The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource:

Document Title:	Theory of Invertible and Injective Deep Neural Networks for Likelihood Estimation and Uncertainty Quantification
Author(s):	Michael Puthawala, Matti Lassas, Ivan Dokmanic, Pekka Pankka, Maarten de Hoop
Document Number:	308222
Date Received:	December 2023
Award Number:	N/A

This resource has not been published by the U.S. Department of Justice. This resource is being made publicly available through the Office of Justice Programs' National Criminal Justice Reference Service.

Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

Theory of Invertible and Injective Deep Neural Networks for Likelihood Estimation and Uncertainty Quantification

Michael Puthawala ${ }^{1}$
Matti Lassas ${ }^{2}$, Ivan Dokmanić ${ }^{3}$, Pekka Pankka ${ }^{2}$, Maarten de Hoop ${ }^{4}$
${ }^{1}$ South Dakota State University, ${ }^{2}$ University of Helsinki, ${ }^{3}$ University of Basel, ${ }^{4}$ Rice University

June 14, 2023

Acknowledgements

Partial research support was provided by CAPITAL Services of Sioux Falls, SD and the Simons Foundation.
My travel to ICFIS 2023 was supported by the Office of Justice Programs, of the US Department of Justice under award number GS-00F-439GA.
The content is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Justice.

Disclaimer and Goal of Talk

I am an applied mathematician who recently started at South Dakota State University. My research is in the mathematical foundations of deep learning, especially at the intersection of geometry, topology and universality.

Disclaimer and Goal of Talk

I am an applied mathematician who recently started at South Dakota State University. My research is in the mathematical foundations of deep learning, especially at the intersection of geometry, topology and universality.
A bit about my background, my interested in forensic statistics started Monday at approximately 9:30am.

Disclaimer and Goal of Talk

I am an applied mathematician who recently started at South Dakota State University. My research is in the mathematical foundations of deep learning, especially at the intersection of geometry, topology and universality.
A bit about my background, my interested in forensic statistics started Monday at approximately 9:30am.
I'd like to introduce you to some of the mathematical theory behind deep learning.

Disclaimer and Goal of Talk

I am an applied mathematician who recently started at South Dakota State University. My research is in the mathematical foundations of deep learning, especially at the intersection of geometry, topology and universality.
A bit about my background, my interested in forensic statistics started Monday at approximately 9:30am.
I'd like to introduce you to some of the mathematical theory behind deep learning. My goal isn't to give a complete description of the theory. Rather I want to give you a taste of how deep learning can be formalized and how these formalisms yield interesting mathematics.

Machine Learning, Deep Learning

Machine learning tries to let machines 'learn' patterns in data.

Machine Learning, Deep Learning

Machine learning tries to let machines 'learn' patterns in data.
Deep learning is a subset of machine learning, and is best defined through example.

Humble Beginnings

Modern deep learning can be traced to Yann LeCun's work ${ }^{1}$ at Bell Labs in 1989.
${ }^{1}$ LeCun et al., "Backpropagation applied to handwritten zip code recognition".

Handwritten Zip Codes
$80322-412980206$
4000443310
つา8าe 와 55
$3502751 / 6$
$35460: 44209$

Handwritten Zip Codes

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

Function that Recognizes Digits

$$
0 \rightarrow \bar{H} \rightarrow 0
$$

The goal is to find a function $F: \mathbb{R}^{16 \times 16} \rightarrow\{0,1, \ldots, 9\}$ so that

Function that Recognizes Digits

$$
\begin{aligned}
& 0 \rightarrow F \rightarrow 0 \\
& 1 \rightarrow F \rightarrow 1
\end{aligned}
$$

The goal is to find a function $F: \mathbb{R}^{16 \times 16} \rightarrow\{0,1, \ldots, 9\}$ so that

Function that Recognizes Digits

$$
\begin{aligned}
& 0 \rightarrow \boldsymbol{H} \rightarrow 0 \\
& 1 \rightarrow \boldsymbol{H} \rightarrow 1 \\
& 2 \rightarrow \boldsymbol{H} \rightarrow 2
\end{aligned}
$$

