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Introduction

Al powder is often used as a fuel in IEDs.
Individuals attempting to make IEDs often obtain it from
legitimate commercial products or make it themselves using
readily available Al starting materials.
The characterization and differentiation between sources of
Al powder may provide investigative and intelligence value.
Our goal is to use micromorphometric features of Al powder
particles from a variety of different source types and apply
statistics!
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Forensic Identification of Source

Considerations include:

Hierarchy of Propositions

Common-source vs. Specific-source

Closed-set vs. Open-set

3 13



Forensic Identification of Source

Hierarchy of Propositions

Offense Level: The individual(s) made the IED.
Activity Level: The individual(s) supplied the Al powder to
the IED maker.
Source Level: The Al powder in the IED was produced by
manufacturer X.
Sub-Source Level: The Al powder in the IED came from this
particular bulk Al powder sample.

Common-source vs. Specific-source

Closed-set vs. Open-set



Forensic Identification of Source

Hierarchy of Propositions

Common-source vs. Specific-source

Specific-source: The Al powder in the IED came from this
particular bulk sample.
Common-source: The Al powder in the first and second IED
come from the same bulk sample.

Closed-set vs. Open-set



Forensic Identification of Source

Hierarchy of Propositions

Common-source vs. Specific-source

Closed-set vs. Open-set

Closed-set: The alternative population consists of a finite
number of known sources with observed samples.
Open-set: It is not possible to list and/or observe samples
from all possible sources in the alternative population.



Forensic Identification of Source

Choices for this presentation:

Hierarchy of Propositions

Sub-Source Level

Common-source vs. Specific-source

Common-source

Closed-set vs. Open-set

Open-set
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Al Powder Data

Sample Type # of Samples

Ball-milled Al Foil 29
Al-containing Spray Paint 36
Binary Exploding Targets 40
Industrial Manufacturers 47

Other 2

Total 154
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Feature Extraction Method

A three step process consisting of:

Sample Preparation

Automated Imaging

Particle Micromorphometry

6 13



Sample Preparation

A1 A2

A3S1

A1 A2

A3S2

A1 A2

A3S3

A1 A2

A3S4

A1 A2

A3S5

A1 A2

A3S6

A1 A2

A3S7

A1

A3

A2
Al Powder

Bulk 
Al 

Powder

Sub-
samples Aliquots

i. Bulk Al powder was thoroughly 
mixed/re-distributed in sample tube
ii. A micro-spatula of sample was placed 
into a microtube containing Permount®
iii. A 10µL aliquot was taken from the 
subsample and placed on a microscope 
slide with an 18x18mm cover slip

Figure: reprinted with permission from Ommen et al. [1]



Automated Imaging

ΔZ 21 slices = 
80µm 

4 µm slices

28 frames

25 frames

Figure: reprinted with permission from Ommen et al. [1]



Particle Micromorphometry

Figure: Each image (a) was converted to a binary image (b) to enhance
edge detection. The particles were then counted (c), eliminating any
particles along the border of the image, and measured. Seventeen
parameters were measured for each identified particle within the
image FOV: area; perimeter; feret diameter (minimum, maximum and
mean); diameter (minimum, maximum, and mean); roundness; aspect
ratio; box (height, width, and ratio); radii (minimum, maximum, and
mean distance from particle centroid to edge); and fractal dimension.
The data from thousands of particles were exported to a large text data
file for further statistical analysis. (reprinted with permission from
Ommen et al. [1])



Statistical Analysis

Feature-based

Score-based
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Statistical Analysis

Feature-based
Model high-dimensional raw features of evidence, E = {Q1,Q2,K}

P
(
Hp|E

)
P (Hd|E)︸ ︷︷ ︸

Posterior Odds

=
P
(
E|Hp

)
P (E|Hd)︸ ︷︷ ︸

Bayes Factor

×
P
(
Hp

)
P (Hd)︸ ︷︷ ︸

Prior Odds

NOTES:
Raw features of E are 17 × thousands - dimensional
non-sparse matrices for each FOV
Difficult to statistically model such large matrices
Even if we could model them, computationally intractable to
evaulate the likelihoods

