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ABSTRACT 
A physical system that is controlled by an array of logic devices interconnected 
through a communications infrastructure is effectively a networked process control 
system. Also known as cyber-physical systems, they are ubiquitous in American 
society and are used in applications ranging from medical devices, to automobiles, 
to robotics, to power distribution grids. Often during the investigation of a crime, 
the digital data stored in these control systems is useful. As such, understanding the 
reliability of the data from these systems is needed. Since a specific study into every 
networked process control system would be overwhelming, the focus of specific 
systems is contained to the transportation industry in the form of automotive 
electronic control modules. Specifically, this report shows research findings on the 
reliability of data captured in selected passenger vehicle air bag modules. This was 
done by simulating a networked system in a controlled environment to assess the 
accuracy of the data. Furthermore, research findings regarding the forensic capture 
and preservation of data from heavy vehicle engine control modules is presented 
along with some practical recommendations for improving the forensic soundness 
of extracting heavy vehicle event data. In addition to the specific studies of fielded 
systems, a formal methods approach is presented to show mathematical strategies 
to assess the reliability of the digital forensic data on networked process control 
systems. 
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EXECUTIVE SUMMARY 
Modern vehicles are cyber physical systems (CPSs) that rely on networking 
infrastructure to convey feedback from sensors to Engine Control Modules (ECMs) 
and to facilitate control of actuators.  Given the importance of digital event data, a 
thorough system characterization and in-depth analysis of CPSs is needed to 
understand their behavior and reliability. As such, a formal methods approach was 
taken to mathematically assess some basic properties of digital forensic data with a 
focus on understanding event data recorders on vehicles. 

Event Data Recorders (EDRs) in passenger cars record crash and pre-crash data 
when subjected to events, which are crash or crash like accelerations. Prior EDR 
testing methodologies involving crash testing are expensive and difficult to 
reproduce to attain statistically sound conclusions. A new methodology has been 
developed which allows repeatable testing and mapping of the transfer function 
between the vehicle controller area network (CAN) data and the EDR in a low-cost, 
deterministic manner. The accuracy of the 2012 Honda CR-V and 2012 Honda Civic 
event data recorders were tested using this new two-part methodology. 

First, the test vehicles were instrumented with both a Racelogic VBOX differential 
GPS speed measurement system and a Vector CAN Case XL data logger. The 
measurements from the VBOX were transmitted onto the vehicle’s CAN bus that also 
contained messages reflecting indicated vehicle speed, brake status, accelerator 
pedal position, steering wheel angle, individual wheel speeds and other signals. This 
put the GPS speed data on the same time base as the vehicle CAN speed signal such 
that no additional synchronization was required. This permitted analysis of the 
accuracy and update rate of the vehicle speed CAN signal, which is the source for 
speed data used in the Event Data Recorder (EDR). 

Second, a system was developed to replay the recorded CAN data to an exemplar 
airbag control module in the laboratory, such that the exemplar was receiving data 
exactly as if it were in a moving vehicle. A pneumatic fixture with a slide was built 
to allow the exemplar module to be accelerated to nearly 10 km/h (6 mph) and then 
stopped in approximately 80 msec to create a non-deployment event that met the 
minimum 5 mph delta-V over 150ms threshold. Actuation of the event setting 
fixture was computer controlled (using LabVIEW) and synchronized with the CAN 
replay system so that the desired test condition could be replicated precisely. The 
desired test conditions were replayed to the airbag control module and a series of 
non-deployment events were set. Each event on the EDR data was read using the 
Bosch Crash Data Retrieval system. 

The EDR data was compared to the network inputs, and it was determined that the 
two byte vehicle CAN bus signal for speed was truncated to the next lower whole 
km/h when recorded in the EDR. Under steady state conditions the speed data was 
accurate within 2%. The vehicle CAN signal published new values every 0.1 
seconds, and the Honda CR-V updated values every 0.1 seconds, but the Honda Civic 
delayed updates by as much as 0.6 seconds during hard brake events. 



           
           

          
          

            
         

         
         

         
           

           
  

         
           

        
           

           
         

          
  

             
         

        
  

           
           

            
         

           
 

           
            

 
          
           

           
        

  

        
           

         
          

          

Another goal of this research was the development of a forensically sound method 
for evidence extraction from heavy truck ECMs. Information stored in ECMs can be 
extracted using the engine manufacturers' maintenance software in a manner that 
does not protect the evidence from alteration. A method that preserves the integrity 
of the original evidence, is faithful to the original evidence source, and is 
cryptographically protected was developed. This methodology is based on the 
extraction and replay of ECM data with extensions specific to the manufacturer's 
proprietary protocols. Furthermore, a cryptosystem was designed to protect the 
information from modification, whether accidental or malicious. The methodology 
was validated by extracting and then replaying the data extracted from an actual 
ECM. The replay method fulfills the criteria of forensic soundness and addresses 
some problems with current evidence handling procedures. 

The development of a sound forensic method for evidence extraction from truck 
ECMS is relevant due to current shortcomings on currently used procedures. Each 
year many thousands of trucks are involved in traffic accidents. Litigation connected 
with these crashes can result in judgments in the millions of dollars. In recent years, 
this litigation has come to depend more and more heavily on electronic event data 
recorded on the trucks' engine control systems. This evidence includes speed 
records and other event data that can help accident reconstructionists determine 
what transpired during the event. 

Like other evidence, heavy vehicle digital event data is held to a standard of forensic 
soundness, which is a series of principles that ensure that forensic evidence is 
handled in a secure manner that guards against misinterpretation and alteration, 
whether intentional or unintentional. 

Currently, evidence is extracted from heavy truck systems using software that was 
not originally designed to be forensic software, and is not particularly suited to the 
task. While evidence can be collected using this data in a forensically sound manner, 
doing so requires diligence on the part of the investigator and mistakes can result in 
evidence being dismissed. Additionally, the current methods by which data are 
stored are not particularly resistant to tampering. 

The evidence contained within the heavy truck ECMs is extracted using diagnostic 
software provided by the manufacturer (such as CatET for Caterpillar and Cummins 
PowerSpec for Cummins). While it may be tempting to trust the interpretation of the 
OEM software, research has shown that the interpretation of the data may be an 
issue. For example, in some Cummins Sudden Deceleration events, speed data is 
reported in the report at one sample per second; however, after comparing to 
external reference measurements on some ECMs, researchers discovered that the 
data actually is reported at 0.2 second intervals (5 Hz) [1]. 

The proposed solution for sound forensic data extraction seamlessly integrates with 
the two major communications network standards used in heavy vehicles: SAE 
J1708/1587 and SAE J1939. These networks carry an abundant amount of 
information. Engine control computers monitor vehicle speed and enforce pre-set 
speed limits. They also broadcast information for other modules to use. For 



         
         

         
          

           
 

       
        

            
           

             
             

            
 

       
      

       
        

          
       

           
  

           
          

            
              

 

       
      

        
  

        
        

         
             

example, speedometer and tachometer displays on the instrument panel display 
information received from the vehicle network. Telematics systems monitor vehicle 
performance and behavior using the same data. Additionally, vehicle diagnostic 
communications use this network. As crash evidence is extracted using diagnostic 
programs, vehicle networks are of interest to anyone interested in extracting crash 
information. 

Engine control modules communicate over vehicle-specific networks, so diagnostic 
software requires a device that can mediate between vehicle networks and 
interfaces on desktop computers, such as RS-232 or USB. Those devices are known 
as Diagnostic Link Connectors (DLCs). They connect to a computer via a common 
interface and translate data to and from J1708, J1939, CAN, and other standards. 
During normal operation, a DLC is connected to the in-vehicle network via a 
diagnostic port in the cab, either an older 6-pin or a newer 9-pin SAE J1939-13 
connector, also known as a Deutsch connector. 

The standardization of heavy truck communication has allowed for enhanced 
interoperation between different brands of products, and DLC standardization is no 
different. All DLC manufacturers' drivers generally comply with an interface 
standard dictated by the American Trucking Association's (ATA) Technical 
Maintenance Council (TMC), known as TMC RP1210. The RP1210 interface specifies 
a number of functions that compliant drivers must export, including function names 
and formats for arguments. This allows a diagnostic program to utilize any device 
from any manufacturer. 

A solution to problems associated with current practices is based on solutions used 
in the world of computer forensics. In a computer forensic investigation, a low-level 
copy of the evidence drive is made; this copy is known as the ``disk image.'' Forensic 
analysis is performed on this disk image instead of the original disk, so as to alter 
the original source evidence as little as possible. 

This  concept  is  extended  to  truck  ECMs:  the  information would  be  extracted  exactly  
one  time,  and  then replayed  for  further  analysis.  The  replay  traffic information 
would  be  stored  securely  to  prevent malicious  tampering  or  accidental  alteration.  A  
set of four  software  requirements  for  such  a  solution was  developed  and  then  
implemented. In particular software solutions must have the ability to: (i) record the  
original  information extraction process,  (ii) decipher  any encryption  or  obfuscation 
mechanisms  obscuring  ECM  data,  (iii) store  the  evidence  in  a  secure  manner  and  
(iv) respond to information requests identically to the ECM.  

Implementation of such a solution required hardware platform that satisfied the 
following requirements: (i) relatively inexpensive, (ii) light and portable, (iii) 
sufficiently powerful computing resources and (iv) capable of communicating using 
heavy vehicle protocols. 

The developed forensic extraction methodology was implemented using a replay 
mechanism hardware built around a BeagleBone, a commercially available ARM-
based miniature computer produced by Texas Instruments. The most recent 
iteration of the design, the BeagleBone Black, retails for roughly $55 and has a 1GHz 



           
         
             
        

            
    

           
         

            
          

 

   

 
 

 
  

  
  

  
   

 

 
 

 
 

  
   

  
 

 

ARM processor, 512MB of RAM, and 4GB of onboard flash storage. Weighing just a 
few ounces, it meets cost-effectiveness and portability requirements. In addition, 
one of the main reasons for adopting the BeagleBone platform is the capability to 
add functionality using expansion boards, known as Capes. Commercially available 
capes include a RS-485 cape and a CAN cape, supporting the physical layers of 
J1708/J1587 and J1939 with little to no modification. 

The methodology and the platform used for its implementation were tested and 
validated against ECMs manufactured by Caterpillar, Inc. This manufacturer was 
chosen for several reasons. Firstly, it is one of the major manufacturers in the 
domain and secondly, their proprietary communications protocol used is encrypted 
in such a way that implementing a replay mechanism was particularly challenging. 

In order  to  ensure  that the  method  of information extraction was  reliable,  replays  
from  the  ECM  were  tested  against actual  extractions  from  CAT  ECMs.  The  ECMs  
tested  were  evidence  ECMs  that were  already  used,  and  thus  had  been pre-
populated  with  data.  The  verification procedure  was  designed  to  determine  the  
fidelity  of the  information replayed,  as  well  as  the  consistency  of multiple  replays  of  
recorded  data  as  compared  to  the  consistency  of multiple  downloads  of an evidence  
ECM.  Using  this  procedure,  we  were  able  to  validate  and  implement  the  proposed  
methodology.  

1 Introduction 

1.1  Cyber  Physical  Systems  Analysis  

Modern vehicles are cyber physical systems (CPSs) that rely on networking 
infrastructure to convey feedback from sensors to Engine Control Modules (ECMs) 
and to facilitate control of actuators.  Given the importance of safety controls, 
thorough system characterization and in-depth analysis of CPSs is needed to 
understand their behavior and to prevent unexpected and potentially dangerous 
side effects. Unfortunately, analysis is oftentimes hampered by CPSs' proprietary 
designs that make accurate system characterization very difficult, if not impossible. 
Needed are strategies for conducting a full range of analyses over vehicular CPS 
elements, spanning experimentation, simulation and formal verification. 

1.1.1  Experimental  Platforms for R eal  Time  Analysis  

A primary challenge in characterizing and analyzing parts of a vehicle's CAN system 
to understand the behavior of specific ECUs and evaluate operational boundaries, is 
access to the system. Preserving the real-time characteristics of the data 
transmission as well as ensuring experimental repeatability is very difficult when 
driving the car to generate data sets. One solution is to record the data generated 
during one test drive and design a process to replay that data in real-time with high 
temporal accuracy of the original message transmission timing. A straightforward 
approach would be using a general purpose PC and a suitable programming 
environment, e.g. C, C++ or Matlab, to recreate the recorded data transmission. 



 
  

 
 

 
 

 
 

  

  
 
 

  
 

 
 

 

 
  

  
 

 
  

 
 

 
 

   
 

  
 

However, operating systems used on general purpose computers do not provide 
guarantees on timeliness of program execution.  Thus, the relative execution timing 
of a real-time analysis might vary depending on other processes running on the 
system. Alternative platforms for real time analysis therefore must be considered. 

A real-time operating (RTOS) is a special-purpose operating system that imposes 
rigid time requirements on its process execution and enables the design of real-time 
applications.  A hard real-time system guarantees that all delays within the system 
are bounded by an upper and a lower execution time that must be met at all times. A 
soft real-time system does have upper and lower bounds for all functions but it 
assigns and manages varying levels of task priorities. 

Field-programmable Gate Arrays (FPGAs) offer a programmable hardware layer 
made up of configurable logic blocks (CLBs), block random access memory (BRAMs) 
and digital signal processing (DSP) blocks. FPGAs can be programmed via a 
hardware description language such as Verilog or VHDL.  Manufacturers have 
started to investigate the possibility of using OpenCL to program FPGAs. FPGAs 
allow several programs to execute truly in parallel without competition for shared 
resources and may offer down to nanosecond response times for input-to-output 
processing. 

1.1.2  Formal  Verification  

Hybrid automata are formal models of CPSs, linking agent behavior in discrete and 
continuous domains [2].  Henzinger identifies certain classes of automata, 
specifically linear hybrid automata, which lend themselves to the fully automatic 
application of various model-checking techniques. Indeed, to demonstrate the 
potential of their approach, Henzinger et al. developed the symbolic model checker 
HyTech for linear hybrid automata [3].  Hybrid programs are structured control 
programs that can capture the discrete and continuous transitions of hybrid system. 
It has been shown that the expressive power of hybrid programs is suitable to 
represent hybrid system descriptions formulated as hybrid automata.  The tool 
Keymaera is a theorem prover that supports the definition of hybrid systems in 
form of hybrid programs [4].  Platzer introduced Keymaera's specification and 
verification language, the Dynamic Differential Logic (dL) and demonstrated its 
utility by modeling and analyzing certain parts of the European Train Control 
System. 

1.2  Event da ta  recorders  in  passenger  cars  

1.2.1  Motivation  for E DR  studies  

Event Data Recorders (EDRs) have been equipped in select cars for many years and  
are becoming more pervasive in over the road vehicles. Originally, EDRs were  
developed as a tool to help automotive engineers understand crash dynamics in  
order to make cars safer. For example, in 1992  General Motors (GM) installed crash  
data recorders in Indy race cars. These devices  provided information on the human 
body’s tolerance to impact and velocity change;  information which helped improve  
the safety of both racing and passenger cars.  In 1994, GM implemented recording  



 
 

 
    

  
 

  
    

 
   

 
 

  
  

  
 

   
 

 
 

  
 

   
 

 
  

 
 

  

   
  

 

 

  

  

 

   

  

 
    

    

   

 

    

   

 
    

       

capable sensing diagnostic and modules (SDMs) to select passenger cars. These 
devices recorded the change in longitudinal velocity (delta-v), allowing GM 
engineers to study and improve the restraint system of their vehicles. By 1999 
certain GM SDMs were able to record pre-crash data such as engine speed, vehicle 
speed, brake switch status, and throttle pedal position. EDRs have continued to 
develop over the years are now present in many cars. Most vehicle EDRs offer more 
crash and pre-crash data than the GM 1999 SDMs. Although these devices were 
originally intended for manufacturer studies to increase the safety of their 
automobiles, EDR data is interesting to crash investigators and insurance 
companies. 

EDR data is used by accident reconstructionists and law enforcement to help 
determine events leading to a crash. EDR data was used in criminal court in the 
2002 Colorado vs. Cain case. Since then, EDR data has been used in over 19 state 
courts and at the federal level. 

The use of EDR data in court cases as scientific evidence places requirements on 
EDR data and its validity. As established in Daubert, scientific data presented by an 
expert witness is subject to review and must be "sufficiently established to have 
general acceptance in the field to which it belongs.” The Daubert standard for 
admissibility of scientific evidence requires that EDR data be verified using an 
accepted peer reviewed method. Although methods exist for the analysis of EDR 
data, these methods can be improved, particularly in reproducibility. Current 
methods limit the ability to quantify data error ranges in a statistically significant 
manner. 

