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Major Goals and Objectives 

Modern automotive paint consists of a thin e-coat, primer and color coat layer protected by 

a thick clear coat layer.  All too often, the clear coat is the only layer of automotive paint recovered 

at the crime scene of a “hit-and-run” where damage to a vehicle and/or injury or death to a 

pedestrian has occurred.  In these cases, directly searching an automotive paint database such as 

the Royal Canadian Mounted Police paint data query (PDQ) database using commercial library 

search algorithm will generate a large number (thousands) of potential hits because of the large 

number of similar spectra. The inability of Fourier transform infrared (FTIR) spectroscopy and the 

PDQ database to identify the manufacturer and model of the vehicle from an automotive clear coat 

sample is a limitation in the use of FTIR spectroscopy and forensic automotive paint databases 

such as PDQ.   

Lavine and coworkers [1-6] have previously demonstrated that pattern recognition when 

applied directly to mid-infrared absorbance spectra of original equipment manufacturer (OEM) 

clear coats has the potential to differentiate between similar clear coat IR spectra.  The prototype 

pattern recognition-based infrared (IR) library search system developed by Lavine for OEM clear 

coats consisted of two separate but interrelated components: search prefilters to reduce the size of 

the library of a specific manufacturer to an assembly plant or assembly plants corresponding to the 

unknown paint sample and a cross-correlation library searching algorithm to identify IR spectra 

most like the unknown in the subset of spectra identified by the search prefilters. This approach 

has been shown to be successful if information about the automotive manufacturer of the OEM 

clear coat is provided. 

To obtain information about the vehicle manufacturer from an IR spectrum of an 

automotive clear coat, deep learning as implemented using a four-layer artificial neural network 

has been investigated.  Specifically, we seek to determine the vehicle manufacturer (e.g., General 
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Motors, Chrysler, Ford, Toyota, Nissan, and Honda) from the IR spectrum of an automotive clear 

coat.  It has been purported that deep learning requires less data preprocessing.  Raw data can (in 

principle) be pipelined directly to the neural network allowing it to learn patterns directly from the 

data for successful recognition. Selecting wavenumbers of interest or removing wavenumber 

regions, for example, is (in principle) not necessary as the neural network allows the data to 

identify key relationships within the data that are crucial for a successful classification.  As shown 

by the results of this investigation, raw data should not be pipelined directly to the neural network 

and removing wavenumber regions from the spectra can improve the generalization performance 

of the model. 

 
Project Design and Methods  

Clear Coat Infrared Spectra Data Cohort 

The 2796 mid-IR spectra of the automotive clear coats provided by the RCMP for our in-

house spectral library were obtained from street samples and factor panels. Four different FTIR 

spectrometers were used to collect the clear coat spectra: Bio-Rad 40A, Bio-Rad 60A, and two 

Thermo Nicolet 6700 FTIR spectrometers. All four FTIR spectrometers were run at 4 cm-1 

resolution.  A Harrick 4X beam condenser was used in both Bio-Rad instruments whereas a 

Harrick 6X beam condenser was used in the two Thermo-Nicolet instruments. Each spectrometer 

was equipped with a DTGS detector.  All clear coat samples were between 3 and 4 micrograms 

and were run using a high-pressure transmission diamond anvil cell [7, 8].  The thickness of the 

sample (i.e. the clear coat peel) and the pressure applied by the diamond anvil cell in collecting 

the spectra were such that a transmittance between 7% and 14% was obtained for the carbonyl 

stretching band (around 1730 cm-1) in all 2796 clear coat FTIR spectra.   
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The number of points collected in the wavelength range using the Thermo-Nicolet 

instrument (4000 to 400 cm-1) varied from 1878 to 1958 points, whereas the FTIR spectra collected 

on the two Bio-Rad instruments for the same wavelength range and resolution were represented 

by 1944 points.  To address the problem of spectral alignment, each IR spectrum was normalized 

to the helium neon laser frequency of 15798.0 cm-1. The laser frequency value was set to that 

measured at the aperture setting, which makes the sample peak positions independent of aperture 

setting.  However, this results in a change in the data point spacing and the location of the data 

points.  Although the default laser frequency of the spectrometer is 15798.3 cm-1, 15798.0 cm-1 

was used because it solved problems that occurred when importing the spectra from GRAMS.  