Score-based



Statistical Analysis

Feature-based

Score-based
Model the low-dimensional output from a comparison function

f (∆(Q1,Q2)|Hp)
f (∆(Q1,Q2)|Hd)︸ ︷︷ ︸

Score-based Likelihood Ratio

NOTES:
∆ : X × X 7→ R is a “black-box” comparison function
where X is the raw feature-space
f ’s often need to best estimated using the K’s



Contrastive Learning Framework

Consists of four parts:

Optional Dimension Reduction

Comparison Function

Contrastive Algorithm

SLR Computation
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Contrastive Learning Framework

Optional Dimension Reduction
If the data is too complex or high dimensional, simplify via

Summary Statistics
Principle Component Analysis (PCA)
etc.

Comparison Function

Contrastive Algorithm

Score-Based Likelihood Ratio



Contrastive Learning Framework

Optional Dimension Reduction

Comparison Function

Method for quantifying the (dis)similarity of pairs of
evidential items
Can incorporate adaptive scoring functions
Examples:
▶ Modified Wasserstein Distance Score (WDS) [2]
▶ Modified ASTM-Glass Vector of Scores (VOS) [3,4]

Contrastive Algorithm

SLR Computation



Contrastive Learning Framework

Optional Dimension Reduction

Comparison Function

Contrastive Algorithm

Method for determining the best separation between
within-source or between-source comparisons
Can incorporate statistical learning algorithms
Examples:
▶ Unsupervised Linear Discriminant Analysis (LDA)
▶ Adaptive Random Forest Score (RFS) [5,6]

SLR Computation



Contrastive Learning Framework

Optional Dimension Reduction

Comparison Function

Contrastive Algorithm

SLR Computation
Outcome is an SLR for quantifying evidential value

Traditional Kernel Density Estimation (KDE) [6]
Bi-Normal Receiver Operating Characteristic (ROC) Curve [7]
Pseudo-independence Ensemble System [8]



Contrastive Learning Example

Optional Dimension Reduction
First-level Summary Statistics

Contrastive Algorithm
Unsupervised Linear Discriminant Analysis (LDA)

Comparison Function
Modified Wasserstein Distance Score (WDS)

SLR Computation
Bi-Normal Receiver Operating Characteristic (ROC) Curve
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Contrastive Learning Example

Optional Dimension Reduction

Several levels at which we can summarize data by taking an
average:

particle | area | perimeter |  feretmin | feretmean | feretmax | diammin | diammean | diammax | round | aspect | boxH | boxW | boxR | radiusmin | radiusmean | radiusmax | fractdim

1           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

2           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

3           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

4           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

5           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

6           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

7           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19993   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19994   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19995   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19996   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19997   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19998   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19999   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19992  | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

⋮ ×≈37,000–2,500,000 ⋮

A FOV (𝒏 = 𝟐𝟎𝟎)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     

9           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999

|   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

|      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

'𝐀𝐕𝐆

B ALIQUOTS (𝒏 = 𝟑) C SUBSAMPLES (𝒏 = 𝟕)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

⋮ ×200 ⋮

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D BULK SOURCE (𝒏 = 𝟏𝟓𝟒)

Al Powder

STATISTICAL ANALYSIS



First Mean Summary = FOV Means

particle | area | perimeter |  feretmin | feretmean | feretmax | diammin | diammean | diammax | round | aspect | boxH | boxW | boxR | radiusmin | radiusmean | radiusmax | fractdim

1           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

2           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

3           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

4           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

5           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

6           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

7           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19993   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19994   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19995   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19996   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19997   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19998   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19999   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19992  | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

⋮ ×≈37,000–2,500,000 ⋮

A FOV (𝒏 = 𝟐𝟎𝟎)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     

9           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999

|   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

|      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

'𝐀𝐕𝐆

B ALIQUOTS (𝒏 = 𝟑) C SUBSAMPLES (𝒏 = 𝟕)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

⋮ ×200 ⋮

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D BULK SOURCE (𝒏 = 𝟏𝟓𝟒)

