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Abstract

In the identification of source problem, a likelihood ratio (LR) is used to quantify the value of
evidence under two competing models for how the evidence has arisen. When the feature space of
this evidence is very complex, a score-based likelihood ratio (SLR) can be used as a surrogate for
the value of evidence. Using a SLR results in the use of simpler underlying densities due to the
score function mapping the complex evidence to a univariate score; however, it is expected that
some information is lost when using a score. Hence, the SLR can perform slightly differently than
the LR. In this poster, we discuss four reasonable properties that should be expected of a SLR
when used for the specific source identification problem: first, that the SLR can be constructed
when the background population consists of one alternative source. Second, when the background
population consists of a single alternative source, and we invert the role of the specific source and
the alternative source, the full SLR is also inverted. Third, when the alternative source population
is composed of multiple sources, the inverse of the omnibus SLR can be written in terms of the
average of the inverse of the simple SLR, where the simple SLR is the SLR of the specific source
vs one alternative source. Finally, that the SLR does not provide stronger support for either
model than a LR. These properties will be formally written and demonstrated on trace element
concentrations in aluminum foil sources.

Keywords: Score-based likelihood ratio; trace evidence; explosives
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Introduction

This is the report of the poster presented at the International Conference on Forensic Inferences
and Statistics (ICFIS) held in Lund, Sweden from June 12-15, 2023. The title of the poster is
Score-based Likelihood Ratio Properties for the Specific-Source Identification Problem.

Background and Motivation

Aluminum (Al) is an inexpensive and easy-to-obtain component in improvised explosive devices
(IEDs). Al is found in cans, spray paints, foil, binary exploding targets, fireworks, etc. Thus, an
amateur bombmaker could go to a local store, purchase Al foil, grind it up in a coffee grinder,
blender, or rock tumbler (ball-mill) and use the resulting Al powder in an IED, such as a pipe
bomb.

This research determined trace element profiles of recovered Al materials from known sources with
sufficient sampling to understand the sources of variability in the measurements and materials,
and to assess the potential for using this method for further characterizing sources of Al used in
IEDs.

The value of evidence can be presented in a form of a likelihood ratio (LR) when possible; when
there is not sufficient information to present an LR, a Bayes Factor is a typically a reasonable
alternative. In certain scenarios, it may be preferable to use a score-based likelihood ratio (SLR)
instead. This report will discuss what properties a SLR can have as a surrogate for the LR.

Instrumentation and Samples

The trace elemental analysis of samples of 169 rolls of Al foil was performed with Inductively Cou-
pled Plasma Mass Spectrometry (ICP-MS) using ThermoFisher Scientific iCAP RQ with STD and
KED mode. The mode used depended on the element being measured. A total of 29 different trace
elements were measured per analytical sample. The quantitative analysis used external calibration,
internal standardization across the entire mass range, and external standard replicates for quality
control [11].

Figure 1: ICP-MS and autosampler used for analysis of digested Al samples.
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Sampling Scheme

A specific sampling scheme was used to characterize within- and between-day variability, as well
as instrument stability. On the 169 rolls of Al foil, nine measurements were taken: three each from
the left (L), center (C), and right (R) sides of the roll. On each subsample, three replicates were
taken, for a total of 27 measurements of 29 features each per foil source [11].

The sampling scheme was performed in day pairs. On the first day of a day pair, L, R subsamples (6
subsamples per Al foil source) were analyzed for half of the sources, and C subsamples (3 subsamples
per source) were analyzed for the remaining half of the sources. On the second day, the method
is reversed. For example, if the L and R subsamples were run on the first day for the 1st and 2nd

sources of Al foil, then the C subsamples from those two sources would be run on the second day.
In this scenario, the C subsamples from the 3rd and 4th sources of Al foil would run on the first
day (with the L and R subsamples from the 1st and 2nd sources), and then the L and R subsamples
from the 3rd and 4th sources would be run on the second day.

