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Abstract 

Steganography, the ancient art for secretive communications, has revived on the Internet 
by hiding secret data in completely imperceptible manners, and has created a serious threat 
due to the covert channel that can be readily exploited for various illegal purposes. 
Likewise, multimedia tampering, which has been greatly facilitated and proliferated by 
various multimedia processing tools, is increasingly causing problems concerning the 
authenticity of digital multimedia data. There is a critical need to develop reliable methods 
for steganography detection or steganalysis and for forgery detection to serve purposes in 
national security, law enforcement, and cybercrime fighting. 

To detect steganography and forgery on multimedia data, our research goals include 
discovering the characteristic modification caused by digital multimedia steganography 
and forgery, developing more accurate and more reliable methods for steganalysis and 
digital evidence authentication, and developing a complete evaluation procedure for 
gaining full understanding of the accuracy, reliability, and measurement validity of 
steganography detection and digital evidence authentication in digital image, audio, and 
video files. 

To achieve these goals, the procedures of our research design and methods are conducted 
as follows:  

1. Construct a comprehensive and high volume multimedia steganography and forensic 
database. 

2. Analyze the bias and variation of each confirmed source by using existing methods; 
and by developing new methods, improve the quantification of the characteristics and 
uncertainties of the cover, steganography, and forgery, created by these sources, and 
provide a more complete evaluation in different circumstances including multimedia 
type and format, signal complexity, source type, information-hiding/forgery type and 
modified size, detection method, detection accuracy, the strength and limitation of a 
certain method in which circumstance. 

3. Measure detection performance. 

4. Monitor and improve the steps in the forensic evidence analysis process in digital 
media by integrating updated methods with the use of data mining and computational 
intelligence techniques for steganography detection and forgery detection. 

We conjecture that data hiding in steganography and manipulation in forgery production 
change the statistics of original multimedia data, and hence leave the clues of 
modification. Our study aims to discover the features that may discriminate the 
manipulations from intactness and analyze different patterns caused by different 
operations. In this project, we have developed several novel detection algorithms based 
on feature mining and machine intelligence techniques in detecting steganography, 
forgery manipulation and relevant operations such as cropping, double compression on 
multimedia data. Our experimental results validate our hypothesis and indicate that our 
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methods have obtained the detection performances in detecting several types of 
steganography and forgery on multimedia data within the state-of-the-art. Our study also 
shows that a complete evaluation of the detection performance of different algorithms 
should include image/signal complexityin addition to other relevant factors such as 
hiding ratio or compression ratioas a significant and independent parameter for some 
detections including JPEG double compression.  
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Executive Summary 

Synopsis of the Problem 

Steganography, the art and science of carrying messages in covert channels, and forgery 
have revived in digital realms. The detection of steganography and forgery on multimedia 
data has important impacts on public safety and national security. 

Several steganographic algorithms/systems have been proposed, including LSB 
embedding, LSB matching (Mielikainen 2006), spread spectrum steganography (Marvel, 
Boncelet and Retter 1999), Outguess (Provos 2001), F5 (Westfeld 2001), model-based 
steganography (Sallee 2003 and 2005), Steghide (Hetzl and Mutzel 2005), BCH syndrome 
code based less detectable JPEG steganography (Sachnev, Kim and Zhang 2009), and 
highly undetectable steganography (HUGO) (Pevny, Filler and Bas 2010). Although these 
steganographic systems have been successfully steganalyzed (Chen and Shi 2008; 
Fridrich 2004; Fridrich, Kodovsky, Holub and Goljan 2011a, 2011b; Fu and Shi et al. 
2006; Gu and Kurugollu 2011; Ker 2004; Kharrazi, Sencar and Memon 2006; Kodovsky 
and Fridrich 2009, 2011, 2012; Kodovsky, Pevny and Fridrich 2010; Kodovsky, Fridrich 
and Holub 2012; Li, Shi and Huang 2009; Liu, Sung and Ribeiro 2005; Liu et al. 2006; 
Liu Sung and Qiao 2008; Liu et al. 2008a, 2008b, 2008c; Liu and Sung 2007; Liu et al 
2011a, 2011b, 2011c; Liu 2011a; Pevny and Fridrich 2007, 2008; Shi et al. 2007), the 
advances in steganography have posed new challenges to steganalyzers (Filler and 
Fridrich 2010; Filler, Judas and Fridrich 2011; Filler and Fridrich 2011; Solanki, Sarkar 
and Manjunath 2007). 

The potential of exploiting steganography for covert dissemination is of increasing 
concern; a recent espionage case revealed that steganography had been employed by a 
foreign government intelligence agency (Web justice 1; Web justice 2). Secretbook (web 
secretbook), a Google Chrome extension allows users to transmit completely secret 
messages on Facebook, and the hidden message in photos cannot be scanned for keywords 
by Facebook or read by prying friends. 

In multimedia forgery, double compression is an indispensable operation, and it is an 
effectual forensic indicator to recover the processing history. In digital multimedia, JPEG 
(an acronym for the Joint Photographic Experts Group, which created the image 
compression standard) and MPEG (an acronym for the Moving Picture Experts Group, 
formed by the International Organization for Standardization and the International 
Electro-technical Commission to set standards for audio and video compression and 
transmission) are the most popular lossy compression standards. Today’s digital 
techniques make it easy to tamper JPEG images and MPEG files without leaving any 
visible clues; since most tampering involves JPEG/MPEG double compression (the 
original JPEG/MEPG files are manipulated in spatial/temporal domain and then saved in 
JPEG/MPEG files), it heightens the need for accurate analysis of JPEG/MPEG double 
compression in image forensics.  

In image forensics, while most methods target traditional image tampering, seam carving-

2 



 

 
 

 

 
 

 
 

  

 

 

  

based image tampering in JPEG format has been ignored to some extent. Seam carving, 
an algorithm for image resizing, is known as content-aware scaling, liquid resizing or 
liquid rescaling. It allows the removal of selected whole objects from photographs. The 
seam carving method for content-aware resizing and object removal has been 
implemented in Adobe Photoshop CS4 (Web photshop-cs4), GIMP (Web liquidrescale), 
digiKam (Web digikam), ImageMagick (Web imagemagick), as well as stand-alone 
programs such as iResizer (Web iresizer). The proliferation of seam-carved images 
presents a challenge to authorities who require image authentication.   

In audio forensics, a few of algorithms have been presented to detect the forgery or related 
manipulation in audio streams, including the detection of double compression on MPEG-
1 Audio Layer 3 or MP3 audio streams (Yang et al. 2008; Qiao, Sung and Liu 2010). 
Advanced Audio Coding (AAC), a lossy audio compression scheme, standardized by the 
International Organization for Standardization and the International Electro-technical 
Commission, which was designed to be the successor of the MP3 format, generally obtains 
better sound quality than MP3 at similar bit rates. While AAC audio files widely spread 
(Web AAC), to our knowledge, the literature of the forgery detection of AAC audio files 
is still missing to this date.  

Purpose 

To detect steganography and forgery on multimedia data, our research goals include: 

1) Discovering the characteristic modification caused by digital multimedia 
steganography and forgery; 

2) Developing more accurate and more reliable methods for steganalysis and digital 
evidence authentication; 

3) Developing a complete evaluation procedure for gaining full understanding of the 
accuracy, reliability, and measurement validity of steganography detection and digital 
evidence authentication in digital image, audio, and video files.  

Research Design 

Our research design is conducted in the following procedures:  

1) Construct a comprehensive and high volume multimedia steganography and forensic 
database. 

2) Analyze the bias and variation of each confirmed source by using existing methods; 
and by developing new methods, improve the quantification of the characteristics and 
uncertainties of the cover, steganography, and forgery, created by these sources, and 
provide a more complete evaluation in different circumstances including multimedia 
type and format, signal complexity, source type, information-hiding/forgery type and 
modified size, detection method, detection accuracy, the strength and limitation of a 
certain method in which circumstance. 

3 



 

 

 

 

 

 
 

 
 

 
 

 
 

 

 
 

3) Measure detection performance. 

4) Monitor and improve the steps in the forensic evidence analysis process in digital 
media by integrating updated methods with the use of data mining and computational 
intelligence techniques for steganography detection and forgery detection. 

We surmise that steganography and forgery manipulation will alter some features of 
original multimedia data, and hence leave the clues of being touched. Our study aims to 
discover these features. We have developed several novel detection algorithms based on 
feature mining and machine intelligence techniques in detecting steganography, forgery 
manipulation and relevant operations.  

We have designed several types of features including neighboring joint density on 
quantized discrete cosine transform (DCT) coefficients in JPEG images and MP3 audio 
files that discriminate the steganograms, doctored image/audio files from the untouched. 
The detection of MPEG double compression is also in-depth investigated. In our study, a 
shift-recompression-based framework is proposed with new feature sets to detect 
steganography and forgery in JPEG images and MP3 and AAC audio streams.  

In this study, in addition to our previously proposed neighboring joint density-based 
approach (Liu, Sung and Qiao 2011a), we designed several novel approaches including 
calibrated neighboring joint density-based approaches to expose the manipulation to 
original JPEG files. 

With regard to AAC audio forgery, from our standpoint, similar to JPEG compression 
AAC audio compression introduces block (frame) artifacts in tampering, and accordingly, 
we propose a shift-recompression-based differential analysis to detect the forgery in AAC 
audio streams with the same compression bit rate. 

Key Findings 

1. Most steganography and forgery manipulation change the statistics of original 
multimedia data. 

2. Neighboring joint density and other statistical features are effective to detect several 
types of steganography and forgery manipulations. Neighboring joint density-based 
feature mining under different shift recompression have gained the highest detection 
accuracy in detecting several types of steganographic systems, and delivered the state-
of-the-art detection results in JPEG-based steganalysis. 

3. By combining neighboring joint density with spatial domain-based rich models that 
was designed for steganalysis, we have noticeably improved the detection of seam-
carved forgery in JPEG images that was re-encoded at the same compression quality 
after doctoring. 
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4. Shift-recompression-based SRSC feature set is effective to detect AAC audio forgery 
that was encoded at the same compression quality. To our knowledge, such kind of 
detection has not been literally exposed. 

5. Double compression in JPEG images and MEPG video files have modified several 
statistics in DCT domain. Normally it is much easier and much reliable to detect the 
double compression with the last compression quality is higher than the first 
compression quality. However, it is not so easy to detect the double compression 
complying with the second compression is much heavier than the first compression. 

6. The detection evaluation may be more meaningful and complete by considering the 
data format, payload hiding ratio, hiding algorithms and hiding parameters, detection 
methods, and image/signal complexity. In the detection of the same double 
compression at different image complexity, the image complexity is higher, then the 
detection accuracy is lower. 

7. It is still hard to break some types of steganographic systems. For example, we have 
designed an statistically invisible steganography based on the complexity of the DCT 
blocks in JPEG images, and improved an existing steganographic algorithm, YASS 
(acronym for Yet Another Steganographic Scheme, Solanki, Sarkar and Manjunath 
2007), to implement completely randomized embedding  in DCT blocks. The 
detection of such steganographic systems is still very difficult wherein the hiding 
parameters are meticulously selected or the hiding algorithms are specially designed 
against the detection. 

Conclusions 

Discussions of Key Findings 

1. In detecting JPEG-based steganography and forgery, we analyze the neighboring joint 
density of the DCT coefficients and reveal the difference between an untouched image 
and the modified version by steganography and forgery manipulation. In real 
detection, untouched image and the modified version may not be obtained at the same 
time, and different JPEG images may have different neighboring joint density features. 
To produce the self-calibration, we design the reference features of neighboring joint 
density features under different shift recompression, and propose calibrated 
neighboring joint density-based approaches to distinguish steganograms and altered 
images from untouched ones. Our study shows that this approach has multiple 
promising applications in image forensics. Compared to the state-of-the-art of 
steganalysis detectors, our approaches deliver better or comparable detection 
performances with a much smaller feature set to detect several steganographic systems 
including DCT-embedding-based adaptive steganography and YASS. Our method is 
also effective to detect seam-carved forgery in JPEG images. By integrating calibrated 
neighboring density with spatial domain rich models that were originally designed for 
steganalysis, the hybrid approach obtains the best detection accuracy to discriminate 
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seam-carved forgery from an untouched image in JPEG format. Our study shows that 
it is a promising manner by exploring steganalysis and forgery detection together. 

It is still hard to break YASS while the steganograms are produced by using a small 
noused parameter. In detecting seam carving forgery, rich models provide a marked 
improvement with abundant features. 

2. In detecting JPEG double compression, we have developed a technique that can 
successfully detect JPEG double compression by integrating marginal density and the 
neighboring joint density features in DCT domain.  Our method is superior to Markov 
process-based approach in terms of achieving a higher detection accuracy at a lesser 
computational cost. Our study shows that the detection performance is related not only 
to the compression quality factors but also to image complexity, which is an important 
parameter that seems to have been so far overlooked by the research community in 
conducting performance evaluation. To formally study the performance evaluation 
issues, the image complexity and compression quality should therefore be included as 
a whole. 

Following the success in detection of JPEG double compression, we conduct studies 
based on processed smartphone images to identify the smartphone source and the post-
capture manipulations. Experimental results show that our method is strongly 
promising in correctly identifying the smartphone source and revealing the past 
manipulations simultaneously, including the combination of double JPEG 
compression, cropping, and rescale. Our studies also indicate that, due to the 
complexity of intentional manipulation, it is more productive to combine clustering 
and classification techniques together for performing the detection.  

3. In detecting double MPEG compression, we offer a qualitative statistical analysis 
about the impact caused by MPEG-2 compression on distributions of reconstructed 
DCT coefficients, and demonstrate the differences in distributions of quantized DCT 
coefficients between the single compression and double compression. A set of DCT 
distributions with different quantization scale factors are constructed to extract convex 
pattern features, and a novel detection algorithm is designed to detection of double  
MPEG compression in CBR (constant bitrate) videos. In our simulation system, the 
target output bit-rate, rather than quantization scale factor, is selected as the only 
parameter to control MPEG-2 encoders. The target output bit-rate can easily be  
configured through the system menu, without need to modify source codes of MPEG-
2 encoders. So it makes our detection algorithm more suitable for all kinds of video 
coding systems, especially in some business video systems. On the other hand, our 
proposed detection algorithm  maintains good detection performance in many cases. 
More specifically, it can detect double compressed videos with both high-quality and 
low-quality. Even if the primary compression and the secondary compression use 
different kinds of MPEG-2 encoders, our algorithm can also reveal the track of double 
MPEG-2 compression. 

4. In detecting MP3-based audio steganography, we design a detection method by 
extracting frequency-based sub-band moment statistics as well as accumulative 
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neighboring joint probabilities and accumulative Markov transition probabilities in the  
compression domain. Generalized Gaussian density (GGD) is introduced to estimate 
the distribution of the modified discrete cosine transform (MDCT) coefficients. We  
also propose moment statistics of GGD shape parameters (  ) extracted from 
individual frames as features, and utilize the shape parameter from the whole audio 
clip as a measure of signal complexity. The relation between audio steganalysis  
performance and signal complexity is also studied experimentally. Three feature 
selection methods are employed to further enhance the detection accuracy. Our 
approach leads to a successful detection of information-hiding in MP3 audio, under 
each category of signal complexity and modification density, especially in audio with 
a high signal complexity and a low modification density (Qiao, Sung and Liu 2013). 

5. In detecting AAC audio forgery, we propose a shift-recompression-based SRSC 
feature mining with machine learning techniques to reveal the difference between 
untouched AAC audio streams and doctored AAC audio streams that was re-encoded 
at the same bit rate after tampering. Our experimental results show that our approach 
is very promising and effective. 

6. To conclude, by exploring and developing new detection algorithms/approaches and 
new measurement parameters in multimedia forensics, we have successfully achieved 
the project goals including “discovering the characteristic modification caused by 
digital multimedia steganography and forgery, developing more accurate and more 
reliable methods for steganalysis and digital evidence authentication, and developing 
a complete evaluation procedure for gaining full understanding of the accuracy, 
reliability, and measurement validity of steganography detection and digital evidence 
authentication in digital image, audio, and video files.” 

Implications for policy and practice 

Multimedia forensics is a multiple-disciplinary research field with important impacts to 
law enforcement. In multimedia forensics, steganography detection or steganalysis and 
forgery detection are two spots. Multimedia steganography and forgery techniques and 
the proliferation have made big challenges to law enforcement. 

By exploring the characteristic modification caused by digital multimedia steganography 
and forgery, developing new detection algorithms/approaches, and adopting new 
measurement parameters for the evaluation, we have successfully achieved the project 
goals including “discovering the characteristic modification caused by digital multimedia 
steganography and forgery, developing more accurate and more reliable methods for 
steganalysis and digital evidence authentication, and developing a complete evaluation 
procedure for gaining full understanding of the accuracy, reliability, and measurement 
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validity of steganography detection and digital evidence authentication in digital image, 
audio, and video files.” 

The implications for policy and practice lie in the following: 

1. Although multimedia steganography and forgery have made big challenges to law 
enforcement in protection of public safety and national security, our study shows 
that some advanced steganography and forgery systems can be accurately detected 
and hence the relevant crimes may be defeated and/or prevented. For example, in 
detecting several types of JPEG steganography at the relatively high information 
hiding ratio, our approach has achieved 100% mean accuracy over 100 experiments. 
Our forgery detection approaches in this study are also very promising with high 
detection accuracies. Therefore, we would recommend utilize the state-of-art for 
steganography and forgery detection for forensics purposes.  

2. The complete evaluation in multimedia forensics may include multiple parameters 
including information hiding ratio and/or forgery size, compression factors, hiding 
algorithms, multimedia signal complexity, detection algorithms, feature selection 
methods, classification models and learning classifiers. 

3. Our study also indicates that it is still hard to defeat some meticulously designed 
steganography, e.g., the data hiding takes place in the high complexity components 
in the multimedia signal (Liu Sung Chen and Huang 2011).  

4. The study in multimedia forensics is normally subjected to relatively simple 
environment with a certain knowledge and limitation to the testing multimedia data. 
For example, to detect some type of steganography by using a steganographic 
algorithm x, the steganograms are denoted as Sx, covers are denoted as C. 
Classification models are constructed to discriminate the steganogram from cover. 
It is clear that the detection is conducted in the environment that contains only Sx 
and C, and the outcome can be predicted either Sx or C, relatively predestinated. 

Unfortunately, the real life detection generally faces an open and complicated 
environment. For example, we are given a JPEG image to determine whether it is 
carrying a covert message or not. We cannot simply adopt the classification model 
that was used to distinguish Sx and C, since we are not sure about the image under 
examination is either an untouched cover or the type Sx of steganogram, or some 
other type of steganogram, or a cover that was processed by some legitimate 
operations. 
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5. It is known that that steganography had been employed by a foreign government 
intelligence agency (Web justice 1; Web justice 2), and the potential usage of 
steganography to disseminate covert message in social media such as on Facebook 
could be enormous (web secretbook). The further study in multimedia forensics is 
highly needed for forensics purposes. 

Implications for further research 

The continuous improvement of the state of steganalysis and forgery detection should be 
emphasized in the future study. Additionally, several new steganographic systems have 
been proposed to hide data in JPEG images (Liu, Sung, et al. 2011; Holub and Fridrich 
2013), AAC audio streams (Wei, Li and Wang 2010), and VoIP audio stream including 
Skype-based steganography (Mazurczyk, Karas and Szczypiorski 2013), and no effective 
detection methods area available to this date, which is worthy for the further exploration.  

While we have designed several effective detection approaches within the state-of-the-art, 
the realistic detection toolkits may be implemented for the testing and validation for 
forensics purposes. 

It is worthy of making the contribution for real life detection that generally faces an open 
and complicated environment. Further study may be also highlighted on revealing the 
processing history of the multimedia data under the examination.      
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I.  Introduction  

Statement of the Problem 

Multimedia forensics is a multiple-disciplinary research field with important impacts on 
the protection of public safety and enhancement of national security. In multimedia 
forensics, steganography detection or steganalysis and forgery detection are two active 
areas and are generally separately studied, although both continue to face challenges.  

Steganography, Greek for covered writing, is the art and science of carrying messages in 
covert channels, aiming to enable secretive communication by embedding data into digital 
files without attention to the existence of the hidden message. The potential of exploiting 
steganography for covert dissemination is of increasing concern; an espionage case 
revealed that steganography had been employed by a foreign government intelligence 
agency (Web justice 1; Web justice 2). Recently, a Google Chrome extension allows us 
to hide secrets in Facebook photos (Web secretbook). 

Fake photos have employed for decades, and with various image processing tools, digital 
images can now be easily forged. Figure I-1 shows some examples of image forgery. 
Generally, tampering manipulation on a JPEG image involves several different basic 
operations, such as image rescaling, rotation, splicing, double compression, etc. While we 
decode the bit stream of a JPEG image and implement the manipulation in spatial domain, 
and then compress the modified image back to JPEG format, if the quantization matrices 
are different between the original JPEG image and the modified, the modified JPEG image 
has undergone a double JPEG compression. Although JPEG double compression does not 
by itself prove malicious or unlawful tampering, it is an evidence of image manipulation.  

Figure I-1.  Image forgery examples (Web cbsnews1; Web cbsnews2; Web latimesblogs; Web theblaze), 
Tampered photos are shown on the upper and original ones are shown on the below. 
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Figure I-2 shows two source images in JPEG and a tampered image composited from the 
two sources. All three images are downloaded from  worth1000.com. The quantization 
matrices affiliated with the luminance parts of these three JPEG images are given with 
different quantization values.  
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Figure I-2. An example of image tampering involving JPEG double compression. 

Regarding video data, due to the enormous amount of video data, they must be compressed 
before transmission and storage. Except some simple bit-stream splicing editing 
operations, most of video post-processing operations (such as filtering, adding scrolling 
texts, subtitles or other tampering operations) can deal with the content in the video scene 
only after these video streams have been decoded into image sequences, and finally these 
edited image sequences must be re-saved as compressed video files by the same or a 
different video encoder. Therefore, double compression is an indispensable link in the 
video post-processing, and the double compression detection technique is an effectual 
forensic tool to recover the processing history of digital video resources. 

Some works have been presented to detect the forgery or related manipulation in audio 
streams, including MPEG-1 Audio Layer 3 or MP3 (Yang et al. 2008; Qiao, Sung and Liu 
2010). For example, if two MP3 audio streams encoded at different bit-rates are selected 
in part and composited together and encoded in MP3 format, such forgery manipulation 
undergoes double MP3 compression. While we will be able to reveal the behavior of 
double MP3 compression, we may catch the forged part in MP3 audio streams. However, 
if two MP3 audio streams encoded at the same bit-rate and composited together and 
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encoded in MP3 format with the same bit-rate, the method of detecting double MP3 
compression does not work. 

Advanced Audio Coding (AAC), a lossy audio compression scheme, standardized by ISO 
and IEC, which was designed to be the successor of the MP3 format, generally obtains 
better sound quality than MP3 at similar bit rates. AAC is supported on iPhone, iPod, iPad, 
Nintendo DSi, iTunes, DivX Plus Web Player, PlayStation 3, PlayStateion Portable, Wii, 
Sony Walkman MP3, Sony Ericsson, Nokia, Android, Blackberry, and webOS-based 
mobile phones (Web AAC). While AAC audio files widely spread, to our knowledge, the 
literature of the forgery detection of AAC audio files is still missing to this date.  

Literature Citations and Review 

Steganography and forgery in JPEG images 

In steganography, quite a few steganographic algorithms have been proposed, including 
LSB embedding (Kurak and McHugh 1992), LSB matching (Mielikainen 2006), spread 
spectrum steganography (Marvel, Boncelet and Retter 1999), Outguess (Provos 2001), F5 
(Westfeld 2001), model-based steganography (Sallee 2003 and 2005), Steghide (Hetzl and 
Mutzel 2005), BCH syndrome code based less detectable JPEG steganography (Sachnev, 
Kim and Zhang 2009), and highly undetectable steganography (HUGO) (Pevny, Filler 
and Bas 2010). Although these steganographic systems have been successfully 
steganalyzed (Chen and Shi 2008; Fridrich 2004; Fridrich, Kodovsky, Holub and Goljan 
2011a, 2011b; Fu and Shi et al. 2006; Gu and Kurugollu 2011; Ker 2004; Kharrazi, Sencar 
and Memon 2006; Kodovsky and Fridrich 2009, 2011, 2012; Miche et al. 2009; 
Kodovsky, Pevny and Fridrich 2010; Kodovsky, Fridrich and Holub 2012; Li, Shi and 
Huang 2009; Liu, Sung and Ribeiro 2005; Liu et al. 2006; Liu Sung and Qiao 2008; Liu 
et al. 2008a, 2008b, 2008c; Liu and Sung 2007; Liu et al 2011a, 2011b, 2011c; Liu 2011a; 
Pevny and Fridrich 2007, 2008a and 2008b; Shi et al. 2007; Gul and Kurugollu 2011), the 
advances in steganography have posed new challenges to steganalyzers such as Gibbs 
construction-based steganography (Filler and Fridrich 2010), Syndrome-Trellis Codes 
based steganography (Filler, Judas and Fridrich 2011). Filler and Fridrich recently 
proposed a practical framework of adaptive steganographic systems which optimize the 
parameters of additive distortion functions and minimize the distortion for ±1 embedding 
in the DCT domain. This has greatly improved the art of hiding data in wide-spread JPEG 
images (Filler and Fridrich 2011). Yet Another Steganographic Scheme (YASS) was 
designed to be a secure JPEG steganographic algorithm with randomized embedding 
(Solanki, Sarkar and Manjunath 2007). By exploring the weakness of YASS 
steganographic system, Li, Shi and Huang (2009) presented a simple and efficient 
detection method by comparing the frequency of zero coefficients of the embedding host 
blocks and the neighboring blocks in DCT domain. This detection performance is very 
promising when the parameter of the big block (B-block) size is small (e.g., the size is set 
to 9 and 10). However, the detection performance apparently deteriorates if the parameter 
of B-block size increases (Li, Shi and Huang 2009). Kodovsky et al. designed 1234 
features to detect YASS and tested 12 different configurations of YASS with a parameter 
of B-block size no larger than 11. In other words, the detection performance on the YASS 
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steganograms produced by a large parameter of B-block at 12, 13, 14, and 15 was missing 
(Kodovsky, Pevny and Fridrich 2010). 

