
    
    

   
    

 

    
  

   

    

  

     
       

     
 

      
    

 

The author(s) shown below used Federal funding provided by the U.S. 
Department of Justice to prepare the following resource: 

Document Title: Theory of Invertible and Injective Deep Neural 
Networks for Likelihood Estimation and Uncertainty 
Quantification 

Author(s): Michael Puthawala, Matti Lassas, Ivan Dokmanic, 
Pekka Pankka, Maarten de Hoop 

Document Number: 308222 

Date Received: December 2023 

Award Number: N/A 

This resource has not been published by the U.S. Department of 
Justice. This resource is being made publicly available through the 
Office of Justice Programs’ National Criminal Justice Reference 
Service. 

Opinions or points of view expressed are those of the author(s) and 
do not necessarily reflect the official position or policies of the U.S. 
Department of Justice. 



Theory of Invertible and Injective Deep Neural Networks for
Likelihood Estimation and Uncertainty Quantification

Michael Puthawala 1
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Disclaimer and Goal of Talk

I am an applied mathematician who recently started at South Dakota State University.
My research is in the mathematical foundations of deep learning, especially at the
intersection of geometry, topology and universality.

A bit about my background, my interested in forensic statistics started Monday at
approximately 9:30am.
I’d like to introduce you to some of the mathematical theory behind deep learning.
My goal isn’t to give a complete description of the theory. Rather I want to give you a
taste of how deep learning can be formalized and how these formalisms yield
interesting mathematics.
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Machine Learning, Deep Learning

Machine learning tries to let machines ‘learn’ patterns in data.

Deep learning is a subset of machine learning, and is best defined through example.
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Humble Beginnings

Modern deep learning can be traced to Yann LeCun’s work1 at Bell Labs in 1989.

1LeCun et al., “Backpropagation applied to handwritten zip code recognition”.
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Function that Recognizes Digits

The goal is to find a function
F : R16×16 → {0, 1, . . . , 9} so that
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Four-step approach

1. Collect 60,000 examples of hand-written digits, and form pairs {(xi , zi)}60,000
i=1

where xi ∈ R162 are vectorized 16x16 images and zi ∈ {0, . . . , 9} are the true
labels.
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1. Collect 60,000 examples of hand-written digits, and form pairs {(xi , zi)}60,000

i=1
where xi ∈ R162 are vectorized 16x16 images and zi ∈ {0, . . . , 9} are the true
labels.

2. Let F : R162 × Θ → {0, . . . , 9} be of the form

F (x ; θ) = ϕ ◦ W3,θ ◦ ϕ ◦ W2,θ ◦ ϕ ◦ W1,θ(x)

where for y ∈ Rm, and for ℓ = 1, . . . , 3,

ϕ(y) =


max(y1, 0)
max(y2, 0)

...
max(ym, 0)

 , Wℓ,θ(y) :=

θℓ,1,1 . . . θℓ,1,m
... . . . ...

θℓ,m,1 . . . θℓ,m,m


y1

...
ym

 .

Note that functions of this form don’t have anything to do with handwriting
recognition.
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using stochastic gradient descent.
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1. Collect 60,000 examples of hand-written digits, and form pairs {(xi , zi)}60,000
i=1

where xi ∈ R162 are vectorized 16x16 images and zi ∈ {0, . . . , 9} are the true
labels.

2. Let F : R162 × Θ → {0, . . . , 9} be of the form

F (x ; θ) = ϕ ◦ W3,θ ◦ ϕ ◦ W2,θ ◦ ϕ ◦ W1,θ(x)

3. ‘Train’ θ by looking for a minimizer of minθ∈Θ
∑50,000

i=1 |F (xi ; θ) − zi | using
stochastic gradient descent.

4. Evaluate how close F (x̃) and z̃ are for (x̃ , z̃) using {(xi , zi)}60,000
i=50,001 that your

model hasn’t seen.



Deep Learning

Deep learning composes simple functions to build more complex ones.