The full length of foil was sampled for the first 46 rolls, and then the remaining 123 rolls were only
sampled from the first 12-18 inches. The different position on the lengths of the foil was found to
be irrelevant [11].

Figure 2: Schematic of subsample locations from a roll of Al foil.

A further summary was taken on each subsample. Recall each subsample consists of three replicate
samples. The median of these replicates was taken to result in nine measurements of 29 features
each per source. The median was chosen as opposed to the mean, or to no summary, based on the
Receiver Operating Characteristic (ROC) curve in Figure 3 (note all statistical work was performed
in R [5]). The median line had the highest/flattest ends at the far left and right ends of the plot.
This implies that there will be fewer inconclusive values for the SLRs [11].

Score Function

The score function we will use for the SLRs is a modification [3] of the ASTM method used in
forensic glass comparisons (hereafter the “ASTM score”) [1, 2]. Denote ∆(k, q), as the ASTM
score between a specific/known source observation k and an unknown source/question observation
q. We allow k to have i = 1, . . . ,m features and j = 1, . . . , n observations per feature. The
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observation q consists of i = 1, . . . ,m features, with only one observation per feature. Thus, let kij
be the ith feature on the jth observation with a known source. We define the following terms:

The known source mean of the ith feature: k̄i =
1
n

!n
j=1 kij .

The known source variance of the ith feature: sdi =
1

n−1

!n
j=1(kij − k̄i)

2.

The ASTM score for the ith feature: ASTM i =
|k̄i−q|

max{sdi,0.03k̄i}
.

The overall ASTM score of k and q is then ∆(k, q) = max{ASTMi}.
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Figure 3: ROC curves of within- and between- scores using median, mean, and no summary statistic
across all data collection days.

Specific Source Problem and Likelihood Ratios

Before exploring SLRs, we will first explain the specific source problem setup, and LRs. For more
detailed explanations on this topic, see [4, 7, 6, 8, 9, 10].

Define our evidence as E = {Ea, Eu, Es}, where Ea are random samples from alternative source(s),
comprising a database from the relevant background population; Eu are random samples from
the unknown source; Es are random samples from the specific/known source. Lowercase ea, eu, es
denote observed samples drawn from the random variables Ea, Eu, Es respectively.

We define a profile as the data-generating process of random variables and observations. A template
is a series of observed or yet-to-be-observed (the random variables) samples from the profile. A
trace is a single observed or yet-to-be-observed sample from the profile. For example, Ea are
random variables of the templates and traces in the background population mapping back to their
respective profiles, and eu is a trace drawn from Eu, which arose from the profile of the specific
source samples Es and es, or from a profile in the background population.

The models for the specific source identification problem are

M0 : The unknown source evidence eu arose from the same profile as es;
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M1 : The unknown source evidence eu arose from a randomly selected profile in the back-
ground population.

Note that these hypotheses imply a simple random sample.

Now, we can define our LR as

LR(eu, es,M0,M1) =
f(eu, es|M0, I)

f(eues|M1, I)

where I is any additional information, f is the probability distribution associated with the random
variables Eu, Es, and we are evaluating f at the evidence eu, es. In other words, the LR is defined
as the likelihood of observing eu, es if M0 is true vs the likelihood of observing eu, es if M1 is
true.

Score-based Likelihood Ratios

Recall that we have 29 features. This puts the likelihood function in a 29-dimensional space. This
is a complex space to work in, and as the number of features increases, a likelihood function may
not exist in that space, or- as is the case with the Al foil- it is too difficult to model. When this
occurs, we can use a SLR as a surrogate for the LR. The SLR maps the feature space to the real
line using a score function. In this report, we will be using the ASTM score function described
previously. While the mapping to the real line provides a simpler underlying density than a LR,
the reduction in dimensionality results in a loss of information. For more detailed explanations on
this topic, see [4, 7, 6, 8, 9, 10].