Regarding image forensics, the relevant manipulations, including double JPEG 
compression, source identification, image rescaling, copy-paste, inpainting, and 
compositing have been successfully detected (Pospescu and Farid 2004a, 2004b, 2005a, 
2005b; Prasad and Ramakrishnan 2006; Alles et al. 2009; Bayram et al. 2005, 2006, 2008, 
2009, 2010; Bianchi and Piva 2012a, 2012b; Celiktutan et al. 2008; Chang, Yu and Chang 
2013; Chen and Hsu 2011; Chen, Fridrich et al. 2003, 2007, 2008; Fu, Shi and Su 2007; 
Choi et al 2006; Dirik et al. 2007; Gallagher 2005; Gou et al. 2007a, 2007b, and 2009; 
Gul and Avcibas 2009; Hsu and Chang 2009; Johnson and Farid 2005, 2006, 2007a, 
2007b, 2007c; Lin et al. 2001 and 2005; Liu and Sung 2009; Liu, Sung and Qaio 2011c; 
Liu 2011b; Lukas and Fridrich 2003; Lukas et al. 2006; Mahdian and Saic 2008; Pan and 
Lyu 2010; Pan, Zhang and Lyu 2012; Shi et al 2007; Swaminathan et al. 2008). While 
most image forensics methods target traditional image tampering, seam carving-based 
image tampering in JPEG format has been ignored to some extent. Seam carving, an 
algorithm for image resizing, is known as content-aware scaling, liquid resizing or liquid 
rescaling and was designed by Shai Avidan of Mitsubishi Electric Research Labs (MERL) 
and Ariel Shamir of the Interdisciplinary Center and MERL. It establishes the paths of 
least importance in an image, called seams, automatically removes them and reduces the  
image size, or inserts seams to extend the image size (Avidan and Shamir 2007). Seam  
carving allows the removal of selected whole objects from photographs. The seam carving 
method for content-aware resizing and object removal has been implemented in Adobe  
Photoshop CS4 (Web photshop-cs4), GIMP  (Web liquidrescale), digiKam (Web  
digikam), ImageMagick (Web imagemagick), as well as stand-alone programs such as 
iResizer (Web iresizer). The proliferation of seam-carved images presents a challenge to 
authorities who require image authentication. Sarkar et al.(2009) employed 324-
dimensional Markov features, which was originally developed to detect JPEG-based 
steganograms by Shi et al. (2006), to distinguish between seam-carved, seam-inserted, 
and normal images. Fillion and Sharma designed a method which include benign image 
reduction, benign image enlargement, and deliberate image reduction to detect seam-
carved images and tested their method over a set of images consisting of 1484 
uncompressed images. Unfortunately, the JPEG images were not tested after content-
aware manipulation (Fillion and Sharma 2010). The detection of seam-carving-based 
forgery in JPEG images needs extensive further studied.   

DCT-embedding-based adaptive steganography 

Most steganographic systems aim to minimize the distortion of the original cover. A 
practical framework to minimize statistical detectability when designing undetectable 
steganography was recently presented (Filler and Fridrich 2011). To design DCT-
embedding-based adaptive steganography, an inter/intra-block cost model was given, as  
well as the performance of embedding algorithms based on the inter/intra-block cost 
model. The proposed DCT-embedding-based adaptive steganography was experimentally 
validated as being highly secure (Filler and Fridrich 2011). The embedding algorithms are 
optimized by using the multi-layered Syndrome-Trellis Codes (Filler, Judas and Fridrich 
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2011), with SVM and CC-PEV feature set (Kodovsky and Fridrich 2009), and Cross-
Domain Feature set (Kodovsky and Fridrich 2011), respectively. The experiments show 
that proposed DCT-embedding-based adaptive steganography has greatly improved the 
state of DCT-embedding-based steganography (Filler and Fridrich 2011). 

YASS and A Detection Algorithm 

The original YASS algorithm presented in the reference (Solanki, Sarkar and Manjunath 
2007). Although YASS embedding is not confined to the 88 block of the final JPEG 
compression, the location of embedding block in B-block is not random enough. By using 
QIM-based embedding, YASS also introduces additional zero DCT coefficients in the 
modified 88 block, and hence, the following algorithm was designed to break YASS (Li 
Shi and Huang 2009). 

Zero-value density-based approach to steganalysis of YASS (Li, Shi and Huang 2009) 

Transform a JPEG image under examination to spatial domain, denoted by I1; 

For T = 9 to 15 

For s = 1 to T 

(a)  Divide Is into non-overlapping consecutive TT B-blocks; 

(b)  Collect 88 blocks from the upper left of all B-blocks and perform 2D DCT; 

(c)  Quantize the DCT coefficients by using QFa; 

(d)  Compute the probability of zero rounded re-quantized DCT coefficients in 
candidate embedding bands and denote it by ZT(s); 

(e)  Crop the first s columns and the first s rows of I1 to generate a new image Is+1  
for the next inner-loop; 

End 

 Compute the values of 1 T 7 1 
  

Z ( )i and 
 i 1 T  

T

T 7 7 j T   6  
Z T ( )j as features. 

End 

As shown by this algorithm, the features are extracted from the candidate blocks along the 
diagonal direction of B-blocks, rather than from all possible 88 candidate blocks in B-
blocks. In a B-block with the size of TT, there are a total of (T-7)(T-7) block candidates 
for embedding. Unfortunately, the above algorithm only selects the (T-7) blocks along a 
diagonal direction, not all candidate blocks, and as a result, the chance of the candidates 
along diagonal direction only hits 1/(T-7). While the value of T is large, the hit ratio is 
fairly low. For instance, if T=15, the hit ratio is only 1/8 = 0.125. The experimental results 
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shown in the reference (Li, Shi and Huang 2009) also demonstrate that the detection 
accuracy is not satisfactory with a large T value.   

In image forensics, the simplest way to get device information is extract that information 
from the header part of an image file. Most device vendors adopt EXIF (Exchangeable 
Image File Format) standard to write specific information into the header, like device 
maker, camera model, exposure, date and time the image captured, pixel size and etc. 
EXIF format is also handling sound and video record by digital camera, scanner, video 
machine, and other digital devices.  If JPEG format is used to save images, quantization 
table can be obtained from JPEG images’ header.  Most manufacturers employ distinct 
quantization tables, some of them may define their own quantization tables. By examining 
the quantization table, we may simply indicate the origin device of the test image. 
However, this approach is less trustful in use on forensic evidence, because header 
information is very easy to be faked. Additionally, those properties may not available if 
image is resaved and recompressed.  

Without EXIF information, another method to distinct given device is based on its image 
processing algorithm. Before image is saved to flash memory, the original data 
transferring from CCD (charge-coupled device) sensor need to be further processed, 
which include demosaicing, gamma correction, color processing, white point correction 
and last but not least compression. These post-processing is done with special DSP (digital 
signal processing) component of camera device. Although all manufacturers apply these 
general processing steps in their products, the processing detail and algorithm vary from 
one to another. Even with one vendor, the processing is different between distinct models. 
Therefore, it is supposed that output images contain some traits and pattern regardless of 
the original image content.  

The source identification based on the different patterns of sensor noise/sensor finger print 
is successful, however once obtained images are processed again, for example, cropping, 
rescale (interpolation), and recompression, the identification generally becomes 
ineffective because the pattern of sensor noise is destroyed by the post-capture 
manipulation. Although several methods have been presented to detect single operation, 
e.g., cropping, image interpolation, double compression (Chen, Shi and Su 2008; Farid 
1999, 2006, 2009; Liu and Sung 2009; Liu 2011b; Penvy and Fridrich 2008), it is still 
under-expressed to identify the camera source based on processed images with the 
combination of different operations. 

With decreasing cost of mobile phone and megapixels camera phone quality increasing 
close to traditional digital camera, more and more people start using mobile phones to 
replace camera to capture pictures, since mobile phones are easily carried on and civilians 
can grasp scene easily and quickly. Many digital images shot by smartphones are widely 
spreading in society. However, smartphone-based image forensics is relatively ignored, 
compared to digital camera-based image forensics. Although Tsai et al. (2006, 2007) 
conducted such study to identify popular mobile phones with camera, in case the 
photographs were processed, such identification does not perform well. Moreover, if 
original images obtained from different semiconductor charge-coupled devices (CCD) 
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sensors are processed again, such as image resize, cropping or trans-coded to different 
image quality, these source identification algorithms become ineffective.  

The images captured by smartphones are normally stored in JPEG format, not in raw 
format, to reduce the storage space.  Nevertheless, the aforementioned steps are standard 
stages in digital images generated from camera pipeline and the exact processing detail in 
each stage varies from one producer from another. Different manufacturers may adopt 
their specific quantization tables to encode the captured digital signals into JPEG format. 
By recognizing these different quantization tables, it is usually easy for us to identify the 
source of smartphones, even that the exchangeable image file format (EXIF) data have 
been modified. However, if the EXIF data are removed and the images are manipulated 
again with different operations, the identification of the source and the revealing of the 
operations may become hard. 

MPEG double compression and detection 

When a MPEG-2 video is encoded in variable bit rate (VBR) mode that chooses a fixed 
quantization scale factor for the entire frame, the intra frame can be considered as a JPEG 
compressed image, and some features in detection of double JPEG compression are 
successfully introduced to detect double MPEG compression. Wang and Farid detected 
double MPEG-2 compression with variable bitrate (VBR) mode by examining the 
periodic artifacts introduced into the DCT histograms of I frames (Wang and Farid 2006) 
or modeling the marginal distribution of singly compressed and de-quantized DCT 
coefficients as a Gaussian distribution with expectation-maximization (EM) algorithm 
(Wang and Farid 2009). However, digital TV broadcasting, DVDs and Digital Video 
Recorders always adopt constant bitrate (CBR) mode to generate the MPEG-2 videos. 
Double MPEG-2 compression with CBR can be detected with Chen’s approach which 
exploits the statistical disturbance in the first digit distribution of non-zero MPEG 
quantized AC coefficients (Chen and Shi 2008). Sun et al (2012) extended the features of 
Chen’s algorithm to identify whether the bit rate of the secondary compression is bigger 
than that of the primary compression or not. But in their experiments, both the primary 
and the secondary MPEG-2 compression processes are implemented with the same 
MPEG-2 encoder. Their detection performance will decrease when a different MPEG-2 
encoder is utilized to realize the secondary compression. 

In the video compression system, the non-linear quantization is the mainly lossy coding 
technique to attain high compression ratios. Because some precision of DCT coefficients 
are lost in the quantization process, the de-quantization is not a fully reversible process of 
quantization. After a video sequence is compressed, there are some special traces in the 
distribution of reconstructed DCT coefficient. In the following section, Test Model 5 of 
MPEG-2 (ISO/IEC IS 13818-2; Test Model 5 for ISO/MPEG II) will be taken as an 
example to describe the quantization and de-quantization process in the MPEG-2 
standard, and then two existing approaches are discussed to detect double MPEG-2 
compression. 

Quantization and De-quantization process in MPEG-2 
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Test Model 5 (TM5) is considered as a standard simulation platform for all researchers of 
MPEG-2, in order to verify the usefulness of various proposed coding techniques. In the 
module of quantization process of TM5, after each block is transformed with a 2-
dimensional DCT coefficient matrix, the DCT coefficients are quantized respectively  
according to the mode of the current macro block. 

In the intra mode, the quantizer of DC coefficients can only select a fixed step based on 
the precision parameter that will be transmitted in the picture coding extension. AC 
coefficients ac(i, j) must be firstly quantized by individual quantization factors according 
to the following calculation. 

            32ac(i, j) 
qac( ,i j)         

  ;                                                           (I-1) 
 w iI ( ,  j)  

Where     is defined as integer division with truncation of the result toward zero. wI(i, j) 

is an intra-quantization weighting matrix, w hose aim is to greatly reduce the amount of 
information in the high frequency components based on the characteristics of human  
visual system. An encoder can use the default weighting matrix in the MPEG-2 standard 
(shown as Figure I-3(a)); or introduce a new weighting matrix for some manufacturers 
(such as Figure I-3(b)), but this new matrix must be transmitted as a set of special 
parameters in the header of MPEG-2 stream file. 

                                       
                                                                                   

 8  16 19  22 26  27 29  34  8 16  20  23  30  36  41  49  
   16 16 22 24 27 29 34 37 16 20 23 28 36 41 48 52   
19 22 26 27 29 34 34 38 20 22 30 36 40 48 48 54  
    
22 22 26 27 29 34 37 40 22 26 34 37 41 48 52 66  
22 26 27 29 32 35 40 48 26 32 37 39 44 49 66 96  
    
26 27 29 32 35 40 48 58 34 35 41 42 49 66 102 106 
   26 27 29 34 38 46 56 69 36 36 42 46 66 96 146 166
    
27 29 35 38 46 56 69 83 38 40 48 64 96 106 166 206 

(a)  (b) 

Figure I-3.  Intra quantization matrixes of two MPEG-2 encoders: (a) the default intra weighting matrix in 
TM5; (b) the intra weighting matrix in a DV. 

The final quantized level QAC(i,j) is calculated as follows: 

qac( ,i j)  sign ( qac (i, j))  a q _ scale / b 
QAC ( ,  i j)   .                                                  (I-2) 

 2  q s_ cale  

 1 x  0 
  (I-3)Sign( )x   0 x  0;  

 1 x  0

The parameters a=3 and b=4 in TM5. q_scale, i.e., quantization scale factor, is an 
important parameter to control the performance of quantization process. 

In the non-intra mode, the DCT coefficients are quantized with a uniform quantizer that 
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has a dead-zone around zero. The quantization processes can be expressed as: 

32 ac(i, j)  
qac( ,i j)    ;                                                                       (I-4) 

 w iN ( ,  j  )  

 
 qac( ,i j) 

QAC ( ,  i j)    .                                                                    (I-5) 
 2 q s_ cale   

For the de-quantization process in TM5, it strictly follows the MPEG-2 standard (ISO/IEC 
IS 13818-2 section 7.4). According to the weighting matrix w(i,j) and q_scale, de-
quantization process can reconstruct DCT coefficients for all kinds of frames. 

It is noticeable that the choose of q_scale is the principal method to implement different 
bit rate control schemes for meeting the requirement of different digital video applications. 
Since many video streaming are constrained by constant limited channel bandwidth (like 
‘DSL’ or ‘dial-up’ connections) or fixed storage size (‘Personal Video Player’, or ‘DVD 
Recorder’), CBR mode has been widely adopted because of its practical implementation, 
ease of use and flexibility over ‘IP Networks’. To maintain the target output bit rate, 
q_scale will vary significantly among the different frames between 1 and 112 on a 
macroblock-to-macroblock basis, which is always directly calculated according to many 
factors (Wang 2000; Ding and Liu 1996), such as the status of the current buffer, bit 
allocation strategy, the spatial activity of the current macro block and so on. Compared 
with CBR mode, VBR mode can conserve the consistent visual quality due to a fixed 
q_scale for an entire frame, which has been extensively used in ATM-based broadband 
ISDN networks (Yu et al. 2001). As a result, the impact of q_scale on the distribution of 
reconstructed DCT coefficients is different between CBR and VBR mode, which indicates 
that double MPEG compression with CBR mode is distinct to double MPEG compression 
with VBR mode, as well to double JEPG compression. 

Currently a wide variety of algorithms for detecting double JPEG compression have been 
reported in the literatures, but less attention has been paid to videos because of the 
complexity of video coding system. As the earliest algorithm, Wang and Farid (2006) 
exploited the static and temporal artifacts introduced by double MPEG-2 compression 
with VBR mode. In the spatial domain, as mentioned above, an intra-frame quantized by 
a constant quantization scale factor can be viewed as a JPEG image, and the features of 
double JPEG compression can be utilized to detect double MPEG-2 compression. For 
example, in Figure I-4, all frames in a test sequence (Figure I-4(a)) are doubly compressed 
by Berkeley MPEG Video Encoder (Mayer-Patel et al. 2005) with VBR and an obvious 
periodic artifact presents in the distribution of doubly quantized DCT coefficients (Figure 
I-4(b)). In the temporal domain, the frame deletion or insertion operations will induce 
large motion estimation errors at the following P frames and the periodic spikes in motion 
errors is utilized to detect frame tampering. However, the author has also discussed the 
limitation of this approach that it fails to detect the double MPEG compression with CBR 
mode, because CBR mode selects the quantization scale factor for each macro block and 
statistical features in doubly quantized DCT coefficients will be aliased by different 
quantization scale factors. When the same test sequence is single compressed by TM5 
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with CBR at 6 Mbps (Million bits per second), the histogram of quantization scale factors 
in intra frames is indicated in Figure I-4(c). It is found that the TM5 behaves as having a  
based quantization scale factor qB which is related to some initial conditions, such as 
output bit-rate, frame resolution, buffer size and so on. The others quantization scale 
factors are dynamically adjusted according to the spatial activity in the video scene. If the 
single compressed MPEG-2 video is doubly compressed at 7 Mbps, the distribution of  
doubly quantized DCT coefficients in intra frames is indicated as Figure I-4(d) where 
‘missing values’, ‘double peak’ and ‘periodic property’ have disappeared, and it is 
necessary to find new features to detect double MPEG compression with CBR mode. 

 
 

(a) 
(b) 

(c) (d) 

Figure I-4. Double MPEG-2 compression: (a) a standard test sequence from Video Quality Experts Group 
(VQEG); (b) the histogram of DCT (2, 1) coefficients in double MPEG-2 compressed intra frames with 
VBR mode; (c) the histogram of quantization scale factors in intra frames of the original MPEG compression 
with CBR mode; (d) the histogram of DCT (2, 1) coefficients in double MPEG-2 compressed intra frames 
with CBR mode. 

Chen and Shi (2008) proposed another novel approach based on the first digit statistics 
(also called Bendford’s Law) to detection of double MPEG-2 compression in both VBR 
and CBR videos. If the video is doubly compressed, the first digit distribution of non-zero 
MPEG-2 quantized AC coefficients in all kinds of frames will not meet the parametric 
logarithmic law. In order to make the detection more reliable, the GOP (group of picture) 
is proposed as the detection unit to obtain 36 features. In their experiment, the doubly 
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compressed video is also generated by the primary encoder, in other words, the primary 
and secondary coding processes adopt the same encoder. However, if the secondary 
encoder is different from the primary one, the first digit distribution of non-zero double 
quantized AC coefficients may obey to the generalized Bendford’s Law again, and the 
detection performance of this algorithm will decrease.  

Audio steganalysis and forgery detection 

While most steganographic systems take digital images as carriers, digital audio files are 
also ideal as carrier for covert communication where the variety of audio encodings 
increases the difficulty of audio steganalysis. To detect the information-hiding in digital 
audio, Avcibas (2006) presented content-independent distortion measures as features for 
classifier design. Ozer et al. (2006) investigated the characteristics of the denoised 
residuals of audio files. Johnson et al. (2005) set up a statistical model by building a linear 
basis that captures certain statistical properties of audio signals. Zeng et al. (2008) 
presented a new algorithm to detect echo steganography based on statistical moments of 
peak frequency. Kraetzer and Dittmann (2008) proposed a Mel-cepstrum-based analysis 
to perform the detection of embedded hidden messages. Liu, Sung and Qiao (2009c) 
improved the performance of audio steganalysis by combining the Mel-cepstrum feature 
with a temporal derivative-based spectrum analysis. Geetha et al. (2010) presented high-
order statistics of Hausdorff distance as discriminative features and investigated the 
application of evolving decision tree for audio steganalysis. Other authors’ studies in 
audio steganalysis are included in references (Liu, Sung and Qiao 2009a, 2009c, and 
2011b; Qiao, Sung and Liu 2009, 2010a and 2010b). 

Although in the past years multiple steganalysis methods were designed to detect 
information-hiding in uncompressed audio, the information-hiding in compressed audio, 
such as MPEG-1 Audio Layer 3, more commonly referred as MP3, has been barely 
explored due to the complexity and variety of the compression algorithms. As a result of 
the different characteristics between compressed and uncompressed audio, most existing 
methods do not work for steganalysis of audio in the compression domain, and the 
decompression attempt, which erases the hidden data through the de-quantization step in 
signal reconstruction, leads to a failure of those methods on decompressed audio. 

As one of the most popular audio formats on the Internet, MP3 provides a faithful 
reproduction of the original signal with a small amount of data. The widespread use and 
flexible encoding algorithm enable it to be a desirable carrier for covert communication. 
Böhme and Westfeld (2004) investigated the characteristics of MP3 encoders for potential 
applications in steganography or steganalysis. Although different encoders are designed 
to be compatible with the MP3 standard, statistical analysis also illustrates the distinctions 
among available MP3 encoders. MP3Stego (Web MP3Stego) is one of the most widely 
used audio steganographic tools, especially for MP3 audio. MP3Stego is implemented by 
combining a novel information-hiding algorithm with an existing MP3 encoder. 
MP3Stego (Web MP3Stego) is built on the MP3 encoder and decoder from 8 Hz and ISO 
MPEG Audio Subgroup Software Simulation Group, respectively. All payloads are 
encrypted using 3DES and then embedded in frames randomly selected by using SHA-1. 

20 



 
 

 

 

         
                         

 

 

 

 

 

 

 

With uncompressed waveform audio (WAV) as input, MP3Stego embeds data during the 
encoding process and generates a steganogram in MP3 format. The algorithm of 
MP3Stego exploits the audio degradation from lossy compression and embeds data by 
slightly expanding the distortion of the signal without attracting attention from the listener. 
MP3Stego embeds compressed and encrypted data in an MP3 bit stream during the 
compression process. In the heart of layer 3 compression, two nested loops manipulate the 
trade-off between file size and audio quality. The hiding process occurs in the inner loop 
where the quantization step size is increased to fit the available number of bits.  

Regarding audio forgery detection, while Yang et al. (2008) designed a method to check 
the offset in MP3 frame compression artifact to detect MP3 forgery, as designed a 
successor to MP3 compression method, AAC audio files have been widely disseminated. 
However, to our knowledge, the literature of the forgery detection of AAC audio files was 
still missing before we explored it in this project. 

Statement of Hypothesis or Rationale for the Research 

Hypothesis 1. Most information hiding and forgery manipulations in JPEG images modify 
the statistics of DCT coefficients including the neighboring joint density and the 
calibrated versions 

Hypothesis 2. JPEG double compression modifies the marginal density and neighboring 
joint density in DCT domain 

Hypothesis 3. In MPEG double compression, the distribution of reconstructed DCT 
coefficients after double compression will be different from that of original MPEG video 

Hypothesis 4. MP3stego will modify the statistics of frequency-based subband moment 
statistics, accumulative neighboring joint probabilities and accumulative Markov 
transition probabilities in the compression domain 

Hypothesis 5. AAC audio forgery will change the original frame compression structure 
and hence leave a clue for the detection 
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II.  Methods  

II-1. JPEG Steganalysis 

II-1-a. Algorithm Design 

Inspired by a multivariate generalized Gaussian distribution (MGGD) model in the 
wavelet that was successfully used for image denoising (Cho and Bui 2005), we discussed 
the MGGD in the DCT domain and pointed out that approximate distribution of 
neighboring joint density of DCT coefficients may be modeled by MGGD, and 
information-hiding generally affects the distribution (Liu Sung and Qiao 2009a, 2009b; 
Liu Sung and Qiao 2011a). Our study also shows that besides information hiding, JPEG-
based double compression and interpolation modify the neighboring joint density also and 
hence leave a clue to reveal the manipulations (Liu, Sung and Qiao 2008; Liu, Sung, 
Riberio and Ferreira 2008; Liu, Sung and Qiao 2009a, 2011a, 2011b; Qiao, Sung and Liu 
2013). Our experimental results indicate that neighboring joint density-based approach 
outperforms the Markov transition probability-based approach in JPEG steganalysis. We 
analyzed the reason that neighboring joint density-based approach is generally superior to 
highly referenced Markov-based approach: “it is the modification of the neighboring joint 
density that results in the modification of Markov transition probability” (Liu, Sung and 
Qiao 2011a). We can completely derive Markov transition probability from neighboring 
joint density, but we cannot derive the neighboring joint density from Markov transition 
probability, in other words, neighboring joint density contains more discriminant 
information compared to Markov transition probability.  

Normally, neighboring joint density of DCT coefficients is symmetric to the origin. Our 
previous detection algorithm (Liu, Sung and Qiao 2011a) is designed in the following: 

Neighboring Joint Density on Intra-block 

Let F denote the quantized DCT coefficient array consisting of M×N blocks Fij (i = 1, 2, 
…, M; j = 1, 2, …, N). The intra-block neighboring joint density matrix on horizontal 
direction absNJ1h and the matrix on vertical direction absNJ1v are given by: 


M N 8 7 

 ( c ijmn  x, c ijm ( 1n )   y)

absNJ ( ,x y)  i1 j1 m1 n1
1h 

 (II-1)
56MN 


M N 7 8 

 ( c ijmn  x, c ij (m1)n  y)

absNJ ( ,x y)  i1 j1 m1 n1
1v 

 (II-2)
56MN 

Where cijmn is the DCT coefficient located at the mth row and the nth column in the block 
Fij;  = 1 if its arguments are satisfied, otherwise  = 0; x and y are integers. For 
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computational efficiency, we define absNJ1 as the neighboring joint density features on 
intra-block, calculated as follows: 

absNJ 1( ,x y)  absNJ 1h (x, y)  absNJ 1v ( ,x y) /  2                                        (II-3)  

In our prior detection, the values of x and y are in the range [0, 5], and absNJ1 consists of 
36 features. 

Neighboring Joint Density on Inter-block 

The inter-block neighboring joint density matrix on horizontal direction absNJ2h and the 
matrix on vertical direction absNJ2v are constructed as follows: 


8 8 M N  1 

 ( c ijmn  x, c i( 1j  )mn  y)

absNJ ( ,x y)  m1 n1 i1 j1
2h 

 (II-4)
64M N( 1) 


8 8 M 


1 


N 

 ( c ijmn  x, c ( 1i  ) jmn  y)

absNJ m1 n1 i1 j1
2v ( ,x y)   (II-5)

64(M 1)N 

We define absNJ2 as the neighboring joint density features on inter-block, calculated as 
follows: 

absNJ 2 ( ,x y) absNJ 2h (x, y)  absNJ 2v ( ,x y) /  2  (II-6) 

Similarly, the values of x and y are in [0, 5] and absNJ2 has 36 features. In our previous 
approach, the neighboring joint density features defined by equations (II-3) and (II-6) are 
denoted by absNJ, containing 72 features (Liu, Sung and Qiao 2011a). 

CALIBRATED NEIGHBORING JOINT DENSITY 

We have shown and validated the modification of the neighboring joint density caused by 
information hiding of several DCT-embedding steganographic systems (Liu, Sung and 
Qiao 2011a). Regarding DCT-embedding adaptive steganography that aims to minimize 
the distortion cost through Syndrome-Trellis Codes (Filler and Fridrich 2010), although 
the modification is very small, it does change the neighboring joint density (Figure II-1). 
Figure II-1(a) shows a JPEG cover. Figure II-1(b) gives the JPEG steganogram produced 
by using DCT-embedding-based adaptive hiding algorithm (Filler and Fridrich 2010) with 
the relative payload of 0.4 bits per non-zero-AC (bpac). Figure II-1(c) demonstrates the 
difference of the intra-block-based neighboring joint density when comparing the cover 
and the steganogram and Figure II-1(d) shows the difference of the neighboring joint 
density of the absolute array of DCT coefficients when comparing the cover and the 
steganogram. 
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(a) JPEG cover (b) JPEG steganogram 

(c) Difference of NJ density (d) Difference of absNJ density 

   
   

 

 

Figure II-1.  An example to demonstrate the modification of neighboring joint (NJ) density features by 
DCT-embedding-based adaptive steganography. 

