NCJRS OFFICE OF JUSTICE PROGRAMS

National CriMINAL JusTice REFERENCE SERvICE BJA BJS NIJ Oﬁﬂ) OVC SMART &°

The author(s) shown below used Federal funding provided by the U.S.
Department of Justice to prepare the following resource:

Document Title: The Reliability of Digital Forensic Data
from Networked Process Control
Systems

Author(s): Jeremy Daily, John Hale, Mauricio
Papa

Document Number: 311503
Date Received: February 2026

Award Number: 2010-DN-BX-K215

This resource has not been published by the U.S. Department of
Justice. This resource is being made publicly available through the
Office of Justice Programs’ National Criminal Justice Reference Service.

Opinions or points of view expressed are those of the author(s) and
do not necessarily reflect the official position or policies of the U.S.
Department of Justice.

The Reliability of Digital Forensic Data from
Networked Process Control Systems

Final Report
29 Sept 2014

Award Number 2010-DN-BX-K215

The University of Tulsa

Jeremy Daily
John Hale
Mauricio Papa

ABSTRACT

A physical system that is controlled by an array of logic devices interconnected
through a communications infrastructure is effectively a networked process control
system. Also known as cyber-physical systems, they are ubiquitous in American
society and are used in applications ranging from medical devices, to automobiles,
to robotics, to power distribution grids. Often during the investigation of a crime,
the digital data stored in these control systems is useful. As such, understanding the
reliability of the data from these systems is needed. Since a specific study into every
networked process control system would be overwhelming, the focus of specific
systems is contained to the transportation industry in the form of automotive
electronic control modules. Specifically, this report shows research findings on the
reliability of data captured in selected passenger vehicle air bag modules. This was
done by simulating a networked system in a controlled environment to assess the
accuracy of the data. Furthermore, research findings regarding the forensic capture
and preservation of data from heavy vehicle engine control modules is presented
along with some practical recommendations for improving the forensic soundness
of extracting heavy vehicle event data. In addition to the specific studies of fielded
systems, a formal methods approach is presented to show mathematical strategies
to assess the reliability of the digital forensic data on networked process control
systems.

TABLE OF CONTENTS

ADSEIACE cooveeeeeeeeecsseesecss e sees e s ses s s RS R RS R e R R R R AR 1
TaDIE Of CONTENTS ..ocvvvurerueresrersesss s ssssss s bbb 2
EXECULIVE SUIMMATY woouieviruinsirssesssssssesssssssssssesssssssssssssssesssssssessssssssesssssss s sssssssssssssssssssssssssssssssssssenes 4
3 00 0 Yo 16 Ut u [) o 1FOToOsOsOsSEOTOPOEOOTPPTP 7
1.1 Cyber Physical Systems ANAlYSIScuermemsssnessssssssesssssssssssssssssssssssssssssssssns 7
1.1.1 Experimental Platforms for Real Time Analysis ... 7
1.1.2 FOrmal VerifiCatioN.. . eeessessens 8

1.2 Event data recorders in PASSENZET CATSccresressmessmessssssssssessssssssssesssssssssssssass 8
1.2.1 Motivation for EDR StUAIES.....cccmreiereeeserseesssesssesssssssssessssssssssesssssssssssssssesssanes 8
1.2.2 Literature REVIEW......isss 10

1.3 Forensics of heavy truck ECMS ... ssnns 16
1.3.1 Truck ECMs and Digital EVIAENCE......coumrnmemeenmsmsnesnsssssesmsssssessssssssssssssssssnes 16
1.3.2 Heavy Vehicle NeTWOTKSceenessssssssssessass 17
1.3.3 Diagnostic Link Connector Hardware and Software.........cccoeeenmeersseeens 18
1.3.4 Current PractiCessens 18
1.3.5 Forensic Soundness Requirements for ECMS ... 19
1.3.6 Shortcomings of current practices and the need for a new approach...21

