The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource:

Document Title: Development and Evaluation of a Contrastive Learning Framework with Applications to Micromorphometry of Aluminum Powder used in Explosives

Author(s): Danica Ommen, Christopher Saunders, JoAnn Buscaglia

Document Number: 308221

Date Received: December 2023

Award Number: 2019-DU-BX-4011

This resource has not been published by the U.S. Department of Justice. This resource is being made publicly available through the Office of Justice Programs’ National Criminal Justice Reference Service.

Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.
DEVELOPMENT AND EVALUATION OF A CONTRASTIVE LEARNING FRAMEWORK WITH APPLICATIONS TO MICROMORPHOMETRY OF ALUMINUM POWDER USED IN EXPLOSIVES

DANICA OMMEN¹
CHRIS SAUNDERS²
JOANN BUSCAGLIA³

¹IOWA STATE UNIVERSITY
²SOUTH DAKOTA STATE UNIVERSITY
³FBI LABORATORY DIVISION

13 JUNE 2023
Funding

This research was supported in part by appointments to the Visiting Scientist Program at the Federal Bureau of Investigation Laboratory Division, administered by the Oak Ridge Institute for Science and Education, through an interagency agreement between the US Department of Energy and the FBI.

This research was supported in part by a grant from the NIJ, Award # 2019-DU-BX-4011.

Travel was supported by NIJ Contract # GS-00F-439GA, Order # 15NJD21F00000011.

Disclaimer

Acknowledgements
Funding

Disclaimer

Names of commercial products are provided for identification purposes only, and inclusion does not imply endorsement of the manufacturer, or its products or services by the FBI. The views expressed are those of the author(s) and do not necessarily reflect the official policy or position of the FBI, the U.S. Government, or the NIJ.

Acknowledgements
The authors gratefully acknowledge the support of Visiting Scientists and Honors Interns at the FBI Laboratory, especially our colleagues Jack Hietpas, Jena Baldaino, and Kayla Moquin for their contributions to this research project.
Al powder is often used as a fuel in IEDs.
Individuals attempting to make IEDs often obtain it from legitimate commercial products or make it themselves using readily available Al starting materials.
The characterization and differentiation between sources of Al powder may provide investigative and intelligence value.
Our goal is to use micromorphometric features of Al powder particles from a variety of different source types and apply statistics!
Considerations include:

- Hierarchy of Propositions
- Common-source vs. Specific-source
- Closed-set vs. Open-set
Forensic Identification of Source

Hierarchy of Propositions

- **Offense Level**: The individual(s) made the IED.
- **Activity Level**: The individual(s) supplied the Al powder to the IED maker.
- **Source Level**: The Al powder in the IED was produced by manufacturer X.
- **Sub-Source Level**: The Al powder in the IED came from this particular bulk Al powder sample.

Common-source vs. Specific-source

Closed-set vs. Open-set
Specific-source: The Al powder in the IED came from this particular bulk sample.

Common-source: The Al powder in the first and second IED come from the same bulk sample.
Hierarchy of Propositions

Common-source vs. Specific-source

Closed-set vs. Open-set

- **Closed-set**: The alternative population consists of a finite number of known sources with observed samples.
- **Open-set**: It is not possible to list and/or observe samples from all possible sources in the alternative population.
Choices for this presentation:

- Hierarchy of Propositions
 - Sub-Source Level

- Common-source vs. Specific-source
 - Common-source

- Closed-set vs. Open-set
 - Open-set
Al Powder Data

<table>
<thead>
<tr>
<th>Sample Type</th>
<th># of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball-milled Al Foil</td>
<td>29</td>
</tr>
<tr>
<td>Al-containing Spray Paint</td>
<td>36</td>
</tr>
<tr>
<td>Binary Exploding Targets</td>
<td>40</td>
</tr>
<tr>
<td>Industrial Manufacturers</td>
<td>47</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
</tr>
</tbody>
</table>
A three step process consisting of:

- Sample Preparation
- Automated Imaging
- Particle Micromorphometry
i. Bulk Al powder was thoroughly mixed/re-distributed in sample tube
ii. A micro-spatula of sample was placed into a microtube containing Permount®
iii. A 10µL aliquot was taken from the subsample and placed on a microscope slide with an 18x18mm cover slip