It should be noted that we do not have the original cover as a reference while detecting 
steganography. For example, in Figure II-1, only given the JPEG image (a) or (b), not 
both, we need to determine whether the image under examination is a cover or a 
steganogram; it is impossible for us to obtain the density difference shown in (c) and (d) 
in real detection. We should also mention that the neighboring joint density varies across 
different JPEG images. Therefore, there are still limitations to detecting the steganogram 
if we only adopt the neighboring joint density feature set without any reference, originally 
presented in the references (Liu, Sung and Qiao 2009a and 2011a). 

To capture the modification of the density caused by data embedding, suggested by the 
self-calibration that was presented in (Fridrich 2005) and based on our previous 
steganalysis method (Liu, Sung and Qiao 2009a and 2011a), we design a calibrated 
neighboring joint density-based approach, described as follows: 

a.  The neighboring joint density features absNJ1 x, y and absNJ 2 x, y , defined by 
equations (5) and (8), are extracted from a JPEG image under examination; 

b.  The testing JPEG image is decoded to spatial pixel values and cropped by i rows and 
j columns (0≤i<7, 0≤j<7, and i+j >0). The cropped image is encoded in JPEG format  
with the same quantization matrix, and the joint density features denoted by  
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absNJ c x, y  and absNJ c 
1i, j 2i, j x, y  are extracted from the cropped and recompressed  

JPEG images,  here (i j, )0,1 ,0,2 ,...,1,0 ,1,1 ,...,7,7 ; 
c.  The mean values of absNJ c 

1 x, y and  absNJ c 
2 x, y are calculated by 

1 
absNJ c x, y  absNJ c1  1i, j x, y

63 i, j   (II-7)

absNJ c x, y 1 
 absNJ c2 2i, j x, y

63 i, j                                                            (II-8) 

d.  The differential joint density features are given by  

absNJ D 
1 x, y  absNJc 

1 x, y absNJ1 x, y
 (II-9) 

absNJ D2 x, y  absNJ c2 x, y absNJ 2 x, y
                                                  (II-10)  

In our detection, we either adopt the neighboring joint density features, given by equations 
(II-3) and (II-6), and the reference density features, given by equations (II-7) and (II-8), 
together as a detector, or adopt the features defined in equations (II-3), (II-6), (II-9), and 
(II-10) together as a detector. We should note that both detectors are actually the same, 
because each one feature set can completely be derived from another. Our experiments 
also verify that both feature sets have approximately identical detection performance by 
using different classifiers. By using a fisher linear discriminant and logistic regression 
classifier, especially, we have obtained exactly same detection results. The detector of 
calibrated neighboring joint density containing the features is denoted by CC-absNJ. 

To demonstrate the effectiveness of a calibrated neighboring joint density-based approach, 
Figure II-2 (a) shows a JPEG cover image, Figure II-2(b) plots the neighboring joint 
density defined in (II-3), and Figure II-2(c) manifests the differential joint density, defined 
in equation (II-9). Figure II-2 (d) shows the JPEG steganogram produced by F5 algorithm, 
Figure II-2(e) is the neighboring joint density defined in (II-3), and Figure II-2(f) gives 
the differential joint density defined in equation (II-9). The original neighboring joint 
density from cover and the density from steganogram are different, as are the differential 
joint densities.  

Figure II-3 (a) shows a JPEG cover image and Figure II-3(d) presents the steganogram 
produced by using adaptive-embedding algorithm (Filler and Fridrich 2010). Original 
neighboring joint densities from the cover and from the steganogram are given in (b) and 
(e) respectively, and the differential densities are plotted in (c), and (f), respectively. The  
difference of the self-differential density between the cover and the steganogram is 
noticeable. 

Figure II-2(a) and Figure II-3(a) also demonstrate that different JPEG images have 
different neighboring joint densities (Figure II-2(b) and Figure II-3(b)), implying the 
importance of self-differential density for steganalysis.  
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(b) (c)(a) 

(e) (f) (d) 

  

 

 

Figure II-2. A demonstration of a JPEG cover image (a) and the F5 steganogram (d). Original neighboring 
joint densities are shown in (b) and (e), and the self-differential densities are given in (c), and (f), 
respectively. 

 

  

(b) (c)(a) 

(e) (f) (d) 

Figure II-3. A JPEG cover image (a) and the adaptive-embedding steganogram (d).  Original neighboring 
joint densities are shown in (b) and (e), and the self-differential densities are given in (c), and (f), 
respectively.  
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II-1-b. Experiment Design 

Materials 

The 5000 original color TIFF raw format digital images used in the experiments are 24-
bit, 640×480 pixels, lossless true color, never compressed. We cropped these original 
images into 256×256 pixels in order to eliminate the low complexity parts and converted 
the cropped images into JPEG format with the default quality, the same to pervious 
steganalysis experimental setup (Liu, Sung et al. 2006; Liu and Sung 2007; Liu, Sung, 
Chen and Xu 2008; Liu, Sung and Qiao 2009b; Liu, Sung et al. 2010). The following 
steganograms are generated with different hiding ratios, measured by relative payload, or 
the ratio of the number of DCT-coefficients modified to the total number of non-zero 
valued AC DCT-coefficients. 

F5  Westfeld (2001) proposed the algorithm F5 that withstands visual and statistical 
attacks, yet it still offers a large steganographic capacity. 

Steghide  Hetzl and Mutzel (2005) designed a graph-theoretic approach for information-
hiding based on the idea of exchanging rather than overwriting pixels. Their approach 
preserves first-order statistics, and the detection on the first order does not work. 

Model Based steganography without deblocking (MB1)  Sallee (2003) presented an 
information-theoretic method for performing steganography. Using the model-based 
methodology, an example steganography method is proposed for JPEG images which 
achieves a higher embedding efficiency and message capacity than previous methods, 
while remaining secure against first order statistical attacks.  

Model Based steganography with deblocking (MB2)  Based on model-based 
steganography, Sallee (2005) presented a method to defend against "blockiness" 
steganalysis attack. 

Adaptive steganography in JPEG images  In order to produce DCT-embedding-based 
adaptive steganography, 1000 BOSSRank cover images downloaded from (Web Boss) 
are converted into JPEG images first at the quality factor “75”. The adaptive steganograms 
are produced by using the adaptive DCT-embedding hiding tool (Filler and Fridrich 2010), 
and the parameter of hiding bits per non-zero-AC (bpac) is set from 0.1 to 0.35 with the 
step size of 0.05 bpac. 

Detectors and learning classifiers 

In our study, the following steganalysis detectors are compared, including: 1) 72-
dimensional absNJ, neighboring joint density-based JPEG steganalysis originally 
designed in the reference (Liu Sung and Qiao 2011a); 2) 144-dimensional CC-absNJ, 
calibrated neighboring joint density, consisting of 144 features, defined by (II-3), (II-6), 
(II-7), and (II-8), or by (II-3), (II-6), (II-9), and (II-10). We argue that both 144-
dimensional feature sets are actually identical in terms of the detection capability; 3) 548-
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Feature
dimensionality 

Detector  Reference  

CC-absNJ 144 {(II-3),(II-6),(II-7),(II-8)} or {(II-3),  (II-6), (II-9),  (II-10)} 
absNJ 72  (Liu Sung  and Qiao 2011a) 
CC-PEV 548 (Kodovsky and Fridrich 2009) 
PEV  274  (Penvy and Fridrich  2007)  
Markov  486  (Chen and Shi 2008)  
CC-C300 48600 (Kodovsky and Fridrich 2011) 
CF 7850 (Kodovsky, Fridrich and Holub 2 012) 
CC-JRM 22150 (Kodovsky and Fridrich 2012) 
CC-JRM+SRMQ1 35263 (Kodovsky and Fridrich 2012; Fridrich and  Kodovsky 2012)  

 

  

 
 

 
 

dimensional CC-PEV (Kodovsky and Fridrich 2009); 4) 274-dimensional PEV (Penvy 
and Fridrich 2007); 5) 486-dimensional Markov-process-based detector (Chen and Shi 
2008); 6) 48,600-dimensional rich model CC-C300, a high-dimensional rich model for  
JPEG steganalysis (Kodovsky and Fridrich 2011); 7) 7,850-dimensional compact rich 
model CF for JPEG steganalysis (Kodovsky, Fridrich and Holub 2012); 8) 22,510-
dimensional Cartesian calibrated JPEG domain rich model CC-JRM (Kodovsky and 
Fridrich 2012); and 9) a union of spatial domain rich model with the fixed quantization 
q=1c, 12,753-dimensional SRMQ1 (Fridrich and Kodovsky 2012), and 22,510-dimensioal 
CC-JRM, denoted by CC-JRM+SRMQ1, a total of 35,263 features  (Kodovsky and 
Fridrich 2012). Table II-1 lists these detectors and the feature dimensionality.  

Table II-1. Steganalysis detectors examined in our study 

Support Vector Machines (SVM) (Chang and Lin 2011; Vapnik 1998), Fisher’s Linear 
Discriminant (FLD) to minimize the errors in the least square sense (Heijden et al 2004), 
and an ensemble classifier that was used with rich models for steganalysis (Kodovsky, 
Fridrich and Holub 2012) are employed in our comparison study. It should be noted that 
the computational cost by SVM is too high for rich models due to the high dimensionality 
of the feature set, and rich model-based steganalysis detectors are not suitable with SVM. 
However, the low-dimensional detectors proposed in our study are easily utilized with 
SVM. 

To select SVM for the low-dimensional detectors, we compare the popular algorithms 
LibSVM (Chang and Lin 2011), SVM_light (Joachims 2002), the SVM algorithms 
implemented in PRtools (Heijden et al 2004), and five SVM learning algorithms in 
LIBLINEAR (Fan et al 2005). We compare these SVM algorithms with different 
parameters including linear, polynomial, and radial basis function (RBF) kernels. In our 
comparison, although the algorithms implemented in LIBLINEAR package are the fastest, 
the accuracy is the lowest LibSVM generally obtains the best detection accuracy. 
Therefore,we finally employed LibSVM with optimal kernel parameters after comparing 
different combinations of kernel parameters by grid search (Chang and Lin 2011).  

While we apply the ensemble classifier that was used in (Kodovsky, Fridrich and Holub 
2012), the optimized parameters are computed first, including the optimization of the sub-

28 



 
 

 

 

 

   

 

dimensionality and optimal base learning classifiers. By optimizing the parameters and 
applying optimized ensemble classifier to rich model-based detectors, the computational 
cost, is much higher than if using Fisher linear discriminant. 

We perform one hundred experiments for each feature set at each hiding ratio by using 
each classifier. In each experiment, 70% of the samples are randomly selected for training, 
and the other 30% samples are used for testing. The prediction outcomes on testing data 
can be divided into True Negative (TN), False Negative (FN), False Positive (FP), and 
True Positive (TP). Without losing a generality, our detection accuracy is calculated by 
0.5*TN/(TN+FP)+0.5*TP/(TP+FN). 

II-2. YASS STEGANALYSIS 

II-2-a. Algorithm design 

By searching all possible 88 candidate blocks in B-blocks, we extract the neighboring 
joint density of the DCT coefficients from all candidate blocks that are possibly used to 
carry hidden data and the 88 non-candidate block neighbors that are not sued for 
information hiding and then calculate the difference of the joint density values of the 
candidates and the non-candidate neighbors. Our algorithm of feature design to detect 
YASS steganogram is described as follows: 

Starting from the large B-block parameter T = 9, 

1.  Decode the JPEG image under scrutiny to spatial domain and divide it into non-
overlapping consecutive TT B-blocks; 

2.  In each  TT B-block, search all 88 blocks possibly used for information hiding, in 
a total of (T-7)2 candidate blocks. The set of all candidate blocks of the image under  
detection is denoted by CB. For each candidate block CB(i) (i=1,2, …, CN, CN is 
the number of all candidate blocks on the testing image); subtract 128 from each 
pixel value, then apply two-dimensional DCT transform, quantize the DCT 
coefficients by using the quantization matrix corresponding to QFa, and obtain the 
absolute DCT coefficient array. The neighboring joint density features on the intra-
block of CB(i), denoted by absNJ(i; x,y), is given by 

 8 7 7 8

 c i mn  x, ci 
m(n1)  y  ci  x, ci 

mn  y(m1)n 
   (II-11)

    absNJ (i; x, y)  0.5  m1 n1  m1 n1 

 56 56 
  
  

Where  ci
mn  is the DCT coefficient located at the mth row and the nth column in the  

candidate block CB(i);  = 1 if its arguments are satisfied; otherwise  = 0; x and y  
are integers.   
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3.  From all 88 blocks that are adjacent to the candidate block CB(i) in the  
horizontal/vertical direction but without any overlap to CB(i), the adjacent 88 
blocks that do not belong to CB are denoted by NC(i,j). Generally, non-candidate 
88 blocks must be across two adjacent TT B-blocks, such as when a TT B-block 
is not on the boundary or on the corner of an image under examination,  

(a)  if an 88 block candidate is located inside of the B-block without any overlap to the 
B-block boundary, it has four non-candidate neighbors, shown by Figure II-4(a); 

(b)  if an 88 block candidate overlaps at only one of the four boundary borders of the 
B-block, it has three non-candidate neighbors, shown by Figure II-4(b);  

(c)  if an 88 block candidate overlaps at two of the four boundary borders of the B-
block or is located at one of four corners of the B-block, it has two non-candidate 
neighbors, shown by Figure II-4(c). 

   (a) (b) (c) 

Figure II-4.  A candidate block is located in a B-block (dashed), and the non-candidate neighbors are across 
two B-blocks. 

4.  The neighboring joint density on the non-candidate neighboring block NC(i,j) is 
given by 

 8 7 7 8 
 c ij  x, c ij ij ij

mn m(n1)  y  cmn  x, c (m1)n  y
   (II-12)absNJ (i, j; x, y)  0.5  m1 n1  m1 n1 

 56 56  
 
  

Where  cij  is the DCT coefficient located at the mth row and the nth
mn  column in the 

non-candidate block NC(i,j).  = 1 if its arguments are satisfied; otherwise  = 0; 
x and y are integers.  

5.  The mean value of the differential neighboring joint density between candidate 
blocks and non-candidate blocks are given by   
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absNJ (i; x, y) absNJ (i, j; x, y) 

diff  absNJ (x, y)  i  (i, j )                                       (II-13)  
count(CB) count(NC) 

Where count (CB) gives the total number of candidate blocks, and count (NC) 
gives the total number of non-candidate blocks on the testing image.  

The features defined in equation (II-13) constitute the feature set to detect the 
YASS steganogram produced by large B-block size T. The values of x and y are 
set from (0,0), (0,1), (0, 2), (1, 0), ...to (2,2), in a total of 9 differential neighboring 
joint density features for a single value of B-block size T. 

6.  While T < 16, set T+1 to T, repeat 1 to 6. 

The final detector contains 63 differential features for all possible T parameters (T = 9, 
10, ... 15). 

Figure II-5 shows a cover and YASS steganograms produced with B-block size of 9, 11, 
and 13 on the left. The diff-absNJ features extracted from the cover and the steganograms 
are shown on the right, manifesting different patterns between the cover and different 
steganograms produced by different B-block size. 
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YASS steganogram (T=9) 



 
 

 

  

 

  

 

 
  

 
 

YASS steganogram (T=11) 

YASS steganogram (T=13) 

Figure II-5.  Different patterns  of  diff-absNJ features among cover image and YASS steganograms (QFh = 
QFa  = 75) with B-block parameter T=9, 11, and 13.   The cover and steganograms are shown on the left 
and the diff-absNJ features on the  right.  

II-2-b. Experimental design 

The original 1000 BOSSRank cover images downloaded from (Web Boss) are used for 
YASS embedding. We set QFh = QFa = 75 in production of the steganograms. 
Accordingly, we encode the 1000 BOSSRank cover images in JPEG format at the quality 
factor of 75 as cover images. To create YASS steganograms, QFh and QFa are set to the 
same quantization factor in order to avoid double JPEG compression in YASS 
steganograms. If QFh is not equal to QFa, the YASS steganograms could be detected by 
exposing the double JPEG compression. Double JPEG compression has been documented 
with very good detection performance (Chen and Hsu 2011; Liu Sung and Qiao 2011c; 
Liu et al 2013). Additionally, the big B-block size T is set from 9 to 15 respectively to 
produce the steganograms. 

To conduct a comparative study, we extract the diff-absNJ features (Liu 2011a)), and the 
zero-value density features in the reference (Li, Shi and Huang 2009). LibSVM and FLD 
classifiers are used for classification. In each experiment, 50% samples are randomly 
selected for training, and the other 50% samples are used for testing; 200 experiments are 
operated for each feature set at each B-block size by using each learning classifier for 
binary classification, and 200 experiments are conducted for each feature set by mixing 
covers and all YASS steganograms together for multiple-class classification. Our 
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approach and zero-value density -based detection are based on the exposure of potential 
candidate blocks for data hiding. Unlike zero-value density-based approach, our method 
does not assume the embedding position on the first few positions in the candidate blocks. 
By using an ensemble classifier and FLD, we also employ the union of CC-JRM and 
SRMQ1 (Kodovsky and Fridrich 2012; Fridrich and Kodovsky 2012), a 35263-
deminsional feature set to detect steganograms without exposing the candidate blocks that 
are used for embedding.  

II-3. SEAM-CARVED FORGERY DETECTION IN JPEG IMAGES 

II-3-a. Algorithm design by integrating calibrated neighboring joint density with spatial 
rich models 

In seam carving, finding the seam is completed with the path of minimum cost from one 
end of the image to another. While seam carving allows for removal of selected whole 
objects from photographs or removing/inserting some seams, the manipulation occurs in 
spatial domain–it directly modifies the pixel values in the spatial domain. In addition to 
altering the pixel values, the removal or insertion of seams also results in the change of 
some pixel positions in the original image and in destroying the original compression 
block structure, hence leaving the trace of the manipulation both in the spatial domain and 
in the transform domain. Based on these facts, we use calibrated neighboring joint density 
features that have been described previously to reveal the modification in the transform 
domain. To keep track of the modification in the spatial domain, we directly make use of 
a spatial domain rich model, recently designed for steganalysis (Fridrich and Kodovsky 
2012), to capture the modification of the statistical features. We surmise that the spatial 
domain rich model may be very effective in detecting the seam-carving-based 
manipulation in the spatial domain since seam carving directly removes/inserts seams in 
the spatial domain and changes the pixel values and positions. In addition to the 
comparison of the detection performance of the calibrated neighboring joint density in the 
DCT domain and spatial rich model based features in the spatial domain, we integrate 
these two types of feature sets together for the detection with the expectation of obtaining 
better detection accuracy. 

Figure II-6 shows an example to verify the modification of the joint density in DCT 
domain and the modification of the pixel values in grayscale format on the red, green, and 
blue channels. An untouched JPEG image and the forged JPEG image by seam carving 
are shown in (a) and (d), respectively. In the forgery, the image of the man at the center 
of the original photo has been removed. The neighboring joint densities in the DCT 
domain directly extracted from the untouched image and from the tampered image are 
given in (b) and (e), and the differential densities between original density and the 
calibrated density are given in (c), and (f), respectively. To reveal the modification in the 
spatial domain, Figure II-6(g) gives the difference of the grayscale values between the 
tampering and the untouched photo, Figure II-6(h). Figure II-6(i) and Figure II-6 (j) 
demonstrate the difference of the pixel values on red, green and blue channels, 
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respectively; the tampering has noticeably modified the pixel values. Some modifications 
go as high as 200, implying that the spatial domain-based feature set could be very 
effective for the detection. 

 
 

 
 

 

 
 

 
 

 
  

 

(a) 
(b) (c) 

(d) 
(e) (f) 

(g) (h) 

(i) (j) 

Figure II-6. Untouched JPEG image (a) and the forged image (d). Original neighboring joint densities in 
DCT domain are shown in (b) and (e), and the differential densities between original density and calibrated 
density are given in (c), and (f), respectively. The differences of the pixel values between the tampered (d) 
and untouched (a) are shown in (g) on the grayscale, (h) on the red channel, (i) on the green channel, and (j) 
on the blue channel. 
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II-3-b. Experimental design 

We adopted 500 JPEG images with a standard quantization table of the quality ‘75’. The  
seam carving forgery tool at the website http://code.google.com/p/seam-carving-gui/ is 
used to modify JPEG images. The small objects are removed from the images at first in  
the spatial domain by using the tool, and the  doctored images are stored in JPEG at the 
same quality of the untouched image.  This avoids double JPEG compression for possible 
exposure by the detection of double JPEG compression. Figure II-7 shows several 
untouched images (on the left) and tampered images (on the right) by seam-carving in our 
experiment.  

While data embedding in JPEG-based steganography directly modifies quantized DCT 
coefficients in transform domain, seam carving inserts or removes seams with minimum 
cost from one end of the image and modifies the pixel values directly in the spatial domain. 
The modification generally destructs original JPEG compression block, resulting in the 
change of the joint density in DCT domain. To detect seam carved forgery in JPEG 
images, in addition to the approach of calibrated neighboring joint density features in DCT 
domain, we also make use of SRMQ1, a detector of spatial domain rich models originally 
designed to detect spatial-domain-based steganography (Fridrich and Kodovsky 2012). 
We surmise that SRMQ1 may capture the statistical modification in spatial domain that 
was caused by seam-carving; therefore, we integrate CC-absNJ with SRMQ1 to detect 
seam carved tampering in JPEG images. Meanwhile, we conjecture that most steganalysis 
detectors are also effective in detecting this manipulation.  
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Figure II-7. Image samples in our experiments. The untouched is shown on the left and modified on the 
right. The objects highlighted by red circles on the left were removed by seam carving. 

Due to the fact that for this experiment our forgery database is relatively small, we 
significantly increase the number of experiments for classification. We perform the 
experiment for each detector 2000 times with fisher linear discriminant and 1000 times 
with ensemble classifier. Generally, the computational cost by applying ensemble 
classifier to the detectors of rich models is much higher than fisher linear discriminant. In 
each case, 50% untouched images and 50% doctored images are randomly selected for 
training, and the remainders are used for testing. 
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II-4. Detection of JPEG Double Compression  

II-4-a. Algorithm design 

GGD, MGGD and JPEG-double compression 

Generalized Gaussian distribution (GGD) is widely used in modeling probability density 
function (PDF) of a multimedia signal. It is very often applied to transform coefficients 
such as discrete cosine transform (DCT) or wavelet ones. Experiments show that 
adaptively varying two parameters of the generalized Gaussian distribution (GGD) (Ohm 
2004; Sharifi and Leon-Garcia 1995) can achieve a good probability distribution function 
(PDF) approximation, for the marginal density of transform coefficients. The GGD model 
is given by 

(x; ,  )  exp | x | /    (II-14)
2(1/  ) 

Where Г (·) is the Gamma function, scale parameter α models the width of the PDF peak, 
and shape parameter β models the shape of the distribution. 

An 8×8 DCT block has 64 frequency coefficients, our study shows that the marginal 
density of DCT coefficients at each specific frequency approximately follows the GGD 
distribution and some  manipulation, for instance, double JPEG compression, changes the 
density. Figure II-8 demonstrates a singly compressed JPEG image with quality factor 
‘75’ (a), doubly compressed JPEG images with the first compression quality factor ‘55’ 
(b) and ‘90’ (c) respectively, followed by the second compression quality factor ‘75’, and 
the marginal densities at frequency coordinates (2,1), (2,2), and (1,3).  

 
 

 
 

 
 (a) (b) (c) 

(d) (e) (f) 
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Figure II-8. Marginal densities of the singly compressed JPEG image (left) and the double compressions 
(middle and right). X-axis shows the values of the DCT coefficients and y-axis shows the occurrences. 

Compared to the marginal density of the single compression, Figure II-8(d), (g), and (j), 
the modification caused by the double compression from the low quality factor ‘55’, 
shown in Figure II-8(e), (h), and (k), is noticeable. However, the modification caused by 
the double compression from the high quality factor ‘90’, Figure II-8(f), (i), and (l), is not 
big. 

Although there does not appear to exist a generally agreed upon multivariate extension of 
the univariate generalized Gaussian distribution, some researchers define a parametric 
multivariate generalized Gaussian distribution (MGGD) model that closely fits the actual 
distribution of wavelet coefficients in clean natural images, exploit the dependency 
between the estimated wavelet coefficients and their neighbors or other coefficients in 
different subbands based on the extended GGD model, and achieve good image denoising 
(Cho and Bui 2005). The MDDG model is shown as follows: 

 
t 1   x    x     

p(x)   exp 
x                                                        (II-15) 

       
Where γ indicates a normalized constant defined by α and β, ∑X is the covariance matrix 
and µ is the expectation vector. 

To exploit the dependency between the compressed DCT coefficients and their neighbors, 
we study the neighboring joint density of the DCT coefficients, and postulate that some 
manipulation such as JPEG double compression will modify the neighboring joint density, 
shown by Figure II-9. Let the left (or upper) adjacent DCT coefficient be denoted by 
random vector X1 and the right (or lower) adjacent DCT coefficient be denoted by random 
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vector X2; let X = (X1, X2). The DCT neighboring joint density will be modified by the 
manipulation, and the change hence leaves a track for the manipulation. Figure II-9(a), 
(b), and (c) show the neighboring joint density of the singly compressed JPEG image of 
Figure II-8(a), of the doubly compressed JPEG image of Figure II-8(b), and of the doubly 
compressed JPEG image of Figure II-8(c). The differences of the neighboring joint density 
between the double compression and the single compression are given by Figure II-8(d) 
and (e). Figure II-9 verifies our postulation that the neighboring joint density has been 
modified by the double compression. 

  

  
 

(a) (b) (c) 

(d) (e) 

Figure II-9. Neighboring joint densities of the DCT arrays of the singly compressed JPEG 
image in Figure II-8(a) and the doubly compressed JPEG images in Figure II-8(b) and 
Figure II-8(c) and the differences. 

Feature Design 

Based on the statistical property and the observation of the modification caused by JPEG 
double compression, two types of features, marginal density and  neighboring joint 
density, are extracted and merged together as our detector. The details of feature mining 
is described as follows. 

Marginal Density Features 

Generally the manipulation to JPEG images will modify the DCT coefficients and change 
the marginal density of DCT coefficients at each specific frequency coordinate. In JPEG 
compression quantization table, the large values are aggregated in right bottom of the 
high-frequency coordinates and producing most zero-valued DCT coefficients after 
quantization at high frequency components. In other words, most non-zero DCT 
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coefficients are aggregated at low-frequency coordinates and the modification mostly 
occurs at low frequency subband, we design the following marginal density features at the 
low frequency of the absolute DCT coefficients.  