Al Powder

STATISTICAL ANALYSIS



Contrastive Learning Example

Optional Dimension Reduction
Final Data:

n = 154 Samples × 7 Subsamples
Within-Source Subsample Pairs: 154 ×

(7
2
)
= 3234

Between-Source Subsample Pairs:
(154×7

2
)
− 3234 = 577, 269

200 FOV Means ×3 Aliquots = 600 per Subsample

Contrastive Algorithm

Comparison Function

SLR Computation



Contrastive Learning Example

Optional Dimension Reduction

Contrastive Algorithm

For each pair of subsamples, perform unsupervised LDA
Goal of LDA is binary classification (with equal priors)
Output the vectors of posterior class probabilities
The LDA method was implemented in R© using the lda and
predict functions from the MASS package.

Comparison Function

SLR Computation



Contrast: LDA
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Red circle class prediction: ◦ = 0.995, △ = 0.005



Contrast: LDA
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Red circle class prediction: ◦ = 0.494, △ = 0.493



Contrastive Learning Example

Optional Dimension Reduction

Contrastive Algorithm

Comparison Function

The modified Wasserstein Distance function is used to
compare the distance between LDA output vectors.
If the subsamples are from the same sample source, then
the WDS should be small.
If the subsamples are from different sample sources, then
the WDS should be large.

SLR Computation



Compare: WDS
Let’s look at some quantiles for the red circle class predictions

WDS =
1
P

P∑
p=1

(◦p −△p)
2

Between-Source Example Within-Source Example
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PCA-WDS = 0.725 PCA-WDS = 7 × 10−6

Full-WDS = 1 Full-WDS = 7 × 10−5



Compare: WDS

1 − Specificity
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Contrastive Learning Example

Optional Dimension Reduction

Contrastive Algorithm

Comparison Function

SLR Computation

The resulting WDS can either be a within-source (“match") or
between-source comparison.
The ROC curve for this binary classification plots the random
match probability against one minus the random nonmatch
probability.
The derivative of the ROC curve is equivalent to the SLR.



SLR: Bi-Normal ROC
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SLR: Bi-Normal ROC
1 − RNMP = P(∆(Q1,Q2) ≤ τ |Hp) = Fp(τ) with density fp
RMP = P(∆(Q1,Q2) ≤ τ |Hd) = Fd(τ) with density fd
Statistically, the ROC is defined for 0 < x < 1

R(x) = Fp(F−1
d (x))

For F−1
d (x) = ∆(Q1,Q2), the derivative of the ROC curve is

dR(x)
dx =

fp(F−1
d (x))

fd(F−1
d (x))

=
f (∆(Q1,Q2)|Hp)
f (∆(Q1,Q2)|Hd)

= SLR!

To make things simple, suppose the scores are transformed
using a function T so fp ∼ N(µp, σp) and fd ∼ N(µd, σd)

SLR =
σ̂d ϕ( [µ̂p − T(∆(Q1,Q2))]/σ̂p )

σ̂p ϕ( [µ̂d − T(∆(Q1,Q2))]/σ̂d )



SLR: Bi-Normal ROC
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Results
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Results

log-SLRs that support the prosecution hypothesis
▶ When W is ground truth, these are “correct."
▶ When B is ground truth, these are misleading!

(0,2] (2,4]
W 0.088 0.82
B 0.079 0.089

log-SLRs that support the defense hypothesis
▶ When B is ground truth, these are “correct."
▶ When W is ground truth, these are misleading!

(-12,-10] (-10,-8] (-8,-6] (-6,-4] (-4,-2] (-2,0]
B 0.358 0.146 0.112 0.083 0.068 0.065
W 0.004 0.005 0.009 0.011 0.023 0.031

11 13



Conclusion

The contrastive learning framework has the flexibility to
handle quantifying evidential value for a variety of complex
evidence forms.
In the common source Al powder example, the contrastive
learning framework resulted in:
(FOV Mean Summary -> LDA -> WDS -> Bi-normal ROC SLR)
▶ TPR = 91.7% TNR = 83.2%
▶ FPR = 16.8% FNR = 8.3%

Each module of the contrastive learning framework can be
substituted for any other applicable method
(example in appendix).
The compare and contrast modules of the contrastive
learning framework can switch order (example in appendix).