The goal is to find a function $F: \mathbb{R}^{16 \times 16} \rightarrow\{0,1, \ldots, 9\}$ so that

Function that Recognizes Digits

$$
\begin{aligned}
& 0 \rightarrow \boldsymbol{H} \rightarrow 0 \\
& 1 \rightarrow \boldsymbol{H} \rightarrow 1 \\
& 2 \rightarrow \boldsymbol{H} \rightarrow 2
\end{aligned}
$$

The goal is to find a function $F: \mathbb{R}^{16 \times 16} \rightarrow\{0,1, \ldots, 9\}$ so that

$$
9 \rightarrow F \rightarrow 9
$$

Function that Recognizes Digits

$$
\begin{array}{ll}
0 \rightarrow F \rightarrow 0 & 7 \rightarrow F \rightarrow 7 \\
1 \rightarrow F \rightarrow 1 & 7 \rightarrow F \rightarrow 7 \\
2 \rightarrow F \rightarrow 2 & 7 \rightarrow F \rightarrow 7 \\
& \\
& \\
\hline
\end{array}
$$

Four-step approach

1. Collect 60,000 examples of hand-written digits, and form pairs $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{60,000}$ where $x_{i} \in \mathbb{R}^{16^{2}}$ are vectorized $16 x 16$ images and $z_{i} \in\{0, \ldots, 9\}$ are the true labels.

Four-step approach

1. Collect 60,000 examples of hand-written digits, and form pairs $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{60,000}$ where $x_{i} \in \mathbb{R}^{16^{2}}$ are vectorized 16×16 images and $z_{i} \in\{0, \ldots, 9\}$ are the true labels.
2. Let $F: \mathbb{R}^{16^{2}} \times \Theta \rightarrow\{0, \ldots, 9\}$ be of the form

$$
F(x ; \theta)=\phi \circ W_{3, \theta} \circ \phi \circ W_{2, \theta} \circ \phi \circ W_{1, \theta}(x)
$$

where for $y \in \mathbb{R}^{m}$, and for $\ell=1, \ldots, 3$,

$$
\phi(y)=\left[\begin{array}{c}
\max \left(y_{1}, 0\right) \\
\max \left(y_{2}, 0\right) \\
\vdots \\
\max \left(y_{m}, 0\right)
\end{array}\right], \quad W_{\ell, \theta}(y):=\left[\begin{array}{ccc}
\theta_{\ell, 1,1} & \ldots & \theta_{\ell, 1, m} \\
\vdots & \ddots & \vdots \\
\theta_{\ell, m, 1} & \ldots & \theta_{\ell, m, m}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right] .
$$

Note that functions of this form don't have anything to do with handwriting recognition.

Four-step approach

1. Collect 60,000 examples of hand-written digits, and form pairs $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{60,000}$ where $x_{i} \in \mathbb{R}^{16^{2}}$ are vectorized 16×16 images and $z_{i} \in\{0, \ldots, 9\}$ are the true labels.
2. Let $F: \mathbb{R}^{16^{2}} \times \Theta \rightarrow\{0, \ldots, 9\}$ be of the form

$$
F(x ; \theta)=\phi \circ W_{3, \theta} \circ \phi \circ W_{2, \theta} \circ \phi \circ W_{1, \theta}(x)
$$

3. 'Train' θ by looking for a minimizer of

$$
\min _{\theta \in \Theta} \sum_{i=1}^{50,000}\left|F\left(x_{i} ; \theta\right)-z_{i}\right|
$$

using stochastic gradient descent.

Four-step approach

1. Collect 60,000 examples of hand-written digits, and form pairs $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=1}^{60,000}$ where $x_{i} \in \mathbb{R}^{16^{2}}$ are vectorized 16×16 images and $z_{i} \in\{0, \ldots, 9\}$ are the true labels.
2. Let $F: \mathbb{R}^{16^{2}} \times \Theta \rightarrow\{0, \ldots, 9\}$ be of the form

$$
F(x ; \theta)=\phi \circ W_{3, \theta} \circ \phi \circ W_{2, \theta} \circ \phi \circ W_{1, \theta}(x)
$$

3. 'Train' θ by looking for a minimizer of $\min _{\theta \in \Theta} \sum_{i=1}^{50,000}\left|F\left(x_{i} ; \theta\right)-z_{i}\right|$ using stochastic gradient descent.
4. Evaluate how close $F(\tilde{x})$ and \tilde{z} are for (\tilde{x}, \tilde{z}) using $\left\{\left(x_{i}, z_{i}\right)\right\}_{i=50,001}^{60,000}$ that your model hasn't seen.

