two ROCs, there are three possible conclusions: the two ROCs are statistical the same for all FPR, they are statistical diﬀerent for all FPR, or for some FPRs the two ROCs are the same and for some FPRs they are di
	Figure
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	Figure 10: Diﬀerences between ROC curves of four groups in facial recognition data. The horizontal axis corresponds to FPR. The vertical axis reports the ΔTPR, the diﬀerence between the two ROCs at each FPR. The solid line shows the estimated diﬀerence between the ROCs. Dashed lines are upper and lower bounds of the 95% conﬁdence band. 
	each FPR. The solid line shows the estimated diﬀerence between the ROCs’ for the face examiners minus the ﬁngerprint examiners. Dashed lines are upper and lower bounds of the 95% conﬁdence band. For all FPRs, the 95% conﬁdence band, the gray region, is above the ΔTPR = 0 line. Thus, for the entire ROCs, the face examiners and ﬁngerprint examiners are statistical diﬀerent with 95% conﬁdence. 
	For facial examiners and super-recognizers, the 95% conﬁdence band contains the ΔTPR =0 line, therefore, the diﬀerences between the ROCs is not statistical signiﬁcant with 95% conﬁdence for all FPRs. We get the same ﬁndings when comparing facial reviewer and super-recognizers. These results are consist with the previous ad-hoc analysis for AUCs that found no statistical diﬀerence with 95% conﬁdence. For facial examiners and reviewers, the 
	For facial examiners and super-recognizers, the 95% conﬁdence band contains the ΔTPR =0 line, therefore, the diﬀerences between the ROCs is not statistical signiﬁcant with 95% conﬁdence for all FPRs. We get the same ﬁndings when comparing facial reviewer and super-recognizers. These results are consist with the previous ad-hoc analysis for AUCs that found no statistical diﬀerence with 95% conﬁdence. For facial examiners and reviewers, the 
	conﬁdence band is not above the ΔTPR = 0 line, nor does the band contain the ΔTPR =0 line. Instead, for FPR ≤ 0.15 and FPR > 0.8, the the band contains the ΔTPR =0, and for 0.15 <FPR ≤ 0.8, the the band contains the ΔTPR = 0 line. Thus, for FPR ≤ 
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	0.15 and FPR > 0.8, the examiners and reviewers have the same accuracy with a 95% conﬁdence, and for 0.15 <FPR ≤ 0.8, the examiners and reviewers have diﬀerent accuracy with a 95% conﬁdence. In the majority of applications, the operating point requires a low FPR. Systems general operate at a low FPR to minimize false accusations. The comparison between super-recognizers and ﬁngerprint examiners has a similar pattern. For FPR < 0.6, the diﬀerence is signiﬁcant, and for FPR > 0.6, the diﬀerence is not signiﬁc
	Overall, our conclusions are consistent with [32] , with each having diﬀerence strengths. [32] concentrated on the accuracy of individual participants and permitted examination of the range of accuracy for members of each group. Our analysis treat groups as covariates, and analysis produced ROCs with conﬁdence bands and AUCs with conﬁdence intervals . One key strength of out approach is the ability to produce results at operationally relevant decision thresholds. Since the majority of applications operate a
	3.2.2 Research Question 2: Develop error rate interpretation tools using ROC regression models 
	The location-scale model [12] is an established approach for modeling covariate-speciﬁc ROC curves, which we summarize here. In essence, the location-scale model assumes that in each of the two populations indicated by the binary status variable D, the score T can be expressed as a location-scale transformation that depends on the covariates. Speciﬁcally, the location-scale model postulates that T = D{μ(X; b)+σ(X; a ) ·e}+(1−D){μ(X; b)+σ(X; a ) · 
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	e}. The above equation involves the following quantities: 
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	eand eare random variables with “location” zero and unit “scale”, where the measure 
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	of location can be, for example, the population mean or median, and the measure of scale can be the standard deviation or the median absolute value of the diﬀerences from the median (MAD). 