EDR data became standardized in passenger vehicles in September of 2012 through 
part 563 of the NHTSA (National Highway Traffic Safety Administration) 49 Code of 
Federal Regulations (CFR) ruling, which gives a minimum data set required if the 
vehicle is equipped with an EDR [5]. Tables showing the minimum required are 
given in Appendix A. Within the part 563 ruling the following standards have been 
established for pre-crash data: 

Table 1: Minimum EDR Data Required by NHTSA CFR 49 Part 563 

Data Element Name 
Condition for 

Requirement 

Recording Time 

Interval (relative to 

time zero) 

Data Sampling 

Rate (per second) 

Speed, Vehicle 

Indicated 
Required -5 to 0 2 

Engine Throttle (% full) 

Accel Pedal Position 

(%full) 

Required -5 to 0 2 

Service Brake 

(on/off) 
Required -5 to 0 2 

Engine Speed If recorded -5 to 0 2 



 

  

 

     

   

  
     

 

 
     

  
   

 
 

 
 

 
  

 
 

  
 

 
  

 
 

 
  

 
 

 
  

 
  

 

 
    

 

  

(RPM) 

ABS Activity 

(engagement/non-

engagement) 

If recorded -5 to 0 2 

Stability Control (on, 

off, engaged) 
If recorded -5 to 0 2 

Steering Input 

(degrees) 
If recorded -5 to 0 2 

CFR 49, part 563, specifies that all manufactures must make EDR data available if 
EDR data is recorded, whether that be through a dealership scanning tool or a third 
party tool. The Bosch Crash Data Retrieval kit (CDR) is one such third party tool. 
This device supports hundreds of cars and is able to harvest the EDR data from a 
module. The Bosch CDR tool was used in this study. 

Prior EDR testing methodologies required setting events in the airbag control 
module of the vehicle during controlled driving.  Duplicating events was nearly 
impossible and it was difficult to determine differences in recorded speeds to 
reference speeds based on measurement error, wheel slip, reporting time delays, or 
data truncation within the EDR.  Recording thresholds may have increased making 
non-deployment and deployment events closer in magnitude, which increase the 
risk of accidentally exceeding the deployment threshold while setting events. 
Because of the shortcomings of existing methods of EDR data analysis a new method 
of assessing the accuracy of EDR data was developed and is the subject of this 
research. 

The new methodology eliminates the risk of accidentally deploying airbags while 
gathering external validation data and vehicle network data in the test vehicle. The 
techniques presented in this work also allow data gathering without tampering with 
the airbag control module, which reduces the potential liability to testers using 
rental or borrowed test vehicles. The new methodology allows for repeatable 
testing and mapping the transfer function between the vehicle CAN bus data and the 
EDR data. Should a manufacturer make a design change to an EDR, identical inputs 
can be given to the new EDR and changes in its behavior can be documented. This 
methodology allows researchers the ability to re-create events of interest in a low-
cost, repeatable manner. As an example, the accuracy of the 2012 Honda CR-V and 
2012 Honda Civic event data recorders were tested using this new two-part 
methodology. 

1.2.2  Literature  Review  

A large portion of this literature review is taken from a 2013 SAE World Congress 
publication by Diacon et al. [6]. 

In 1983 Bosch began development of a networking system for cars, namely CAN 
(controller area network). At the 1986 SAE World Congress Bosch presented CAN 
and subsequently released all intellectual property concerning it, which resulted in 



 
  

  
  

     
  

 

  

 

  

  

a drop in costs for its implementation [7]. Since 2008, most vehicles have 
implemented some version of a CAN for on-board device communication. To briefly 
describe the network of CAN itself; CAN is a multi-master broadcast serial bus with 
a non-return to zero (NRZ) bit encoding and automatic collision detection and 
message arbitration. Mueller, et al. presented a method for evaluating the accuracy 
of CAN messages in Ref. [8]. In this paper CAN histories were compared to 
professional grade measurements, allowing quantification of the accuracy of CAN 
messages such as speed, and thus an analysis of EDR data. This means that some of 
the EDR data depends on the CAN bus data. 

The Bosch CDR tool help file and the Data Limitations section in CDR reports contain 
useful information about accuracy limitations and EDR transfer functions. A section 
of the 2012 Honda Data Limitations section is shown verbatim below. 

The Bosch CDR tool help file and the Data Limitations section in CDR reports contain 
useful information about accuracy limitations and EDR transfer functions. A section 
of the 2012 Honda Data Limitations section is shown verbatim below. 



 

 

 

       

       

    

    

 

   

  

   

 

 

 

 

 

   

    

   

    

  

       

 

      

    

     

  

     

    

  

“Data Limitations” 

General Information: 

These limitations are intended to assist you in reading the event data that has been imaged 

from the vehicle’s SRS control unit. They are not intended to provide specific information 

regarding the interpretation of this data. Event data should be considered in conjunction with 

other available physical evidence from the vehicle and scene. 

Honda and Acura passenger vehicles designated as 2013 or later model year production are 

designed to be compatible with the Bosch CDR tool. However, due to production variations 

during the 2012 model year, only certain 2012 model year vehicles are compatible with the 

Bosch CDR tool. 

Recorded Crash Events: 

Data for front, side, rear and rollover events can be recorded as either non-deployment or 

deployment events. Both types  of events can contain  precrash and crash data.  

- A non-deployment event  is recorded if the  change  in  longitudinal  or lateral  velocity  equals  

or exceeds 8km/h  over a 150ms timeframe  or another type  of  non-reversible deployable  

restraint device  other than a  front, side, or side  curtain airbag (e.g. seatbelt pretensioner) is  

commanded to deploy. Except as  indicated below, non-deployment events are  not  locked into  

memory and can be  over-written by subsequent  non-deployment  or deployment events.  

- A deployment event  is recorded if f ront airbag(s), side airbag(s), or side curtain airbag(s) 

are commanded to deploy. Deployment events are  locked into memory and cannot be  over-

written.  

The SRS control unit typically records only  one event. Two events can be recorded if the  T0 

(time zero) values  for each  event  occur within 5 seconds of e ach  other. T0 is established by  

whichever of t he  following occurs first: (1) the change  in  longitudinal  velocity  at the SRS  

control unit equals  or exceeds 0.8km/h  over a 20ms timeframe; (2) the change  in  lateral  

velocity  at the SRS control unit equals  or exceeds 0.8km/h  over a 5ms timeframe;  or (3) a  

commanded deployment  of any  type  of  non-reversible deployable restraint device (e.g. airbag 

or seatbelt pretensioner). Therefore, a  non-deployment  event can be recorded and locked if i t  

occurs within 5 seconds  of a deployment  event.  

Data: 

- Data recorded by the SRS control unit and imaged by the CDR tool is displayed relative to 

T0, not the time at which the vehicle made contact with another vehicle or object. 

- Pre-crash data is recorded at 2 samples per second starting 5 seconds before T0. 

- Crash data is recorded at 100 samples per second from T0 to 250 milliseconds or T0 to 

TEnd (end of event) plus 30 milliseconds, whichever is shorter. TEnd occurs when the 

change in longitudinal and lateral velocity equals or falls below 0.8km/h over a 20ms 

timeframe. 

- All data is displayed in SAE J211 sign convention unless otherwise noted in this document. 

- Delta V, longitudinal reflects the change in velocity that the SRS control unit experienced in 

the longitudinal direction during the recorded portion of the event and is not the speed the 

vehicle was traveling before the event. 

- Depending on the severity of the event and the accelerometer characteristics, saturation of 

the SRS control unit longitudinal or lateral accelerometers may occur, decreasing the 

recorded Delta V value. 



      

  

     

   

     

 

  

   

    

    

   

 

      

 

 

     

   

  

       

 

 

 
 

    

  
   

  
   

  
 
 

  
  

 
    

   
 

  
 

 
 

  
 

- Speed, vehicle indicated data accuracy can be affected by various factors, including but not 

limited to the following: 

- Significant changes in tire size from the factory setting 

- Wheel lockup 

- Accelerator pedal position, percent full is the ratio of accelerator pedal position compared to 

the fully depressed position. 

- PCM (Powertrain Control Module) derived accelerator pedal position, percent full may 

differ from the accelerator pedal position, percent full under circumstances such as brake 

override activation or cruise control system engagement. These circumstances are based on 

vehicle equipment application and vary by model. 

- Steering input angle is recorded in 5 degree increments (e.g. if actual steering input = 13.4 

degrees, recorded value would be = 15 degrees). 

- Side air bag suppression system status, right front passenger is recorded when the vehicle is 

equipped with the Occupant Position Detection 

System (OPDS). 

- Occupant size classification, right front passenger airbag suppressed data is recorded as yes 

(suppressed) if the front passenger seat weight sensor system determined the passenger seat 

was empty or occupied by a child-size occupant. 

- If power to the SRS control unit is lost during an event, all or part of the data may not be 

recorded 

While this data is helpful, actual test data is needed to verify and quantify their 
claims, specifically concerning the issues of data resolution and truncation. Many 
EDR accuracy studies have been conducted and are summarized below. 

EDR pre-crash speed data was first recorded by General Motors beginning in some 
1999 models and the first paper to address pre-crash EDR speed data accuracy was 
by Chidester in 1999 [9]. Chidester’s team included General Motors personnel, and 
the paper listed the accuracy of speed data as +/-4% of the recorded value, implying 
that differences between EDR recorded values and ground speed may be higher at 
greater speeds. This paper was written before the start of 1999 model-year 
production, and the 4% articulated a design tolerance that could include tread wear, 
tire pressure variations, and other design variations. Test data was not yet available. 
The paper noted that the various data elements were recorded asynchronously, 
raising the issue that the timing labels associated with pre-crash data may not be 
precise regarding when the data was actually recorded. Data points labeled “-1” may 
actually be recorded any time during the second before algorithm enable (AE). 

In 2003, Lawrence [10] created artificial crash signals during normal driving and 
published data finding the GM EDR speed to be under reported by 1.5 km/h (about 
1 mph) at low speeds and over reported by 3.7 km/h (about 2.3 mph) at high speed 
when compared to reference instrumentation, under steady state conditions. This 
paper raised the concern that differences between recorded speed values and 
speeds obtained with external instruments may not only have some relationship to 
vehicle speed, but that there may be some type of offset since the sign of the 
difference changed between low speed and high speed. 



  
  

  
 

     
 

 

   
 

  

 
 

  
 

 

   
  

 
  

 
 

      
  

 
    

 

In 2005, Niehoff reported the recorded pre-crash speed from 28 NHTSA crash tests 
of GM and Toyota vehicles [11].  The crash tests were at speeds of 48 and 64 km/h 
(30 to 40 mph) and the data was reported as “within 1 mph”.  The pre-crash EDR 
data was typically reported in whole miles per hour and the reference 
instrumentation was reported with either one decimal place or no decimal places. 
Data was not reported as a percentage of speed, which was appropriate given the 
combination of resolution of the data and the relatively low speed of the test. 

In 2006, Wilkinson reported on the timing of EDR data in General Motors sensing 
and diagnostic modules, indicating that the actual time between labeled data points 
may vary from the interval suggested by the labels [12]. In 2011, Bare et al. reported 
on pre-crash data timing of the GM SDM-DS module, indicating that the timing of the 
last data point recorded can vary from the label "-1" that is placed on that last data 
point [13]. This work addresses some of the same type of timing issues as Wilkinson 
but used more sophisticated instrumentation and was on a more recently designed 
EDR. Bare also suggested that data timing was far closer to the reported "1 second" 
interval than reported by Wilkinson. 

In 2008, Gabler [14] reported on the accuracy of pre-crash speed data for 33 crash 
tests ranging from 40 to 56 km/h (25 to 40 mph) on 2004-2007 model year 
vehicles.  32 of the tests were on GM vehicles and one was on a Toyota.  The paper 
states that all of the speed data was within 3%, except for test 5310 on a 2005 Buick 
Rendezvous that reported low by 22% (27 mph vs. 35mph actual).  Gabler did not 
explain the anomaly. 

In 2008, Ruth [15] reported on the steady state speed data accuracy of Ford 
Powertrain Control Module event data recorders at speeds from 48 km/h to 113 
km/h (30 to 70 mph).  For the 2005 Ford Crown Victoria, the data was accurate 
within 1.0%. Similarly, Ruth et al. reported on Ford air bag control modules in Ref. 
[16] 

Takubo and Ishikawa et al. reported on Japanese New Car Assessment Program  
(NCAP) tests and  additional tests intended to mimic  real world crashes  [17]  [18]. 
They published two SAE papers with each successive paper including some  
additional tests. As  such, the most complete data set as of this writing can be found  
in the latest, though  the earlier papers contain some minor details which are not 
reproduced in the most recent paper. They reported that the cars were mostly 2007  
and 2008  Toyota Corollas (00/02 EDR), and that “the pre-crash velocities [reported  
by the] EDR were highly accurate and reliable but generally lower than the  optically  
derived velocities.” In 14 full  overlap barrier tests the EDR speed data was  ‐2.0%  

different than the reference instrumentation, with a range of ‐6.3 to  +1.9%, and an 

RMS of 2.6%. For the 14 Offset Deformable Barrier (ODB) tests, the EDR averaged  ‐

2.1% different than the reference instrumentation, with a range of ‐4.1%  to  0.0%  

and an RMS of 2.7%. The negative average value is consistent with the CDR Data  
Limitations, which state the speed data is truncated to the next lower even km/h  
value.     



    
  

    
  

 
 

    
 

  
   

  

  
 

 
  

    

 
     

  
    

    
   

 
    

 
  

  
      

In 2009, Ruth [19] reported on the speed data accuracy of Chrysler vehicles.  In 113 
km/h steady state conditions the 2008 Jeep Commander EDR reported from -1.18 to 
+0.32 km/h different than GPS, and Dodge Dakota EDR reported from -3.09 to -0.98 
km/h different from the GPS reference instrumentation, with the average error 
being below zero due to truncation of any fractional km/h to the next lower whole 
number in the EDR. 

In 2010, Bortolin [20] reported that a 2008 Dodge Caravan EDR reported from -1.74 
to +0.63 mph of GPS reference speeds from 11 to 61 mph 

In 2010, Ruth reported on the accuracy of the 2009 Ford Crown Victoria Powertrain 
Control Module (PCM) EDR in steady state and heavy braking [21]. The Crown 
Victoria vehicle speed sensor is on the transmission output shaft, and during heavy 
ABS controlled braking wheel slip results in the speed being under reported by an 
average of 5% at 97 km/h. This recognized that the “vehicle indicated speed” on the 
speedometer or CAN bus obtained from a sensor measuring proportional to wheel 
speed might not represent the ground speed of the vehicle under heavy braking 
conditions. 

In 2011, NHTSA conducted an evaluation of Toyota pre-crash data accuracy  [22]. 
The paper reports 28 staged events using two 2007 Camry’s (04/06 EDR) and a  
2008 Highlander (04/06 EDR) as bullet vehicles striking the back of a 2006 Tacoma  
(00/02 EDR) target vehicle with a 3 to 8 km/h (2-5 mph) closing speed in order to  
create a non-deployment event the EDR would  capture. NHTSA defined the vehicle  
speed tolerance as +/- 2.3 km/h (1.5  mph), and  was aware that the recorder  
temporary buffer only  refreshed speed data  every 0.5 seconds. Around each EDR  
data point they created a “window  of acceptance” of +/- 2.3 km/h (1.5  mph) that 
extended back in time 0.5 seconds. If the GPS speed data crossed anywhere in the  
window, then it was deemed within the acceptable tolerance. NHTSA concluded that  
100% of the pre-crash speed data fell within the tolerance and time window.  The  
+/-2.3 km/h window was wider than the +0/-2  km/h range expected from the data  
resolution cited in the CDR Data Limitations.   

In 2012, Ruth et al. [23] reported on 2010 and 2011 Toyota Camry EDR speed data. 
Data limitations stated that the Toyota truncated speed data to the next lower even 
number of km/h, such that the difference between EDR and GPS would be expected 
to from -2.0 to 0 km/h in the absence of other calibration or random measurement 
errors.  For steady state conditions, differences for the 2011 Camry at 113 km/h (70 
mph) ranged from -3.0 to -0.4 km/h (-1.9 to -0.2 mph).  For the 2010 Camry, for the 
113 km/h (70 mph) tests the difference ranged from -2.1km/h to +0.2 km/h.  The 
best fit line has a slight slope indicating a larger difference would be expected at a 
higher speed, but the slope was not statistically significant.  During maximum ABS 
braking, Ruth identified that in addition to the wheel slip under reporting 
phenomena, data recorded for the last point prior to impact may be up to 0.5 
seconds old, resulting in over reporting speed.   This research reinforced that for 
speed at impact calculations, the timing of the last speed data point recorded was 
important. 



 
 

 
  

 
  

 
  

 
 

   

           
           

 
          

            
       

 

             
         

        
  

           
           

            
         

           
  

          
           

          
         

 
         

        
 

To summarize the literature, EDR speed data was first published at +/-4% in 1999 
in a paper specifically addressing GM recorders. Since then specific GM, Ford, 
Chrysler and Toyota EDR’s have been tested and the data has been found to be more 
accurate than the previously published 4% under steady state conditions.  Tests 
have evaluated a vehicle at a point in time, and most indicate the EDR data is on 
average under-reported due to some form of truncation of the raw data to the next 
lower integer or even integer number.  Tire wear over the life of the vehicle has not 
been addressed since the original 1999 paper. The more recent literature also 
documents that under maximum ABS braking conditions, the EDR will accurately 
report the average drive wheel speed it is measuring, but it will under-report the 
true ground speed.  Tests on 2010/2011 Toyotas indicated the CAN bus updated 
only every 0.5 seconds, and during braking the reporting delay could lead to the last 
speed data point being over-reported. 