Deep Learning

Deep learning composes simple functions to build more complex ones.

The Four Step Program

These four steps still guide deep learning to this day

1. Collect and clean data.

The Four Step Program

These four steps still guide deep learning to this day

1. Collect and clean data.
2. Choose an architecture that depends on a parameter θ.

The Four Step Program

These four steps still guide deep learning to this day

1. Collect and clean data.
2. Choose an architecture that depends on a parameter θ.
3. Train the network to find the 'right' $\theta \in \Theta$.

The Four Step Program

These four steps still guide deep learning to this day

1. Collect and clean data.
2. Choose an architecture that depends on a parameter θ.
3. Train the network to find the 'right' $\theta \in \Theta$.
4. Measure how well F works on data that it wasn't trained on.

Deep Learning has been busy since 1989

1. Diagnosing Diabetic Retinopathy ${ }^{\text {a }}$.

${ }^{\text {a }}$ Gulshan et al., "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs".

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs


``` C, oule e mbins, ind
```


Key Points

 photogesth

三

Deep Learning has been busy since 1989

nature $>$ article: $>$ article

Article | Open Access | Published 15 July 2021

Highly accurate protein structure prediction with AlphaFold

Tunyasuxunakool, Russ Bates Augustin 2ides, Anna Potapenko, Alex Bridgland Clemens Meyer Simen A
A Kohl Andrew S, Fallard Andrew Cowie Bernardino Romera. Peredes Sranistav Nkoloy Rishub hin

+ Show authors

Noture 596, 583-589 (2021) Cite this article

Deep Learning has been busy since 1989

1. Diagnosing Diabetic Retinopathy ${ }^{\text {a }}$.

2. Predicting Protean Folding ${ }^{b}$.
3. Speeding Up Matrix Multiplication ${ }^{\text {c }}$.
${ }^{\text {a }}$ Gulshan et al., "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs".
${ }^{b} J u m p e r$ et al., "Highly accurate protein structure prediction with AlphaFold".
${ }^{c}$ Fawzi et al., "Discovering faster matrix multiplication algorithms with reinforcement learning".
```
```

nature >articles > article

```
```

nature >articles > article
Article | Open Access | Publishect 05 October 2022

```
```

Article | Open Access | Publishect 05 October 2022

```
```


Discovering faster matrix multiplication algorithms with reinforcement learning

Alhussein Fawzi Matei Balog, Aia Huang, Thomas Hubert Bernardino Romera. Paredes Mohammadamin Barekatain, Alexander Novikov, Francisco L. R. Ruiz Julian Schuittwietet, Grzegorz Swirszcz. David Sivet, Demis Hassabis \& Pushmeet Kohli

Nature 610, 47-53 (2022) | Site this article
1971 Altmetric | Metrics

Abstract

Improving the efficiency of algorithms for fundamental computations can have a widespread impact, as it can affect the overall speed of a large amount of computations. Matrix multiplication is one such primitive task, occurring in many systems-from neural networks to scientific computing routines. The automatic discovery of algorithms using machine learning offers the prospect of reaching beyond human intuition and outperforming the current best human-designed algorithms. However, automating the algorithm discovery procedure is intricate, as the space of possible algorithms is enormous. Here we report a deep

Deep Learning has been busy since 1989

1. Diagnosing Diabetic Retinopathy ${ }^{\text {a }}$.
2. Predicting Protean Folding ${ }^{b}$.
3. Speeding Up Matrix Multiplication ${ }^{\text {c }}$.
4. Helping students cheat on homework.
${ }^{\text {a }}$ Gulshan et al., "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs".
${ }^{b} J u m p e r$ et al., "Highly accurate protein structure prediction with AlphaFold".
${ }^{c}$ Fawzi et al., "Discovering faster matrix multiplication algorithms with reinforcement learning".

