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Abstract

Steganography, the ancient art for secretive communications, has revived on the Internet
by hiding secret data in completely imperceptible manners, and has created a serious threat
due to the covert channel that can be readily exploited for various illegal purposes.
Likewise, multimedia tampering, which has been greatly facilitated and proliferated by
various multimedia processing tools, is increasingly causing problems concerning the
authenticity of digital multimedia data. There is a critical need to develop reliable methods
for steganography detection or steganalysis and for forgery detection to serve purposes in
national security, law enforcement, and cybercrime fighting.

To detect steganography and forgery on multimedia data, our research goals include
discovering the characteristic modification caused by digital multimedia steganography
and forgery, developing more accurate and more reliable methods for steganalysis and
digital evidence authentication, and developing a complete evaluation procedure for
gaining full understanding of the accuracy, reliability, and measurement validity of
steganography detection and digital evidence authentication in digital image, audio, and
video files.

To achieve these goals, the procedures of our research design and methods are conducted
as follows:

1. Construct a comprehensive and high volume multimedia steganography and forensic
database.

2. Analyze the bias and variation of each confirmed source by using existing methods;
and by developing new methods, improve the quantification of the characteristics and
uncertainties of the cover, steganography, and forgery, created by these sources, and
provide a more complete evaluation in different circumstances including multimedia
type and format, signal complexity, source type, information-hiding/forgery type and
modified size, detection method, detection accuracy, the strength and limitation of a
certain method in which circumstance.

3. Measure detection performance.

4. Monitor and improve the steps in the forensic evidence analysis process in digital
media by integrating updated methods with the use of data mining and computational
intelligence techniques for steganography detection and forgery detection.

We conjecture that data hiding in steganography and manipulation in forgery production
change the statistics of original multimedia data, and hence leave the clues of
modification. Our study aims to discover the features that may discriminate the
manipulations from intactness and analyze different patterns caused by different
operations. In this project, we have developed several novel detection algorithms based
on feature mining and machine intelligence techniques in detecting steganography,
forgery manipulation and relevant operations such as cropping, double compression on
multimedia data. Our experimental results validate our hypothesis and indicate that our
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methods have obtained the detection performances in detecting several types of
steganography and forgery on multimedia data within the state-of-the-art. Our study also
shows that a complete evaluation of the detection performance of different algorithms
should include image/signal complexity—in addition to other relevant factors such as
hiding ratio or compression ratio—as a significant and independent parameter for some

detections including JPEG double compression.
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Executive Summary
Synopsis of the Problem

Steganography, the art and science of carrying messages in covert channels, and forgery
have revived in digital realms. The detection of steganography and forgery on multimedia
data has important impacts on public safety and national security.

Several steganographic algorithms/systems have been proposed, including LSB
embedding, LSB matching (Mielikainen 2006), spread spectrum steganography (Marvel,
Boncelet and Retter 1999), Outguess (Provos 2001), F5 (Westfeld 2001), model-based
steganography (Sallee 2003 and 2005), Steghide (Hetzl and Mutzel 2005), BCH syndrome
code based less detectable JPEG steganography (Sachnev, Kim and Zhang 2009), and
highly undetectable steganography (HUGO) (Pevny, Filler and Bas 2010). Although these
steganographic systems have been successfully steganalyzed (Chen and Shi 2008;
Fridrich 2004; Fridrich, Kodovsky, Holub and Goljan 2011a, 2011b; Fu and Shi et al.
2006; Gu and Kurugollu 2011; Ker 2004; Kharrazi, Sencar and Memon 2006; Kodovsky
and Fridrich 2009, 2011, 2012; Kodovsky, Pevny and Fridrich 2010; Kodovsky, Fridrich
and Holub 2012; Li, Shi and Huang 2009; Liu, Sung and Ribeiro 2005; Liu et al. 2006;
Liu Sung and Qiao 2008; Liu et al. 2008a, 2008b, 2008c; Liu and Sung 2007; Liu et al
2011a, 2011b, 2011c; Liu 2011a; Pevny and Fridrich 2007, 2008; Shi et al. 2007), the
advances in steganography have posed new challenges to steganalyzers (Filler and
Fridrich 2010; Filler, Judas and Fridrich 2011; Filler and Fridrich 2011; Solanki, Sarkar
and Manjunath 2007).

The potential of exploiting steganography for covert dissemination is of increasing
concern; a recent espionage case revealed that steganography had been employed by a
foreign government intelligence agency (Web justice 1; Web justice 2). Secretbook (web
secretbook), a Google Chrome extension allows users to transmit completely secret
messages on Facebook, and the hidden message in photos cannot be scanned for keywords
by Facebook or read by prying friends.

In multimedia forgery, double compression is an indispensable operation, and it is an
effectual forensic indicator to recover the processing history. In digital multimedia, JPEG
(an acronym for the Joint Photographic Experts Group, which created the image
compression standard) and MPEG (an acronym for the Moving Picture Experts Group,
formed by the International Organization for Standardization and the International
Electro-technical Commission to set standards for audio and video compression and
transmission) are the most popular lossy compression standards. Today’s digital
techniques make it easy to tamper JPEG images and MPEG files without leaving any
visible clues; since most tampering involves JPEG/MPEG double compression (the
original JPEG/MEPG files are manipulated in spatial/temporal domain and then saved in
JPEG/MPEG files), it heightens the need for accurate analysis of JPEG/MPEG double
compression in image forensics.

In image forensics, while most methods target traditional image tampering, seam carving-



based image tampering in JPEG format has been ignored to some extent. Seam carving,
an algorithm for image resizing, is known as content-aware scaling, liquid resizing or
liquid rescaling. It allows the removal of selected whole objects from photographs. The
seam carving method for content-aware resizing and object removal has been
implemented in Adobe Photoshop CS4 (Web photshop-cs4), GIMP (Web liquidrescale),
digiKam (Web digikam), ImageMagick (Web imagemagick), as well as stand-alone
programs such as iResizer (Web iresizer). The proliferation of seam-carved images
presents a challenge to authorities who require image authentication.

In audio forensics, a few of algorithms have been presented to detect the forgery or related
manipulation in audio streams, including the detection of double compression on MPEG-
1 Audio Layer 3 or MP3 audio streams (Yang et al. 2008; Qiao, Sung and Liu 2010).
Advanced Audio Coding (AAC), a lossy audio compression scheme, standardized by the
International Organization for Standardization and the International Electro-technical
Commission, which was designed to be the successor of the MP3 format, generally obtains
better sound quality than MP3 at similar bit rates. While AAC audio files widely spread
(Web AAC), to our knowledge, the literature of the forgery detection of AAC audio files
is still missing to this date.

Purpose
To detect steganography and forgery on multimedia data, our research goals include:

1) Discovering the characteristic modification caused by digital multimedia
steganography and forgery;

2) Developing more accurate and more reliable methods for steganalysis and digital
evidence authentication;

3) Developing a complete evaluation procedure for gaining full understanding of the
accuracy, reliability, and measurement validity of steganography detection and digital
evidence authentication in digital image, audio, and video files.

Research Design
Our research design is conducted in the following procedures:

1) Construct a comprehensive and high volume multimedia steganography and forensic
database.

2) Analyze the bias and variation of each confirmed source by using existing methods;
and by developing new methods, improve the quantification of the characteristics and
uncertainties of the cover, steganography, and forgery, created by these sources, and
provide a more complete evaluation in different circumstances including multimedia
type and format, signal complexity, source type, information-hiding/forgery type and
modified size, detection method, detection accuracy, the strength and limitation of a
certain method in which circumstance.



3) Measure detection performance.

4) Monitor and improve the steps in the forensic evidence analysis process in digital
media by integrating updated methods with the use of data mining and computational
intelligence techniques for steganography detection and forgery detection.

We surmise that steganography and forgery manipulation will alter some features of
original multimedia data, and hence leave the clues of being touched. Our study aims to
discover these features. We have developed several novel detection algorithms based on
feature mining and machine intelligence techniques in detecting steganography, forgery
manipulation and relevant operations.

We have designed several types of features including neighboring joint density on
quantized discrete cosine transform (DCT) coefficients in JPEG images and MP3 audio
files that discriminate the steganograms, doctored image/audio files from the untouched.
The detection of MPEG double compression is also in-depth investigated. In our study, a
shift-recompression-based framework is proposed with new feature sets to detect
steganography and forgery in JPEG images and MP3 and AAC audio streams.

In this study, in addition to our previously proposed neighboring joint density-based
approach (Liu, Sung and Qiao 2011a), we designed several novel approaches including
calibrated neighboring joint density-based approaches to expose the manipulation to
original JPEG files.

With regard to AAC audio forgery, from our standpoint, similar to JPEG compression
AAC audio compression introduces block (frame) artifacts in tampering, and accordingly,
we propose a shift-recompression-based differential analysis to detect the forgery in AAC
audio streams with the same compression bit rate.

Key Findings

1. Most steganography and forgery manipulation change the statistics of original
multimedia data.

2. Neighboring joint density and other statistical features are effective to detect several
types of steganography and forgery manipulations. Neighboring joint density-based
feature mining under different shift recompression have gained the highest detection
accuracy in detecting several types of steganographic systems, and delivered the state-
of-the-art detection results in JPEG-based steganalysis.

3. By combining neighboring joint density with spatial domain-based rich models that
was designed for steganalysis, we have noticeably improved the detection of seam-
carved forgery in JPEG images that was re-encoded at the same compression quality
after doctoring.



Shift-recompression-based SRSC feature set is effective to detect AAC audio forgery
that was encoded at the same compression quality. To our knowledge, such kind of
detection has not been literally exposed.

Double compression in JPEG images and MEPG video files have modified several
statistics in DCT domain. Normally it is much easier and much reliable to detect the
double compression with the last compression quality is higher than the first
compression quality. However, it is not so easy to detect the double compression
complying with the second compression is much heavier than the first compression.

The detection evaluation may be more meaningful and complete by considering the
data format, payload hiding ratio, hiding algorithms and hiding parameters, detection
methods, and image/signal complexity. In the detection of the same double
compression at different image complexity, the image complexity is higher, then the
detection accuracy is lower.

It is still hard to break some types of steganographic systems. For example, we have
designed an statistically invisible steganography based on the complexity of the DCT
blocks in JPEG images, and improved an existing steganographic algorithm, YASS
(acronym for Yet Another Steganographic Scheme, Solanki, Sarkar and Manjunath
2007), to implement completely randomized embedding in DCT blocks. The
detection of such steganographic systems is still very difficult wherein the hiding
parameters are meticulously selected or the hiding algorithms are specially designed
against the detection.

Conclusions

Discussions of Key Findings

1.

In detecting JPEG-based steganography and forgery, we analyze the neighboring joint
density of the DCT coefficients and reveal the difference between an untouched image
and the modified version by steganography and forgery manipulation. In real
detection, untouched image and the modified version may not be obtained at the same
time, and different JPEG images may have different neighboring joint density features.
To produce the self-calibration, we design the reference features of neighboring joint
density features under different shift recompression, and propose -calibrated
neighboring joint density-based approaches to distinguish steganograms and altered
images from untouched ones. Our study shows that this approach has multiple
promising applications in image forensics. Compared to the state-of-the-art of
steganalysis detectors, our approaches deliver better or comparable detection
performances with a much smaller feature set to detect several steganographic systems
including DCT-embedding-based adaptive steganography and YASS. Our method is
also effective to detect seam-carved forgery in JPEG images. By integrating calibrated
neighboring density with spatial domain rich models that were originally designed for
steganalysis, the hybrid approach obtains the best detection accuracy to discriminate
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seam-carved forgery from an untouched image in JPEG format. Our study shows that
it is a promising manner by exploring steganalysis and forgery detection together.

It is still hard to break YASS while the steganograms are produced by using a small
noused parameter. In detecting seam carving forgery, rich models provide a marked
improvement with abundant features.

In detecting JPEG double compression, we have developed a technique that can
successfully detect JPEG double compression by integrating marginal density and the
neighboring joint density features in DCT domain. Our method is superior to Markov
process-based approach in terms of achieving a higher detection accuracy at a lesser
computational cost. Our study shows that the detection performance is related not only
to the compression quality factors but also to image complexity, which is an important
parameter that seems to have been so far overlooked by the research community in
conducting performance evaluation. To formally study the performance evaluation
issues, the image complexity and compression quality should therefore be included as
a whole.

Following the success in detection of JPEG double compression, we conduct studies
based on processed smartphone images to identify the smartphone source and the post-
capture manipulations. Experimental results show that our method is strongly
promising in correctly identifying the smartphone source and revealing the past
manipulations simultaneously, including the combination of double JPEG
compression, cropping, and rescale. Our studies also indicate that, due to the
complexity of intentional manipulation, it is more productive to combine clustering
and classification techniques together for performing the detection.

In detecting double MPEG compression, we offer a qualitative statistical analysis
about the impact caused by MPEG-2 compression on distributions of reconstructed
DCT coefficients, and demonstrate the differences in distributions of quantized DCT
coefficients between the single compression and double compression. A set of DCT
distributions with different quantization scale factors are constructed to extract convex
pattern features, and a novel detection algorithm is designed to detection of double
MPEG compression in CBR (constant bitrate) videos. In our simulation system, the
target output bit-rate, rather than quantization scale factor, is selected as the only
parameter to control MPEG-2 encoders. The target output bit-rate can easily be
configured through the system menu, without need to modify source codes of MPEG-
2 encoders. So it makes our detection algorithm more suitable for all kinds of video
coding systems, especially in some business video systems. On the other hand, our
proposed detection algorithm maintains good detection performance in many cases.
More specifically, it can detect double compressed videos with both high-quality and
low-quality. Even if the primary compression and the secondary compression use
different kinds of MPEG-2 encoders, our algorithm can also reveal the track of double
MPEG-2 compression.

In detecting MP3-based audio steganography, we design a detection method by
extracting frequency-based sub-band moment statistics as well as accumulative
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neighboring joint probabilities and accumulative Markov transition probabilities in the
compression domain. Generalized Gaussian density (GGD) is introduced to estimate
the distribution of the modified discrete cosine transform (MDCT) coefficients. We
also propose moment statistics of GGD shape parameters () extracted from

individual frames as features, and utilize the shape parameter from the whole audio
clip as a measure of signal complexity. The relation between audio steganalysis
performance and signal complexity is also studied experimentally. Three feature
selection methods are employed to further enhance the detection accuracy. Our
approach leads to a successful detection of information-hiding in MP3 audio, under
each category of signal complexity and modification density, especially in audio with
a high signal complexity and a low modification density (Qiao, Sung and Liu 2013).

5. In detecting AAC audio forgery, we propose a shift-recompression-based SRSC
feature mining with machine learning techniques to reveal the difference between
untouched AAC audio streams and doctored AAC audio streams that was re-encoded
at the same bit rate after tampering. Our experimental results show that our approach
is very promising and effective.

6. To conclude, by exploring and developing new detection algorithms/approaches and
new measurement parameters in multimedia forensics, we have successfully achieved
the project goals including “discovering the characteristic modification caused by
digital multimedia steganography and forgery, developing more accurate and more
reliable methods for steganalysis and digital evidence authentication, and developing
a complete evaluation procedure for gaining full understanding of the accuracy,
reliability, and measurement validity of steganography detection and digital evidence
authentication in digital image, audio, and video files.”

Implications for policy and practice

Multimedia forensics is a multiple-disciplinary research field with important impacts to
law enforcement. In multimedia forensics, steganography detection or steganalysis and
forgery detection are two spots. Multimedia steganography and forgery techniques and
the proliferation have made big challenges to law enforcement.

By exploring the characteristic modification caused by digital multimedia steganography
and forgery, developing new detection algorithms/approaches, and adopting new
measurement parameters for the evaluation, we have successfully achieved the project
goals including “discovering the characteristic modification caused by digital multimedia
steganography and forgery, developing more accurate and more reliable methods for
steganalysis and digital evidence authentication, and developing a complete evaluation
procedure for gaining full understanding of the accuracy, reliability, and measurement



validity of steganography detection and digital evidence authentication in digital image,
audio, and video files.”

The implications for policy and practice lie in the following:

1.  Although multimedia steganography and forgery have made big challenges to law
enforcement in protection of public safety and national security, our study shows
that some advanced steganography and forgery systems can be accurately detected
and hence the relevant crimes may be defeated and/or prevented. For example, in
detecting several types of JPEG steganography at the relatively high information
hiding ratio, our approach has achieved 100% mean accuracy over 100 experiments.
Our forgery detection approaches in this study are also very promising with high
detection accuracies. Therefore, we would recommend utilize the state-of-art for
steganography and forgery detection for forensics purposes.

2.  The complete evaluation in multimedia forensics may include multiple parameters
including information hiding ratio and/or forgery size, compression factors, hiding
algorithms, multimedia signal complexity, detection algorithms, feature selection
methods, classification models and learning classifiers.

3. Our study also indicates that it is still hard to defeat some meticulously designed
steganography, e.g., the data hiding takes place in the high complexity components
in the multimedia signal (Liu Sung Chen and Huang 2011).

4. The study in multimedia forensics is normally subjected to relatively simple
environment with a certain knowledge and limitation to the testing multimedia data.
For example, to detect some type of steganography by using a steganographic
algorithm x, the steganograms are denoted as Sx, covers are denoted as C.
Classification models are constructed to discriminate the steganogram from cover.
It is clear that the detection is conducted in the environment that contains only Sx
and C, and the outcome can be predicted either Sx or C, relatively predestinated.

Unfortunately, the real life detection generally faces an open and complicated
environment. For example, we are given a JPEG image to determine whether it is
carrying a covert message or not. We cannot simply adopt the classification model
that was used to distinguish Sx and C, since we are not sure about the image under
examination is either an untouched cover or the type Sx of steganogram, or some
other type of steganogram, or a cover that was processed by some legitimate
operations.



5. It is known that that steganography had been employed by a foreign government
intelligence agency (Web justice 1; Web justice 2), and the potential usage of
steganography to disseminate covert message in social media such as on Facebook
could be enormous (web secretbook). The further study in multimedia forensics is
highly needed for forensics purposes.

Implications for further research

The continuous improvement of the state of steganalysis and forgery detection should be
emphasized in the future study. Additionally, several new steganographic systems have
been proposed to hide data in JPEG images (Liu, Sung, et al. 2011; Holub and Fridrich
2013), AAC audio streams (Wei, Li and Wang 2010), and VoIP audio stream including
Skype-based steganography (Mazurczyk, Karas and Szczypiorski 2013), and no effective
detection methods area available to this date, which is worthy for the further exploration.

While we have designed several effective detection approaches within the state-of-the-art,
the realistic detection toolkits may be implemented for the testing and validation for
forensics purposes.

It is worthy of making the contribution for real life detection that generally faces an open
and complicated environment. Further study may be also highlighted on revealing the
processing history of the multimedia data under the examination.



I. Introduction
Statement of the Problem

Multimedia forensics is a multiple-disciplinary research field with important impacts on
the protection of public safety and enhancement of national security. In multimedia
forensics, steganography detection or steganalysis and forgery detection are two active
areas and are generally separately studied, although both continue to face challenges.

Steganography, Greek for covered writing, is the art and science of carrying messages in
covert channels, aiming to enable secretive communication by embedding data into digital
files without attention to the existence of the hidden message. The potential of exploiting
steganography for covert dissemination is of increasing concern; an espionage case
revealed that steganography had been employed by a foreign government intelligence
agency (Web justice 1; Web justice 2). Recently, a Google Chrome extension allows us
to hide secrets in Facebook photos (Web secretbook).

Fake photos have employed for decades, and with various image processing tools, digital
images can now be easily forged. Figure I-1 shows some examples of image forgery.
Generally, tampering manipulation on a JPEG image involves several different basic
operations, such as image rescaling, rotation, splicing, double compression, etc. While we
decode the bit stream of a JPEG image and implement the manipulation in spatial domain,
and then compress the modified image back to JPEG format, if the quantization matrices
are different between the original JPEG image and the modified, the modified JPEG image
has undergone a double JPEG compression. Although JPEG double compression does not
by itself prove malicious or unlawful tampering, it is an evidence of image manipulation.

Figure I-1. Image forgery examples (Web cbsnews1; Web cbsnews2; Web latimesblogs; Web theblaze),
Tampered photos are shown on the upper and original ones are shown on the below.
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Figure I-2 shows two source images in JPEG and a tampered image composited from the
two sources. All three images are downloaded from worth1000.com. The quantization
matrices affiliated with the luminance parts of these three JPEG images are given with
different quantization values.

! g - 505 "
[11 7 7 11 16 26 34 40 | 2 2 2 2 3 4 5 6 6 4 4 6 10 16 20 24
8 8 9 13 17 38 40 36 222 2 3 4 56 5 5 6 8 10 23 24 22
9 9 11 16 26 38 46 37 2 2 2 2 4 5 7 9 6 5 6 10 16 23 28 22
9 11 15 19 34 57 53 41 2 2 2 4 5 7 9 12 6 7 9 12 20 35 32 25
12 15 24 37 45 72 68 51 33 4 5 810 12 12 79 15 22 27 44 41 31
16 23 36 42 53 69 75 61 4 4 5 7 10 12 12 12 10 14 22 26 32 42 45 37
32 42 51 57 68 80 79 67 5.5 7 912 12 12 12 20 26 31 35 41 48 48 40
48 61 63 65 74 66 68 65 | 6 6 912 12 12 12 12| | 29 37 38 39 45 40 41 40

(a) Source 1 and the quantization matrix ~ (b) Source 2 and the quantization matrix (c) Tampered image and the quantization matrix

Figure I-2. An example of image tampering involving JPEG double compression.

Regarding video data, due to the enormous amount of video data, they must be compressed
before transmission and storage. Except some simple bit-stream splicing editing
operations, most of video post-processing operations (such as filtering, adding scrolling
texts, subtitles or other tampering operations) can deal with the content in the video scene
only after these video streams have been decoded into image sequences, and finally these
edited image sequences must be re-saved as compressed video files by the same or a
different video encoder. Therefore, double compression is an indispensable link in the
video post-processing, and the double compression detection technique is an effectual
forensic tool to recover the processing history of digital video resources.

Some works have been presented to detect the forgery or related manipulation in audio
streams, including MPEG-1 Audio Layer 3 or MP3 (Yang et al. 2008; Qiao, Sung and Liu
2010). For example, if two MP3 audio streams encoded at different bit-rates are selected
in part and composited together and encoded in MP3 format, such forgery manipulation
undergoes double MP3 compression. While we will be able to reveal the behavior of
double MP3 compression, we may catch the forged part in MP3 audio streams. However,
if two MP3 audio streams encoded at the same bit-rate and composited together and
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encoded in MP3 format with the same bit-rate, the method of detecting double MP3
compression does not work.

Advanced Audio Coding (AAC), a lossy audio compression scheme, standardized by ISO
and IEC, which was designed to be the successor of the MP3 format, generally obtains
better sound quality than MP3 at similar bit rates. AAC is supported on iPhone, iPod, iPad,
Nintendo DSi, iTunes, DivX Plus Web Player, PlayStation 3, PlayStateion Portable, Wii,
Sony Walkman MP3, Sony Ericsson, Nokia, Android, Blackberry, and webOS-based
mobile phones (Web AAC). While AAC audio files widely spread, to our knowledge, the
literature of the forgery detection of AAC audio files is still missing to this date.

Literature Citations and Review
Steganography and forgery in JPEG images

In steganography, quite a few steganographic algorithms have been proposed, including
LSB embedding (Kurak and McHugh 1992), LSB matching (Mielikainen 2006), spread
spectrum steganography (Marvel, Boncelet and Retter 1999), Outguess (Provos 2001), F5
(Westfeld 2001), model-based steganography (Sallee 2003 and 2005), Steghide (Hetzl and
Mutzel 2005), BCH syndrome code based less detectable JPEG steganography (Sachnev,
Kim and Zhang 2009), and highly undetectable steganography (HUGO) (Pevny, Filler
and Bas 2010). Although these steganographic systems have been successfully
steganalyzed (Chen and Shi 2008; Fridrich 2004; Fridrich, Kodovsky, Holub and Goljan
2011a, 2011b; Fu and Shi et al. 2006; Gu and Kurugollu 2011; Ker 2004; Kharrazi, Sencar
and Memon 2006; Kodovsky and Fridrich 2009, 2011, 2012; Miche et al. 2009;
Kodovsky, Pevny and Fridrich 2010; Kodovsky, Fridrich and Holub 2012; Li, Shi and
Huang 2009; Liu, Sung and Ribeiro 2005; Liu et al. 2006; Liu Sung and Qiao 2008; Liu
et al. 2008a, 2008b, 2008c; Liu and Sung 2007; Liu et al 2011a, 2011b, 2011c; Liu 2011a;
Pevny and Fridrich 2007, 2008a and 2008b; Shi et al. 2007; Gul and Kurugollu 2011), the
advances in steganography have posed new challenges to steganalyzers such as Gibbs
construction-based steganography (Filler and Fridrich 2010), Syndrome-Trellis Codes
based steganography (Filler, Judas and Fridrich 2011). Filler and Fridrich recently
proposed a practical framework of adaptive steganographic systems which optimize the
parameters of additive distortion functions and minimize the distortion for +1 embedding
in the DCT domain. This has greatly improved the art of hiding data in wide-spread JPEG
images (Filler and Fridrich 2011). Yet Another Steganographic Scheme (YASS) was
designed to be a secure JPEG steganographic algorithm with randomized embedding
(Solanki, Sarkar and Manjunath 2007). By exploring the weakness of YASS
steganographic system, Li, Shi and Huang (2009) presented a simple and efficient
detection method by comparing the frequency of zero coefficients of the embedding host
blocks and the neighboring blocks in DCT domain. This detection performance is very
promising when the parameter of the big block (B-block) size is small (e.g., the size is set
to 9 and 10). However, the detection performance apparently deteriorates if the parameter
of B-block size increases (Li, Shi and Huang 2009). Kodovsky et al. designed 1234
features to detect YASS and tested 12 different configurations of YASS with a parameter
of B-block size no larger than 11. In other words, the detection performance on the YASS
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steganograms produced by a large parameter of B-block at 12, 13, 14, and 15 was missing
(Kodovsky, Pevny and Fridrich 2010).