1.3  Forensics  of heavy  truck  ECMs  

Thousands of trucks are involved in traffic accidents each year; in 2008, 380,000 
trucks were involved in accidents [24]. Litigation connected with these crashes can 
result in judgments in the millions of dollars. In recent years, this litigation has come 
to depend more and more heavily on electronic event data recorded on the trucks' 
engine control systems. This evidence includes speed records and other event data 
that can help accident reconstructionists determine what transpired during the 
event. 

Like other evidence, heavy vehicle digital event data is held to a standard of forensic 
soundness, which is a series of principles that ensure that forensic evidence is 
handled in a secure manner that guards against misinterpretation and alteration, 
whether intentional or unintentional. 

Currently, evidence is extracted from heavy truck systems using software that was 
not originally designed to be forensic software, and is not particularly suited to the 
task. While evidence can be collected using this data in a forensically sound manner, 
doing so requires diligence on the part of the investigator and mistakes can result in 
evidence being dismissed. Additionally, the current methods by which data are 
stored are not particularly resistant to tampering. 

1.3.1  Truck ECMs and  Digital  Evidence  

Beginning in the early 1990s, truck engine manufacturers implemented electronic 
engine control in order to meet more stringent emissions requirements placed on 
large diesel vehicles. Over time, demand from fleet customers lead to 
implementation of data logging within these engine control computers, including 
fuel usage tracking and driver behavior. NHTSA requested the engine manufacturers 
to investigate the implementation of event data recorder (EDR) functionality in 
heavy truck ECMs. Shortly thereafter, manufacturers began offering this 
functionality in their ECMs, first as add-on packages then as standard features. 



   

 

           
           

          
          

              
       

            
 

        
         

        
         

        
          

          
        

 

            
          

          
         
          

          
        

           

Table 2: ECMs and associated software 

The  evidence  contained  within  the  heavy  truck  ECMs  is  extracted  using  diagnostic 
software  provided  by  the  manufacturer.  Some  popular  manufacturers  and  the  
associated  software  of forensic interest is  listed  in  Table  2:  ECMs  and  associated  
software.  

While it may be tempting to trust the interpretation of the OEM software, research 
has shown that the interpretation of the data may be an issue. For example, in some 
Cummins Sudden Deceleration events, speed data is reported in the report at one 
sample per second; however, after comparing to external reference measurements, 
it is discovered that the data actually is reported at 0.2 second intervals (5 Hz) [1]. 
Similarly, Austin and Farrell [25] showed that many Snapshot records from 
Caterpillar are reported every 0.5 seconds instead of every second as represented in 
the OEM software. 

1.3.2  Heavy  Vehicle  Networks  

In modern automobiles, the number of in-vehicle electronic devices that need to 
communicate with one another has seen dramatic increases: engine control 
modules, anti-lock brake system modules, transmission control modules, collision 
detection systems, and even entertainment systems are examples of devices that 
need to communicate. This leads to a combinatorial explosion of communication 
links, that requires the use of a common multiple-access bus. Currently, almost all 
functions in automobiles are carried out over the network. Notably, in-vehicle 
networking has allowed external diagnostic connectors to receive diagnostic fault 
codes through a port in the cab. 

Heavy trucks are no different. Engine control computers monitor vehicle speed and 
enforce pre-set speed limits. They also broadcast information for other modules to 
use. For example, speedometer and tachometer displays on the instrument panel 
display information received from the vehicle network. Telematics systems monitor 
vehicle performance and behavior using the same data. Additionally, vehicle 
diagnostic communications use this network. As crash evidence is extracted using 
diagnostic programs, vehicle networks are of interest to anyone interested in 
extracting crash information. There are two major vehicle network standards used 



           
    

       
        

            
           

             
             

            
 

 

 

   

           
         

           
 

    
            

           
            

              
            

 

in heavy trucks published by the Society of Automotive Engineers, SAE J1708/1587 
[26] [27] and SAE J1939 [28]. 

1.3.3  Diagnostic Link Connector H ardware  and  Software  

Engine control modules communicate over vehicle-specific networks, so diagnostic 
software requires a device that can mediate between vehicle networks and 
interfaces on desktop computers, such as RS-232 or USB. Those devices are known 
as Diagnostic Link Connectors (DLCs). They connect to a computer via a common 
interface and translate data to and from J1708, J1939, CAN, and other standards. 
During normal operation, a DLC is connected to the in-vehicle network via a 
diagnostic port in the cab, either an older 6-pin or a newer 9-pin SAE J1939-13 
connector, also known as a Deutsch connector. 

Figure 1: Diagram of RP1210 device and driver. 

The  standardization of heavy  truck  communication has  allowed  for  enhanced  
interoperation between different  brands  of products,  and  DLC standardization is  no  
different.  All  DLC manufacturers' drivers  generally  comply  with  an interface  
standard  dictated  by  the  American  Trucking  Association's  (ATA) Technical  
Maintenance  Council  (TMC),  known as  TMC  RP1210  [29].  The  RP1210  interface  
specifies  a  number  of functions  that compliant  drivers  must export, including  
function names  and  formats  for  arguments.  This  allows  a  diagnostic program  to  
utilize any device from any manufacturer  (Figure  1).  

1.3.4  Current  Practice  

Information from a heavy truck vehicle is typically downloaded using the engine 
manufacturer's diagnostic software. The normal use case for diagnostic software is 
connecting to a diagnostic port in the cab of the truck using a diagnostic link 
connector, and accessing the desired information with the maintenance software. 

However, extracting crash information is not a normal use case. If the truck has been 
in a high speed collision, the electrical connection between the cab and the engine 
may have been severed, or the cab itself may be physically inaccessible. In these 
cases, the engine control module must be removed and analyzed separately. This is 
performed either by placing the ECM in a donor vehicle identical to the one in the 
crash, or by connecting to the ECM directly using the manufacturer's engine flashing 
harness. 



 

 

   

 
       

           
         
            

           
          

  

          
           

            
  

           
 

Figure 2: Bench download from a Cummins ECM. 

Whatever method was used to connect to the ECM, the investigator then proceeds to 
extract the information using the manufacturer's diagnostic software. This includes 
event data from the crash itself, mechanical fault information, engine tuning 
parameters, and driver behavior information. This information is then recorded, in 
most cases, by printing the data to a PDF file. However, in many instances the 
software does not support printing data and so it must be captured using a 
screenshot. All of the files resulting from the extraction are then stored on some 
kind of removable media and produced to the client. 

1.3.5  Forensic Soundness Requirements for E CMs  

A heavy vehicle electronic control module (ECM) is a specialized process control 
computer that may have data of interest to an investigator. While ECMs may not 
have keyboards and monitors, they still are computers and have central processing 
units, memory, storage, and a means of  networking or communicating with external 
devices. As such, many of the principles from computer forensics can be applied to 
heavy vehicle ECMs. 

The  first litmus  test that any  forensic methodology  must pass  is  the  rules  of  
evidence  for  the  legal  system  in  which  it  is  used.  Here,  we  will  focus  on the  laws  of  
the United States. The two primary standards to which evidence is held in the US are  
the  Daubert standard,  established  in  the  case  Daubert  v  Merrell  Dow  
Pharmaceuticals,  and  the  Federal  Rules  of Evidence  Rule  702  on expert testimony  
[30].  The  following  is  a  summary  of the  relevant  criteria  for  the  Daubert standard:  
(i) testimony must be relevant  and reliable, (ii) Judges have the task of ensuring that 
expert testimony rests  on a  reliable  foundation and  is  relevant  and  (iii) some  or  all  
of certain  specific factors,  including  testing,  peer  review,  error  rates,  and  
acceptability  in  the  relevant  scientific community,  may  prove  helpful  in  determining  
reliability  of forensic testimony.  Similarly,  this  is  the  summary  of relevant  



            
           

   

               
 

          
       

          
         

         
           

         
           

 

        
        

      
          

         
  

          
            

           
       

            
          

         
          

         
    

         
       

requirements according to Federal Rules of Evidence Rule 702: (i) method can be 
and has been tested, (2) method has been subjected to peer review or publication 
and (iii) method has a known error rate 

A review of the rules of evidence as they relate to digital forensics may be found in 
[31]. Any forensic evidence must meet these standards in order to be admissible. 

In addition to the general rules of evidence, the digital forensics literature contains 
many attempts to quantify the concept of forensic soundness. A Special Report 
issued by the National Institute for Justice on Electronic Crime Scene Investigation 
\cite{NIJ2008} highlights the following basic forensic principles applied to dealing 
with digital evidence: (i) any process or procedure of collecting, transporting, or 
storing of digital evidence should not incur any changes to the evidence, (ii) only 
specifically trained experts should examine digital evidence and (iii) transparency 
during the operations of acquisition, transportation, and storage of the evidence 
should be maintained. 

These  basic tenets  lay  the  foundation for  the  idea  of forensic soundness.  It is  
important  to  understand  the  term  ``forensically  sound’’ as  it  relates  to  digital  
evidence.  Many authors  and  professional  organizations  have  attempted  to  
rigorously  define  this  concept, including  the  National  Institute  for  Standards  and  
Technology  (NIST) [32],  law  enforcement  entities  such  as  the  National  Institute  for  
Justice  (NIJ)  [33],  and  academic bodies  like  the  International  Organization on 
Computer  Evidence  [34].  The  methods  of extracting,  analyzing,  and  presenting  
digital  evidence  are  forensically  sound  if they  perform  the  task  in  a  manner  such  
that the  results  can be  used  in  legal  proceedings  with  a  high  degree  of confidence  in 
their  admissibility.  We  refer  to  the  process  of extracting,  interpreting,  and  
presenting evidence as the ``forensic process.’’  

In addition to the NIJ report, McKemmish [35] enumerates the following 
components of forensic soundness: (i) meaning (a term that denotes confidence in 
the interpretation of extracted evidence data), (ii) error detection (denotes 
processes for detecting or predicting errors in the forensic process), (iii) 
transparency (the forensic process is documented, known, and verifiable) and (iv) 
expertise is required for those investigators examining digital data. 

Futhermore, Casey [36] defines 7 levels of certainty for digital evidence that dictate 
how much weight should be given to the evidence in a case: C0 (evidence 
contradicts known facts), C1 (evidence is highly questionable), C2 (only one source 
of evidence that is not protected against tampering), C3: (source(s) of evidence are 
more difficult to tamper with but there is insufficient evidence for a firm conclusion, 
or unexplained inconsistencies exist in available evidence, C4 (sole source evidence 
is protected against tampering or multiple, independent sources of evidence agree 
but the independent evidence is unprotected from tampering), C5 (agreement of 
evidence from multiple, independent sources protected from tampering, but small 
uncertainties exist) and C6 (the evidence is tamper proof and unquestionable. 

While many of these levels include requirements that are encompassed by the 
requirements of error detection and certainty of meaning specified by McKemmish, 



         
           

 

       
            

           
           

         
 

           
         

           
              

           
             

            
        

           
 

          
            

        
        

        
           

            
 

          
            

  

          
 

            
 

            
            

            
           

           
 

this standard includes the principle of tamper resistance. In addition to protecting 
the evidence from tampering, a system which can demonstrate the absence of 
tampering also fulfills this requirement. 

1.3.6  Shortcomings of  current  practices and  the  need  for a   new  approach  

Though several authors describe the concept of forensic soundness slightly 
differently, the basic concepts remain the same. The evidence must be extracted in a 
transparent, repeatable, and verifiable manner that alters or destroys as little data 
as possible. There must be a high degree of certainty that the data is interpreted 
correctly. There must be measures taken to ensure that the evidence has not been 
tampered with. 

Unfortunately, current practices fail to meet these standards in several respects. 
First and foremost is that evidence extractions cannot be relied upon to leave the 
data unaltered. Some engine maintenance software can, by default, clear trip data 
after they are extracted from the engine. While this may be desirable behavior for 
the software's typical use case, in a forensic context it is unacceptable. In addition, if 
a bench download is being performed, the ECM is disconnected from all of the 
various systems it was designed to monitor, causing spurious fault codes to be 
created. With some manufacturers' products, especially Caterpillar, these can 
overwrite fault codes of interest in a crash investigation. The damage is made worse 
when repeated downloads are conducted. 

In addition to data extraction, current practices lack in the forensic soundness of the 
storage of data as well. No measures are taken to ensure that data have not been 
tampered with. Data export formats, typically plaintext HTML or PDF documents, 
can easily be altered with readily-available software. Some manufacturers' native 
file formats are encrypted somewhat, though not strongly: Cummins' EIF format is 
simply a password-protected ZIP archive, while Detroit Diesel's Drumroll files are 
encrypted using a simple XOR cipher. Once decrypted, these files can be altered to 
remove evidence and re-encrypted easily. 

Due to the potential for destruction of the source evidence and alteration of 
extracted data, it appears that current practice fails to pass the litmus test of 
forensic soundness as currently accepted in the digital forensics community. 

In reference [37], Johnson, Daily, and Kongs describe the current shortcomings of 
heavy truck ECM forensics, reviewing the weaknesses previously enumerated in this 
section. They also demonstrate a practical example of file modification of a DDEC 
Reports data file, altering vehicle speed records. 

The literature relating to the forensics of heavy truck ECM data is relatively 
undeveloped. Most of the work to date, such as references [38], [39], and [25] deal 
with the accuracy of data recorded on ECMs and causes of data loss. While these 
works address the practical necessities of extracting data from ECMs and ensuring 
that the data are correct, they do not consider the possibility of intentional 
modification to data or corruption of data after it has been extracted. 



  

 

 

 

  
 

 
 

 
   

 

  
 

 
 

    

   
    

 
  

 
 

2 Methods 

2.1  Methods  for  Cyber  Physical  Systems  

2.1.1  Logger  Design  and  Evaluation  

We evaluated three Arduino Can Logger (ACL) designs of increasing complexity and 
computational power. The first ACL design constitutes an Arduino UNO and a CAN 
bus shield. The second ACL design is based on the combination of the Arduino UNO, 
the CAN bus shield, and the OpenLog chip. The third ACL design consists of an 
Arduino Due (more powerful than the UNO), the CAN shield, and the OpenLog chip. 

To evaluate the logging implementations, two methods are used 1.) FPGA 
Deterministic CAN Message Generator 2.) Toyota RAV 4 CAN Traffic recording. The 
first method utilizes the National Instruments CompactRio platform featuring an NI 
9853 CAN module to send specifically timed CAN messages with predefined content. 
The CompactRio is connected to a CAN infrastructure that includes an industrial-
strength Vector CANCaseXL CAN logger. 500 predefined CAN messages are 
transmitted 35 times and the logging data generated by the two logging components 
is then analyzed against defined performance characteristics. The second evaluation 
method, features the replay of recorded 2009 Toyota RAV 4 CAN traffic via the 
Compact Rio platform and a replay system specifically designed to enable 
deterministic CAN replay analysis. The CAN messages, their content, and their 
timing is representative of CAN traffic found in modern passenger vehicles. The 
replay and recording procedure is performed 35 times and analyzed as before. 

2.1.2  Real  time  Replay  Methodology  

Deterministic and faithful replay behavior is vital to reproducible experimentation 
and testing since it permits reducing the difference in the observed time values 
between original data logging and replay logging. This means that if the replay 
algorithm produces deterministic time values in repeated replay sessions, it should 
be possible to reduce the timing differential that might be caused by different 
network topologies. 

Figure  3  illustrates the Real Time Replay Methodology.  Data collection is achieved  
by a VectorCANcaseXL CAN logger.  Data transformation involves adjusting  
timestamps to calibrate and condition data with respect to performance  
characteristics of the reference  CAN logger.  During replay, traffic is logged and its  
temporal properties are compared against that of the original data.  An acceptable  
outcome in this comparison validates subsequent analysis, otherwise adjustments  
are made to bring the replay in line with the original traffic and the process is  
repeated.  



 

  

  
 

  

 
 

  
  

  
 
 

   
 

  
 

 
 

   

Figure 3: Real Time Replay Methodology. 

2.1.3  Logger  Evaluation    

The Arduino-based solutions are compared against the CompactRio NI 9853 CAN 
logger in the context to the Real-time replay process. The CAN replay evaluation of 
the loggers uses the real-time replay system to send out recorded CAN traffic and to 
compare the logfiles to reference data stored in the database for comparison. The 
order and completeness criteria established before must be met perfectly by any 
viable logging solution. The timing criteria does not have to be met perfectly, but 
must be appropriate for the purpose of the cyber-physical system analysis. The 
evaluation framework consists of the necessary CAN wiring harness/cables, the 
CompactRio platform with a NI 9853 module and the respective logger under 
evaluation. 