OpenAI

Introducing ChatGPT

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests.

Try ChatGPT λ
Read about ChatGPT Plus

Why can ML models solve problems that are so general?

Figure: From https://thispersondoesnotexist.com/ and paper².

[^0]
How is this possible?

How does deep learning generate human looking faces?

How is this possible?

How does deep learning generate human looking faces?
What does it even mean, mathematically, to generate faces?

How is this possible?

How does deep learning generate human looking faces?
What does it even mean, mathematically, to generate faces?

Statistical Learning Theory (SLT) give us a useful formalism for understanding these questions.

SLT, The Training Data

Figure: Training data taken from flickr and paper ${ }^{3}$.

[^1]
SLT, Data Distribution Ansatz

-

SLT，Data Distribution Ansatz

SLT, Data Distribution Ansatz

The SLT ansatz is that there is a random variable $\mathrm{Y}_{\text {faces }}$ with distribution ρ, and data points are samples from $\mathrm{Y}_{\text {faces }}$.

SLT, Data Distribution Ansatz

Generating faces means to sample points from $\mathrm{Y}_{\text {faces }}$.

SLT Objective

By choosing a starting distribution $\mathrm{X} \sim \mu$ and f so that $\mathrm{Y}_{\text {faces }}=f(\mathrm{x})$ or $\rho=f_{\#} \mu$, we can sample points from $\mathrm{Y}_{\text {faces }}$.

SLT Objective

By choosing a starting distribution $\mathrm{X} \sim \mu$ and f so that $\mathrm{Y}_{\text {faces }}=f(\mathrm{x})$ or $\rho=f_{\#} \mu$, we can sample points from $\mathrm{Y}_{\text {faces }}$.

SLT Objective

By choosing a starting distribution $\mathrm{X} \sim \mu$ and f so that $\mathrm{Y}_{\text {faces }}=f(\mathrm{x})$ or $\rho=f_{\#} \mu$, we can sample points from $\mathrm{Y}_{\text {faces }}$.

SLT Objective

By choosing a starting distribution $\mathrm{X} \sim \mu$ and f so that $\mathrm{Y}_{\text {faces }}=f(\mathrm{x})$ or $\rho=f_{\#} \mu$, we can sample points from $\mathrm{Y}_{\text {faces }}$.

How to generate faces

The question

- how does deep learning generate human looking faces?

How to generate faces

The question

- how does deep learning generate human looking faces?

Via the SLT ansatz becomes

- are ML models able to learn a function f so that $f(\mathrm{x})=\mathrm{Y}$ where $\mathrm{X} \sim \mathcal{N}(0, I)$?

Network Form

Recall that deep networks are functions of the form

$$
f(; ; \theta): X \rightarrow Y
$$

for some parameter $\theta \in \Theta$. Let us notate $\mathcal{F}:=\left\{f_{\theta}\right\}_{\theta \in \Theta}$. How 'large' is \mathcal{F} ?

Universal Approximation

Suppose that \mathcal{F} and \mathcal{G} are two families of functions from $X \rightarrow Y$.

Definition (Universal Approximator)

We say that \mathcal{F} is a uniform approximator of \mathcal{G} if for every compact $K \subset X$ and $g \in \mathcal{G}$,

$$
\inf _{f \in \mathcal{F}} \sup _{x \in K}\|f(x)-g(x)\|=0
$$

The Stone-Weirstrauss Approximation theorem from analysis says that polynomials on $[a, b]$ are universal approximators for $C^{0}([a, b])$.

Uniform Approximation Picture

Figure adopted from Francis Bach's Blog

Universality as a Measure of 'Strength' of a Network

If \mathcal{F} contains networks of the form

$$
\phi \circ W_{L, \theta} \circ \ldots \phi \circ W_{1, \theta},
$$

if \mathcal{F} a universal approximator with respect to some 'interesting' class of functions \mathcal{G} ?

Answer

Yes.
$\equiv \quad \neg Q \propto$

Old Results

There are works that show that neural networks are universal w.r.t. e.g. continuous maps under very general conditions ${ }^{4567}$.