Figure: reprinted with permission from Ommen et al. [1]
Automated Imaging

Figure: reprinted with permission from Ommen et al. [1]
Particle Micromorphometry

Figure: Each image (a) was converted to a binary image (b) to enhance edge detection. The particles were then counted (c), eliminating any particles along the border of the image, and measured. Seventeen parameters were measured for each identified particle within the image FOV: area; perimeter; feret diameter (minimum, maximum and mean); diameter (minimum, maximum, and mean); roundness; aspect ratio; box (height, width, and ratio); radii (minimum, maximum, and mean distance from particle centroid to edge); and fractal dimension. The data from thousands of particles were exported to a large text data file for further statistical analysis. (reprinted with permission from Ommen et al. [1])
Feature-based

Score-based
Statistical Analysis

Feature-based

Model high-dimensional raw features of evidence, \(E = \{Q_1, Q_2, K\} \)

\[
\frac{P(H_p|E)}{P(H_d|E)} = \frac{P(E|H_p)}{P(E|H_d)} \times \frac{P(H_p)}{P(H_d)}
\]

Posterior Odds

Bayes Factor

Prior Odds

NOTES:

- Raw features of \(E \) are \(17 \times \text{thousands} \) - dimensional non-sparse matrices for each FOV
- Difficult to statistically model such large matrices
- Even if we could model them, computationally intractable to evaluate the likelihoods

Score-based
Statistical Analysis

Feature-based

Score-based

Model the low-dimensional output from a comparison function

\[
\frac{f(\Delta(Q_1, Q_2) | H_p)}{f(\Delta(Q_1, Q_2) | H_d)}
\]

Score-based Likelihood Ratio

NOTES:

- \(\Delta : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) is a “black-box” comparison function where \(\mathcal{X} \) is the raw feature-space
- \(f \)'s often need to be best estimated using the \(K \)'s
Contrastive Learning Framework

Consists of four parts:

- Optional Dimension Reduction
- Comparison Function
- Contrastive Algorithm
- SLR Computation
Contrastive Learning Framework

Optional Dimension Reduction

If the data is too complex or high dimensional, simplify via:
- Summary Statistics
- Principle Component Analysis (PCA)
- etc.

Comparison Function

Contrastive Algorithm

Score-Based Likelihood Ratio
Contrastive Learning Framework

Optional Dimension Reduction

Comparison Function

- Method for quantifying the (dis)similarity of pairs of evidential items
- Can incorporate adaptive scoring functions
- Examples:
 - Modified Wasserstein Distance Score (WDS) [2]
 - Modified ASTM-Glass Vector of Scores (VOS) [3,4]

Contrastive Algorithm

SLR Computation
Contrastive Learning Framework

Optional Dimension Reduction

Comparison Function

Contrastive Algorithm

- Method for determining the best separation between within-source or between-source comparisons
- Can incorporate statistical learning algorithms
- Examples:
 - Unsupervised Linear Discriminant Analysis (LDA)
 - Adaptive Random Forest Score (RFS) [5,6]

SLR Computation
Contrastive Learning Framework

Optional Dimension Reduction

Comparison Function

Contrastive Algorithm

SLR Computation
Outcome is an SLR for quantifying evidential value
- Traditional Kernel Density Estimation (KDE) [6]
- Bi-Normal Receiver Operating Characteristic (ROC) Curve [7]
- Pseudo-independence Ensemble System [8]
Contrastive Learning Example

<table>
<thead>
<tr>
<th>Optional Dimension Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-level Summary Statistics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contrastive Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupervised Linear Discriminant Analysis (LDA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparison Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Wasserstein Distance Score (WDS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SLR Computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-Normal Receiver Operating Characteristic (ROC) Curve</td>
</tr>
</tbody>
</table>
Several levels at which we can summarize data by taking an average:
First Mean Summary = FOV Means

Statistics

<table>
<thead>
<tr>
<th>Particle</th>
<th>Area</th>
<th>Perimeter</th>
<th>Feret Min</th>
<th>Feret Mean</th>
<th>Feret Max</th>
<th>Diam Min</th>
<th>Diam Mean</th>
<th>Diam Max</th>
<th>Round</th>
<th>Aspect</th>
<th>Box Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Contrastive Learning Example