An 8×8 DCT block consists of 64 frequency coefficients, with the frequency coordinates 
from (1, 1) to (8, 8), corresponding to the upper-left low frequency subband to the right-
bottom high frequency subband. Let F denote the DCT coefficient array of a JPEG image, 
which consists of M×N blocks, Fij  (i =1, 2, …, M; j = 1, 2, …, N). We select the low 
frequency coordinates 

S = {(2,1), (1, 2), (1, 3), (2, 2), (3,1), (1,4), (2,3), (3,2), (4,1)}.  (II-16) 

The feature set consists of the following probability values 

 1
X    hkl (0), hkl (1), hkl (2), h

MN kl (3), hkl (4) (k, l)  S   , (II-17)
  

where hkl(m) denotes the histogram of the absolute DCT coefficient at frequency 
coordinate (k,l) with the value m (m=0, 1, 2, 3, 4). Therefore, there are total 45 features in 
the marginal density set. 

Neighboring Joint Density Features 

The extraction of neighboring joint density features has been stated in the first part of 
Methods for JPEG Steganalysis. 

In detecting JPEG double compression, we integrate marginal density features and 
neighboring joint density features together. 

II-4-b. Experimental design 

The original 5150 TIFF raw format digital images are obtained in 24-bit lossless true color 
and never compressed format. The single compressed images are generated by applying 
JPEG compression to these uncompressed images with different quality factors from 40, 
45, 50, …, 90, the step size 5. The double JPEG compression is implemented by 
uncompressing the single compressed images and then compressed in JPEG format with 
different quality factors from 40, 45, 50, 55, …, 90, the step size is 5. The first and second 
JPEG compression quality factors are recorded as “Q1” and “Q2”, respectively. 

In our previous work on image and audio steganalysis, we have demonstrated that the 
image complexity is a significant parameter for the evaluation of steganalysis performance 
(Liu et al 2006; Liu and Sung 2007; Liu et al 2008a, 2008b; Liu et al. 2009a, 2009b). So 
far no work has been published to illustrate the relationship between detection 
performance on double JPEG compression and the image complexity, which will be 
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addressed in this study. Following our previous work in steganalysis, the shape parameter 
β of GGD of the DCT coefficients is used to measure the image complexity. All images 
are classified as five groups: 

(a) β < 0.3, low image complexity 
(b) 0.3 ≤ β < 0.4, low-middle image complexity 
(c) 0.4 ≤ β < 0.5, middle image complexity 
(d) 0.5 ≤ β <0.6, middle-high image complexity 
(e) 0.6 ≤ β, high image complexity 

We apply support vector machines (SVM) with RBF kernels (Vapnik 1998) to the feature 
sets extracted from these five groups for identification of double JPEG compression. 
Thirty experiments are run for testing each type of feature set in each group. Average 
testing accuracy is compared. 

II-5 Identification of Smartphone Image Source and Manipulation 

II-5-a. Algorithm design 

Our detection method is the same to that used in detecting JPEG double compression. 

II-5-b. Experimental design 

We adopt five different types of smartphones from four manufacturers to capture images. 
Those images were taken randomly without any particular requirement. The information 
on these smartphone images are listed in Table II-2 and some image samples are shown 
in Figure II-10. 

Table II-2. Original images obtained by smartphones 
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Smartphone brand  # Images  Format  

HTC G3 149 JPEG  
HTC HD2 114 JPEG 

Huawei U8150 141 JPEG 
Iphone 3  70  JPEG  

Nokia E71 125 JPEG 



 
 

 

  

 

 

  
 

 

 

 

 

 
 

 

 

 

 

Figure II-10. A few sample images used in our experiment. 

All these original images are manipulated by using the following six types of operations:  

I. All original images are trans-coded to the JPEG format with the standard quantization 
table at quality factor of ‘75’. In other words, these images are uncompressed first and 
then recompressed at quality factor of ‘75’; 

II. The first four rows and first four columns are cut from original images in spatial 
domain and the remaining pixel values are trans-coded to the JPEG format with the 
standard quantization table at quality factor of ‘75’. In other words, these images are 
uncompressed first, followed by cropping, and then recompressed at standard quality 
factor of ‘75’; 

III. The first four rows and first four columns are cut from the original images, the 
remaining data are resized by multiplication with the scale factors of 0.7 and 2, 
respectively in spatial domain, and then trans-coded to the JPEG format with standard 
quantization table at quality factor of ‘75’; 

IV. All original images are resized by multiplication of original image size with the scale 
factors of 0.3, 0.5, 0.8, 1.5, and 2, respectively in spatial domain, and trans-coded to 
the JPEG format with standard quantization table at quality factor of ‘75’; 

V. The original images are trans-coded to the images with standard quantization table at 
quality of ‘75’, cropped to remove the first four rows and first four columns in spatial 
domain, then resized by multiplication with the scale factors of 0.5 and 1.5, 
respectively in spatial domain, and finally trans-coded to JPEG format at quality of 
‘75’; 

VI. The original images are trans-coded to the images with standard quantization table at 
quality of ‘75’, and resized by multiplication with the scale factors of 0.5 and 1.5, 
respectively in spatial domain, and then trans-coded to JPEG format at quality of ‘75’. 

To sum up, these six types of operations include different scale parameters, which result 
in 13 series of operations as shown in the second column of Table II-3. These 13 
operations are applied to each type of the total of 599 smartphone images and thus total 
of 7,787 processed images are generated. Since each of the operations are applied to the 
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five different smartphone brands, 65 class labels are generated in our experiments as listed 
in Table II-3. 

Table II-3. The 65 class labels in our experiments 

Class label 
Type Scale factor 

HTC G3 HTC HD2 
Huawei 
U8150 

Iphone 3 Nokia E71 

I / 1 14 27 40 53 

II / 2 15 28 41 54 

III 
0.7 3 16 29 42 55 

2 4 17 30 43 56 
1.5 5 18 31 44 57 
2 6 19 32 45 58 

IV 0.3 7 20 33 46 59 
0.5 8 21 34 47 60 
0.8 9 22 35 48 61 

V 
0.5 10 23 36 49 62 

1.5 11 24 37 50 63 

VI 
0.5 12 25 38 51 64 

1.5 13 26 39 52 65 

II-6. Detection of MPEG Double Compression 

II-6-a. Algorithm Design 

In order to reveal the impact of the quantization and de-quantization process, we follow a 
double MPEG-2 compression process, analyze the difference between distributions of 
original DCT coefficients and reconstructed DCT coefficient, and finally explore the trace 
left by double compression. 

Distribution of reconstructed DCT coefficients 

After a test sequence compressed by a MEPG-2 encoder, two DCT terms in the DCT 
coefficient matrix, i.e., DCT (1, 2) and DCT (2, 1), are selected to create the corresponding 
statistical model of reconstructed DCT coefficients. At the remaining frequency terms, 
some may be influenced by the rounding error in de-quantization process, and the others 
do not have sufficient statistical quantity of non-zero quantized DCT coefficients due to 
large quantization step sizes. As a result, it is difficult to analyze and obtain robust 
statistical features from these frequency terms. Using the absolute value of DCT 
coefficients at those two DCT terms, Figure II-11(a) and (b) respectively illustrate the 
histogram of original non-zero DCT coefficients, HO(n), and the histogram of 
reconstructed non-zero DCT coefficients, HR(n). 
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Figure II-11.  Histograms  of non-zero DCT coefficients at DCT (1, 2) and DCT (2, 1)  in the intra  frames: 
(a) HO(n),  histogram of original DCT coefficients; (b) HR(n),  histogram of reconstructed DCT coefficients.  

Comparing these two histograms, HO(n) approximately follows the Laplacian distribution 
as traditionally described in the references (Reininger and Gibson 1983; Smooth and 
Lowe 1996), and after MPEG-2 compression and decompression process, some changes 
can be easily found in HR(n). Three significant changes can be summarized as follows: 

Discontinuity, because the values of de-quantized DCT coefficients are only multiples of 
quantization scale factors, and some quantization scale factors, such as 9, 11, and 13, are 
not present in TM5, the number of some DCT coefficients in the HR(n) are close to zero. 

Peak Offsetting, in the interval (0, qB] of HR(n), the maximum number of non-zero DCT 
coefficients does not occur at n=1 like Figure II-11(a), but at n=qB. Because the number 
of reconstructed DCT coefficients is determined by two factors: the number of original 
DCT coefficients in the specific quantization interval and the probability distribution of 
quantization scale factors in the whole stream. Since the number of blocks quantized with 
quantization scale factor qB is much greater than that with other ones, the maximum value 
of HR(n) is shifted to the right. 

Approximate Periodicity, the distribution of non-zero reconstructed DCT coefficients 
presents an approximate periodic distribution. Because most of quantization scale factors 
focus on the qB, HR(m) is larger than its neighbor values when the coefficient value m is 
the multiple of qB. This feature is similar to the distribution of de-quantized DCT 
coefficients in JPEG images. 

When reconstructed DCT coefficients from the primary compression, as input DCT 
coefficients, are entered into another MPEG-2 encoder, above statistic characteristics will 
lead to some artifacts into the distribution of doubly quantized DCT coefficients. 

Artifacts in the distribution of doubly quantized DCT coefficients 
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In the decoding process, the quantization scale factor of each macro block can be read 
from video streams, so all macro blocks in the same type of frame can be divided into 
some subsets according to their quantization scale factors. In each subset, we can construct 
the distribution of quantized DCT coefficients at DCT (1, 2) and DCT (2, 1). Throughout 
this paper, we only consider the absolute value of DCT coefficients. Finally a set of 
distribution curves, H(k, q, n), with different types of frame k and quantization scale factor 
q will be obtained. This process can be described as the diagram in Figure II-12. 

Figure II-12. The construction procedure of MEPG-2 compression detection model 

If the choose of quantization scale factor of each macroblock is assumed to be independent  
of the DCT coefficients of that macroblock, the DCT distribution of each subset is similar  
to the input distribution. In the secondary compression, since the distribution of input DCT 
coefficients has been changed by the primary compression, the distribution of quantized 
DCT coefficients H(k, q, n) presents some different properties to that of original  
compression, which can be utilized to determine the existence of double compression. In 
the following analysis, DCT coefficients of I frames are utilized to illustrate the abnormal 
phenomenon, and H(k=I, q, n) is written as H(q, n) for concision. In Figure II-13, the test 
sequence is firstly compressed by TM5 at 6 Mbps, then decoded and doubly compressed 
by a MPEG-2 encoder under different conditions. To concisely depict artifacts of double 
compression, we only present H(q, n) when q is even and not bigger than 8, and if the 
number of quantization scale factors equaling to q is zero, the curve H(q, n) will not be 
plotted. Fig. 5(a) indicates that the distribution curves of singly quantized DCT 
coefficients H6(q, n) can be approximately considered as a set of concave functions which 
are monotone decreasing in the interval [1, 6]. In the following interval, the curves of 
H6(q, n) maybe slightly fluctuate, because the number of large quantized DCT coefficients  
is relatively small, and easily affected by video content and other factors. 
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Figure II-13.  Examples of double compression artifacts in histograms of quantized DCT coefficients under 
different conditions. (a)  H6(q, n), singly compressed by TM5 at the constant bit-rate 6 Mbps; (b) H6-7(q, n),  
doubly compressed by TM5 at the constant bit-rate 6 Mbps followed by 7 Mbps; (c) H6-5(q, n), doubly 
compressed  by TM5 at the constant bit-rate 6 Mbps followed by 5 Mbps;  (d) H6-6 (q, n), firstly  compressed  
by TM5 at the  constant bit-rate 6 Mbps and  doubly compressed by Adobe Premiere 2.0 at the constant bit-
rate 6 Mbps; (e) H6-7(P, q, n), the double compression  artifacts in the histograms of quantized DCT 
coefficients in P frames which are doubly compressed by TM5 at the constant bit-rate 6 Mbps followed by  
7 Mbps.  

Notes: HX(q, n) and HX-Y(q, n) denote distribution curves of quantized DCT coefficients of single and double 
compression, respectively, and X, Y denote the corresponding target output bit-rates (Mbps). 

In Figure II-13(b), the MPEG-2 test sequence is re-compressed by TM5 at 7 Mbps, and 
its distribution of doubly quantized DCT coefficients is shown as H6-7(q, n) in which an 
obvious convex pattern appears at the H6-7(2, 2). As mentioned above that the input DCT 
distribution of each subset in the secondary compression is similar to the entire 
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distribution of input DCT coefficients which have been influenced by the primary 
compression, after the second quantization process, a convex pattern will arise at H6-7 (2, 
n) because of the effect of Peak Offsetting, when the quantization scale factor of the  
secondary compression q=2 is much smaller than  qB of the primary compression. On the 
other hand, in the interval [3, 6], part of values of H6-7(q, n) also do not strictly abide by a 
monotonic decline function. When the quantization scale factor q of the secondary 
compression is not equal to qB of the primary compression, the effects of Discontinuity  
and Approximate Periodicity will lead to some convex patterns in the doubly quantized 
DCT distribution. However, these artifacts do not show obvious periodicities, because  
H(q, n) decays very quickly. 

In Figure II-13(c), the decoded test sequence is doubly encoded by TM5 at 5 Mbps, 
obtaining a set of histograms H6-5(q, n). Because the target output bit-rate of the secondary 
compression is smaller than that of the primary compression, the average value of 
quantization scale factors increases (as shown in Figure II-159), and some small 
quantization scale factors will disappear, such as q=2, but some convex patterns caused 
by double compression can also be detected in the other curves, such as H6-5(4, n). 

In Figure II-13(d), the decoded test sequence is doubly encoded by Adobe Premiere 2.0 
at 6 Mbps. Although the test video is doubly compressed at the same target output bit-
rate, quantization scale factors in the secondary compression are independent of these in 
the primary compression. We can also detect convex patterns in the distribution curves of 
quantized DCT coefficients to verify the existence of double compression, such as H6-6(2, 
3), H6-6(4, 2), and so on. 

To sum up, in the set of distribution curves of quantized DCT coefficients in intra frames, 
the convex pattern can be viewed as a distinctive feature of the double MPEG compression 
under different output bit-rate conditions. Meanwhile, the statistic result also shows that 
those features can be observed in the inter frames (P frames or B frames), depicted in 
Figure II-13(e). As a result, we can design an effective double MPEG compression 
detection algorithm based on convex patterns. 

DOUBLE MPEG-2 COMPRESSION DETECTION SCHEME 

Based on the above statistical analysis, a new detection scheme is proposed for double 
MPEG-2 compression. Some features will be extracted from distributions of quantized 
DCT coefficients, and utilized to build a double MPEG-2 compression detector combined 
with a support vector machine (SVM) classifier. 

When a MPEG-2 video stream is input into our detector, each GOP are defined as a 
sample. All DCT coefficient blocks in the same type of frames are firstly divided into 
some subsets according to quantization scale factors. Then in each subset, quantized DCT 
coefficients at two special DCT terms, DCT (1, 2) and DCT (2, 1), are assembled to 
construct a set of histogram curves H(k, q, n), where k, q, and n are the type of frame, the 
quantization scale factor, and the value of quantized DCT coefficients, respectively. In 
order to calculate the convex pattern, a detection function T(k, q) is defined as (II-18) for 
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every curve H(k, q, n). 

T k( ,  q  )   
N 

  n  t (k , q , n);  (II-18) 
n1 

 H k( ,  q ,  n   1)   H k( , q , n  1)  
t k( ,  q ,  n  )   max   0,  1    .  (II-19)

 2  H k( , , )  q n  

Where αn are a set of weighting factors to reflect the importance of the convex pattern at 
different positions. Since quantized DCT coefficients concentrate in a small range (as  
shown in Figure II-13), N is set to 6 in our experiments. To illustrate the effectiveness of 
our extracted features, two standard test sequences are doubly compressed by TM5 with 
target output bit-rate 6 Mbps followed by 7 Mbps, and a feature vector consisting of T(I, 
2), T(I, 4), and T(I, 6) is extracted to construct a 3D scatter chart, as shown in Figure II-
14. In these two scatter charts, most samples of originally compressed streams are close 
to zero, and the separate clustering for the  two cases is clear which makes classification 
possible. 
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Figure II-14. Scatter charts of feature vectors (T(I, 2), T(I, 4), and T(I, 6)) where circles and stars denote 
single compression and double compression, respectively: (a) ‘waterfall’ video sequence; (b) ‘galleon’ 
video sequence 
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Figure II-15. Histograms of quantization scale factors at different output bit-rates: (a) 4 Mbps; (b) 6 
Mbps; (c) 8 Mbps. 

The higher the target output bit rate is, the smaller the quantization scale factor tends to 
be, as show in Figure II-15. In order to approximately indicate the relationship between 
the quantization scale factor and the target output bit rate, all standard video sequences 
are originally compressed by TM5 at 4 Mbps, 6 Mbps, and 8 Mbps, respectively, and 
quantization scale factors of all video sequences at a certain constant output bit rate are 
assembled to construct the histogram. At low target output bit-rate, the percentage of small 
quantization scale factor is too small to stably and reliably present the convex pattern. To 
obtain a robust and effective scheme, the feature vector V will be constructed as follows. 

T (k , q), q  2, 3, 4, 5, 6, 7,8; k  {I , P , B} , if BR  6Mbps 


V  T (k , q), q  3, 4, 5, 6, 7,8,10; k  {I , P , B} , if 4Mbps  BR  6Mbps  (II-20) 

T (k , q), q   
 4, 5, 6, 7,8,10,12; k  {I , P , B} , if BR  4Mbps 

 

In each type of frame, seven quantized DCT histograms are used to extract features and 
the total dimension of feature vector V is 21 (7×3). Finally a widely used support vector 
machine tool, LIBSVM package (Chang and Lin 2011) is used to train or test classifiers. 
A radial basis function (RBF) is chosen as the kernel function and a grid search is 
performed to select the best parameters for the kernel. Each sample will be labeled by the 
classifier as being originally MPEG compressed or being doubly MPEG compressed. 
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After all samples in the testing video clips have been labeled, we count the number of 
samples classified as being doubly MPEG compressed. If the percentage of doubly MPEG 
compressed samples is larger than a threshold Tp, the current video clip will be classified 
as being doubly MPEG compressed. 

II-6-b. Experimental design 

Three sets of experiments are presented to show the validity and applicability of our 
proposed algorithm for detecting double compression. Four MPEG-2 encoders are 
introduced into our test system, including Test Model 5, the default MPEG-2 encoder in 
Adobe Premiere 2.0 (Web Adobe Premiere Pro), Sony HDR-XR500E, and Canon FS10E. 
The first two are MPEG-2 video coding software, and the latter two are hand-held digital 
video cameras. We select some different combinations of these MPEG-2 encoders to 
simulate the double compression process. The detection performance of the identification 
algorithm is measured in terms of recall and precision which are defined as follows. 

C
Precision  

C F  (II-21) 
C

Recall  
C M                                                                                (II-22)  

Where C represents the number of correctly detections of doubly MPEG-2 compressed 
videos, F denotes the number of false alarms, and M denotes the number of misses. 

In our double MPEG-2 compression detector, according to a large number of experimental 
results, the default weighting parameters αn in the detection function  T(k, q) are 

  0.24,empirically set as: 1 2  0.24,3  0.24,   0.1,  0.1,  0.08  4 5 6 . Each GOP 
of video clips is defined as a sample, and 21 features are extracted from each sample for 
training or testing. In all experiments, the ratio of training samples to test samples is 1:1, 
and the threshold Tp is set as 0.5 with a simple majority voting rule.  

a)  Double MPEG-2 compression with the same MPEG-2 encoder  

In this experiment, the primary and secondary compression process are implemented with 
the same video coding software, Test Model 5 (abbr. TM5) or the default MPEG-2 
encoder in Adobe Premiere 2.0 (abbr. Premiere). The target output bit-rate of the primary 
compression is set as 6 Mbps, while that of the secondary compression varies from 4 Mbps 
to 8 Mbps in steps of 1 Mbps except 6 Mbps. In the practical video application, these three 
bit rates (8 Mbps, 6 Mbps, and 4 Mbps) are usually utilized to generate the highest, the 
standard, and the worst video quality for the standard resolution format, respectively. We 
establish a video sequence dataset that consists of 50 test sequences, including 20 standard 
test sequences (220 frames each sequence) which come from Video Quality Experts 
Group (VQEG) (Web VQEG), and the other video clips (300 frames each clip) come from 
high definition DVD. The contents and motion complexity of the test sequences vary in a 
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large range. Some main parameters in these two encoders are described as Table II-4, and 
the other parameters can be set as default values. 

Table II-4.  Predominant Parameters in Two MPEG-2 Software Encoders 

Parameters Premiere Setting TM5 Setting 
TV standard PAL(720×576) PAL(720×576) 
Frame Rate(f/s) 25 25 
Frame Number 220/300 220/300 
Pixel Aspect Ratio 4:3 4:3 
Profile Main Main 
Level Main Main 
Bit-Rate(Mbps) 4/5/6/7/8 4/5/6/7/8 
GOP Setting M=3, N=12 M=3, N=12 
VBV Buffer Size(kbits) 112×16 112×16 

b) Double MPEG-2 compression with different video encoders 

In this experiment, two DVs (digital video camcorders), Sony HDR-XR500E and Canon 
FS10E, are utilized to obtain the original MPEG-2 videos. We use each camcorder to 
record 50 nature video clips with length of 300 frames in our campus. In each test group, 
50 nature image sequences are firstly encoded into MPEG-2 compressed files by the built-
in encoder in the DV. These original compressed streams are input into PC, decoded and 
re-coded into 50 double compressed streams by the MPEG-2 video coding software --
Adobe Premiere Pro 2.0 or TM5. Finally 200 test streams (100 single compressed streams 
and 100 double compressed streams) will be put into our detector to test its performance. 

In the parameter settings, the most important parameters in DVs are resolution and target 
output bit-rate. The standard definition video format is selected as our encoding mode, 
whose resolution is 720×576 and output bit-rate is 6 Mbps. The other parameters just only 
affect the subjective effects of video resources, but have less impact on the statistical 
characteristics of DCT coefficient distribution, and we initial them as default values in the 
DVs. In the MPEG-2 software coders, all parameters are set the same as the MPEG-2 
encoders in Section V.A, as shown in Table 1. We only adjust the target output bit-rate of 
software encoders to create new video files with different quality to test the adaptability 
of our detection scheme. 

c) Double compression with frame tampering operation 

Frame tampering is one of the common video forgery operations, which can change the 
video content and confuse the viewers by removing some special frames in the video 
resources, such as some surveillance videos. In this experiment, 50 original compressed 
videos recorded by Sony HDR-XR500E at 6 Mbps are decoded into an image sequences, 
and the first three images are removed to simulate the frame tampering operation. Finally 
these doctored sequences are re-coded at different target output bit-rates by TM5, and 100 
test streams (50 singly compressed streams and 50 doubly compressed streams) will be 
put into our detector to verify its robustness.  
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II-7 MP3 Audio Steganalysis 

II-7-a. Algorithm design 

In MP3, each frame consists of two granules, and each granule represents 576 16-bit PCM 
samples in a time sequence. Through compression, each frame is first divided into 32 
adjacent frequency subbands and then converted into 576 finer subbands in the MDCT 
domain. From observations, we notice that the information-hiding behavior modifies most 
of the quantized MDCT coefficients in one frame at the same time with the exception of 
the coefficients with small absolute values, indicating that the intra-frame distribution is 
preserved. On the other hand, the inter-frame pattern is altered across adjacent frames. 
Based on this analysis, we designed inter-frame feature sets by utilizing second-order 
derivative-based spectrum analysis. 

Statistical Model and Signal Complexity 

In image processing, several statistical models (Do and Vetterli 2002; Huang and 
Mumford 1999; Sharifi and Leon-Garcia 1995; Srivastava et al 2003; Winkler 1996) were 
introduced to illustrate the distribution of the intensity values of pixels, such as Markov 
random field models (MRFs), Gaussian mixture models (GMM), and generalized 
Gaussian density (GGD) models in transform domains. Experiments show that a good 
probability distribution function (PDF) approximation for the marginal density of 
coefficients at a particular subband produced by various types of wavelet transforms may 
be achieved by adaptively varying parameters of the GGD (Do and Vetterli 2002; Huang 
and Mumford 1999; Sharifi and Leon-Garcia 1995; Srivastava et al 2003; Wouwer et al 
1999). The GGD model contains the Gaussian and Laplacian PDFs as special cases, using 
  = 2 and 1, respectively. 

For MP3 digital audio, the GGD model also provides a faithful approximation of the  
distribution of quantized MDCT coefficients which varies with compression ratio and 
signal complexity. Therefore, as a useful measure of signal complexity, the shape 
parameter of the GGD becomes another important evaluation factor, in addition to 
embedding strength, for MP3 steganalysis. Figure II-16 illustrates some signal samples 
with different values of complexity measurement  . At the same embedding strength, we 
surmise that the signals with lower complexity are easier to be steganalyzed, but the 
steganalysis of the audio streams in high complexity is much harder, because the features 
become less discriminable in more complex signals. 
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Figure II-16. MP3 audio signal samples with different values of signal complexity, β. 

For long window, there are 576 MDCT coefficients in one frame. For short window, three 
consecutive groups of 192 coefficients are combined into one frame. For an audio signal 
with N frames, we define the quantized MDCT coefficients as a matrix: 

 ix 0,0  ix 0,575 
 

IX                                                                               (II-23) 
 ix  ix 
 N 1,0 N 1,575  

In matrix IX, each row, denoted by MDCT_F, contains all quantized MDCT coefficients 
in one frame, and each column, denoted by MDCT_B, includes all quantized MDCT 
coefficients in one subband. 

MDC _ T Ft  ixt ,0  ixt ,i  ixt ,575   (II-24) 

MDC _ T B
T

i  ix0,i  ixt ,i  ixN 1,i   (II-25) 

The GGD model of quantized MDCT coefficients of one MP3 audio is depicted in the 
following equation: 


 p i( ;x   ,  ) 



 e( /ix  )                                                                      (II-26)  
2(1/   ) 


 z = et zt  1dt, z  0  (II-27)

0 

where  z  is the Gamma function and α models the width of the PDF peak (standard 

deviation), while   is inversely proportional to the decreasing rate of the peak. 
Sometimes  is referred to as the scale parameter, and    as the shape parameter.  
Generally, with the same compression ratio,  the signal with complex variation has a high 
shape parameter of the GGD in the compression domain. 
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Moment Statistics of GGD Shape Parameter 

MP3Stego embeds data into MP3 audio by randomly modifying the length of the data 
segment in frame headers. This information-hiding behavior increases the step-size of the 
quantization, resulting in a slight degradation of the quality of the audio. Across spectra, 
the absolute values of quantized MDCT coefficients decrease in some randomly selected 
frames. For selected frames, the magnitudes of all MDCT coefficients are decreased 
simultaneously.  