[^2]
Revisiting Faces

Networks are able to learn to approximate human faces, because any continuous pushforward function can be uniformly approximated.

Regression, Classification, Supervised Learning, etc.

The faces example was an unsupervised generative problem. What about supervised or semi-supervised problems? What about regression or classification problems?

Regression, Classification, Supervised Learning, etc.

The faces example was an unsupervised generative problem. What about supervised or semi-supervised problems? What about regression or classification problems? The details are different, but with the SLT framework, "most" problems can be reduced to learning an f so that $f_{\#} \mu=\rho$ for distributions ρ and μ.

Important Qualifiers

I'm hand waving some important details. For example,

- most universality results require \mathcal{F} to contain arbitrarily large (wide or deep) networks,

Important Qualifiers

I'm hand waving some important details. For example,

- most universality results require \mathcal{F} to contain arbitrarily large (wide or deep) networks,
- in practice we don't have access to μ or ρ directly,

Important Qualifiers

I'm hand waving some important details. For example,

- most universality results require \mathcal{F} to contain arbitrarily large (wide or deep) networks,
- in practice we don't have access to μ or ρ directly,
- loss functions have to be chosen carefully to encourage 'good' convergence,

Important Qualifiers

I'm hand waving some important details. For example,

- most universality results require \mathcal{F} to contain arbitrarily large (wide or deep) networks,
- in practice we don't have access to μ or ρ directly,
- loss functions have to be chosen carefully to encourage 'good' convergence,
- it's not obvious that training (i.e. gradient descent on the loss function) selects a $\theta^{*} \in \Theta$ so that $f_{\theta^{*}, \#} \mu \approx \rho$,

Important Qualifiers

I'm hand waving some important details. For example,

- most universality results require \mathcal{F} to contain arbitrarily large (wide or deep) networks,
- in practice we don't have access to μ or ρ directly,
- loss functions have to be chosen carefully to encourage 'good' convergence,
- it's not obvious that training (i.e. gradient descent on the loss function) selects a $\theta^{*} \in \Theta$ so that $f_{\theta^{*}, \#} \mu \approx \rho$,
All points (and more) are valid and require elaboration, but I only have 45 minutes today.

Pivot

I would now like to pivot form a general discussion on deep learning, and talk more about a very specific problem involving likelihood estimation.

Change of Variables, Likelihood Estimation

If $\mathrm{Y}=f(\mathrm{x})$ and f is bijective and smooth with smooth inverse, then

$$
p_{\mathrm{Y}}(f(x))=p_{\mathrm{X}}(x)|\operatorname{det}(\nabla f(x))|^{-1}
$$

If we can ensure that f is bijective, smooth and estimate $|\operatorname{det}(\nabla f)|$, then we can estimate $p_{\mathrm{Y}}(f(x))$ by evaluating the r.h.s. of the above equation.

Triangular Mappings

A triangular mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is one such that

$$
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{c}
T_{1}\left(x_{1}\right) \\
T_{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
T_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]
$$

They are so-called because their Jacobians are lower-triangular. Thus

$$
|\operatorname{det}(\nabla T(x))|=\left|\prod_{i=1}^{n} \frac{\partial T_{i}}{\partial x_{i}}\right|
$$

Flow Networks

In deep learning, it is common to use triangular mappings to construct 'flow networks.' Flow networks are bijective and have simple Jacobins. Examples include coupling flows ${ }^{8}$ or autoregressive flows ${ }^{9}$.

[^3]
Flow Networks

In deep learning, it is common to use triangular mappings to construct 'flow networks.' Flow networks are bijective and have simple Jacobins. Examples include coupling flows ${ }^{8}$ or autoregressive flows ${ }^{9}$. Such networks are universal approximators of compact diffeomorphisms ${ }^{10}$. Diffeomorphsisms are smooth invertible maps whose gradient is always full-rank, i.e. functions for which the change of variables formula applies.

[^4]
Manifold Learning

Manifold learning is guided by the manifold hypothesis, the mantra that "high dimensional data are usually clustered around a low-dimensional manifold ${ }^{\text {a }}$." Figure from ${ }^{b}$

[^5]

Manifold Learning

Manifold learning is guided by the manifold hypothesis, the mantra that "high dimensional data are usually clustered around a low-dimensional manifold ${ }^{a}$." Figure from ${ }^{b}$ The prior universality results on flow networks applies to maps from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, but such maps don't take advantage of the manifold hypothesis.