Regarding image forensics, the relevant manipulations, including double JPEG
compression, source identification, image rescaling, copy-paste, inpainting, and
compositing have been successfully detected (Pospescu and Farid 2004a, 2004b, 2005a,
2005b; Prasad and Ramakrishnan 2006; Alles et al. 2009; Bayram et al. 2005, 2006, 2008,
2009, 2010; Bianchi and Piva 2012a, 2012b; Celiktutan et al. 2008; Chang, Yu and Chang
2013; Chen and Hsu 2011; Chen, Fridrich et al. 2003, 2007, 2008; Fu, Shi and Su 2007;
Choi et al 2006; Dirik et al. 2007; Gallagher 2005; Gou et al. 2007a, 2007b, and 2009;
Gul and Avcibas 2009; Hsu and Chang 2009; Johnson and Farid 2005, 2006, 2007a,
2007b, 2007c; Lin et al. 2001 and 2005; Liu and Sung 2009; Liu, Sung and Qaio 201 1c;
Liu 2011b; Lukas and Fridrich 2003; Lukas et al. 2006; Mahdian and Saic 2008; Pan and
Lyu 2010; Pan, Zhang and Lyu 2012; Shi et al 2007; Swaminathan et al. 2008). While
most image forensics methods target traditional image tampering, seam carving-based
image tampering in JPEG format has been ignored to some extent. Seam carving, an
algorithm for image resizing, is known as content-aware scaling, liquid resizing or liquid
rescaling and was designed by Shai Avidan of Mitsubishi Electric Research Labs (MERL)
and Ariel Shamir of the Interdisciplinary Center and MERL. It establishes the paths of
least importance in an image, called seams, automatically removes them and reduces the
image size, or inserts seams to extend the image size (Avidan and Shamir 2007). Seam
carving allows the removal of selected whole objects from photographs. The seam carving
method for content-aware resizing and object removal has been implemented in Adobe
Photoshop CS4 (Web photshop-cs4), GIMP (Web liquidrescale), digiKam (Web
digikam), ImageMagick (Web imagemagick), as well as stand-alone programs such as
iResizer (Web iresizer). The proliferation of seam-carved images presents a challenge to
authorities who require image authentication. Sarkar et al.(2009) employed 324-
dimensional Markov features, which was originally developed to detect JPEG-based
steganograms by Shi et al. (2006), to distinguish between seam-carved, seam-inserted,
and normal images. Fillion and Sharma designed a method which include benign image
reduction, benign image enlargement, and deliberate image reduction to detect seam-
carved images and tested their method over a set of images consisting of 1484
uncompressed images. Unfortunately, the JPEG images were not tested after content-
aware manipulation (Fillion and Sharma 2010). The detection of seam-carving-based
forgery in JPEG images needs extensive further studied.

DCT-embedding-based adaptive steganography

Most steganographic systems aim to minimize the distortion of the original cover. A
practical framework to minimize statistical detectability when designing undetectable
steganography was recently presented (Filler and Fridrich 2011). To design DCT-
embedding-based adaptive steganography, an inter/intra-block cost model was given, as
well as the performance of embedding algorithms based on the inter/intra-block cost
model. The proposed DCT-embedding-based adaptive steganography was experimentally
validated as being highly secure (Filler and Fridrich 2011). The embedding algorithms are
optimized by using the multi-layered Syndrome-Trellis Codes (Filler, Judas and Fridrich
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2011), with SVM and CC-PEV feature set (Kodovsky and Fridrich 2009), and Cross-
Domain Feature set (Kodovsky and Fridrich 2011), respectively. The experiments show
that proposed DCT-embedding-based adaptive steganography has greatly improved the
state of DCT-embedding-based steganography (Filler and Fridrich 2011).

YASS and A Detection Algorithm

The original YASS algorithm presented in the reference (Solanki, Sarkar and Manjunath
2007). Although YASS embedding is not confined to the 8x8 block of the final JPEG
compression, the location of embedding block in B-block is not random enough. By using
QIM-based embedding, YASS also introduces additional zero DCT coefficients in the
modified 8x8 block, and hence, the following algorithm was designed to break YASS (Li
Shi and Huang 2009).

Zero-value density-based approach to steganalysis of YASS (Li, Shi and Huang 2009)

Transform a JPEG image under examination to spatial domain, denoted by /i;
ForT=9to 15
Fors=1to T

(a) Divide s into non-overlapping consecutive 7x7 B-blocks;
(b) Collect 8x8 blocks from the upper left of all B-blocks and perform 2D DCT;
(¢) Quantize the DCT coefficients by using QFg;

(d) Compute the probability of zero rounded re-quantized DCT coefficients in
candidate embedding bands and denote it by Zr(s);

(e) Crop the first s columns and the first s rows of /1 to generate a new image s+
for the next inner-loop;

End

1 -7 . 1 <r .
Compute the values of Ez'ﬂ Z,(i) and 72}_4_6 Z,(j)as features.

End

As shown by this algorithm, the features are extracted from the candidate blocks along the
diagonal direction of B-blocks, rather than from all possible 8x8 candidate blocks in B-
blocks. In a B-block with the size of 7T, there are a total of (T-7)x(T-7) block candidates
for embedding. Unfortunately, the above algorithm only selects the (T-7) blocks along a
diagonal direction, not all candidate blocks, and as a result, the chance of the candidates
along diagonal direction only hits 1/(T-7). While the value of T is large, the hit ratio is
fairly low. For instance, if T=15, the hit ratio is only 1/8 = 0.125. The experimental results
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shown in the reference (Li, Shi and Huang 2009) also demonstrate that the detection
accuracy is not satisfactory with a large T value.

In image forensics, the simplest way to get device information is extract that information
from the header part of an image file. Most device vendors adopt EXIF (Exchangeable
Image File Format) standard to write specific information into the header, like device
maker, camera model, exposure, date and time the image captured, pixel size and etc.
EXIF format is also handling sound and video record by digital camera, scanner, video
machine, and other digital devices. If JPEG format is used to save images, quantization
table can be obtained from JPEG images’ header. Most manufacturers employ distinct
quantization tables, some of them may define their own quantization tables. By examining
the quantization table, we may simply indicate the origin device of the test image.
However, this approach is less trustful in use on forensic evidence, because header
information is very easy to be faked. Additionally, those properties may not available if
image is resaved and recompressed.

Without EXIF information, another method to distinct given device is based on its image
processing algorithm. Before image is saved to flash memory, the original data
transferring from CCD (charge-coupled device) sensor need to be further processed,
which include demosaicing, gamma correction, color processing, white point correction
and last but not least compression. These post-processing is done with special DSP (digital
signal processing) component of camera device. Although all manufacturers apply these
general processing steps in their products, the processing detail and algorithm vary from
one to another. Even with one vendor, the processing is different between distinct models.
Therefore, it is supposed that output images contain some traits and pattern regardless of
the original image content.

The source identification based on the different patterns of sensor noise/sensor finger print
is successful, however once obtained images are processed again, for example, cropping,
rescale (interpolation), and recompression, the identification generally becomes
ineffective because the pattern of sensor noise is destroyed by the post-capture
manipulation. Although several methods have been presented to detect single operation,
e.g., cropping, image interpolation, double compression (Chen, Shi and Su 2008; Farid
1999, 2006, 2009; Liu and Sung 2009; Liu 2011b; Penvy and Fridrich 2008), it is still
under-expressed to identify the camera source based on processed images with the
combination of different operations.

With decreasing cost of mobile phone and megapixels camera phone quality increasing
close to traditional digital camera, more and more people start using mobile phones to
replace camera to capture pictures, since mobile phones are easily carried on and civilians
can grasp scene easily and quickly. Many digital images shot by smartphones are widely
spreading in society. However, smartphone-based image forensics is relatively ignored,
compared to digital camera-based image forensics. Although Tsai et al. (2006, 2007)
conducted such study to identify popular mobile phones with camera, in case the
photographs were processed, such identification does not perform well. Moreover, if
original images obtained from different semiconductor charge-coupled devices (CCD)
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sensors are processed again, such as image resize, cropping or trans-coded to different
image quality, these source identification algorithms become ineffective.

The images captured by smartphones are normally stored in JPEG format, not in raw
format, to reduce the storage space. Nevertheless, the aforementioned steps are standard
stages in digital images generated from camera pipeline and the exact processing detail in
each stage varies from one producer from another. Different manufacturers may adopt
their specific quantization tables to encode the captured digital signals into JPEG format.
By recognizing these different quantization tables, it is usually easy for us to identify the
source of smartphones, even that the exchangeable image file format (EXIF) data have
been modified. However, if the EXIF data are removed and the images are manipulated
again with different operations, the identification of the source and the revealing of the
operations may become hard.

MPEG double compression and detection

When a MPEG-2 video is encoded in variable bit rate (VBR) mode that chooses a fixed
quantization scale factor for the entire frame, the intra frame can be considered as a JPEG
compressed image, and some features in detection of double JPEG compression are
successfully introduced to detect double MPEG compression. Wang and Farid detected
double MPEG-2 compression with variable bitrate (VBR) mode by examining the
periodic artifacts introduced into the DCT histograms of I frames (Wang and Farid 2006)
or modeling the marginal distribution of singly compressed and de-quantized DCT
coefficients as a Gaussian distribution with expectation-maximization (EM) algorithm
(Wang and Farid 2009). However, digital TV broadcasting, DVDs and Digital Video
Recorders always adopt constant bitrate (CBR) mode to generate the MPEG-2 videos.
Double MPEG-2 compression with CBR can be detected with Chen’s approach which
exploits the statistical disturbance in the first digit distribution of non-zero MPEG
quantized AC coefficients (Chen and Shi 2008). Sun et al (2012) extended the features of
Chen’s algorithm to identify whether the bit rate of the secondary compression is bigger
than that of the primary compression or not. But in their experiments, both the primary
and the secondary MPEG-2 compression processes are implemented with the same
MPEG-2 encoder. Their detection performance will decrease when a different MPEG-2
encoder is utilized to realize the secondary compression.

In the video compression system, the non-linear quantization is the mainly lossy coding
technique to attain high compression ratios. Because some precision of DCT coefficients
are lost in the quantization process, the de-quantization is not a fully reversible process of
quantization. After a video sequence is compressed, there are some special traces in the
distribution of reconstructed DCT coefficient. In the following section, Test Model 5 of
MPEG-2 (ISO/IEC IS 13818-2; Test Model 5 for ISO/MPEG II) will be taken as an
example to describe the quantization and de-quantization process in the MPEG-2
standard, and then two existing approaches are discussed to detect double MPEG-2
compression.

Quantization and De-quantization process in MPEG-2
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Test Model 5 (TM5) is considered as a standard simulation platform for all researchers of
MPEG-2, in order to verify the usefulness of various proposed coding techniques. In the
module of quantization process of TMS, after each block is transformed with a 2-
dimensional DCT coefficient matrix, the DCT coefficients are quantized respectively
according to the mode of the current macro block.

In the intra mode, the quantizer of DC coefficients can only select a fixed step based on
the precision parameter that will be transmitted in the picture coding extension. AC
coefficients ac(i, j) must be firstly quantized by individual quantization factors according
to the following calculation.

gacti,j)= Fz;‘z—f(;)’)J (I-1)

Where |/ is defined as integer division with truncation of the result toward zero. wi(i, f)

is an intra-quantization weighting matrix, whose aim is to greatly reduce the amount of
information in the high frequency components based on the characteristics of human
visual system. An encoder can use the default weighting matrix in the MPEG-2 standard
(shown as Figure 1-3(a)); or introduce a new weighting matrix for some manufacturers
(such as Figure 1-3(b)), but this new matrix must be transmitted as a set of special
parameters in the header of MPEG-2 stream file.

[8 16 19 22 26 27 29 34] (8 16 20 23 30 36 41 497
16 16 22 24 27 29 34 37 16 20 23 28 36 41 48 52
19 22 26 27 29 34 34 38 20 22 30 36 40 48 48 54
2 2 26 27 29 34 37 40 2 26 34 37 41 48 2 66
2026 27 29 32 35 40 48 2 32 37 39 4 49 6 9
26 27 29 32 35 40 48 58 34035 41 42 49 66 102 106
26 27 29 34 38 46 56 69 36 36 42 46 66 9 146 166
127 29 35 38 46 56 69 83] 38 40 43 64 9 106 166 206)

(a) ’ (b)

Figure I-3. Intra quantization matrixes of two MPEG-2 encoders: (a) the default intra weighting matrix in
TMS; (b) the intra weighting matrix in a DV.

The final quantized level Q4C(i,) is calculated as follows:

0AC(, j) = qac(i, j) + sign(qac(i, j))xaxq scale/b (1-2)
= 2xq scale )
1 x>0
Sign(x)=40 x=0; (I-3)
-1 x<0

The parameters a=3 and b=4 in TMS. g scale, i.e., quantization scale factor, is an
important parameter to control the performance of quantization process.

In the non-intra mode, the DCT coefficients are quantized with a uniform quantizer that
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has a dead-zone around zero. The quantization processes can be expressed as:

| 32xac(, ) |.
qac(z,ﬂ{—WN @ J (I-4)
QAC(, j) = _gac(i.j) | (I-5)
’ 2xq _scale

For the de-quantization process in TM3, it strictly follows the MPEG-2 standard (ISO/IEC
IS 13818-2 section 7.4). According to the weighting matrix w(i,j) and g scale, de-
quantization process can reconstruct DCT coefficients for all kinds of frames.

It is noticeable that the choose of ¢_scale is the principal method to implement different
bit rate control schemes for meeting the requirement of different digital video applications.
Since many video streaming are constrained by constant limited channel bandwidth (like
‘DSL’ or ‘dial-up’ connections) or fixed storage size (‘Personal Video Player’, or ‘DVD
Recorder’), CBR mode has been widely adopted because of its practical implementation,
ease of use and flexibility over ‘IP Networks’. To maintain the target output bit rate,
q_scale will vary significantly among the different frames between 1 and 112 on a
macroblock-to-macroblock basis, which is always directly calculated according to many
factors (Wang 2000; Ding and Liu 1996), such as the status of the current buffer, bit
allocation strategy, the spatial activity of the current macro block and so on. Compared
with CBR mode, VBR mode can conserve the consistent visual quality due to a fixed
q_scale for an entire frame, which has been extensively used in ATM-based broadband
ISDN networks (Yu et al. 2001). As a result, the impact of ¢_scale on the distribution of
reconstructed DCT coefficients is different between CBR and VBR mode, which indicates
that double MPEG compression with CBR mode is distinct to double MPEG compression
with VBR mode, as well to double JEPG compression.

Currently a wide variety of algorithms for detecting double JPEG compression have been
reported in the literatures, but less attention has been paid to videos because of the
complexity of video coding system. As the earliest algorithm, Wang and Farid (2006)
exploited the static and temporal artifacts introduced by double MPEG-2 compression
with VBR mode. In the spatial domain, as mentioned above, an intra-frame quantized by
a constant quantization scale factor can be viewed as a JPEG image, and the features of
double JPEG compression can be utilized to detect double MPEG-2 compression. For
example, in Figure [-4, all frames in a test sequence (Figure [-4(a)) are doubly compressed
by Berkeley MPEG Video Encoder (Mayer-Patel et al. 2005) with VBR and an obvious
periodic artifact presents in the distribution of doubly quantized DCT coefficients (Figure
[-4(b)). In the temporal domain, the frame deletion or insertion operations will induce
large motion estimation errors at the following P frames and the periodic spikes in motion
errors is utilized to detect frame tampering. However, the author has also discussed the
limitation of this approach that it fails to detect the double MPEG compression with CBR
mode, because CBR mode selects the quantization scale factor for each macro block and
statistical features in doubly quantized DCT coefficients will be aliased by different
quantization scale factors. When the same test sequence is single compressed by TMS5
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with CBR at 6 Mbps (Million bits per second), the histogram of quantization scale factors
in intra frames is indicated in Figure I-4(c). It is found that the TMS5 behaves as having a
based quantization scale factor gs which is related to some initial conditions, such as
output bit-rate, frame resolution, buffer size and so on. The others quantization scale
factors are dynamically adjusted according to the spatial activity in the video scene. If the
single compressed MPEG-2 video is doubly compressed at 7 Mbps, the distribution of
doubly quantized DCT coefficients in intra frames is indicated as Figure [-4(d) where
‘missing values’, ‘double peak’ and ‘periodic property’ have disappeared, and it is
necessary to find new features to detect double MPEG compression with CBR mode.

o4
035
03
5 025
Z 02
E 015
o1
0.05
o mi ™
50 ] 50
The value of quantized DCT coefficients
(a)
(b)
0.4
0.35}
0.3t
., 025}
=
Z 02
5
= 015
0.1
0.05¢
0
50 0 50
The value of quantzed DCT coefficeats
(c) (d)

Figure I-4. Double MPEG-2 compression: (a) a standard test sequence from Video Quality Experts Group
(VQEQG); (b) the histogram of DCT (2, 1) coefficients in double MPEG-2 compressed intra frames with
VBR mode; (c) the histogram of quantization scale factors in intra frames of the original MPEG compression
with CBR mode; (d) the histogram of DCT (2, 1) coefficients in double MPEG-2 compressed intra frames

with CBR mode.

Chen and Shi (2008) proposed another novel approach based on the first digit statistics
(also called Bendford’s Law) to detection of double MPEG-2 compression in both VBR
and CBR videos. If the video is doubly compressed, the first digit distribution of non-zero
MPEG-2 quantized AC coefficients in all kinds of frames will not meet the parametric
logarithmic law. In order to make the detection more reliable, the GOP (group of picture)
is proposed as the detection unit to obtain 36 features. In their experiment, the doubly
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compressed video is also generated by the primary encoder, in other words, the primary
and secondary coding processes adopt the same encoder. However, if the secondary
encoder is different from the primary one, the first digit distribution of non-zero double
quantized AC coefficients may obey to the generalized Bendford’s Law again, and the
detection performance of this algorithm will decrease.

Audio steganalysis and forgery detection

While most steganographic systems take digital images as carriers, digital audio files are
also ideal as carrier for covert communication where the variety of audio encodings
increases the difficulty of audio steganalysis. To detect the information-hiding in digital
audio, Avcibas (2006) presented content-independent distortion measures as features for
classifier design. Ozer et al. (2006) investigated the characteristics of the denoised
residuals of audio files. Johnson et al. (2005) set up a statistical model by building a linear
basis that captures certain statistical properties of audio signals. Zeng et al. (2008)
presented a new algorithm to detect echo steganography based on statistical moments of
peak frequency. Kraetzer and Dittmann (2008) proposed a Mel-cepstrum-based analysis
to perform the detection of embedded hidden messages. Liu, Sung and Qiao (2009c¢)
improved the performance of audio steganalysis by combining the Mel-cepstrum feature
with a temporal derivative-based spectrum analysis. Geetha et al. (2010) presented high-
order statistics of Hausdorff distance as discriminative features and investigated the
application of evolving decision tree for audio steganalysis. Other authors’ studies in
audio steganalysis are included in references (Liu, Sung and Qiao 2009a, 2009c, and
2011b; Qiao, Sung and Liu 2009, 2010a and 2010b).

Although in the past years multiple steganalysis methods were designed to detect
information-hiding in uncompressed audio, the information-hiding in compressed audio,
such as MPEG-1 Audio Layer 3, more commonly referred as MP3, has been barely
explored due to the complexity and variety of the compression algorithms. As a result of
the different characteristics between compressed and uncompressed audio, most existing
methods do not work for steganalysis of audio in the compression domain, and the
decompression attempt, which erases the hidden data through the de-quantization step in
signal reconstruction, leads to a failure of those methods on decompressed audio.

As one of the most popular audio formats on the Internet, MP3 provides a faithful
reproduction of the original signal with a small amount of data. The widespread use and
flexible encoding algorithm enable it to be a desirable carrier for covert communication.
Bohme and Westfeld (2004) investigated the characteristics of MP3 encoders for potential
applications in steganography or steganalysis. Although different encoders are designed
to be compatible with the MP3 standard, statistical analysis also illustrates the distinctions
among available MP3 encoders. MP3Stego (Web MP3Stego) is one of the most widely
used audio steganographic tools, especially for MP3 audio. MP3Stego is implemented by
combining a novel information-hiding algorithm with an existing MP3 encoder.
MP3Stego (Web MP3Stego) is built on the MP3 encoder and decoder from 8 Hz and ISO
MPEG Audio Subgroup Software Simulation Group, respectively. All payloads are
encrypted using 3DES and then embedded in frames randomly selected by using SHA-1.
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With uncompressed waveform audio (WAV) as input, MP3Stego embeds data during the
encoding process and generates a steganogram in MP3 format. The algorithm of
MP3Stego exploits the audio degradation from lossy compression and embeds data by
slightly expanding the distortion of the signal without attracting attention from the listener.
MP3Stego embeds compressed and encrypted data in an MP3 bit stream during the
compression process. In the heart of layer 3 compression, two nested loops manipulate the
trade-off between file size and audio quality. The hiding process occurs in the inner loop
where the quantization step size is increased to fit the available number of bits.

Regarding audio forgery detection, while Yang et al. (2008) designed a method to check
the offset in MP3 frame compression artifact to detect MP3 forgery, as designed a
successor to MP3 compression method, AAC audio files have been widely disseminated.
However, to our knowledge, the literature of the forgery detection of AAC audio files was
still missing before we explored it in this project.

Statement of Hypothesis or Rationale for the Research
Hypothesis 1. Most information hiding and forgery manipulations in JPEG images modify
the statistics of DCT coefficients including the neighboring joint density and the

calibrated versions

Hypothesis 2. JPEG double compression modifies the marginal density and neighboring
joint density in DCT domain

Hypothesis 3. In MPEG double compression, the distribution of reconstructed DCT
coefficients after double compression will be different from that of original MPEG video

Hypothesis 4. MP3stego will modify the statistics of frequency-based subband moment
statistics, accumulative neighboring joint probabilities and accumulative Markov

transition probabilities in the compression domain

Hypothesis 5. AAC audio forgery will change the original frame compression structure
and hence leave a clue for the detection
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II. Methods

II-1. JPEG Steganalysis
1I-1-a. Algorithm Design

Inspired by a multivariate generalized Gaussian distribution (MGGD) model in the
wavelet that was successfully used for image denoising (Cho and Bui 2005), we discussed
the MGGD in the DCT domain and pointed out that approximate distribution of
neighboring joint density of DCT coefficients may be modeled by MGGD, and
information-hiding generally affects the distribution (Liu Sung and Qiao 2009a, 2009b;
Liu Sung and Qiao 2011a). Our study also shows that besides information hiding, JPEG-
based double compression and interpolation modify the neighboring joint density also and
hence leave a clue to reveal the manipulations (Liu, Sung and Qiao 2008; Liu, Sung,
Riberio and Ferreira 2008; Liu, Sung and Qiao 2009a, 2011a, 2011b; Qiao, Sung and Liu
2013). Our experimental results indicate that neighboring joint density-based approach
outperforms the Markov transition probability-based approach in JPEG steganalysis. We
analyzed the reason that neighboring joint density-based approach is generally superior to
highly referenced Markov-based approach: “it is the modification of the neighboring joint
density that results in the modification of Markov transition probability” (Liu, Sung and
Qiao 2011a). We can completely derive Markov transition probability from neighboring
joint density, but we cannot derive the neighboring joint density from Markov transition
probability, in other words, neighboring joint density contains more discriminant
information compared to Markov transition probability.

Normally, neighboring joint density of DCT coefficients is symmetric to the origin. Our
previous detection algorithm (Liu, Sung and Qiao 2011a) is designed in the following:

Neighboring Joint Density on Intra-block
Let F denote the quantized DCT coefficient array consisting of MxN blocks F;; (i =1, 2,

... M; j=1,2, ..., N). The intra-block neighboring joint density matrix on horizontal
direction absNJ1» and the matrix on vertical direction absNJiv are given by:

M 8§ 7
Z«Z‘Z;Z‘éqc’f’”” - x’|cifm<n+1> =) e
_ =l j=1 m=l n= -
absNJ,, (x,y) = SV
M N 7 8
Z zz 25(|Cijmn = x’|cij(m+1)n| = y)
absNJ,, (x, y) = === (1I-2)
S6MN

Where cjjmn is the DCT coefficient located at the m™ row and the n'™ column in the block
Fij; 6 = 1 if its arguments are satisfied, otherwise 5 = 0; x and y are integers. For
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computational efficiency, we define absN.J; as the neighboring joint density features on
intra-block, calculated as follows:

absNJ,(x,y) = {abSNJ,h (x,y)+absNJ, (x, y)} /2 (I1-3)

In our prior detection, the values of x and y are in the range [0, 5], and absN.J: consists of
36 features.