	• 
	• 
	μj (·)and σj (·), j ∈{0, 1}, are referred to as location and scale functions, respectively. The latter are assumed to be known functions of the covariates X, and depend on unknown parameters band a , j ∈{0, 1}. In this project, we conﬁne ourselves to functions having identical form for both values of D and that are linear functions of unknown parameters, i.e., 
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	μj (x; b )= φ(x) + b ,σj (x; a)=Ψ(x) a+ a,j ∈{0, 1}, (2) 
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	so that b=(b, [b] ) and a =(a , [a ] ) . To avoid notational clutter, we henceforth assume without loss of generality that φ(x)= x since this can be achieved by augmenting x as needed to include additional transformations of the original set of covariates. 
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	In the sequel, homoscedasticity will refer to the case in which σand σdo not depend on X; otherwise, we shall speak of heteroscedasticity. 
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	Proposed approach 
	A major shortcoming of the composite quantile regression (CQR) is the requirement of 
	i.i.d. errors. Consequently, the model associated with CQR is misspeciﬁed under heteroscedasticity, and the resulting estimates can exhibit substantial bias. Even though CQR may be arbitrarily more eﬃcient than plain median regression in the i.i.d. case, the gain in eﬃciency can be rather moderate for common error distributions: for the family of Gaussian scale mixtures, which includes the Laplacian, logistic, and t-distribution among many others, the relative eﬃciency cannot exceed 1.5 (with the upper boun
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	Figure 11: Ratios of the asymptotic variances of ROC x(u) [maximized over u ∈ (0, 1)] based on median regression (MR) and composite quantile regression (CQR) according to Theorem 2in[10] for a single covariate with domain X =[0, 1] and diﬀerent error distributions (N – Normal, CN – Contaminated Normal, T – t-distribution, cf. setup). 
	Figure 11: Ratios of the asymptotic variances of ROC x(u) [maximized over u ∈ (0, 1)] based on median regression (MR) and composite quantile regression (CQR) according to Theorem 2in[10] for a single covariate with domain X =[0, 1] and diﬀerent error distributions (N – Normal, CN – Contaminated Normal, T – t-distribution, cf. setup). 
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	the Gaussian distribution) as proved in the supplement [46]. Apart from these statistical aspects, CQR is also computationally more involved than median regression. In light of the above considerations, the use of the latter is proposed in this project, complemented by suitable additions to incorporate 1) the ordering constraint (1) discussed in the previous section, and 2) possible heteroscedasticity. Speciﬁcally, our approach is based on two-fold median regression, the ﬁrst of which is used to estimate th
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	For what follows, we suppose that we are given a sample of N triplets {(Ti,Di, xi)}each consisting of a continuous score, a {0, 1}-valued status indicator, and covariates. Speciﬁcally, it assumed that Ti|Di, xi,1 ≤ i ≤ N, are independent random variables distributed according to the location-scale model. Without loss of generality, we assume that the triplets are ordered by the value of their status, i.e., Di =0 for i =1,...,n = |{1 ≤ i ≤ N : Di =0}|, 
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	and accordingly Di = 1 for the remaining indices i = n +1,...,n + m = N. 
	Stage I : Solve the median regression problem mind y − Xβ subject to Aβ ≥ 0, where y =(Ti)and X is an N × d matrix, d =2(p +1), whose i-throw is givenby Xi• =[1 xDi (xi · Di) ] containing an intercept, status indicator, covariates, and interaction terms between the previous two, 1 ≤ i ≤ N. The (system of) linear inequality constraints expressed by Aβ ≥ 0 serve as proxy for the ordering constraint imposed on the two location functions associated with the status indicator, i.e., μ(x; b) ≥ μ(x; b)for x ∈X in E
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	(1) Outer approximation: suppose that [lj ,uj ] are known upper and lower bounds for the j-th covariate, 1 ≤ j ≤ p. Then, the hyperrectangle :=[l,u]×...×[lp,up] includes X ,and by convexity the constraint (1) holds if it holds for the vertices {v }= {l,u}× ... ×{lp,up}
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	of ,where q =2. Accordingly, the -th row of A is given by [0p+1 1 v ],  =1,...,q. 
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	(2) Inner approximation: the constraint is imposed for the observed covariates {xi}or
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	i=1 a suitable subset thereof. Accordingly, each row of A is of the form [0p+1 1 x]. For more examples and a discussion of the merits of the two approximation schemes, we refer to [47]. 
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	Stage II :Let βdenote the minimizer, and let further r = y − Xβdenote the resulting residuals. In view of the location-scale model according to (2), the median of |T − μj (x; b)| 
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	given D = j, X = x equals σj (x; a)=Ψ(x) a + a,j ∈{0, 1}. This suggests that
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	the scales can be inferred from median regression of the absolute values of the residuals |r|=(|ri|)on Z whoserowsaregivenby[1 zDi (zi · Di) ]with zi =Ψ(xi), 1 ≤ i ≤ N. 
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	By “complex”, we here mean diﬃcult to characterize in terms of computationally tractable (convex) constraints [3]. 
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	Figure
	Figure 12: Illustration of the two constraint set approximation schemes described in the text. The dots represent the observed covariate values {xi}, here taking values in [0, 1] × [0, 1] ×{0, 1}, corresponding to two continuous covariates and one binary covariate. The gray-shaded areas depict the outer (left) and inner (right) approximations. 
	Figure 12: Illustration of the two constraint set approximation schemes described in the text. The dots represent the observed covariate values {xi}, here taking values in [0, 1] × [0, 1] ×{0, 1}, corresponding to two continuous covariates and one binary covariate. The gray-shaded areas depict the outer (left) and inner (right) approximations. 
	N
	i=1



	Speciﬁcally, we solve the following second median regression problem: 
	min |r|−Zγ , (3) 
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	where s denotes the dimension of the {zi}This approach for estimating scale functions
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	in the presence of heteroscedasticity originates in the quantile regression literature [17], and 
	will henceforth be referred to as “He’s method”. 
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	Stage III : Given the output from the previous two stages, we obtain the standardized resid
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	where γdenotes the minimizer of (3). The standardized residuals serve as proxy for the 
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	centered and scaled errors {ei}∼ Gand {ei}∼ Gaccording to the location
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	scale model for the scores {Ti}.Let Gand Gdenote the empirical CDFs of the {ei}
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	We note that the approach does not explicitly enforce non-negative ﬁtted values. However, we did not encounter any instances with negative ﬁtted values neither with simulated nor real data. 
	2

	Figure
	and {ei}respectively. Finally, the covariate-speciﬁc ROC for X = x is estimated
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	Modiﬁcations 
	We here outline two modiﬁcations of the approach outlined in the preceding subsection. The ﬁrst modiﬁcation integrates ordering constraints into CQR and represents a possible alternative to Stage I above in homoscedastic settings. The second modiﬁcation concerns non-linear modeling of covariates based on basis functions. 
	Order-constrained CQR. We here brieﬂy sketch how the the integration of the order constraints in Stage I can be accomplished in a similar way when using the DZ method based on CQR. For τ ∈ (0, 1), consider the so-called check loss ρτ : R → R+ deﬁned by u → ρτ (u)= u{τ − I(u ≤ 0)}, and let further τk = k/(K +1) for K ≥ 1 odd. A CQR-based counterpart to the constrained median regression problem is then given by the formulation 
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	min ρτ(Ti − βk − xβX − Di · βDk − Di · xβXD) (4) k=1 i=1 
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	subject to Aβ(K+1)/2 ≥ 0, where βk =(βk ββDk β) , 1 ≤ k ≤ K. (5) 
	0
	X 
	XD