[^6]

Manifold Learning of Faces

Applying the manifold hypothesis to the face distribution would looks like this.

Manifold Learning, Smooth Embeddings

Manifold Learning, Smooth Embeddings

What about smooth embeddings $\mathbb{R}^{n} \hookrightarrow \mathbb{R}^{m}$ where $m \gg n$? What types of networks are universal approximators w.r.t. smooth embeddings ${ }^{\text {a }}$? Do such networks allow for likelihood estimation? In P. et al. 2022 ${ }^{\text {b }}$, my coauthors and I answer this question.

[^7]

Network Definition

If for $\ell=1, \ldots, L, n_{\ell} \in \mathbb{N}$,

1. $\mathcal{T}_{\ell}^{n_{\ell}} \subset C\left(\mathbb{R}^{n_{\ell}}, \mathbb{R}^{n_{\ell}}\right)$ is a flow network,
2. $\mathcal{R}_{\ell}^{n_{\ell-1}, n_{\ell}} \subset C\left(\mathbb{R}^{n_{\ell-1}}, \mathbb{R}^{n_{\ell}}\right)$ is an injective ReLU layer, then

$$
\mathcal{E}=\mathcal{T}_{L}^{n_{L}} \circ \mathcal{R}_{L}^{n_{L-1}, n_{L}} \circ \cdots \circ \mathcal{T}_{1}^{n_{1}} \circ \mathcal{R}_{1}^{n_{0}, n_{1}} \circ \mathcal{T}_{0}^{n_{0}}
$$

is always a family of injective mappings, where $\mathcal{H} \circ \mathcal{G}:=\{h \circ g: h \in \mathcal{H}, g \in \mathcal{G}\}$.

Network Definition

If for $\ell=1, \ldots, L, n_{\ell} \in \mathbb{N}$,

1. $\mathcal{T}_{\ell}^{n_{\ell}} \subset C\left(\mathbb{R}^{n_{\ell}}, \mathbb{R}^{n_{\ell}}\right)$ is a flow network,
2. $\mathcal{R}_{\ell}^{n_{\ell-1}, n_{\ell}} \subset C\left(\mathbb{R}^{n_{\ell-1}}, \mathbb{R}^{n_{\ell}}\right)$ is an injective ReLU layer, then

$$
\mathcal{E}=\mathcal{T}_{L}^{n_{L}} \circ \mathcal{R}_{L}^{n_{L-1}, n_{L}} \circ \cdots \circ \mathcal{T}_{1}^{n_{1}} \circ \mathcal{R}_{1}^{n_{0}, n_{1}} \circ \mathcal{T}_{0}^{n_{0}}
$$

is always a family of injective mappings, where $\mathcal{H} \circ \mathcal{G}:=\{h \circ g: h \in \mathcal{H}, g \in \mathcal{G}\}$. When are these networks universal approximators?

Embedding Gap

We call a function f an embedding and denote if by $f \in \operatorname{emb}(X, Y)$ if $f: X \rightarrow Y$ is continuous, injective, and $f^{-1}: f(X) \rightarrow X$ is continuous.

Definition (Embedding Gap)

If,

- $K \subset \mathbb{R}^{n}$ and $W \subset \mathbb{R}^{o}$, both compact,
- $f \in \operatorname{emb}\left(K, \mathbb{R}^{m}\right)$, and $g \in \operatorname{emb}\left(W, \mathbb{R}^{m}\right)$
then we define

$$
B_{K, W}(f, g)=\inf _{r \in \operatorname{emb}(f(K), g(W))}\|I-r\|_{L^{\infty}(f(K))}
$$

where $I: f(K) \rightarrow f(K)$ is the identity function.

Non-approximable manifolds

Let $K=S^{1}$ be a circle, and $f \in \mathrm{emb}\left(K, \mathbb{R}^{3}\right)$ an embedding of a trefoil knot into \mathbb{R}^{3}. There are no $E \in \mathcal{E}:=\mathcal{T} \circ \mathcal{R}$ so that $E(K)=f(K)$.