N =] Lo T £ 22
2.1 Methods for Cyber Physical SYStEMSccoememmemeenmmenessesssssesssessssssssssessssssssssssssesssees 22
2.1.1 Logger Design and EValuationeeeeeneesnmemseesseeseessessseesssesssessssessees 22
2.1.2 Real time Replay MethodOlOogycoeeeeeeeemeesneeeneesseesseessessseessessseesseesssessees 22
2.1.3 LOZEEr EVAlUATION cocoueeeeeeeeeeeseeeseeseessseesseesssesssesssessssesssssssessssssssessssssssssssssssssssssesssees 23
2.1.4 System CharacteriZationeeeeeesseesseesssesssssssessssssssssssssssssssssssssessnes 23
2.1.5 Formal Verification STUAYccoeeemeemeesseesseesssesssessssesssesssessssssssssssssssessssssssees 24

2.2 Passenger Car Event Data Recorder Research Methodsccooeenreenneesneenneens 24
2.2.1 MethodOlOgY OVETVIEWeeeceereeeeeeseesseeessesssesssseesssesssessssssssessssssssssssssssesssssssessanes 25
2.2.2 DYIVING TOSES.ieuirereereeesreesseeessessseesssesssesssessssssssessssssssessssssssssssessssessssssssssssesssssssssssssssssees 25
2.2.3 Interpretation 0f CAN MESSQEEScouuurremeemeremeesseesmessessssessessssssssessssesssesssssssess 28
2.24 CAN Replay System DeSigNomesesssssssssssssssssssssssssssssssssssses 31
2.2.5 Software Implementation ... 41
2.2.6 CAN Replay EXperiments......ssssssssssssssssssssssssssssssssssssses 47

2.3 Methods for Assessing Heavy Vehicle Event Data Recorders.......ccouenmeeneeen. 49

2.3.1 Requirements 0f @ SOIULION ... sssssssssssssssssssens 49
2.3.2 Proposed solution for forensically sound extraction of ECM data........... 50

3 RESUILS sttt b bR R 54
3.1 Representative Cyber Physical System Analysis Results:.......enmeesneeens 54
3.1.1 CAN Logging Design and ANalYSiS.....ssssesssssssssssssssseesss 54
3.1.2 Real time Replay Methodology: Logger Evaluation........... 55
3.1.3 Real-time Replay Methodology: System Characterization................ 56
3.1.4 Formal Verification StUAYc.coemeessssesss 56

3.2 Passenger EDR Analysis Application to 2012 Honda Vehicles........couuuurrneeen. 61
3.2.1 4.1 Identification Of SRS SOUICESocceermeeemesrreesssessssseesssesssseessssssssessssessssseesas 61
3.2.2 Passenger Car EDR Speed ACCUTACYcomeermemermmmsnessmsssssssssssssssssssssssssssssnss 65
3.2.3 Passenger Car EDR testing based on Simulation ... 80

3.3 Heavy Vehicle EDR Forensic Extraction ReSUltsccnenensesesnsesnsesssesesnens 86
3.3.1 Forensically sound data extraction from a Caterpillar ECM........ccocuruunnes 86

N 010 4 o] D) () o PP 88
4.1 Conclusions Regarding Cyber Physical System Analysis......coumeeenseesseeenn. 88
4.1.1 CAN Logging Design and ANalySiS......eeermeessessessseessessseessessseesans 88
4.1.2 Real time Replay Methodology: Logger Evaluation........eneeseeenn. 88
4.1.3 Real-time Replay Methodology: System Characterization.........ccoueeen.. 88
4.1.4 Formal Verification STUAYcoemememmemssnesssesssssssees 89
4.1.5 Implications for policy and PractiCe:eeesnmeeseessseesseesssesseess 89