2.1.4  System C haracterization   

The real time replay methodology is used in a system characterization and analysis 
of a reference component on a vehicle CAN infrastructure.  Specifically, a voltage 
sensor for a Transmission Control Unit (TCU) is selected for characterization and 
analysis.  This process required profiling and deriving the pin out for the TCU of a 
2009 VW Jetta.  An internal voltage sensor measures voltage supplied to the TCU 
(which should not exceed 12.5 V) and transmits that information in the form of a 
CAN message. 

To characterize the TCU supply voltage sensor and the CAN conversion process a 
real-time characterization system was developed that: 1.) Monitors the supply 
voltage provided to the TCU, 2.) queries the TCU supply voltage via OBD-II 
compliant messages, and 3.) provides a means to compare both measurements. CAN 



 
 

   
 

     
  

 

  
  

  
 

 

 

 
  

 
   

  

 
 

 
 

 

    
 

   

messages and voltage measurements are time-correlated via ‘tick count’ held in a 
shared register. 

The equipment used in the TCU voltage sensor characterization harness includes:  
(1)  Power supply: Meanwell NES  –  100, (2) Voltage Measurement: CompactRio with  
a  National Instruments NI 9229  input module, and (3)  CAN logger: CompactRio NI  
9863 CAN 0 Logger.  

Determining the voltage differential between measured and CAN logged voltages is 
described as follows: 1.) select a CAN voltage reading, 2.) match the supply voltage 
via tick count, and 3.) averaging the two closest supply voltage readings if no exact 
tick count match is available.  Factoring in an inferred conversion lag (5 ms is 
suggested) uses the same process wherein CAN voltage readings have been adjusted 
accordingly. 

The final step in the system characterization and analysis process is the simulation 
of the CAN voltage as generated by the TCU. In order to accomplish this, a highly-
deterministic TCU simulation system is designed that listens for incoming OBD-II 
messages on the CAN bus and generates simulated CAN voltage messages matching 
those of the physical TCU as closely as possible. This design uses the Vector 
CANcaseXL logger instead of the CompactRio. The software features parameters 
accounting for the voltage underreporting, the CAN conversion lag, and the 
maximum response frequency encountered during the analysis of the physical 
device. The goal is to mimic TCU output, while providing adaptability that can be 
useful to investigate alternative scenarios. 

Upon receiving an OBDII query, the system converts the latest supply voltage 
reading into a CAN message and sends it onto the CAN bus. The simulated TCU 
cannot use the same CAN ID as the physical TCU and instead uses CAN ID 0x7EA for 
disambiguation. The CAN messages sent out by the physical and simulated TCU are 
captured by the CAN logger and arranged for chronological computation of 
differential voltage. 

2.1.5  Formal  Verification  Study  

The investigation into formal verification techniques begins with an assessment of 
various formal models for hybrid systems. These are evaluated against 
expressiveness in modeling, potential for analysis, and tool support. A canonical 
vehicular CPS element is used as the object of formal analysis, and studied using the 
candidate system. 

2.2  Passenger  Car  Event Da ta  Recorder  Research Methods  

This study required the collection and interpretation of CAN data. In the 
following chapter the devices and methods used to record and interpret CAN bus 
traffic are explained and a brief overview of the study is given. 



 

  

 
  

    
  

   
 

2.2.1  Methodology  Overview  

 Fundamentally, the data stored on the Honda SRS module can come from one  
of two places: 1. the internal sensor circuits or 2. the messages existing on the CAN 
bus. The source for pre-crash information typically comes from the CAN messages  
and the SRS internal accelerometer provides the data source for the delta-V data.  
Therefore, if the CAN message data is known at the time of recording, then the data  
storage mechanism can be  systematically studied by comparing the retrieved event  
data to the known data on the CAN bus. A graphical depiction of the basic 
methodology used for this paper is presented in  Figure  4   as a flow chart.  

Figure 4: Methodology Overview 

2.2.2  Driving  Tests  

Data was collected from the two test vehicles under a variety of driving conditions 
including steady state, maximum ABS braking, acceleration, Figure 8’s, yaws, and 
normal driving.  For the maximum ABS braking condition, multiple test runs were 
made from a highway speed (approximately 113 km/h or 70 mph) and multiple 
runs from a lower starting speed (80 km/h or 50mph).  These data were archived so 
they could be used as sources to replay the data back to the SRS module in the lab. 

Each car was instrumented with a Racelogic VBOX 3i and a Vector CANCaseXL  
logging device. The VBOX was programmed to transmit 100 Hz GPS-based vehicle  
speed on CAN ID 0x302 and time on CAN ID 0x301 over the vehicle’s CAN bus  
according to the VBOX 3i User’s Manual.  To ensure that no data would be lost 
because of this transmission, CAN data was logged before the addition of the VBOX  



and it  was determined IDs 0x301 and 0x302  were not used by the Honda CAN 
network, making them available for VBOX data.  An example of CAN data from a  
hard-brake test for the Honda Civic  and Honda CR-V are shown in Figure  5   and  
Figure  6. It contains CAN data th at show the engine speed in RPM,  indicated vehicle  
speed, accelerator pedal position, and brake status. Additionally, it shows the  VBOX  
speed that was transmitted onto the CAN network. This is fundamental to this  
research, because it enables all data to  be  synchronized by using the same data bus.  
While injecting the V BOX  data onto the CAN, the busload hovered around 40%, thus  
no issues regarding normal CAN bus behavior and timing  were suspected.  



 
  

 
  

Figure 5: CAN data showing a hard brake on the Civic from 50 mph 

Figure 6: CAN data showing a hard-brake on the CR-V from 75. 



 
   

All CAN data were logged to a Vector CANCaseXL Log device that recorded time,  
message  spacing, ID,  Data Length Code, Data  entries, and Bus statistics. These  binary  
files were converted to a text based log file and parsed to extract the data of interest. 
Because these files contained all the CAN data, the file sizes were large. Therefore,  
the runs used for replay were trimmed  to nearly 7 seconds so the hard brake events  
were captured along with the steady-state speed section proceeding as shown in  
Figure  5  and  Figure  6. Some of the non-interesting CAN messages were removed  
from the dataset since they had no meaning to the SRS module. These data were  
transformed and stored so they could be used repeatedly.  

2.2.3  Interpretation  of  CAN Messages  

CAN messages logged by the Vector CANCase  XL Log were saved as  a tab delimited  
files in the format shown in  Figure  7. To interpret these  logged files  two things must 
be  determined: message location (i.e. CAN ID and byte(s) comprising message) and  
bit resolution of data.  

Figure 7: CAN Case XL Logger Exemplar File. 

2.2.3.1  Determination  of  Message  Location  

 To determine the message ID on the CAN network, human ability for pattern 
recognition was utilized. To consider an example of this process a VBOX GPS speed  
record is shown in Figure  8  for  a hard-brake with speed plotted on the y-axis in  
km/h and time plotted on the x-axis in seconds. For now, we will consider only the  
shape of the curve.   



 
  Figure 8: Example VBox GPS Speed Record. 

For this CAN history, plots were created for each CAN ID systematically for single  
bytes  and byte concatenations. The plots for ID 0x309 are shown below in  Figure  9  
and  Figure  10.  The shapes of CAN ID 0x309 bytes 4 and  5 in Figure  10  and the VBOX  
speed plot above match, indicating bytes ID 0x309 bytes 4 and 5 as a good candidate  
for the vehicle speed message. Other CAN histories were considered and this ID and  
byte combination was determined to be vehicle speed.   



 
  

 
  

 

  
 

 

Figure 9: ID 0x309 Single Bytes plotted vs. time. 

Figure 10: ID 0x309 concatenated bytes plotted with time. 

To automate this plotting process a Python script was written to systematically 
graph CAN data vs. time. The plots are generated with the most significant byte first. 
For example, if byte 4 = 0x17 and byte 5 = 0xc4, the concatenated bytes would be 
0x17c4. Since byte 4 appears first in the concatenated string the byte order follows 
the big-endian or Motorola format. 



  

   
 

 

 

  

 

 
      

 

  
      

        

            

  
  

   

 
 

 
 

 
  

  
  

 
   

 
 

     
  

   
  

2.2.3.2  Determination  of  Bit  Resolution  

To determine the bit resolution of ID 0x309 bytes 4 and 5, the VBOX GPS based 
speed was divided by the decimal value of the CAN message providing a calibration 
factor between the CAN decimal value and speed in km/hr.  This methodology was  
used to identify CAN messages that may serve  as SRS sources and a summary of the  
results is given in  Table  1Table  3.  In this table the likely conversion rate is given in 
terms of the least significant bit (LSB). For example, take 0x17c4 as a speed  
message. This value converted to decimal is 6084. If we multiply the decimal value  
by 0.01 km/h, as given in Table 2.1, we have a resultant speed of 60.84 km/hr.   

Table 3: Honda SRS Sources 

Quantity CAN ID Byte(s) 
Likely Conversion 

Method 

CAN Refresh 

Rate (s) 

Speed Vehicle 

Indicated 
0x309 4 and 5 0.01 km/h per LSB 0.1 

Accelerator 

Pedal Position 
0x17c 0 0.5% per LSB 0.01 

Engine RPM 0x17c 2 and 3 1 rpm per LSB 0.01 

Service Brake 0x17c Bit 0 of Byte 4 1 = On, 0 = Off 0.01 

Steering 

Wheel Angle 
0x156 0 and 1 

-0.1 degree per LSB, 

signed integer 
0.01 

2.2.4  CAN Replay  System D esign  

In this chapter the CAN replay system requirements and design will be explained. 
The CAN replay system consists of the mechanical testing apparatus, the electrical 
design which accompanies it, and the LabVIEW software implementation which 
controls it. 

2.2.4.1  Mechanical  Design  Requirements  

The SRS modules need to experience an acceleration that will enable the 
recording algorithm. According to the Data Limitations for Honda in Version 8.1 of 
the Bosch CDR report: “A non-deployment event is recorded if the change in 
longitudinal or lateral velocity equals or exceeds 8 km/h over a 150 ms 
timeframe…”  The CDR report also specifies, “A deployment event is recorded if 
front airbag(s), side airbag(s), or side curtain airbag(s) are commanded to deploy. 
Deployment events are locked into memory and cannot be over-written.” The 
permanent writing of an event to a module renders that module useless for further 
study. Thus deployment events must be avoided or only one data point may be 
obtained per module. However, if non-deployment events are achieved, an SRS 



 
  

  

 

 
 

 

module may be used for many tests. Since the achievement of non-deployment 
events are essential to this study, a detailed description of the methods used to 
ensure only non-deployment events would be generated are presented in the next 
sections. 

2.2.4.2  Mechanical  Design  

 The event generation apparatus consists of a linear sled and a pneumatic 
cylinder that was designed to provide a delta-V around 10 km/h in less than 150  ms.  
This  deceleration occurs as the carrier with the  SRS module reaches the end of the  
motion and comes to a stop. An external accelerometer was used to measure the  
accelerations and independently determine the delta-Vs. An annotated photograph  
of the test setup is shown in  Figure  11, a schematic shown in Figure  12, and a  
skeleton drawing shown in Figure  13.  

SRS 
Accelerometer 

Cylinder 

Figure  11: Mechanical  test  fixture.  



 

 

Figure  12: Non-deployment event generation skeleton drawing dimensions  

Figure  13: Non-deployment event generation skeleton drawing variables defined  

Since a repeatable acceleration profile was necessary to achieve non-deployment  
events, a kinematic analysis of the apparatus was done. For this analysis  loop  
closure equations were written to predict the acceleration magnitude and duration 
the EDR module would experience upon firing of the apparatus.  Figure  13  provides  
the definition of the variables used in the kinematic equations.   



 

     
   

 
         

      
     

   
      

Once the testing apparatus was constructed the acceleration pulse was measured  
using a Spectrum 15200B  ±35 g accelerometer  sampled  at 4000 Hz for various  
solenoid pressures.  Figure  14  shows an acceleration plot produced during a test. In 
this figure the acceleration pulse is  plotted as the solid line, the delta-v value from  
20 ms is plotted  with a dotted line, and the delta-v from  t0  is plotted with the dashed  
line. The delta-v from 20  msec data  takes the delta-v from a 20 ms window while the  
delta-v from t0 data plots the  accumulative delta-v value. The delta-v values were  
calculated  using  the trapezoid rule using different starting and ending criteria. The  
t0  value referenced by this figure is the time at which the change in longitudinal  
velocity equals or exceeds  -0.8  km/h over a 20  ms timeframe. This trial produced a  
non-deployment event and the corresponding pressure (65 psi) was used for  
testing.  Additional testing proved that the acceleration pulse was consistent and  
that non-deployment events were achieved.   

Figure  14:  Non-deployment  apparatus  acceleration  pulse.  

2.2.4.3  Electrical  Design  

The actuator is a pneumatic cylinder with a stroke of approximately 10 cm. The air 
sent to the pneumatic cylinder was controlled using a pressure regulator in series 
with a solenoid valve. This solenoid valve is normally closed and is opened in one of 
two ways: 1.) a manual switch located near the rail or 2.) the output from the 
National Instruments NI 9478 digital output (DO) module. The DO module switch is 
controlled from the field programmable gate array (FPGA) program and was 
engaged based on a user specified time, which enabled an event to be generated 
during a specific section of the CAN history. Another switch was used as a start/stop 



 
   

   

      

   

    

    

   

   

    

    

 

 

switch that began and ended the program. It ensured the cylinder was only actuated 
when the user was ready and the area was safe. 

A  Spectrum 15200B  ±35 g accelerometer  with a DC-400 Hz response  was  used to  
measure the acceleration the SRS unit  experienced.  The acceleration trace was time  
correlated to the CAN message transmission.   This synchronization allows  
Algorithm  Enable (t0) to be  established in the external CAN data sent to the SRS  
module.  

The electronic communication schematic of the test apparatus  is shown in Figure  
16. The CAN network connects both CAN ports  of the NI 9853  high speed CAN 
module, OBD II port, SRS module, and the female banana plug test points. The CAN 
information is transmitted from  the CAN0 port of the high speed CAN module and  
recorded by multiple devices (SRS module, CAN1 port, and possibly the banana plug  
test points). The Honda SRS module requires an addition wire, the K-Line, to be  
connected for communications with the Bosch  CDR tool. The SRS connector pin-out 
is shown in Table 3.1 and the SRS pin  out is shown in Figure  15.  

Table 4: 2012 Honda SRS Connector A and OBD-II pin out. 

SRS Pin Signal OBD-II Pin 

19 K-Line 7 

20 CAN H 6 

21 CAN L 14 

36 GND 1 5 

37 GND 2 5 

38 VBAT 1 16 

39 VBAT 2 16 

Figure  15:  SRS Connector View Honda 2012 (Female)   
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Figure  16: SRS module replay system schematic.  



 

  
   

  
  

 
 

2.2.4.4  Software  Design   

Figure  17  shows the general overview for  the software implementation used in this  
study. The implementation and devices will be described in the proceeding sections.   

Figure  17: CAN replay methodology overview refinement.  

The NI 9853 High Speed CAN module requires the transmitted messages be 
formatted into six unsigned 32-bit words: time high, time low, CAN ID, DLC, data 1, 
and data 2. For transmission, the time high and time low are set to zero. In order to 
comply with the standards required by this device a Python script was developed to 
parse and convert the CAN Case XL Logger file into an acceptable format. The 
program and process is described below. 

To understand the Python script a screenshot of a raw vector file is shown in Figure  
18  where arrows indicate tabs.  



 
Figure  18: CAN CaseXL Logger Format  

The CAN history was read into the Python program and each row was subsequently  
split into separate entries using the  .split(‘\t’)  function, providing an array of 
data. Data was then appended to a one dimensional array according to its value. For  
example,  entries[6], which corresponds to the CAN ID, were  appended to the  
“IDs” array. However,  entries[6]  for  line 7 of  Figure  18  contains “id:1a4”. To  
report only the desired data, “1a4”,  entries[6][3:]  were appended to the IDs  
array. A similar method was used for all data of interest in the CAN file.   

The first data transformation necessary when using a CAN logger, like the Vector  
CANCaseXL, is to compute the time differential  t between sequential messages  as  
recorded by the logging  hardware. This was achieved by  simply subtracting the  
timestamps of two sequential CAN messages that are replayed. Furthermore,  
logging devices often captures data that was not conveyed via CAN messages and  
that can be discarded since it is logger specific and has no relevance for the  
temporal relationships.  For example, the Vector CANCaseXL is capable of recording  
information concerning bus load. Since this information is not native to the Honda  
CAN network it can be stripped from the Vector log file to attain the Honda CAN 
history without altering the temporal  relationship of the recorded CAN messages.  
The removal of superfluous data was achieved using lines 42-55 of the python script 
shown in Figure  19.  If the data in  entries[6]  is not a CAN ID that row is skipped  
and not appended to the IDs array. Furthermore, only certain CAN IDs  are needed  
for replay to  the SRS module, thus a blacklist was created.  If the CAN ID is  
blacklisted, it is  skipped and not appended to the IDs  array.  