The Four Step Program

These four steps still guide deep learning to this day
1. Collect and clean data.

2. Choose an architecture that depends on a parameter θ.
3. Train the network to find the ‘right’ θ ∈ Θ.
4. Measure how well F works on data that it wasn’t trained on.
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Deep Learning has been busy since 1989

1. Diagnosing Diabetic Retinopathya.
aGulshan et al., “Development and validation of

a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs”.



Deep Learning has been busy since 1989

1. Diagnosing Diabetic Retinopathya.
2. Predicting Protean Foldingb.

aGulshan et al., “Development and validation of
a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs”.

bJumper et al., “Highly accurate protein
structure prediction with AlphaFold”.



Deep Learning has been busy since 1989

1. Diagnosing Diabetic Retinopathya.
2. Predicting Protean Foldingb.
3. Speeding Up Matrix Multiplicationc.

aGulshan et al., “Development and validation of
a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs”.

bJumper et al., “Highly accurate protein
structure prediction with AlphaFold”.

cFawzi et al., “Discovering faster matrix
multiplication algorithms with reinforcement
learning”.



Deep Learning has been busy since 1989

1. Diagnosing Diabetic Retinopathya.
2. Predicting Protean Foldingb.
3. Speeding Up Matrix Multiplicationc.
4. Helping students cheat on homework.

aGulshan et al., “Development and validation of
a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs”.

bJumper et al., “Highly accurate protein
structure prediction with AlphaFold”.

cFawzi et al., “Discovering faster matrix
multiplication algorithms with reinforcement
learning”.



Why can ML models solve problems that are so general?

Figure: From https://thispersondoesnotexist.com/ and paper2.

2Karras et al., “Analyzing and improving the image quality of stylegan”.

https://thispersondoesnotexist.com/ 


How is this possible?

How does deep learning generate human looking faces?

What does it even mean, mathematically, to generate faces?

Statistical Learning Theory (SLT) give us a useful formalism for understanding these
questions.
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How does deep learning generate human looking faces?

What does it even mean, mathematically, to generate faces?

Statistical Learning Theory (SLT) give us a useful formalism for understanding these
questions.



SLT, The Training Data

Figure: Training data taken from flickr and paper3.

3Karras, Laine, and Aila, “A style-based generator architecture for generative adversarial networks”.



SLT, Data Distribution Ansatz
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The SLT ansatz is that there is a random
variable yfaces with distribution ρ, and
data points are samples from yfaces.



SLT, Data Distribution Ansatz

Generating faces means to sample points
from yfaces.



SLT Objective
By choosing a starting distribution x ∼ µ and f so that yfaces = f (x) or ρ = f#µ, we
can sample points from yfaces.
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How to generate faces

The question
▶ how does deep learning generate human looking faces?

Via the SLT ansatz becomes
▶ are ML models able to learn a function f so that f (x) = y where x ∼ N (0, I)?
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Network Form

Recall that deep networks are functions of the form

f (·; θ) : X → Y

for some parameter θ ∈ Θ. Let us notate F := {fθ}θ∈Θ. How ‘large’ is F?



Universal Approximation

Suppose that F and G are two families of functions from X → Y .

Definition (Universal Approximator)
We say that F is a uniform approximator of G if for every compact K ⊂ X and g ∈ G,

inf
f ∈F

sup
x∈K

∥f (x) − g(x)∥ = 0.

The Stone-Weirstrauss Approximation theorem from analysis says that polynomials on
[a, b] are universal approximators for C0([a, b]).



Uniform Approximation Picture

Figure adopted from Francis Bach’s Blog



Universality as a Measure of ‘Strength’ of a Network

If F contains networks of the form

ϕ ◦ WL,θ ◦ . . . ϕ ◦ W1,θ,

if F a universal approximator with respect to some ‘interesting’ class of functions G?



Answer

Yes.



Old Results

There are works that show that neural networks are universal w.r.t. e.g. continuous
maps under very general conditions4567.