Based on spectrum distribution analysis, we hypothesized that information-hiding 
behavior alters the continuity of the distributions of adjacent frames. Therefore, we 
designed a moment statistical analysis method on the shape parameter of GGD on inter-
frame. The GGD distribution of an individual frame is modeled as: 


p i( x

 
t ( ix / ) t

t i, t

t i, ; t , t )  e
2 t (1/  t )  (II-28) 

  t  0,1, 2,..., N 1;  i  0,1, 2,...,575 

where t is the frame index and  t  and t  are the scale parameter and shape parameter of 

the tth frame, respectively. Four moment statistical features are extracted from the 
spectrum of the shape parameter of the GGD. The mean value, standard deviation, 
skewness, and kurtosis are denoted by M  ,  , SK  and KU  , and calculated by the 

following equations: 


N 1 

t 

M  
t0                                                                                                    (II-29)  

N 

1 N 1

    ( M )2
 t   (II-30)

N t0 

1
N 1

 ( M )3

n t 

SK t0
  3                                                                               (II-31)  

 1
N 1 2

2  
 (t M  ) 
 n t0  

1
N 1

( 4
t M  )

n 
KU t0

  3  (II-32)
 1 

2 


N 1  

 (t M  )2 


 n t0  
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Frequency-Based Subband Moment Statistics 

In image processing, second-order derivatives are widely employed for detecting isolated 
points, edges, etc. To our knowledge, most audio steganography systems modify the bits 
of audio that also alter the pattern of second-order derivatives. Since MP3Stego randomly 
modifies the quantization step-size, the second-order derivatives of subbands also gain 
additional noise from information-hiding.  

Let f ( )x  ( x  0,1,..., N  2 ) denote the MDCT coefficients of MP3 audio at a specific 
frequency subband. The second-order derivative is defined as follows: 

2 

D2 d f  
2 

  
f 
( )x   f x( 2)  2*  f x( 1)   f x( )

dt  (II-33)

                         x  0 ~ N  3 

The MDCT coefficients of a stego-signal are denoted by s x( )  , which may be modeled by 
adding a noise or error signal e x( )  into the original coefficient f ( )x . 

s x( )   f ( )x  e( )x  (II-34) 

The second-order derivatives of e x  ( )  and s x  ( )  are denoted by D x  2
e ( )   and D x2

s ( ) ,

respectively. We obtain: 

D x  2 2 2 
s ( )   D f ( )  x  D xe ( )  (II-35) 

At this point, we present the following procedure to extract the second-order derivative-
based statistics of the signals: 

(1) Obtain the second-order derivatives D t2 
ix ( ,  i)  from 576 MDCT subband signals 

MDCT_B(i) across all frames where t  0,1,2,..., N 1.and  0,i  1, 2,...,575. 

(2)  Calculate statistics, including mean value, standard deviation, skewness, and 
kurtosis of subband signals. 

(3) To reduce the number of features, the whole frequency zone is divided into Z zones 
or parts (Z is set to 32 in our experiments) from the lowest to the highest frequency. 
We then calculated the sums of the mean value, standard deviation, skewness, and 
kurtosis in each zone, denoted by M Z , Z , SKZ  and KUZ , where Z  0,1,...,31 . 
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
N 3 

D2
Z*19 ix ( ,  t i)

M   t0
Z  (II-36) 

i Z *181 N  2

Z*19 1 N 3

  2 
Z    (D tix  ( , i) M )2

Z   (II-37)
i Z *181 N  2 t0

1 N 3
2 3

Z


*19 (D t( i) M )

  ,
N 2 ix Z

SK t0
Z   3  (II-38)

   1 
N 3i Z*18 1 

2  2

 (D tix ( , i) M Z )
2 


 N  2 t0  

1 3
2 

*1 
N 

Z 9 (D tix ( , i) M )4

N  2 Z

KU t0
Z   3  (II-39)

N 3
 *18 1  1 

2 
i Z  

  (D t2 ( , i) M )2 
ix Z 

 N  2 t 0  

Accumulative Neighboring Joint Density and Markov Approach 

The Markov process is a widely used stochastic process. In image steganalysis, Shi et al. 
(2007) proposed a Markov-based approach to detect the information-hiding in JPEG 
images. Liu et al. (2010) expanded the Markov features to the inter-blocks of the DCT 
domain. Although the designs of JPEG and MP3 compressions have similarities, the 
information-hiding process in digital audio does not share the same pattern with image 
steganography. Based on our previous analysis, we designed an inter-frame Markov 
approach (IM) and inter-frame Neighboring Joint Density (INJ) for MP3 audio 
steganalysis, described in the following equations, where  = 1 if its arguments are 
satisfied, otherwise    = 0. Similar to the references (Shi et al. 2007; Liu et al. 2010), the 
range of i and j is [-4, 4]. In such a case we have two 9×9 feature matrices with each one 
consisting of 81 elements or features. Figure II-17 shows the Markov transition 
probabilities of a cover and the steganogram in (a) and (b), the neighboring joint densities 
of the cover and the steganogram in (d) and (e), and the differences of the transition 
probabilities and the differences of the neighboring joint densities between the cover and 
the steganogram, in (c) and (f). 
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Figure II-17. The comparison of Markov transition probabilities of the second-order derivatives, shown in  
(a) and (b), the comparison of neighboring joint densities of the second-order derivatives, shown in (d) and 
(e), and the differences of the transition probability and neighboring joint density between a cover and the 
steganogram, shown in (c) and (f).  

4
575 N  2  2  

IM ( ,u v)  t 0
( D tix ( , i) u, D tix ( 1, i) v)

 
N 4  (II-40)

2 
i0  (D tix ( , i  ) 

t0 
u)

 575 N 4 2  2  
i0 t0  ( D tix ( , i) u, D tix ( 1, i) v)

INJ ( ,u v)                                  (II-41) 
576*(N 3) 

Feature Selection 

To achieve better performance in detection, we combined different feature sets as a 
comprehensive approach. However, with more features being included in the feature set, 
the increasing feature dimension and feature redundancy compromise the performance 
and the efficiency of steganalysis. Feature selection methods are designed to find an 
optimal feature subset by eliminating features with little discriminative information. 
Therefore, in a comprehensive approach, feature selection can be a useful solution to 
further enhance the accuracy as well as reduce the overhead.  
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Most widely used feature selection methods could be categorized into filter, wrapper, and 
embedded methods. Filter methods select feature subsets based on performance evaluation 
metrics extracted from feature set and work with no dependency on reference to machine 
learning algorithms. Filter methods are generally less expensive than wrapper and 
embedded methods. However, filter methods consider the features as independent 
individuals and ignore possible interactions among features. The combination of features 
does not guarantee an enhanced performance, according to the performance evaluation of 
individual features. Moreover, filter methods intend to select features which correspond 
to high evaluation scores, which might generate more redundant yet less informative 
feature subsets. Avcibas et al. (2003) presented a universal steganalysis based on image 
quality metrics and utilized the one-way analysis of variance (ANOVA) for choosing good 
measures. This feature selection belongs to the filtering approach, and the final feature set 
may not be optimal. Wrapper methods wrap around particular machine learning 
algorithms that can assess the selected feature subsets by estimating classification errors 
and then building the final classifiers. One of the well-known methods is the Support 
Vector Machine—Recursive Feature Elimination (SVM-RFE), which refines the optimal 
feature set by using the SVM in a wrapper approach (Guyon et al 2002). Embedded 
methods are built into adaptive systems while simultaneously processing feature selection 
with a classifier. 

To deal with the issue of feature selection in MP3 audio steganalysis, we compared three 
feature selections: ANOVA, SVM-RFE, and a two-step approach incorporating ANOVA 
with SVM-RFE. 

II-7-b. Experimental design 

We select 5000 mono MP3 audio clips with a bit rate of 128 kbps and a sample rate of 
44.1 KHz. Each audio signal has duration of 20 seconds, and the file size is 313 KB. These 
audio files include digital speeches and songs in several languages, such as English, 
Chinese, Japanese, Korean, and several types of music including jazz, rock, blue, and 
natural sounds. The payloads include voice, video, image, text, executable codes, random 
bits, etc., with each steganogram carrying a unique payload. By embedding different 
amounts of data, we constructed four sets of MP3 stego-audio with approximate  
modification densities of 8%, 12%, 16%, and 20%, which carry payloads of 30, 60, 90, 
and 120 Bytes. At a modification density of 20%, the MP3Stego reaches its maximum 
hiding capacity. Cover MP3 audio was compressed by using the same MP3 encoder in the 
MP3Stego. In this study, we used modification density, defined as the proportion of the 
number of modified non-zero MDCT coefficients to the number of all non-zeros MDCT 
coefficients, instead of the hiding ratio to evaluate detection performance.  

Four groups of features are extracted from covers and steganograms. Sixty percent of the 
feature sets were employed for constructing the classification model, while the other forty 
percent of the feature sets were used for testing. For every experimental setting, we 
conducted the experiment 100 times, with the training and the testing sets randomly 
chosen every time. The classification returned results consisting of true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN). The testing accuracy was 
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calculated by W*TP/(TP+FN) + (1-W)*TN/(TN+FP), where W is a weighting factor at 
the range of [0, 1]. Without losing generality, W was set to 0.5 in our experiments. Support 
vector machines (SVM) with RBF kernels were used for detection. 

II-8 AAC Audio Forgery Detection 

II-8-a. Algorithm design 

Several types of processing may exist to create the forgery in AAC audio streams. While 
the sources of AAC audio files used for forgery production are encoded at different bit 
rates, or the AAC source audio files are encoded at the same bit rate, but the doctored 
AAC audio file is encoded at a different bit rate, such kind of forgery undergo different 
compressions, or double AAC compression. Similar to the detection of double MP3 
compression, we may reveal the forgery or manipulation by identifying the double AAC 
compression. While the source AAC audio files are encoded at the same bit rate, they are 
composited together in the time domain, and finally encoded at the same bit rate, the 
identification of such forgery by using double compression detection method is not 
effective. 

As pointed out in the reference (Liu 2011b), JPEG compression generally generates block 
artifacts. Similar to JPEG compression, AAC audio compression also introduces block 
(frame) artifacts. While two AAC audio files are manipulated together, or some part is 
removed from an AAC audio file in temporal domain, and doctored audio data are re-
encoded in AAC format at the same bit rate, the original block artifacts are generally 
undermined, in other words, original block switching structure will be reshuffled with a 
part of the neighbor blocks. By revealing such reshuffling manipulation, we may locate 
the doctored areas in the AAC audio forgery that was encoded at the same bit rate. And 
hence, we propose a shift-recompression-based differential analysis to detect the forgery 
in AAC audio streams with the same compression bit rate, described as follows. 

Shift-Recompression-based Differential Analysis Algorithm 
i.  Decode the examined AAC audio stream to temporal domain, denoted by a matrix 

S(i,j) (i=0,1, 2, …, M; j indicates the number of channel of the audio signal);  

ii.  Shift the matrix S(i,j) by t samples in the temporal domain, t  1,  2 …, N -1 , here 2N 
stands for the number of samples in a frame/block. For a stationary signal, AAC 
uses a block size of 2048 samples (N = 1024). A shifted temporal WAV signal S΄(i,  
j, t) is produced. S΄(i, j, t) = S(i-t, j), i= t, t+1, t+2, …, M;  

iii.  For t=1:1023 

1)  Encode the shifted temporal signal S΄( i, j, t) to AAC format at the same bit rate;  

2)  Decode the encoded audio signal from the above step to temporal domain, 
denoted by S΄΄( i, j, t); 

3)  Calculate the difference D(i, j, t)= S΄( i, j,  t) - S΄΄( i, j,  t); 
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4)  Shift-recompression based reshuffle characteristic features  (SRSC) are given 
by: 

 D(i, j,t)
          SRSC t  (i, j )                                                     (II-42) 

 S '(i, j,t)
(i , j ) 

Where t = 1, 2, ..., 1023. There are 1023 SRSC features for a stationary AAC audio file.     

While AAC audio stream are tampered in temporal domain and original frame structures  
are generally broken, by checking the SRSC feature under each different shift-
recompression, we surmise that untouched SRSC features and tampered SRSC features  
are different, especially at the corresponding shift. As a result, the manipulation can be 
revealed.  

II-8-b. Experiment design 

a)  Detection of Cropping and Recompression 

To verify our proposed shift-recompression-based differential analysis, we select 1000 
never compressed WAV files; each file is in the length of 20 seconds. These WAV files 
are compressed in AAC format by using FAAC encoder, which is based on the original 
ISO MPEG reference code (Web Audiocoding). To simulate the shift-recompression of 
AAC audio forgery manipulation, AAC audio files are decoded into temporal domain and 
cropped by different samples at the beginning of the audio signals, then re-encoded in 
AAC format at the same bit rate. In our study, we tried to produce the cropping database 
at each possible cropping, or the number of samples removed is set from 1 to 1023, 
however, the time-consuming is too high to complete. Therefore, in our experiments, the 
numbers of the samples cropped are only set as 5, 50, 200, 400, 480, 512, 750, 900, and 
1000, respectively. 1023 SRSC features are extracted from 1000 untouched AAC audio 
files and from the nine categories of doctored AAC audio files. 

b)  Detection of AAC Tampering 

In this type of experiments, we randomly select 200 AAC audio files, and remove a few 
audio samples in the middle, with the block switch offset by 100, 300, 500, 700, and 900 
samples, then encode the doctored audio signals into AAC format at the same bit rate. 
There are total of 1000 doctored AAC audio files. We apply shift-recompression-based 
differential analysis to each audio file (including untouched and doctored audio files), 
each audio file is equally divided into six segments, as a result, 1200 untouched segments 
and 3000 touched segments are obtained.  SRSC features are extracted from each segment, 
in order to discriminate the doctored audio files from untouched files, and identify the 
doctored areas. 
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III.  Results  

III-1 JPEG Steganalysis 

A.  Statement of Results:  

Tables III-1 (A) to (E) list the mean values of detection accuracy over 100 experiments to 
detect F5, steghide, MB1, MB2, and adaptive steganography in JPEG image respectively. 
In the results, by applying each learning classifier to the nine detectors, the best testing 
accuracy is highlighted in bold; by applying the three learning classifiers to the nine 
detectors, the best testing accuracy in bold are squared. 

In detecting F5 steganography, calibrated neighboring joint density is generally superior 
to other eight detectors, shown by Table III-1(A). Most best testing accuracy is obtained 
by CC-absNJ with LibSVM. In detecting steghide steganography, CC-absNJ and the 
union of CC-JRM and SRMQ1 generally outperform other seven detectors, shown by 
Table III-1(B). In detecting MB1 and MB2 steganography, shown by Tables III-1(C) and 
(D), a calibrated neighboring joint density-based detector (CC-absNJ) obtains the best 
detection accuracy. In adaptive steganalysis, by using an ensemble classifier, the union of 
CC-JRM and SRMQ1 performs the best in detecting the steganograms at relative payload 
0.1 bpac, with the testing accuracy of 85.7%. The application of an ensemble classifier to  
another rich model detector (CC-C300) cannot obtain optimal base learning classifiers; 
the detection is not available at relative payload 0.1 bpac. While detecting adaptive 
steganograms at 0.15 bpac to 0.35 bpac, CC-absNJ are comparable to the union of CC-
JRM and SRMQ1, delivering better detection accuracy than other 7 detectors.  

B.  Tables: 

TABLE III-1. The mean detection accuracy (%) over 100 experiments with LibSVM (S), Fisher Linear 
Discriminant (F), and Ensemble classifier (E) 

(A). F5 Steganalysis 

Relative payload 
Detector 0.051 0.077 0.105 0.137 0.185 0.282 0.354 

S F E S F E S F E S F E S F E S F E S F E 

CC-absNJ 94.4 94.6 92.0 96.6 95.4 94.1 98.4 97.1 97.4 99.0 98.2 98.5 99.3 98.9 99.1 99.9 99.6 99.4 100 99.6 99.7 

absNJ 91.9 91.0 86.7 93.9 91.1 89.7 96.5 92.9 95.0 97.6 94.7 96.0 97.9 95.8 97.0 99.2 98.7 97.2 99.8 99.7 99.6 

CC-PEV 81.0 90.4 85.6 85.3 92.0 89.2 91.7 96.5 95.2 94.0 97.7 97.0 97.3 99.3 98.7 98.9 99.6 99.6 99.8 99.8 99.9 

PEV 85.6 86.4 81.0 90.0 88.6 84.7 94.5 94.3 92.9 96.5 96.6 95.8 97.9 98.9 98.3 99.1 99.5 99.2 99.8 99.8 99.9 

Markov 68.1 75.7 69.5 66.9 76.6 74.1 75.5 85.2 82.7 76.6 91.6 88.7 86.9 96.5 94.6 95.0 97.7 96.7 97.7 99.4 99.3 

CC-C300 x 81.4 74.9 x 90.3 86.2 x 94.8 93.7 x 96.8 96.2 x 98.8 98.7 x 99.2 99.0 x 99.7 99.8 

CF x 77.0 78.4 x 87.0 85.2 x 88.5 93.4 x 89.4 96.7 x 92.8 98.6 x 95.3 99.1 x 99.0 99.8 

CC-JRM x 79.3 87.7 x 91.6 92.1 x 93.6 95.9 x 95.0 97.6 x 96.9 98.0 x 98.8 99.4 x 99.8 99.8 
CC-
JRM+SRMQ1 

x 88.2 82.0 x 93.6 88.4 x 95.4 95.3 x 97.0 97.9 x 97.9 98.0 x 99.3 99.4 x 99.9 99.9 
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(B). Steghide Steganalysis 

Relative payload 
Detector 0.021 0.029 0.036 0.044 0.055 0.073 0.114 

S F E S F E S F E S F E S F E S F E S F E 

CC-absNJ 92.1 92.5 87.4 95.4 95.9 93.3 98.1 97.4 96.9 99.2 98.3 98.7 99.7 99.2 99.4 99.9 99.7 99.9 100 99.9 100 

absNJ 88.9 88.1 80.8 92.0 91.0 86.8 95.0 93.4 92.0 97.3 95.5 95.8 98.1 96.3 96.8 99.4 98.1 98.8 99.8 99.3 99.7 

CC-PEV 82.4 89.5 83.7 83.9 93.0 89.2 90.1 96.8 94.5 94.2 98.7 97.5 96.7 99.3 98.4 99.1 99.7 99.5 99.7 99.8 99.8 

PEV 82.4 82.6 74.4 85.5 85.7 80.9 90.5 92.1 89.0 95.3 96.4 94.5 97.5 97.9 96.7 99.3 99.5 99.1 99.7 99.7 99.7 

Markov 72.9 83.3 77.4 75.0 85.9 81.9 84.1 91.7 89.3 89.6 96.0 94.0 93.7 97.4 96.2 97.9 99.0 98.5 99.2 99.4 99.3 

CC-C300 x 74.8 65.6 x 81.5 72.1 x 87.4 79.8 x 91.5 85.5 x 95.2 91.6 x 97.8 96.9 x 98.9 98.7 

CF x 78.2 66.6 x 83.3 70.1 x 88.0 76.3 x 91.6 83.9 x 93.4 90.8 x 95.8 96.3 x 94.9 99.0 

CC-JRM x 85.1 75.3 x 90.4 84.2 x 94.3 91.0 x 96.5 95.5 x 97.8 97.5 x 98.9 99.2 x 98.5 99.7 

CC-
JRM+SRMQ1 

x 85.9 92.4 x 91.2 96.8 x 95.2 98.8 x 97.3 99.5 x 98.5 99.7 x 99.4 99.8 x 99.2 99.9 

(C). MB1 Steganalysis 

Relative payload 
Detector 0.073 0.089 0.094 0.125 0.172 0.183 0.195 

S F E S F E S F E S F E S F E S F E S F E 

CC-absNJ 99.5 98.1 98.0 99.9 99.7 99.8 99.7 99.5 99.5 99.9 98.6 98.6 99.9 99.7 99.9 100 99.8 100 100 99.9 100 

absNJ 95.8 94.8 91.5 97.4 95.3 95.9 97.9 96.5 96.9 98.4 94.6 96.8 99.8 98.9 99.7 99.8 99.5 99.8 99.9 99.4 99.9 

CC-PEV 93.9 96.1 93.7 95.5 98.5 97.5 95.5 98.4 97.7 96.1 97.5 96.2 99.6 99.8 99.7 99.5 99.8 99.8 98.9 99.9 99.8 

PEV 94.2 92.2 90.2 96.0 95.6 93.6 95.6 95.1 93.6 95.5 93.8 91.8 99.6 99.3 99.3 99.7 99.4 99.5 99.8 99.3 99.4 

Markov 90.8 92.0 89.3 90.5 94.5 93.0 92.2 95.0 93.6 90.3 93.4 90.9 99.1 99.3 99.0 99.3 99.3 99.2 97.8 99.4 99.3 

CC-C300 x 74.6 73.8 x 87.7 61.3 x 83.3 54.4 x 77.8 67.0 x 96.5 87.5 x 94.9 77.4 x 90.7 66.6 

CF x 57.0 88.9 x 91.4 93.1 x 89.6 86.3 x 85.7 82.7 x 97.7 98.9 x 98.3 98.8 x 96.7 96.1 

CC-JRM x 60.6 91.2 x 96.2 97.5 x 95.1 97.2 x 92.7 96.2 x 99.4 99.8 x 99.7 99.9 x 99.4 99.8 

CC-
JRM+SRMQ1 

x 64.4 92.7 x 97.1 95.3 x 96.1 94.9 x 94.3 92.9 x 99.5 99.8 x 99.8 99.8 x 99.6 99.6 

(D). MB2 Steganalysis 

Relative payload 
Detector 0.101 0.120 0.131 0.168 0.226 0.245 0.271 

S F E S F E S F E S F E S F E S F E S F E 

CC-absNJ 98.5 96.4 95.5 99.3 98.4 98.4 99.7 99.1 99.4 99.8 99.1 99.2 100 99.7 99.8 100 99.9 99.9 100 99.9 99.9 

absNJ 96.6 92.2 93.2 98.0 95.9 96.5 99.0 97.4 97.8 99.4 97.6 98.4 100 99.2 99.7 99.9 99.8 99.9 100 99.8 99.9 

CC-PEV 95.0 96.7 95.4 95.5 98.9 98.1 97.0 99.3 99.1 98.9 99.5 99.2 99.7 99.9 99.9 99.6 99.9 99.9 99.8 99.9 99.9 

PEV 94.0 92.3 90.6 96.2 95.8 94.4 98.0 97.8 97.4 99.2 98.9 98.6 99.9 99.8 99.7 99.8 99.7 99.7 99.9 99.9 99.9 

Markov 90.7 92.0 89.9 87.2 94.7 92.6 92.4 96.5 95.2 96.4 97.1 96.1 98.3 99.2 98.9 98.5 99.5 99.3 99.3 99.7 99.7 

CC-C300 x 68.9 63.9 x 84.9 56.8 x 90.2 66.5 x 95.5 79.7 x 96.9 80.8 x 95.7 78.2 x 97.5 89.4 

CF x 56.8 83.9 x 89.3 86.2 x 92.6 92.1 x 93.4 96.4 x 97.3 98.0 x 98.0 98.4 x 99.0 99.2 

CC-JRM x 60.8 90.4 x 94.5 95.7 x 96.1 97.5 x 97.0 98.2 x 99.2 99.7 x 99.5 99.8 x 99.6 99.9 

CC-
JRM+SRMQ1 

x 63.3 90.4 x 95.4 94.5 x 97.1 96.6 x 97.8 98.1 x 99.4 99.6 x 99.6 99.8 x 99.7 99.9 

62 



 
 

 

  
   

 

            

            

            

            

            

          

          

          

          

 

 

 

 

 

 

(E).  Adaptive Steganalysis 

 Relative payload 
Detector 0.1 0.15 0.2 0.25 0.3 0.35 

S F E S F E S F E S F E S F E S F E 

CC-absNJ 77.8 78.0 78.3 89.9 89.5 89.9 95.7 95.1 95.4 98.6 97.6 98.1 99.3 98.5 99.0 99.6 99.0 99.5 

absNJ 69.6 71.2 70.8 81.5 83.6 83.3 89.2 90.9 90.4 93.7 94.7 94.7 96.0 96.7 96.9 97.9 97.8 98.3 

CC-PEV 58.0 66.6 70.0 68.8 82.0 83.1 76.5 90.6 90.9 84.4 96.0 96.0 89.5 97.6 97.8 94.7 99.0 98.9 

PEV 66.0 64.5 65.6 77.7 78.0 78.6 86.3 87.7 87.6 92.9 94.2 94.0 95.8 96.7 96.7 98.1 98.8 98.7 

Markov 50.1 51.5 50.9 53.3 66.6 67.1 57.5 77.8 78.8 65.8 85.7 87.4 69.4 91.4 92.4 73.5 94.8 95.3 

CC-C300 x 82.0 NA* x 89.5 63.8 x 93.6 84.8 x 96.5 93.3 x 97.8 96.3 x 98.6 98.0 

CF x 81.0 83.6 x 87.6 90.5 x 91.9 94.5 x 95.1 97.0 x 96.3 98.0 x 97.9 98.9 

CC-JRM x 81.1 81.9 x 88.5 89.8 x 92.5 94.0 x 95.8 96.7 x 97.1 97.9 x 98.5 98.7 

CC-JRM+SRMQ1 x 83.8 85.7 x 91.1 88.6 x 94.8 95.7 x 97.0 98.3 x 98.1 99.2 x 99.2 99.6 

* The testing results “NA” were caused by the failure of ensemble classifier while the final optimal base classifier may not be generated.  

III-2. YASS Steganalysis 

A.  Statement of Results:  

In binary classification, the testing accuracy is measured by 
0.5*TP/(TP+FN)+0.5*TN/(TN+FN). The mean testing accuracy over 200 experiments is 
given by Table III-2(A).  While the parameter noused is set to 19/14 while generating 
YASS steganograms, our method is generally more accurate han the other two compared 
methods. The zero-value density-based detection method (Li, Shi and Huang 2009) 
performs well when detecting the YASS steganograms that were produced with small B-
block parameter; however, the detection performance apparently deteriorates while the 
parameter of B-block size increases. The experimental results are consistent with the 
results in the reference (Li, Shi and Huang 2009) and also validate our previous surmise. 