 
Figure  19: Removal of logger specific data from CAN history file.  

To ease data replay, all CAN messages can be stored in a flat file. The flat file  
contains  rows of data in which  the first column comprises the integer message  
spacing in microseconds, the next column is the decimal representation of the CAN 
ID, column 3 is the Data Length Code, and columns 4 and 5 are the CAN data as  
represented in decimal form using  32 bit words. In other words, column 4 contained  
the first 4 bytes of the CAN message  and column 5 contained the last 4 bytes of the  
CAN message. If the data  length code was less than 8, then the missing bytes were  
filled in with zeros and converted. The creation of the described flat file was  
achieved in lines 88-122 shown in  Figure  20. In line 88 of this code the new file is  
opened and in line 121 data is written to the new file. To format our data into two  
U32 words (data 1 and data 2), lines 90-118 use byte shifting  methods. For example,  
in line 103 the “data1” (i.e. bytes 0-3) are defined by shifting the 64 bit (8 byte) 
message, “bigData”  32 bits. This shift allows the less  significant 32 bits to be stored.   



 

 
 

 
   

 
 

 
  

  
 
 

   

  
 

Figure  20: Python implementation of creating a flat file after data conversion.  

2.2.4.5  Design  Requirements  for  CAN  Transmission  

The challenge of the methodology is minimizing external effects on the replay 
algorithm that could interfere with the temporal relationships contained in the 
recorded CAN traffic. A simple replay implementation would be to use any general 
purpose programming language to implement and execute a replay algorithm on a 
general purpose PC. The problem with this approach is that most operating systems 
used on general-purpose computers do not guarantee the timeliness when a certain 
function within a program is executed. Furthermore, the relative execution timing 
might vary depending on other processes currently using the system. Thus, there is 
no guarantee that the replay algorithm is ready to send a CAN message at a specific 
point in time, since the process might not currently have access to the CPU. 
Additionally, repeating the replay algorithm is likely to generate significant 
variation in the message timing since CPU load varies over time. 

To minimize distortions in timing between messages the steps comprising the 
overall CAN replay system were grouped according to the time sensitivity and 



  
  

   

  
 
 

 
 

  
 

  
 

 
   

 
 

 
 

 
  

 
 

 
      

   

 
 

 
 

 
 

  
 
 

  

implemented on platforms that best meet their respective needs. A combination of a 
general purpose PC (Windows 7 running LabVIEW 2011) and a real-time system 
with field programmable gate array (FPGA) (National Instruments CompactRIO) 
was suitable to achieve the goal of minimized temporal distortion. 

2.2.4.6  Real-Time  Operation  System  

A real-time operating system is a special-purpose operating system that imposes 
rigid time requirements on process execution.  Among real-time operating systems 
two subcategories are frequently distinguished. A hard real-time system guarantees 
that all delays within the system are bounded via an upper and a lower execution 
time that must be met at all times. To achieve this, the set of available functions is 
limited and algorithms using such systems must be designed to achieve their goals 
with the available functions. A soft real-time system does have upper and lower 
bounds for all functions but it assigns and manages varying levels of task priorities. 

In this study, a hard real-time system was used to interface the messages stored in 
the flat file and the FPGA. This was done because the FPGA was not able to store the 
entire CAN file used for replay. Thus the real-time system was used to transmit the 
CAN file into a FIFO (which acts as essentially a buffer) passing the flat file to the 
FPGA allowing it to be replayed. This forwarding process is done without imposing a 
strain on the timing between CAN messages. 

2.2.4.7  Field  Programmable  Gate  Array  

A field programmable gate array (FPGA) is an integrated circuit that can be 
configured via an appropriate hardware description language. It combines 
hardware-typical speed, determinism, and reliability with some of the flexibility of 
general purpose programming languages. An FPGA allow several programs to 
execute truly parallel without competition for shared resources and offer 
nanosecond response times for input-to-output processing. Of course, offering such 
a feature set comes at the expense of the complex FPGA operations, meaning that 
not all algorithms are suitable for FPGA implementation and compile times are 
longer. Due to the need for accurate timing and synchronization, the FPGA was used 
as the core technology of the system. 

2.2.5  Software  Implementation  

The software used to run the system was written in LabVIEW using the following 
development targets:  (1) Python programing on a PC, (2) real-time system, and (3) 
a FPGA. The LabVIEW programming environment eases development and testing 
across targets. 

The tasks executed using Python are related to data processing and storage. First, 
the log files created by the CAN message logger are processed to extract the relevant 
message time stamps and the data conveyed via the CAN messages. Everything else 
is ignored and only the relevant data is designated for storage. The CAN replay files 
were prepared by placing them into a comma separated values table and uploaded 
to the real-time controller using FTP (file transfer protocol). After the test was 



 
  

finished, Python was used to post-process the data and produce values with 
engineering units. 

The main function of the real-time system included in the CompactRIO platform  is to  
provide the data prepared using Python to the FPGA. As described previously, the  
FPGA does not have the necessary storage space for the CAN history files to be  
stored. To overcome this limitation, the real-time system writes the C AN history of 
interest to a FIFO (first in first out) which is shared by the FPGA. The bock diagram  
of the real-time VI written for this project is shown in Figure  21  and  Figure  22. In 
the lower  left section of  Figure  21, we see the case structure  window in which the  
CAN history used for replay is selected. Using the FTP, we are  able to upload  
multiple CAN histories on the real-time system.  The front panel  of this VI has a  
selection window  in which a list of available CAN histories are given. Once the CAN 
history has been selected, the length of the data file is determined (both time and  
number of messages) and used to configure the CANDataFIFO. The data is then 
written to the FIFO in the second window  of the flat sequence of Figure  21. The  
solenoid delay value, shown in the first flat sequence window of Figure  21  is  
specified by the user in the front panel of this VI. The solenoid delay allows the user  
to determine when the non-deployment event will be created in the CAN history.  
Once the sum of the delays (time between synchronous messages) reaches the value  
of the solenoid  delay the NI 9478 DO  module switches, providing the necessary  
voltage to actuate the cylinder (rig schematic provided in Figure 3.7). The real-time  
VI is also used to write the output files of the experiment. As shown in Figure  22, the  
real-time VI opens two new files: Accel.bin and TransmittedCAN.bin. These files  
contain the acceleration record  of the external accelerometer and the transmitted  
CAN history. These files are rewritten every experiment and must be taken from the  
real-time system following each experiment using WinZip. The values of these files  
are generated in the FPGA and are transmitted to the real-time system using FIFOs.   



 

Figure  21:  LabView Real-Time VI: FTP Reading and  FIFO Configuration  



 

Figure  22: LabVIEW Real-Time VI  - writing binary data files.  



   
 

 
 

    
 

The LabVIEW program implemented for the FPGA is the core technology that 
enables real-time processing. The block diagram for LabVIEW is shown in Figure  23  
and comprises three distinct blocks. First the flat sequence on the top is used to  
control the transmission of CAN messages from the FIFO established by the real-
time VI. The For Loop in the center of the sequence is timed to cycle to the nearest 
microsecond according the delay measured between messages. These delays are  
summed and the solenoid is fired once a user inputted delay has passed.   

The second block is a recording loop for the CAN data that were transmitted. This 
enables verification as to what the SRS module actually saw during the test. 
Furthermore, it produces a timestamp that can tie to the accelerometer recording 
function, synchronizing the CAN and accelerometer records. The loop executes 
aperiodically according to the received CAN message and times are attributed from 
the internal clock of the CAN module. 

The third block, shown in the lower right of Figure  23  contains the acceleration 
sampling. This is a timed loop that executes  at a user specified value (every 0.00025  
seconds or 4000Hz  in this case). The raw accelerometer data is converted to  
microvolts, combined with a timestamp from the CAN module, and sent  to the real-
time controller as a signed integer through a FIFO. The LabVIEW implementation on 
the FPGA enables the determinism in the timing needed to accomplish this research.  



 
Figure  23: LabVIEW program implemented on the FPGA.  



 

 
 

  
 

 
   

   
 

  

    
 

2.2.6  CAN Replay  Experiments  

A  detailed   overview of the experimental process is provided as a flow-chart in 
Figure  24  

Figure  24: Details of the experimental process.  

The test setup and software implementation described in this and the previous 
sections enables experiments to study the timing and accuracy of EDR data. The first 
set of experiments is to assess the accuracy of the CAN data compared to external 
references. To do this, the CAN messages were cataloged and characterized so 
values shown in the CDR report can be attributed to the correct CAN messages. Once 
some CAN messages were known, the CAN data can be compared to external 
references to gain a sense of the CAN data accuracy. Finally, the timing and data 
storage algorithms can be evaluated through reading SRS module data with the 
Bosch CDR kit after repeatedly setting non-deployment events for the same set of 
CAN message traffic. 

Since determinism is paramount to this study two methods were used to verify the 
timing engines were true to the original data. First, the loop timer in the FPGA was 



 
 

   

 

   
 

  
   

  

  
 

  
  

 
  

updated for each message based on the delay. Therefore, if all delays are summed, 
then the total run time is calculated. The predicted runtime can be compared to the 
actual runtime to get a sense for the determinism of the replay. 

Figure  25:  Chart of an example run from a 2012 Honda Civic showing a vehicle speed trace  
from CAN messages.  

For example, the raw CAN messages in  Figure  25  were obtained using a Vector  
CANCaseXL Log attached to the Honda Civic. The time between the first message  
with ID 0x309 and the last message with ID 0x309 was reported to be 46.708596  
seconds. The replayed CAN messages were obtained from the CAN1 port of the  
National Instruments NI9853 that was used to record the messages  sent during a  
test run on the non-deployment apparatus. The time separation of the first and last 
0x309  message was 46.708202, which is a difference of 394 microseconds over this  
span. This suggests  an average error rate on the replayed CAN message timing of 
0.00084%.  

Second, for each run the timing was verified by comparing the timestamp produced 
by the VBOX during the driving test to the recorded CAN from the replay. The VBOX 
3i message encoding the time was also transmitted during the tests using ID 0x301 
bytes 2, 3, and 4. This 24-bit integer represents the number of 10 millisecond 
intervals since midnight UTC according to the VBOX 3i user manual. If this time 
value was replayed and recorded while setting a non-deployment event with an 
accurate time base, then a graph of the VBOX time divided by 100 with respect to 
time in seconds would have a slope of unity, meaning exact time correlation. A slope 
of less than unity would indicate a delay in the replayed CAN messages and a slope 
of greater that unity means the replayed CAN messages are seen by the SRS module 
faster than the original messages in the vehicle. The standard deviation of the 
residuals of the line fit gives a sense of the jitter in the timing engines of the VBOX 



 

          
       

          
          

         
         

 

              
            

  

         
         

            
             

        
         

            
         

            
   

and CAN message replay hardware of the FPGA and NI9853 CAN module. The slope  
of the VBOX  time signal and the replayed timestamp are checked for unity for each  
run. An example of this check is shown in Figure  26. Based on these verification 
checks, the CAN replay  system is representative of the actual CAN data transmitted  
in the vehicle.  

Figure  26: Timing verification graph that shows a slope of 1.00018.  

2.3   Methods  for  Assessing  Heavy  Vehicle  Event D ata  Recorders  

Prior to developing and demonstrating the methodology, researchers outlined [37] 
forensic soundness issues with current ECM data extraction techniques, 
demonstrating avenues by which data may be intentionally altered or 
unintentionally corrupted. The main requirements of a forensically sound ECM data 
extraction technique are: data integrity, confidence in meaning of data, error 
detection and mitigation, and transparency and trust. Our solution, we believe, 
meets those requirements. 

2.3.1  Requirements of  a  Solution  

Regardless of the meaning of the digital data, it is necessary to present data in its 
final form in such a way that is transparent of its handling to establish 
trustworthiness. 

According to the transparency principle of forensic soundness, actions taken by an 
investigator should be available for later examination. Additionally, any error 
conditions encountered by the software should be recorded so that the legal weight 
of the evidence may be accurately considered. Audit trails are log files generated by 
forensic software to meet these requirements, and should at least be an option in 
any forensic solution. Any solution must be able to trust that the ECM is reporting 
the data faithfully, be able to interpret the various protocols and message types 
(used in a vehicle network), provide an authentication mechanism that can be used 
to preserve data integrity, and preserve evidence even in cases where some data 
elements are not permanent such as system clock values. 



          
             

            
             
           

                
   

          
   

          
     

          
 

         
             

             
        

  
            

          
         

         
  

           
            

          
 

  
  

 
 

   
 

  
    

   
    

 

2.3.2  Proposed  solution  for f orensically  sound  extraction  of  ECM  data  

The proposed solution is based on proven techniques used in the world of computer 
forensics. The idea is relatively simple: make a low-level copy of the evidence drive 
is made (this copy is known as the ``disk image'' and then perform all forensic 
analysis on this disk image instead of the original disk (to minimize changes to the 
original source evidence). A vehicle network is different than a typical computer 
system and this idea or concept had to be extended to truck ECMs. This is done by 
making sure the information would be extracted exactly one time, and then replayed 
for further analysis. The replay traffic information would be stored securely to 
prevent malicious tampering or accidental alteration. 

Development of the forensic replay software requires the following steps: (i) record 
the original information extraction process, (ii) decipher any encryption or 
obfuscation mechanisms obscuring ECM data, (iii) store the evidence in a secure 
manner and (iv) respond to information requests identically to the ECM. 

There are a couple of differences between the proposed extraction replay method 
and a forensic disk extraction. One is the difference in the amount of data that is 
extracted. Rather than saving the entire contents of a disk, a replay of a software 
extraction only extracts the information normally accessed during that data 
extraction. It is possible that some relevant information exists on the ECM that is not 
extracted. The other difference in that while protocols for accessing hard disks are 
standardized, ECM data is often accessed with proprietary protocols, that vary from 
manufacturer to manufacturer, over standard networks. Therefore, for each 
individual manufacturer that will be supported, an understanding of the 
manufacturer's proprietary protocol extensions is required. 

2.3.2.1  Data  extraction  and  recording  

It was determined that the best way to define the extraction process was to record 
the messages sent by the maintenance software to the ECM. Recording these 
messages could take place at two information boundaries, the network or the 
diagnostic link connector driver. 

Communication between the ECM and the maintenance software may be recorded 
at the network level, but this method has some drawbacks: the need for a physical 
connection, specialized network logging equipment and ability to interpret various 
protocol (it is not uncommon for ECM communications to take place over both 
J1708 and J1939), and the loss of meaning due to use of RP1210 (by maintenance 
software) if only network-level observation is used. 

The proposed solution uses an alternate method of recording information extraction 
based on recording calls made to the RP1210 drivers by the maintenance software. 
This has the advantage of not requiring additional hardware to record network 
traffic, and it abstracts away the details of transport-layer operations of J1939. 



            
         
             

         
          

   
  

 

            
           

         
           

    

          
        
        

           
           

 

         
             

         
           

Recording calls made to these RP1210 drivers was accomplished using a technique 
called API hooking [40]. A custom lightweight debugger was written using the 
PyDBG tool. Upon attaching the debugger to the software in question, the debugger 
searches process memory for any loaded RP1210 drivers. Upon discovering a 
loaded RP1210 driver module, it places breakpoints on the following RP1210 
function addresses: RP1210_ReadMessage, RP1210_SendMessage, 
RP1210_ClientConnect, RP1210_SendCommand and RP1210_ClientDisconnect. 

Figure  27:  Data  recording for proposed solution  

When execution hits  one  of these  breakpoints,  the  debugger  reads  all  arguments  
passed  to  the  function when it  was  called,  and  places  a  breakpoint on the  function's  
return address  so  that return values  can be  read  as  well.  Using  this  approach,  all  
messages  sent  to  and  received  from  the  ECM  are  recorded  by  the  debugging  
software  (Figure  27:  Data  recording for proposed solution).  

This approach has an advantage that it doesn't require any additional hardware. 
Since the price of commercial vehicle network loggers can reach several hundred to 
several thousand dollars, cost-effectiveness should not be overlooked. We consider 
this an important contribution of this work. It also shows exactly which messages 
the application receives, which aids in determining which messages are important. 

2.3.2.2  Replaying  an  Extraction  

In order to ensure that the method of evidence extraction was as general as 
possible, evidence extraction was implemented by simply replaying requests 
recorded during an actual information extraction. In the case of encrypted requests, 
where the same request may be encrypted differently depending upon details of 
individual sessions, a transformation function to decrypt the message and store it in 
a plaintext format needs to be specified. 

After each request is replayed, responses to that request are recorded. The 
extraction data are stored as a list of key-value pairs, where the key is the request 
(transformed to a plaintext format, if applicable) and the value is a list of all 
messages that the ECM sends in response to that request. This list is then serialized 



               
 

  
            

              
           

          
  

         
  

          
  

          
         

          
  

 

             
        

            
    

into a format that can be stored in a file on disk; this file is the logical equivalent of a 
hard disk image. 