Optional Dimension Reduction

Final Data:
- \(n = 154 \) Samples \(\times \) 7 Subsamples
- Within-Source Subsample Pairs: \(154 \times \binom{7}{2} = 3234 \)
- Between-Source Subsample Pairs: \(\binom{154 \times 7}{2} - 3234 = 577,269 \)
- 200 FOV Means \(\times \) 3 Aliquots = 600 per Subsample

Contrastive Algorithm

Comparison Function

SLR Computation
Contrastive Learning Example

Optional Dimension Reduction

Contrastive Algorithm

- For each pair of subsamples, perform unsupervised LDA
- Goal of LDA is binary classification (with equal priors)
- Output the vectors of posterior class probabilities
- The LDA method was implemented in R© using the lda and predict functions from the MASS package.

Comparison Function

SLR Computation
Red circle class prediction: \(\circ = 0.995, \triangle = 0.005 \)
Red circle class prediction: $\circ = 0.494$, $\triangle = 0.493$
Contrastive Learning Example

Optional Dimension Reduction

Contrastive Algorithm

Comparison Function

- The modified Wasserstein Distance function is used to compare the distance between LDA output vectors.
- If the subsamples are from the same sample source, then the WDS should be small.
- If the subsamples are from different sample sources, then the WDS should be large.

SLR Computation
Compare: WDS

Let’s look at some quantiles for the red circle class predictions

\[WDS = \frac{1}{P} \sum_{p=1}^{P} (\circ_p - \triangle_p)^2 \]

Between-Source Example

\[
\begin{array}{c}
\text{QQ-plot of Class 1 Probabilities} \\
\begin{array}{c}
\text{Subsample 1} \\
\text{Subsample 2}
\end{array}
\end{array}
\]

PCA-WDS = 0.725
Full-WDS = 1

Within-Source Example

\[
\begin{array}{c}
\text{QQ-plot of Class 1 Probabilities} \\
\begin{array}{c}
\text{Subsample 1} \\
\text{Subsample 2}
\end{array}
\end{array}
\]

PCA-WDS = 7×10^{-6}
Full-WDS = 7×10^{-5}
Compare: WDS

AUC: 0.947

0.285 (0.875, 0.875)
The resulting WDS can either be a within-source ("match") or between-source comparison.

The ROC curve for this binary classification plots the random match probability against one minus the random nonmatch probability.

The derivative of the ROC curve is equivalent to the SLR.
SLR: Bi-Normal ROC

![Graph showing Bi-Normal ROC with Score and Probability density axes](image)
SLR: Bi-Normal ROC

- $1 - RNMP = P(\Delta(Q_1, Q_2) \leq \tau | H_p) = F_p(\tau)$ with density f_p
- $RMP = P(\Delta(Q_1, Q_2) \leq \tau | H_d) = F_d(\tau)$ with density f_d
- Statistically, the ROC is defined for $0 < x < 1$
 \[R(x) = F_p(F_d^{-1}(x)) \]
- For $F_d^{-1}(x) = \Delta(Q_1, Q_2)$, the derivative of the ROC curve is
 \[\frac{dR(x)}{dx} = \frac{f_p(F_d^{-1}(x))}{f_d(F_d^{-1}(x))} = \frac{f(\Delta(Q_1, Q_2) | H_p)}{f(\Delta(Q_1, Q_2) | H_d)} = SLR! \]
- To make things simple, suppose the scores are transformed using a function T so $f_p \sim N(\mu_p, \sigma_p)$ and $f_d \sim N(\mu_d, \sigma_d)$
 \[SLR = \frac{\hat{\sigma}_d \phi(\frac{[\hat{\mu}_p - T(\Delta(Q_1, Q_2))] / \hat{\sigma}_p }{\hat{\sigma}_d})}{\hat{\sigma}_p \phi(\frac{[\hat{\mu}_d - T(\Delta(Q_1, Q_2))] / \hat{\sigma}_d}{\hat{\sigma}_d})} \]
SLR: Bi-Normal ROC

Bi-Normal Score Densities

LDA WDS density

-0.5 0.0 0.5 1.0 1.5
0 1 2 3 4 5 6 7
Results

Tippett Plot for Bi-normal ROC SLR

Cumulative Probability

$\log_{10}(SLR)$
Results

- log-SLRs that support the prosecution hypothesis
 - When W is ground truth, these are "correct."
 - When B is ground truth, these are misleading!