In multiple-class classification, Tables III-2(B), (C), and (D) give the confusion matrix 
with the mean testing results over 200 times. While the parameter of noused is 19, detector 
of zero-value density hits the correct detection of 16.2% for covers, 84.4%, 73.4%, and 
61.4% for YASS steganograms produced by large B-block size 13, 14, and 15 
respectively. Our approach obtains correct detection results of 80.1%, 95.9%, 93.8%, and 
90.3%, gaining considerable improvement.  While the parameter of noused is getting 
smaller, the detection performance of our detection method deceases. On average, our 
approach is better than zero-value density. 
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B.  Tables: 

TABLE III-2.  Mean Testing Accuracy (%) over 200 Experiments in Detecting YASS  

(A)  Binary-Class Classification 

Noused* B-block, T 
diff-absNJ

LibSVM    FLD 
 Zero-value density** 

LibSVM    FLD 
CC-JRM+SRMQ1*** 

Ensemble FLD 

9 99.6 99.5 99.8 99.3 93.9 94.2 
10 99.3 99.3 98.8 98.9 95.7 94.5 
11 98.4 98.5 93.7 97.7 86.7 88.2 

19 12 96.8 97.6 74.3 94.3 86.8 87.1 
13 96.0 96.4 61.5 86.6 75.3 79.9 
14 93.6 94.1 53.0 77.1 71.8 76.5 
15 89.6 90.1 48.3 69.9 63.3 71.7 
9 98.3 98.4 99.7 98.3 86.4 91.3 

14 

10
11
12
13

 97.3 
 95.6 
 93.4 
 90.7 

97.9 
96.3 
94.3 
91.5 

95.2 
80.4 
67.5
62.3

98.3 
96.4 

 90.3 
 84.7 

90.4
76.3
76.5 
62.0 

 91.3 
 85.7 

83.1 
76.1 

14 86.3 86.7 60.4 75.0 59.4 73.7 
15 81.7 82.1 58.8 68.5 51.7 72.3 
9 
10

95.9 
 93.6 

96.1 
93.7 

99.3 
91.8 

98.6
98.6 

 74.9 
74.8

84.3 
 82.6 

11 90.2 90.6 83.6 96.0 62.6 78.5 
9 12 87.3 87.1 73.5 91.3 62.2 76.5 

13 82.3 82.7 69.5 86.7 50.5 71.4 
14
15

 76.8 
 72.7 

76.9 
73.1 

67.2 
66.1 

80.1 
74.7 

NA 
NA 

67.9 
66.0 

* noused is the parameter to set the number of the first few AC DCT  coefficients for data embedding in the block.  

** zero-value density-based approach assumes prior knowledge of the exact embedding position of the first few AC DCT 
coefficients in zigzag order for data embedding, which is generally inapplicable and not assumed  by our approach and rich models-
based detection. 

*** When applying an ensemble classifier (Kodovsky, Fridrich and Holub 201) to the rich model-based approach, the testing results 
“NA” means not available and is caused by the failure of the ensemble classifier while the final optimal base classifier may not be 
generated. 

(B). Confusion Matrix of Mean Testing (%) over 200 Experiments with LibSVM in Detecting YASS 
(Multiple-class classification, noused = 19) 

Truth 

cover 

Prediction accuracy, % 

cover 

16.2 

T=9 

0 

Zero-value density 
Steganogram 

T=1
T=10 T=11 T=12 

3 

0.9 5.1 8.4 18.2 

T=1 T=1 cover 
T=9

4 5 

23.9 27.3 80.1 0.0 

T=10

0.1 

Diff-absNJ 
steganogram 

T=11 T=12 T=13 

0.5 1.7 2.4 

T=14

5.4 

T=15 

9.9 

T=9 0.0 100.0 0 0 0 0 
99.

0.0 0 0.1 
8 

0 0.0 0.0 0.0 0.0 0 

T=10 0.4 0 99.3 0 0 0.0 0.2 0.0 0.4 0 
99. 
5 

0.0 0 0.0 0.1 0.0 

T=11 1.5 0 0 97.1 0.1 0.4 0.5 0.4 1.3 0.0 0.0 98. 0.1 0.0 
1 

0.1 0.3 

steg T=12 2.2 0 0.0 0.1 94.6 0.7 1.1 1.3 2.0 0.0 0.0 
97.

0.1 0.2 
3 

0.3 0.3 

T=13 4.2 0 0.1 0.5 2.4 84.4 4.6 3.7 3.1 0.0 0.0 
95.

0.1 0.2 
9 

0.3 0.4 

T=14 5.1 0 0.1 1.5 3.2 6.2 73.4 10.1 4.3 0.0 0.0 0.1 0.2 0.2 93. 
8 

1.3 

T=15 7.1 0 0.6 1.4 5.2 9.3 15.0 61.4 7.6 0.0 0.0 0.1 0.5 0.5 1.0 
90. 
3 
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(C).  Confusion Matrix of Mean Testing (%) over 200 Experiments with LibSVM in Detecting YASS 
(Multiple-class classification, noused = 14) 

Truth 

cover 

Prediction accuracy, % 

cover 

17.1 

T=9 

0 

Zero-value density 
Steganogram 

T=10 T=11 T=12 T=13 

1.3 6.6 13.0 17.9

cover
T=14 T=15 T=9 

 21.3 23.0 52.9 0.4 

T=10

1.1 

Diff-absNJ 
steganogram 

T=11 T=12 T=13

2.0 4.6 7.4 

T=14

14.0 

T=15 

18.4 

T=9 0.0 99.9 0 0 0 0 0 0.1 0.7 98.4 0 0.1 0.2 0.2 0.2 0.3 

T=10 0.9 0 96.9 0.0 0.3 0.2 0.8 0.8 1.2 0.0 97.2 0.1 0.2 0.2 0.5 0.6 

T=11 1.4 0 0.2 93.2 0.6 1.2 1.8 1.7 2.1 0.6 0.2 95.2 0.4 0.1 0.7 1.1 

steg T=12 2.3 0 0.6 0.5 87.9 2.5 3.1 3.2 3.6 0.2 0.2 0.4 92.1 0.9 1.1 1.4 

T=13 3.2 0 0.8 1.7 4.3 75.9 8.1 6.0 4.9 0.1 0.2 0.3 1.0 89.8 1.8 1.9 

T=14 5.5 0.0 1.8 3.9 6.0 12.1 59.9 10.9 6.9 1.8 0.6 0.4 0.6 1.7 85.1 4.5 

T=15 7.4 0.1 1.7 4.8 8.1 15.0 20.3 42.7 9.8 0.3 0.4 0.7 1.1 2.4 3.9 81.5 

(D).  Confusion Matrix of Mean Testing (%) over 200 Experiments with LibSVM in Detecting YASS 
(Multiple-class classification, noused = 9) 

Truth 

cover 

Prediction accuracy, % 

cover 

38.0 

T=9 

0 

Zero-value density 
Steganogram 

T=10 T=11 T=12 T=13 

0.9 5.5 10.8 12.8

cover
T=14 T=15 T=9 

 15.1 16.9 19.7 1.4 

T=10

3.0 

Diff-absNJ 
steganogram 

T=11 T=12 T=13

6.4 10.3 14.6

 T=14

 20.2

 T=15 

 24.4 

T=9 0.2 99.6 0 0 0.0 0 0.0 0.1 1.0 95.6 2.9 2.6 3.5 6.4 8.8 9.6 

T=10 1.2 0.0 93.3 0.4 0.6 1.6 1.9 1.1 1.3 3.2 91.6 0.6 0.8 1.1 1.9 2.3 

T=11 1.1 0 0.4 89.2 1.3 2.4 4.2 1.5 2.3 0.5 0.7 88.1 0.9 1.8 2.4 3.3 

steg T=12 3.8 0 1.2 1.8 82.8 4.1 4.1 2.2 3.3 0.6 1.2 1.3 84.1 2.3 3.0 4.3 

T=13 4.8 0.0 1.1 3.9 5.7 70.2 8.4 6.0 4.1 0.7 1.0 1.5 2.5 79.7 4.9 5.6 

T=14 6.7 0.0 3.4 6.5 7.7 12.7 53.8 9.2 5.5 1.0 2.0 2.1 3.2 4.7 72.7 8.9 

T=15 11.0 0.2 3.3 7.2 10.5 16.4 19.8 31.6 6.7 0.9 1.6 2.6 4.1 6.7 9.0 68.4 

III-3. Seam-carved Forgery Detection 

A.  Statement of Results:  

The mean testing accuracy values are given in Table III-3 with 10 combinations of 
different detectors. While all these detectors were originally designed to detect JPEG-
based steganography, all are effective to discriminate seam carved tampering from 
untouched. The union of calibrated neighboring joint density CC-absNJ with the detector 
of spatial domain rich model SRMQ1 obtains the best detection accuracy. 
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B.  Tables: 

TABLE III-3.  Seam-Carved Forgery Detection 

Mean testing accuracy (%) over 2000 experiments with Fisher Linear Discriminant (F) and over 1000 
experiments with Ensemble classifier (E) 

Detector 
Mean detection accuracy, % 

F E 

CC-absNJ 94.8 94.8 

absNJ 87.3 86.9 

CC-PEV 85.6 92.7 

PEV 87.7 87.8 

Markov 88.2 92.0 

CC-C300 93.7 90.8 

CF 94.2 95.3 

CC-JRM 95.9 96.5 

SRMQ1 97.0 97.5 

CC-JRM+SRMQ1 96.8 97.1 

CC-absNJ+SRMQ1 97.2 97.6 

III-4. JPEG Double Compression Detection 

A.  Statement of Results:  

The average testing detection accuracy over 30 experiments in the five groups, are listed 
in Table III-4-1(A) to Table III-4-1(E), respectively, with the use of the feature sets: low-
frequency histogram, Markov transition probability, expanded low-middle frequency 
histogram, and neighboring joint density, with the results shown in from the first row to 
the forth row, respectively. In each comparison, the highest average testing accuracy is 
highlighted in bold. 

The results shows that expanded low-middle frequency histogram and neighboring joint  
density dominantly hit the bold values. Apparently, expanded low-middle frequency 
histogram approach is superior to the original low frequency histogram since it includes 
middle frequency histogram features. On average, neighboring joint density features 
outperform Markov transition probability features. The comparison among Table III-4-
1(A) to (E) shows that image complexity plays a critically important  role for the evaluation 
of detection performance. The detection accuracy in high image complexity, shown in 
Table III-4-1(E), is much less than other results, shown in Table III-4-1(A) to (D). It means 
that the identification of double JPEG compression in high image complexity is still 
challenging. 

The identification of the first-time JPEG compression in double JPEG compression 
images is very useful for the further forensic analysis. To detect the first-time JPEG 
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compression or determine the quality factor of the first time JPEG compression in the 
double compressed images, we mix all double compressed image with the same Q2 factors 
but different Q1 factors, we merge the marginal features and neighboring joint density 
features together, and apply SVM to the features for multiple classifications. Table III-4-
2 lists the testing accuracy to d distinguish the Q1 factors in all mixed images with the  
second quality factor ‘75’. Detection results show that the identification of the first-time  
JPEG compression in the mixed double compressed images is promising. However the 
detection in high image complexity is still challenging.  

B.  Tables: 

Table III-4-1. The average detection accuracy over 30 experiments using low-frequency histogram feature 
set (results shown in the first row), Markov transition probability (results shown in the second row), 

expanded low-middle frequency histogram (results shown in the third row), and neighboring joint density 
features (results shown in fourth row). 

(A) Detection accuracy %  in  low image complexity (β < 0.3)  

Q1 
Q2 

40 45 50 55 60 65 70 75 80 85 90 

40 

96.0 
95.9 
98.2 
98.2 

97.8 
98.7 
99.1 
99.6 

98.3 
99.1 
99.5 
99.8 

98.1 
98.9 
99.3 
99.5 

93.9 
98.3 
96.7 
99.2 

94.5 
94.2 
98.4 
95.5 

96.3 
97.7 
98.9 
99.0 

87.2 
52.1 
92.7 
64.2 

91.4 
81.0 
96.7 
83.4 

69.8 
60.4 
82.9 
62.2 

45 

97.5 
97.1 
98.1 
98.5 

93.8 
87.8 
88.3 
91.1 

97.3 
97.8 
98.6 
99.1 

98.4 
98.4 
99.4 
99.3 

98.3 
99.0 
99.1 
99.6 

94.9 
98.2 
97.2 
98.9 

95.7 
95.2 
98.5 
97.7 

94.7 
90.5 
98.1 
93.9 

90.1 
90.5 
95.2 
94.8 

79.3 
69.6 
89.7 
72.2 

50 

99.1 
99.5 
99.5 
99.7 

96.0 
91.8 
93.8 
94.5 

93.7 
85.5 
86.0 
88.7 

97.8 
98.3 
98.8 
99.5 

98.9 
99.1 
99.5  
99.7 

97.8 
98.9 
98.9 
99.5 

89.1 
93.6 
92.0  
94.0 

96.4 
97.3 
98.6 
98.7 

92.2 
79.2 
96.4 
90.2 

77.9 
43.4 
92.9 
51.2 

55 

99.5  
99.7  
99.7  
99.8 

98.7  
99.1  
99.4 
99.7 

95.7 
90.4 
89.9 
91.0 

96.2 
92.3 
96.2 
95.8 

98.7 
98.4 
99.1 
99.5 

98.6 
99.1 
99.4 
99.6 

96.6 
98.4 
97.9 
99.3 

95.9 
96.0 
97.4 
98.2 

93.3 
54.3 
96.1 
56.3 

88.2 
81.6 
94.4 
89.0 

60 

99.9 
99.7 
99.9 

99.9 

99.7 
99.7 
99.8  
99.8 

99.1 
99.4 
99.4 
99.6 

97.8 
96.0 
97.8 
97.9 

98.0 
94.5 
98.6 
93.8 

98.7 
98.2 
99.3 
99.3 

98.7  
98.7 
99.4  
99.6 

95.5 
91.7 
98.2 
91.0 

96.7 
93.6 
98.6 
97.0 

89.7 
73.1 
96.9 
62.0 
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(B) Detection accuracy %  in low-middle image complexity (0.3≤ β < 0.4)  

Q1 
Q2 

40 45 50 55 60 65 70 75 80 85 90 

40 

94.3 
92.8 
95.7 
96.1 

96.3 
97.5 
98.2 
99.1 

97.0 
98.4 
98.9 
99.4 

97.0 
98.0 
98.9 
98.9 

92.4 
96.9 
94.3 
98.1 

92.6 
90.4 
97.4 
92.3 

94.4 
95.5 
97.2 
97.9 

82.7 
46.5 
89.7 
58.1 

88.2 
73.0 
94.7 
77.6 

61.5 
53.4 
76.5 
54.9 

45 

96.2 
95.5 
96.6 
97.3 

90.5 
82.3 
82.2 
87.5 

96.2 
96.5 
97.8 
98.1 

97.4 
97.5 
98.8 
98.6 

97.1 
98.3 
98.8 
98.9 

93.0 
97.0 
95.6 
97.9 

94.6 
92.4 
98.1 
95.4 

91.4 
86.3 
95.8 
90.7 

86.4 
85.6 
92.5 
90.8 

73.4 
63.1 
86.1 
65.4 

50 

98.7 
99.1 
99.4 
99.7 

94.1 
88.3 
91.2 
91.8 

90.5 
80.9 
80.7 
84.0 

96.7 
97.5 
98.3 
98.8 

97.9 
98.7   
99.1 
99.3 

96.5 
98.0 
98.4 
98.8 

86.5 
90.4 
89.2 
91.2 

94.4 
95.4 
97.2  
97.6 

89.3 
75.3 
94.5 

85.9 

72.8 
41.2 
89.1 
48.5 

55 

99.6 
99.6 
99.7 
99.9 

98.3 
98.8 
99.3 
99.7 

93.5 
87.1 
84.6 
87.2 

94.4 
89.1 
94.0 
93.5 

98.0 
97.8 
99.0 
98.7 

98.4 
98.6 
99.2 
99.4 

95.0 
97.5 
97.1 
98.7 

93.9 
93.9 
95.9 
96.8 

90.7 
49.3 
94.0 
52.1 

85.6 
77.6 
92.0 
84.3 

60 

99.8 
99.6 
99.9 
99.9 

99.7 
99.6 
99.8 
99.9 

98.8 
99.1 
99.4 
99.6 

96.6 
93.7 
96.5 
96.0 

96.6 
92.0 
97.8 
91.2 

98.5 
97.9 
99.3 
98.8 

98.5 
98.4 
99.2 
99.3 

94.2 
88.9 
97.7 
87.1 

95.5 
91.3 
97.6 
94.6 

87.8 
68.6 
95.2 
58.8 

(C) Detection accuracy %  in middle image complexity (0.4 ≤ β < 0.5) 

Q1 
Q2 

40 45 50 55 60 65 70 75 80 85 90 

40 

93.1 
91.5 
94.5 
95.7 

95.9 
972 
97.3 
98.5 

96.6 
97.9 
98.4 
99.2 

96.5 
97.5 
98.0 
98.3 

90.4 
95.9 
92.8 
97.1 

90.4 
87.8 
95.5 
89.7 

92.8 
94.1 
95.4 
96.8 

79.5 
43.2 
87.1 
54.3 

86.0 
68.8 
92.6 
70.8 

56.3 
48.4 
71.7 
49.8 

45 

95.4 
94.1 
95.9 
96.3 

89.0 
80.1 
78.4 
84.5 

95.0 
95.6 
96.7 
97.1 

97.1 
96.4 
98.2 
97.9 

97.1 
97.7 
98.1 
98.7 

92.0 
95.8 
94.3 
96.6 

92.3 
89.5 
96.2 
93.1 

89.6 
82.6 
94.0 
87.0 

83.7 
82.0 
90.8 
88.5 

69.9 
58.6 
83.5 
59.2 

50 

97.8 
98.5 
98.7 
99.1 

93.5 
86.6 
89.4 
90.0 

89.8 
78.8 
77.1 
82.6 

96.2 
96.6 
97.1 
97.8 

97.8  
98.2 
98.7 
99.1 

96.6 
97.5 
97.7 
98.4 

84.4 
89.6 
88.2   
89.5 

93.1   
93.7   
95.6   
96.2 

87.6   
70.2 
92.6 
82.8 

68.9   
40.4  
87.9 
47.5 

55 

98.7   
99.1   
99.3   
99.5 

97.6   
97.9   
98.4   
99.1 

93.2 
85.3   
84.4   
85.5 

93.5 
87.3  
92.5   
91.4 

97.5 
97.2 
98.1  
98.2 

97.9 
98.1 
98.7 
99.2 

95.4 
97.2 
96.7 
98.2 

92.6  
92.2   
94.6   
95.7 

88.9 
48.7 
92.7 
50.8 

83.1  
74.1   
91.1 
82.3 

60 

99.2   
99.2  
99.6  
99.7 

99.0   
99.0 
99.3   
99.5 

98.2   
98.4   
98.7   
99.0 

96.2 
92.9  
95.7  
95.2 

96.5
 91.5 
96.8 
90.6 

97.9  
97.0  
98.6 
98.4 

98.3 
98.1 
98.9 
99.0 

94.0   
87.5   
96.9 
86.6 

94.8 
89.4 
96.7 
93.6 

86.2   
67.4   
94.1 
57.5 

68 



 
 

 

       
 

         

  

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 

 
 
 
 

 
 
 
 

 

 
 
 
 

 
 
 
 

  

  

  
  

 

 

 
  
 

   
 

 

  

   

 

 

  

  
 

 
    
 

  
  

 

  
  
  
 

   
 

 
 
   
  

 
 
 
 

  

 

 

 

 
 

  
 

  
  
  
 

 

 
 

  
 

   
 

 

     
 

       

  

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 

 
 
 
 

 
 
 
 

 

 
 
 
 

 
 
 
 

 
  

  
  

 

   

 
  
 

   
 

 
   

 

   

 

   

 

 
  

 
   
 

  
  
 

  
 

  
 

   
 

 
   

 

   

 

   

 

  
  
  
 

 

   

 

  
  
  
 

  
  
  
 

   
 

  

  
 

   
 

 

  

        
             

        

 

         
         

         

         
        

(D) Detection accuracy %  in middle-high image complexity (0.5 ≤ β < 0.6)  

Q1 
Q2 

40 45 50 55 60 65 70 75 80 85 90 

40 

87.6 
85.5 
89.3 
89.7 

91.8 
94.8 
93.7 
96.5 

94.1 
96.1 
96.3 
98.2 

94.6 
95.5 
96.3 
96.2 

86.7 
92.3 
87.2 
94.8 

84.3 
80.1 
91.4 
82.5 

86.3 
89.3 
90.9 
93.5 

65.5 
38.6 
74.3 
49.1 

74.7 
54.5 
86.5 
56.1 

46.8 
39.7 
55.9 
45.0 

45 

92.1 
89.8 
92.0 
93.5 

80.0 
63.8 
62.4 
72.0 

91.0 
91.8 
93.0 
94.2 

94.1 
93.3 
95.9 
95.5 

94.6 
95.1 
96.3 
96.7 

88.1 
92.2 
90.5 
94.2 

86.5 
82.6 
91.4 
87.8 

82.1 
71.8 
89.3 
78.2 

71.8 
71.0 
81.3 
79.2 

53.6 
44.9 
67.4 
48.4 

50 

96.5 
97.7 
96.8 
97.7 

89.4 
77.7 
81.8 
83.6 

82.4 
65.5 
62.0 
74.7 

92.2 
94.1 
94.0 
95.8 

95.9    
97.0    
97.3    
97.6 

94.4 
95.6   
96.1 
96.6 

79.3 
85.5 
84.7   
84.1 

87.6 
89.4   
91.6   
92.7 

79.1   
56.9  
86.0 
70.3 

54.0   
37.7   
76.8 
45.8 

55 

98.0   
99.0   
98.0   
99.1 

95.8   
97.1   
96.5  
98.1 

89.6 
77.8   
74.4   
78.9 

89.0 
79.8   
87.1 
86.9 

95.3    
95.2 
96.8 
96.2 

96.4   
97.2 
97.6   
97.9 

93.3   
95.0   
94.1 
96.5 

88.1   
87.1   
88.5   
91.3 

83.1 
43.8 
87.6 
47.9 

71.5   
60.5  
84.7 
67.9 

60 

99.4   
99.1 
99.5 
99.4 

98.5   
98.9  
98.2   
99.2 

96.6 
97.5 
96.8 
97.8 

93.3 
88.6  
91.1   
92.4 

93.3 
87.9    
94.3 
85.4 

96.4  
95.3   
97.1 
96.6 

97.2 
97.2 
98.0 
97.8 

91.4 
85.0   
95.5 
80.9 

91.2  
83.9   
94.0 
88.9 

78.8   
56.2   
90.5 
53.7 

(E) Detection accuracy % in high image complexity (0.6 ≤ β) 

Q1 
Q2 

40 45 50 55 60 65 70 75 80 85 90 

40 

59.7 
59.7 
58.0 
63.6 

69.9 
75.3 
70.3 
77.6 

77.8 
80.4 
81.0 
80.1 

79.5 
81.5 
81.9 
82.0 

73.0 
79.0 
74.2 
80.3 

65.6 
57.8 
70.7 
48.3 

61.3 
66.4 
63.3 
62.2 

43.8 
38.1 
48.5 
41.9 

49.6 
43.7 
55.5 
43.2 

41.9 
38.2 
46.7 
42.2 

45 

68.6 
69.0 
68.9 
71.3 

50.9 
44.8 
49.8 
51.8 

67.6 
68.0 
67.3 
69.5 

74.3 
76.8 
76.3 
75.8 

81.5 
82.1 
81.7 
80.9 

75.2 
80.2 
77.0 
80.2 

72.6 
57.7 
76.0 
54.8 

51.8 
50.7 
55.7 
47.8 

51.4 
47.9 
53.7 
51.5 

45.3 
41.7 
48.3 
45.5 

50 

77.8 
84.1 
81.2 
82.7 

60.5 
47.4 
56.6 
61.4 

49.2 
44.5 
48.6 
53.9 

72.0 
75.7 
72.2 
76.4 

82.2   
83.2 
82.8   
83.6 

83.1   
83.3  
81.9 
84.3 

65.5 
70.8 
67.6   
68.5 

57.6   
66.4 
64.4   
64.3 

50.6   
43.8  
54.3 
48.2 

43.2   
38.1  
47.7 
43.6 

55 

86.0   
90.6 
85.4   
84.5 

80.2   
82.7 
79.2   
80.3 

62.2 
48.6   
51.0   
56.1 

60.5   
50.0  
57.8 
63.0 

80.9   
79.5 
81.3 
77.9 

85.1   
84.0 
85.5 
85.2 

83.0   
81.7  
80.4 
84.6 

61.5   
64.3   
63.8   
66.7 

51.8   
40.7  
52.3 
44.9 

47.8   
42.6   
51.0 
46.5 

60 

89.7   
93.2 
90.6   
90.8 

84.4   
86.9 
84.8   
85.5 

79.3   
86.8 
80.4   
78.2 

70.1 
62.4 
66.1 
69.5 

73.6 
61.9   
69.1   
59.4 

83.1 
79.4 
82.5 
77.2 

85.9 
83.6 
85.3 
84.2 

72.9   
65.9   
78.9 
62.5 

64.2 
58.4  
64.2 
56.4 

50.2   
41.1   
58.1 
45.9 

Table III-4-2. Average detection accuracy (%) in each group to distinguish the first time JPEG compression 
factors by merging expanded low-middle frequency histogram and neighboring joint density features. The 
results in row 1 to row 5 conduct the detections in low image complexity to high image complexity.  

Q2 
Q1 
β 

40 45 50 55 60 65 70 80 85 90 

75 

< 0.3 99.9 99.4 99.0 99.9 99.7 100.0 99.8 99.8 99.9 99.5 
[0.3,0.4) 100.0 99.5 98.9 99.9 99.8 100 99.8 99.6 99.8 99.4 

[0.4, 0.5) 100.0 98.8 97.8 99.6 99.6 99.9 99.4 99.7 99.8 98.9 

[0.5, 0.6) 99.7 97.3 96.8 98.9 99.4 99.3 99.1 98.8 99.3 96.1 
> 0.6 91.9 74.0 79.0 86.0 90.6 87.9 70.8 78.3 89.2 50.0 
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III-5. Detection of Smartphone Image Source and Post-Capture Processing 

III-5-a. Smartphone source identification  

A. Statement of Results: 

Experiment 1 — the operation to generate type I images is essentially JPEG double 
compression. Our first experiment is based only on type I images, to identify smartphone 
source. In each run, we randomly select 60% image samples from each brand of processed 
smartphone images, and the remaining 40% images are used for testing. LibSVM (Chang 
and Lin 2011) is employed for multiclass classification. We apply linear kernel and RBF 
kernel with default kernel parameters respectively and perform 100 runs with each kernel. 
The mean values of the confusion matrices on testing data over 100 experiments are 
summarized in Table III-5-1 by using our approach and 486-dimensional Markov 
approach (Chen and Shi 2008), respectively. 

Experiment 2 — the operation to generate type II images is also essentially JPEG double 
compression, although cropping was first applied before double compression. Our second 
experiment is based on type I and type II images, to identify smartphone source. The 
experimental design and procedures are the same as those of Experiment 1. The mean 
values of the confusion matrices on testing data over 100 experiments are listed in Table 
III-5-2. 

Experiment 3 — our third experiment is based on type III images with the scale factor 
value of 2, to identify smartphone source. The experimental design and procedures are 
the same as those of Experiment 1. The mean values of the confusion matrices on testing 
data over 100 experiments are listed in Table III-5-3. 