As it has been observed that requests sent to the ECM may alter the state of the ECM, 
the replay mechanism must be designed so that this is taken into account. The 
stored replay data are treated as a circular queue, with a current index maintained 
during the extraction. Upon receipt of a message, the index is advanced until a 
matching response is found. If responses to requests depend on earlier messages, 
receipt of the earlier messages will advance the index to the expected response. 

Just as a transformation function may need to be specified for extraction of 
encrypted information, such a transformation function may also need to be specified 
during replay. A comparison function needs to be specified, as the message format 
may preclude the use of straight comparison of request data. 

The solution arrived at uses two separate threads of control, one handling 
J1708/1587 communications and the other handling J1939 communications. Each 
has its own protocol-specific response queue, though the two queues are both 
stored in the same file for evidence storage and encryption. 

2.3.2.3  Hardware  

The  replay  mechanism  hardware  is  built around  a  BeagleBone,  a  commercially  
available  ARM-based  miniature  computer  produced  by  Texas  Instruments  [41].  The  
most recent  iteration of the  design,  the  BeagleBone  Black,  retails  for  roughly  $55 
and  has  a  1GHz  ARM  processor,  512MB  of RAM,  and  4GB  of onboard  flash  storage.  
Weighing  just a  few ounces,  it meets  cost-effectiveness  and  portability  requirements  
(Figure  28:  BeagleBone platform).  

Figure  28:  BeagleBone platform  from the BeagleBone literature  

One of the main reasons for adopting the BeagleBone platform is the capability to 
add functionality using expansion boards, known as Capes. Commercially available 
capes include a RS-485 cape and a CAN cape, supporting the physical layers of 
J1708/J1587 and J1939 with little to no modification. 



            
          

            
  

         
          

             
         

 
         

            
   

            
          

            
         

         
  

         
              

   

            
              

           
            

   
               

  

          
            

            
            

           
  

   

  
  
  
  
               

  

As the currently available commercial options for RS-485 did not allow for 
communicating both over J1708 and J1939 networks, a custom hardware solution 
was required. A custom cape was designed for heavy vehicle communications based 
on J1708. 

The J1939 network interface required CAN transceiver hardware. The BeagleBone 
includes CAN hardware on the board and driver support for CAN was already well-
documented in the BeagleBone. All we had to do was implement the J1939 
functionality on top of it. An existing implementation of J1939 for the Linux kernel 
was found and compiled into the BeagleBone's kernel as a module. As the remainder 
of the program was implemented in the Python programming language, the Python 
socket module was also patched to work with J1939. Also, J1708 software drivers 
for Linux were nonexistent, so new drivers had to be written. 

2.3.2.4  Cryptographic  Protection  

In order to protect extracted data from alteration (or that would make it possible to 
detect any attempt to alter the data), a cryptography-based system was designed. 
The protection system was designed with the following requirements in mind: data 
must be protected from alteration, data must be protected despite the fact that all 
computation takes place on a device that is solely within the control of an unknown 
person and others’ data must be secure even if a single device is compromised. 

In traditional computer forensic investigations, a disk image is protected by 
performing a cryptographic hash on it. Later on, the image is hashed again and the 
two hashes are compared to confirm that the image has not changed. 

In the case of ECM data records, however, the use case is somewhat different. The 
data are frequently extracted in remote locations where it is not feasible to have all 
parties to the case present. Therefore, the individual extracting the information has 
total access to the information being extracted, likely for a significant length of time. 
In this case, hashing alone may not offer the required protection as the data may just 
be altered and the hash recomputed. While this is also a risk in hard drive 
extractions, the possibility of having all parties present mitigates that somewhat. 

Rather than attempting to protect the data from alteration, which is practically 
impossible with the device in the physical control of a potentially malicious actor, 
the solution is to strongly encrypt the data instead. If the data are strongly 
encrypted, while altering the data may be possible, meaningfully altering the data 
is practically impossible. By ensuring that an attacker will gain nothing by altering 
the data, the data are effectively prevented from being altered. 

We use the following encryption algorithm was developed to perform this task: 

1. A nonce, to be used as a symmetric key, is randomly generated. 
2. The nonce is used to encrypt the data. 
3. A public key, stored on the device, is used to encrypt the key. 
4. The encrypted key is stored alongside the encrypted disk image. 
5. Later, the RSA private key, stored with a trusted third party, is used to 

decrypt the symmetric key, which is then used to decrypt the data. 



          
               

            
  

          
          
            

   

          
              
             

   

         
  

  

   

This is an example of a hybrid cryptosystem as described in \cite{cramer2004}. 
Cramer and Shoup prove that a hybrid cryptosystem of this type is secure so long as 
the underlying algorithms are secure, and the padding scheme used for encrypting 
the key is secure. 

The symmetric algorithm chosen to protect the data is AES-128, as the AES 
algorithm is the industry standard symmetric encryption algorithm, and it is 
currently believed to be secure. The 128-bit key length was chosen because of 
breaks discovered in the 256-bit key length [42]. 

The cryptographic hash function chosen is SHA-256. While a longer hash value may 
yield better security, a longer hash may also make it more difficult to write down a 
hash value for an investigator in the field. SHA-2 was chosen over SHA-1 because of 
the widely-published attacks on SHA-1 [43]. 

In keeping with current security best practices, the symmetric keys are padded 
according to the PKCS\#1-OAEP standard before encryption [44]. 

3 Results 

3.1  Representative  Cyber  Physical  System  Analysis  Results:  

3.1.1  CAN Logging  Design  and  Analysis  

The performance evaluation was implemented by creating a CAN network  
consisting of the deterministic message generator and the CAN loggers under  
evaluation. The message generator generates 500 messages  and forwards them  
onto the CAN network. The loggers record the  messages  with a time stamp. The  
Vector CANcaseXL logged all messages in order and preserved their content.  Figure  
29  illustrates that the vast majority of recorded  messages mirrors the specified  
inter-message timing of 20 and 40 milliseconds, but a number of messages were  
recorded at +/-1 ms.  

ACL #1: The first logging solution using  only the Arduino UNO and CAN bus shield  
was not able to meet any of the previously defined logging requirements. While  
logging the first set of 500  messages the  system began to drop messages. The time  
stamps indicate that the system could not cope  with the rate of incoming  data.  
Figure  30  illustrates that inter-message timings spiked several times above 200 ms.  
The data stream was completely compromised  after approximately 150 messages.   

ACL #2: This design logged all  messages in order and  preserved  their content.  
Furthermore, the maximum inter-message timing offset was +/01 ms as shown in 
Figure  31. The ACL showed greater variation more frequently than the Vector  
logger. Nevertheless, logging all messages, preserving the order, and  affecting  the  
same inter-message logging  delay makes this Arduino  logger design a viable  
alternative to commercially available products in this scenario.   

ACL #3: This design captures all messages, preserves the order and timing. Most of 
the messages perfectly mirror the inter-message timing of 20 and 40 milliseconds, 



 
    

 
   

 
 

 
   

 

 
   

  
 

    
 

  

 
  

but, similar to the Vector, a few messages were  recorded at +/-1 ms as shown in 
Figure  32.  

3.1.2  Real  time  Replay  Methodology:  Logger  Evaluation  

The CAN replay evaluation of the loggers uses the real-time replay system to send 
out recorded CAN traffic and to compare the log files to reference data stored in the 
database for comparison. The order and completeness criteria established before 
must be met perfectly by any viable logging solution. The timing criteria do not have 
to be met perfectly, but must be appropriate for the purpose of the cyber-physical 
system analysis. The evaluation framework consists of the necessary CAN wiring 
harness/cables, the CompactRio platform with a NI 9853 module and the respective 
logger under evaluation. 

Vector CANCase XL: This logger records all messages in order while preserving the  
message content. The inter-message timing is preserved very well with an average  
absolute inter-message timing error  of approximately 7micro s. The average  
minimum absolute error timing is 0 micro s and the average maximum absolute  
error timing is approximately 298  microseconds. Considering the fact that the  
average inter-message timing of the reference data is  approximately 1000 micro s,  
this error is acceptable for the continued system evaluation. Furthermore, the inter-
message timing error does not indicate a slow/erroneous logging process since the  
underlying CAN network is, of course, considerably different from the one in the car  
that served as the  data source. The overall inter-message timing error is depicted in  
Figure  33.  

ACL #1: Not tested due to insufficiency of preliminary performance characteristics. 

ACL #2: Testing revealed that this logger cannot cope with the volume of data and 
the transmission speed encountered during replay. The CAN shield receives all 
messages in the correct order but the system is not capable of concurrent, loss-less 
receiving, processing and logging. While the Toyota does not exhaust the 
transmission capacity of its CAN infrastructure, the Arduino Logger is unable to 
capture all messages during the evaluation and fails to meet the order and 
completeness characteristics with regard to the produced log file; the CAN shield 
meets the order and completeness characteristics but the log file output does not. 
Exhaustive optimization to the Arduino implementation, including using a binary 
log format, increased the logging accuracy to approximately 90%. 

ACL #3: This system comprised of Arduino Due, Due CAN shield, and OpenLog chip  
initially encountered the same problems as the  Arduino Uno solution. However, the  
Arduino Due features a USB port, which allows for much higher data transmission 
rates than standard serial ports. Using the USB port –  as opposed to  the serial port -- 
the Arduino Due equipped with  the custom CAN shield met the order and  
completeness requirements during all 35 evaluations runs without any 
optimizations to the Arduino solution. The inter-message timing of the original CAN 
traffic is preserved well with an average absolute inter-message timing error of 
approximately 478 micro s. The average minimum absolute error timing is 0 micro s  



  
  

 
  

 
   

   
  

and the average maximum absolute error timing is approximately 4512 micro s. The  
overall inter-message timing error is depicted in Figure  34.  

3.1.3  Real-time  Replay  Methodology:   System C haracterization  

Experimentation with the replay methodology applied CPS system characterization 
focusing on the voltage sensor of a Transmission Control Unit (TCU). Continuously 
recording the supply and the CAN voltage while manipulating the supply voltage at 
the source enables the assessment of the lag between both measurements. The test 
runs used in this analysis resulted in roughly 10000 CAN voltage readings recorded 
at 5 ms intervals and 100000 voltage supply measurements recorded at 500 micro s 
intervals. During the test run the voltage was initially held constant, then increased 
quickly, and held at the new level. Since both log files include a common tick count 
reading, the timing of the voltage change and the duration of the change can be 
extracted. 

Figure  35  illustrates  the changes in both voltages and also hint at the TCU voltage  
underreporting. The CAN voltage change lasts approximately 95 ms and covers a  
voltage differential of 1.056 V. The supply voltage change takes approximately  78 
ms and the recorded voltage differential is 1.044 V. The TCU generated CAN voltage  
underreports the actual supply voltage very consistently by  approximately 0.066 V.  

The final aspect of system characterization explored was the potential for  
simulation and corresponding analysis.   Figure  36  shows that the simulated system  
matches the TCU output behavior extremely well, resulting  in very little differential.   
The voltage differential between the two systems averaged over  approximately  
47,000  measurements is 0.000614 V with a maximum differential of 0.065 V and a  
minimum of 0 V. Since the  conversion delay of 5 ms  and the underreporting  of 0.066  
V were integrated during the design of the simulated TCU, these parameters are  
deemed confirmed.  

3.1.4  Formal  Verification  Study  

The Keymaera  system using hybrid programs was selected as the candidate  
formalism and tool set to apply to vehicle CPS.  Investigative modeling and analysis  
was pursued with the hypothetical voltage control system presented in  Figure  37.   
The  control system must keep the supply voltage between 10 V and 12 V. Once  
started, the system enters  state “ON" and the voltage, initially set to 10 V, grows at 
increments of 0:1 V. The system stays in “ON" state as long as the voltage is <=12 V.   
However, once 11:5 V is reached, the system may move into state “OFF". Enabling  
the transition at 11:5V instead of 12V gives the system a  chance to transition 
without violating the conditions of state “ON". In state “OFF" the supply voltage  
wanes at 0:2V decrements,  potentially down to  10.4V. Once the voltage drops below  
11V, the system has the option to transition to state “ON". During the transition 
from “ON" to  “OFF" the voltage increases by 0:1  V, during the transition from “OFF"  
to “ON"  the voltage decreases  by  0:5 V . This model can be translated into a  
Keymaera source file written in the Key language. Once loaded, Keymaera analyzes  
the specified system and attempts to verify that the supply voltage it guaranteed to  



 
   

 

remain between 10 V and 12 V. However, the transition from “OFF" to “ON" has the 
potential to drop the voltage below 10 V and Keymaera is therefore unable to prove 
the underlying assumption. 

Figure  37  shows a modified voltage control system whose source code is available in  
Appendix D. The modified  control system features slightly changed state transitions  
that allow Keymaera to prove that the supply voltage remains within the specified  
boundaries. The actual output of the validation is shown in Figure  38.  



 

 

 
 

Figure  29: Arduino with CAN Shield Logging Results.  

Figure  30: ACL #2 Logging  Results.  

Figure  31: ACL #3  Logging  Results. 



 

 

 

Figure  32: Vector CANCase XL Inter-message Timing Error.  

Figure  33: ACL #3:   Inter-message Timing Error.  

Figure  34: Supply/CAN  Voltage  Comparison.  



 

 

 

Figure  35: TCU vs. Simulated TCU Voltage Differential.  

Figure  36: Keymaera Voltage Control System 1.  

Figure  37: Keymaera Voltage Control System 2.  



 

 

    
   

  

Figure  38: Keymaera Voltage Control System Validation Result.  

3.2  Passenger  EDR  Analysis  Application to 2012  Honda  Vehicles  

The deterministic CAN replay system was used to evaluate 2012 Honda CR-V 
and Civic SRS modules. This section will explain the study of the accuracy of the EDR 
speed and steering data as well as the EDR transfer functions. 

3.2.1  4.1 Identification  of  SRS S ources  

It is important to know which  message IDs are sourcing the information to the SRS  
module. To determine these messages, the data  within a replayed CAN stream were  
set to a specific value and examined on the CDR report. This was  done by changing  
the values of the byte(s) responsible for the SRS data. The CAN files were  altered by  
splitting the messages into bytes, filtering by ID, and changing the desired byte(s).  
Figure  39  shows the CAN file split into bytes in  columns D-K, and filtered by ID,  
which is shown in Column B.   



 

Figure  39: Screenshot  of CAN message identification verification procedure.  

ID 0x309 bytes 4 and 5, column H and I respectively, were set to constant value of 
0x1c46 as shown in  Figure  39. The modified CAN file was replayed to the recording  
SRS module and the corresponding Bosch CDR report was generated as  shown in  
Table  6. The  vehicle indicated speed remained constant in  Table  6  where the  
baseline data shown in Table  5  varied from 11  to 42 km/h.  The  altered file’s  speed  
remaining constant  as opposed to the  variable speed report for the un-altered CAN 
report  definitively identifies ID 309 bytes 4 and 5 as the SRS Vehicle Indicated Speed  
source. Additionally, 0x1c46  has a decimal value of 7238, which represents the  
number of 0.01 km/h increments, or a speed of 72.38 km/h. This verifies bytes 4  
and 5 of CAN ID 0x309 are responsible for the SRS indicated vehicle speed pre-crash  
data.    



    

 

 

      

 

  
   

 

Table 5: Pre-crash data from the baseline CAN data replayed to the SRS module. 

Table 6: ID 0x309 Bytes 4 and 5 were set to 0x1c46, which corresponds to 72.38 km/h. 

Furthermore, bytes 4  and 5 of ID 0x309  were set to a value of 0x1c64  or  7268  
(72.68 km/h) to  determine if the SRS module truncates or rounds the speeds. After  
this change the vehicle indicated speed remained 72 km/h indicating the module  
truncates the decimals of the CAN speed record.  Bytes 4 and 5 were then set to  
0x1c83  or 7310 (73.1 km/h) which generated a record of 73 km/h, indicating  that 
the reported speed does not round to the nearest even km/h, but rather reports  
only the CAN speed integer value.  With the data processing algorithm established,  
an accuracy assessment can commence by truncating CAN speed and comparing it  
to the external reference speed.  

To determine the steering translation, the Civic was taken through a series of lock-
to-lock turning maneuvers while CAN data was recorded. These maneuvers 
produced maximum and minimum steering inputs of nearly ±570⁰ at the steering 
wheel. The CAN data was decoded using a signed 16-bit integer. The lock points 



 

   
 

 
 

  

        

         

        

   
  

  
     

    
   

 
 

  
   

   
 

 
 

   
   

along with (CAN decimal =0, steering angle =0⁰) were plotted and fit with a line to  
determine the value of the least significant bit (LSB) of the CAN message for  
steering. The resulting  raw data  is shown in Figure  40. All CAN IDs used for different  
pre-crash data are shown in Table  7.  

Figure  40: Lock-to-lock Civic steering test  data.  