The trivial and trefoil knots are not equivalent.
틀

Extendable Embeddings

Definition (Extendable Embedding)

With the above topological difficulty in mind, we define the set of extendable embeddings as

$$
\mathcal{I}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right):=\left\{\Phi \circ R \in C\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right): R \in C\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right), \Phi \in \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}\right\}
$$

where R is linear full-rank, and ϕ is a C^{1}-smooth diffeomorphism.
Theorem (P. et al. 2022)
When $m \geq 3 n+1$ and $k \geq 1$, for any C^{k} embedding $f \in \operatorname{emb}^{k}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and compact set $K \subset \mathbb{R}^{n}$, there is a map in the closures of the flow type neural network $E \in \mathcal{I}^{k}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ such that $E(K)=f(K)$. Moreover,

$$
\mathcal{I}^{k}\left(K, \mathbb{R}^{m}\right)=\operatorname{emb}^{k}\left(K, \mathbb{R}^{m}\right)
$$

Manifold Universality

Let $\mathcal{F}=\operatorname{emb}\left(K, \mathbb{R}^{m}\right)$, or $\mathcal{F}=\mathcal{I}\left(K, \mathbb{R}^{m}\right)$.
Theorem (P. et al. 2022)
Let $\mu \in \mathcal{P}(K)$ be an absolutely continuous measure w.r.t. Lebesgue measure and

1. $\mathcal{R}_{\ell}^{n_{\ell-1}, n_{\ell}}$ is injective,
2. $\mathcal{T}_{\ell}^{n_{\ell}}$ is injective, universal approximator of diffeomorphisms,
3. \mathcal{T}_{0}^{n} is distributionally universal and injective

Then, there is a sequence of $\left\{E_{i}\right\}_{i=1, \ldots, \infty} \subset \mathcal{E}:=\mathcal{T}_{L}^{n_{L}} \circ \mathcal{R}_{L}^{n_{L-1}, n_{L}} \circ \cdots \circ \mathcal{R}_{1}^{n_{0}, n_{1}} \circ \mathcal{T}_{0}^{n_{0}}$ such that

$$
\lim _{i \rightarrow \infty} W_{2}\left(F_{\#} \mu, E_{i \#} \mu\right)=0
$$

Decoupling

Optimality of layers of these deep neural networks can be established layer-by-layer.

Consider the problem of learning $\nu=f_{\#} \mu$ the following 1 dimensional distribution embedded in \mathbb{R}^{3} with a network of the form

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step one

First, we can update $T_{2} \circ R_{2}$ to decrease

$$
B_{K, W}\left(f, T_{2} \circ R_{2}\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step one

First, we can update $T_{2} \circ R_{2}$ to decrease

$$
B_{K, W}\left(f, T_{2} \circ R_{2}\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step one

First, we can update $T_{2} \circ R_{2}$ to decrease

$$
B_{K, W}\left(f, T_{2} \circ R_{2}\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step one

First, we can update $T_{2} \circ R_{2}$ to decrease

$$
B_{K, W}\left(f, T_{2} \circ R_{2}\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step one

First, we can update $T_{2} \circ R_{2}$ to decrease

$$
B_{K, W}\left(f, T_{2} \circ R_{2}\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step two

Now fix $T_{2} \circ R_{2}$ and update $T_{1} \circ R_{1}$ to decrease

$$
\begin{gathered}
B_{K, W}\left(f, T_{2} \circ R_{2} \circ T_{1} \circ R_{1}\right) \\
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
\end{gathered}
$$

Decoupling: Step two

Now fix $T_{2} \circ R_{2}$ and update $T_{1} \circ R_{1}$ to decrease

$$
\begin{gathered}
B_{K, W}\left(f, T_{2} \circ R_{2} \circ T_{1} \circ R_{1}\right) \\
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
\end{gathered}
$$

Decoupling: Step two

Now fix $T_{2} \circ R_{2}$ and update $T_{1} \circ R_{1}$ to decrease

$$
\begin{gathered}
B_{K, W}\left(f, T_{2} \circ R_{2} \circ T_{1} \circ R_{1}\right) \\
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
\end{gathered}
$$