Experiment 4 — this experiment is the same as those of Experiment 3 with the only 
difference that the type IV images with the scale factor value of 0.5 are used. The mean 
values of the confusion matrices on testing data over 100 experiments are listed in Table 
III-5-4. 

Experiment 5 — this experiment is the same as those of Experiment 4 with the only 
difference that the type VI images with the scale factor value of 0.5 are used. The mean 
values of the confusion matrices on testing data over 100 experiments are listed in Table 
III-5-5. 

Experiment 6 — all types of images with all scale factors are used in this experiment. 
Experimental design and procedure are the same as those of previous experiments. The 
mean values of the confusion matrices on testing data over 100 experiments are listed in 
Table III-5-6. 
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The experimental results show that it is promising to identify the original smartphone that 
was used to capture images, although the image under examination has been processed 
after capture. Overall, our approach outperforms Markov approach. By using Types I and 
II processed images, the accuracy of the smartphone source identification is apparently 
higher than the detection accuracy based on the other types. Type I only involves double 
JPEG compression. Type II was manipulated by cropping, followed by double-
compression. It implies that double compression has major impacts on the DCT 
coefficients in Type II. In addition to double compression, images in other types were 
rescaled. In these types, double compression may or may not have major impacts to the 
modification of the property of DCT coefficients of the processed images, depending on 
the parameter value of each scale factor. Experimental results demonstrate that the 
detection accuracy on a large scale parameter (Table III-5-3) is much better than those on 
a small scale parameter (Tables III-5-4 and III-5-5). In our opinion, while the scale factor 
is small (<1), some information of original images will be lost, and hence the detection 
performance on the small scale factors deteriorates. 

B.  Tables: 

Table III-5-1. Mean testing accuracy over 100 experiments based on type I images 

(a)  our approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC 
G3 

HTC 
HD2 

Huawe 
i 

U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huaw 
ei 

U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 98.95 0 0.86 0.10 0.08 96.75 0 1.56 0.29 1.41 

HTC HD2 0 100 0 0 0 0 98.67 0 0.98 0.36 
Huawei 
U8150 

0.09 0 99.82 0.09 0 1.64 0 97.82 0.52 0.02 

Iphone 3 3.96 0 0 95.89 0.14 4.78 0 0 90.29 4.93 

Nokia E71 0.92 0 0.34 0.76 97.98 0.02 0 0 1.34 98.64 

(b)  Markov approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC 
G3 

HTC 
HD2 

Huawe 
i 

U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawe 
i 

U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 99.78 0.10 0.12 0 0 70.41 0 0.71 0.78 28.10 

HTC 
HD2 

0.53 99.36 0 0.11 0 6.51 60.11 0 2.40 30.98 

Huawei 
U8150 

0.77 0 99.16 0.05 0.02 15.50 0 46.14 1.36 37.00 

Iphone 3 1.82 0.32 0.39 97.46 0 14.04 0.036 0 46.46 39.46 

Nokia 
E71 

0.22 0.04 0.04 0.22 99.48 3.96 0 0 0.82 95.22 
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Table III-5-2. Table Mean testing accuracy over 100 experiments based on type I and type II images 

(a)  our approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
98.88 0.12 0.73 0.01 0.26 97.01 0.03 2.28 0 0.68 

HTC HD2 0.04 99.32 0.17 0.18 0.29 0.78 94.53 0.42 1.95 2.31 

Huawei 
U8150 

0.40 0.30 99.28 0 0.02 3.04 0.11 96.53 0.17 0.15 

Iphone 3 1.47 0.32 0 96.71 1.50 1.04 1.79 0.48 90.20 6.50 

Nokia E71 0.83 0.64 0.01 0.70 97.82 0.20 4.52 0 2.55 92.73 

(b)  Markov approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
94.76 0.66 4.16 0.34 0.08 76.17 0 3.09 0 20.74 

HTC HD2 0.93 94.16 1.40 1.52 1.99 1.40 65.56 0.54 0.40 32.10 

Huawei 
U8150 

4.46 0.36 94.35 0.24 0.60 4.05 0.03 63.68 0 32.24 

Iphone 3 1.00 0.88 0.91 95.93 1.29 1.14 0.31 0.27 51.52 46.77 

Nokia E71 0.46 1.10 0.27 0.74 97.43 0.69 1.04 0 0.42 97.85 

Table III-5-3. Mean testing accuracy over 100 experiments based on type III images with scale factor of 2 
(a) our  approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
91.90 0.27 6.13 1.54 0.15 72.24 0 1.08 2.41 24.27 

HTC HD2 1.40 98.13 0.38 0 0.09 0.98 67.64 0.11 4.27 27.00 

Huawei 
U8150 

13.05 0.02 86.14 0 0.79 15.61 0.07 55.04 3.30 25.98 

Iphone 3 3.71 0.64 0.14 95.07 0.43 0.61 0.79 0 76.93 21.68 

Nokia E71 1.92 0.14 1.22 0.36 96.36 0.62 0 0.08 1.86 97.44 

(b) Markov approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
99.25 0.02 0.69 0.03 0 99.70 0 0.30 0 0 

HTC HD2 0.04 99.58 0.33 0.02 0.02 73.38 26.49 0.13 0 0 

Huawei 
U8150 

0.43 0.82 98.33 0.05 0.36 73.34 0 26.66 0 0 

Iphone 3 2.82 1.00 0.21 95.82 0.14 78.82 0 0 21.18 0 

Nokia E71 0.26 0.16 0.06 0 99.52 76.48 0 0 0 23.52 
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Table III-5-4.  Mean testing accuracy over 100 experiments  based on type IV images with scale factor of 
0.5  

(a)  our approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
82.43 1.20 6.66 6.88 2.83 77.15 1.05 14.83 2.01 4.95 

HTC HD2 1.11 89.27 3.13 4.62 1.87 2.62 77.04 5.73 3.51 11.09 

Huawei 
U8150 

5.88 1.80 83.38 8.13 0.82 9.41 0.63 83.61 1.98 4.38 

Iphone 3 18.32 12.00 14.25 42.71 12.71 19.29 11.96 12.18 28.96 27.61 

Nokia E71 2.56 5.48 1.38 3.24 87.34 6.16 12.74 3.18 2.60 75.32 

(b)  Markov approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
60.58 7.29 16.95 9.08 6.10 92.78 0 1.15 0 6.07 

HTC HD2 4.27 67.53 5.22 10.24 12.73 90.87 0.96 1.02 0 7.16 

Huawei 
U8150 

16.36 10.11 60.20 7.93 5.41 92.16 0 2.12 0 5.71 

Iphone 3 20.07 23.86 12.46 17.50 26.11 91.25 0 1.14 0 7.61 

Nokia E71 7.30 24.86 5.48 10.02 52.34 86.58 0.04 1.00 0 12.38 

Table III-5-5. Mean testing accuracy over 100 experiments based on type VI images with scale factor of 
0.5 

(a)  our approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
78.65 0.90 11.46 5.73 3.27 78.46 0.76 14.24 1.91 4.62 

HTC HD2 0.75 81.84 1.89 5.44 10.07 1.04 80.38 1.93 3.62 13.02 

Huawei 
U8150 

10.98 0.73 77.46 8.50 2.32 11.29 0.38 83.73 1.59 3.02 

Iphone 3 19.11 10.46 10.39 43.68 16.36 21.39 12.21 10.82 29.14 26.43 

Nokia E71 2.72 11.80 3.08 6.18 76.22 5.58 12.64 1.44 2.36 77.98 

(b)  Markov approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
58.19 6.34 20.66 9.25 5.56 88.66 0 0.34 0 11.00 

HTC HD2 3.89 74.51 2.78 6.35 12.47 85.16 2.44 0.07 0 12.33 

Huawei 
U8150 

14.43 4.23 72.48 4.95 3.91 87.55 0 2.34 0 10.11 

Iphone 3 22.61 20.39 14.71 18.21 24.07 86.43 0 0.07 0 13.50 

Nokia E71 7.52 23.90 7.30 7.94 53.34 82.30 0.02 0 0 17.68 
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Table III-5-6. Mean testing accuracy over 100 experiments based on all type images with all scale factors 
(a) our  approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
80.11 0.79 12.07 1.77 5.27 89.02 0.43 9.20 0.14 1.21 

HTC HD2 1.23 84.31 1.58 5.94 6.94 0.88 94.92 0.59 1.63 1.98 

Huawei 
U8150 

10.47 0.60 82.67 3.35 2.92 5.20 0.36 93.35 0.30 0.79 

Iphone 3 8.22 5.75 6.40 70.15 9.48 4.86 2.14 4.91 81.30 6.79 

Nokia E71 5.50 8.43 1.85 8.40 75.83 2.01 2.97 1.17 1.91 91.95 

(b) Markov approach  

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

HTC G3 
HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

HTC 
G3 

HTC 
HD2 

Huawei 
U8150 

Iphone 
3 

Nokia 
E71 

Actual 
brand 

HTC G3 
71.48 5.39 18.70 2.06 2.37 91.90 0.20 7.07 0.00 0.83 

HTC HD2 6.89 78.14 1.44 8.49 5.04 8.25 77.69 9.35 0.53 4.17 

Huawei 
U8150 

15.43 1.81 78.47 2.64 1.65 15.04 0.23 83.99 0.05 0.69 

Iphone 3 7.17 15.25 6.46 62.28 8.83 19.42 2.02 20.15 51.01 7.40 

Nokia E71 4.31 9.12 5.03 5.16 76.38 9.83 1.70 9.94 1.38 77.16 

III-5-b. Smartphone source and post-capture identification with/without clustering 

A.  Statement of Results:  

A.1. Results without clustering 

The experimental results shown in III-5-a have demonstrated that the detection 
performance varies across different manipulations, in other words, some manipulation 
may lead us to the wrong judgment of the smartphone source if we are not aware of the 
manipulation. From the perspective of image forensics, it is very necessary and of great 
value to identify these different manipulations as well as to recognize the smartphone 
sources. Therefore, we mix the 65-class processed smartphone images together, and aim 
to simultaneously detect the smartphone source and the manipulation imposed on the 
processed images. In this detection, like the experiments in smartphone source 
identification, we randomly select 60% images from each class as training data and the 
remainders are used for testing in each of 100 total experiments. The mean values of the 
confusion matrix on the 65 classes over 100 experiments are shown by Figure III-1 (a) 
and Figure III-1(b) by using linear SVM and RBF-kernel SVM with our approach. Figure 
III-1(c) and (d) show the detection results by using Markov approach. The average hit 
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accuracy for the 65 classes is 42.1% with linear LibSVM and 43.5% with RBF LibSVM 
by using our approach, and 41.9% with linear LibSVM and 27.7% with RBF LibSVM by 
using 486-dimensional Markov approach. 

As illustrated in Figure III-5-1, the performance of our approach is highly encouraging, 
compared to the average hit rate under random guess (i.e., 1/65 or 1.5%) for each class. 
Some hit rates are not so high, for instance, in the discrimination of class 49 and class 51, 
representing the images from iphone 3 in type V and type VI with the scale factor 0.5. In 
our opinion, some useful information to identify the smartphone source or keep track of a 
certain manipulation may be destroyed or covered by some other manipulations, such as 
the trace of cropping may be removed or covered by down-scaling and/or recompressed. 
In such case, the effect of cropping is trivial and could be ignored, resulting in the 
disability to distinguish between class 49 (iphone3 images in type V of scale parameter 
0.5, with cropping) and class 51 (iphone3 images in type VI of scale parameter 0.5, 
without cropping). In this manner, it is not precise to label all type images into 65 classes, 
just based on the different combinations of the manipulations and smartphone sources. 
Therefore, it could be more reasonable for us to first employ clustering analysis to these 
65 class smartphone image data, and then re-label these processed images based upon the 
clustering result. 

A.2. Results with clustering 

As we discussed, some post-capture operations, such as double compression followed by 
down-scaled will remove original traces/patterns of smartphone images, in such case, it 
does not make sense to classify these processed images after same/similar operations from 
different smartphones into different classes based on original smartphone types. 
Therefore, it is necessary for us to re-label and shrink original 65-class data set. First, we 
obtain the average values of the feature vectors from training data, and apply hierarchical 
agglomerative clustering (HAC) to the average feature vectors, originally labeled by the 
numbers from 1 to 65. Figure III-5-2 shows the hierarchical binary clustering tree by using 
single linkage algorithm to the pairwise distance measured by standardized Euclidean 
distance and usual Euclidean distance, respectively. As shown in the clustering tree (i.e., 
dendrogram),  original class pairs, 30 and 32, 4 and 6, 43 and 45, 56 and 58, 17 and 19, 
are clustering together with the minimal distances,  corresponding to the images in types 
III and IV, with the scale factor 2. Classes 8, 10, and 12 are clustering together, 
corresponding to HTC G3 images, manipulated by type IV, V and VI operations with the 
scale factor 0.5. It shows that interpolation (rescale) operation generates a major 
functionality across different types of manipulation. According to the two different 
pairwise distances, we re-label the original 65-class data into 18 classes, as shown in 
Figure III-5-2(a) and Figure III-5-2(b), respectively. For example, in Figure III-5-2(a), we 
integrate original classes, 30, 32, 31, 37, 38, 4, 6, 5, 11, and 13 together as a new class 1, 
original classes, 1, 2, 3, and 9 into new class 2, and so on. In Figure III-5-2(b), the original 
classes 30 and 32 are mixed together as new class 1, original classes 4 and 6 are integrated 
as new class 2, and so on. Table III-5-7 lists the clustering and original classes. 
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Figure III-5-3 and Figure III-5-4 illustrate the average values of confusion matrix over 
100 experiments on the relabeled 18 class data. The experimental procedures are the same 
as those of previous experiments.  The comparison of the experimental results in Figure 
III-5-3 and Figure III-5-4 shows that the re-labeling from the clustering measured by 
Euclidean distance is better than the re-labeling with the standardized Euclidean distance. 

In Figure III-5-3, most images in re-labeled class 5 are classified as re-labeled classes 7 
and 3, and most images in re-labeled class 12 are detected as 13. In other words, the 
recognition of the images captured by Nokia E71 in type IV with the scale factor 0.3 
(original class 59) were mostly recognized as the cluster consisting of original classes 8, 
10, 12, and 46 (Iphone 3 in type IV with the scale factor 0.3) , and the cluster consisting 
of original classes 54, 55, 61, 60 (E71 in type IV with the scale factor 0.5) , 62 (E71 in 
type V with the scale factor 0.5), and 64 (E71 in type VI with the scale factor 0.5). 
Similarly, it is not easy to accurately identify the images captured by Huawei U8150 in 
type IV with the scale factor 0.3 (original class 33). 

In Figure III-5-4, the re-labeled class 11 is prone to be classified as re-labeled classes 7 
and 10. That is, the images captured by Huawei U8150 in type IV with the scale factor 
0.3 (original class 33) may not be accurately identified.  

To compare the detection results shown by Table III-5-6, wherein image labeling is based 
on the five smartphone sources but ignored the manipulations, we re-label all types of 
images with all scale factors into five clusters (classes), the cluster 1 consists of original 
classes 30, 32, 4, 6, …, 43, 45, 56 and 58; cluster 2 consists of original classes 24 and 
26; cluster 3 consists of original classes 17 and 19; cluster 4 only contains original class 
14; and cluster 5 is derived from original class 53. Table III-5-9 shows the mean testing 
accuracy of confusion matrix over 100 experiments. As before, 60% images are randomly 
selected from each cluster for training and the remaining are used for testing. By 
comparing the experimental results shown in Table III-5-7 and in Table III-5-8, the 
advantage is noticeable by considering smartphone source and manipulation together with 
the aid of clustering analysis (i.e., followed by supervised learning). 

B.  Tables: 

Table III-5-7 Clustering by standardized Euclidean distance and original classes 

Cluster Original classes in the cluster Cluster Original classes in the cluster Cluster Original classes in the cluster 

1 4, 5, 6, 11, 13, 30, 31, 32, 37, 
39 7 54, 55, 60, 61, 62, 64 13 34, 36, 38 

2 1, 2, 3, 9 8 57, 63, 65 14 24, 26 

3 8, 10, 12, 46 9 40, 41, 42, 43, 44, 45, 47, 48, 
49, 50, 51, 52 15 56, 58 

4 7 10 27, 28, 29, 35 16 17, 19 
5 59 11 18 17 14 
6 15, 16, 20, 21, 22, 23, 25 12 33 18 53 
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Table III-5-8 Clustering by Euclidean distance and original classes 

Cluster Original classes in the cluster Cluster Original classes in the cluster Cluster Original classes in the cluster 
1 30,32 7 34,36,38 13 43,45 
2 4,6 8 57,65 14 56,58 
3 5,11,13,31,37,39 9 50,52 15 24,26 

4 27 10 7,15,16,20,21,22,23,25,40,41,42, 
44,47,48,49,51,54,55,59,60,62,64 16 17,19 

5 1,2,3,8,9,10,12 11 33 17 14 
6 28,29,35 12 18,63 18 53 

Table III-5-9. Mean testing accuracy over 100 experiments based on all type images with all scale factors 

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Actual 
cluster 

Cluster 1 99.90 0.08 0.01 0 0.00 99.81 0.19 0 0 0.00 

Cluster 2 10.32 89.68 0 0 0 13.65 86.35 0 0 0 

Cluster 3 1.20 0 98.80 0 0 0.52 0 99.48 0 0 

Cluster 4 0.09 0 0 99.91 0 0.44 0 0 99.56 0 

Cluster 5 4.12 0.24 0.42 0 95.22 6.16 0 0 0 93.84 

C.  Figures: 

(a) (b) 

(c) (d) 

Figure III-5-1. Mean confusion matrix over 100 experiments using our approach (a and b) and using 
Markov approach (c and d). 
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The hierarchical binary cluster tree 

(pairwise distance measured by standardized Euclidean distance) 

(a) 

The hierarchical binary cluster tree 

(pairwise distance measured by Euclidean distance) 

(b) 

 
 

 

 

 

Figure III-5-2. Hierarchical binary cluster tree measured by standardized Euclidean distance (a) and Euclidean distance 
(b). Note that the numbers in the squares represent re-labeled classes. 
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Figure III-5-3. Mean confusion matrix over 100 experiments ((a) and (b)) and the hit rate for re-labelled 
18 classes ((c) and (d)), based on HAC with pairwise distance measured by standardized Euclidean 
distance in Figure III-2(a) 
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Figure III-5-4. Mean confusion matrix over 100 experiments ((a) and (b)) and the hit rate for re-labelled 
18 classes ((c) and (d)), based on HAC with pairwise distance measured by Euclidean distance in Figure 
III-2(b) 

III-6. Detection of MPEG Double Compression 

A.  Statement of Results:  

A.1. Detection of MPEG double compression with same encoder 

Table III-6-1 and Table III-6-2 show the experimental results when one MPEG-2 encoder is 
utilized to simulate the double compression process at different target output bit-rates. It turns out 
that the detection accuracy of the detector can be achieved approximately above 87.00%.  In these 
two MPEG-2 encoders, the CBR scheme in the TM5 is more flexible than that in the Premiere. 
Even when the target output bit-rate of the secondary compression is fewer than that of the primary 
compression, TM5 will still select small quantization scale factors to quantize a number of DCT 
coefficients, which can be used to realize the double compression detection. Given a video clip 
compressed by TM5, the detectors are easier to identify whether it is doubly compressed. Since 
Wang’s method only works for double MPEG-2 compression with VBR mode, we will only 
compare our method with Chen’s scheme to detection of double MPEG-2 compressed videos for 
CBR mode. Both two schemes can have excellent detection results when the target output bit-rate 
of the secondary compression is very high. However, when the target output bit-rate of the 
secondary compression is lower than that of the primary compression, the detection accuracy of 
both of them will decrease, but the simulation results also show that the robustness of our scheme 
is considerably better than Chen’s scheme. 

A.2. Detection of MPEG double compression with different video encoders 

In this experiment, two DVs (digital video camcorders), Sony HDR-XR500E and Canon FS10E, 
are utilized to obtain the original MPEG-2 videos. We use each camcorder to record 50 nature 
video clips with length of 300 frames in our campus. In each test group, 50 nature image sequences 
are firstly encoded into MPEG-2 compressed files by the built-in encoder in the DV. These 
original compressed streams are input into PC, decoded and re-coded into 50 double compressed 
streams by the MPEG-2 video coding software -- Adobe Premiere Pro 2.0 or TM5.  Finally 200 
test streams (100 single compressed streams and 100 double compressed streams) will be put into 
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our detector to test its performance. 

In the parameter settings, the most important parameters in DVs are resolution and target output 
bit-rate. The standard definition video format is selected as our encoding mode, whose resolution 
is 720×576 and output bit-rate is 6 Mbps. The other parameters just only affect the subjective 
effects of video resources, but have less impact on the statistical characteristics of DCT coefficient 
distribution, and we initial them as default values in the DVs. In the MPEG-2 software coders, all 
parameters are set the same as the MPEG-2 encoders in Section V.A. We only adjust the target 
output bit-rate of software encoders to create new video files with different quality to test the 
adaptability of our detection scheme. 

The detection accuracy and recall for doubly MPEG-2 compressed videos are shown in Table III-
6-3 and Table III-6-4, where the target output bit rate of the secondary compression varies from 4 
Mbps to 8 Mbps in steps of 1 Mbps. The detection results in these two tables show that our 
proposed method indeed outperforms Chen’s method when the primary compression and 
secondary compression adopt different MPEG-2 encoders, because the quantization process, the 
motion prediction algorithm, and the bit-rate control scheme are almost different between these  
two compression processes. Those differences may induce the rearrangement of DCT coefficients  
in the doubly compressed video and the first digit distribution of AC coefficients may also tend to  
obey the Benford’s law. It is also found that the detection performance improves as the output bit-
rate of the secondary compression increases. When  the target output bit-rate of the secondary  
compression is lower than that of the primary compression, implied that the number of 
macroblocks quantized by  small quantization scale factors is reduced, the quantization process  
with large quantization scale factors may weaken the features of the primary compression. Thus, 
the performance of double compression detector declines. On the other hand, some test sequences 
with simple contents and slow movements often incur detection errors, because most of original 
DCT coefficients in those frames focus on a certain interval, and their distribution is not consistent 
with the Laplacian distribution assumption.  

A.3. Detection of double compression with frame tampering operation 

Frame tampering is one of the common video forgery operations, which can change the video 
content and confuse the viewers by removing some special frames in the video resources, such as 
some surveillance videos. In this experiment, 50 original compressed videos recorded by Sony 
HDR-XR500E at 6 Mbps are decoded into an image sequences, and the first three images are 
removed to simulate the frame tampering operation. Finally these doctored sequences are re-coded 
at different target output bit-rates by TM5, and 100 test streams (50 singly compressed streams 
and 50 doubly compressed streams) will be put into our detector to verify its robustness.  

Table III-6-5 shows the experimental results that the performance of our detector has declined 
slightly. When some frames are removed, the structure of GOP in the original sequence will be  
damaged, and the type of some subsequent frames will be changed in the secondary compression, 
i.e. some inter frames in the primary compression process may be re-coded as intra frames during 
the secondary compression. Since the distribution of DCT coefficients in inter-frames behaves 
similarly as that in intra-frames, there still are some convex patterns in the distribution of quantized  
DCT coefficients.  
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B.  Tables: 

Table III-6-1.  The Detection Performance of Double Compression System with TM5 

First Encoder Second Encoder Chen’s scheme Proposed scheme 
(bit-rate) (bit-rate) Precision Recall Precision Recall 

TM5(4 Mbps) 62.50% 60.00% 89.36% 84.00% 

TM5(6 Mbps) 
TM5(5 Mbps) 69.23% 72.00% 93.33% 84.00% 
TM5(7 Mbps) 90.57% 96.00% 100.00% 100.00% 
TM5(8 Mbps) 100.00% 100.00% 100.00% 100.00% 

Table III-6-2.  The Detection Performance of Double Compression System with Premiere 

First Encoder Second Encoder (bit- Chen’s scheme Proposed scheme 
(bit-rate) rate) Precision Recall Precision Recall 

Premiere (4 Mbps) 64.58% 62.00% 86.96% 80.00% 
Premiere(6 Premiere (5 Mbps) 68.75% 66.00% 87.50% 84.00% 

Mbps) Premiere (7 Mbps) 88.24% 90.00% 100.00% 96.00% 
Premiere (8 Mbps) 100.00% 100.00% 100.00% 96.00% 

Table III-6-3.  The Detection Performance of Double Compression System with Different Encoders 

First Encoder Second Encoder 
Chen’s scheme Proposed scheme 

Precision Recall Precision Recall 

Sony HDR-
XR500E 
 (6 Mbps) 

TM5(4 Mbps) 52.38% 44.00% 95.80% 92.00% 
TM5(5 Mbps) 57.14% 56.00% 100.00% 96.00% 
TM5(6 Mbps) 61.70% 58.00% 100.00% 96.00% 
TM5(7 Mbps) 62.50% 60.00% 100.00% 96.00% 
TM5(8 Mbps) 64.71% 66.00% 100.00% 100.00% 

Canon FS10E 
(6 Mbps) 

TM5(4 Mbps) 67.31% 70.00% 88.50% 92.00% 
TM5(5 Mbps) 66.67% 68.00% 92.00% 92.00% 
TM5(6 Mbps) 66.67% 72.00% 95.80% 92.00% 
TM5(7 Mbps) 68.52% 74.00% 96.00% 96.00% 
TM5(8 Mbps) 69.39% 68.00% 96.00% 96.00% 

Table III-6-4.  The Detection Performance of Double Compression System with Different Encoders 

First Encoder Second Encoder 
Chen’s scheme Proposed scheme 

Precision Recall Precision Recall 

Sony HDR-
XR500E 

Premiere (4 Mbps) 57.69% 60.00% 100.00% 92.00% 
Premiere (5 Mbps) 56.52% 52. 00% 100.00% 96.00% 
Premiere (6 Mbps) 62.96% 68.00% 100.00% 100.00% 

(6 Mbps) Premiere (7 Mbps) 63.64% 70.00% 100.00% 100.00% 
Premiere (8 Mbps) 64.91% 74.00% 100.00% 100.00% 
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Canon FS10E 

Premiere (4 Mbps) 63.83% 60.00% 95.70% 88.00% 
Premiere (5 Mbps) 69.30% 68.00% 95.80% 96.00% 
Premiere (6 Mbps) 70.59% 72.00% 96.00% 96.00% 

(6 Mbps) Premiere (7 Mbps) 70.59% 72.00% 100.00% 96.00% 
Premiere (8 Mbps) 71.15% 74.00% 100.00% 96.00% 

Table III-6-5.  The Detection Performance of Frame Tampering Operation 

First Encoder Second Encoder Precision Recall 

TM5 (4Mbps) 71.88% 92.00% 

Sony HDR-
XR500E  
(6 Mbps) 

TM5 (5 Mbps) 88.00% 88.00% 

TM5 (6 Mbps) 87.50% 84.00% 

TM5 (7 Mbps) 96.00% 96.00% 

TM5 (8 Mbps) 100.00% 84.00% 

III-7. MP3 steganalysis 

A. Statement of Results: 

A.1. Statistics of Feature Sets 

We compared the significance of GGD shape statistical features, frequency-based 
subband moment statistical features, accumulative Markov transition features and 
neighboring joint density features, respectively (Qiao, Sung and Liu 2013). 