Neighboring Joint Density on Inter-block

The inter-block neighboring joint density matrix on horizontal direction absNJ2n and the
matrix on vertical direction absNJay are constructed as follows:

N-1

8 8 M N—
ZIZ;ZIZJéqC'/W’ =X ci(jﬂ)mn = y) (II 4)
bsNJ. e _
aos Zh(x’y) 64M(N—1)
8 8 M-1 N
zz z 25( Ciimn| = %> C(i+])jmn| =y)
absNJ,, (x,y) = === (1I-5)
64(M —-1)N

We define absNJ2 as the neighboring joint density features on inter-block, calculated as
follows:

absNJ,(x,y) ={absNJ,,(x,y)+absNJ, (x,y)} /2 (11-6)

Similarly, the values of x and y are in [0, 5] and absNJ2 has 36 features. In our previous
approach, the neighboring joint density features defined by equations (II-3) and (II-6) are
denoted by absNJ, containing 72 features (Liu, Sung and Qiao 2011a).

CALIBRATED NEIGHBORING JOINT DENSITY

We have shown and validated the modification of the neighboring joint density caused by
information hiding of several DCT-embedding steganographic systems (Liu, Sung and
Qiao 2011a). Regarding DCT-embedding adaptive steganography that aims to minimize
the distortion cost through Syndrome-Trellis Codes (Filler and Fridrich 2010), although
the modification is very small, it does change the neighboring joint density (Figure II-1).
Figure II-1(a) shows a JPEG cover. Figure II-1(b) gives the JPEG steganogram produced
by using DCT-embedding-based adaptive hiding algorithm (Filler and Fridrich 2010) with
the relative payload of 0.4 bits per non-zero-AC (bpac). Figure II-1(c) demonstrates the
difference of the intra-block-based neighboring joint density when comparing the cover
and the steganogram and Figure II-1(d) shows the difference of the neighboring joint
density of the absolute array of DCT coefficients when comparing the cover and the
steganogram.
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(a) JPEG cover (b) JPEG steganogram
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(©) Difference of NJ density (d) Difference of absNJ density

Figure II-1. An example to demonstrate the modification of neighboring joint (NJ) density features by
DCT-embedding-based adaptive steganography.

It should be noted that we do not have the original cover as a reference while detecting
steganography. For example, in Figure II-1, only given the JPEG image (a) or (b), not
both, we need to determine whether the image under examination is a cover or a
steganogram,; it is impossible for us to obtain the density difference shown in (c¢) and (d)
in real detection. We should also mention that the neighboring joint density varies across
different JPEG images. Therefore, there are still limitations to detecting the steganogram
if we only adopt the neighboring joint density feature set without any reference, originally
presented in the references (Liu, Sung and Qiao 2009a and 2011a).

To capture the modification of the density caused by data embedding, suggested by the
self-calibration that was presented in (Fridrich 2005) and based on our previous
steganalysis method (Liu, Sung and Qiao 2009a and 2011a), we design a calibrated
neighboring joint density-based approach, described as follows:

a. The neighboring joint density features absNJ, (x, y) and absNJ, (x, y), defined by
equations (5) and (8), are extracted from a JPEG image under examination;

b. The testing JPEG image is decoded to spatial pixel values and cropped by i rows and
j columns (0<i<7, 0<j<7, and i+j >0). The cropped image is encoded in JPEG format
with the same quantization matrix, and the joint density features denoted by
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absNJy; (x, y) and absNJ,, (x, y) are extracted from the cropped and recompressed
JPEG images, here (i, /) €{(0,1),(0,2),...,(1,0),(L1),...(7.7)} ;
C. The mean values of absNJ{ (x,y) and absNJ:(x,y) are calculated by

absNJ¢ (x,y)= é > absNJ;, (x,y)

& li,j (I1-7)
c _ 1 ¢
absNJ< (x, y) = 5(;)absNJ I ERY (I1-8)
d. The differential joint density features are given by
absNJ}(x,y) = absNJ{ (x, y) - absNJ, (x, ) (11-9)
absNJ? (x,y)= absNJ% (x,y)— absNJ, (x, ) (11-10)

In our detection, we either adopt the neighboring joint density features, given by equations
(I1-3) and (II-6), and the reference density features, given by equations (II-7) and (I1I-8),
together as a detector, or adopt the features defined in equations (I1-3), (II-6), (II-9), and
(II-10) together as a detector. We should note that both detectors are actually the same,
because each one feature set can completely be derived from another. Our experiments
also verify that both feature sets have approximately identical detection performance by
using different classifiers. By using a fisher linear discriminant and logistic regression
classifier, especially, we have obtained exactly same detection results. The detector of
calibrated neighboring joint density containing the features is denoted by CC-absNJ.

To demonstrate the effectiveness of a calibrated neighboring joint density-based approach,
Figure II-2 (a) shows a JPEG cover image, Figure II-2(b) plots the neighboring joint
density defined in (II-3), and Figure II-2(c) manifests the differential joint density, defined
in equation (II-9). Figure II-2 (d) shows the JPEG steganogram produced by F5 algorithm,
Figure II-2(e) is the neighboring joint density defined in (II-3), and Figure II-2(f) gives
the differential joint density defined in equation (II-9). The original neighboring joint
density from cover and the density from steganogram are different, as are the differential
joint densities.

Figure 11I-3 (a) shows a JPEG cover image and Figure 11-3(d) presents the steganogram
produced by using adaptive-embedding algorithm (Filler and Fridrich 2010). Original
neighboring joint densities from the cover and from the steganogram are given in (b) and
(e) respectively, and the differential densities are plotted in (c), and (f), respectively. The
difference of the self-differential density between the cover and the steganogram is
noticeable.

Figure II-2(a) and Figure II-3(a) also demonstrate that different JPEG images have

different neighboring joint densities (Figure 1I-2(b) and Figure 11-3(b)), implying the
importance of self-differential density for steganalysis.
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Figure II-2. A demonstration of a JPEG cover image (a) and the F5 steganogram (d). Original neighboring
joint densities are shown in (b) and (e), and the self-differential densities are given in (c), and (f),

respectively.
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Figure II-3. A JPEG cover image (a) and the adaptive-embedding steganogram (d). Original neighboring
joint densities are shown in (b) and (e), and the self-differential densities are given in (c), and (f),

respectively.
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1I-1-b. Experiment Design
Materials

The 5000 original color TIFF raw format digital images used in the experiments are 24-
bit, 640x480 pixels, lossless true color, never compressed. We cropped these original
images into 256x256 pixels in order to eliminate the low complexity parts and converted
the cropped images into JPEG format with the default quality, the same to pervious
steganalysis experimental setup (Liu, Sung et al. 2006; Liu and Sung 2007; Liu, Sung,
Chen and Xu 2008; Liu, Sung and Qiao 2009b; Liu, Sung et al. 2010). The following
steganograms are generated with different hiding ratios, measured by relative payload, or
the ratio of the number of DCT-coefficients modified to the total number of non-zero
valued AC DCT-coefficients.

F5 — Westfeld (2001) proposed the algorithm F5 that withstands visual and statistical
attacks, yet it still offers a large steganographic capacity.

Steghide — Hetzl and Mutzel (2005) designed a graph-theoretic approach for information-
hiding based on the idea of exchanging rather than overwriting pixels. Their approach
preserves first-order statistics, and the detection on the first order does not work.

Model Based steganography without deblocking (MB1) — Sallee (2003) presented an
information-theoretic method for performing steganography. Using the model-based
methodology, an example steganography method is proposed for JPEG images which
achieves a higher embedding efficiency and message capacity than previous methods,
while remaining secure against first order statistical attacks.

Model Based steganography with deblocking (MB2) — Based on model-based
steganography, Sallee (2005) presented a method to defend against "blockiness"
steganalysis attack.

Adaptive steganography in JPEG images —In order to produce DCT-embedding-based
adaptive steganography, 1000 BOSSRank cover images downloaded from (Web Boss)
are converted into JPEG images first at the quality factor “75”. The adaptive steganograms
are produced by using the adaptive DCT-embedding hiding tool (Filler and Fridrich 2010),
and the parameter of hiding bits per non-zero-AC (bpac) is set from 0.1 to 0.35 with the
step size of 0.05 bpac.

Detectors and learning classifiers

In our study, the following steganalysis detectors are compared, including: 1) 72-
dimensional absNJ, neighboring joint density-based JPEG steganalysis originally
designed in the reference (Liu Sung and Qiao 2011a); 2) 144-dimensional CC-absNJ,
calibrated neighboring joint density, consisting of 144 features, defined by (II-3), (II-6),
(I1-7), and (II-8), or by (II-3), (II-6), (II-9), and (II-10). We argue that both 144-
dimensional feature sets are actually identical in terms of the detection capability; 3) 548-
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dimensional CC-PEV (Kodovsky and Fridrich 2009); 4) 274-dimensional PEV (Penvy
and Fridrich 2007); 5) 486-dimensional Markov-process-based detector (Chen and Shi
2008); 6) 48,600-dimensional rich model CC-C300, a high-dimensional rich model for
JPEG steganalysis (Kodovsky and Fridrich 2011); 7) 7,850-dimensional compact rich
model CF for JPEG steganalysis (Kodovsky, Fridrich and Holub 2012); 8) 22,510-
dimensional Cartesian calibrated JPEG domain rich model CC-JRM (Kodovsky and
Fridrich 2012); and 9) a union of spatial domain rich model with the fixed quantization
g=lIc, 12,753-dimensional SRMQ1 (Fridrich and Kodovsky 2012), and 22,510-dimensioal
CC-JRM, denoted by CC-JRM+SRMQ1, a total of 35,263 features (Kodovsky and
Fridrich 2012). Table II-1 lists these detectors and the feature dimensionality.

Table II-1. Steganalysis detectors examined in our study

Detector F.e atur(f . Reference
dimensionality
CC-absNJ 144 {(II-3),(11-6),(I1-7),(I1-8) } or {(II-3), (11-6), (II-9), (1I-10)}
absNJ 72 (Liu Sung and Qiao 2011a)
CC-PEV 548 (Kodovsky and Fridrich 2009)
PEV 274 (Penvy and Fridrich 2007)
Markov 486 (Chen and Shi 2008)
CC-C300 48600 (Kodovsky and Fridrich 2011)
CF 7850 (Kodovsky, Fridrich and Holub 2012)
CC-IRM 22150 (Kodovsky and Fridrich 2012)
CC-JRM+SRMQ1 35263 (Kodovsky and Fridrich 2012; Fridrich and Kodovsky 2012)

Support Vector Machines (SVM) (Chang and Lin 2011; Vapnik 1998), Fisher’s Linear
Discriminant (FLD) to minimize the errors in the least square sense (Heijden et al 2004),
and an ensemble classifier that was used with rich models for steganalysis (Kodovsky,
Fridrich and Holub 2012) are employed in our comparison study. It should be noted that
the computational cost by SVM is too high for rich models due to the high dimensionality
of the feature set, and rich model-based steganalysis detectors are not suitable with SVM.
However, the low-dimensional detectors proposed in our study are easily utilized with
SVM.

To select SVM for the low-dimensional detectors, we compare the popular algorithms
LibSVM (Chang and Lin 2011), SVM light (Joachims 2002), the SVM algorithms
implemented in PRtools (Heijden et al 2004), and five SVM learning algorithms in
LIBLINEAR (Fan et al 2005). We compare these SVM algorithms with different
parameters including linear, polynomial, and radial basis function (RBF) kernels. In our
comparison, although the algorithms implemented in LIBLINEAR package are the fastest,
the accuracy is the lowest LibSVM generally obtains the best detection accuracy.
Therefore,we finally employed LibSVM with optimal kernel parameters after comparing
different combinations of kernel parameters by grid search (Chang and Lin 2011).

While we apply the ensemble classifier that was used in (Kodovsky, Fridrich and Holub
2012), the optimized parameters are computed first, including the optimization of the sub-
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dimensionality and optimal base learning classifiers. By optimizing the parameters and
applying optimized ensemble classifier to rich model-based detectors, the computational
cost, is much higher than if using Fisher linear discriminant.

We perform one hundred experiments for each feature set at each hiding ratio by using
each classifier. In each experiment, 70% of the samples are randomly selected for training,
and the other 30% samples are used for testing. The prediction outcomes on testing data
can be divided into True Negative (TN), False Negative (FN), False Positive (FP), and
True Positive (TP). Without losing a generality, our detection accuracy is calculated by
0.5*TN/(TN+FP)+0.5*TP/(TP+FN).

I1-2. YASS STEGANALYSIS
11-2-a. Algorithm design

By searching all possible 8x8 candidate blocks in B-blocks, we extract the neighboring
joint density of the DCT coefficients from all candidate blocks that are possibly used to
carry hidden data and the 8x8 non-candidate block neighbors that are not sued for
information hiding and then calculate the difference of the joint density values of the
candidates and the non-candidate neighbors. Our algorithm of feature design to detect
Y ASS steganogram is described as follows:

Starting from the large B-block parameter T =9,

1.  Decode the JPEG image under scrutiny to spatial domain and divide it into non-
overlapping consecutive 7x7 B-blocks;

2. Ineach 7T B-block, search all 8x8 blocks possibly used for information hiding, in
a total of (T-7)? candidate blocks. The set of all candidate blocks of the image under
detection is denoted by CB. For each candidate block CB(i) (i=1,2, ..., CN, CN is
the number of all candidate blocks on the testing image); subtract 128 from each
pixel value, then apply two-dimensional DCT transform, quantize the DCT
coefficients by using the quantization matrix corresponding to QF%., and obtain the
absolute DCT coefficient array. The neighboring joint density features on the intra-
block of CB(i), denoted by absNJ(i; x,y), is given by

7
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Where ¢’ is the DCT coefficient located at the m™ row and the n" column in the

mn

candidate block CB(i); s = 1 if its arguments are satisfied; otherwise 5 = 0; x and y
are integers.
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(b)
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From all 8x8 blocks that are adjacent to the candidate block CB(i) in the
horizontal/vertical direction but without any overlap to CB(i), the adjacent 8x8
blocks that do not belong to CB are denoted by NC(i,j). Generally, non-candidate
8x8 blocks must be across two adjacent TxT B-blocks, such as when a 7xT B-block
is not on the boundary or on the corner of an image under examination,

if an 8x8 block candidate is located inside of the B-block without any overlap to the
B-block boundary, it has four non-candidate neighbors, shown by Figure 11-4(a);

if an 8x8 block candidate overlaps at only one of the four boundary borders of the
B-block, it has three non-candidate neighbors, shown by Figure 11-4(b);

if an 8x8 block candidate overlaps at two of the four boundary borders of the B-
block or is located at one of four corners of the B-block, it has two non-candidate
neighbors, shown by Figure 11-4(c).

(a) (b) (©

Figure II-4. A candidate block is located in a B-block (dashed), and the non-candidate neighbors are across
two B-blocks.

4.

The neighboring joint density on the non-candidate neighboring block NC(i,j) is
given by

7

. ) ) 78 B i
>3 ot | = el =y)+ ZZ5QC =xfelun|= ) (11-12)

absNJ (i, j;x,y) = 0.5 x| 2=lnl
(4, J5x,») : Py

Where c” is the DCT coefficient located at the m™ row and the n™ column in the

non-candidate block NC(i,j). 5§ = 1 if its arguments are satisfied; otherwise § = 0;
x and y are integers.

The mean value of the differential neighboring joint density between candidate
blocks and non-candidate blocks are given by

30



> absNJ(i;x,y)  D,absNJ (i, j; X, )

o 2 & II-13
diff —absNJ(x,y) count(CB) count(NC) ( )

Where count (CB) gives the total number of candidate blocks, and count (NC)
gives the total number of non-candidate blocks on the testing image.

The features defined in equation (II-13) constitute the feature set to detect the
YASS steganogram produced by large B-block size T. The values of x and y are
set from (0,0), (0,1), (0, 2), (1, 0), ...to (2,2), in a total of 9 differential neighboring
joint density features for a single value of B-block size T.

6. While T < 16, set T+1 to T, repeat 1 to 6.

The final detector contains 63 differential features for all possible T parameters (T =9,
10, ... 15).

Figure I1-5 shows a cover and YASS steganograms produced with B-block size of 9, 11,
and 13 on the left. The diff-absNJ features extracted from the cover and the steganograms
are shown on the right, manifesting different patterns between the cover and different
steganograms produced by different B-block size.
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Figure II-5. Different patterns of diff-absNJ features among cover image and YASS steganograms (QF), =
QF, =75) with B-block parameter T=9, 11, and 13. The cover and steganograms are shown on the left
and the diff-absNJ features on the right.

1I-2-b. Experimental design

The original 1000 BOSSRank cover images downloaded from (Web Boss) are used for
YASS embedding. We set OF» = QF. = 75 in production of the steganograms.
Accordingly, we encode the 1000 BOSSRank cover images in JPEG format at the quality
factor of 75 as cover images. To create YASS steganograms, QF and QF, are set to the
same quantization factor in order to avoid double JPEG compression in YASS
steganograms. If OF is not equal to OF, the YASS steganograms could be detected by
exposing the double JPEG compression. Double JPEG compression has been documented
with very good detection performance (Chen and Hsu 2011; Liu Sung and Qiao 2011c;
Liu et al 2013). Additionally, the big B-block size T is set from 9 to 15 respectively to
produce the steganograms.

To conduct a comparative study, we extract the diff~absNJ features (Liu 2011a)), and the
zero-value density features in the reference (Li, Shi and Huang 2009). LibSVM and FLD
classifiers are used for classification. In each experiment, 50% samples are randomly
selected for training, and the other 50% samples are used for testing; 200 experiments are
operated for each feature set at each B-block size by using each learning classifier for
binary classification, and 200 experiments are conducted for each feature set by mixing
covers and all YASS steganograms together for multiple-class classification. Our
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approach and zero-value density -based detection are based on the exposure of potential
candidate blocks for data hiding. Unlike zero-value density-based approach, our method
does not assume the embedding position on the first few positions in the candidate blocks.
By using an ensemble classifier and FLD, we also employ the union of CC-JRM and
SRMQI1 (Kodovsky and Fridrich 2012; Fridrich and Kodovsky 2012), a 35263-
deminsional feature set to detect steganograms without exposing the candidate blocks that
are used for embedding.

II-3. SEAM-CARVED FORGERY DETECTION IN JPEG IMAGES

11-3-a. Algorithm design by integrating calibrated neighboring joint density with spatial
rich models

In seam carving, finding the seam is completed with the path of minimum cost from one
end of the image to another. While seam carving allows for removal of selected whole
objects from photographs or removing/inserting some seams, the manipulation occurs in
spatial domain—it directly modifies the pixel values in the spatial domain. In addition to
altering the pixel values, the removal or insertion of seams also results in the change of
some pixel positions in the original image and in destroying the original compression
block structure, hence leaving the trace of the manipulation both in the spatial domain and
in the transform domain. Based on these facts, we use calibrated neighboring joint density
features that have been described previously to reveal the modification in the transform
domain. To keep track of the modification in the spatial domain, we directly make use of
a spatial domain rich model, recently designed for steganalysis (Fridrich and Kodovsky
2012), to capture the modification of the statistical features. We surmise that the spatial
domain rich model may be very effective in detecting the seam-carving-based
manipulation in the spatial domain since seam carving directly removes/inserts seams in
the spatial domain and changes the pixel values and positions. In addition to the
comparison of the detection performance of the calibrated neighboring joint density in the
DCT domain and spatial rich model based features in the spatial domain, we integrate
these two types of feature sets together for the detection with the expectation of obtaining
better detection accuracy.

Figure 11-6 shows an example to verify the modification of the joint density in DCT
domain and the modification of the pixel values in grayscale format on the red, green, and
blue channels. An untouched JPEG image and the forged JPEG image by seam carving
are shown in (a) and (d), respectively. In the forgery, the image of the man at the center
of the original photo has been removed. The neighboring joint densities in the DCT
domain directly extracted from the untouched image and from the tampered image are
given in (b) and (e), and the differential densities between original density and the
calibrated density are given in (¢), and (f), respectively. To reveal the modification in the
spatial domain, Figure 11-6(g) gives the difference of the grayscale values between the
tampering and the untouched photo, Figure II-6(h). Figure II-6(1) and Figure II-6 (j)
demonstrate the difference of the pixel values on red, green and blue channels,
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respectively; the tampering has noticeably modified the pixel values. Some modifications
go as high as 200, implying that the spatial domain-based feature set could be very

effective for the detection.
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Figure 11-6. Untouched JPEG image (a) and the forged image (d). Original neighboring joint densities in
DCT domain are shown in (b) and (¢), and the differential densities between original density and calibrated
density are given in (c), and (f), respectively. The differences of the pixel values between the tampered (d)
and untouched (a) are shown in (g) on the grayscale, (h) on the red channel, (i) on the green channel, and (j)

on the blue channel.
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1I-3-b. Experimental design

We adopted 500 JPEG images with a standard quantization table of the quality ‘75’. The
seam carving forgery tool at the website http://code.google.com/p/seam-carving-gui/ is
used to modify JPEG images. The small objects are removed from the images at first in
the spatial domain by using the tool, and the doctored images are stored in JPEG at the
same quality of the untouched image. This avoids double JPEG compression for possible
exposure by the detection of double JPEG compression. Figure II-7 shows several
untouched images (on the left) and tampered images (on the right) by seam-carving in our
experiment.

While data embedding in JPEG-based steganography directly modifies quantized DCT
coefficients in transform domain, seam carving inserts or removes seams with minimum
cost from one end of the image and modifies the pixel values directly in the spatial domain.
The modification generally destructs original JPEG compression block, resulting in the
change of the joint density in DCT domain. To detect seam carved forgery in JPEG
images, in addition to the approach of calibrated neighboring joint density features in DCT
domain, we also make use of SRMQI, a detector of spatial domain rich models originally
designed to detect spatial-domain-based steganography (Fridrich and Kodovsky 2012).
We surmise that SRMQ1 may capture the statistical modification in spatial domain that
was caused by seam-carving; therefore, we integrate CC-absNJ with SRMQ1 to detect
seam carved tampering in JPEG images. Meanwhile, we conjecture that most steganalysis
detectors are also effective in detecting this manipulation.
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Figure II-7. Image samples in our experiments. The untouched is shown on the left and modified on the
right. The objects highlighted by red circles on the left were removed by seam carving.

Due to the fact that for this experiment our forgery database is relatively small, we
significantly increase the number of experiments for classification. We perform the
experiment for each detector 2000 times with fisher linear discriminant and 1000 times
with ensemble classifier. Generally, the computational cost by applying ensemble
classifier to the detectors of rich models is much higher than fisher linear discriminant. In
each case, 50% untouched images and 50% doctored images are randomly selected for
training, and the remainders are used for testing.
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I1-4. Detection of JPEG Double Compression
11-4-a. Algorithm design

GGD, MGGD and JPEG-double compression

Generalized Gaussian distribution (GGD) is widely used in modeling probability density
function (PDF) of a multimedia signal. It is very often applied to transform coefficients
such as discrete cosine transform (DCT) or wavelet ones. Experiments show that
adaptively varying two parameters of the generalized Gaussian distribution (GGD) (Ohm
2004; Sharifi and Leon-Garcia 1995) can achieve a good probability distribution function
(PDF) approximation, for the marginal density of transform coefficients. The GGD model
is given by

pxa =L expl-(xl/a) (I1-14)

2a°(1/ B)

Where I' (*) is the Gamma function, scale parameter o models the width of the PDF peak,
and shape parameter f models the shape of the distribution.

An 8x8 DCT block has 64 frequency coefficients, our study shows that the marginal
density of DCT coefficients at each specific frequency approximately follows the GGD
distribution and some manipulation, for instance, double JPEG compression, changes the
density. Figure II-8 demonstrates a singly compressed JPEG image with quality factor
75’ (a), doubly compressed JPEG images with the first compression quality factor ‘55’
(b) and ‘90’ (c) respectively, followed by the second compression quality factor ‘75°, and
the marginal densities at frequency coordinates (2,1), (2,2), and (1,3).

a) (b) (c)
Histogram of DCT coefficients at (2.1) Histogram of DCT coefficients at (2,1) Histogram of DCT coefficients at (2.1)
B0 50
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Figure II-8. Marginal densities of the singly compressed JPEG image (left) and the double compressions
(middle and right). X-axis shows the values of the DCT coefficients and y-axis shows the occurrences.

Compared to the marginal density of the single compression, Figure I1-8(d), (g), and (j),
the modification caused by the double compression from the low quality factor ‘55°,
shown in Figure II-8(e), (h), and (k), is noticeable. However, the modification caused by
the double compression from the high quality factor ‘90°, Figure I1-8(f), (i), and (1), is not
big.

Although there does not appear to exist a generally agreed upon multivariate extension of
the univariate generalized Gaussian distribution, some researchers define a parametric
multivariate generalized Gaussian distribution (MGGD) model that closely fits the actual
distribution of wavelet coefficients in clean natural images, exploit the dependency
between the estimated wavelet coefficients and their neighbors or other coefficients in
different subbands based on the extended GGD model, and achieve good image denoising
(Cho and Bui 2005). The MDDG model is shown as follows:

(x-4) % (X—ﬂ)]ﬁ (II-15)

p(x)=yexp —{ -

Where vy indicates a normalized constant defined by a and B, > x is the covariance matrix
and p is the expectation vector.