	The above optimization problem can be expressed as a linear program [22]. Note that by imposing the constraints Aβk ≥ 0 for all 1 ≤ k ≤ K, median ordering as represented by 
	(5) can be strengthened further to incorporate ordering for all quantiles under consideration, i.e., Q(τk|D =1,X = x) ≥ Q(τk|D =0,X = x) for all 1 ≤ k ≤ K given the homoscedastic model that underlies CQR. approach in conjunction with the expanded sets of constraints 
	Figure
	will be referred to as “Order-constrained CQR”. 
	Non-linear modeling of covariates. We here provide an outline showing how the order-constrained median regression formulation in Stage I in the previous subsection can be extended to allow for non-linear covariate eﬀects. To keep the exposition simple, we conﬁne ourselves to a single continuous covariate with domain X =[0, 1], and present technical details in the supplement [46]. The basic idea is to expand the location functions μand μin a suitable set of basis functions (in the sequel, we use cubic B-spli
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	subject to (b− b)h (x) ≥ 0,x ∈X , 
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	where P is a symmetric positive semideﬁnite matrix representing a roughness penalty such as the integrated squared derivatives of the associated basis function expansions (cf., e.g., [13]), λ> 0 is a smoothing parameter, and the constraint serves as proxy for the order constraint under consideration. The above optimization problem reduces to quadratic programming and is straightforward to solve via modern optimization techniques. 
	Applicaiton to biometric data 
	In this section, we present an application of our framework to biometric data including ﬁngerprint data in the FBI Biometric Collection [18] and the Face Recognition Vendor Test [31]. The ﬁngerprint data set is a subset of the FBI Biometric Collection of People (BioCoP) 
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	Figure 13: Age-stratiﬁed Binormal and pooled ROC curves for the ﬁngerprint dataset. Stratiﬁcation by age is based on the age of the query subject. 
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	Next Generation Identiﬁcation Phase 1 between 2008 and 2009 [18]. Data collection involved the acquisition of latent and exemplar ﬁngerprints. The latent ﬁngerprints were friction ridge impressions deposited on common materials. Higher-quality exemplar ﬁngerprints were acquired under controlled conditions using standard ink and paper methods. The comparison scores were generated by comparing latent prints to exemplar prints. The matching scores were obtained using the end-to-end latent ﬁngerprint search sys
	In Figure 13, we display binormal ROC curves ﬁtted to diﬀerent age strata (determined by the age of the query subject only) in the ﬁngerprint dataset under consideration. The “pooled” ROC curve based on the entire data serves as a reference. Figure 13 indicates that the age-stratiﬁed ROC curves are visibly diﬀerent across strata, and it is therefore appropriate to consider covariate-speciﬁc curves, with (logarithm of) age being one of the covariates. In addition, we also use gender (binary, with “1” represe
	Figure
	interaction between age and race was dropped. Speciﬁcally, we propose the following linear 
	model. 
	Tij =β+ βDij + β· Ai + β· Aj + β· Gi + β· Gj + β· Ri + β· Rj 
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	+ β(Ai · Gi)+ β(Ri · Gi)+ β(Aj · Gj )+ β(Rj · Gj )+ β(Ai · Dij ) 
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	+ β(Gi · Dij )+ β(Ri · Dij )+ β(Ai · Gi · Dij )+ β(Ri · Gi · Dij ) 
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	+ Dij ij1 +(1 − Dij )ij0. (6) 
	Here, we have Dij = 1 when the subject belongs to the genuine group and Dij = 0 otherwise. The symbols A, G,and R represent the logarithm of age, gender, and race, respectively. In the above equation, the index i equals the ID of the query subject, and the index j equals the index of the gallery subject. Diﬀerent regression coeﬃcients are assumed in the genuine and in the imposter group, hence interaction terms with D are included. Note that only interactions for terms associated with the query subject are 
	We compare the methods for estimating covariate-speciﬁc ROC curves based on model (6). Since genuine scores tend to be larger than imposter scores, speciﬁc attention is paid to the use of the order constraints for MR and CQR, respectively, and their eﬀectiveness in stabilizing estimation (i.e., achieving variance reduction) compared to the unconstrained counterparts. Speciﬁcally, we impose the constraint that the linear predictor for genuine pairs exceeds the linear predictor of the imposter pairs, uniforml
	3 

	For this analysis, we consider a partial CQR model in which the regression coeﬃcients involving the model terms Gi and Gj depend on the quantile τ while the coeﬃcients of all other terms are independent of τ . 
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	corresponding constraint matrix). 
	Table 4 reports means, standard deviations, and associated variance ratios of the estimated 
	covariate-speciﬁc ROC curves for x =(Ai, Aj , Gi, Gj , Ri, Rj )=(log x, log x, 1, 1, 1, 1) and x ∈ 
	{30, 40, 50} over 1000 bootstrap samples drawn from the original data. 
	Table 4: Mean and standard deviation (SD) of ROC x(u) for diﬀerent ages x and false accept rates u for the facial recognition data based on 1k bootstrap iterations. MR: median regression; OMR: order-constrained median regression; CQR: composite quantile regression; OCQR: order-constrained composite quantile regression. The column VR contains the ratios of the variance of MR relative to one of the three other methods (larger values correspond to improved eﬃciency relative to MR). 
	Table
	TR
	x 
	30 
	40 
	50 

	u 
	u 
	Method 
	mean 
	SE 
	VR 
	mean 
	SE 
	VR 
	mean 
	SE 
	VR 

	0.05 
	0.05 
	MR OMR CQR OCQR 
	0.454 0.445 0.455 0.449 
	0.088 0.080 0.085 0.079 
	– 1.21 1.09 1.27 
	0.542 0.520 0.540 0.523 
	0.100 0.081 0.096 0.078 
	– 1.54 1.07 1.62 
	0.612 0.586 0.608 0.587 
	0.108 0.083 0.108 0.082 
	– 1.69 1.00 1.69 