<table>
<thead>
<tr>
<th></th>
<th>(0,2]</th>
<th>(2,4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.088</td>
<td>0.82</td>
</tr>
<tr>
<td>B</td>
<td>0.079</td>
<td>0.089</td>
</tr>
</tbody>
</table>

- log-SLRs that support the defense hypothesis
 - When B is ground truth, these are "correct."
 - When W is ground truth, these are misleading!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.358</td>
<td>0.146</td>
<td>0.112</td>
<td>0.083</td>
<td>0.068</td>
<td>0.065</td>
</tr>
<tr>
<td>W</td>
<td>0.004</td>
<td>0.005</td>
<td>0.009</td>
<td>0.011</td>
<td>0.023</td>
<td>0.031</td>
</tr>
</tbody>
</table>
The contrastive learning framework has the flexibility to handle quantifying evidential value for a variety of complex evidence forms.

In the common source Al powder example, the contrastive learning framework resulted in:
(FOV Mean Summary -> LDA -> WDS -> Bi-normal ROC SLR)

- TPR = 91.7% TNR = 83.2%
- FPR = 16.8% FNR = 8.3%

Each module of the contrastive learning framework can be substituted for any other applicable method (example in appendix).

The compare and contrast modules of the contrastive learning framework can switch order (example in appendix).
Future Work

Lots of room for improvement ...

- Consider other definitions of source or sub-source
- Extend framework to address specific source problem
- Pairwise comparison approach creates complex score-dependence structure that hasn’t been handled appropriately.
- Bi-normal assumption for the Al powder data is clearly inappropriate.
THANKS FOR LISTENING!

Questions

EMAIL ME: DMOMMEN@IASTATE.EDU
3. ASTM International, E2927-16e1, 2022
4. ASTM International, E2330-19, 2022
5. Park S, Carriquiry A. https://doi.org/10.1214/18-AOAS1211
Contrastive Learning Framework

<table>
<thead>
<tr>
<th>Dimension Reduction</th>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Step 1</td>
<td>FOV Means</td>
<td>Aliquot Means</td>
</tr>
<tr>
<td>Method Step 2</td>
<td>Contrast: LDA</td>
<td>Compare: ASTM VOS</td>
</tr>
<tr>
<td>SLR Computation</td>
<td>Compare: WDS</td>
<td>Contrast: RFS</td>
</tr>
<tr>
<td></td>
<td>Bi-Normal ROC</td>
<td>Traditional KDE</td>
</tr>
</tbody>
</table>
Contrastive Learning Example 2

Optional Dimension Reduction
Second-level Summary Statistics

Comparison Function
ASTM Vector of Scores (VOS)

Contrastive Algorithm
Random Forest Score (RFS)

SLR Computation
Traditional Kernel Density Estimation (KDE)
Optional Dimension Reduction

- Several levels at which we can summarize data by taking an average:
Second Mean Summary = MoM

B

ALIQUOTS \((n = 3)\)

\[
\begin{array}{cccccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\vdots & \times200 & \vdots \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\end{array}
\]

$$\sum \text{AVG}$$
Optional Dimension Reduction

Final Data:
- \(n = 154 \text{ Samples} \times 7 \text{ Subsamples} \)
- Within-Source Subsample Pairs: \(154 \times \binom{7}{2} = 3234 \)
- Between-Source Subsample Pairs: \(\binom{154 \times 7}{2} - 3234 = 577,269 \)
- 3 Aliquot Means per Subsample

Comparison Function

Contrastive Algorithm

SLR Computation
The ASTM Method was designed to infer whether glass fragments in a query sample are indistinguishable from glass fragments in the known sample according to their trace elemental compositions as measured by ICP-MS [3,4].

Goal: modify the method to determine whether two questioned subsamples of Al powder share a source according to the 17 micromorphometric parameters.
Let Q_{ij} denote the vector of aliquot means for the j^{th} aliquot of the i^{th} subsample in the pair.

Compute

$$\Delta(Q_1, Q_2) = \frac{|\bar{Q}_1 - \bar{Q}_2|}{\sqrt{\frac{1}{2} \sum_{j=1}^{3} (Q_{2j} - \bar{Q}_2)^2}}$$
A random forest algorithm is used to compare the similarity of ASTM VOS via binary classification probabilities.