To exploit the dependency between the compressed DCT coefficients and their neighbors,
we study the neighboring joint density of the DCT coefficients, and postulate that some
manipulation such as JPEG double compression will modify the neighboring joint density,
shown by Figure 11-9. Let the left (or upper) adjacent DCT coefficient be denoted by
random vector X1 and the right (or lower) adjacent DCT coefficient be denoted by random
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vector X2; let X = (X1, X2). The DCT neighboring joint density will be modified by the
manipulation, and the change hence leaves a track for the manipulation. Figure 11-9(a),
(b), and (c) show the neighboring joint density of the singly compressed JPEG image of
Figure 11-8(a), of the doubly compressed JPEG image of Figure I1-8(b), and of the doubly
compressed JPEG image of Figure II-8(c). The differences of the neighboring joint density
between the double compression and the single compression are given by Figure 11-8(d)
and (e). Figure 1I-9 verifies our postulation that the neighboring joint density has been
modified by the double compression.
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Figure II-9. Neighboring joint densities of the DCT arrays of the singly compressed JPEG
image in Figure 1I-8(a) and the doubly compressed JPEG images in Figure 11-8(b) and
Figure 11-8(c) and the differences.

Feature Design

Based on the statistical property and the observation of the modification caused by JPEG
double compression, two types of features, marginal density and neighboring joint
density, are extracted and merged together as our detector. The details of feature mining
is described as follows.

Marginal Density Features

Generally the manipulation to JPEG images will modify the DCT coefficients and change
the marginal density of DCT coefficients at each specific frequency coordinate. In JPEG
compression quantization table, the large values are aggregated in right bottom of the
high-frequency coordinates and producing most zero-valued DCT coefficients after
quantization at high frequency components. In other words, most non-zero DCT
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coefficients are aggregated at low-frequency coordinates and the modification mostly
occurs at low frequency subband, we design the following marginal density features at the
low frequency of the absolute DCT coefficients.

An 8x8 DCT block consists of 64 frequency coefficients, with the frequency coordinates
from (1, 1) to (8, 8), corresponding to the upper-left low frequency subband to the right-
bottom high frequency subband. Let F denote the DCT coefficient array of a JPEG image,
which consists of MxN blocks, Fi (i =1, 2, ..., M;j =1, 2, ..., N). We select the low
frequency coordinates

S={2,1),(1,2),(1,3),(2,2),(3,1), (1,4), (2,3), (3,2), (4,1)}. (II-16)

The feature set consists of the following probability values
1
X= {M—N(h,d 0),h,1),h,(2),h,(3),h (4))|(k,l) € S} s (I1-17)

where hw(m) denotes the histogram of the absolute DCT coefficient at frequency
coordinate (k,/) with the value m (m=0, 1, 2, 3, 4). Therefore, there are total 45 features in
the marginal density set.

Neighboring Joint Density Features

The extraction of neighboring joint density features has been stated in the first part of
Methods for JPEG Steganalysis.

In detecting JPEG double compression, we integrate marginal density features and
neighboring joint density features together.

11-4-b. Experimental design

The original 5150 TIFF raw format digital images are obtained in 24-bit lossless true color
and never compressed format. The single compressed images are generated by applying
JPEG compression to these uncompressed images with different quality factors from 40,
45, 50, ..., 90, the step size 5. The double JPEG compression is implemented by
uncompressing the single compressed images and then compressed in JPEG format with
different quality factors from 40, 45, 50, 55, ..., 90, the step size is 5. The first and second
JPEG compression quality factors are recorded as “Q1” and “Q2”, respectively.

In our previous work on image and audio steganalysis, we have demonstrated that the
image complexity is a significant parameter for the evaluation of steganalysis performance
(Liu et al 2006; Liu and Sung 2007; Liu et al 2008a, 2008b; Liu et al. 2009a, 2009b). So
far no work has been published to illustrate the relationship between detection
performance on double JPEG compression and the image complexity, which will be
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addressed in this study. Following our previous work in steganalysis, the shape parameter
B of GGD of the DCT coefficients is used to measure the image complexity. All images
are classified as five groups:

(a) B <0.3, low image complexity

(b) 0.3 <P <0.4, low-middle image complexity
(c) 0.4 <B<0.5, middle image complexity

(d) 0.5 <P <0.6, middle-high image complexity
(e) 0.6 <, high image complexity

We apply support vector machines (SVM) with RBF kernels (Vapnik 1998) to the feature
sets extracted from these five groups for identification of double JPEG compression.
Thirty experiments are run for testing each type of feature set in each group. Average
testing accuracy is compared.

I1-5 Identification of Smartphone Image Source and Manipulation

11-5-a. Algorithm design

Our detection method is the same to that used in detecting JPEG double compression.
11-5-b. Experimental design

We adopt five different types of smartphones from four manufacturers to capture images.
Those images were taken randomly without any particular requirement. The information
on these smartphone images are listed in Table II-2 and some image samples are shown
in Figure II-10.

Table I1-2. Original images obtained by smartphones

Smartphone brand # Images Format
HTC G3 149 JPEG
HTC HD2 114 JPEG
Huawei U8150 141 JPEG
Iphone 3 70 JPEG
Nokia E71 125 JPEG

41



Figure II-10. A few sample images used in our experiment.

All these original images are manipulated by using the following six types of operations:

L.

IL.

I1I.

IV.

VL

All original images are trans-coded to the JPEG format with the standard quantization
table at quality factor of “75°. In other words, these images are uncompressed first and
then recompressed at quality factor of *75’;

The first four rows and first four columns are cut from original images in spatial
domain and the remaining pixel values are trans-coded to the JPEG format with the
standard quantization table at quality factor of “75°. In other words, these images are
uncompressed first, followed by cropping, and then recompressed at standard quality
factor of ‘75;

The first four rows and first four columns are cut from the original images, the
remaining data are resized by multiplication with the scale factors of 0.7 and 2,
respectively in spatial domain, and then trans-coded to the JPEG format with standard
quantization table at quality factor of *75’;

All original images are resized by multiplication of original image size with the scale
factors of 0.3, 0.5, 0.8, 1.5, and 2, respectively in spatial domain, and trans-coded to
the JPEG format with standard quantization table at quality factor of 75’;

The original images are trans-coded to the images with standard quantization table at
quality of °75’, cropped to remove the first four rows and first four columns in spatial
domain, then resized by multiplication with the scale factors of 0.5 and 1.5,
respectively in spatial domain, and finally trans-coded to JPEG format at quality of
‘757

The original images are trans-coded to the images with standard quantization table at
quality of “75’, and resized by multiplication with the scale factors of 0.5 and 1.5,
respectively in spatial domain, and then trans-coded to JPEG format at quality of “75’.

To sum up, these six types of operations include different scale parameters, which result
in 13 series of operations as shown in the second column of Table II-3. These 13
operations are applied to each type of the total of 599 smartphone images and thus total
of 7,787 processed images are generated. Since each of the operations are applied to the
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five different smartphone brands, 65 class labels are generated in our experiments as listed
in Table II-3.

Table II-3. The 65 class labels in our experiments

Class label

Type Scale factor HTC G3 HTC HD2 Huawei Iphone 3 Nokia E71
U150

I / 1 14 27 40 53
1l / 2 15 28 41 54
- 0.7 3 16 29 4 55
2 4 17 30 43 56
15 5 18 31 44 57
2 6 19 32 45 58
v 03 7 20 33 46 59
0.5 8 21 34 47 60
038 9 22 35 48 61
v 0.5 10 23 36 49 62
1.5 11 24 37 50 63
- 0.5 12 25 38 51 64
1.5 13 26 39 52 65

I1-6. Detection of MPEG Double Compression
11-6-a. Algorithm Design

In order to reveal the impact of the quantization and de-quantization process, we follow a
double MPEG-2 compression process, analyze the difference between distributions of
original DCT coefficients and reconstructed DCT coefficient, and finally explore the trace
left by double compression.

Distribution of reconstructed DCT coefficients

After a test sequence compressed by a MEPG-2 encoder, two DCT terms in the DCT
coefficient matrix, i.e., DCT (1, 2) and DCT (2, 1), are selected to create the corresponding
statistical model of reconstructed DCT coefficients. At the remaining frequency terms,
some may be influenced by the rounding error in de-quantization process, and the others
do not have sufficient statistical quantity of non-zero quantized DCT coefficients due to
large quantization step sizes. As a result, it is difficult to analyze and obtain robust
statistical features from these frequency terms. Using the absolute value of DCT
coefficients at those two DCT terms, Figure II-11(a) and (b) respectively illustrate the
histogram of original non-zero DCT coefficients, Ho(n), and the histogram of
reconstructed non-zero DCT coefficients, Hr(n).
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Figure II-11. Histograms of non-zero DCT coefficients at DCT (1, 2) and DCT (2, 1) in the intra frames:
(a) Ho(n), histogram of original DCT coefficients; (b) Hg(n), histogram of reconstructed DCT coefficients.

Comparing these two histograms, Ho(n) approximately follows the Laplacian distribution
as traditionally described in the references (Reininger and Gibson 1983; Smooth and
Lowe 1996), and after MPEG-2 compression and decompression process, some changes
can be easily found in Hr(n). Three significant changes can be summarized as follows:

Discontinuity, because the values of de-quantized DCT coefficients are only multiples of
quantization scale factors, and some quantization scale factors, such as 9, 11, and 13, are
not present in TMS5, the number of some DCT coefficients in the Hr(n) are close to zero.

Peak Offsetting, in the interval (0, gs] of Hr(n), the maximum number of non-zero DCT
coefficients does not occur at n=1 like Figure II-11(a), but at n=¢s. Because the number
of reconstructed DCT coefficients is determined by two factors: the number of original
DCT coefficients in the specific quantization interval and the probability distribution of
quantization scale factors in the whole stream. Since the number of blocks quantized with
quantization scale factor gs is much greater than that with other ones, the maximum value
of Hr(n) is shifted to the right.

Approximate Periodicity, the distribution of non-zero reconstructed DCT coefficients
presents an approximate periodic distribution. Because most of quantization scale factors
focus on the g5, Hr(m) is larger than its neighbor values when the coefficient value m is
the multiple of gs. This feature is similar to the distribution of de-quantized DCT
coefficients in JPEG images.

When reconstructed DCT coefficients from the primary compression, as input DCT
coefficients, are entered into another MPEG-2 encoder, above statistic characteristics will

lead to some artifacts into the distribution of doubly quantized DCT coefficients.

Artifacts in the distribution of doubly quantized DCT coefficients
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In the decoding process, the quantization scale factor of each macro block can be read
from video streams, so all macro blocks in the same type of frame can be divided into
some subsets according to their quantization scale factors. In each subset, we can construct
the distribution of quantized DCT coefficients at DCT (1, 2) and DCT (2, 1). Throughout
this paper, we only consider the absolute value of DCT coefficients. Finally a set of
distribution curves, H(k, g, n), with different types of frame £ and quantization scale factor
g will be obtained. This process can be described as the diagram in Figure I1-12.

Input quantized DCT
coefficients

Y

Classifier | based on the coding type of frame

k=1 frame k=P frame k=B frame

Y Y Y

Classifier 2 based on quantization scale factors

! Y !

Subset 1 Subset 2 Subset N
(g=1) (g=2) (g=N)

v Y v

Hik.g=1.n) Hikg=2n) |...| Hik.g=N.n)

Figure II-12. The construction procedure of MEPG-2 compression detection model

If the choose of quantization scale factor of each macroblock is assumed to be independent
of the DCT coefficients of that macroblock, the DCT distribution of each subset is similar
to the input distribution. In the secondary compression, since the distribution of input DCT
coefficients has been changed by the primary compression, the distribution of quantized
DCT coefficients H(k, g, n) presents some different properties to that of original
compression, which can be utilized to determine the existence of double compression. In
the following analysis, DCT coefficients of I frames are utilized to illustrate the abnormal
phenomenon, and H(k=I, g, n) is written as H(q, n) for concision. In Figure 11-13, the test
sequence is firstly compressed by TMS5 at 6 Mbps, then decoded and doubly compressed
by a MPEG-2 encoder under different conditions. To concisely depict artifacts of double
compression, we only present H(g, n) when ¢ is even and not bigger than 8, and if the
number of quantization scale factors equaling to g is zero, the curve H(g, n) will not be
plotted. Fig. 5(a) indicates that the distribution curves of singly quantized DCT
coefficients He(g, n) can be approximately considered as a set of concave functions which
are monotone decreasing in the interval [1, 6]. In the following interval, the curves of
Hs(g, n) maybe slightly fluctuate, because the number of large quantized DCT coefficients
is relatively small, and easily affected by video content and other factors.
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Figure II-13. Examples of double compression artifacts in histograms of quantized DCT coefficients under
different conditions. (a) He(g, 1), singly compressed by TMS5 at the constant bit-rate 6 Mbps; (b) He.7(q, 1),
doubly compressed by TM5 at the constant bit-rate 6 Mbps followed by 7 Mbps; (c) Hs.5(q, 1), doubly
compressed by TMS at the constant bit-rate 6 Mbps followed by 5 Mbps; (d) He.s (¢, n), firstly compressed
by TMS at the constant bit-rate 6 Mbps and doubly compressed by Adobe Premiere 2.0 at the constant bit-
rate 6 Mbps; (e) Hs.7(P, g, n), the double compression artifacts in the histograms of quantized DCT
coefficients in P frames which are doubly compressed by TMS5 at the constant bit-rate 6 Mbps followed by
7 Mbps.

Notes: Hx(gq, n) and Hx.y(g, n) denote distribution curves of quantized DCT coefficients of single and double
compression, respectively, and X, ¥ denote the corresponding target output bit-rates (Mbps).

In Figure II-13(b), the MPEG-2 test sequence is re-compressed by TMS5 at 7 Mbps, and
its distribution of doubly quantized DCT coefficients is shown as He-7(q, ) in which an
obvious convex pattern appears at the Hs-7(2, 2). As mentioned above that the input DCT
distribution of each subset in the secondary compression is similar to the entire
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distribution of input DCT coefficients which have been influenced by the primary
compression, after the second quantization process, a convex pattern will arise at He-7 (2,
n) because of the effect of Peak Offsetting, when the quantization scale factor of the
secondary compression g=2 is much smaller than ¢z of the primary compression. On the
other hand, in the interval [3, 6], part of values of He-7(q, n) also do not strictly abide by a
monotonic decline function. When the quantization scale factor g of the secondary
compression is not equal to gz of the primary compression, the effects of Discontinuity
and Approximate Periodicity will lead to some convex patterns in the doubly quantized
DCT distribution. However, these artifacts do not show obvious periodicities, because
H(g, n) decays very quickly.

In Figure II-13(c), the decoded test sequence is doubly encoded by TMS5 at 5 Mbps,
obtaining a set of histograms He-5(g, n). Because the target output bit-rate of the secondary
compression is smaller than that of the primary compression, the average value of
quantization scale factors increases (as shown in Figure II-159), and some small
quantization scale factors will disappear, such as g=2, but some convex patterns caused
by double compression can also be detected in the other curves, such as He-5(4, n).

In Figure I1-13(d), the decoded test sequence is doubly encoded by Adobe Premiere 2.0
at 6 Mbps. Although the test video is doubly compressed at the same target output bit-
rate, quantization scale factors in the secondary compression are independent of these in
the primary compression. We can also detect convex patterns in the distribution curves of
quantized DCT coefficients to verify the existence of double compression, such as He-6(2,
3), Hs-6(4, 2), and so on.

To sum up, in the set of distribution curves of quantized DCT coefficients in intra frames,
the convex pattern can be viewed as a distinctive feature of the double MPEG compression
under different output bit-rate conditions. Meanwhile, the statistic result also shows that
those features can be observed in the inter frames (P frames or B frames), depicted in
Figure II-13(e). As a result, we can design an effective double MPEG compression
detection algorithm based on convex patterns.

DOUBLE MPEG-2 COMPRESSION DETECTION SCHEME

Based on the above statistical analysis, a new detection scheme is proposed for double
MPEG-2 compression. Some features will be extracted from distributions of quantized
DCT coefficients, and utilized to build a double MPEG-2 compression detector combined
with a support vector machine (SVM) classifier.

When a MPEG-2 video stream is input into our detector, each GOP are defined as a
sample. All DCT coefficient blocks in the same type of frames are firstly divided into
some subsets according to quantization scale factors. Then in each subset, quantized DCT
coefficients at two special DCT terms, DCT (1, 2) and DCT (2, 1), are assembled to
construct a set of histogram curves H(k, g, n), where k, ¢, and n are the type of frame, the
quantization scale factor, and the value of quantized DCT coefficients, respectively. In
order to calculate the convex pattern, a detection function 7(%, ¢) is defined as (II-18) for
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every curve H(k, g, n).

T(k,q):ZN:an xt(k,q,n); (I1-18)

n=1

t(k,q,n) = max (0, 1- Hk g, n 1)+ H(k,g,nt l)j. (1I-19)
2x H(k,q,n)

Where ax are a set of weighting factors to reflect the importance of the convex pattern at
different positions. Since quantized DCT coefficients concentrate in a small range (as
shown in Figure II-13), N is set to 6 in our experiments. To illustrate the effectiveness of
our extracted features, two standard test sequences are doubly compressed by TMS5 with
target output bit-rate 6 Mbps followed by 7 Mbps, and a feature vector consisting of 7(1,
2), T(1, 4), and T(I, 6) is extracted to construct a 3D scatter chart, as shown in Figure II-
14. In these two scatter charts, most samples of originally compressed streams are close
to zero, and the separate clustering for the two cases is clear which makes classification
possible.
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Figure II-14. Scatter charts of feature vectors (7(1, 2), 7(1, 4), and 7(I, 6)) where circles and stars denote
single compression and double compression, respectively: (a) ‘waterfall’ video sequence; (b) ‘galleon’
video sequence
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Figure II-15. Histograms of quantization scale factors at different output bit-rates: (a) 4 Mbps; (b) 6
Mbps; (c) 8 Mbps.

The higher the target output bit rate is, the smaller the quantization scale factor tends to
be, as show in Figure II-15. In order to approximately indicate the relationship between
the quantization scale factor and the target output bit rate, all standard video sequences
are originally compressed by TMS5 at 4 Mbps, 6 Mbps, and 8 Mbps, respectively, and
quantization scale factors of all video sequences at a certain constant output bit rate are
assembled to construct the histogram. At low target output bit-rate, the percentage of small
quantization scale factor is too small to stably and reliably present the convex pattern. To
obtain a robust and effective scheme, the feature vector V will be constructed as follows.

{T(k,q),q=2,3,4,5,6,7,8;k €{I,P,B}}, if BR>6Mbps
V ={T(k,q).q =3,4,5,6,7,8,10;k € {I,P,B}}, if 4Mbps < BR < 6Mbps (11-20)
(T(k.q).q =4.5.6,7,8,10,12:k € {1,P,B}}, if BR<4Mbps

In each type of frame, seven quantized DCT histograms are used to extract features and
the total dimension of feature vector V is 21 (7x3). Finally a widely used support vector
machine tool, LIBSVM package (Chang and Lin 2011) is used to train or test classifiers.
A radial basis function (RBF) is chosen as the kernel function and a grid search is
performed to select the best parameters for the kernel. Each sample will be labeled by the
classifier as being originally MPEG compressed or being doubly MPEG compressed.
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After all samples in the testing video clips have been labeled, we count the number of
samples classified as being doubly MPEG compressed. If the percentage of doubly MPEG
compressed samples is larger than a threshold Ty, the current video clip will be classified
as being doubly MPEG compressed.

11-6-b. Experimental design

Three sets of experiments are presented to show the validity and applicability of our
proposed algorithm for detecting double compression. Four MPEG-2 encoders are
introduced into our test system, including Test Model 5, the default MPEG-2 encoder in
Adobe Premiere 2.0 (Web Adobe Premiere Pro), Sony HDR-XR500E, and Canon FS10E.
The first two are MPEG-2 video coding software, and the latter two are hand-held digital
video cameras. We select some different combinations of these MPEG-2 encoders to
simulate the double compression process. The detection performance of the identification
algorithm is measured in terms of recall and precision which are defined as follows.

Precision =

+F (11-21)
Recall =

C+M (11-22)

Where C represents the number of correctly detections of doubly MPEG-2 compressed
videos, F' denotes the number of false alarms, and M denotes the number of misses.

In our double MPEG-2 compression detector, according to a large number of experimental
results, the default weighting parameters a» in the detection function 7(k, gq) are

empirically set as: a,=024,0,=024,a, =024, o, =0.1,a,=0.1,, = 0.08. Each GOP

of video clips is defined as a sample, and 21 features are extracted from each sample for
training or testing. In all experiments, the ratio of training samples to test samples is 1:1,
and the threshold Tp is set as 0.5 with a simple majority voting rule.

a) Double MPEG-2 compression with the same MPEG-2 encoder

In this experiment, the primary and secondary compression process are implemented with
the same video coding software, Test Model 5 (abbr. TMS5) or the default MPEG-2
encoder in Adobe Premiere 2.0 (abbr. Premiere). The target output bit-rate of the primary
compression is set as 6 Mbps, while that of the secondary compression varies from 4 Mbps
to 8 Mbps in steps of 1 Mbps except 6 Mbps. In the practical video application, these three
bit rates (8 Mbps, 6 Mbps, and 4 Mbps) are usually utilized to generate the highest, the
standard, and the worst video quality for the standard resolution format, respectively. We
establish a video sequence dataset that consists of 50 test sequences, including 20 standard
test sequences (220 frames each sequence) which come from Video Quality Experts
Group (VQEG) (Web VQEG), and the other video clips (300 frames each clip) come from
high definition DVD. The contents and motion complexity of the test sequences vary in a
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large range. Some main parameters in these two encoders are described as Table 11-4, and
the other parameters can be set as default values.

Table II-4. Predominant Parameters in Two MPEG-2 Software Encoders

Parameters Premiere Setting TMS Setting
TV standard PAL(720%576) PAL(720%576)
Frame Rate(f/s) 25 25

Frame Number 220/300 220/300

Pixel Aspect Ratio 4:3 4:3

Profile Main Main

Level Main Main
Bit-Rate(Mbps) 4/5/6/7/8 4/5/6/7/8

GOP Setting M=3, N=12 M=3, N=12
VBV Buffer Size(kbits) 112x16 112x16

b) Double MPEG-2 compression with different video encoders

In this experiment, two DVs (digital video camcorders), Sony HDR-XR500E and Canon
FSI0E, are utilized to obtain the original MPEG-2 videos. We use each camcorder to
record 50 nature video clips with length of 300 frames in our campus. In each test group,
50 nature image sequences are firstly encoded into MPEG-2 compressed files by the built-
in encoder in the DV. These original compressed streams are input into PC, decoded and
re-coded into 50 double compressed streams by the MPEG-2 video coding software --
Adobe Premiere Pro 2.0 or TM5. Finally 200 test streams (100 single compressed streams
and 100 double compressed streams) will be put into our detector to test its performance.

In the parameter settings, the most important parameters in DV are resolution and target
output bit-rate. The standard definition video format is selected as our encoding mode,
whose resolution is 720%576 and output bit-rate is 6 Mbps. The other parameters just only
affect the subjective effects of video resources, but have less impact on the statistical
characteristics of DCT coefficient distribution, and we initial them as default values in the
DVs. In the MPEG-2 software coders, all parameters are set the same as the MPEG-2
encoders in Section V.A, as shown in Table 1. We only adjust the target output bit-rate of
software encoders to create new video files with different quality to test the adaptability
of our detection scheme.

c) Double compression with frame tampering operation

Frame tampering is one of the common video forgery operations, which can change the
video content and confuse the viewers by removing some special frames in the video
resources, such as some surveillance videos. In this experiment, 50 original compressed
videos recorded by Sony HDR-XRS500E at 6 Mbps are decoded into an image sequences,
and the first three images are removed to simulate the frame tampering operation. Finally
these doctored sequences are re-coded at different target output bit-rates by TMS5, and 100
test streams (50 singly compressed streams and 50 doubly compressed streams) will be
put into our detector to verify its robustness.
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I1-7 MP3 Audio Steganalysis
11-7-a. Algorithm design

In MP3, each frame consists of two granules, and each granule represents 576 16-bit PCM
samples in a time sequence. Through compression, each frame is first divided into 32
adjacent frequency subbands and then converted into 576 finer subbands in the MDCT
domain. From observations, we notice that the information-hiding behavior modifies most
of the quantized MDCT coefficients in one frame at the same time with the exception of
the coefficients with small absolute values, indicating that the intra-frame distribution is
preserved. On the other hand, the inter-frame pattern is altered across adjacent frames.
Based on this analysis, we designed inter-frame feature sets by utilizing second-order
derivative-based spectrum analysis.

Statistical Model and Signal Complexity

In image processing, several statistical models (Do and Vetterli 2002; Huang and
Mumford 1999; Sharifi and Leon-Garcia 1995; Srivastava et al 2003; Winkler 1996) were
introduced to illustrate the distribution of the intensity values of pixels, such as Markov
random field models (MRFs), Gaussian mixture models (GMM), and generalized
Gaussian density (GGD) models in transform domains. Experiments show that a good
probability distribution function (PDF) approximation for the marginal density of
coefficients at a particular subband produced by various types of wavelet transforms may
be achieved by adaptively varying parameters of the GGD (Do and Vetterli 2002; Huang
and Mumford 1999; Sharifi and Leon-Garcia 1995; Srivastava et al 2003; Wouwer et al
1999). The GGD model contains the Gaussian and Laplacian PDFs as special cases, using
£ =2 and 1, respectively.