Figures III-7-1(a) and (b) list the F scores of the ANOVA of the features extracted from 
covers and steganograms produced by using the MP3Stego audio steganographic tool with 
16% and 20% modification density. The Y-axis indicates the F score, and the X-axis gives 
the number of features. 

From the comparison of the F scores, we found that frequency-based subband moment 
statistical features outperform the other feature sets, especially those extracted from 
middle frequency and correspond to higher F scores. We surmised that the detection 
performance using frequency-based subband moment statistical features is the best. 
Accumulative Markov transition features and neighboring joint density features obtain 
similar F scores at 16% and 20% modification density. In GGD shape statistical features, 
the high-order moment statistics, especially the skewness of shape parameters, are more 
discriminative. Although the higher F score indicates the more significant feature, the 
interaction and the redundancy of the feature sets also affect the classification 
performance. Therefore, the testing accuracy is more reliable in evaluating the 
performance of features. 
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Figures III-7-2(a) and (b) illustrate the comparison of SVM testing accuracies by using all 
samples at 16% and 20% modification density correspondingly. The detection 
performance of frequency-based subband moment statistical features is superior to the 
performance of accumulative neighboring joint density features, GGD shape statistical 
features, and accumulative Markov transition features. Moreover, the distribution of the 
testing accuracy of frequency-based subband moment statistical features shows a smaller 
degree of dispersion than other feature sets, which indicates a more stable classification. 

A.2. Comparison of Feature Selection Methods  

We combined GGD shape statistical features, frequency-based subband moment  
statistical features, as well as accumulative Markov transition features and accumulative 
neighboring joint density features to form a comprehensive approach of MP3 audio 
steganalysis. However, the large feature dimension and redundancy compromise the 
performance and the efficiency of the detection. To further increase the classification 
accuracy, we employed two widely used feature selection methods; ANOVA and SVM-
RFE. We also designed a two-step approach by combining these two methods. For the 
two-step approach, we picked 200 as a threshold to divide the processes of two feature 
selection methods. All features were ranked using ANOVA, The features with the top 200 
F scores were chosen as the input for SVM-RFE. The size of feature subset for 
classification continued increasing from 1 to 200 in the order of the feature rank provided 
by SVM-RFE. For accurate evaluation, we divided the whole data set into low (β < 0.162), 
middle (0.151<= β <= 0.171), and high (β >= 0.162) complexity zones with 50% overlap 
between adjacent zones using GGD shape parameter of all quantized MDCT coefficients 
in each sample. Furthermore, the whole dataset, including samples with all complexities,  
was used as another category. 

Regarding the relation between detection performance and signal complexity, as shown 
in Table 1, as the signal complexity increases, the detection performance decreases. Since 
the average signal complexity of the whole dataset is 0.164, the average classification 
accuracy of all samples is close to the accuracy of middle complexity.  

In the comparison of the three feature selection methods, the two-step approach 
outperforms ANOVA and SVM-RFE in each category of signal complexity and 
modification density. Our study also shows that the two-step approach adopts the 
advantage of low standard errors and thus provides more stable detection performance. 

In addition to the comparison shown in Table III-7, the receiver operating characteristic 
(ROC) curves by using ANOVA, SVM-RFE, and the two-step approach are given in 
Figure III-7-3. The ROC curve of the two-step approach generates the largest area under 
the curve at 20% modification density. 

84 



 
 

 

 

 
 

 

      

 

 

 

 

 

 
 

 

B. Tables: 

Table III-7 

Average Testing Accuracy Values and Standard Errors of Feature Selection Methods: ANOVA,  SVM-
RFE, and Two-step  Approach Incorporating ANOVA with SVM-RFE at the Optimal Feature Dimension. 

Modification 
density 

Signal 
complexity 

Testing accuracy (mean ± std, %) 

ANOVA SVM-RFE ANOVA &   SVM-RFE 

8% 

Low 81.6 ± 1.4 85.9 ± 2.8 88.6 ± 1.4 

Middle 78.1 ± 1.2 82.2 ± 2.3 84.9 ± 0.9 

High 75.6 ± 1.8 78.2 ± 1.9 81.4 ± 1.2 

All 79.4 ± 1.1 86.6 ± 1.6 86.1 ± 1.7 

12% 

Low 88.6 ± 1.4 94.0 ± 2.2 95.1 ± 1.6 

Middle 84.9 ± 1.7 91.0 ± 1.8 91.3 ± 1.4 

High 82.6 ± 0.6 88.9 ± 2.0 90.0 ± 1.8 

All 85.0 ± 0.9 90.6 ± 1.2 90.4 ± 0.9 

16% 

Low 90.4 ± 1.4 95.9 ± 2.8 97.0 ± 1.6 

Middle 89.3 ± 1.3 93.2 ± 2.1 94.8 ± 1.1 

High 87.7 ± 1.0 91.8 ± 2.2 92.1 ± 1.2 

All 88.5 ± 0.6 93.2 ± 0.7 93.3 ± 1.0 

20% 

Low 94.6 ± 0.8 96.7 ± 2.6 98.6 ± 1.0 

Middle 91.1 ± 1.6 94.7 ± 2.4 95.3 ± 1.4 

High 89.9 ± 0.7 94.3 ± 2.8 93.6 ± 1.6 

All 91.0 ± 0.9 94.9 ± 0.5 95.6 ± 0.6 

C. Figures:  

  (a) (b) 

Figure III-7-1.  One way ANOVA F scores (Y-label) of Accumulative Markov transition features (IM), 
Accumulative neighboring joint density (INJ), frequency-based subband moment statistical features (2DS), 
and GGD shape statistical features (Mβ) from whole data set including samples with all signal complexities 
at 16% and 20% modification density in (a) and (b) respectively. 
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(a) (b) 

Figure III-7-2.  SVM testing accuracies by using feature sets: Accumulative Markov transition features (1), 
Accumulative neighboring joint density features (2), Frequency-based subband moment statistical features 
(3), and GGD shape statistical features (4) from whole data set including samples with all signal 
complexities at 16% and 20% modification density in (a) and (b) respectively. 

 

 

 

(a) (b) (c)

 (d) (e) (f) 

Figure III-7-3.  ROC curves by using ANOVA (a,d), SVM-RFE (b,e), and two-step feature selection (c,f) 
methods, in detection of MP3 steganograms with 16% (first row) and 20% (second row) modification 
densities. 
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                   Prediction  Manipulation (cropped by)  
untouched  

Truth  5 50  200 400 480  512 750 900  1000  

untouched  99.4  0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 

5 3.4 96.6  0 0 0 0 0 0 0 0 

50 1.8 0 98.2  0 0 0 0 0 0 0 

200 2.1 0 0 97.9  0 0 0 0 0 0 

400 1.5 0 0 0 98.6  0 0 0 0 0 
Manipulation  

480 1.2 0 0 0 0 98.8  0 0 0 0 (Cropped by) 
512  2.3 0 0 0 0 0 97.7  0 0 0 

750  2.0 0 0 0 0 0 0 98.1  0 0 

900  2.4 0 0 0 0 0 0 0 97.7  0 

1000  2.2 0 0 0 0 0 0 0 0 97.9  

 
 

  

                   Prediction  forgery (shifted by)  
untouched  

Truth    100 300  500 700  900  

untouched  98.8  0.2 0.1 0.2 0.3 0.3 

100 1.2 98.7  0 0 0 0.0 

300 0.8 0.1 99.1  0 0 0.0 
forgery  

500 0.6 0 0.0 99.4  0.0 0.0 (shifted by)  

700 0.8 0 0.0 0 99.2  0.0 

900 1.2 0.2 0.0 0.0 0 98.6  
 

III-8. AAC Audio Forgery Detection 

A. Statement of Results: 

Figure III-8-1 shows the SRSC features extracted from an untouched AAC audio file and from the 
cropping by 50 samples and the cropping by 900 samples individually and recompressed versions. 

We apply a popular SVM technique LibSVM (Chang and Lin 2011) with a linear kernel for 
training and testing. One hundred experiments are performed for training and testing. In each 
experiment, 60% feature sets from each category are randomly selected for training and the 
remainders are used for testing. The mean testing results over 100 experiments are listed in the 
confusion matrix, shown by Table III-8-1. 

Table III-8-2 shows the confusion matrix with the experimental results over 100 experiments. 

Figure III-8-2 shows the SRSC features extracted from the six parts of an original AAC audio file 
(first row) and from the six part of the doctored AAC audio file with the forgery taking place on 
the middle. The comparison show that the first three parts of the original audio and doctored audio 
are similar, but the pattern of the SRSC features from the last three parts are different, which 
approximately reveals the forged area in doctored AAC audio stream in the middle. 

B. Tables: 

Table III-8-1. Confusion matrix on testing sets (mean values, %) by using LibSVM with linear kernel over 
100 experiments. 

Table III-8-2. Confusion matrix on testing sets (mean values, %) by using LibSVM with linear kernel over 
100 experiments. 
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C. Figures: 

Figure III-8-1.  SRSC features  of original  AAC audio (a) and the AAC audio once cropped by 50 samples 
(b) and by  900  samples (c) 

Figure III-8-2. The comparison of the SRSC features extracted from the six parts of an original AAC audio 
file and from manipulated AAC audio file with doctoring on the middle. 
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IV.  Conclusions  

A.  Discussion of findings 

A.1. Steganalysis and forgery detection in JPEG images 

In JPEG image steganalysis, compared to the calibration that only takes once-cropping 
(e.g., only shifting by 4 rows and 4 columns), the computation cost of our proposed 63-
time-cropping-based calibration is relatively high but obtains a better detection accuracy.  

It is worth noting that the 63-time-cropping-based approach is useful to generate the 
reference features for steganalysis and is also very promising to detect the misaligned 
cropping and recompression with the same quantization matrix and relevant forgery 
including copy-paste and composite forgery that are derived from the same camera source 
and encoded with the same quantization table (Liu 2011b).   

In steganalysis of YASS, although Li, Shi and Huang (2009) demonstrated the weakness 
of the YASS steganographic system, the detection algorithm does not search all candidate 
host blocks, resulting in deteriorated detection performance when detecting the 
steganograms produced by a large B-block parameter. Additionally, the detection assumes 
the condition of the exact positions of AC coefficients that are used for data embedding, 
which is generally inapplicable.  Following the strategy to expose potential candidate 
blocks, our study has surmounted such obstacles by searching all possible candidate 
blocks and comparing the neighboring joint density of these candidate blocks and the non-
candidate neighboring blocks. 

In an original YASS embedding algorithm, the embedding is limited to the 19 low-
frequency AC coefficient; the upper-left of the first B-block is overlapped with the upper-
left of the first 88 block. If we assume that the embedding positions of binary hidden bits 
are not limited to the 19 low-frequency AC DCT coefficients, our approach is still 
effective for the detection because our feature extraction is not limited to the position of 
19 low-frequency AC coefficients. However, if prior knowledge of approximate 
embedding position is available, the detection performance may be further improved.  

If the first B-block is randomly misplaced from the upper-left point of the first 88 block, 
we can exhaust all possibility of mismatching, a total of 64 combinations including the 
original exact matching; accordingly we can retrieve the diff-absNJ features in each 
mismatching which will detect such polymorphism of the YASS steganographic system. 
In this case, the detector will contain 64×63 = 4032 features. However, the detector cannot 
deal with the completely randomized embedding if we further revise and improve the 
YASS algorithm. 

A rich model-based detector can be applied to detect YASS steganograms without 
exposing the position of candidate blocks, although the detection performance is not 
accurate as our approach, and the computational cost is also fairly high with an ensemble 
classifier and too high to be suitable with SVM. However, a rich-model-based approach 
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 d1  = R(c / q1) (IV-1) 

demonstrates a direction to deal with completely randomized embedding, which may be 
further investigated. Meanwhile, YASS detection is still difficult when the noused 
parameter is small. 

To reduce the feature dimensionality and to further improve the detection accuracy, we 
may integrate all detectors together; a feature selection algorithm is applied to select 
optimal feature set. The feature selection to reduce feature dimensionality and improve 
detection accuracy in steganalysis has been studied in our previous research (Liu, Sung, 
Chen et al 2008; Liu et al 2010). We do not apply any feature selection algorithm in this 
study to compare the detection performance under different combinations of features. 
There are many algorithms to select optimal feature set and achieve the best classification 
performance, such as SVM-RFE (Guyon et al 2002); MSVM-RFE (Zhou and Tuck 2007), 
recursive feature addition based on supervised learning and similarity measurement (Liu, 
Sung, Chen et al 2010), minimum Redundancy Maximum Relevance (Peng et al 2005), 
etc. The steganalysis performance could be further improved by employing feature 
selection algorithms while obtaining an optimal feature set with reduced feature 
dimensionality, which could be applied to rich models.  

In summary, our study shows that our approach has multiple promising applications in 
image forensics. Compared to the state-of-the-art of steganalysis detectors, our 
approaches deliver better or comparable detection performances with a much smaller 
feature set to detect several steganographic systems including DCT-embedding-based 
adaptive steganography and YASS. Our method is also effective to detect seam-carved 
forgery in JPEG images. By integrating calibrated neighboring density with spatial 
domain rich models that were originally designed for steganalysis, the hybrid approach 
obtains the best detection accuracy to discriminate seam-carved forgery from an 
untouched image in JPEG format. Our study shows that it is a promising manner by 
exploring steganalysis and forgery detection together. 

A.2. Detection of JPEG double compression and smartphone image source and post-
capture processing
While detecting JPEG double compression, experimental results show that the detection
performance varies with different image quality. We analyze the impact of compression
quality factor on the detection as follows. Let c  denote the DCT coefficient before
quantization,  d1  denote the quantized DCT coefficient at the first JPEG compression with 
the quantization factor q1, and d2  denote the quantized DCT coefficient after the second
compression with the quantization factor q2, R(•) is a round function, e.g. R(3.5) = 4,

d2= R (d1 q1  / q2) (IV-2) 

The corresponding DCT coefficient s  in the single JPEG compression using the division 
factor q2  is obtained  by 

s= R(c/ q2) (IV-3) 
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 d 2	-	s	∈[-R			(q1/2q2	)	-1 ,	-	(	q1/2q2	)	+1]  (IV-4) 

 

 

 Suppose that c > 0, the range of d1 q1 is (c - 0.5q1, c  +  0.5q1], and the range of d2 - s is 

                  [R(c/q2 - q1/q2) - R(c/q2), R(c/q2 + q1/q2) - R (c/q2)]

(i) If the quality of the first compression equals the quality of the second compression, 
that is q1 = q2, then d2 = s ;

(ii) If the quality of the first compression is not equal to that of the second compression, 
the error range

If the quality of the first compression is lower than that of the second compression, q1 >  
q2, then the scope of the error range spread out, and the error tends to become large; if the  
quality of the first compression is higher than that of the second compression, q1 < q2, then  
the scope of the error range is narrow. As a result, the detection of the double compression 
at q1 > q2 should be better than the detection at  q1 < q2, which has been validated by our 
experimental results.  

The relative error between d2 and s is listed as follows: 

R q q
(d  s)   s  1 2  1

2 
                                                  (IV-5) 

R( c q  2 ) 

In terms of image complexity, in general, high image complexity corresponds to the large 
shape parameter of the GGD of the DCT coefficients and the high probability of large 
DCT coefficient, that is, the value of c tends to be large, resulting in large  s, and the 
relative error tends to be small, therefore, the detection accuracy in high image complexity 
deteriorates. 

While identifying smartphone image source and manipulation together, from our 
standpoint, some post-capture operations such as double compression followed by down-
scaling will remove original traces/patterns of smartphone images, in such case, it is not 
good to classify these processed images into different classes based on original 
smartphone types. However, we did not know the particular operations that remove  
original traces, therefore, clustering is utilized to classify the smartphone images from 
different smartphones but processed by similar operations into the same cluster, which is 
helpful to improve the classification accuracy and to identify the operations that remove 
original smartphone traces. 

With the use of LibSVM, we only adopted the default kernel parameters for the linear 
kernel and RBF kernel, and did not make the grid search to optimize the kernel parameters. 
The detection performance could be improved by optimizing the kernel parameters. While 
using hierarchical agglomerative clustering, we only adopted standardized Euclidean 
distance and usual Euclidean distance to measure the pairwise distance, other distance 
measurements, such as Mahalanobis distance, Minkowski distance with exponent 2, 
correlation, and cosine distance, have not been fully examined. Additionally, our 
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smartphone image database is not large enough; more brands of smartphones, more 
smartphone images, and more operations should be included and collected in the future to 
conduct a more convincing examination. 

To sum up, we have developed a technique that can successfully detect JPEG double 
compression by integrating marginal density and the neighboring joint density features in 
DCT domain. Our method is superior to Markov process-based approach in terms of 
achieving a higher detection accuracy at a lesser computational cost. Our study shows that 
the detection performance is related not only to the compression quality factors but also 
to image complexity, which is an important parameter that seems to have been so far 
overlooked by the research community in conducting performance evaluation. To 
formally study the performance evaluation issues, the image complexity and compression 
quality should therefore be included as a whole.   

Following the success in detection of JPEG double compression, we conducted studies 
based on processed smartphone images to identify the smartphone source and the post-
capture manipulations. Experimental results show that our method is strongly promising 
in correctly identifying the smartphone source and revealing the past manipulations 
simultaneously, including the combination of double JPEG compression, cropping, and 
rescale. Our studies also indicate that, due to the complexity of intentional manipulation, 
it is more productive to combine clustering and classification techniques together for 
performing the detection. 

A.3. Detection of MPEG double compression 

We conduct a qualitative statistical analysis about the impact caused by MPEG-2 
compression on distributions of reconstructed DCT coefficients, and demonstrate the 
differences in distributions of quantized DCT coefficients between the single compression 
and double compression. A set of DCT distributions with different quantization scale 
factors are constructed to extract convex pattern features, and a novel detection algorithm 
is designed to detection of double MPEG compression in CBR videos. In our simulation 
system, the target output bit-rate, rather than quantization scale factor, is selected as the 
only parameter to control MPEG-2 encoders. The target output bit-rate can easily be 
configured through the system menu, without need to modify source codes of MPEG-2 
encoders. So it makes our detection algorithm more suitable for all kinds of video coding 
systems, especially in some business video systems. On the other hand, our proposed 
detection algorithm maintains good detection performance in many cases. More 
specifically, it can detect double compressed videos with both high-quality and low-
quality. Even if the primary compression and the secondary compression use different 
kinds of MPEG-2 encoders, our algorithm can also reveal the track of double MPEG-2 
compression.  

Future research efforts will focus on improving the detecting accuracy of our algorithm. 
At the same time, it is notable that detection of double MPEG compression does not 
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necessarily prove malicious tampering, because it is possible that a user resaves the high 
quality video file as a lower quality one to save storage space. As a result, we need to 
explore new features in the spatial domain and temporal domain of video resources, and 
combine existing detection techniques to reveal the real video tampering operation. 

A4. MP3 audio steganalysis 

Frequency-based subband moment statistical features provide a more accurate and stable 
classification than the other feature sets. More specifically, the features corresponding to 
the middle part of 576 subbands are more significant than those corresponding to the high 
and the low parts. The reason for this phenomenon is that the high and the low parts of the 
subbands usually contain quantized MDCT coefficients of large and small values. The 
MP3Stego algorithm embeds data by modifying the quantization step-size, which affects 
all MDCT coefficients in the particular frame. However, the effects of different values 
vary greatly due to the non-uniform scale of quantization. The larger values usually refer 
to the more informative content of the audio signal, and they are mainly determined by 
the characteristic of the signal. The information-hiding behavior and the high complexity 
of the signal could both indicate the inconsistency of the coefficients between adjacent 
frames. The zero value usually does not change by modifying the quantization step-size. 
Therefore, the features extracted from the middle frequency are more sensitive to 
information-hiding. 

In this study, we focus on detecting the information-hiding of MP3Stego, because 
MP3Stego implements a unique hiding scheme which is involved in the compression 
process. However, the proposed approach also has the generalization capability to 
steganalyze other steganographic systems, because the traditional steganography 
introduces more distortion than MP3Stego in compressed audio.  

The GGD shape parameter is introduced as an important signal complexity measure to 
evaluate the detection performance. With same modification density, the detection 
accuracy decreases as the signal complexity increases. However, the GGD shape 
parameter only describes the distribution of the MDCT coefficients of the entire audio and 
neglects the relation between MDCT coefficients in one frame or one subband. Since 
different complexities may have similar distributions, an accurate measure of signal 
complexity with fine granularity is another important issue to MP3 audio steganalysis. 
Since we extract the shape parameter from quantized MDCT coefficients, the distribution 
of these coefficients is not only influenced by the signal complexity but also by the setting 
and the implementation of MP3 encoder. The MP3Stego has a tight coupling between the 
hiding algorithm and the MP3 encoder. Although the implementations of the MP3 encoder 
have to comply with ISO standards, the differences in the quantization function and 
distortion control will affect the performance of steganalysis. The differences in the 
quantization function may affect the distribution of MDCT coefficients and increase the 
false alarm rate with a trained model using another encoder. 

In summary, we propose a comprehensive approach to steganalysis of MP3 audio by 

93 



 
 

 
 

 
 

 

 
 

 
 

 

 

deriving a combination of features from quantized MDCT coefficients. We extract 
frequency-based moment statistical features, accumulative Markov transition features, 
and accumulative neighboring joint density features. We also model the distortion by 
extracting the distribution parameters of generalized Gaussian density from individual 
frames in the MDCT transform domain. Different feature selection algorithms are applied 
to improve detection accuracy. For an accurate evaluation, signal complexity and 
modification density are introduced to evaluate the performance of the proposed approach. 
Experimental results show that our approach successfully detects the information-hiding 
in MP3 steganograms generated by the MP3Stego steganographic tool. The proposed 
approach obtains reliable performance under each category of signal complexity, 
especially for audio signals with high signal complexity, and thus improves the state of 
the art of audio steganalysis. 

A5. AAC audio forgery detection 

Although our experiments presented above do not examine all possibility of AAC audio 
forgery due to the very high computational cost (it is very time-consuming to examine of 
all possible forgery shifted by 1023 positions), by simulating part cases of AAC audio 
forgery at a reasonable computational cost, our experimental results do verify the 
effectiveness of our proposed shift-recompression-based approach to detection of AAC 
audio forgery of the same bit rate. The detection accuracy is very promising. 

It is worth noting that shift-recompression-based method is effective not only for detecting 
AAC audio forgery, but also for detecting MP3 audio forgery of the same bit rate.   

B.  Implications for policy and practice  

Multimedia forensics is a multiple-disciplinary research field with important impacts to 
law enforcement. In multimedia forensics, steganography detection or steganalysis and 
forgery detection are two spots. It is know that that steganography had been employed by 
a foreign government intelligence agency and digital multimedia data can now be easily 
forged. Multimedia steganography and forgery techniques and the proliferation have made 
big challenges to law enforcement. 

By exploring the characteristic modification caused by digital multimedia steganography 
and forgery, developing new detection algorithms/approaches, and adopting new 
measurement parameters for the evaluation, we have successfully achieved the project 
goals including “discovering the characteristic modification caused by digital multimedia 
steganography and forgery, developing more accurate and more reliable methods for 
steganalysis and digital evidence authentication, and developing a complete evaluation 
procedure for gaining full understanding of the accuracy, reliability, and measurement 
validity of steganography detection and digital evidence authentication in digital image, 
audio, and video files.” 
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The implications for policy and practice lie in the following: 

1. Although multimedia steganography and forgery have made big challenges to law 
enforcement in protection of public safety and national security, our study shows 
that some advanced steganography and forgery systems can be accurately detected 
and hence the relevant crimes may be defeated and/or prevented. For example, in 
detecting several types of JPEG steganography at the relatively high information 
hiding ratio, our approach has achieved 100% mean accuracy over 100 experiments. 
Our forgery detection approaches in this study are also very promising with high 
detection accuracies. Therefore, we would recommend utilize the state-of-art for 
steganography and forgery detection for forensics purposes.  

2. The complete evaluation in multimedia forensics may include multiple parameters 
including information hiding ratio and/or forgery size, compression factors, hiding 
algorithms, multimedia signal complexity, detection algorithms, feature selection 
methods, classification models and learning classifiers. 

3. Our study also indicates that it is still hard to defeat some meticulously designed 
steganography, e.g., the data hiding takes place in the high complexity components 
in the multimedia signal (Liu Sung Chen and Huang 2011).  

4. The study in multimedia forensics is normally subjected to relatively simple 
environment with a certain knowledge and limitation to the testing multimedia data. 
For example, to detect some type of steganography by using a steganographic 
algorithm x, the steganograms are denoted as Sx, covers are denoted as C. 
Classification models are constructed to discriminate the steganogram from cover. 
It is clear that the detection is conducted in the environment that contains only Sx 
and C, and the outcome can be predicted either Sx or C, relatively predestinated. 

Unfortunately, the real life detection generally faces an open and complicated 
environment. For example, we are given a JPEG image to determine whether it is 
carrying a covert message or not. How do we cope with it? We cannot simply adopt 
the classification model that was used to distinguish Sx and C, since we are not sure 
about the image under examination is either an untouched cover or the type Sx of 
steganogram, or some other type of steganogram, or a cover that was processed by 
some legitimate operations.       

5. It is known that that steganography had been employed by a foreign government 
intelligence agency (Web justice 1; Web justice 2), and the potential usage of 
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steganography to disseminate covert message in social media such as on Facebook 
could be enormous (web secretbook). The further study in multimedia forensics is 
highly needed for forensics purposes. 

C.  Implications for further research  

The continuous improvement of the state of steganalysis and forgery detection should be 
emphasized in the future study. Additionally, several new steganographic systems have 
been proposed to hide data in JPEG images (Liu, Sung, Chen and Huang 2011; Holub and 
Fridrich 2013), a Google Chrome extension is currently available to hide data in the photos 
by Facebook (web secretbook). AAC audio streams (Wei, Li and Wang 2010), and VoIP 
audio stream (Hamdaqa and Tahvildari 2011; Mazurczyk 2012) including Skype-based 
steganography (Mazurczyk, Karas and Szczypiorski 2013), and no effective detection 
methods area available to this date, which is worthy for the further exploration.  

While we have designed several effective detection approaches within the state-of-the-art, 
the realistic detection toolkits may be implemented for the testing and validation for 
forensics purposes. 

It is worthy of making the contribution for real life detection that generally faces an open 
and complicated environment. Further study may be also highlighted on revealing the 
processing history of the multimedia data under the examination.      
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