	0.1 
	0.1 
	MR OMR CQR OCQR 
	0.542 0.528 0.541 0.530 
	0.094 0.088 0.089 0.085 
	– 1.15 1.11 1.22 
	0.640 0.618 0.636 0.618 
	0.087 0.070 0.087 0.071 
	– 1.52 0.99 1.51 
	0.700 0.680 0.696 0.681 
	0.099 0.080 0.100 0.081 
	– 1.54 0.97 1.50 

	0.15 
	0.15 
	MR OMR CQR OCQR 
	0.609 0.594 0.605 0.595 
	0.080 0.075 0.079 0.075 
	– 1.13 1.02 1.13 
	0.694 0.676 0.691 0.677 
	0.083 0.068 0.084 0.068 
	– 1.50 0.97 1.47 
	0.745 0.730 0.744 0.732 
	0.095 0.078 0.096 0.079 
	– 1.46 0.97 1.45 

	0.2 
	0.2 
	MR OMR CQR OCQR 
	0.655 0.638 0.651 0.640 
	0.072 0.069 0.073 0.070 
	– 1.08 0.96 1.05 
	0.729 0.715 0.727 0.717 
	0.081 0.065 0.082 0.066 
	– 1.52 0.97 1.49 
	0.777 0.765 0.777 0.768 
	0.091 0.076 0.092 0.076 
	– 1.44 0.97 1.43 

	0.25 
	0.25 
	MR OMR CQR OCQR 
	0.690 0.675 0.687 0.677 
	0.067 0.064 0.068 0.064 
	– 1.10 0.96 1.08 
	0.760 0.747 0.759 0.750 
	0.077 0.063 0.079 0.063 
	– 1.52 0.97 1.51 
	0.803 0.794 0.803 0.797 
	0.088 0.073 0.089 0.073 
	– 1.45 0.98 1.44 

	Figure 14 shows contour plots of the variance ratios of the estimated covariate-speciﬁc curves. This observation is consistent with similar results in our simulations: the variance reduction achieved by the order constraint particularly concerns regions of the covariate domain where less data is observed. 
	Figure 14 shows contour plots of the variance ratios of the estimated covariate-speciﬁc curves. This observation is consistent with similar results in our simulations: the variance reduction achieved by the order constraint particularly concerns regions of the covariate domain where less data is observed. 


	The face recognition data set contains similarity scores of human face pairs along with several covariates including the study subjects’ gender and age as well as image quality (a combined 
	Figure
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	Figure 14: Contour plots of the bootstrap variance ratios of MR vs. OMR for the estimated covariate-speciﬁc ROC in diﬀerent ranges of FAR (Left: FAR range in [0, 1], and Middle: “zoom-in” for the FAR range [0, 0.2]. Contour lines corresponding to relative eﬃciencies less than 1.4 are not shown; in the white regions, the variance ratios take values in (0.9, 1.4). Right: Histogram and kernel density estimate of the age distribution in the underlying ﬁnger print dataset. 
	rating for each pair of images) according to the categories “good”, “bad”, and “ugly”. The data set has been used for various purposes such as the validation of facial recognition algorithms [25, 42] and the study of the inﬂuence of image quality on accuracy [30]. 
	The covariates observed with each matching score are given by age, gender, and image quality. As mentioned in the introduction of this section, the latter takes values according to the three categories “good”, “bad”, and “ugly”. We note that diﬀerent from the other covariates, the variable image quality is recorded only once for each comparison rather than in terms of a covariate pair. Accordingly, for each image pair, we let Bij and Uij denote the two dummy variables associated with the image quality categ
	under consideration can be expressed as 
	Tij =β+ βDij + β· Ai + β· Aj + β· Gi + β· Gj + β· Bij + β· Uij 
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	where the {ij0}, {ij1} are each i.i.d. errors and α(0, 0), α(1, 0), α(0, 1), α(0, 0), α(1, 0), α(0, 1) are non-negative scale coeﬃcients depending on genuine/imposter status (subscript) and the two values for the above dummy variables (parentheses). 
	0
	0
	0
	1
	1
	1

	Model (7) and the resulting covariate-speciﬁc ROC curves are estimated based on our three-stage approach without the order constraints; the order constraint is omitted in order to be able to study the impact of the proposed heteroscedastic adjustment alone. For comparison, we also ﬁt the corresponding homoscedastic model in which αand αdo not depend on image quality. The corresponding comparison with order constraints can be found in the supplement [46]. 
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	0 

	In order to investigate the sensitivity of the homoscedasticity assumption, we evaluate the diﬀerences of the estimated ROC curves under a heteroscedastic and homoscedastic model, respectively. Table 8 lists both relative and absolute diﬀerences of the averages values (over 10k bootstrap samples) of the ROC curves for selected values of the FAR (0.05, 0.1, and 0.2) and covariates x =(Ai, Aj , Gi, Gj , Bij , Uij )=(log x, log x, g, g, b, u)with x =50 and g, b, u ∈ {0, 1}. Table 8 shows that a homoscedastic m
	+ 
	+ 