4.2 Passenger Vehicle Data Accuracy and TeStingccoeeenmereeenmermeessmeesseessesssecenns 89
4.2.1 2012 CR-V SPEEA DAL ...courrueerreerreessesssssessssesssesssssessssssssssssssssssssssssssssssssssssasssssess 89
4.2.2 2012 Civic Speed Data.....rneenessssssssssnssees 90
4.2.3 Other SRS Reported Data.....essses 90

4.3 Conclusions Regarding Heavy Vehicle EDR FOrensicseeesnseesseeenns 90

LT 310 0T 24 ¢ Vo o | 91

6 Dissemination of Research FINAiNGScoeeeneeneceneeseeeseeeesseesseesseessessssesseesseens 97

EXECUTIVE SUMMARY

Modern vehicles are cyber physical systems (CPSs) that rely on networking
infrastructure to convey feedback from sensors to Engine Control Modules (ECMs)
and to facilitate control of actuators. Given the importance of digital event data, a
thorough system characterization and in-depth analysis of CPSs is needed to
understand their behavior and reliability. As such, a formal methods approach was
taken to mathematically assess some basic properties of digital forensic data with a
focus on understanding event data recorders on vehicles.

Event Data Recorders (EDRs) in passenger cars record crash and pre-crash data
when subjected to events, which are crash or crash like accelerations. Prior EDR
testing methodologies involving crash testing are expensive and difficult to
reproduce to attain statistically sound conclusions. A new methodology has been
developed which allows repeatable testing and mapping of the transfer function
between the vehicle controller area network (CAN) data and the EDR in a low-cost,
deterministic manner. The accuracy of the 2012 Honda CR-V and 2012 Honda Civic
event data recorders were tested using this new two-part methodology.

First, the test vehicles were instrumented with both a Racelogic VBOX differential
GPS speed measurement system and a Vector CAN Case XL data logger. The
measurements from the VBOX were transmitted onto the vehicle’s CAN bus that also
contained messages reflecting indicated vehicle speed, brake status, accelerator
pedal position, steering wheel angle, individual wheel speeds and other signals. This
put the GPS speed data on the same time base as the vehicle CAN speed signal such
that no additional synchronization was required. This permitted analysis of the
accuracy and update rate of the vehicle speed CAN signal, which is the source for
speed data used in the Event Data Recorder (EDR).

Second, a system was developed to replay the recorded CAN data to an exemplar
airbag control module in the laboratory, such that the exemplar was receiving data
exactly as if it were in a moving vehicle. A pneumatic fixture with a slide was built
to allow the exemplar module to be accelerated to nearly 10 km/h (6 mph) and then
stopped in approximately 80 msec to create a non-deployment event that met the
minimum 5 mph delta-V over 150ms threshold. Actuation of the event setting
fixture was computer controlled (using LabVIEW) and synchronized with the CAN
replay system so that the desired test condition could be replicated precisely. The
desired test conditions were replayed to the airbag control module and a series of
non-deployment events were set. Each event on the EDR data was read using the
Bosch Crash Data Retrieval system.

The EDR data was compared to the network inputs, and it was determined that the
two byte vehicle CAN bus signal for speed was truncated to the next lower whole
km/h when recorded in the EDR. Under steady state conditions the speed data was
accurate within 2%. The vehicle CAN signal published new values every 0.1
seconds, and the Honda CR-V updated values every 0.1 seconds, but the Honda Civic
delayed updates by as much as 0.6 seconds during hard brake events.

Another goal of this research was the development of a forensically sound method
for evidence extraction from heavy truck ECMs. Information stored in ECMs can be
extracted using the engine manufacturers' maintenance software in a manner that
does not protect the evidence from alteration. A method that preserves the integrity
of the original evidence, is faithful to the original evidence source, and is
cryptographically protected was developed. This methodology is based on the
extraction and replay of ECM data with extensions specific to the manufacturer's
proprietary protocols. Furthermore, a cryptosystem was designed to protect the
information from modification, whether accidental or malicious. The methodology
was validated by extracting and then replaying the data extracted from an actual
ECM. The replay method fulfills the criteria of forensic soundness and addresses
some problems with current evidence handling procedures.