Define δ = ∆(eu, es) with the ASTM score defined previously. We will refer to this as the “evidence
score.” Now, we will redefine our models from the LR to models for the SLR:

M∗
0 : The evidence score δ arose from pairing a template and a trace object that arose from

the same profile;

M∗
1 : The evidence score δ arose from the profile of scores obtained by pairing a randomly

selected observation from the relevant population with observations from the profile of the
specific source.

These models rely on two main assumptions. First, we are anchoring on the profile that generates
Es, and not the observed template es; in other words, we are conditioning on the specific source
distribution for M∗

1 . We can see from the Tippett plot in Figure 4 that this anchoring method
results in good separation of same- vs between-source scores. The second assumption is that all
within-source comparisons have the same distribution. In other words, the distribution of scores
of templates and traces both from the same profile is the same as the distribution of scores from
templates and traces both from another, different profile. Under this assumption, we can better
approximate the distribution of scores under M∗

0 using all of ea, not just es.

Now, we can define our SLR as

λ(δ,M∗
0 ,M

∗
1 ) =

g(δ|M0, I)

g(δ|M1, I)

where I is any additional information, g is the probability distribution associated with the scores
of the random variables Eu, Es, and we are evaluating g at the evidence score δ = ∆(eu, es). In
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other words, the SLR is defined as the likelihood of observing the evidence score if M∗
0 is true vs

the likelihood of observing the evidence score if M∗
1 is true.

Figure 4: Tippett plot of the probability of the SLRs. This shows that the rate of misleading
evidence is almost zero.

Simulation Set Up

Briefly, we will describe how the actual SLR value was computed in the simulation. First, select
a source for eu, and then the same or different source for es, depending on which model is true.
The background population ea is created from the N remaining sources. For each source in the
background, i = 1, . . . , N, compute the same-source scores ∆(eai , eai) and denote these scores as
Type = 1. Next, compute the between-source scores ∆(es, eai) and denote these scores as Type = 0.
Then, fit a logistic regression model on all scores to distinguish between Type. Finally, use the
posteriors on the model to find the SLR, and divide out the base rates. Dividing out the base rates
protects against making same- or different-source decisions based on sample size alone. There will
be more between-source scores than within-source scores, and thus without dividing out the base
rates of same-or different-source comparisons, the model would select the different source option,
Type = 0, simply because it occurs most often and there are so few Type = 1 that selecting
Type = 0 for all scores minimizes the overall error rate.

Desired Properties

The LR has several desired properties, and since the SLR is a surrogate to the LR, we would like the
SLR to have as many of the LR properties as possible. Below is an exploration of four properties
of the LR, and a discussion on which of those properties a SLR can have.

7
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Property One

The SLR can be constructed when the background population consists of a single alternative
source. Let M∗

11 be the model that the single alternative source is the actual source of eu. Then,
λ(δ,M∗

0 ,M
∗
11) exists, where M∗

11 is the model for when the background population consists of
one source [6].

From our simulation, the SLR exists, thus the property holds.

For M∗
11 true, we have a value of λ(δ,M∗

0 ,M11∗) = 5.525× 10−12.
For M∗

0 true, we have a value of λ(δ,M∗
0 ,M11∗) = 4.168.

Property Two

When the background population consists of a single alternative source, and we invert the role
of the specific source and the alternative source, the full SLR is also inverted. In other words,
λ(δ,M∗

0 ,M
∗
11) = λ(δ,M∗

11,M
∗
0 )

−1 [6].

This property does not hold because the ASTM score function is not a monotonic transform of the
LR, and is also an asymmetric function. If the score function is a monotonic transform of the LR,
Property Two will hold.

For M∗
11 true, we have values of λ(δ,M∗

0 ,M
∗
11) = 5.525× 10−12,

λ(δ,M∗
11,M

∗
0 )

−1 = 1.987× 1010.
Under M∗

0 true, we have values of λ(δ,M∗
0 ,M

∗
11) = 54.168,

λ(δ,M∗
11,M

∗
0 )

−1 = 6.029× 1015.