For MP3 digital audio, the GGD model also provides a faithful approximation of the
distribution of quantized MDCT coefficients which varies with compression ratio and
signal complexity. Therefore, as a useful measure of signal complexity, the shape
parameter of the GGD becomes another important evaluation factor, in addition to
embedding strength, for MP3 steganalysis. Figure II-16 illustrates some signal samples
with different values of complexity measurement £ . At the same embedding strength, we

surmise that the signals with lower complexity are easier to be steganalyzed, but the
steganalysis of the audio streams in high complexity is much harder, because the features
become less discriminable in more complex signals.
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Figure II-16. MP3 audio signal samples with different values of signal complexity, .

For long window, there are 576 MDCT coefficients in one frame. For short window, three
consecutive groups of 192 coefficients are combined into one frame. For an audio signal
with N frames, we define the quantized MDCT coefficients as a matrix:

Xoog —eor IXgsgs

X=| : : (I1-23)
Xy 1o 0 Xy_yss
In matrix LX, each row, denoted by MDCT F, contains all quantized MDCT coefficients

in one frame, and each column, denoted by MDCT B, includes all quantized MDCT
coefficients in one subband.

MDCT _F, =[x,y ix, - iX, 55 | (11-24)
MDCT _B, =[x, ix,, - ix,,, | (I1-25)

The GGD model of quantized MDCT coefficients of one MP3 audio is depicted in the
following equation:

. s ~(|inf/a)?
s, f) = 11-26
pix;a, ) a1 ) (11-26)
T(z)=| et dt,z>0 (11-27)

where F(z) is the Gamma function and a models the width of the PDF peak (standard
deviation), while £ 1is inversely proportional to the decreasing rate of the peak.
Sometimes & is referred to as the scale parameter, and [ as the shape parameter.

Generally, with the same compression ratio, the signal with complex variation has a high
shape parameter of the GGD in the compression domain.

53



Moment Statistics of GGD Shape Parameter

MP3Stego embeds data into MP3 audio by randomly modifying the length of the data
segment in frame headers. This information-hiding behavior increases the step-size of the
quantization, resulting in a slight degradation of the quality of the audio. Across spectra,
the absolute values of quantized MDCT coefficients decrease in some randomly selected
frames. For selected frames, the magnitudes of all MDCT coefficients are decreased
simultaneously.

Based on spectrum distribution analysis, we hypothesized that information-hiding
behavior alters the continuity of the distributions of adjacent frames. Therefore, we
designed a moment statistical analysis method on the shape parameter of GGD on inter-
frame. The GGD distribution of an individual frame is modeled as:

— ﬂ[ e_(‘ixf,f‘/at )ﬂ[
20,71/ B) (11-28)
t=0,1,2,..,N-1,i=0,1,2,..,575

px, ;s e, B,)

where ¢ is the frame index and ¢, and f are the scale parameter and shape parameter of

the t frame, respectively. Four moment statistical features are extracted from the
spectrum of the shape parameter of the GGD. The mean value, standard deviation,
skewness, and kurtosis are denoted by M ,, A,, SK, and KU ,, and calculated by the

following equations:

M, =" (11-29)

A, =JlN'l (B-M,Y (11:30)

SK =110 (I1-31)

KU, == -3 (11-32)
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Frequency-Based Subband Moment Statistics

In image processing, second-order derivatives are widely employed for detecting isolated
points, edges, etc. To our knowledge, most audio steganography systems modify the bits
of audio that also alter the pattern of second-order derivatives. Since MP3Stego randomly
modifies the quantization step-size, the second-order derivatives of subbands also gain
additional noise from information-hiding.

Let f(x) (x=0,1,...N—2) denote the MDCT coefficients of MP3 audio at a specific
frequency subband. The second-order derivative is defined as follows:

Df(x)z Cfﬁzf =f(x+2)-2*f(x+D)+ f(x)
x=0~N-3

(I1-33)

The MDCT coefficients of a stego-signal are denoted by s(x), which may be modeled by
adding a noise or error signal e(x) into the original coefficient f(x).

s(x)= f(x)+e(x) (11-34)

The second-order derivatives of e(x) and s(x)are denoted by D’(x) and D!(x),
respectively. We obtain:

D;(x)=D;(x)+D; (x) (II-35)

At this point, we present the following procedure to extract the second-order derivative-
based statistics of the signals:

(1)  Obtain the second-order derivatives D> (¢,i) from 576 MDCT subband signals
MDCT B(i) across all frames where #=0,1,2,....,N—-1.and i=0,1,2,...,575.

(2) Calculate statistics, including mean value, standard deviation, skewness, and
kurtosis of subband signals.

(3) Toreduce the number of features, the whole frequency zone is divided into Z zones
or parts (Z is set to 32 in our experiments) from the lowest to the highest frequency.
We then calculated the sums of the mean value, standard deviation, skewness, and
kurtosis in each zone, denoted by M ,, A,, SK, and KU, , where Z =0,1,...,31.
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N-3
2 .
7%19 z D;.(1,i)

M, = = (I1-36)
‘ i=ZZI;§+1 N-2
Z*19 N-3
A= \/— (D (D)~ M)’ (11-37)
i=Z*18+1 N 2 t=0
1 N-3
Z*19 _ Z(D (t,iH-M )
SK,= Y, = . (I1-38)
i=Z*18+1 1 S, %
(D(t,i) =M )’
N-2 t=0
1 N-3
Z*19 N—?_Z(D (t,H-M )
KU,= > = -3 (11-39)

i—Z*18+1( 1 X (D (t.i)— M)j

=
[
\®)

L

Accumulative Neighboring Joint Density and Markov Approach

The Markov process is a widely used stochastic process. In image steganalysis, Shi et al.
(2007) proposed a Markov-based approach to detect the information-hiding in JPEG
images. Liu et al. (2010) expanded the Markov features to the inter-blocks of the DCT
domain. Although the designs of JPEG and MP3 compressions have similarities, the
information-hiding process in digital audio does not share the same pattern with image
steganography. Based on our previous analysis, we designed an inter-frame Markov
approach (IM) and inter-frame Neighboring Joint Density (INJ) for MP3 audio
steganalysis, described in the following equations, where ¢ = 1 if its arguments are
satisfied, otherwise o = 0. Similar to the references (Shi et al. 2007; Liu et al. 2010), the
range of i and j is [-4, 4]. In such a case we have two 9x9 feature matrices with each one
consisting of 81 elements or features. Figure II-17 shows the Markov transition
probabilities of a cover and the steganogram in (a) and (b), the neighboring joint densities
of the cover and the steganogram in (d) and (e), and the differences of the transition
probabilities and the differences of the neighboring joint densities between the cover and
the steganogram, in (c) and ().
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Figure II-17. The comparison of Markov transition probabilities of the second-order derivatives, shown in
(a) and (b), the comparison of neighboring joint densities of the second-order derivatives, shown in (d) and
(e), and the differences of the transition probability and neighboring joint density between a cover and the
steganogram, shown in (c) and (f).

&Y D (1) = u D1+ 1) = v)
IM(u,v)=Z — T
pry D S(Da(ti)=u)

(11-40)

575

N—4
o(DX(t,i)=u,D(t+1,i) =
INJ(u,v):Zi:OZf:O (D, (6,0) =u, Dt +1,D) =v)

576*(N —3)

(11-41)

Feature Selection

To achieve better performance in detection, we combined different feature sets as a
comprehensive approach. However, with more features being included in the feature set,
the increasing feature dimension and feature redundancy compromise the performance
and the efficiency of steganalysis. Feature selection methods are designed to find an
optimal feature subset by eliminating features with little discriminative information.
Therefore, in a comprehensive approach, feature selection can be a useful solution to
further enhance the accuracy as well as reduce the overhead.
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Most widely used feature selection methods could be categorized into filter, wrapper, and
embedded methods. Filter methods select feature subsets based on performance evaluation
metrics extracted from feature set and work with no dependency on reference to machine
learning algorithms. Filter methods are generally less expensive than wrapper and
embedded methods. However, filter methods consider the features as independent
individuals and ignore possible interactions among features. The combination of features
does not guarantee an enhanced performance, according to the performance evaluation of
individual features. Moreover, filter methods intend to select features which correspond
to high evaluation scores, which might generate more redundant yet less informative
feature subsets. Avcibas et al. (2003) presented a universal steganalysis based on image
quality metrics and utilized the one-way analysis of variance (ANOVA) for choosing good
measures. This feature selection belongs to the filtering approach, and the final feature set
may not be optimal. Wrapper methods wrap around particular machine learning
algorithms that can assess the selected feature subsets by estimating classification errors
and then building the final classifiers. One of the well-known methods is the Support
Vector Machine—Recursive Feature Elimination (SVM-RFE), which refines the optimal
feature set by using the SVM in a wrapper approach (Guyon et al 2002). Embedded
methods are built into adaptive systems while simultaneously processing feature selection
with a classifier.

To deal with the issue of feature selection in MP3 audio steganalysis, we compared three
feature selections: ANOVA, SVM-RFE, and a two-step approach incorporating ANOVA
with SVM-RFE.

11-7-b. Experimental design

We select 5000 mono MP3 audio clips with a bit rate of 128 kbps and a sample rate of
44.1 KHz. Each audio signal has duration of 20 seconds, and the file size is 313 KB. These
audio files include digital speeches and songs in several languages, such as English,
Chinese, Japanese, Korean, and several types of music including jazz, rock, blue, and
natural sounds. The payloads include voice, video, image, text, executable codes, random
bits, etc., with each steganogram carrying a unique payload. By embedding different
amounts of data, we constructed four sets of MP3 stego-audio with approximate
modification densities of 8%, 12%, 16%, and 20%, which carry payloads of 30, 60, 90,
and 120 Bytes. At a modification density of 20%, the MP3Stego reaches its maximum
hiding capacity. Cover MP3 audio was compressed by using the same MP3 encoder in the
MP3Stego. In this study, we used modification density, defined as the proportion of the
number of modified non-zero MDCT coefficients to the number of all non-zeros MDCT
coefficients, instead of the hiding ratio to evaluate detection performance.

Four groups of features are extracted from covers and steganograms. Sixty percent of the
feature sets were employed for constructing the classification model, while the other forty
percent of the feature sets were used for testing. For every experimental setting, we
conducted the experiment 100 times, with the training and the testing sets randomly
chosen every time. The classification returned results consisting of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). The testing accuracy was
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calculated by W*TP/(TP+FN) + (1-W)*TN/(TN+FP), where W is a weighting factor at
the range of [0, 1]. Without losing generality, W was set to 0.5 in our experiments. Support
vector machines (SVM) with RBF kernels were used for detection.

I1-8 AAC Audio Forgery Detection
11-8-a. Algorithm design

Several types of processing may exist to create the forgery in AAC audio streams. While
the sources of AAC audio files used for forgery production are encoded at different bit
rates, or the AAC source audio files are encoded at the same bit rate, but the doctored
AAC audio file is encoded at a different bit rate, such kind of forgery undergo different
compressions, or double AAC compression. Similar to the detection of double MP3
compression, we may reveal the forgery or manipulation by identifying the double AAC
compression. While the source AAC audio files are encoded at the same bit rate, they are
composited together in the time domain, and finally encoded at the same bit rate, the
identification of such forgery by using double compression detection method is not
effective.

As pointed out in the reference (Liu 2011b), JPEG compression generally generates block
artifacts. Similar to JPEG compression, AAC audio compression also introduces block
(frame) artifacts. While two AAC audio files are manipulated together, or some part is
removed from an AAC audio file in temporal domain, and doctored audio data are re-
encoded in AAC format at the same bit rate, the original block artifacts are generally
undermined, in other words, original block switching structure will be reshuffled with a
part of the neighbor blocks. By revealing such reshuffling manipulation, we may locate
the doctored areas in the AAC audio forgery that was encoded at the same bit rate. And
hence, we propose a shift-recompression-based differential analysis to detect the forgery
in AAC audio streams with the same compression bit rate, described as follows.

Shift-Recompression-based Differential Analysis Algorithm

i. Decode the examined AAC audio stream to temporal domain, denoted by a matrix
S(ij) (i=0,1, 2, ..., M; j indicates the number of channel of the audio signal);

ii. ~ Shift the matrix S(i,j) by t samples in the temporal domain, te{1,2... N-1}, here 2N

stands for the number of samples in a frame/block. For a stationary signal, AAC
uses a block size of 2048 samples (N = 1024). A shifted temporal WAV signal S'(i,
J, v) is produced. S'(i, j, t) = S(i-t, j), i=t, t+1, t+2, ..., M;

iii. Fort=1:1023
1) Encode the shifted temporal signal S'( i, j, t) to AAC format at the same bit rate;

2) Decode the encoded audio signal from the above step to temporal domain,
denoted by S’'(i, j, t);

3) Calculate the difference D(i, j, )= S'(i,j, t)-S"(i,j, t);
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4) Shift-recompression based reshuffle characteristic features (SRSC) are given

by:
> |DG, j,1)
_ (11-42)
SRSC(?) SISG, o)
()]

Wheret =1, 2, ..., 1023. There are 1023 SRSC features for a stationary AAC audio file.

While AAC audio stream are tampered in temporal domain and original frame structures
are generally broken, by checking the SRSC feature under each different shift-
recompression, we surmise that untouched SRSC features and tampered SRSC features
are different, especially at the corresponding shift. As a result, the manipulation can be
revealed.

11-8-b. Experiment design
a)  Detection of Cropping and Recompression

To verify our proposed shift-recompression-based differential analysis, we select 1000
never compressed WAYV files; each file is in the length of 20 seconds. These WAV files
are compressed in AAC format by using FAAC encoder, which is based on the original
ISO MPEG reference code (Web Audiocoding). To simulate the shift-recompression of
AAC audio forgery manipulation, AAC audio files are decoded into temporal domain and
cropped by different samples at the beginning of the audio signals, then re-encoded in
AAC format at the same bit rate. In our study, we tried to produce the cropping database
at each possible cropping, or the number of samples removed is set from 1 to 1023,
however, the time-consuming is too high to complete. Therefore, in our experiments, the
numbers of the samples cropped are only set as 5, 50, 200, 400, 480, 512, 750, 900, and
1000, respectively. 1023 SRSC features are extracted from 1000 untouched AAC audio
files and from the nine categories of doctored AAC audio files.

b)  Detection of AAC Tampering

In this type of experiments, we randomly select 200 AAC audio files, and remove a few
audio samples in the middle, with the block switch offset by 100, 300, 500, 700, and 900
samples, then encode the doctored audio signals into AAC format at the same bit rate.
There are total of 1000 doctored AAC audio files. We apply shift-recompression-based
differential analysis to each audio file (including untouched and doctored audio files),
each audio file is equally divided into six segments, as a result, 1200 untouched segments
and 3000 touched segments are obtained. SRSC features are extracted from each segment,
in order to discriminate the doctored audio files from untouched files, and identify the
doctored areas.
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I11-1 JPEG Steganalysis

A.

I11.

Statement of Results:

Results

Tables III-1 (A) to (E) list the mean values of detection accuracy over 100 experiments to
detect F5, steghide, MB1, MB2, and adaptive steganography in JPEG image respectively.
In the results, by applying each learning classifier to the nine detectors, the best testing
accuracy is highlighted in bold; by applying the three learning classifiers to the nine

detectors, the best testing accuracy in bold are squared.

In detecting F5 steganography, calibrated neighboring joint density is generally superior
to other eight detectors, shown by Table I1I-1(A). Most best testing accuracy is obtained
by CC-absNJ with LibSVM. In detecting steghide steganography, CC-absNJ and the
union of CC-JRM and SRMQI1 generally outperform other seven detectors, shown by
Table III-1(B). In detecting MB1 and MB2 steganography, shown by Tables I1I-1(C) and
(D), a calibrated neighboring joint density-based detector (CC-absNJ) obtains the best
detection accuracy. In adaptive steganalysis, by using an ensemble classifier, the union of
CC-JRM and SRMQI1 performs the best in detecting the steganograms at relative payload
0.1 bpac, with the testing accuracy of 85.7%. The application of an ensemble classifier to
another rich model detector (CC-C300) cannot obtain optimal base learning classifiers;
the detection is not available at relative payload 0.1 bpac. While detecting adaptive
steganograms at 0.15 bpac to 0.35 bpac, CC-absNJ are comparable to the union of CC-
JRM and SRMQ1, delivering better detection accuracy than other 7 detectors.

B.

Tables:

TABLE III-1. The mean detection accuracy (%) over 100 experiments with LibSVM (S), Fisher Linear
Discriminant (F), and Ensemble classifier (E)

(A). F5 Steganalysis

Relative payload

Detector 0.051 0.077 0.105 0.137 0.185 0.282 0.354
S F E S F E S F E S F E S F E S F E S F E

CC-absNJ 944 946 920 96.6 954 941 984 971 974 99.0 982 985 993 989 99.1 999 996 994 100 99.6 99.7
absNJ 919 910 867 939 91.1 89.7 965 929 950 97.6 947 960 979 958 97.0 992 987 972 99.8 99.7 99.6
CC-PEV 81.0 904 856 853 920 892 91.7 965 952 940 977 970 973 993 987 989 99.6 99.6 99.8 998 999
PEV 856 864 81.0 90.0 886 847 945 943 929 965 96.6 958 979 989 983 991 995 992 998 998 999
Markov 68.1 757 695 669 766 741 755 852 827 76,6 916 887 869 965 946 950 977 96.7 97.7 994 993
CC-C300 X 814 749 x 90.3 862 x 948 937 x 96.8 962 x 98.8 98.7 x 992 990 x 99.7 99.8
CF X 710 784 x 870 852 «x 885 934 «x 894 96.7 x 92.8 98.6 x 953 99.1 «x 99.0 99.8
CC-JRM X 793 877 x 91.6 921 x 936 959 «x 950 976 x 969 98.0 x 98.8 994 x 99.8 99.8
JCISI\-/HSRMQI X 882 820 «x 93.6 884 x 954 953 «x 970 979 «x 979 980 x 993 994 x 99.9 999
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(B). Steghide Steganalysis

Relative payload
Detector 0.021 0.029 0.036 0.044 0.055 0.073 0.114
S F E S F E S F E S F E S F E S F E S F E
CC-absNJ 92.1 925 874 954 959 933 981 974 969 992 983 987 997 992 994 999 997 999 100 999 100
absNJ 889 881 80.8 920 91.0 86.8 950 934 920 973 955 958 981 963 968 994 981 988 998 993 99.7
CC-PEV 824 89.5 837 839 930 892 901 968 945 942 987 975 967 993 984 991 997 995 99.7 998 99.8
PEV 824 826 744 855 8.7 809 905 921 8.0 953 964 945 975 979 967 993 995 99.1 997 99.7 99.7
Markov 729 833 774 750 859 819 841 91.7 893 896 960 940 937 974 962 979 99.0 985 992 994 993
CC-C300 X 74.8  65.6 X 815 721 X 87.4 798 X 91.5 855 X 952 916 X 97.8 969 X 98.9 98.7
CF X 782 66.6 X 833 70.1 X 88.0 763 X 91.6 83.9 X 934 908 X 958 963 X 949  99.0
CC-JRM X 85.1 753 X 904 842 X 943 91.0 X 96.5 955 X 97.8 975 X 98.9 992 X 98.5 99.7
JRM-%—CSCR-MQI X 859 924 X 912 96.8 X 952 98.8 X 973 995 X 98.5 99.7 X 994  99.8 X 99.2 999
(C). MBI Steganalysis
Relative payload
Detector 0.073 0.089 0.094 0.125 0.172 0.183 0.195
S F E S F E S F E S F E S F E S F E S F E
CC-absNJ 99.5 981 980 999 997 998 997 995 995 999 986 986 999 997 999 100 998 100 100 99.9 100
absNJ 958 948 915 974 953 959 979 965 969 984 946 968 998 989 997 998 995 998 999 994 999
CC-PEV 939 96.1 937 955 985 975 955 984 977 961 975 962 996 998 997 995 998 998 989 999 99.8
PEV 942 922 902 960 956 936 956 951 936 955 938 918 996 993 993 997 994 995 998 993 994
Markov 90.8 920 893 905 945 930 922 950 936 903 934 909 991 993 990 993 993 992 978 994 993
CC-C300 X 74.6 738 X 87.7 613 X 833 544 X 778  67.0 X 96.5 875 X 949 774 X 90.7  66.6
CF X 57.0 88.9 X 91.4 93.1 X 89.6 86.3 X 85.7 827 X 97.7 989 X 983 988 X 96.7  96.1
CC-JRM X 60.6 91.2 X 96.2 975 X 95.1 972 X 927  96.2 X 99.4  99.8 X 99.7  99.9 X 99.4  99.8
JRMESCI?{-MQI X 644 927 X 97.1 953 X 96.1 949 X 943 929 X 99.5 99.8 X 99.8  99.8 X 99.6  99.6
(D). MB2 Steganalysis
Relative payload
Detector 0.101 0.120 0.131 0.168 0.226 0.245 0.271
S F E S F E S F E S F E S F E S F E S F E
CC-absNJ 985 964 955 993 984 984 997 991 994 998 99.1 992 100 997 998 100 999 999 100 999 999
absNJ 96.6 922 932 980 959 965 990 974 978 994 976 984 100 992 997 999 998 999 100 998 999
CC-PEV 950 967 954 955 989 981 97.0 993 99.1 989 995 992 997 999 999 996 999 999 998 999 99.9
PEV 940 923 906 962 958 944 980 978 974 992 989 986 999 998 997 998 997 997 999 999 999
Markov 90.7 920 899 872 947 926 924 965 952 964 971 961 983 992 989 985 995 993 993 997 99.7
CC-C300 X 689 639 X 849 568 X 90.2  66.5 X 955 797 X 969 80.8 X 957 782 X 975 894
CF X 56.8 839 X 89.3 86.2 X 92.6 92.1 X 93.4 964 X 973 98.0 X 98.0 98.4 X 99.0 99.2
CC-JRM X 60.8  90.4 X 945 957 X 96.1 975 X 97.0 98.2 X 99.2  99.7 X 99.5 99.8 X 99.6  99.9
JRMJrCSCI;MQl X 633 904 X 954 945 X 97.1 96.6 X 97.8 98.1 X 99.4  99.6 X 99.6  99.8 X 99.7 999
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(E). Adaptive Steganalysis

Relative payload
Detector 0.1 0.15 0.2 0.25 0.3 0.35
S F E S F E S F E S F E S F E S F E

CC-absNJ 778 780 783 899 895 899 957 951 954 986 976 981 993 985 99.0 99.6 99.0 995
absNJ 69.6 712 708 815 83.6 833 892 909 904 937 947 947 96.0 96.7 969 979 978 983
CC-PEV 580 666 700 688 82.0 831 765 906 909 844 960 960 895 97.6 97.8 947 99.0 989
PEV 660 645 656 777 780 78.6 863 877 876 929 942 940 958 96.7 96.7 98.1 988 98.7
Markov 50.1 515 509 533 666 671 575 778 788 658 857 874 694 914 924 735 948 953
CC-C300 X 82.0 NA* X 89.5 638 X 93.6 84.8 X 96.5 933 X 97.8  96.3 X 98.6  98.0
CF X 81.0 83.6 X 87.6  90.5 X 91.9 945 X 95.1 97.0 X 96.3 98.0 X 97.9 989
CC-JRM X 81.1 81.9 X 88.5 8938 X 92.5 94.0 X 958  96.7 X 97.1 979 X 98.5 987
CC-JRM+SRMQI1 X 83.8 857 X 91.1 88.6 X 948 957 X 97.0 983 X 98.1 992 X 99.2  99.6

* The testing results “NA” were caused by the failure of ensemble classifier while the final optimal base classifier may not be generated.

ITI-2. YASS Steganalysis
A. Statement of Results:

In  binary  classification, the  testing accuracy is  measured by
0.5*TP/(TP+FN)+0.5*TN/(TN+FN). The mean testing accuracy over 200 experiments is
given by Table III-2(A). While the parameter noused is set to 19/14 while generating
Y ASS steganograms, our method is generally more accurate han the other two compared
methods. The zero-value density-based detection method (Li, Shi and Huang 2009)
performs well when detecting the YASS steganograms that were produced with small B-
block parameter; however, the detection performance apparently deteriorates while the
parameter of B-block size increases. The experimental results are consistent with the
results in the reference (Li, Shi and Huang 2009) and also validate our previous surmise.