	Figure
	Table 5 gives the results of the estimated mean diﬀerence for diﬀerent qualities. We note that 
	the results of WLS and CQR are similar and RRQ has a larger SD than other methods. 
	Table 5: Bias and SD of the estimated mean diﬀerence for the facial recognition data for diﬀerent qualities. (WLS: weighted least square; RRQ: restricted regression quantiles; CQR: composite quantile regression; GCQR: grouped composite quantile regression.) 
	quality 
	quality 
	quality 
	good 
	bad 
	ugly 

	method 
	method 
	bias 
	SD 
	VR 
	bias 
	SD 
	VR 
	bias 
	SD 
	VR 

	WLS 
	WLS 
	0.14 
	0.90 
	1.00 
	0.13 
	0.93 
	1.00 
	0.01 
	1.15 
	1.00 

	RRQ 
	RRQ 
	0.52 
	1.21 
	0.55 
	0.02 
	1.27 
	0.54 
	1.15 
	1.44 
	0.63 

	CQR 
	CQR 
	-0.03 
	0.89 
	1.02 
	0.01 
	0.91 
	1.04 
	0.29 
	1.19 
	0.93 


	Table 8 shows the bias and SD of the covariate-speciﬁc ROC over 1000 bootstrap iterations for diﬀerent qualities and diﬀerent FPR. We do not recommend using the CQR method in a heteroscedastic model since it is highly bias. On the contrary, the bias using HM is relatively small, and the loss in statistical eﬃciency relative to WLSx is moderate. 
	Table 6: Bias and SD of the covariate-speciﬁc ROC for diﬀerent qualities and diﬀerent values of u for the facial recognition data. (WLSx: grouped weighted least square; HM: He’s method; CQR: composite quantile regression) 
	quality 
	quality 
	quality 
	good 
	bad 
	ugly 

	u 
	u 
	Method 
	bias 
	SD 
	VR 
	bias 
	SD 
	VR 
	bias 
	SD 
	VR 

	0.1 
	0.1 
	WLSx HM CQR 
	-0.034 0.102 -0.300 
	0.119 0.080 0.089 
	1.00 2.17 1.77 
	-0.033 -0.114 -0.262 
	0.089 0.103 0.081 
	1.00 0.74 1.20 
	0.037 0.048 -0.108 
	0.088 0.104 0.035 
	1.00 0.72 6.36 

	0.3 
	0.3 
	WLSx HM CQR 
	-0.010 0.010 -0.182 
	0.050 0.036 0.095 
	1.00 1.91 0.28 
	0.051 -0.007 -0.251 
	0.121 0.134 0.085 
	1.00 0.81 1.99 
	0.026 0.078 -0.197 
	0.098 0.138 0.096 
	1.00 0.51 1.04 

	0.5 
	0.5 
	WLSx HM CQR 
	0.009 0.009 -0.101 
	0.024 0.024 0.059 
	1.00 1.03 0.17 
	0.011 -0.010 -0.291 
	0.066 0.076 0.103 
	1.00 0.76 0.41 
	-0.084 0.015 -0.315 
	0.119 0.118 0.084 
	1.00 1.02 2.03 

	0.7 
	0.7 
	WLSx HM CQR 
	0.021 0.018 -0.015 
	0.019 0.021 0.042 
	1.00 0.78 0.20 
	0.003 0.001 -0.137 
	0.058 0.063 0.101 
	1.00 0.86 0.33 
	-0.022 0.068 -0.203 
	0.115 0.092 0.099 
	1.00 1.56 1.35 

	0.9 
	0.9 
	WLSx HM CQR 
	-0.003 -0.010 -0.019 
	0.008 0.015 0.019 
	1.00 0.28 0.74 
	-0.033 -0.030 -0.112 
	0.035 0.032 0.065 
	1.00 1.24 0.30 
	0.024 0.094 0.075 
	0.064 0.060 0.109 
	1.00 1.15 0.35 


	In addition to the values of the ROC curves, we also compare their (approximate) derivatives, which bear a close relationship with likelihood ratios (i.e., the ratio of the density of the scores in the genuine population over the density of the scores in the imposter population). Since the 
	Figure
	Table 7: Mean, standard errors (SE), absolute diﬀerences (AD) of the mean, relative differences (RD) of the mean, and variance ratio (VR) of the covariate-speciﬁc ROC values based on median regression (MR) vs. median regression followed by He’s method (MR)for Ai = Aj = log 20 based on 10k bootstrap sample. 
	-
	+

	Table
	TR
	gender 
	male 
	female 

	quality 
	quality 
	FAR 
	method 
	mean 
	SE 
	AD 
	RD 
	VR 
	mean 
	SE AD 
	RD 
	VR 

	good 
	good 
	0.05 
	MR MR+ 
	0.644 0.527 
	0.149 0.207 
	0.118 
	0.22 
	0.52 
	0.570 0.469 
	0.167 0.1010.204 
	0.22 
	0.67 

	0.1 
	0.1 
	MR MR+ 
	0.731 0.653 
	0.126 0.165 
	0.078 
	0.12 
	0.58 
	0.665 0.597 
	0.152 0.0680.175 
	0.11 
	0.76 

	0.2 
	0.2 
	MR MR+ 
	0.829 0.783 
	0.082 0.109 
	0.046 
	0.06 
	0.57 
	0.787 0.743 
	0.104 0.0450.124 
	0.06 
	0.71 

	bad 
	bad 
	0.05 
	MR MR+ 
	0.139 0.109 
	0.067 0.095 
	0.030 
	0.28 
	0.49 
	0.113 0.089 
	0.070 0.0250.088 
	0.28 
	0.64 

	0.1 
	0.1 
	MR MR+ 
	0.199 0.172 
	0.087 0.117 
	0.027 
	0.16 
	0.56 
	0.161 0.139 
	0.093 0.0230.110 
	0.16 
	0.71 

	0.2 
	0.2 
	MR MR+ 
	0.337 0.314 
	0.118 0.145 
	0.023 
	0.08 
	0.67 
	0.273 0.249 
	0.127 0.0230.145 
	0.09 
	0.77 

	ugly 
	ugly 
	0.05 
	MR MR+ 
	0.094 0.091 
	0.050 0.072 
	0.003 
	0.04 
	0.48 
	0.072 0.068 
	0.041 0.0040.055 
	0.07 
	0.55 