Decoupling: Step two

Now fix $T_{2} \circ R_{2}$ and update $T_{1} \circ R_{1}$ to decrease

$$
\begin{gathered}
B_{K, W}\left(f, T_{2} \circ R_{2} \circ T_{1} \circ R_{1}\right) \\
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
\end{gathered}
$$

Decoupling: Step two

Now fix $T_{2} \circ R_{2}$ and update $T_{1} \circ R_{1}$ to decrease

$$
\begin{gathered}
B_{K, W}\left(f, T_{2} \circ R_{2} \circ T_{1} \circ R_{1}\right) \\
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
\end{gathered}
$$

Decoupling: Step three

Now fix $T_{2} \circ R_{2} \circ T_{1} \circ R_{1}$ and update T_{0} to decrease

$$
W_{2}\left(\nu, F_{\theta, \#} \mu\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step three

Now fix $T_{2} \circ R_{2} \circ T_{1} \circ R_{1}$ and update T_{0} to decrease

$$
W_{2}\left(\nu, F_{\theta, \#} \mu\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Decoupling: Step three

Now fix $T_{2} \circ R_{2} \circ T_{1} \circ R_{1}$ and update T_{0} to decrease

$$
W_{2}\left(\nu, F_{\theta, \#} \mu\right)
$$

$$
F_{\theta}(x)=T_{2} \circ R_{2} \circ T_{1} \circ R_{1} \circ T_{0}(x)
$$

Theory of Invertible and Injective Deep Neural Networks for Likelihood Estimation and Uncertainty Quantification

Michael Puthawala ${ }^{1}$
Matti Lassas ${ }^{2}$, Ivan Dokmanić ${ }^{3}$, Pekka Pankka ${ }^{2}$, Maarten de Hoop ${ }^{4}$
${ }^{1}$ South Dakota State University, ${ }^{2}$ University of Helsinki, ${ }^{3}$ University of Basel, ${ }^{4}$ Rice University

June 14, 2023

[^0]: ${ }^{2}$ Karras et al., "Analyzing and improving the image quality of stylegan".

[^1]: ${ }^{3}$ Karras, Laine, and Aila, "A style-based generator architecture for generative adversarial networks"。

[^2]: ${ }^{4}$ Cybenko, "Approximation by superpositions of a sigmoidal function".
 ${ }^{5}$ Yarotsky, "Error bounds for approximations with deep ReLU networks".
 ${ }^{6}$ Kratsios and Bilokopytov, "Non-euclidean universal approximation".
 ${ }^{7}$ Kovachki et al., "Neural operator: Learning maps between function spaces".

[^3]: ${ }^{8}$ Dinh, Krueger, and Bengio, "Nice: Non-linear independent components estimation".
 ${ }^{9}$ Kingma et al., "Improving variational inference with inverse autoregressive flow"; Huang et al., "Neural autoregressive flows".
 ${ }^{10}$ Teshima et al., "Coupling-based invertible neural networks are universal diffeomorphism approximators".

[^4]: ${ }^{8}$ Dinh, Krueger, and Bengio, "Nice: Non-linear independent components estimation".
 ${ }^{9}$ Kingma et al., "Improving variational inference with inverse autoregressive flow"; Huang et al., "Neural autoregressive flows".
 ${ }^{10}$ Teshima et al., "Coupling-based invertible neural networks are universal diffeomorphism approximators".

[^5]: ${ }^{a}$ Tenenbaum et al., "Mapping a manifold of perceptual observations"
 ${ }^{b}$ Weinberger and Saul, "Unsupervised learning of image manifolds by semidefinite programming".

[^6]: ${ }^{a}$ Tenenbaum et al., "Mapping a manifold of perceptual observations".
 ${ }^{b}$ Weinberger and Saul, "Unsupervised learning of image manifolds by semidefinite programming".

[^7]: ${ }^{a}$ smooth embeddings are smooth bijections with smooth inverse
 ${ }^{b}$ Puthawala et al., "Universal Joint Approximation of Manifolds and Densities by Simple Injective Flows".