4Cybenko, “Approximation by superpositions of a sigmoidal function”.
5Yarotsky, “Error bounds for approximations with deep ReLU networks”.
6Kratsios and Bilokopytov, “Non-euclidean universal approximation”.
7Kovachki et al., “Neural operator: Learning maps between function spaces”.



Revisiting Faces

Networks are able to learn to approximate human faces, because any continuous
pushforward function can be uniformly approximated.



Regression, Classification, Supervised Learning, etc.

The faces example was an unsupervised generative problem. What about supervised or
semi-supervised problems? What about regression or classification problems?

The details are different, but with the SLT framework, “most” problems can be
reduced to learning an f so that f#µ = ρ for distributions ρ and µ.
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Important Qualifiers

I’m hand waving some important details. For example,
▶ most universality results require F to contain arbitrarily large (wide or deep)

networks,

▶ in practice we don’t have access to µ or ρ directly,
▶ loss functions have to be chosen carefully to encourage ‘good’ convergence,
▶ it’s not obvious that training (i.e. gradient descent on the loss function) selects a

θ∗ ∈ Θ so that fθ∗,#µ ≈ ρ,
All points (and more) are valid and require elaboration, but I only have 45 minutes
today.
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Pivot

I would now like to pivot form a general discussion on deep learning, and talk more
about a very specific problem involving likelihood estimation.



Change of Variables, Likelihood Estimation

If y = f (x) and f is bijective and smooth with smooth inverse, then

py(f (x)) = px(x) |det(∇f (x))|−1 .

If we can ensure that f is bijective, smooth and estimate |det(∇f )|, then we can
estimate py(f (x)) by evaluating the r.h.s. of the above equation.



Triangular Mappings

A triangular mapping T : Rn → Rn is one such that

T




x1
x2
...

xn


 =


T1(x1)

T2(x1, x2)
...

Tn(x1, . . . , xn)

 .

They are so-called because their Jacobians are lower-triangular. Thus

|det(∇T (x))| =
∣∣∣∣∣

n∏
i=1

∂Ti
∂xi

∣∣∣∣∣ ,



Flow Networks

In deep learning, it is common to use triangular mappings to construct ‘flow networks.’
Flow networks are bijective and have simple Jacobins. Examples include coupling
flows8 or autoregressive flows9.

Such networks are universal approximators of compact diffeomorphisms10.
Diffeomorphsisms are smooth invertible maps whose gradient is always full-rank, i.e.
functions for which the change of variables formula applies.

8Dinh, Krueger, and Bengio, “Nice: Non-linear independent components estimation”.
9Kingma et al., “Improving variational inference with inverse autoregressive flow”; Huang et al.,

“Neural autoregressive flows”.
10Teshima et al., “Coupling-based invertible neural networks are universal diffeomorphism

approximators”.
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Manifold Learning

Manifold learning is guided by the
manifold hypothesis, the mantra that “high
dimensional data are usually clustered
around a low-dimensional manifolda.”
Figure fromb

aTenenbaum et al., “Mapping a manifold of
perceptual observations”.

bWeinberger and Saul, “Unsupervised learning
of image manifolds by semidefinite programming”.



Manifold Learning

Manifold learning is guided by the
manifold hypothesis, the mantra that “high
dimensional data are usually clustered
around a low-dimensional manifolda.”
Figure fromb The prior universality results
on flow networks applies to maps from
Rn → Rn, but such maps don’t take
advantage of the manifold hypothesis.

aTenenbaum et al., “Mapping a manifold of
perceptual observations”.

bWeinberger and Saul, “Unsupervised learning
of image manifolds by semidefinite programming”.



Manifold Learning of Faces

Applying the manifold hypothesis to the
face distribution would looks like this.