12 13



Future Work

Lots of room for improvement ...
Consider other definitions of source or sub-source
Extend framework to address specific source problem
Pairwise comparison approach creates complex
score-dependence structure that hasn’t been handled
appropriately.
Bi-normal assumption for the Al powder data is clearly
inappropriate.

13 / 13



Thanks for listening!
Questions

Email me: dmommen@iastate.edu
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Contrastive Learning Framework

Example 1 Example 2
Dimension Reduction FOV Means Aliquot Means

Method Step 1 Contrast: LDA Compare: ASTM VOS
Method Step 2 Compare: WDS Contrast: RFS

SLR Computation Bi-Normal ROC Traditional KDE



Contrastive Learning Example 2

Optional Dimension Reduction
Second-level Summary Statistics

Comparison Function
ASTM Vector of Scores (VOS)

Contrastive Algorithm
Random Forest Score (RFS)

SLR Computation
Traditional Kernel Density Estimation (KDE)



Contrastive Learning Example 2

Optional Dimension Reduction

Several levels at which we can summarize data by taking an
average:

particle | area | perimeter |  feretmin | feretmean | feretmax | diammin | diammean | diammax | round | aspect | boxH | boxW | boxR | radiusmin | radiusmean | radiusmax | fractdim

1           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

2           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

3           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

4           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

5           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

6           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

7           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19993   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19994   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19995   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19996   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19997   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19998   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19999   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19992  | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

⋮ ×≈37,000–2,500,000 ⋮

A FOV (𝒏 = 𝟐𝟎𝟎)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     

9           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999

|   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

|      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

'𝐀𝐕𝐆

B ALIQUOTS (𝒏 = 𝟑) C SUBSAMPLES (𝒏 = 𝟕)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

⋮ ×200 ⋮

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D BULK SOURCE (𝒏 = 𝟏𝟓𝟒)

Al Powder

STATISTICAL ANALYSIS



Second Mean Summary = MoM

particle | area | perimeter |  feretmin | feretmean | feretmax | diammin | diammean | diammax | round | aspect | boxH | boxW | boxR | radiusmin | radiusmean | radiusmax | fractdim

1           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

2           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

3           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

4           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

5           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

6           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

7           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19993   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19994   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19995   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19996   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19997   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19998   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19999   | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

19992  | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

⋮ ×≈37,000–2,500,000 ⋮

A FOV (𝒏 = 𝟐𝟎𝟎)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     

9           | 1.1  |     2.22      |    3.333   |   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999

|   4.44444  |     5.55    |     6.66     |   7.7777    |      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

|      8.88    | 9.999 | 10.10  |   11.1  |   12    |   13    |    14.14     |      15.15     |   16.1616  |     17

'𝐀𝐕𝐆

B ALIQUOTS (𝒏 = 𝟑) C SUBSAMPLES (𝒏 = 𝟕)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

⋮ ×200 ⋮

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

'𝐀𝐕𝐆

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D BULK SOURCE (𝒏 = 𝟏𝟓𝟒)

Al Powder

STATISTICAL ANALYSIS



Contrastive Learning Example 2

Optional Dimension Reduction
Final Data:

n = 154 Samples × 7 Subsamples
Within-Source Subsample Pairs: 154 ×

(7
2
)
= 3234

Between-Source Subsample Pairs:
(154×7

2
)
− 3234 = 577, 269

3 Aliquot Means per Subsample

Comparison Function

Contrastive Algorithm

SLR Computation



Contrastive Learning Example 2

Optional Dimension Reduction

Comparison Function

The ASTM Method was designed to infer whether glass
fragments in a query sample are indistinguishable from
glass fragments in the known sample according to their trace
elemental compositions as measured by ICP-MS [3,4].
Goal: modify the method to determine whether two
questioned subsamples of Al powder share a source
according to the 17 micromorphometric parameters.

Contrastive Algorithm

SLR Computation



Compare: ASTM VOS

Let Qij denote the vector of aliquot means for the jth aliquot
of the ith subsample in the pair.
Compute

∆(Q1,Q2) =

∣∣Q̄1 − Q̄2
∣∣√
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Contrastive Learning Example 2

Optional Dimension Reduction

Comparison Function

Contrastive Algorithm

A random forest algorithm is used to compare the similarity
of ASTM VOS via binary classification probabilities.
If the subsamples are from the same sample source, then
the RFS should be large.
If the subsamples are from different sample sources, then
the RFS should be small.