This also ensured proper spectral alignment along the wavelength axis for the imported Bio-Rad 

spectra to the Thermo-Nicolet instrument. After performing this normalization, the Bio-Rad 

instruments were comparable to FTIR spectra collected on the two Thermo-Nicolet instruments. 

To authenticate proper spectral alignment, FTIR spectra of known samples measured on both the 

Bio-Rad and Thermo-Nicolet instruments were compared using vector subtraction before and after 

performing the frequency normalization procedure. Subtraction yielded a nonzero response at each 

wavelength before frequency normalization but zero at each point after normalization, indicating 

that spectral alignment had been achieved. After frequency normalization, each FTIR spectrum 

(4000 to 400 cm-1) was represented by 1869 points. 

Many clear coat samples evaluated in this study were from the same manufacturer within 

a limited production year range (2000 – 2010).  This makes the comparisons among the FTIR 

spectra in the database more challenging and tests the limits of the proposed neural network 

methodology to discern subtle but significant differences in the FTIR spectrum of automotive clear 

coats.  Although most of the clear coats in our in-house spectral library were acrylic melamine 
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styrene or acrylic melamine styrene polyurethane, there were other paint chemistries represented 

in the data cohort, e.g., acrylic melamine, and acrylic styrene polyurethane.  The clear coat samples 

analyzed were obtained from metallic automotive substrates as automotive paint samples for 

plastic substrates are often applied at the plant that manufactures the component, not at the plant 

where the vehicle is assembled.   

 
Data Analysis 

The 2796 mid-IR clear coat spectra were divided into a training set of 2237 spectra and a 

prediction set of 559 spectra.  Clear coat IR spectra comprising the prediction set were selected by 

random lot.  To evaluate the performance of the neural network models and set the meta parameters 

of the neural network, ten-fold cross validation was performed. The 2237 spectra were partitioned 

into ten equal sized sets. The model would be trained on eight of the partitions with the nineth 

partition serving as a validation set (to select meta parameters for the model and to decide when to 

stop the training).  The tenth partition was used to evaluate the model (test partition). This process 

was repeated ten times, each time using a different fold as a validation set or test set.  Thus, ten 

models are created and trained independently, each using a different partition for evaluation. 

Finally, the results from each test set are averaged to produce a robust estimate of the model’s 

performance.   

For this problem, the convolutional layer was simplified as a stack of 1D filters.  Individual 

network models used weight regularization, activity regularization and dropout layers to avoid 

overfitting and improve the generalization of the network model without causing a reduction in 

training. L1 regularization of activities in the earlier layers was found to be beneficial as well as 

using rectified linear activation functions for the output of each layer except for the last layer where 

soft max was used.  
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Each clear coat IR spectrum in the training set was baseline corrected using the rubber-

band method [9] and normalized to unit length. For outlier analysis, the generalized distance test 

[10] as implemented by SCOUT [11] was applied to each class (vehicle manufacturer) in the 

training set to identify and delete anomalous samples.   

 
Project Results and Findings 

Initial Studies. Our initial studies focused on developing models to discriminate clear coat 

IR spectra by manufacturer using 1-NN, decision trees, three-layer artificial neural network, 

artificial neural network with four deep layers and convolutional artificial neural network with 

four deep layers.  For this comparison, both the convolutional neural network and the artificial 

neural network with four deep layers were at the same stage of their parameter search.  For the 

artificial neural network with four deep layers and the convolutional artificial neural network, the 

effects of removing sample outliers and performing baseline correction on the spectra were 

evaluated.  The presence of the convolutional layer in the neural network did not improve its 

performance. Outliers, however, impacted the performance of the neural network and eliminating 

them prior to training improved model performance.  Baseline correction also improved the 

classification performance of the network.  Deep learning can achieve 100% on the training data 

so the problem is obtaining good generalization using information/regularization beyond fitting 

training data for class prediction. 