In multiple-class classification, Tables III-2(B), (C), and (D) give the confusion matrix
with the mean testing results over 200 times. While the parameter of noused is 19, detector
of zero-value density hits the correct detection of 16.2% for covers, 84.4%, 73.4%, and
61.4% for YASS steganograms produced by large B-block size 13, 14, and 15
respectively. Our approach obtains correct detection results of 80.1%, 95.9%, 93.8%, and
90.3%, gaining considerable improvement. While the parameter of noused is getting
smaller, the detection performance of our detection method deceases. On average, our
approach is better than zero-value density.
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(B). Confusion Matrix of Mean Testing (%) over 200 Experiments with LibSVM in Detecting YASS

B. Tables:

TABLE III-2. Mean Testing Accuracy (%) over 200 Experiments in Detecting YASS

(A) Binary-Class Classification
diff-absNJ Zero-value density** CC-JRM+SRMQI***

Noused™ B-block, T LibSVM _ FLD LibSVM__ FLD Ensemble  FLD
9 99.6 99.5 99.8 99.3 939 942

10 99.3 993 98.8 98.9 95.7 945

11 98.4 98.5 93.7 97.7 86.7 88.2

19 12 96.8 97.6 743 943 86.8 87.1
13 96.0 96.4 61.5 86.6 753 79.9

14 93.6 94.1 53.0 77.1 71.8 76.5

15 89.6 90.1 483 699 633 717

9 98.3 984 99.7 98.3 864 91.3

10 97.3 979 952 983 904 913

11 95.6 96.3 80.4 96.4 76.3 857

14 12 934 943 67.5 90.3 76.5 83.1
13 90.7 91.5 62.3 84.7 62.0 76.1

14 86.3 86.7 604 750 594  73.7

15 81.7 82.1 58.8 68.5 51.7 723

9 95.9 96.1 99.3 98.6 749 843

10 93.6 937 91.8 98.6 74.8 82.6

11 90.2 90.6 83.6 96.0 62.6 785

9 12 873 87.1 73.5 913 622 76.5
13 82.3 82.7 69.5 86.7 50.5 714

14 76.8 76.9 67.2 80.1 NA 679

15 727 73.1 66.1 74.7 NA 66.0

* noused is the parameter to set the number of the first few AC DCT coefficients for data embedding in the block.

** zero-value density-based approach assumes prior knowledge of the exact embedding position of the first few AC DCT
coefficients in zigzag order for data embedding, which is generally inapplicable and not assumed by our approach and rich models-
based detection.

*** When applying an ensemble classifier (Kodovsky, Fridrich and Holub 201) to the rich model-based approach, the testing results
“NA” means not available and is caused by the failure of the ensemble classifier while the final optimal base classifier may not be
generated.

(Multiple-class classification, noused = 19)

Prediction accuracy, %
Zero-value density Diff-absNJ
Truth Steganogram steganogram

OV =9 T=10 T-11 T-12 T? TZI Tzl VT 19 T=10 T=11 T=12 T=13 T=14 T=15

cover 16.2 0 0.9 5.1 8.4 182 239 273 80.1 0.0 0.1 0.5 1.7 2.4 54 9.9

T=9 0.0 100.0 0 0 0 0 0.0 0 0.1 93' 0 0.0 0.0 0.0 0.0 0
T=10 0.4 0 99.3 0 0 0.0 0.2 0.0 0.4 0 959' 0.0 0 0.0 0.1 0.0
T=11 1.5 0 0 97.1 0.1 0.4 0.5 0.4 1.3 0.0 0.0 9?' 0.1 0.0 0.1 0.3
steg T=12 2.2 0 0.0 0.1 94.6 0.7 1.1 1.3 2.0 0.0 0.0 0.1 9;' 0.2 0.3 0.3
T=13 4.2 0 0.1 0.5 2.4 84.4 4.6 3.7 3.1 0.0 0.0 0.1 0.2 995' 0.3 0.4
T=14 5.1 0 0.1 1.5 32 6.2 734 10.1 4.3 0.0 0.0 0.1 0.2 0.2 93' 1.3
T=15 7.1 0 0.6 1.4 5.2 9.3 150 614 7.6 0.0 0.0 0.1 0.5 0.5 1.0 9:?'
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(C). Confusion Matrix of Mean Testing (%) over 200 Experiments with LibSVM in Detecting YASS

(Multiple-class classification, noused = 14)

Prediction accuracy, %

Truth Zero-value density Diff-absNJ
cover Steganogram cover steganogram
T=9 T=10 T=11 T=12 T=13 T=14 T=15 T=9 T=10 T=11 T=12 T=13 T=14 T=15
cover 17.1 0 1.3 6.6 13.0 179 213 23.0 529 0.4 1.1 2.0 4.6 74 140 184
=9 00 999 0 0 0 0 0 0.1 0.7 98.4 0 0.1 0.2 0.2 0.2 0.3
T=10 0.9 0 96.9 0.0 0.3 0.2 0.8 0.8 1.2 00 972 0.1 0.2 0.2 0.5 0.6
T=11 1.4 0 0.2 93.2 0.6 1.2 1.8 1.7 2.1 0.6 02 952 04 0.1 0.7 1.1
steg T=12 2.3 0 0.6 0.5 87.9 2.5 3.1 32 3.6 0.2 0.2 04 921 09 1.1 1.4
T=13 3.2 0 0.8 1.7 43 75.9 8.1 6.0 4.9 0.1 0.2 0.3 1.0 898 18 1.9
T=14 5.5 0.0 1.8 39 6.0 121 599 109 6.9 1.8 0.6 0.4 0.6 1.7 851 45
T=15 7.4 0.1 1.7 4.8 8.1 150 203 427 9.8 0.3 0.4 0.7 1.1 2.4 39 815

(D). Confusion Matrix of Mean Testing (%) over 200 Experiments with LibSVM in Detecting YASS
(Multiple-class classification, noused = 9)

Prediction accuracy, %

Truth Zero-value density Diff-absNJ
cover Steganogram cover steganogram

T=9 T=10 T=11 T=12 T=13 T=14 T=15 T=9 T=10 T=11 T=12 T=13 T=14 T=15
cover 38.0 0 0.9 5.5 10.8 128 151 169 197 1.4 3.0 6.4 103 146 202 244
T=9 02  99.6 0 0 0.0 0 0.0 0.1 1.0 95.6 29 2.6 35 6.4 8.8 9.6
T=10 1.2 0.0 933 0.4 0.6 1.6 1.9 1.1 1.3 32 91,6 0.6 0.8 1.1 1.9 2.3
T=11 1.1 0 0.4 89.2 1.3 24 4.2 1.5 2.3 0.5 07 881 09 1.8 2.4 33
steg T=12 38 0 1.2 1.8 82.8 4.1 4.1 22 33 0.6 1.2 1.3 841 23 3.0 43
T=13 4.8 0.0 1.1 3.9 5.7 70.2 8.4 6.0 4.1 0.7 1.0 1.5 25 7997 49 5.6
T=14 6.7 0.0 3.4 6.5 7.7 12.7 53.8 9.2 5.5 1.0 2.0 2.1 3.2 47 7277 89
T=15 | 11.0 0.2 33 7.2 10.5 164 198 31.6 6.7 0.9 1.6 2.6 4.1 6.7 9.0 684

ITI-3. Seam-carved Forgery Detection

Statement of Results:

A.

The mean testing accuracy values are given in Table III-3 with 10 combinations of
different detectors. While all these detectors were originally designed to detect JPEG-
based steganography, all are effective to discriminate seam carved tampering from
untouched. The union of calibrated neighboring joint density CC-absNJ with the detector
of spatial domain rich model SRMQ1 obtains the best detection accuracy.
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B. Tables:

TABLE III-3. Seam-Carved Forgery Detection

Mean testing accuracy (%) over 2000 experiments with Fisher Linear Discriminant (F) and over 1000
experiments with Ensemble classifier (E)

Mean detection accuracy, %

Detector

F E
CC-absNJ 94.8 94.8
absNJ 87.3 86.9
CC-PEV 85.6 92.7
PEV 87.7 87.8
Markov 88.2 92.0
CC-C300 93.7 90.8
CF 94.2 953
CC-JRM 95.9 96.5
SRMQ1 97.0 97.5
CC-JRM+SRMQ1 96.8 97.1
CC-absNJ+SRMQ1 97.2) 97.6)

I11-4. JPEG Double Compression Detection
A. Statement of Results:

The average testing detection accuracy over 30 experiments in the five groups, are listed
in Table I1I-4-1(A) to Table I11-4-1(E), respectively, with the use of the feature sets: low-
frequency histogram, Markov transition probability, expanded low-middle frequency
histogram, and neighboring joint density, with the results shown in from the first row to
the forth row, respectively. In each comparison, the highest average testing accuracy is
highlighted in bold.

The results shows that expanded low-middle frequency histogram and neighboring joint
density dominantly hit the bold values. Apparently, expanded low-middle frequency
histogram approach is superior to the original low frequency histogram since it includes
middle frequency histogram features. On average, neighboring joint density features
outperform Markov transition probability features. The comparison among Table I11-4-
1(A) to (E) shows that image complexity plays a critically important role for the evaluation
of detection performance. The detection accuracy in high image complexity, shown in
Table I1I-4-1(E), is much less than other results, shown in Table I1I-4-1(A) to (D). It means
that the identification of double JPEG compression in high image complexity is still
challenging.

The identification of the first-time JPEG compression in double JPEG compression
images is very useful for the further forensic analysis. To detect the first-time JPEG
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compression or determine the quality factor of the first time JPEG compression in the
double compressed images, we mix all double compressed image with the same Q2 factors
but different Q1 factors, we merge the marginal features and neighboring joint density
features together, and apply SVM to the features for multiple classifications. Table I11-4-
2 lists the testing accuracy to d distinguish the Q1 factors in all mixed images with the
second quality factor ‘75°. Detection results show that the identification of the first-time
JPEG compression in the mixed double compressed images is promising. However the
detection in high image complexity is still challenging.

B. Tables:

Table I1I-4-1. The average detection accuracy over 30 experiments using low-frequency histogram feature
set (results shown in the first row), Markov transition probability (results shown in the second row),
expanded low-middle frequency histogram (results shown in the third row), and neighboring joint density
features (results shown in fourth row).

(A) Detection accuracy % in low image complexity (B < 0.3)

40 45 50 55 60 65 70 75 80 85 920
Q
96.0 97.8 98.3 98.1 93.9 94.5 96.3 87.2 91.4 69.8
40 95.9 98.7 99.1 98.9 98.3 94.2 97.7 52.1 81.0 60.4
98.2 99.1 99.5 99.3 96.7 98.4 98.9 92.7 96.7 82.9
98.2 99.6 99.8 99.5 99.2 95.5 99.0 64.2 83.4 62.2
97.5 93.8 97.3 98.4 98.3 94.9 95.7 94.7 90.1 79.3
45 97.1 87.8 97.8 98.4 99.0 98.2 95.2 90.5 90.5 69.6
98.1 88.3 98.6 99.4 99.1 97.2 98.5 98.1 95.2 89.7
98.5 91.1 99.1 99.3 99.6 98.9 97.7 93.9 94.8 72.2
99.1 96.0 93.7 97.8 98.9 97.8 89.1 96.4 922 77.9
50 99.5 91.8 85.5 98.3 99.1 98.9 93.6 97.3 79.2 434
99.5 93.8 86.0 98.8 99.5 98.9 92.0 98.6 96.4 92.9
99.7 94.5 88.7 99.5 99.7 99.5 94.0 98.7 90.2 51.2
99.5 98.7 95.7 96.2 98.7 98.6 96.6 95.9 933 88.2
55 99.7 99.1 90.4 923 98.4 99.1 98.4 96.0 543 81.6
99.7 99.4 89.9 96.2 99.1 99.4 97.9 97.4 96.1 94.4
99.8 99.7 91.0 95.8 99.5 99.6 99.3 98.2 56.3 89.0
ggg 99.7 99.1 97.8 98.0 98.7 98.7 95.5 96.7 89.7
60 999 99.7 99.4 96.0 94.5 98.2 98.7 91.7 93.6 73.1
99.8 99.4 97.8 98.6 99.3 99.4 98.2 98.6 96.9
999 99.8 99.6 97.9 93.8 99.3 99.6 91.0 97.0 62.0
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(B) Detection accuracy % in low-middle image complexity (0.3< B < 0.4)

1 40 45 50 55 60 65 70 75 80 85 90
Q
94.3 96.3 97.0 97.0 92.4 92.6 94.4 82.7 88.2 61.5
40 92.8 97.5 98.4 98.0 96.9 90.4 95.5 46.5 73.0 53.4
95.7 98.2 98.9 98.9 943 97.4 97.2 89.7 94.7 76.5
96.1 99.1 99.4 98.9 98.1 923 97.9 58.1 77.6 54.9
96.2 90.5 96.2 97.4 97.1 93.0 94.6 91.4 86.4 73.4
45 95.5 82.3 96.5 97.5 98.3 97.0 92.4 86.3 85.6 63.1
96.6 82.2 97.8 98.8 98.8 95.6 98.1 95.8 92.5 86.1
97.3 87.5 98.1 98.6 98.9 97.9 95.4 90.7 90.8 65.4
98.7 94.1 90.5 96.7 97.9 96.5 86.5 94.4 gg; 72.8
50 99.1 88.3 80.9 97.5 98.7 98.0 90.4 95.4 94'5 41.2
99.4 91.2 80.7 98.3 99.1 98.4 89.2 97.2 ) 89.1
99.7 91.8 84.0 98.8 99.3 98.8 91.2 976 | ¢s59 48.5
99.6 98.3 93.5 94.4 98.0 98.4 95.0 93.9 90.7 85.6
55 99.6 98.8 87.1 89.1 97.8 98.6 97.5 93.9 49.3 77.6
99.7 99.3 84.6 94.0 99.0 99.2 97.1 95.9 94.0 92.0
99.9 99.7 87.2 93.5 98.7 99.4 98.7 96.8 52.1 84.3
99.8 99.7 98.8 96.6 96.6 98.5 98.5 94.2 95.5 87.8
60 99.6 99.6 99.1 93.7 92.0 97.9 98.4 88.9 91.3 68.6
99.9 99.8 99.4 96.5 97.8 99.3 99.2 97.7 97.6 95.2
99.9 99.9 99.6 96.0 91.2 98.8 99.3 87.1 94.6 58.8
(C) Detection accuracy % in middle image complexity (0.4 <3 <0.5)
1 40 45 50 55 60 65 70 75 80 85 90
Q
93.1 95.9 96.6 96.5 90.4 90.4 92.8 79.5 86.0 56.3
40 91.5 972 97.9 97.5 95.9 87.8 94.1 43.2 68.8 48.4
94.5 97.3 98.4 98.0 92.8 95.5 95.4 87.1 92.6 71.7
95.7 98.5 99.2 98.3 97.1 89.7 96.8 54.3 70.8 49.8
95.4 89.0 95.0 97.1 97.1 92.0 92.3 89.6 83.7 69.9
45 94.1 80.1 95.6 96.4 97.7 95.8 89.5 82.6 82.0 58.6
95.9 78.4 96.7 98.2 98.1 94.3 96.2 94.0 90.8 83.5
96.3 84.5 97.1 97.9 98.7 96.6 93.1 87.0 88.5 59.2
97.8 93.5 89.8 96.2 97.8 96.6 84.4 93.1 87.6 68.9
s0 98.5 86.6 78.8 96.6 98.2 97.5 89.6 93.7 70.2 40.4
98.7 89.4 77.1 97.1 98.7 97.7 88.2 95.6 92.6 87.9
99.1 90.0 82.6 97.8 99.1 98.4 89.5 96.2 82.8 47.5
98.7 97.6 93.2 93.5 97.5 97.9 95.4 92.6 88.9 83.1
55 99.1 97.9 85.3 87.3 97.2 98.1 97.2 92.2 48.7 74.1
99.3 98.4 84.4 92.5 98.1 98.7 96.7 94.6 92.7 91.1
99.5 99.1 85.5 91.4 98.2 99.2 98.2 95.7 50.8 82.3
99.2 99.0 98.2 96.2 96.5 97.9 98.3 94.0 94.8 86.2
60 99.2 99.0 98.4 92.9 91.5 97.0 98.1 87.5 89.4 67.4
99.6 99.3 98.7 95.7 96.8 98.6 98.9 96.9 96.7 94.1
99.7 99.5 99.0 95.2 90.6 98.4 99.0 86.6 93.6 57.5
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(D) Detection accuracy % in middle-high image complexity (0.5 < < 0.6)

o Q 40 45 50 55 60 65 70 75 80 85 90
87.6 91.8 94.1 94.6 86.7 84.3 86.3 65.5 74.7 46.8
40 85.5 94.8 96.1 95.5 92.3 80.1 89.3 38.6 54.5 39.7
89.3 93.7 96.3 96.3 87.2 91.4 90.9 74.3 86.5 55.9
89.7 96.5 98.2 96.2 94.8 82.5 93.5 49.1 56.1 45.0
92.1 80.0 91.0 94.1 94.6 88.1 86.5 82.1 71.8 53.6
45 89.8 63.8 91.8 93.3 95.1 92.2 82.6 71.8 71.0 449
92.0 62.4 93.0 95.9 96.3 90.5 91.4 89.3 81.3 67.4
93.5 72.0 94.2 95.5 96.7 94.2 87.8 78.2 79.2 48.4
96.5 89.4 82.4 92.2 95.9 94.4 79.3 87.6 79.1 54.0
50 97.7 77.7 65.5 94.1 97.0 95.6 85.5 89.4 56.9 37.7
96.8 81.8 62.0 94.0 97.3 96.1 84.7 91.6 86.0 76.8
97.7 83.6 74.7 95.8 97.6 96.6 84.1 92.7 70.3 458
98.0 95.8 89.6 89.0 95.3 96.4 933 88.1 83.1 71.5
55 99.0 97.1 77.8 79.8 95.2 97.2 95.0 87.1 43.8 60.5
98.0 96.5 74.4 87.1 96.8 97.6 94.1 88.5 87.6 84.7
99.1 98.1 78.9 86.9 96.2 97.9 96.5 91.3 47.9 67.9
99.4 98.5 96.6 93.3 93.3 96.4 97.2 914 91.2 78.8
60 99.1 98.9 97.5 88.6 87.9 953 97.2 85.0 83.9 56.2
99.5 98.2 96.8 91.1 94.3 97.1 98.0 95.5 94.0 90.5
994 99.2 97.8 924 85.4 96.6 97.8 80.9 88.9 53.7

(E) Detection accuracy % in high image complexity (0.6 < )

Q1

» 40 45 50 55 60 65 70 75 80 85 90
59.7 69.9 77.8 79.5 73.0 65.6 61.3 438 49.6 419
40 59.7 75.3 80.4 81.5 79.0 57.8 66.4 38.1 437 38.2
58.0 70.3 81.0 81.9 74.2 70.7 63.3 48.5 55.5 46.7
63.6 77.6 80.1 82.0 80.3 48.3 62.2 41.9 43.2 422
68.6 50.9 67.6 74.3 81.5 75.2 72.6 51.8 51.4 453
45 69.0 448 68.0 76.8 82.1 80.2 57.7 50.7 479 41.7
68.9 49.8 67.3 76.3 81.7 77.0 76.0 55.7 53.7 48.3
71.3 51.8 69.5 75.8 80.9 80.2 54.8 478 51.5 45.5
77.8 60.5 49.2 72.0 82.2 83.1 65.5 57.6 50.6 43.2
50 84.1 47.4 445 75.7 83.2 83.3 70.8 66.4 438 38.1
81.2 56.6 48.6 72.2 82.8 81.9 67.6 64.4 54.3 47.7
82.7 61.4 53.9 76.4 83.6 84.3 68.5 64.3 48.2 43.6
86.0 80.2 62.2 60.5 80.9 85.1 83.0 61.5 51.8 47.8
55 90.6 82.7 48.6 50.0 79.5 84.0 81.7 64.3 40.7 42.6
85.4 79.2 51.0 57.8 81.3 85.5 80.4 63.8 52.3 51.0
84.5 80.3 56.1 63.0 77.9 85.2 84.6 66.7 449 46.5
89.7 84.4 79.3 70.1 73.6 83.1 85.9 72.9 64.2 50.2
60 93.2 86.9 86.8 62.4 61.9 79.4 83.6 65.9 58.4 41.1
90.6 84.8 80.4 66.1 69.1 82.5 85.3 78.9 64.2 58.1
90.8 85.5 78.2 69.5 59.4 77.2 84.2 62.5 56.4 459

Table 111-4-2. Average detection accuracy (%) in each group to distinguish the first time JPEG compression
factors by merging expanded low-middle frequency histogram and neighboring joint density features. The
results in row 1 to row 5 conduct the detections in low image complexity to high image complexity.

Q1
Q2 B 40 45 50 55 60 65 70 80 85 90
<0.3 99.9 99.4 99.0 99.9 99.7 100.0 99.8 99.8 99.9 99.5
[0.3,0.4) 100.0 [ 99.5 98.9 99.9 99.8 100 99.8 99.6 99.8 99.4
75 [0.4, 0.5) 100.0 | 98.8 97.8 99.6 99.6 99.9 99.4 99.7 99.8 98.9
[0.5, 0.6) 99.7 97.3 96.8 98.9 99.4 99.3 99.1 98.8 99.3 96.1
> 0.6 91.9 74.0 79.0 86.0 90.6 87.9 70.8 78.3 89.2 50.0
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I1I-5. Detection of Smartphone Image Source and Post-Capture Processing
11I-5-a. Smartphone source identification
A. Statement of Results:

Experiment 1 — the operation to generate type I images is essentially JPEG double
compression. Our first experiment is based only on type I images, to identify smartphone
source. In each run, we randomly select 60% image samples from each brand of processed
smartphone images, and the remaining 40% images are used for testing. LibSVM (Chang
and Lin 2011) is employed for multiclass classification. We apply linear kernel and RBF
kernel with default kernel parameters respectively and perform 100 runs with each kernel.
The mean values of the confusion matrices on testing data over 100 experiments are
summarized in Table III-5-1 by using our approach and 486-dimensional Markov
approach (Chen and Shi 2008), respectively.

Experiment 2 — the operation to generate type Il images is also essentially JPEG double
compression, although cropping was first applied before double compression. Our second
experiment i1s based on type I and type II images, to identify smartphone source. The
experimental design and procedures are the same as those of Experiment 1. The mean
values of the confusion matrices on testing data over 100 experiments are listed in Table
I11-5-2.

Experiment 3 — our third experiment is based on type I1I images with the scale factor
value of 2, to identify smartphone source. The experimental design and procedures are
the same as those of Experiment 1. The mean values of the confusion matrices on testing
data over 100 experiments are listed in Table II1-5-3.

Experiment 4 — this experiment is the same as those of Experiment 3 with the only
difference that the type IV images with the scale factor value of 0.5 are used. The mean
values of the confusion matrices on testing data over 100 experiments are listed in Table
I11-5-4.

Experiment 5 — this experiment is the same as those of Experiment 4 with the only
difference that the type VI images with the scale factor value of 0.5 are used. The mean
values of the confusion matrices on testing data over 100 experiments are listed in Table
I11-5-5.

Experiment 6 — all types of images with all scale factors are used in this experiment.
Experimental design and procedure are the same as those of previous experiments. The
mean values of the confusion matrices on testing data over 100 experiments are listed in
Table III-5-6.
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The experimental results show that it is promising to identify the original smartphone that
was used to capture images, although the image under examination has been processed
after capture. Overall, our approach outperforms Markov approach. By using Types I and
IT processed images, the accuracy of the smartphone source identification is apparently
higher than the detection accuracy based on the other types. Type I only involves double
JPEG compression. Type II was manipulated by cropping, followed by double-
compression. It implies that double compression has major impacts on the DCT
coefficients in Type II. In addition to double compression, images in other types were
rescaled. In these types, double compression may or may not have major impacts to the
modification of the property of DCT coefficients of the processed images, depending on
the parameter value of each scale factor. Experimental results demonstrate that the
detection accuracy on a large scale parameter (Table I1I-5-3) is much better than those on
a small scale parameter (Tables I1I-5-4 and III-5-5). In our opinion, while the scale factor
is small (<1), some information of original images will be lost, and hence the detection
performance on the small scale factors deteriorates.