SLR Computation



Contrast: RFS
The RF algorithm serves as an adaptive scoring function,
which means that it needs data to train ...

3. Train Random Forest

5. Test the SLR system4. Kernel Density Estimation2. Down-sample Major Class1. Original ASTM VOS Data

Between-Source
nB = 1,262,030

Between-Source
nB = 6972

Between-Source
nB = 3486

Between-Source
nB = 1743

Between-Source
nB = 1743

Within-Source
nW = 6972

Within-Source
nW = 1743

Within-Source
nW = 1743

Within-Source
nW = 3486

Within-Source
nW = 6972



Contrast: RFS

box_ratio
radius_ratio
roundness
fract_dim
feret_max
radius_max
perimeter
area
diameter_max
aspect
feret_mean
box_width
box_height
diameter_mean
feret_min
radius_min
diameter_min

0 50 100 150 200 250

Random Forest Variable Importance

MeanDecreaseGini



Contrast: RFS

1 − Specificity
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AUC: 0.930



Contrastive Learning Example 2

Optional Dimension Reduction

Comparison Function

Contrastive Algorithm

SLR Computation

The resulting RFS is either a within-source or
between-source comparison.
KDE of known within-source RFS used to estimate fp
KDE of known between-source RFS used to estimate fd
The SLR is the ratio of ∆(Q1,Q2) evaluated at fp over fd.



SLR: Traditional KDE

KDE of RF Score Densities
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Results
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Results

log-SLRs that support the prosecution hypothesis
▶ When W is ground truth, these are “correct" (TPR=91.6%).
▶ When B is ground truth, these are misleading (FPR=17.6%)!

log-SLRs that support the defense hypothesis
▶ When B is ground truth, these are “correct" (TNR=82.4%).
▶ When W is ground truth, these are misleading (FNR=8.4%)!

(-2,-1] (-1, 0] (0,1] (1,2]
B 0.638 0.186 0.150 0.026
W 0.020 0.064 0.531 0.385
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Development and Evaluation of a Contrastive Learning Framework with 
Applications to Micromorphometry of Aluminum Powder used in Explosives 

Authors: Danica Ommen (Iowa State University)*, Christopher Saunders (South Dakota State University), 
JoAnn Buscaglia (Federal Bureau of Investigation Laboratory Division) 

Abstract: 
The identification of source framework can be used within forensic evidence interpretation to 
compare a pair of items and determine whether they have come from a common unknown 
source or from two different unknown sources. In comparing aluminum (Al) powder particles 
recovered from two pre-blast improvised explosive devices (IEDs), the goal is to determine 
whether the powder sources are associated, potentially providing investigative between-case 
linkages. These problems can be addressed using a variety of statistical techniques, including 
the Two-Stage, Likelihood Ratio and Bayes Factor approaches. Unfortunately, the complex 
nature of the evidence, such as replicate measurements taken on different levels of 
substructure within the source powder, creates difficulties in applying the usual approaches in a 
straightforward manner. For characterizing features of the Al powder, we take several 
subsamples from the bulk Al powder, several aliquots from each subsample, several fields of 
view are imaged on each aliquot, and then multiple micromorphometric parameters are 
measured for each particle in a field of view. The hierarchical nature of this type of data creates 
a complex dependency structure that is difficult to directly incorporate into the traditional 
statistical methods for source identification. In this presentation, a contrastive learning 
algorithm framework is developed for complex evidence types like Al powder 
micromorphometry. The contrastive learning methods consist of two major components: a 
method for quantifying the similarity (or dissimilarity) of pairs of evidential items and a method 
for determining the best separation between within-source or between-source comparisons. 
During this presentation, we explore several different methods of quantifying pairwise 
similarity and several different methods of classifying pairs as within- or between-source 
comparisons. We will also present our approaches for evaluating the performance of the 
resulting score functions using micromorphometric data from Al powders. 
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