The development of a sound forensic method for evidence extraction from truck
ECMS is relevant due to current shortcomings on currently used procedures. Each
year many thousands of trucks are involved in traffic accidents. Litigation connected
with these crashes can result in judgments in the millions of dollars. In recent years,
this litigation has come to depend more and more heavily on electronic event data
recorded on the trucks' engine control systems. This evidence includes speed
records and other event data that can help accident reconstructionists determine
what transpired during the event.

Like other evidence, heavy vehicle digital event data is held to a standard of forensic
soundness, which is a series of principles that ensure that forensic evidence is
handled in a secure manner that guards against misinterpretation and alteration,
whether intentional or unintentional.

Currently, evidence is extracted from heavy truck systems using software that was
not originally designed to be forensic software, and is not particularly suited to the
task. While evidence can be collected using this data in a forensically sound manner,
doing so requires diligence on the part of the investigator and mistakes can result in
evidence being dismissed. Additionally, the current methods by which data are
stored are not particularly resistant to tampering.

The evidence contained within the heavy truck ECMs is extracted using diagnostic
software provided by the manufacturer (such as CatET for Caterpillar and Cummins
PowerSpec for Cummins). While it may be tempting to trust the interpretation of the
OEM software, research has shown that the interpretation of the data may be an
issue. For example, in some Cummins Sudden Deceleration events, speed data is
reported in the report at one sample per second; however, after comparing to
external reference measurements on some ECMs, researchers discovered that the
data actually is reported at 0.2 second intervals (5 Hz) [1].

The proposed solution for sound forensic data extraction seamlessly integrates with
the two major communications network standards used in heavy vehicles: SAE
J1708/1587 and SAE]J1939. These networks carry an abundant amount of
information. Engine control computers monitor vehicle speed and enforce pre-set
speed limits. They also broadcast information for other modules to use. For

example, speedometer and tachometer displays on the instrument panel display
information received from the vehicle network. Telematics systems monitor vehicle
performance and behavior using the same data. Additionally, vehicle diagnostic
communications use this network. As crash evidence is extracted using diagnostic
programs, vehicle networks are of interest to anyone interested in extracting crash
information.

Engine control modules communicate over vehicle-specific networks, so diagnostic
software requires a device that can mediate between vehicle networks and
interfaces on desktop computers, such as RS-232 or USB. Those devices are known
as Diagnostic Link Connectors (DLCs). They connect to a computer via a common
interface and translate data to and from]J1708, J1939, CAN, and other standards.
During normal operation, a DLC is connected to the in-vehicle network via a
diagnostic port in the cab, either an older 6-pin or a newer 9-pin SAE J1939-13
connector, also known as a Deutsch connector.

The standardization of heavy truck communication has allowed for enhanced
interoperation between different brands of products, and DLC standardization is no
different. All DLC manufacturers' drivers generally comply with an interface
standard dictated by the American Trucking Association's (ATA) Technical
Maintenance Council (TMC), known as TMC RP1210. The RP1210 interface specifies
a number of functions that compliant drivers must export, including function names
and formats for arguments. This allows a diagnostic program to utilize any device
from any manufacturer.

A solution to problems associated with current practices is based on solutions used
in the world of computer forensics. In a computer forensic investigation, a low-level
copy of the evidence drive is made; this copy is known as the “disk image." Forensic
analysis is performed on this disk image instead of the original disk, so as to alter
the original source evidence as little as possible.

This concept is extended to truck ECMs: the information would be extracted exactly
one time, and then replayed for further analysis. The replay traffic information
would be stored securely to prevent malicious tampering or accidental alteration. A
set of four software requirements for such a solution was developed and then
implemented. In particular software solutions must have the ability to: (i) record the
original information extraction process, (ii) decipher any encryption or obfuscation
mechanisms obscuring ECM data, (iii) store the evidence in a secure manner and
(iv) respond to information requests identically to the ECM.