B. Tables:

Table I11-5-1. Mean testing accuracy over 100 experiments based on type I images

(a) our approach

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC HTC Hu?we Iphone Nokia HTC HTC Hl::?w Iphone Nokia
G3 HD2 UR150 3 E71 G3 HD2 UR150 3 E71
HTC G3 98.95 0 0.86 0.10 0.08 96.75 0 1.56 0.29 1.41
HTC HD2 0 100 0 0 0 0 98.67 0 0.98 0.36
Actual Huawei
brand U8150 0.09 0 99.82 0.09 0 1.64 0 97.82 0.52 0.02
Iphone 3 3.96 0 0 95.89 0.14 4.78 0 0 90.29 4.93
Nokia E71 0.92 0 0.34 0.76 97.98 0.02 0 0 1.34 98.64
(b) Markov approach
Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC HTC Hueilwe Iphone Nokia HTC HTC Hu?we Iphone Nokia
3 3 E71 3 3 E71
G HD2 U8150 G HD2 U8150
HTC G3 99.78 0.10 0.12 0 0 70.41 0 0.71 0.78 28.10
HTC
D2 0.53 99.36 0 0.11 0 6.51 60.11 0 2.40 30.98
Actual Huawei
brand U8150 0.77 0 99.16 0.05 0.02 15.50 0 46.14 1.36 37.00
Iphone 3 1.82 0.32 0.39 97.46 0 14.04 0.036 0 46.46 39.46
I\g’;‘lla 0.22 0.04 0.04 0.22 99.48 3.96 0 0 0.82 95.22
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Table III-5-2. Table Mean testing accuracy over 100 experiments based on type I and type I images

(a) our approach

Prediction outcome (%) using linear kernel

Prediction outcome (%) using RBF kernel

HTC G3 HTC Huawei | Iphone Nokia HTC HTC | Huawei | Iphone Nokia

HD2 U8150 3 E71 G3 HD2 U8150 3 E71

HTC G3 98.88 0.12 0.73 0.01 0.26 97.01 0.03 2.28 0 0.68

HTC HD2 0.04 99.32 0.17 0.18 0.29 0.78 94.53 0.42 1.95 231

?,fatﬁzl %‘g‘lvggl 0.40 030 99.28 0 0.02 3.04 0.11 96.53 0.17 0.15
Iphone 3 1.47 0.32 0 96.71 1.50 1.04 1.79 0.48 90.20 6.50
Nokia E71 0.83 0.64 0.01 0.70 97.82 0.20 4.52 0 2.55 92.73

(b) Markov approach
Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel

HTC G3 HTC Huawei | Iphone Nokia HTC HTC | Huawei | Iphone Nokia

HD2 U8150 3 E71 G3 HD2 U8150 3 E71

HTC G3 94.76 0.66 4.16 0.34 0.08 76.17 0 3.09 0 20.74
HTC HD2 0.93 94.16 1.40 1.52 1.99 1.40 65.56 0.54 0.40 32.10
?,fatﬁzl ][{J‘;g"‘l";gl 4.46 036 94.35 0.24 0.60 4.05 003 | 63.68 0 32.24
Iphone 3 1.00 0.88 0.91 95.93 1.29 1.14 0.31 0.27 51.52 46.77
Nokia E71 0.46 1.10 0.27 0.74 97.43 0.69 1.04 0 0.42 97.85

Table I1I-5-3. Mean testing accuracy over 100 experiments based on type III images with scale factor of 2
(a) our approach

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia
HD2 U8150 3 E71 G3 HD2 Ug150 3 E71
HTC G3 91.90 0.27 6.13 1.54 0.15 72.24 0 1.08 241 24.27
HTC HD2 1.40 98.13 0.38 0 0.09 0.98 67.64 0.11 4.27 27.00
%f;ﬁzl %‘g‘lvggl 13.05 0.02 86.14 0 0.79 15.61 007 | 55.04 330 25.98
Iphone 3 3.71 0.64 0.14 95.07 0.43 0.61 0.79 0 76.93 21.68
Nokia E71 1.92 0.14 1.22 0.36 96.36 0.62 0 0.08 1.86 97.44
(b) Markov approach
Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia
HD2 U8150 3 E71 G3 HD2 Ug150 3 E71
HTC G3 99.25 0.02 0.69 0.03 0 99.70 0 0.30 0 0
HTC HD2 0.04 99.58 0.33 0.02 0.02 73.38 26.49 0.13 0 0
%f;ﬁzl %‘g‘lvggl 0.43 0.82 98.33 0.05 036 73.34 0 26.66 0 0
Iphone 3 2.82 1.00 0.21 95.82 0.14 78.82 0 0 21.18 0
Nokia E71 0.26 0.16 0.06 0 99.52 76.48 0 0 0 23.52
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Table I1I-5-4. Mean testing accuracy over 100 experiments based on type IV images with scale factor of

0.5
(a) our approach
Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia
HD2 U8150 3 E71 G3 HD2 | U8I150 3 E71
HTC G3 82.43 1.20 6.66 6.88 2.83 77.15 1.05 14.83 2.01 4.95
HTC HD2 1.11 89.27 3.13 4.62 1.87 2.62 77.04 5.73 3.51 11.09
%f;ﬁzl %L;“‘IV;EI 5.88 1.80 83.38 8.13 0.82 9.41 063 | 83.61 1.98 438
Iphone 3 18.32 12.00 14.25 42.71 12.71 19.29 11.96 12.18 28.96 27.61
Nokia E71 2.56 5.48 1.38 3.24 87.34 6.16 12.74 3.18 2.60 75.32
(b) Markov approach
Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia
HD2 U8150 3 E71 G3 HD2 U8150 3 E71
HTC G3 60.58 7.29 16.95 9.08 6.10 92.78 0 1.15 0 6.07
HTC HD2 4.27 67.53 5.22 10.24 12.73 90.87 0.96 1.02 0 7.16
?,f;llzl %‘g“l";gl 16.36 10.11 60.20 7.93 541 92.16 0 2.12 0 571
Iphone 3 20.07 23.86 12.46 17.50 26.11 91.25 0 1.14 0 7.61
Nokia E71 7.30 24.86 5.48 10.02 52.34 86.58 0.04 1.00 0 12.38

Table I1I-5-5. Mean testing accuracy over 100 experiments based on type VI images with scale factor of

0.5

(a) our approach

Prediction outcome (%) using linear kernel

Prediction outcome (%) using RBF kernel

HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia

HD2 Ug150 3 E71 G3 HD2 Ug150 3 E71

HTC G3 78.65 0.90 11.46 5.73 3.27 78.46 0.76 14.24 191 4.62

HTC HD2 0.75 81.84 1.89 5.44 10.07 1.04 80.38 1.93 3.62 13.02

%f;ﬁzl %‘g‘lvggl 10.98 0.73 77.46 8.50 232 11.29 038 | 83.73 1.59 3.02
Iphone 3 19.11 10.46 10.39 43.68 16.36 21.39 12.21 10.82 29.14 26.43
Nokia E71 2.72 11.80 3.08 6.18 76.22 5.58 12.64 1.44 2.36 77.98

(b) Markov approach
Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel

HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia

HD2 U8150 3 E71 G3 HD2 U8150 3 E71

HTC G3 58.19 6.34 20.66 9.25 5.56 88.66 0 0.34 0 11.00
HTC HD2 3.89 74.51 2.78 6.35 12.47 85.16 2.44 0.07 0 12.33

%f;ﬁzl ]({J‘g“l"ggl 14.43 423 72.48 4.95 391 87.55 0 2.34 0 10.11
Iphone 3 22.61 20.39 14.71 18.21 24.07 86.43 0 0.07 0 13.50
Nokia E71 7.52 23.90 7.30 7.94 53.34 82.30 0.02 0 0 17.68
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Table I1I-5-6. Mean testing accuracy over 100 experiments based on all type images with all scale factors
(a) our approach

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia
HD2 U8150 3 E71 G3 HD2 Ug150 3 E71
HTC G3 80.11 0.79 12.07 1.77 5.27 89.02 0.43 9.20 0.14 1.21
HTC HD2 1.23 84.31 1.58 5.94 6.94 0.88 94.92 0.59 1.63 1.98
Abf;‘;?f %‘;";31 10.47 0.60 82.67 335 2.92 5.20 036 | 93.35 030 0.79
Iphone 3 8.22 5.75 6.40 70.15 9.48 4.86 2.14 4.91 81.30 6.79
Nokia E71 5.50 8.43 1.85 8.40 75.83 2.01 297 1.17 1.91 91.95
(b) Markov approach
Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
HTC G3 HTC Huawei Iphone Nokia HTC HTC | Huawei | Iphone Nokia
HD2 U8150 3 E71 G3 HD2 Ug150 3 E71
HTC G3 71.48 5.39 18.70 2.06 2.37 91.90 0.20 7.07 0.00 0.83
HTC HD2 6.89 78.14 1.44 8.49 5.04 8.25 77.69 9.35 0.53 4.17
Abf;‘;?f %“831‘28‘ 15.43 1.81 78.47 2.64 1.65 1504 | 023 | 83.99 0.05 0.69
Iphone 3 7.17 15.25 6.46 62.28 8.83 19.42 2.02 20.15 51.01 7.40
Nokia E71 4.31 9.12 5.03 5.16 76.38 9.83 1.70 9.94 1.38 77.16

1II-5-b. Smartphone source and post-capture identification with/without clustering
A. Statement of Results:

A.l. Results without clustering

The experimental results shown in III-5-a have demonstrated that the detection
performance varies across different manipulations, in other words, some manipulation
may lead us to the wrong judgment of the smartphone source if we are not aware of the
manipulation. From the perspective of image forensics, it is very necessary and of great
value to identify these different manipulations as well as to recognize the smartphone
sources. Therefore, we mix the 65-class processed smartphone images together, and aim
to simultaneously detect the smartphone source and the manipulation imposed on the
processed images. In this detection, like the experiments in smartphone source
identification, we randomly select 60% images from each class as training data and the
remainders are used for testing in each of 100 total experiments. The mean values of the
confusion matrix on the 65 classes over 100 experiments are shown by Figure III-1 (a)
and Figure III-1(b) by using linear SVM and RBF-kernel SVM with our approach. Figure
II-1(c) and (d) show the detection results by using Markov approach. The average hit
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accuracy for the 65 classes is 42.1% with linear LibSVM and 43.5% with RBF LibSVM
by using our approach, and 41.9% with linear LibSVM and 27.7% with RBF LibSVM by
using 486-dimensional Markov approach.

As illustrated in Figure III-5-1, the performance of our approach is highly encouraging,
compared to the average hit rate under random guess (i.e., 1/65 or 1.5%) for each class.
Some hit rates are not so high, for instance, in the discrimination of class 49 and class 51,
representing the images from iphone 3 in type V and type VI with the scale factor 0.5. In
our opinion, some useful information to identify the smartphone source or keep track of a
certain manipulation may be destroyed or covered by some other manipulations, such as
the trace of cropping may be removed or covered by down-scaling and/or recompressed.
In such case, the effect of cropping is trivial and could be ignored, resulting in the
disability to distinguish between class 49 (iphone3 images in type V of scale parameter
0.5, with cropping) and class 51 (iphone3 images in type VI of scale parameter 0.5,
without cropping). In this manner, it is not precise to label all type images into 65 classes,
just based on the different combinations of the manipulations and smartphone sources.
Therefore, it could be more reasonable for us to first employ clustering analysis to these
65 class smartphone image data, and then re-label these processed images based upon the
clustering result.

A.2. Results with clustering

As we discussed, some post-capture operations, such as double compression followed by
down-scaled will remove original traces/patterns of smartphone images, in such case, it
does not make sense to classify these processed images after same/similar operations from
different smartphones into different classes based on original smartphone types.
Therefore, it is necessary for us to re-label and shrink original 65-class data set. First, we
obtain the average values of the feature vectors from training data, and apply hierarchical
agglomerative clustering (HAC) to the average feature vectors, originally labeled by the
numbers from 1 to 65. Figure II1-5-2 shows the hierarchical binary clustering tree by using
single linkage algorithm to the pairwise distance measured by standardized Euclidean
distance and usual Euclidean distance, respectively. As shown in the clustering tree (i.e.,
dendrogram), original class pairs, 30 and 32, 4 and 6, 43 and 45, 56 and 58, 17 and 19,
are clustering together with the minimal distances, corresponding to the images in types
IIT and IV, with the scale factor 2. Classes 8, 10, and 12 are clustering together,
corresponding to HTC G3 images, manipulated by type IV, V and VI operations with the
scale factor 0.5. It shows that interpolation (rescale) operation generates a major
functionality across different types of manipulation. According to the two different
pairwise distances, we re-label the original 65-class data into 18 classes, as shown in
Figure I1I-5-2(a) and Figure I11-5-2(b), respectively. For example, in Figure I1I-5-2(a), we
integrate original classes, 30, 32, 31, 37, 38, 4, 6, 5, 11, and 13 together as a new class 1,
original classes, 1, 2, 3, and 9 into new class 2, and so on. In Figure III-5-2(b), the original
classes 30 and 32 are mixed together as new class 1, original classes 4 and 6 are integrated
as new class 2, and so on. Table III-5-7 lists the clustering and original classes.
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Figure III-5-3 and Figure I1I-5-4 illustrate the average values of confusion matrix over
100 experiments on the relabeled 18 class data. The experimental procedures are the same
as those of previous experiments. The comparison of the experimental results in Figure
II-5-3 and Figure I1I-5-4 shows that the re-labeling from the clustering measured by
Euclidean distance is better than the re-labeling with the standardized Euclidean distance.

In Figure I11-5-3, most images in re-labeled class 5 are classified as re-labeled classes 7
and 3, and most images in re-labeled class 12 are detected as 13. In other words, the
recognition of the images captured by Nokia E71 in type IV with the scale factor 0.3
(original class 59) were mostly recognized as the cluster consisting of original classes 8§,
10, 12, and 46 (Iphone 3 in type IV with the scale factor 0.3) , and the cluster consisting
of original classes 54, 55, 61, 60 (E71 in type IV with the scale factor 0.5) , 62 (E71 in
type V with the scale factor 0.5), and 64 (E71 in type VI with the scale factor 0.5).
Similarly, it is not easy to accurately identify the images captured by Huawei U8150 in
type IV with the scale factor 0.3 (original class 33).

In Figure III-5-4, the re-labeled class 11 is prone to be classified as re-labeled classes 7
and 10. That is, the images captured by Huawei U8150 in type IV with the scale factor
0.3 (original class 33) may not be accurately identified.

To compare the detection results shown by Table I1I-5-6, wherein image labeling is based
on the five smartphone sources but ignored the manipulations, we re-label all types of
images with all scale factors into five clusters (classes), the cluster 1 consists of original
classes 30, 32, 4, 6, ..., 43, 45,56 and 58; cluster 2 consists of original classes 24 and
26; cluster 3 consists of original classes 17 and 19; cluster 4 only contains original class
14; and cluster 5 is derived from original class 53. Table III-5-9 shows the mean testing
accuracy of confusion matrix over 100 experiments. As before, 60% images are randomly
selected from each cluster for training and the remaining are used for testing. By
comparing the experimental results shown in Table III-5-7 and in Table III-5-8, the
advantage is noticeable by considering smartphone source and manipulation together with
the aid of clustering analysis (i.e., followed by supervised learning).

B. Tables:

Table I1I-5-7 Clustering by standardized Euclidean distance and original classes

Cluster Original classes in the cluster | Cluster Original classes in the cluster | Cluster Original classes in the cluster
1 26,1113, 30,31, 32, 37, 7 54,55, 60, 61, 62, 64 13 34,36,38
2 ....................... 1,2,3,9 78 57,63, 65 14 24,26
40,41, 42,43,44, 45,47, 48,
3 8,10, 12,46 9 49.50.51. 52 15 56, 58
4 7 10 27,28,29,35 16 17,19
5 59 11 18 17 14
6 15, 16,20, 21, 22, 23, 25 12 33 18 53
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Table I1I-5-8 Clustering by Euclidean distance and original classes

Cluster Original classes in the cluster | Cluster Original classes in the cluster Cluster _ Original classes in the cluster
1 30,32 7 34,36,38 13 43,45
2 4,6 8 57,65 14 56,58
3 5,11,13,31,37,39 9 50,52 15 24,26
7,15,16,20,21,22,23,25,40,41,42,
4 27 10 444748495154555960.62.64 | '© 17,19
5 1,2,3,8,9,10,12 11 33 17 14
6 28,29,35 12 18,63 18 53

Table III-5-9. Mean testing accuracy over 100 experiments based on all type images with all scale factors

Prediction outcome (%) using linear kernel Prediction outcome (%) using RBF kernel
Cluster Cluster Cluster Cluster Cluster Cluster Cluster | Cluster | Cluster | Cluster
1 2 3 4 5 1 2 3 4 5
Cluster 1 99.90 0.08 0.01 0 0.00 99.81 0.19 0 0 0.00
Cluster 2 10.32 89.68 0 0 0 13.65 86.35 0 0 0
Actual [0 er 3 1.20 0 98.80 0 0 0.52 0 99.48 0 0
cluster
Cluster 4 0.09 0 0 99.91 0 0.44 0 0 99.56 0
Cluster 5 4.12 0.24 0.42 0 95.22 6.16 0 0 0 93.84
C. Figures:
Averege detection on confusion matrix (linear LibSVYM) Averege detection on confusion matrix (RBF LibSVYM)

M0 20 30 40 SO 60 10 20 30 40 50 60

b
Averege detection on contusic;(: 3na!rix (linear LibSVM) Averege detection on comusia(m)mahix (RBF LibSVM)
10
20
30
40
50
60
10 20 30 40 S0 60 1t 2 % 9 %
(c) (d

Figure III-5-1. Mean confusion matrix over 100 experiments using our approach (a and b) and using
Markov approach (c and d).
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The hierarchical binary cluster tree

(pairwise distance measured by standardized Euclidean distance)
20 —

=
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The hierarchical binary cluster tree

(pairwise distance measured by Euclidean distance)

= T

3032 4 6 SMI3IM3ITIN2T 1 2 3 9 8101225 293534308 3657 655052 7 464041424847 495115162223 2521 2054 5561 60626459 44 331863 43455658 24 2617191453

(b)
Figure III-5-2. Hierarchical binary cluster tree measured by standardized Euclidean distance (a) and Euclidean distance
(b). Note that the numbers in the squares represent re-labeled classes.
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Figure III-5-4. Mean confusion matrix over 100 experiments ((a) and (b)) and the hit rate for re-labelled
18 classes ((c) and (d)), based on HAC with pairwise distance measured by Euclidean distance in Figure
11-2(b)

III-6. Detection of MPEG Double Compression
A. Statement of Results:
A.1. Detection of MPEG double compression with same encoder

Table III-6-1 and Table I1I-6-2 show the experimental results when one MPEG-2 encoder is
utilized to simulate the double compression process at different target output bit-rates. It turns out
that the detection accuracy of the detector can be achieved approximately above 87.00%. In these
two MPEG-2 encoders, the CBR scheme in the TMS5 is more flexible than that in the Premiere.
Even when the target output bit-rate of the secondary compression is fewer than that of the primary
compression, TMS5 will still select small quantization scale factors to quantize a number of DCT
coefficients, which can be used to realize the double compression detection. Given a video clip
compressed by TMS5, the detectors are easier to identify whether it is doubly compressed. Since
Wang’s method only works for double MPEG-2 compression with VBR mode, we will only
compare our method with Chen’s scheme to detection of double MPEG-2 compressed videos for
CBR mode. Both two schemes can have excellent detection results when the target output bit-rate
of the secondary compression is very high. However, when the target output bit-rate of the
secondary compression is lower than that of the primary compression, the detection accuracy of
both of them will decrease, but the simulation results also show that the robustness of our scheme
is considerably better than Chen’s scheme.

A.2. Detection of MPEG double compression with different video encoders

In this experiment, two DVs (digital video camcorders), Sony HDR-XR500E and Canon FS10E,
are utilized to obtain the original MPEG-2 videos. We use each camcorder to record 50 nature
video clips with length of 300 frames in our campus. In each test group, 50 nature image sequences
are firstly encoded into MPEG-2 compressed files by the built-in encoder in the DV. These
original compressed streams are input into PC, decoded and re-coded into 50 double compressed
streams by the MPEG-2 video coding software -- Adobe Premiere Pro 2.0 or TM5. Finally 200
test streams (100 single compressed streams and 100 double compressed streams) will be put into
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our detector to test its performance.

In the parameter settings, the most important parameters in DV are resolution and target output
bit-rate. The standard definition video format is selected as our encoding mode, whose resolution
is 720x576 and output bit-rate is 6 Mbps. The other parameters just only affect the subjective
effects of video resources, but have less impact on the statistical characteristics of DCT coefficient
distribution, and we initial them as default values in the DVs. In the MPEG-2 software coders, all
parameters are set the same as the MPEG-2 encoders in Section V.A. We only adjust the target
output bit-rate of software encoders to create new video files with different quality to test the
adaptability of our detection scheme.

The detection accuracy and recall for doubly MPEG-2 compressed videos are shown in Table III-
6-3 and Table I11-6-4, where the target output bit rate of the secondary compression varies from 4
Mbps to 8 Mbps in steps of 1 Mbps. The detection results in these two tables show that our
proposed method indeed outperforms Chen’s method when the primary compression and
secondary compression adopt different MPEG-2 encoders, because the quantization process, the
motion prediction algorithm, and the bit-rate control scheme are almost different between these
two compression processes. Those differences may induce the rearrangement of DCT coefficients
in the doubly compressed video and the first digit distribution of AC coefficients may also tend to
obey the Benford’s law. It is also found that the detection performance improves as the output bit-
rate of the secondary compression increases. When the target output bit-rate of the secondary
compression is lower than that of the primary compression, implied that the number of
macroblocks quantized by small quantization scale factors is reduced, the quantization process
with large quantization scale factors may weaken the features of the primary compression. Thus,
the performance of double compression detector declines. On the other hand, some test sequences
with simple contents and slow movements often incur detection errors, because most of original
DCT coefficients in those frames focus on a certain interval, and their distribution is not consistent
with the Laplacian distribution assumption.

A.3. Detection of double compression with frame tampering operation

Frame tampering is one of the common video forgery operations, which can change the video
content and confuse the viewers by removing some special frames in the video resources, such as
some surveillance videos. In this experiment, 50 original compressed videos recorded by Sony
HDR-XRS500E at 6 Mbps are decoded into an image sequences, and the first three images are
removed to simulate the frame tampering operation. Finally these doctored sequences are re-coded
at different target output bit-rates by TMS5, and 100 test streams (50 singly compressed streams
and 50 doubly compressed streams) will be put into our detector to verify its robustness.

Table I1I-6-5 shows the experimental results that the performance of our detector has declined
slightly. When some frames are removed, the structure of GOP in the original sequence will be
damaged, and the type of some subsequent frames will be changed in the secondary compression,
i.e. some inter frames in the primary compression process may be re-coded as intra frames during
the secondary compression. Since the distribution of DCT coefficients in inter-frames behaves
similarly as that in intra-frames, there still are some convex patterns in the distribution of quantized
DCT coefficients.
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B. Tables:

Table I1I-6-1. The Detection Performance of Double Compression System with TMS5

First Encoder Second Encoder Chen’s scheme Proposed scheme
(bit-rate) (bit-rate) Precision Recall Precision Recall
TM5(4 Mbps) 62.50% 60.00% 89.36% 84.00%
TM5(5 Mbps) 69.23% 72.00% 93.33% 84.00%
TMS(6 Mbps) TM5(7 Mbps) 90.57% 96.00% 100.00% | 100.00%
TM5(8 Mbps) 100.00% 100.00% 100.00% 100.00%

Table I1I-6-2. The Detection Performance of Double Compression System with Premiere

First Encoder Second Encoder (bit- Chen’s scheme Proposed scheme
(bit-rate) rate) Precision Recall Precision Recall
Premiere (4 Mbps) 64.58% 62.00% 86.96% 80.00%
Premiere(6 Premiere (5 Mbps) 68.75% 66.00% 87.50% 84.00%
Mbps) Premiere (7 Mbps) 88.24% 90.00% 100.00% 96.00%
Premiere (8 Mbps) 100.00% 100.00% 100.00% 96.00%

Table I11-6-3. The Detection Performance of Double Compression System with Different Encoders

. Chen’s scheme Proposed scheme
First Encoder | Second Encoder Precision Recall Precision Recall
TM5(4 Mbps) 52.38% 44.00% 95.80% 92.00%
Sony HDR- TMS5(5 Mbps) 57.14% 56.00% 100.00% 96.00%
XR500E TM5(6 Mbps) 61.70% 58.00% 100.00% 96.00%
(6 Mbps) TM5(7 Mbps) 62.50% 60.00% 100.00% 96.00%
TMS5(8 Mbps) 64.71% 66.00% 100.00% 100.00%
TMS5(4 Mbps) 67.31% 70.00% 88.50% 92.00%
TMS5(5 Mbps) 66.67% 68.00% 92.00% 92.00%
Canon FS10E 5 5
TM5(6 Mbps) 66.67% 72.00% 95.80% 92.00%
(6 Mbps)
TMS5(7 Mbps) 68.52% 74.00% 96.00% 96.00%
TM5(8 Mbps) 69.39% 68.00% 96.00% 96.00%

Table I1I-6-4. The Detection Performance of Double Compression System with Different Encoders

. Chen’s scheme Proposed scheme
First Encoder Second Encoder Precision Recall Precision Recall
Premiere (4 Mbps) 57.69% 60.00% 100.00% 92.00%
S‘;ﬁ{ 51'011035‘ Premiere (5 Mbps) | 56.52% 52.00% 100.00% 96.00%
Premiere (6 Mbps) 62.96% 68.00% 100.00% 100.00%
Premiere (7 Mbps) 63.64% 70.00% 100.00% 100.00%
(6 Mbps)
Premiere (8 Mbps) 64.91% 74.00% 100.00% 100.00%
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Premiere (4 Mbps) 63.83% 60.00% 95.70% 88.00%

Canon FS10E | Premiere (5 Mbps) 69.30% 68.00% 95.80% 96.00%
Premiere (6 Mbps) 70.59% 72.00% 96.00% 96.00%

(6 Mbps) Premiere (7 Mbps) 70.59% 72.00% 100.00% 96.00%
Premiere (8 Mbps) 71.15% 74.00% 100.00% 96.00%

Table I11-6-5. The Detection Performance of Frame Tampering Operation

First Encoder Second Encoder Precision Recall
TMS5 (4Mbps) 71.88% 92.00%

Sony HDR- TMS (5 Mbps) 88.00% 88.00%
XR500E TMS5 (6 Mbps) 87.50% 84.00%
(6 Mbps) TM5 (7 Mbps) 96.00% 96.00%
TMS5 (8 Mbps) 100.00% 84.00%

ITI-7. MP3 steganalysis
A. Statement of Results:
A. 1. Statistics of Feature Sets

We compared the significance of GGD shape statistical features, frequency-based
subband moment statistical features, accumulative Markov transition features and
neighboring joint density features, respectively (Qiao, Sung and Liu 2013).