Table  7: SRS CAN ID Data Source  

Quantity CAN ID Byte(s) 
Likely Conversion 

Method 

CAN 

Refresh 

Rate (s) 

Speed Vehicle Indicated 0x309 4 and 5 0.01 km/h per LSB 0.1 

Accelerator Pedal Position 0x17c 0 0.5% per LSB 0.01 

Engine RPM 0x17c 2 and 3 1 rpm per LSB 0.01 

Service Brake 0x17c 
Bit 0 of 

Byte 4 
1 = On, 0 = Off 0.01 

Steering Wheel Angle 0x156 0 and 1 
-0.1 degree per LSB, 

signed integer 
0.01 

The Civic front wheels were also placed on angle measuring plates and the steering 
wheel was turned in 90 degree increments (as measured by a level) while 
monitoring the CAN bus steering angle parameter. The CAN bus data accurately 
reflected the steering wheel inputs.   Honda EDR data limitations report that the 
EDR reports steering angle with a resolution of 5 degrees and rounds CAN bus data 
to the nearest 5 degrees. To test this, the SRS steering source, CAN ID 0x156 bytes 0 
and 1, was set to three constant values: 12.9, 14.7, and -14.8 degrees. When these 
values were broadcast, the SRS reported steering inputs of 10, 10, and -10 degrees 



   

 

 

 

 

 
 

    

    

    

respectively. These results suggest that the SRS does not round the steering value,  
but truncates it. The results of these tests are  summarized in  Table  8  

Table 8: SRS Steering Truncation Test Results 

Steering 

Broadcast 

(deg) 

Byte 0 and 1 

Corresponding 

Hex 

SRS 

Reported 

Steering 

(⁰) 

Rounded 

Steering 

(⁰) 

12.9 FF7F 10 15 

14.7 FF6D 10 15 

-14.8 0094 -10 -15 

3.2.2  Passenger  Car  EDR  Speed  Accuracy  

The speed message, 0x309 bytes 4 and 5 (counting from zero), was also perceived to  
track with the display on the digital speed indicator in the instrument cluster.  The  
graph shown in  Figure  41  demonstrates that the indicated vehicle speed can be  
nearly 0.8 seconds late in reporting the value. The front left wheel speed found from 
the message 0x1D0 bytes 0 and 1 show that wheel speed tracks the VBOX speed  
appropriately during a tire slip with the ABS system engaged. Based on this  
observation and the fact that the data were  synchronized using the CAN bus, the  
timing delays found  in  message 0x309 are real.  Furthermore, the indicated vehicle  
speed message updates every 0.1 seconds but changes value every 0.6 seconds in  
this test. Therefore, it is expected that the Honda Civic will likely have a repeated  
data point on the 0.5 second intervals shown in the EDR records. However, not all  
data gathered show the 0.6 second wait to change, which suggests there may be  
some other processing in the computer that transmits the message that takes  
priority over updating the indicated speed.  

The data shown in Figure  42  shows  the CR-V indicated speed updates  and changes  
every 0.1 seconds. The speedometer on the CR-V used a needle  as opposed to a  
digital display.  The wheel speed signal drops as  the braking commences and periods  
of higher slip are shown. The indicated speed tends to follow a subdued path  when 
the wheel speed drops, indicating an averaging effect for the indicated speed. With  
no wheel slip, the indicated vehicle speed closely matches the VBOX speed.  



 

 

Figure  41: Civic hard  brake  data  from  50  mph.  

Figure  42: CR-V Hard-brake from 75mph  



 

3.2.2.1  2012  CR-V  Steady  State  Test  

An instrumented 2012 Honda  CR-V was driven on an expressway  and 3 minutes of 
CAN traffic for normal  driving  was recorded. Since the VBOX data was transmitted  
on the CAN, the time synchronization of data was automatic. The speed record from  
the VBOX and the indicated vehicle speed (0x309) are shown as lines in  Figure  43.  
Since the VBOX transmits data at 100 Hz and the indicated speed is updated at 10  
Hz, the VBOX speed signals were smoothed using a moving average and resampled  
to align with the less frequent CAN speed. This  reduction  by a factor of 10  resulted  
in 1800  messages  for comparison.  Having learned the CAN bus to EDR transfer  
function, the indicated vehicle speed (0x309) was truncated to the next lower whole  
km/h to reflect the data that would be recorded in the SRS. This would produce an 
expected error band of 0 to 1 km/h  when the error is defined as the GPS speed  –  
EDR speed.  This also allows a large sample size in comparison to what could be  
achieved with actual EDR recordings.     

Figure  43:  Speeds and speed differences for normal  highway driving with a 2012 Honda CR-
V. The gray band indicates expected error bounds from data truncation.   

To assess the accuracy of the speed data, the differences  between the GPS speed and  
the EDR theoretical speed were determined and plotted against the right axis of 
Figure  43. The gray box behind the figure show  the theoretical error bound from  
truncation alone. The differences were between +/- 1.15 km/h with a mean of 0.033  



  
  

km/h and standard deviation of 0.39 km/h. This suggests that the CR-V normal 
driving speed data is accurate to about 1%. 

3.2.2.2  2012  Civic  Steady  State  Test  

To assess the steady state accuracy of the EDR in the Honda Civic, the Civic was  
driven starting at 80 km/h (50mph) on speed control and the  speed control was  
incremented by 1 mph approximately every 4 seconds up to a speed of 113 km/h  
(70 mph).   The vehicle had time to stabilize in between increments and the  
acceleration to the next higher speed was gradual enough so as not to produce any 
significant wheel slip.  The CAN bus vehicle indicated speed was truncated to the  
next lower whole km/h, which is the value that would be recorded in the EDR, and  
the difference between the VBox GPS signal and the EDR value was calculated. These  
difference data  are plotted against the right axis of Figure  44.  

For the 975 data points recorded, the mean difference was +0.22 km/h with a  
standard  deviation of 0.53km/h.  The maximum difference ranged from  -1.38 to  
+1.95 km/h.   Figure  44  plots the data for the VBOX GPS, the CAN bus vehicle  
indicated speed, and the truncated speed that would be recorded by the EDR.  
Differences between GPS and EDR are plotted as points relative to the scale on the  
right side axis. The gray box shows the theoretical error limits from truncation only.   
There was no evidence that the error was dependent on speed over the 80 to  113  
km/h range.  



 
Figure  44:  Speeds and speed differences for driving by gradually incrementing  the cruise  
control with a 2012 Honda Civic. The gray band indicates expected error bounds from data  
truncation.  

3.2.2.3  2012  CR-V  Accuracy  During  Maximum  ABS  Braking  

 The  CAN bus data was  played back to the ACM and events were  set  with the  
non-deployment apparatus.  The start time of the CAN bus file was incremented by  
0.1 seconds each run for 10  runs to see the differences in the EDR data.  When that 
was completed the same CAN file was played with the same timing five times in a  
row to demonstrate repeatability.   

 Both the recorded CAN data and the Bosch CDR reported data from  the 2012  
Honda CR-V are shown in Figure  45  through  Figure  48. These graphs represent the  
CAN data from driving tests and the acceleration data from the tests on the non-
deployment setting device.  

 The pre-crash information for two different test runs is shown in Figure  45  
and  Figure  47.  The data in these graphs show the VBOX 3i as a solid line. The green 
plus symbols represent the wheel speed for the left front wheel. Only a single wheel  
speed is displayed; if multiple wheels are displayed the graph becomes too busy.   
When the brakes were first applied, the wheel speed trace shows a sharp reduction 
until the ABS  system intervenes to relieve the  brake pressure and allow the wheel to  
rotate with a controlled slip.  Wheel slip causing under reporting  of ground speed  
has been well documented in the literature (e.g.  [20]) and will be acknowledged but 
not analyzed extensively in this study.  The interpretation of the wheel speed  
message  seems to slightly under-report the VBOX speed signal; however, the  
messages for wheel speed slightly lead the VBOX signal in time. The blue diamonds  



 
 

 
 

   
 
 

  
 

represent the indicated vehicle speed, which is the source for the EDR data. In all 
cases, the diamonds must lead the squares representing the CDR reported speed 
values. Since the EDR functionality truncates the speed values, the data must be 
below the corresponding indicated speed message. The pre-crash graphs also show 
the number of hundreds of RPM the engine was turning. The solid line represents 
the CAN message value and the circles represent the RPM reported by the CDR tool, 
which are truncated to the nearest 100 RPM. Finally, the acceleration trace from the 
accelerometer mounted on the SRS sled. The acceleration trace enables 
synchronization of the crash data to the pre-crash data and the establishment of t0. 

Based on the data shown in Figure  45  and  Figure  47, the SRS module may over  
report vehicle indicated speeds during hard braking by as much as 10 km/h due to  
reporting delays. The time delay can be  seen where the hard brake corner extends  
beyond that of the VBOX trace slightly. The CDR  reported data for the CR-V is also  
delayed, but not consistently. The delay from the EDR function can be examined by  
repeating tests with the apparatus for this study.  

The external accelerometer traces in  Figure  45  and  Figure  47  are examined with a  
smaller time scale in  Figure  46  and  Figure  48, respectively. Effectively zooming in  on 
the non-deployment event enables  analysis of the delta-V and acceleration data  
reported in the Bosch CDR report. Figure 4.8 and Figure 4.10 show the raw  
accelerometer data  in g’s sampled at 4000Hz as  a solid line. The acceleration from  
the CDR report is represented by the squares. The Data Limitations section of the  
CDR report defines t0 as when a change in cumulative delta-V of -0.8 km/h  over  
0.020 seconds occurs. The location of t0 corresponds to the zero mark on the time  
axis. To determine the delta-V, the previous 20  ms of the accelerometer signals were  
integrated (summed and multiplied by the sampling period) in-place and converted  
to units of km/h. The result of the respective Delta-V calculations is represented by  
the broken lines in  Figure  46  and  Figure  48  and  trend with the CDR reported delta-
V.   

Once  t0  was  established, a cumulative delta-V was calculated starting at t0. This  
calculation is shown as the blue dashed line in  Figure  46  and  Figure  48. The  
corresponding CDR reported  delta-v is represented as green circles on the graphs.  
According to the Data Limitations, the recording of delta-V stops 30  ms after the  
event is over (when the delta-V changes by less  than -0.8 km/h in  20ms.  
Examination of the record around 0.045 seconds shows the trace representing  
delta-V from the previous 20  ms rises above  -0.8 km/h.  Therefore, 0.030 seconds or  
3 samples more of recorded delta-V data are shown before reporting zeros,  as  
expected.   

The data plotted in  Figure  46  and  Figure  48  is similar, yet unique. The external  
accelerometer has a similar trace in each run but there is enough variation to show  
different data samples on the CDR report. Since  the external accelerometer  and the  
SRS accelerometer are different and the filtering mechanism and internal sampling  
of the SRS accelerometer is not known, the accelerometer and delta-V data will  
likely never match perfectly; however, the trends and patterns between the two  
accelerometers correlate. This is important because it gives confidence to the  



 
  

 

interpretation of the t0 mark and the assessments of any timing observations are 
well founded. 
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Figure  45:  Graph of the Pre-Crash data from the CDR report with the CAN messages for a  
Honda CR-V at city street speed.  
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Figure  46:  Graph of the  crash data corresponding to  the CR-V data shown  in  Figure  45.  
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Figure  47:  Graph showing pre-crash data for a Honda CR-V during hard braking at highway  
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Figure  48: Graph of the  crash data corresponding to  the CR-V data shown  in  Figure  47. 



 3.2.2.4   2012  Civic  Accuracy  During  Maximum  ABS  Braking  

Figure  49  and  Figure  50  show a typical test run braking from 80km/h (50mph) and  
Figure  51  and  Figure  52  show  the results of braking from  113 km/h (70 mph).  The  
odd number figures show the speeds and RPM versus time, the even numbered  
figures show the details of the event triggering  similar to the discussion on the CR-V 
above.  Note that the CAN bus vehicle indicated speed values repeat six times in a  
row, finally changing  at 0.6 second intervals.  The resulting increased delays (versus  
the CR-V) in the EDR reporting lead to  over-reporting speed by as much as 20 km/h.   
During  maximum braking the reported speed should decrease with each new data  
point, but in some cases an old speed value is repeated giving the false impression 
that no vehicle speed reduction has occurred over the interval.  The 0.6 second  
change interval was consistent during the maximum braking runs conducted, but in 
other tests involving normal driving the Civic updated more frequently.    
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Figure  49: Civic pre-crash data braking from 80 km/h (50 mph).  
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Figure  50:  Crash data for the Civic  corresponding  to  Figure  49.  
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Figure  51: Civic pre-crash data braking from 113 km/h (70 mph).  
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Figure  52: Crash data from the Civic corresponding to  Figure  51.  



3.2.2.5   Timing  Between  0  and  -0.5  Data  Points  in  the  Pre-Crash  Data   

Because the Honda pre-crash data points are labeled in 0.5 second increments, from  
-5.0 to  0.0, it was originally assumed the spacing between data points was uniform  
and plotted the data that way accordingly.   However, after  synchronizing  the “0.0”  
data point precisely at t0, in several cases the - 0.5 and earlier data points appeared  
to change values before the CAN bus values did (see  Figure  49, the red square at “-
2”). This is not possible; the EDR cannot anticipate changes in the CAN bus data, it  
can only report them after the  fact.  After extensive analysis, the authors developed  
a working theory that the data point labeled “0.0” is taken at or near algorithm wake  
up, and can be anywhere between 0 and 0.5 seconds after the data point labeled “-
0.5”.  This concept comes from  observing Toyota EDR’s which take one last data  
point at algorithm enable.  Toyota resets  a timer after each regular-interval data  
point is written and reports the interval from the next to last data point to AE.  The  
Honda data limitations as of this writing  offer no information about last data point 
timing relative to the “-0.5” point.   

EDR files from six 113 km/h (70 mph) hard braking runs were examined. After  
synchronizing the “0.0” data point, both speed and RPM channels were examined  
and the last 10 data points were shifted right to  eliminate any “anticipation” by the  
EDR data ahead of the CAN bus data. The revised time from “0.0” to “0.5” was 0.15,  
0.15, 0.15, 0.2, 0.25, and 0.35 seconds.  Other runs may need only a slight shift to  
0.40 or  0.45 seconds  and the need for the small  shift is not that apparent.    

3.2.2.6  Dynamic  Steering  Maneuvers  

The CDR steering data of the 2012 CR-V was assessed via replay of dynamic steering  
CAN messages  shown in Figure  53. This graph also shows the CAN indicated  speed  
(0x309), speeds retrieved from the SRS, and the external accelerometer pulse  
showing the location of Algorithm Enable (t0).   The non-deployment event was  
programmed to fire at the same time in the CAN history for  5 runs. From  Figure  53, 
it appears  that the SRS steering data tracks the  CAN data closely for aggressive  
steering inputs. However, the scale on Figure  53  is such that differences between 
CAN steering data  and CDR reported data are difficult to  detect. Therefore, the  
difference between the  data retrieved from the  SRS and the CAN data are calculated  
for each run and plotted in  Figure  54. The data at time =  -4.5 in  Figure  54  shows a  
possibility of a spread of 15  degrees for the case of transient steering maneuvers.  
Most  other data points  retrieved from the SRS are within 5  degrees of the CAN data.  
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Figure  53: CR-V Pre-Crash Data  Dynamic Steering Maneuver  

Figure  54: SRS steering data minus  the CAN data for the CR-V.  
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Figure  55: Civic Pre-Crash Data  from a  dynamic  steering  maneuver.   

Similarly, the Civic SRS steering data was assessed through the CAN replay of a  
dynamic steering CAN messages which are shown in Figure  55. There are two  
significant sources for  differences  in the steering signal. The first is a value or  
truncation error that manifests itself as a vertical  difference  on a time history plot 
like the ones shown in  Figure  54. The second error source is from a  recording delay  
or  difference  along the  horizontal (time) axis. The important observation from these  
tests is that the steering appears to truncate the CAN value and the SRS data  
provides a rough estimate of steering input. 



 

  
  

  
  

  
   

 

 
 

  
 

  

  
  

3.2.3  Passenger  Car  EDR  testing  based  on  Simulation  

Through  use of simulation output we aim to generate CAN messages  specific to the  
2012 Honda Vehicles used in this study. The methodology used to achieve this is  
summarized in  Figure  56  as a flow chart. HVE is a physics simulation program sold  
by Engineering Dynamics Corporation for  modeling vehicle dynamics and traffic 
crashes.  