Full and Reduced Spectral Range.  Artificial neural network models with 4 deep layers 

were developed for the full spectral range and for the following segments: 1500 to 600 cm-1, 1844 

to 667 cm-1, 1641 to 667 cm-1, and 1641 to 860 cm-1.  The neural network model developed using 

the spectral range 1641 to 667 cm-1 yielded the best results (90% for cross validated accuracy and 

88.3% for the accuracy of the prediction of the 559 spectra comprising the external test set). For 
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this comparison, which involved 80,000 iterations, all artificial neural network models were at the 

same stage of their parameter search.   

Two-Way Classifications Using Ten-Fold Cross Validation. Classification studies were 

performed comparing the six vehicle manufactures pairwise to better understand the challenges 

inherent in this pattern recognition problem.  The mean value for 10-fold cross validation was used 

to assess accuracy for each pairwise comparison. From an examination of the results for these 

pairwise comparisons, it is evident that differentiating General Motors from Ford and 

differentiating Chrysler from Ford are the most difficult of the classifications. 

 Infrared Spectra of Clear Coats. The clear coat layer, like the color coat and primer-

surfacer and e-coat layers, has features in its IR spectrum unique to the vehicle manufacturer.  

Using neural networks, fingerprint patterns in the IR spectra of clear coats characteristic of the 

vehicle manufacturer could be identified. Such information can serve to quantify the 

discrimination power of OEM clear coat paint samples encountered in actual case work.         

 
Applicability of Research 

 The research project described in this final summary overview is directly targeted to the 

development of new approaches for the forensic examination of automotive clear coat, both at the 

investigative lead stage and at the court room testimony stage.  Direct impact on over 57 local, 

state, and federal forensic laboratories in the United States that are currently using the PDQ 

database is anticipated.  There will also be impact on international forensic laboratories using the 

PDQ database including the Forensic Laboratory Services Division of the RCMP, the Centre of 

Forensic Science in Toronto, Canada, the ENFSI network of European forensic science institutes, 

the Australian Police Services, and the New Zealand Public Services.  
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Participants and Other Collaborating Organizations 

  Members of the Oklahoma State University (OSU) team that participated in this study 

include Dr. Douglas Heisterkamp (Associate Professor of Computer Science at OSU), Dr. Collin 

G. White (postdoctoral researcher), Elizabeth Donkor (Graduate Research Assistant) and Chamika 

Eranga Liyanarachchi (Graduate Research Assistant). Our outside partner has been  The Oklahoma 

State Bureau of Investigation. 

 
Publications 

1. B. K. Lavine, K. S. Booksh, S. L. Neal, C. G. White, and D. R. Heisterkamp, “A 

Perspective on Chemical Data Science,” Sensors, In Preparation. 

2. B. K. Lavine, C. G. White, and D. R. Heisterkamp, “Deep Leaning to Enhance 

Investigative Information from Automotive Clear Coats,” in Chemometric Analysis and 

Machine Learning, Edited by Harvey Hou and Peter He, Springer.  In Preparation 

3. B. K. Lavine, C. G. White, and D. R. Heisterkamp, Artificial Neural Networks for 

Discrimination of Automotive Clearcoats by Vehicle Manufacturer,” Forensic Chemistry, 

in preparation. 

Software 
 

The Keras (neural network) models developed in this project and the data used for training 

as Tensor-Flow data-streams are housed in a repository at www.box.com. For an individual to 

access box.com, it is necessary for the user to create an account and then contact Barry K. Lavine 

(barry.lavine@okstate.edu) who then will grant access to the user.  It will be necessary for the user 

to provide Lavine with the email address associated with the user's box account. A fully 

functioning Windows executable version of Keras software is available to the public. The 

http://www.box.com/
mailto:barry.lavine@okstate.edu
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executable includes a Python implementation of the rubber-band baseline correction algorithm that 

will allow the user to stack the baseline with the original unknown spectrum and send it to the 

desired Keras model. 

 
Dissemination Activities 
 

1. B. K. Lavine, C. G. White, and D. R. Heisterkamp, “Convolutional Neural Networks to 

Enhance Investigative Lead Information from Automotive Clear Coats,” SCIX 2024, 

Raleigh, NC, 10/22/2024. 