Manifold Learning, Smooth Embeddings

What about smooth embeddings
Rn ↪→ Rm where m >> n? What types of
networks are universal approximators w.r.t.
smooth embeddingsa? Do such networks
allow for likelihood estimation?

asmooth embeddings are smooth bijections with
smooth inverse



Manifold Learning, Smooth Embeddings

What about smooth embeddings
Rn ↪→ Rm where m >> n? What types of
networks are universal approximators w.r.t.
smooth embeddingsa? Do such networks
allow for likelihood estimation?
In P. et al. 2022b, my coauthors and I
answer this question.

asmooth embeddings are smooth bijections with
smooth inverse

bPuthawala et al., “Universal Joint
Approximation of Manifolds and Densities by
Simple Injective Flows”.



Network Definition

If for ℓ = 1, . . . , L, nℓ ∈ N,
1. T nℓ

ℓ ⊂ C(Rnℓ ,Rnℓ) is a flow network,
2. Rnℓ−1,nℓ

ℓ ⊂ C(Rnℓ−1 ,Rnℓ) is an injective ReLU layer,
then

E = T nL
L ◦ RnL−1,nL

L ◦ · · · ◦ T n1
1 ◦ Rn0,n1

1 ◦ T n0
0

is always a family of injective mappings, where H ◦ G := {h ◦ g : h ∈ H, g ∈ G}.

When are these networks universal approximators?
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Embedding Gap

We call a function f an embedding and denote if by f ∈ emb(X , Y ) if f : X → Y is
continuous, injective, and f −1 : f (X ) → X is continuous.

Definition (Embedding Gap)
If,
▶ K ⊂ Rn and W ⊂ Ro, both compact,
▶ f ∈ emb(K ,Rm), and g ∈ emb(W ,Rm)

then we define

BK ,W (f , g) = inf
r∈emb(f (K),g(W ))

∥I − r∥L∞(f (K))

where I : f (K ) → f (K ) is the identity function.



Non-approximable manifolds
Let K = S1 be a circle, and f ∈ emb(K ,R3) an embedding of a trefoil knot into R3.
There are no E ∈ E := T ◦ R so that E (K ) = f (K ).

(a) K = S1 (b) Trefoil knot embedded in R3.

The trivial and trefoil knots are not equivalent.



Extendable Embeddings

Definition (Extendable Embedding)
With the above topological difficulty in mind, we define the set of extendable
embeddings as

I(Rn,Rm) := {Φ ◦ R ∈ C(Rn,Rm) : R ∈ C(Rn,Rm), Φ ∈ Rm → Rm} .

where R is linear full-rank, and ϕ is a C1-smooth diffeomorphism.

Theorem (P. et al. 2022)
When m ≥ 3n + 1 and k ≥ 1, for any Ck embedding f ∈ embk(Rn,Rm) and compact
set K ⊂ Rn, there is a map in the closures of the flow type neural network
E ∈ Ik(Rn,Rm) such that E (K ) = f (K ). Moreover,

Ik(K ,Rm) = embk(K ,Rm)



Manifold Universality

Let F = emb(K ,Rm), or F = I(K ,Rm).

Theorem (P. et al. 2022)
Let µ ∈ P(K ) be an absolutely continuous measure w.r.t. Lebesgue measure and

1. Rnℓ−1,nℓ

ℓ is injective,
2. T nℓ

ℓ is injective, universal approximator of diffeomorphisms,
3. T n

0 is distributionally universal and injective
Then, there is a sequence of {Ei}i=1,...,∞ ⊂ E := T nL

L ◦ RnL−1,nL
L ◦ · · · ◦ Rn0,n1

1 ◦ T n0
0

such that

lim
i→∞

W2 (F #µ, Ei #µ) = 0.



Decoupling

Optimality of layers of these deep neural networks can be established layer-by-layer.



Consider the problem of learning ν = f #µ
the following 1 dimensional distribution
embedded in R3 with a network of the form

Fθ(x) = T2 ◦ R2 ◦ T1 ◦ R1 ◦ T0(x)



Decoupling: Step one

First, we can update T2 ◦ R2 to decrease

BK ,W (f , T2 ◦ R2)

Fθ(x) = T2 ◦ R2◦T1 ◦ R1 ◦ T0(x)
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