Property Three

Let M∗
1i be the model that the ith source in the alternative population composed of N alternative

sources is the actual source of eu. Then, the inverse of the full SLR can be written in terms
of the average of the inverse of the simple SLR which is the SLR of the specific source vs one
alternative source. In other words, λ(δ,M∗

0 ,M
∗
1 )

−1 = 1
N

!N
i=1 λ(δ,M

∗
0 ,M

∗
1i)

−1 [6].

See the Appendix for a brief proof of why Property 3 holds for the LR.

This property does not quite hold for the same reasons as those in Property Two, and because we
are using a naive suspect profile-anchored approach.

For M∗
1 true, we have values of λ(δ,M∗

0 ,M
∗
1 )

−1 = 7.506× 1014,
1
N

!N
i=1 λ(M

∗
0 ,M

∗
1i)

−1 = 4.404× 1016.
For M∗

0 true, we have values of λ(δ,M∗
0 ,M

∗
1 )

−1 = 3.212× 10−3,
1
N

!N
i=1 λ(M

∗
0 ,M

∗
1i)

−1 = 4.055× 10−2.
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Property Four

The SLR does not provide stronger support for either model than the LR for every possible
value of eu.
If LR(eu, es,M0,M1) ≥ 1, then LR(eu, es,M0,M1) ≥ λ(δ,M∗

0 ,M
∗
1 ) ≥ 1.

If LR(eu, es,M0,M1) ≤ 1, then LR(eu, es,M0,M1) ≤ λ(δ,M∗
0 ,M

∗
1 ) ≤ 1 [6].

This property holds by the sufficiency principle. Recall we started with a 29-dimensional space for
the likelihood function. By reducing the space to one dimension via the score function instead of
using all the features, we are losing information. Thus the SLR is not as informative (i.e., cannot
provide as strong support) as the LR. We cannot provide stronger support for either model with
less information.

Conclusions and Future Work

We can see that the ASTM SLR is not behaving exactly like a LR. This means we cannot claim
the SLR is a perfect surrogate for the LR. Note that the score function used is very important. If
a score function is chosen such that it is a monotonic transform of the LR, the resulting SLR will
posses properties two and three. However, it is not always clear what this monotonic transform is,
or even if the LR framework exists in the feature space where the evidence naturally occurs. But
if that transform can be found, clearly it would be the score function to use.

Another method to consider for evaluating these properties is using only a cluster of Al sources
instead of the full data set. The full data set has high between-source variability relative to the
within-source variability, resulting in extreme SLRs (either very large or very small values, for
example Property Three under M∗

1 ). Using just a cluster of Al sources reduces the between-source
variability, and so the small values will result in less rounding and numerical imprecision which will
help when studying these properties.

A final method is using multiple scores (N+1 total), consisting of our evidence score with eu and es,
as well as scores between eu and each of the N observations in ea. Using more scores will contain
more information, thus providing fewer inconclusive values and reducing the rate of misleading
evidence. However, it puts the SLR in N + 1 dimensions instead of just one.
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Appendix

Derivation of Property 3 for the LR

We can write the LR as

LR(eu, es,M0,M1) =
f(eu, es|M0, I)

f(eu, es|M1, I)

=
f(eu, es|M0, I)

N−1
!N

i=1 f(eu, es|M1i, I)
. (1)

Then, considering the inverse (and thus avoiding Jensen’s Inequality)

1

LR(eu, es,M0,M1)
=

N−1
!N

i=1 f(eu, es|M1i, I)

f(eu, es|M0, I)

= N−1
N"

i=1

f(eu, es|M1i, I)

f(eu, es|M0, I)
(2)

= N−1
N"

i=1

1

LR(eu, es,M0,M1i)
.

Where we get Equation 1 by a strong laws version of the denominator, and Equation 2 by moving
a constant inside the sum.

11


	308570cs
	308570r