	0.1 
	0.1 
	MR MR+ 
	0.135 0.144 
	0.067 0.102 
	0.009 
	0.07 
	0.43 
	0.104 0.108 
	0.056 0.0040.079 
	0.04 
	0.52 

	0.2 
	0.2 
	MR MR+ 
	0.236 0.251 
	0.102 0.140 
	0.015 
	0.06 
	0.53 
	0.187 0.189 
	0.086 0.0020.110 
	0.01 
	0.61 


	Table 8: Mean, standard errors (SE), absolute diﬀerences (AD) of the mean, relative differences (RD) of the mean, and variance ratio (VR) of the covariate-speciﬁc ROC values based on median regression (MR) vs. median regression followed by He’s method (MR)for Ai = Aj = log 50 based on 10k bootstrap sample. 
	-
	+

	Table
	TR
	gender 
	male 
	female 

	quality 
	quality 
	FAR 
	method 
	mean 
	SE 
	AD 
	RD 
	VR 
	mean 
	SE AD 
	RD 
	VR 

	good 
	good 
	0.05 
	MR MR+ 
	0.642 0.545 
	0.009 0.009 
	0.097 
	0.18 
	1.01 
	0.595 0.499 
	0.167 0.0950.009 
	0.19 
	1.06 

	0.1 
	0.1 
	MR MR+ 
	0.702 0.648 
	0.008 0.008 
	0.055 
	0.08 
	1.05 
	0.661 0.607 
	0.152 0.0540.008 
	0.09 
	1.08 

	0.2 
	0.2 
	MR MR+ 
	0.787 0.754 
	0.007 0.007 
	0.033 
	0.04 
	1.08 
	0.755 0.722 
	0.104 0.0330.007 
	0.05 
	1.10 

	bad 
	bad 
	0.05 
	MR MR+ 
	0.261 0.195 
	0.008 0.007 
	0.066 
	0.34 
	1.10 
	0.213 0.157 
	0.009 0.0570.006 
	0.36 
	1.14 

	0.1 
	0.1 
	MR MR+ 
	0.326 0.287 
	0.008 0.008 
	0.039 
	0.14 
	0.99 
	0.274 0.237 
	0.008 0.0380.008 
	0.16 
	1.02 

	0.2 
	0.2 
	MR MR+ 
	0.442 0.431 
	0.009 0.010 
	0.010 
	0.02 
	0.93 
	0.387 0.373 
	0.008 0.0140.009 
	0.04 
	0.94 

	ugly 
	ugly 
	0.05 
	MR MR+ 
	0.191 0.209 
	0.006 0.008 
	0.018 
	0.10 
	0.69 
	0.149 0.162 
	0.005 0.0140.006 
	0.09 
	0.66 

	0.1 
	0.1 
	MR MR+ 
	0.249 0.286 
	0.007 0.009 
	0.036 
	0.15 
	0.68 
	0.200 0.233 
	0.006 0.0330.008 
	0.16 
	0.63 

	0.2 
	0.2 
	MR MR+ 
	0.360 0.395 
	0.009 0.010 
	0.035 
	0.10 
	0.77 
	0.305 0.338 
	0.008 0.0340.009 
	0.11 
	0.73 


	Figure
	estimated ROC curves are not diﬀerentiable, its derivatives are approximated via diﬀerence quotients. Speciﬁcally, we compute the (approximate) log-likelihood ratios (LLRs) 
	ROCx(u + h) − ROCx(u − h)
	LLRx(u)=log u ∈ (0, 1),
	2h for h =0.01. In the above equation, u corresponds to the FAR. The ROC in this function is estimated using covariate-speciﬁc ROC curve (average over 10,000 bootstrap iterations) based on the heteroscedastic or homoscedastic ﬁts. 
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	Figure 15: Covariate-speciﬁc ROC curves (after applying the logit transformation to the TAR) with 95% pointwise uncertainty intervals (shaded areas) based on MR (solid line) vs. MR(dashed line) for age 50 over 10k bootstrap iterations. MR: median regression; MR: median regression followed by He’s method. Best seen in color. 
	Figure 15: Covariate-speciﬁc ROC curves (after applying the logit transformation to the TAR) with 95% pointwise uncertainty intervals (shaded areas) based on MR (solid line) vs. MR(dashed line) for age 50 over 10k bootstrap iterations. MR: median regression; MR: median regression followed by He’s method. Best seen in color. 
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	3.2.3 Research Question 3: Develop evidence interpretation tools based on covariate-speciﬁc likelihood ratios 
	In order to access the likelihood ratio, we use the relationship between ROC curve and likelihood ratio In order to access the likelihood ratio, we use the relationship between ROC curve and likelihood ratio. Accordingly, we ﬁrst calculate the derivative of the covariate
	In order to access the likelihood ratio, we use the relationship between ROC curve and likelihood ratio In order to access the likelihood ratio, we use the relationship between ROC curve and likelihood ratio. Accordingly, we ﬁrst calculate the derivative of the covariate
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	speciﬁc ROC-curve: 
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	Figure 16: The absolute mean diﬀerence for the estimation of covariate-speciﬁc ROC curves of MR vs. HM at age {20, 25, 30, 35, 40, 45, 50} over 10k bootstrap iterations. MR: median regression – homoscedastic ﬁt; HM: He’s method – heteroscedastic ﬁt. Best seen in color. 
	Figure 16: The absolute mean diﬀerence for the estimation of covariate-speciﬁc ROC curves of MR vs. HM at age {20, 25, 30, 35, 40, 45, 50} over 10k bootstrap iterations. MR: median regression – homoscedastic ﬁt; HM: He’s method – heteroscedastic ﬁt. Best seen in color. 
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	ROC(u)= = ,u ∈ (0, 1), (8)
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	where g= Gand g= Gdenote the PDFs of eand e. Evaluating (8)at S,x(t), t ∈ R, we obtain the covariate-speciﬁc likelihood ratio conditional on X = x: 
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	Estimator based on the Location-Scale Model 
	In particular, the equation (9) suggests the following approach for estimation: 
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	(i) Estimate μ(x, 0; β)and μ(x, 1; β): 
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	In the simplest setting, X represents a single continuous covariate and XD =(X·D, ··· ,Xp · 
	1 