Figures I1I-7-1(a) and (b) list the F scores of the ANOVA of the features extracted from
covers and steganograms produced by using the MP3Stego audio steganographic tool with
16% and 20% modification density. The Y-axis indicates the F score, and the X-axis gives
the number of features.

From the comparison of the F scores, we found that frequency-based subband moment
statistical features outperform the other feature sets, especially those extracted from
middle frequency and correspond to higher F scores. We surmised that the detection
performance using frequency-based subband moment statistical features is the best.
Accumulative Markov transition features and neighboring joint density features obtain
similar F scores at 16% and 20% modification density. In GGD shape statistical features,
the high-order moment statistics, especially the skewness of shape parameters, are more
discriminative. Although the higher F score indicates the more significant feature, the
interaction and the redundancy of the feature sets also affect the classification
performance. Therefore, the testing accuracy is more reliable in evaluating the
performance of features.
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Figures III-7-2(a) and (b) illustrate the comparison of SVM testing accuracies by using all
samples at 16% and 20% modification density correspondingly. The detection
performance of frequency-based subband moment statistical features is superior to the
performance of accumulative neighboring joint density features, GGD shape statistical
features, and accumulative Markov transition features. Moreover, the distribution of the
testing accuracy of frequency-based subband moment statistical features shows a smaller
degree of dispersion than other feature sets, which indicates a more stable classification.

A.2. Comparison of Feature Selection Methods

We combined GGD shape statistical features, frequency-based subband moment
statistical features, as well as accumulative Markov transition features and accumulative
neighboring joint density features to form a comprehensive approach of MP3 audio
steganalysis. However, the large feature dimension and redundancy compromise the
performance and the efficiency of the detection. To further increase the classification
accuracy, we employed two widely used feature selection methods; ANOVA and SVM-
RFE. We also designed a two-step approach by combining these two methods. For the
two-step approach, we picked 200 as a threshold to divide the processes of two feature
selection methods. All features were ranked using ANOVA, The features with the top 200
F scores were chosen as the input for SVM-RFE. The size of feature subset for
classification continued increasing from 1 to 200 in the order of the feature rank provided
by SVM-RFE. For accurate evaluation, we divided the whole data set into low (B <0.162),
middle (0.151<=p <=0.171), and high (B >= 0.162) complexity zones with 50% overlap
between adjacent zones using GGD shape parameter of all quantized MDCT coefficients
in each sample. Furthermore, the whole dataset, including samples with all complexities,
was used as another category.

Regarding the relation between detection performance and signal complexity, as shown
in Table 1, as the signal complexity increases, the detection performance decreases. Since
the average signal complexity of the whole dataset is 0.164, the average classification
accuracy of all samples is close to the accuracy of middle complexity.

In the comparison of the three feature selection methods, the two-step approach
outperforms ANOVA and SVM-RFE in each category of signal complexity and
modification density. Our study also shows that the two-step approach adopts the
advantage of low standard errors and thus provides more stable detection performance.

In addition to the comparison shown in Table III-7, the receiver operating characteristic
(ROC) curves by using ANOVA, SVM-RFE, and the two-step approach are given in
Figure II1-7-3. The ROC curve of the two-step approach generates the largest area under
the curve at 20% modification density.
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B. Tables:

Table I11-7

Average Testing Accuracy Values and Standard Errors of Feature Selection Methods: ANOVA, SVM-
RFE, and Two-step Approach Incorporating ANOVA with SVM-RFE at the Optimal Feature Dimension.

Modification Signal Testing accuracy (mean = std, %)
density complexity ANOVA SVM-RFE ANOVA & SVM-RFE

Low 81.6+1.4 859+2.8 88.6+1.4

% Middle 78.1+£1.2 82.2+2.3 84.9+0.9
High 75.6+1.8 782+1.9 81.4+1.2

All 794+ 1.1 86.6+ 1.6 86.1+1.7

Low 88.6+ 1.4 94.0+£2.2 95.1+1.6

12% Middle 84.9+1.7 91.0+1.8 913+14
High 82.6+0.6 88.9+2.0 90.0+ 1.8

All 85.0+0.9 90.6+1.2 90.4+0.9

Low 904 +1.4 959+28 97.0+ 1.6

16% Middle 893+ 1.3 93.2+2.1 948+ 1.1
High 87.7+1.0 91.8+2.2 92.1+1.2

All 88.5+£0.6 93.2+0.7 933+1.0

Low 94.6+0.8 96.7+2.6 98.6+1.0

20% Middle 91.1+1.6 94.7+2.4 953+14
High 89.9+0.7 943+2.8 93.6+1.6

All 91.0+£0.9 949+0.5 95.6+0.6

C. Figures:
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Figure III-7-1. One way ANOVA F scores (Y-label) of Accumulative Markov transition features (IM),
Accumulative neighboring joint density (INJ), frequency-based subband moment statistical features (2DS),
and GGD shape statistical features (M) from whole data set including samples with all signal complexities
at 16% and 20% modification density in (a) and (b) respectively.

85



049t — —_ . 0ot L R _
= &
I . i | T o
§ nar — - .é nse __
= &= |
207} I i =4 nrt . | _
7 I | 7 = |
- ol | - nEl L I _
et L il ' |
| |
e ; ; i nat ; ; ; g
1 2 3 4 1 2 3 4
Feature sets Feature sets
(@) (b)

Figure I11-7-2. SVM testing accuracies by using feature sets: Accumulative Markov transition features (1),
Accumulative neighboring joint density features (2), Frequency-based subband moment statistical features
(3), and GGD shape statistical features (4) from whole data set including samples with all signal
complexities at 16% and 20% modification density in (a) and (b) respectively.
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Figure I1I-7-3. ROC curves by using ANOVA (a,d), SVM-RFE (b,e), and two-step feature selection (c,f)
methods, in detection of MP3 steganograms with 16% (first row) and 20% (second row) modification
densities.
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ITI-8. AAC Audio Forgery Detection
A. Statement of Results:

Figure I1I-8-1 shows the SRSC features extracted from an untouched AAC audio file and from the
cropping by 50 samples and the cropping by 900 samples individually and recompressed versions.

We apply a popular SVM technique LibSVM (Chang and Lin 2011) with a linear kernel for
training and testing. One hundred experiments are performed for training and testing. In each
experiment, 60% feature sets from each category are randomly selected for training and the
remainders are used for testing. The mean testing results over 100 experiments are listed in the
confusion matrix, shown by Table III-8-1.

Table I11-8-2 shows the confusion matrix with the experimental results over 100 experiments.

Figure I11-8-2 shows the SRSC features extracted from the six parts of an original AAC audio file
(first row) and from the six part of the doctored AAC audio file with the forgery taking place on
the middle. The comparison show that the first three parts of the original audio and doctored audio
are similar, but the pattern of the SRSC features from the last three parts are different, which
approximately reveals the forged area in doctored AAC audio stream in the middle.

B. Tables:

Table I1I-8-1. Confusion matrix on testing sets (mean values, %) by using LibSVM with linear kernel over
100 experiments.

Prediction Manipulation (cropped by)
Truth untouched  —— 50 200 400 480 512 750 900 1000
untouched 99.4 02 00 00 00 03 00 00 00 00
5 34 96.6 0 0 0 0 0 0 0 0
50 18 0 98. 0 0 0 0 0 0 0
200 2.1 0 0 979 0 0 0 0 0 0
o 400 1.5 0 0 0 986 0 0 0 0 0
Manipulation
(Cropped by) 480 12 0 0 0 0 988 0 0 0 0
512 23 0 0 0 0 0 977 0 0 0
750 2.0 0 0 0 0 0 0 981 0 0
900 24 0 0 0 0 0 0 0 977 0
1000 22 0 0 0 0 0 0 0 0o 97

Table I1I-8-2. Confusion matrix on testing sets (mean values, %) by using LibSVM with linear kernel over

100 experiments.

Prediction forgery (shifted by)

Truth untouched 100 300 500 700 900
untouched 98.8 0.2 0.1 0.2 0.3 0.3

100 1.2 98.7 0 0 0 0.0

300 0.8 0.1 99.1 0 0 0.0

forgery

(shifted by) 500 0.6 0 0.0 99.4 0.0 0.0
700 0.8 0 0.0 0 99.2 0.0
900 1.2 0.2 0.0 0.0 0 98.6
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C. Figures:
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Figure I1I-8-1. SRSC features of original AAC audio (a) and the AAC audio once cropped by 50 samples

(b) and by 900 samples (c)
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Figure I1I-8-2. The comparison of the SRSC features extracted from the six parts of an original AAC audio
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88

manipulated, part 2

0.08
0.06
0.04

0.02
0 500 1000

manipulated, part 4

0.1

0.08

0.06

1] 00 1000
manipulated, part 6

0.1
0.09
0.08

0 500 1000



IV. Conclusions

A. Discussion of findings

A.l. Steganalysis and forgery detection in JPEG images

In JPEG image steganalysis, compared to the calibration that only takes once-cropping
(e.g., only shifting by 4 rows and 4 columns), the computation cost of our proposed 63-
time-cropping-based calibration is relatively high but obtains a better detection accuracy.

It is worth noting that the 63-time-cropping-based approach is useful to generate the
reference features for steganalysis and is also very promising to detect the misaligned
cropping and recompression with the same quantization matrix and relevant forgery
including copy-paste and composite forgery that are derived from the same camera source
and encoded with the same quantization table (Liu 2011b).

In steganalysis of YASS, although Li, Shi and Huang (2009) demonstrated the weakness
of the YASS steganographic system, the detection algorithm does not search all candidate
host blocks, resulting in deteriorated detection performance when detecting the
steganograms produced by a large B-block parameter. Additionally, the detection assumes
the condition of the exact positions of AC coefficients that are used for data embedding,
which is generally inapplicable. Following the strategy to expose potential candidate
blocks, our study has surmounted such obstacles by searching all possible candidate
blocks and comparing the neighboring joint density of these candidate blocks and the non-
candidate neighboring blocks.

In an original YASS embedding algorithm, the embedding is limited to the 19 low-
frequency AC coefficient; the upper-left of the first B-block is overlapped with the upper-
left of the first 8x8 block. If we assume that the embedding positions of binary hidden bits
are not limited to the 19 low-frequency AC DCT coefficients, our approach is still
effective for the detection because our feature extraction is not limited to the position of
19 low-frequency AC coefficients. However, if prior knowledge of approximate
embedding position is available, the detection performance may be further improved.

If the first B-block is randomly misplaced from the upper-left point of the first 8x8 block,
we can exhaust all possibility of mismatching, a total of 64 combinations including the
original exact matching; accordingly we can retrieve the diff~absNJ features in each
mismatching which will detect such polymorphism of the YASS steganographic system.
In this case, the detector will contain 64%x63 = 4032 features. However, the detector cannot
deal with the completely randomized embedding if we further revise and improve the
YASS algorithm.

A rich model-based detector can be applied to detect YASS steganograms without
exposing the position of candidate blocks, although the detection performance is not
accurate as our approach, and the computational cost is also fairly high with an ensemble
classifier and too high to be suitable with SVM. However, a rich-model-based approach
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demonstrates a direction to deal with completely randomized embedding, which may be
further investigated. Meanwhile, YASS detection is still difficult when the noused
parameter is small.

To reduce the feature dimensionality and to further improve the detection accuracy, we
may integrate all detectors together; a feature selection algorithm is applied to select
optimal feature set. The feature selection to reduce feature dimensionality and improve
detection accuracy in steganalysis has been studied in our previous research (Liu, Sung,
Chen et al 2008; Liu et al 2010). We do not apply any feature selection algorithm in this
study to compare the detection performance under different combinations of features.
There are many algorithms to select optimal feature set and achieve the best classification
performance, such as SVM-RFE (Guyon et al 2002); MSVM-RFE (Zhou and Tuck 2007),
recursive feature addition based on supervised learning and similarity measurement (Liu,
Sung, Chen et al 2010), minimum Redundancy Maximum Relevance (Peng et al 2005),
etc. The steganalysis performance could be further improved by employing feature
selection algorithms while obtaining an optimal feature set with reduced feature
dimensionality, which could be applied to rich models.

In summary, our study shows that our approach has multiple promising applications in
image forensics. Compared to the state-of-the-art of steganalysis detectors, our
approaches deliver better or comparable detection performances with a much smaller
feature set to detect several steganographic systems including DCT-embedding-based
adaptive steganography and YASS. Our method is also effective to detect seam-carved
forgery in JPEG images. By integrating calibrated neighboring density with spatial
domain rich models that were originally designed for steganalysis, the hybrid approach
obtains the best detection accuracy to discriminate seam-carved forgery from an
untouched image in JPEG format. Our study shows that it is a promising manner by
exploring steganalysis and forgery detection together.

A.2. Detection of JPEG double compression and smartphone image source and post-
capture processing

While detecting JPEG double compression, experimental results show that the detection
performance varies with different image quality. We analyze the impact of compression
quality factor on the detection as follows. Let ¢ denote the DCT coefficient before
quantization, d1 denote the quantized DCT coefficient at the first JPEG compression with
the quantization factor g1, and d2 denote the quantized DCT coefficient after the second
compression with the quantization factor g2, R(¢) is a round function, e.g. R(3.5) =4,

di=R(c/q1) (IV-1)
d>=R (d1 q1/ q2) (IV-2)

The corresponding DCT coefficient s in the single JPEG compression using the division
factor g2 is obtained by

s=R(c/ q2) (IV-3)
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Suppose that ¢ > 0, the range of d1 q11s (¢ - 0.5q4, ¢ + 0.5¢4], and the range of d2 - s is

[R(c/qz - 91/92) - R(c/q2), R(c/q2 + q1/92) - R (c/q2)]

(1) If the quality of the first compression equals the quality of the second compression,
thatis g1 = g2, then d>=s;

(ii) If the quality of the first compression is not equal to that of the second compression,
the error range

d2-s€[-R (q1/2qy)-1,- (q/2qy) +1] (Iv-4)

If the quality of the first compression is lower than that of the second compression, g1 >
q2, then the scope of the error range spread out, and the error tends to become large; if the
quality of the first compression is higher than that of the second compression, g1 < g2, then
the scope of the error range is narrow. As a result, the detection of the double compression
at g1 > g2 should be better than the detection at g1 < g2, which has been validated by our
experimental results.

The relative error between d> and s is listed as follows:

_ R(q,/q,)+1 V-5
ld,—s) /5| < IR(c/q.) ( )

In terms of image complexity, in general, high image complexity corresponds to the large
shape parameter of the GGD of the DCT coefficients and the high probability of large
DCT coefficient, that is, the value of ¢ tends to be large, resulting in large s, and the
relative error tends to be small, therefore, the detection accuracy in high image complexity
deteriorates.

While identifying smartphone image source and manipulation together, from our
standpoint, some post-capture operations such as double compression followed by down-
scaling will remove original traces/patterns of smartphone images, in such case, it is not
good to classify these processed images into different classes based on original
smartphone types. However, we did not know the particular operations that remove
original traces, therefore, clustering is utilized to classify the smartphone images from
different smartphones but processed by similar operations into the same cluster, which is
helpful to improve the classification accuracy and to identify the operations that remove
original smartphone traces.

With the use of LibSVM, we only adopted the default kernel parameters for the linear
kernel and RBF kernel, and did not make the grid search to optimize the kernel parameters.
The detection performance could be improved by optimizing the kernel parameters. While
using hierarchical agglomerative clustering, we only adopted standardized Euclidean
distance and usual Euclidean distance to measure the pairwise distance, other distance
measurements, such as Mahalanobis distance, Minkowski distance with exponent 2,
correlation, and cosine distance, have not been fully examined. Additionally, our
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smartphone image database is not large enough; more brands of smartphones, more
smartphone images, and more operations should be included and collected in the future to
conduct a more convincing examination.

To sum up, we have developed a technique that can successfully detect JPEG double
compression by integrating marginal density and the neighboring joint density features in
DCT domain. Our method is superior to Markov process-based approach in terms of
achieving a higher detection accuracy at a lesser computational cost. Our study shows that
the detection performance is related not only to the compression quality factors but also
to image complexity, which is an important parameter that seems to have been so far
overlooked by the research community in conducting performance evaluation. To
formally study the performance evaluation issues, the image complexity and compression
quality should therefore be included as a whole.

Following the success in detection of JPEG double compression, we conducted studies
based on processed smartphone images to identify the smartphone source and the post-
capture manipulations. Experimental results show that our method is strongly promising
in correctly identifying the smartphone source and revealing the past manipulations
simultaneously, including the combination of double JPEG compression, cropping, and
rescale. Our studies also indicate that, due to the complexity of intentional manipulation,
it 1s more productive to combine clustering and classification techniques together for
performing the detection.

A.3. Detection of MPEG double compression

We conduct a qualitative statistical analysis about the impact caused by MPEG-2
compression on distributions of reconstructed DCT coefficients, and demonstrate the
differences in distributions of quantized DCT coefficients between the single compression
and double compression. A set of DCT distributions with different quantization scale
factors are constructed to extract convex pattern features, and a novel detection algorithm
is designed to detection of double MPEG compression in CBR videos. In our simulation
system, the target output bit-rate, rather than quantization scale factor, is selected as the
only parameter to control MPEG-2 encoders. The target output bit-rate can easily be
configured through the system menu, without need to modify source codes of MPEG-2
encoders. So it makes our detection algorithm more suitable for all kinds of video coding
systems, especially in some business video systems. On the other hand, our proposed
detection algorithm maintains good detection performance in many cases. More
specifically, it can detect double compressed videos with both high-quality and low-
quality. Even if the primary compression and the secondary compression use different
kinds of MPEG-2 encoders, our algorithm can also reveal the track of double MPEG-2
compression.

Future research efforts will focus on improving the detecting accuracy of our algorithm.
At the same time, it is notable that detection of double MPEG compression does not
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necessarily prove malicious tampering, because it is possible that a user resaves the high
quality video file as a lower quality one to save storage space. As a result, we need to
explore new features in the spatial domain and temporal domain of video resources, and
combine existing detection techniques to reveal the real video tampering operation.

A4. MP3 audio steganalysis

Frequency-based subband moment statistical features provide a more accurate and stable
classification than the other feature sets. More specifically, the features corresponding to
the middle part of 576 subbands are more significant than those corresponding to the high
and the low parts. The reason for this phenomenon is that the high and the low parts of the
subbands usually contain quantized MDCT coefficients of large and small values. The
MP3Stego algorithm embeds data by modifying the quantization step-size, which affects
all MDCT coefficients in the particular frame. However, the effects of different values
vary greatly due to the non-uniform scale of quantization. The larger values usually refer
to the more informative content of the audio signal, and they are mainly determined by
the characteristic of the signal. The information-hiding behavior and the high complexity
of the signal could both indicate the inconsistency of the coefficients between adjacent
frames. The zero value usually does not change by modifying the quantization step-size.
Therefore, the features extracted from the middle frequency are more sensitive to
information-hiding.

In this study, we focus on detecting the information-hiding of MP3Stego, because
MP3Stego implements a unique hiding scheme which is involved in the compression
process. However, the proposed approach also has the generalization capability to
steganalyze other steganographic systems, because the traditional steganography
introduces more distortion than MP3Stego in compressed audio.

The GGD shape parameter is introduced as an important signal complexity measure to
evaluate the detection performance. With same modification density, the detection
accuracy decreases as the signal complexity increases. However, the GGD shape
parameter only describes the distribution of the MDCT coefficients of the entire audio and
neglects the relation between MDCT coefficients in one frame or one subband. Since
different complexities may have similar distributions, an accurate measure of signal
complexity with fine granularity is another important issue to MP3 audio steganalysis.
Since we extract the shape parameter from quantized MDCT coefficients, the distribution
of these coefficients is not only influenced by the signal complexity but also by the setting
and the implementation of MP3 encoder. The MP3Stego has a tight coupling between the
hiding algorithm and the MP3 encoder. Although the implementations of the MP3 encoder
have to comply with ISO standards, the differences in the quantization function and
distortion control will affect the performance of steganalysis. The differences in the
quantization function may affect the distribution of MDCT coefficients and increase the
false alarm rate with a trained model using another encoder.

In summary, we propose a comprehensive approach to steganalysis of MP3 audio by
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deriving a combination of features from quantized MDCT coefficients. We extract
frequency-based moment statistical features, accumulative Markov transition features,
and accumulative neighboring joint density features. We also model the distortion by
extracting the distribution parameters of generalized Gaussian density from individual
frames in the MDCT transform domain. Different feature selection algorithms are applied
to improve detection accuracy. For an accurate evaluation, signal complexity and
modification density are introduced to evaluate the performance of the proposed approach.
Experimental results show that our approach successfully detects the information-hiding
in MP3 steganograms generated by the MP3Stego steganographic tool. The proposed
approach obtains reliable performance under each category of signal complexity,
especially for audio signals with high signal complexity, and thus improves the state of
the art of audio steganalysis.

AS5. AAC audio forgery detection

Although our experiments presented above do not examine all possibility of AAC audio
forgery due to the very high computational cost (it is very time-consuming to examine of
all possible forgery shifted by 1023 positions), by simulating part cases of AAC audio
forgery at a reasonable computational cost, our experimental results do verify the
effectiveness of our proposed shift-recompression-based approach to detection of AAC
audio forgery of the same bit rate. The detection accuracy is very promising.

It is worth noting that shift-recompression-based method is effective not only for detecting
AAC audio forgery, but also for detecting MP3 audio forgery of the same bit rate.

B. Implications for policy and practice

Multimedia forensics is a multiple-disciplinary research field with important impacts to
law enforcement. In multimedia forensics, steganography detection or steganalysis and
forgery detection are two spots. It is know that that steganography had been employed by
a foreign government intelligence agency and digital multimedia data can now be easily
forged. Multimedia steganography and forgery techniques and the proliferation have made
big challenges to law enforcement.

By exploring the characteristic modification caused by digital multimedia steganography
and forgery, developing new detection algorithms/approaches, and adopting new
measurement parameters for the evaluation, we have successfully achieved the project
goals including “discovering the characteristic modification caused by digital multimedia
steganography and forgery, developing more accurate and more reliable methods for
steganalysis and digital evidence authentication, and developing a complete evaluation
procedure for gaining full understanding of the accuracy, reliability, and measurement
validity of steganography detection and digital evidence authentication in digital image,
audio, and video files.”
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The implications for policy and practice lie in the following:

1.  Although multimedia steganography and forgery have made big challenges to law
enforcement in protection of public safety and national security, our study shows
that some advanced steganography and forgery systems can be accurately detected
and hence the relevant crimes may be defeated and/or prevented. For example, in
detecting several types of JPEG steganography at the relatively high information
hiding ratio, our approach has achieved 100% mean accuracy over 100 experiments.
Our forgery detection approaches in this study are also very promising with high
detection accuracies. Therefore, we would recommend utilize the state-of-art for
steganography and forgery detection for forensics purposes.

2.  The complete evaluation in multimedia forensics may include multiple parameters
including information hiding ratio and/or forgery size, compression factors, hiding
algorithms, multimedia signal complexity, detection algorithms, feature selection
methods, classification models and learning classifiers.

3.  Our study also indicates that it is still hard to defeat some meticulously designed
steganography, e.g., the data hiding takes place in the high complexity components
in the multimedia signal (Liu Sung Chen and Huang 2011).

4. The study in multimedia forensics is normally subjected to relatively simple
environment with a certain knowledge and limitation to the testing multimedia data.
For example, to detect some type of steganography by using a steganographic
algorithm x, the steganograms are denoted as Sx, covers are denoted as C.
Classification models are constructed to discriminate the steganogram from cover.
It is clear that the detection is conducted in the environment that contains only Sx
and C, and the outcome can be predicted either Sx or C, relatively predestinated.

Unfortunately, the real life detection generally faces an open and complicated
environment. For example, we are given a JPEG image to determine whether it is
carrying a covert message or not. How do we cope with it? We cannot simply adopt
the classification model that was used to distinguish Sx and C, since we are not sure
about the image under examination is either an untouched cover or the type Sx of
steganogram, or some other type of steganogram, or a cover that was processed by
some legitimate operations.

5. It is known that that steganography had been employed by a foreign government
intelligence agency (Web justice 1; Web justice 2), and the potential usage of
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steganography to disseminate covert message in social media such as on Facebook
could be enormous (web secretbook). The further study in multimedia forensics is
highly needed for forensics purposes.

C. Implications for further research

The continuous improvement of the state of steganalysis and forgery detection should be
emphasized in the future study. Additionally, several new steganographic systems have
been proposed to hide data in JPEG images (Liu, Sung, Chen and Huang 2011; Holub and
Fridrich 2013), a Google Chrome extension is currently available to hide data in the photos
by Facebook (web secretbook). AAC audio streams (Wei, Li and Wang 2010), and VoIP
audio stream (Hamdaqa and Tahvildari 2011; Mazurczyk 2012) including Skype-based
steganography (Mazurczyk, Karas and Szczypiorski 2013), and no effective detection
methods area available to this date, which is worthy for the further exploration.

While we have designed several effective detection approaches within the state-of-the-art,
the realistic detection toolkits may be implemented for the testing and validation for
forensics purposes.

It is worthy of making the contribution for real life detection that generally faces an open

and complicated environment. Further study may be also highlighted on revealing the
processing history of the multimedia data under the examination.
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