Figure  56: HVE to CAN Transcription Overview  

3.2.3.1  An  Introduction  to  HVE  

NHTSA sponsored a project in the early 1970's to develop a uniform and accurate 
program to interpret physical crash data, from which McHenry published 
Simulation Model of Automobile Collisions (SMAC) in 1971 [45]. This program 
operates in a two dimensional environment with 3 degrees of freedom (x, y, and 
yaw). The development of SMAC was limited in the 70's by the lack of computer 
memory space and expense. The increase in computer power along with further 
research of automobile dynamics has allowed simulation models to become more 
robust over the years. Currently, Engineering Dynamics Corporation (EDC) 
produces a simulation and reconstruction software package called HVE (Human 
Vehicle Environment). HVE models vehicle dynamics, simulates damage done 
during collisions, car trajectories pre and post collision, initial speeds, yaw rates, etc. 
HVE offers multiple algorithms to produce the simulation outputs, namely 
EDSMAC4, SIMON, EDCRASH, EDSVS, EDVDS, and EDCRASH4. The SIMON 
(SImulation MOdel Non-linear) algorithm will be used in this paper. EDC has 
published multiple papers through SAE validating the accuracy of the HVE SIMON 
algorithm [46]. SIMON is a 3D physics based algorithm which allows for six degrees 
of freedom (x, y, z, roll, pitch, and yaw). The SIMON algorithm takes user specified 



 
 

 
  

 
 
 

    
 

  
 

 
 

   
  

  
 

 

input values and use a time forward Runge-Kutta integration method to predict 
simulation outputs. 

3.2.3.2  Purpose  for  Simulations  

The EDR testing methodology presented in this paper requires a CAN history for the 
dynamic event intended to be studied be available (e.g. a maximum ABS braking or 
high speed dynamic steering). Having such records is not common. For example, one 
must have the vehicle of interest and appropriate testing equipment to gather such 
data. Translating HVE output into CAN messages removes the need to gather highly 
dynamic CAN histories for replay. If both the message location and bit resolution of 
the EDR CAN data is known, the simulation output may be translated into CAN 
messages. This transcription process would allow researchers to simulate the event, 
translate it to CAN messages, replay the event to the EDR module, and compare the 
simulated EDR history to that of the actual EDR history. This translation process 
may make the results of an accident reconstruction simulation more convincing by 
allowing the reconstructionist to account for unknown errors in the transfer 
functions of the EDR itself. This ability would also aid in the evaluation of EDR data 
by allowing more potentially dangerous maneuvers to be studied (e.g. 100mph 
maximum ABS breaking or 70mph dynamic steering tests) giving us a better 
understanding of the performance of such devices at higher speeds. There are, as 
will be demonstrated in the proceeding sections, complications that may arise in 
this process. 

3.2.3.3  HVE  Simulation  

A dynamic steering maneuver was  simulated in  HVE. In this simulation a SUV  
traveling with an initial velocity of 34.67 mph was made to steer with a constant  
210⁰  input on a flat asphalt surface. The specific user inputs concerning this  
simulation as well as a  pictorial  summary of the simulation are given by  Figure  57  
though  Figure  62. This simulation uses a Ford Escape  as the test vehicle since the  
Honda CR-V was not available in the HVE vehicle library and both cars have similar  
geometries. The weight of the Ford was altered, as shown in Figure  60  to the weight 
of a stock 2012 Honda CR-V.   



 

 

Figure  57: Graphical output from HVE showing a hard  steering maneuver.  

Figure  58: HVE driver controls showing  steering  input.  



 

 

Figure  59: HVE Initial Position/Velocity Inputs  

Figure  60: HVE Vehicle Inertial Data  



 

 
  

Figure  61: HVE Environment Surface Data  

3.2.3.4  HVE  Simulation  Playback Results  

Upon replaying the converted HVE CAN file to the SRS module an unexpected result 
was found. There appears to be a checksum which validates the data accepted by the  
SRS module and if that checksum is not correct the SRS module will  hold the  
previously accepted  value.  In this Figure, the solid line which has the values of 0 and  
210 corresponds to transmitted CAN steering, the blue diamonds, which have values  
of only 0 and  210, represent the SRS reported  steering, the green diamonds  
represent the CAN speed, the red squares represent the CDR reported speed, and  
the acceleration pulse of the apparatus is marked by the blue spike at approximately  
t=0. The test corresponding to  Figure  62  was done using the CR-V SRS module. As  
previously shown, the CR-V module both refreshes and updates speed values  every  
0.1 s. However, this record clearly shows a large delay in the updating of the speed  
value (approximately 1.5s). To ensure that the testing apparatus and python 
translation script were functioning properly, the transmitted HVE CAN data was  
logged  during a test. This test showed that the transmitted HVE CAN messages were  
appropriately transferred in regards to  message timing and message value.  Upon 
further inspection it was found that if byte 7 of CAN ID 0x309 is removed from the  
CAN record no speed values will be updated to the SRS module (remember that only  
bytes 4 and 5 of 0x309 are responsible for the speed value). These test have led to  
the conclusion that byte 7 of 0x309 may function as a checksum. It was  attempted to  
discover the checksum method  without success. This checksum is believed to be  
present for all SRS CAN sources as the steering was also not updated for 2.5s, which  
is much longer than its 0.01s  refresh rate.  

The discovery of the checksum makes falsifying EDR records much more difficult 
and adds a layer of security to the validity of the reported data. 



 
Figure  62: HVE CAN SRS  Playback  Results  



 
 

          
  

           
 

          
         

           
 

             
            

           
       

  

          
    

           
         
        

 

          
     

  
   
   

   
  
   

 

3.3  Heavy  Vehicle  EDR  Forensic  Extraction Results  

3.3.1  Forensically  sound  data  extraction  from  a  Caterpillar  ECM  

Our proposed solution was implemented and validated by performing a data 
extraction and replay test on a Caterpillar ECM. The underlying design requirements 
were written in such a way that our solution could be easily used for other 
manufacturers. 

The information stored on the CAT ECMs under study include warranty report 
information and snapshot information. The warranty report contains the identity of 
the ECM, historical usage information such as engine use histogram, logged fault 
codes, and engine configuration information. 

“Snapshots” are a freeze-frame of the state of the truck at the time a critical fault is 
detected. These snapshots include everything from wheel speed to engine speed. As 
a bench download can lead to new snapshots being created, overwriting existing 
snapshot information, logging and replaying snapshot information is critical to any 
forensic solution for Caterpillar ECMs. 

Observation of RP1210 calls made by the Caterpillar ET software showed that all 
requests sent by, and all responses to those requests, were made using extensions to 
the J1708/J1587 and J1939 protocols proprietary to Caterpillar. As requests and 
responses changed significantly between extractions, with no change in data 
displayed, it was determined that some session-based encryption mechanism was 
used. 

The names of the functions obviously suggest that much of the message traffic is 
encrypted. Analysis revealed that Caterpillar follows these steps: 

1. CAT ET sends a session key to the ECM using a SecuritySetup message. 
2. The ECM sends a session key to CAT ET using a SecuritySetup message. 
3. For each encrypted message, an individual key is generated by summing the 

current session key and the second nibble of the proprietary PID. 
4. Each message is passed to a native DLL along with its key for decryption. 
5. The key is an index into an array of bytes; the relevant byte is XOR'd with 

each byte in the message to encrypt/decrypt it. 

With  the  algorithm  that encrypted  ECM  communications  was  known,  the  
information contained  in  those  messages  could  be  observed  to  determine  how  that  
information should  be  extracted  and  replayed.  The  API  hooking  tool  was  extended  
to  decrypt ECM  communications  on-the-fly  and  log  them  when they  were  
intercepted.  It was  discovered  that the  protocols  followed  a  specific  pattern (see  
Figure  63:  Example exchange in the CAT ATA Protocol).  

86 



 
 

 

           
          

  

 

              
   

            
             

 

 

        
      

 
           

 
   

Figure  63:  Example exchange in the CAT ATA Protocol  

Armed with this information, it was now possible to extract the information. A 
manual extraction was performed according to a checklist for a crash information 
extraction, and the RP1210 API calls were logged. 

Figure  64:  Two CAT ECMs used for testing.  

Each request was logged in a plaintext format as it was sent. It should be noted that 
the storage format preserves the opcode of the message. After the message was sent, 
proprietary responses with matching PIDs were recorded in the key-value pair. It 
was observed that some responses were split over several messages, so this was 
accounted for in the extraction software. 

In order  to  ensure  that the  method  of information extraction was  reliable,  replays  
from  the  ECM  were  tested  against  actual  extractions  from  CAT  ECMs.  The  ECMs  
tested  were  evidence  ECMs  that were  already  used,  and  thus  had  been pre-
populated  with  data.  The  procedure  was  used  for  extraction and  replaying  in  two  
CAT ECMs  (Figure  64:  Two CAT  ECMs used for testing).  

Using the following procedure, we were able to validate our solution: 

1. Perform one extraction of test ECM according to checklist while recording 
API calls. Save Warranty Report information and record snapshot 
information. 

2. Repeat step one twice more, each time saving Warranty Reports and 
recording snapshots. 

3. Extract ECM data using logged RP1210 calls obtained in step 1. 
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4. Perform 3 replayed extractions, using data extracted in step 3. 
5. Compare ECM extractions to find differences in data contained therein. 
6. Compare replayed extractions to find differences in data. 
7. Compare consistency of ECM extractions and replayed extractions. 

In addition, snapshot data can be recorded manually and comparisons were then 
carried out by hand. Warranty report information, however, is stored in a plain-text 
XML format. Accordingly, the data contained in these files was compared using a 
suite of tools developed by Adrian Mouat [47] for XML comparison. Tests were also 
conducted to ensure that our cryptographic protection mechanism detects any 
changes made to extracted data. 

4 Conclusions 

4.1  Conclusions  Regarding  Cyber  Physical  System  Analysis  

4.1.1  CAN Logging  Design  and  Analysis  

ACL #2 and ACL #3 adequately captured CAN traffic, preserving order and content, 
while satisfying temporal fidelity within acceptable ranges of tolerance. The 
inclusion of an OpenLog Chip in both solutions appeared to play a factor in freeing 
the Arduino main processor from logging tasks, allowing it to dedicate resources to 
perform data acquisition and transceiver tasks. These solutions represent 
inexpensive and practical alternatives for logging CAN traffic on vehicles. 

4.1.2  Real  time  Replay  Methodology:  Logger  Evaluation  

Of the logger solutions evaluated using the Real time replay methodology, only ACL 
#3 (the Arduino Due solution) performed adequately, and only after a modification 
that replaced the serial interface with a built-in USB port. Still, considering that the 
Arduino Due solution costs under $100, it is an ideal solution for many CAN 
research projects. If necessary, optimizing the presented Arduino solutions, e.g. 
binary data transmission, should help to improve the Arduino Due solution even 
more and make it possible to handle CAN transmission speeds over 500 kB/s. 

4.1.3  Real-time  Replay  Methodology:   System C haracterization  

System characterization of an internal voltage sensor for a Transmission Control 
Unit demonstrated the utility and fidelity of the real-time replay methodology and 
framework.  Testing the TCU voltage sensor revealed a systematic underreporting of 
voltage by the sensor. It was further determined that the inferred conversion delay 
does not have a significant impact on observed measurements. More importantly, 
the testing process and methodology is readily applied to other sensors and CAN 
components. Finally, results from the TCU were compared against a simulated TCU, 
demonstrating the potential role of simulation in CAN experimentation under real 
time replay. 
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4.1.4  Formal  Verification  Study  

Experimentation with Keymaera and hybrid programs exposed fundamental issues 
with applied formal methods for hybrid systems. Any system must be fully 
describable with the specification to be suitable for formal analysis. The 
idiosyncrasies of the system under analysis must be completely captured within the 
mathematical definitions of the model specification or they will not be considered. 

This is not a shortcoming of Keymaera but rather a framing requirement of the 
underlying formal model theory and is acceptable when studying or designing well-
defined systems. The proprietary nature of the TCU voltage system characterized 
and analyzed above, as well as the use of the Controller Area Network technology as 
a communication infrastructure formal modeling and analysis remains an extreme 
challenge. 

4.1.5  Implications for p olicy  and  practice:  

The analytical framework presented offers a collection of tools and processes by 
which to conduct practical study of vehicle CPSs operating over a CAN 
infrastructure. Inexpensive alternatives for CAN logging may create new 
opportunities for technology innovation. The real time replay methodology may 
encourage more validation and greater system assurance as it offers new economies 
of scale for testing. It also prescribes an integrated view of empirical analysis, 
simulation and formal verification. 

4.2  Passenger  Vehicle  Data  Accuracy  and Testing  

There are two major contributions  of this line of research in this report: 1)  a new  
methodology to non-destructively and repeatedly test the accuracy of different pre-
crash data elements  in  an event data recorder and 2)  applying those techniques to  
two 2012 Honda vehicles.   

The new methodology eliminates the risk of accidentally deploying airbags while 
gathering GPS and CAN bus data in the test vehicle. The techniques presented in this 
paper allows gathering of data in vehicle without tampering with the airbag control 
module. The new methodology allows for repeatable testing and mapping the 
transfer functions between the vehicle CAN bus data and the EDR.  Should a 
manufacturer make a design change to an air bag based EDR, identical inputs can be 
given to exemplar control modules from before and after the changes to document 
any change in the transfer function. This methodology allows researchers the ability 
to recreate events of interest in a low-cost, repeatable manner. 

4.2.1  2012  CR-V  Speed  Data  

Under normal driving conditions that included moderate acceleration and braking, 
the 2012 Honda CR-V vehicle speed CAN bus message (speed, vehicle indicated) 
accurately represented the vehicle ground speed.  The difference between the VBOX 
GPS speed and the CAN bus speed was not dependent on vehicle speed, which 
indicates that the vehicle was properly calibrated.  The EDR truncated the speed to 
the next lower whole km/h. Recalling that the sign convention used was Error = GPS 
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speed  –  EDR speed, the truncation increased the average difference  by  
approximately 0.5km/h.  The resulting EDR to VBOX differences were between +/- 
1.15 km/h with a mean of +0.033 km/h and standard deviation of 0.39 km/h. This  
suggests that the CR-V normal driving speed data is accurate to about 1% at speeds  
near 100 km/h as  tested with new, minimally worn tires.   

Under dynamic hard braking conditions, as expected, the wheel speeds under report 
the GPS ground speed due to wheel slip.  The CAN bus vehicle indicated speed data 
updated approximately every 0.1 seconds, but under hard braking conditions the 
reporting lags the ground speed.  This reporting delay results in reporting an earlier, 
higher speed than the current actual speed by up to 10km/h, and more than offsets 
the under reporting effects of wheel slip. 

4.2.2  2012  Civic  Speed  Data  

Under steady state conditions the 2012 Honda CR-V vehicle speed CAN bus message 
(speed, vehicle indicated) accurately represented the vehicle ground speed.  The 
difference between the VBOX GPS speed and the CAN bus speed was not dependent 
on vehicle speed, which indicates that the vehicle was properly calibrated.  The EDR 
truncated the CAN speed to the next lower whole km/h, resulting in the average 
GPS-EDR difference being higher by approximately 0.5km/h, to a mean of +0.22 
km/h with a standard deviation of 0.33 km/h.  The range was from -1.38 km/h to 
+1.95 km/h.  This corresponds to accuracy within about 2% at speeds near 
100km/h as tested with new, minimally worn tires. 

Under dynamic hard braking conditions, as expected, the wheel speed under-
reported GPS  measured ground speed due to wheel slip.  The CAN bus vehicle  
indicated speed lagged the true ground speed.  While a CAN bus vehicle speed  
message was transmitted every 0.1 seconds, under some circumstances the value  
only updated every 0.6 seconds.  This significant reporting delay results in reporting  
an earlier, higher speed than the current actual  speed, by up to 20km/h, which  more  
than offsets the under reporting effects of wheel slip.  

4.2.3  Other  SRS R eported  Data  

The steering angle recorded in the SRS module is truncated with a resolution of 5 
degrees. For negative steering angles, the truncation is towards zero. No anomalies 
were observed in other parameters such as accelerator pedal position, brake on/off, 
or engine speed. 

4.3  Conclusions  Regarding  Heavy  Vehicle  EDR  Forensics  

One of the goals of the project was the development of a methodology for 
forensically sound extraction of ECM data. While the field of digital forensics has 
well defined and accepted methods in the IT world, mostly through the imaging and 
protection of hard drives, the world of digital forensics in heavy vehicle systems is 
still in its infancy and it not nearly as strong and robust as it should be. We have also 
illustrated the weaknesses associated with current practices and developed a new 
methodology that could have a significant impact on this domain. 
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Our verification results show that using our solution, the original evidence is 
modified less by using forensic replay than it is by repeatedly extracting the 
information by traditional means. Even if no additional faults are created during a 
bench download, the ECM running time is better preserved by imaging and 
replaying the ECM data rather than repeated downloads. 

The expertise requirement is not totally alleviated by the extraction and replay 
process; an investigator still has to know how to connect to the ECM and power it up 
properly. However, the main advantage of the forensic extraction and replay 
process is that all information extraction is automated; no knowledge of diagnostic 
software or the steps required to gather pertinent crash information is needed. This 
is an advantage in a law enforcement context where training time is at a premium. 

A solution was also implemented, demonstrated and validated by performing tests 
on two CAT ECMs. By default, the CAT ECM extraction process is almost completely 
opaque. Unless certain data are not available on the ECM, or an error occurs during 
the download process, there is no record kept of the traffic other than its final 
interpretation by the maintenance software. Our solution addresses that problem by 
using a forensic replay method that records network traffic. This traffic can be 
examined after the fact to verify the extraction and replay process. 
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