	D), μ(X, D, β) is the following linear function in β=(β,β,β,β)
	∗
	∗ 
	∗
	∗ 
	∗ 
	∗ 

	0 DX XD 
	μ(X, D; β )= β+ β D + β X + β XD (10)
	∗ 
	0 
	∗ 
	∗ 
	∗ 
	∗ 

	DX XD 
	Deﬁne = σeand = σe,then T = μ(X, D; β)+ Dσ(X; α)e+(1 − D)σ(x; σ)ecan be written as T = μ(X, D; β)+ Dσe+(1 − D)σe, substituting μ(X, D; β)by μ(X, D; β), we get the residual: 
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	In summary, for location-scale model, we have F,x and F,x, F,x(t)= F,and 
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	dependent of x, then, F,x(t)= F= G(t − μ(x)), and F,x(t)= F= 
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	σ(x) σ(x) G(t − μ(x)). So, the estimate process was estimate μ, μusing regression(least squares), compute the residual from regression, estimate Γand Γfrom the (standardized) residuals. 
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	Logistic Regression Model 
	We estimate the covariate-speciﬁc likelihood ratio using other models other than the location-scale model, like the logistic regression model. We compare of location-scale model and the logistic regression model to see whether the logistic regression model is more robust than 
	Figure
	the location-scale model to estimate the covariate-speciﬁc likelihood ratio. 
	 
	P (D =1|X = x)
	LRx(t)=exp h(t)+ x Ψ − log . (12)
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	referred to as ”correction term”. If the probability of D|X is independent of X, P (D = 1|X = x)= P (D =0|X = x)= c,for c ∈ (0, 1), then LRx(t)= e· e
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	general, this can be written as LRx(t)= e · e , the correction term is constant. We are considering this model because it is a convenient model. There is no interaction between 
	 

	LRx(t)
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	X and t. If we look at the ratio of likelihood ratio , x and x represent two values of 
	LR 

	x (t) 
	covariance, this ratio does not depend on t, it only depends on x and x , so for any given value of t the ratio will be the same. This has non-crossing property, which is also one of the major criticism of the Cox model. The non-crossing property has been indicated in the ﬁgure 17. 
	Figure
	Figure 17: Imposter and genuine scores separated by a threshold based on continuous test scores. 
	Figure 17: Imposter and genuine scores separated by a threshold based on continuous test scores. 
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	This implies the following logistic regression model: 
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	Real Data Analysis 
	We evaluate facial recognition data with covariates age (2004-yob) and gender using the proposed method. The facial recognition dataset from Face Recognition Vendor Test (FRVT) by Phillips [29]. 
	Figure
	Figure 18: Bootstrap mean and SD of LR based on real data analysis. Results of Covariate-speciﬁc LR using location-scale model, naive logistic regression, and generalized linear mixed model and compare with Pooled LR. new is represent the generalized linear mixed model. 
	Figure 18: Bootstrap mean and SD of LR based on real data analysis. Results of Covariate-speciﬁc LR using location-scale model, naive logistic regression, and generalized linear mixed model and compare with Pooled LR. new is represent the generalized linear mixed model. 


	In ﬁgure 18 we plot the log-likelihood ratio and also add the mean and standard deviations over the 1000 bootstrap replications. In each bootstrap replication, the value of Likelihood ratio is estimated using the location-scale model, na¨ıve logistic regression, generalized linear 
	In ﬁgure 18 we plot the log-likelihood ratio and also add the mean and standard deviations over the 1000 bootstrap replications. In each bootstrap replication, the value of Likelihood ratio is estimated using the location-scale model, na¨ıve logistic regression, generalized linear 
	mixed model which are considered covariates, and compared with Pooled LR, which is ignore covariates. Age and gender are considered as multiple covariates in our study. We can denote the naive logistic regression as the old method and the generalized linear mixed model as the new method. For the new method, we use glmer function in R to ﬁt the model. Instead of estimating the parameters (β and σ) separately, we estimate the value of log(LR) directly. The sample sizes in both groups are the same, i.e., n = m

	Figure
	After ﬁtting the regression models, we have compared the location-scale model, na¨ıve logistic regression, generalized linear mixed model, and the pooled likelihood ratio in ﬁgure 18.We have presented three approaches for estimating (score-based) likelihood ratios to account for covariates. These covariate-speciﬁc likelihood ratios can be much more appropriate than pooled likelihood ratios. The plot shows that the likelihood ratio can be noticeably inﬂuenced by the covariate. 
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	The statistical package for the ROC regression methods was made publicly available as a R Shiny app at /. User guides are written in plain language so that forensic scientists will be able to implement the developed tools. 
	https://tynguyen.shinyapps.io/Ordinal_ROC
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	4.2 Data sets generated 
	4.2 Data sets generated 
	Not applicable 