2. B. K. Lavine, C. G. White, and D. R. Heisterkamp, “Deep Learning to Enhance 

Investigative Lead Information from Automotive Clear Coats,” Eastern Analytical 

Symposium, Plainsboro, NJ, 11/20/2024. 

3. B. K. Lavine, C. G. White, and D. R. Heisterkamp, “Artificial Neural Networks to Enhance 

Investigative Lead Information from Automotive Clear Coats,” Research Frontier 

Symposium, Alabama State University, 3/13/2025. 

 

References 

1. Barry K. Lavine, Nikhil Mirjankar, Scott Ryland, and Mark Sandercock, “Wavelets and 

Genetic Algorithms Applied to Search Prefilters for Spectral Library Matching in 

Forensics,” Talanta, 2011, 87, 46-52. 

2. B. K. Lavine, A. Fasasi, N. Mirjankar, and M. Sandercock, “Development of Search 

Prefilters for Infrared Library Searching of Clear Coat Paint Smears,” Talanta, 2014, 119, 

331–340.   

3. B. K. Lavine, A. Fasasi, N. Mirjankar, and M. Sandercock, “Development of Search 

Prefilters for Infrared Library Searching of Clear Coat Paint Smears,” Talanta, 2014, 119, 



10 
 

331–340.   

4. B. K. Lavine, A. Fasasi, N. Mirjankar, and C. White, “Search Prefilters for Library 

Matching of Infrared Spectra in the PDQ Database using the Autocorrelation 

Transformation,” Microchem. J., 2014, 113, 30–35.   

5. B. K. Lavine, A. Fasasi, N. Mirjankar, K. Nishikida, and J. Campbell, “Simulation of 

Attenuated Total Reflection Infrared Absorbance Spectra – Applications to Forensic 

Analysis of Automotive Clearcoats,” Appl. Spectros., 2014, 68(5), 608-615. 

6. M. Maric, W. van Bronswijk, K. Pitts, and S. W. Lewis, “Characterization and 

Classification of Automotive Clear Coats for Forensic Purposes,” J. Raman Spec., 47(8), 

948-955. 

7. F. T. Tweed, R. Cameron, J. S. Deak, P. D. Rodgers, “The Forensic Microanalysis of 

Paints, Plastics, and Other Materials by an Infrared Diamond Cell Technique,” Forensic 

Sci., 1974, 4, 211-218. 

8. P. G. Rodgers, R. Cameron, N. S. Cartwright, W. H. Clark, J. S. Deak, and E. W. Norman, 

“The Classification of Automotive Paint by Diamond Window Infrared 

Spectrophotometry, Part III: Case Histories,” Can. Soc. Forens. Sci. J. 1976, 9(4), 103-111.  

9. X. Shen, S. Ye, L. Xu, R. Hu, L. Jin, H. Xu, J. Liu, and W. Liu, “Study on Baseline 

Correction Methods for the Fourier Transform Infrared Spectra with Different Signal-to-

Noise Ratios,” Appl. Optics, 2018, 57(20), 5794-5799. 

10. S. J. Schwager, and B. H. Margolin, “Detection of Multivariate Normal Outliers,” Annals 

Stat. 1982, 10, 943-953. 

11. Martin A. Stapanian, Forest C. Garner, Kirk E. Fitzgerald, George T. Flatman, John M. 

Nocerino, J. Chemom., 1993, 7, 165-176  

https://analyticalsciencejournals.onlinelibrary.wiley.com/authored-by/Stapanian/Martin+A.
https://analyticalsciencejournals.onlinelibrary.wiley.com/authored-by/Garner/Forest+C.
https://analyticalsciencejournals.onlinelibrary.wiley.com/authored-by/Fitzgerald/Kirk+E.
https://analyticalsciencejournals.onlinelibrary.wiley.com/authored-by/Flatman/George+T.
https://analyticalsciencejournals.onlinelibrary.wiley.com/authored-by/Nocerino/John+M.
https://analyticalsciencejournals.onlinelibrary.wiley.com/authored-by/Nocerino/John+M.