- If the subsamples are from the same sample source, then the RFS should be large.
- If the subsamples are from different sample sources, then the RFS should be small.
The RF algorithm serves as an *adaptive* scoring function, which means that it needs data to train ...

1. Original ASTM VOS Data
2. Down-sample Major Class
3. Train Random Forest
4. Kernel Density Estimation
5. Test the SLR system

Between-Source
- $n_B = 1,262,030$
- $n_W = 6972$

Within-Source
- $n_W = 1743$
- $n_B = 1,743$
- $n_W = 3486$
- $n_B = 6972$
- $n_W = 6972$
- $n_W = 3486$
Random Forest Variable Importance

MeanDecreaseGini

diameter_min
radius_min
feret_min
diameter_mean
box_height
box_width
feret_mean
aspect
diameter_max
area
perimeter
radius_max
feret_max
fract_dim
roundness
radius_ratio
box_ratio
Contrast: RFS

AUC: 0.930

Sensitivity

0.0 0.5 1.0

Specificity

0.0 0.2 0.4 0.6 0.8 1.0

0.569 (0.858, 0.858)
The resulting RFS is either a within-source or between-source comparison.

- KDE of known within-source RFS used to estimate f_p
- KDE of known between-source RFS used to estimate f_d
- The SLR is the ratio of $\Delta(Q_1, Q_2)$ evaluated at f_p over f_d.
Tippett Plot for ASTM RF KDE SLR

Cumulative Probability

log10(SLR)
Results

- log-SLRs that support the prosecution hypothesis
 - When W is ground truth, these are "correct" (TPR=91.6%).
 - When B is ground truth, these are misleading (FPR=17.6%).

- log-SLRs that support the defense hypothesis
 - When B is ground truth, these are "correct" (TNR=82.4%).
 - When W is ground truth, these are misleading (FNR=8.4%).

<table>
<thead>
<tr>
<th></th>
<th>(-2,-1]</th>
<th>(-1, 0]</th>
<th>(0,1]</th>
<th>(1,2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.638</td>
<td>0.186</td>
<td>0.150</td>
<td>0.026</td>
</tr>
<tr>
<td>W</td>
<td>0.020</td>
<td>0.064</td>
<td>0.531</td>
<td>0.385</td>
</tr>
</tbody>
</table>
Development and Evaluation of a Contrastive Learning Framework with Applications to Micromorphometry of Aluminum Powder used in Explosives

Authors: Danica Ommen (Iowa State University)*, Christopher Saunders (South Dakota State University), JoAnn Buscaglia (Federal Bureau of Investigation Laboratory Division)

Abstract:
The identification of source framework can be used within forensic evidence interpretation to compare a pair of items and determine whether they have come from a common unknown source or from two different unknown sources. In comparing aluminum (Al) powder particles recovered from two pre-blast improvised explosive devices (IEDs), the goal is to determine whether the powder sources are associated, potentially providing investigative between-case linkages. These problems can be addressed using a variety of statistical techniques, including the Two-Stage, Likelihood Ratio and Bayes Factor approaches. Unfortunately, the complex nature of the evidence, such as replicate measurements taken on different levels of substructure within the source powder, creates difficulties in applying the usual approaches in a straightforward manner. For characterizing features of the Al powder, we take several subsamples from the bulk Al powder, several aliquots from each subsample, several fields of view are imaged on each aliquot, and then multiple micromorphometric parameters are measured for each particle in a field of view. The hierarchical nature of this type of data creates a complex dependency structure that is difficult to directly incorporate into the traditional statistical methods for source identification. In this presentation, a contrastive learning algorithm framework is developed for complex evidence types like Al powder micromorphometry. The contrastive learning methods consist of two major components: a method for quantifying the similarity (or dissimilarity) of pairs of evidential items and a method for determining the best separation between within-source or between-source comparisons. During this presentation, we explore several different methods of quantifying pairwise similarity and several different methods of classifying pairs as within- or between-source comparisons. We will also present our approaches for evaluating the performance of the resulting score functions using micromorphometric data from Al powders.

Keywords: scores, machine learning, trace evidence, common source