	4.3 Dissemination activities 
	4.3 Dissemination activities 
	Conference Presentations 
	December 2020 -Dr. Martin Slowski gave an invited talk, titled “Univariate Likelihood 
	Figure
	Ratio Estimation via Mixture of Beta Distributions” at 2020 ICSA Applied Statistics 
	Symposium 
	December 2020 -Dr. Xiaochen Zhu, with Drs Tang and Slawski as co-authors, gave a presentation, titled “Order-Constrained ROC Regression with Application to Facial Recognition” at 2020 ICSA Applied Statistics Symposium 
	June 2021 -Ty Nguyen, the GRA supported by this grant, gave an oral presentation, titled “Quantifying Uncertainty in Classiﬁcation Accuracy”, at the Crossing Forensic Borders Global Lecture Series. 
	August 2021 -Dr. Tang gave an oral presentation, titled “Covariate-Adjusted ROC Curves: An Introduction and Application to Characterizing Hidden Behavior in Biometric Matching System” at 2021 Joint Statistical Meetings 
	August 2021 -Dr. Ommen gave an oral presentation, titled “Machine Learning Methods for Dependent Data Resulting from Forensic Evidence Comparisons” at 2021 Joint Statistical Meetings 
	August 2021 -Dr. Saunders served as a discussant in the session, titled “Bias and Interpretability in Biometrics for Forensic Science” at 2021 Joint Statistical Meetings 
	-

	September 2021 -Dr. Saunders gave an oral presentation, titled “The Eﬀect of Latent Structures on Forensic Values of Evidence”, at 2021 ICSA Applied Statistics Symposium in September 2021 
	-

	September 2021 -Ms. He Qi, who is supervised by Dr. Slawski, gave an oral presentation, titled “Approaches to Likelihood Ratio Estimation for Forensic Evidence Interpretation” at 2021 ICSA Applied Statistics Symposium 
	-

	September 2021 -Ty Nguyen who is supported by this grant, gave an oral presentation, titled “Homogeneity test for ordinal ROC regression and application to facial recognition”, at 2021 ICSA Applied Statistics Symposium 
	-

	Figure
	September 2021 -Dr. Ommen gave an oral presentation, titled “Constructing Coher
	-

	ent Score-Based Likelihood Ratios that Account for Rarity” at 2021 ICSA Applied Statistics Symposium 
	Feburary 2022 -Dr. Tang gave an oral presentation, titled “Assessing Error Rates in Multiple Examiner Groups Using Regression Methods” at 2022 Forensic Science Research and Development (RD) Symposium 
	-

	Feburary 2022 -Dr. Tang and his Ph.D. student, Ngoc-Ty Nguyen, gave an oral presentation, titled “Ordinal Regression for Error Rates in a Black-Box Face Recognition Study” at AAFS 
	-

	Feburary 2022 -Dr. Tang gave a workshop on “Determining Suﬃciency for the Identiﬁcation of Gasoline” at AAFS in Feburary 2022 
	-

	March 2022 -Drs. Marasco and Tang’s PhD students gave an oral presentation titled “Demographic Eﬀects in Latent Fingerprint Matching and their Relation to Image Quality” at the ACM International Conference on Machine Learning Technologies in March 2022 
	March 2022 -Dr. Saunders gave an invited keynote presentation titled “An Overview Of The Forensic Identiﬁcation Of Source Problem” at the XIII COLOQUIO NACIONAL DE ESTAD ISTICA Escuela de Estad´ıstica -Facultad de Ciencias 
	´

	February 2022 -Dylan Borchert and Andrew Simpson presented two poster presentations at the 2022 South Dakota State University Data Science Symposium titled ”An Alpha-based Prescreening Methodology for a Common but Unknown Source Likelihood Ratio with Diﬀerent Subpopulation Structures” and ”Identifying Subpopulations of a Hierarchical Structured Data using a Semi-Supervised Mixture Modeling Approach”. 
	-

	August 2022 -Dr. Tang and his student gave an oral presentation, titled “A Survey of Likelihood Ratio Method Development and Implementation Across Multiple Forensic 
	Figure
	Disciplines” at Joint Statistical Meetings 
	August 2022 -Ms. He Qi, who is supervised by Dr. Slawski, gave an oral presentation, titled “Approaches to Likelihood Ratio Estimation for Forensic Evidence Interpretation” at 2022 Joint Statistical Meetings 
	-

	August 2022 -Dr. Tang and his student gave an oral presentation, titled “Homogeneity Test for Ordinal ROC Regression and Application to Facial Recognition” at Joint Statistical Meetings 
	August 2022 -Drs. Ommen and Tang gave an oral presentation, titled “Interpretation of Handwriting Evidence Using Error Rates and Score-Based Likelihood Ratios” at Joint Statistical Meetings 
	Feburary 2023 -Drs. Ommen and Saunders gave an oral presentation, titled “ Statistical Discrimination Methods for Forensic Source Interpretation: The Application to Micromorphometric Feature Measurement of Aluminum Powders Used in Explosives” at the American Academy of Forensic Sciences meeting 
	-

	June 2023 -Dr. Michael gave an oral presentation, titled “Modeling heterogeneity in hierarchically structured data for source identiﬁcation problems” at the 2023 International Indian Statistical Association Annual Conference 
	-

	June 2023 -Dylan Borchert gave a poster presentation, titled “A prescreening methodology for the use of likelihood ratios with subpopulation structures in the alternative source population” at the 2023 International Indian Statistical Association Annual Conference 
	-

	June 2023 -Dr. Michael gave an oral presentation, titled “Detection and Characterization of Subpopulations and the Study of Algorithmic Bias in Forensic Identiﬁcation of Source Problems” at the 2023 International Conference on Forensic Inference and Statistics 
	-

	Figure
	Seminars/Workshops 
	August 2021 -Dr. Saunders organized a topic-contributed session at 2021 Joint Statistical Meetings for this project 
	September 2021 -Dr. Slawski organized and chaired an invited session “Advances in Forensic Statistics” at 2021 ICSA Applied Statistics Symposium in September 2021. 
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