Implementation of such a solution required hardware platform that satisfied the
following requirements: (i) relatively inexpensive, (ii) light and portable, (iii)
sufficiently powerful computing resources and (iv) capable of communicating using
heavy vehicle protocols.

The developed forensic extraction methodology was implemented using a replay
mechanism hardware built around a BeagleBone, a commercially available ARM-
based miniature computer produced by Texas Instruments. The most recent
iteration of the design, the BeagleBone Black, retails for roughly $55 and has a 1GHz

ARM processor, 512MB of RAM, and 4GB of onboard flash storage. Weighing just a
few ounces, it meets cost-effectiveness and portability requirements. In addition,
one of the main reasons for adopting the BeagleBone platform is the capability to
add functionality using expansion boards, known as Capes. Commercially available
capes include a RS-485 cape and a CAN cape, supporting the physical layers of
J1708/J1587 and J1939 with little to no modification.

The methodology and the platform used for its implementation were tested and
validated against ECMs manufactured by Caterpillar, Inc. This manufacturer was
chosen for several reasons. Firstly, it is one of the major manufacturers in the
domain and secondly, their proprietary communications protocol used is encrypted
in such a way that implementing a replay mechanism was particularly challenging.

In order to ensure that the method of information extraction was reliable, replays
from the ECM were tested against actual extractions from CAT ECMs. The ECMs
tested were evidence ECMs that were already used, and thus had been pre-
populated with data. The verification procedure was designed to determine the
fidelity of the information replayed, as well as the consistency of multiple replays of
recorded data as compared to the consistency of multiple downloads of an evidence
ECM. Using this procedure, we were able to validate and implement the proposed
methodology.

1 Introduction

1.1 Cyber Physical Systems Analysis

Modern vehicles are cyber physical systems (CPSs) that rely on networking
infrastructure to convey feedback from sensors to Engine Control Modules (ECMs)
and to facilitate control of actuators. Given the importance of safety controls,
thorough system characterization and in-depth analysis of CPSs is needed to
understand their behavior and to prevent unexpected and potentially dangerous
side effects. Unfortunately, analysis is oftentimes hampered by CPSs' proprietary
designs that make accurate system characterization very difficult, if not impossible.
Needed are strategies for conducting a full range of analyses over vehicular CPS
elements, spanning experimentation, simulation and formal verification.

1.1.1 Experimental Platforms for Real Time Analysis

A primary challenge in characterizing and analyzing parts of a vehicle's CAN system
to understand the behavior of specific ECUs and evaluate operational boundaries, is
access to the system. Preserving the real-time characteristics of the data
transmission as well as ensuring experimental repeatability is very difficult when
driving the car to generate data sets. One solution is to record the data generated
during one test drive and design a process to replay that data in real-time with high
temporal accuracy of the original message transmission timing. A straightforward
approach would be using a general purpose PC and a suitable programming
environment, e.g. C, C++ or Matlab, to recreate the recorded data transmission.

However, operating systems used on general purpose computers do not provide
guarantees on timeliness of program execution. Thus, the relative execution timing
of a real-time analysis might vary depending on other processes running on the
system. Alternative platforms for real time analysis therefore must be considered.

A real-time operating (RTOS) is a special-purpose operating system that imposes
rigid time requirements on its process execution and enables the design of real-time
applications. A hard real-time system guarantees that all delays within the system
are bounded by an upper and a lower execution time that must be met at all times. A
soft real-time system does have upper and lower bounds for all functions but it
assigns and manages varying levels of task priorities.

Field-programmable Gate Arrays (FPGAs) offer a programmable hardware layer
made up of configurable logic blocks (CLBs), block random access memory (BRAMs)
and digital signal processing (DSP) blocks. FPGAs can be programmed via a
hardware description language such as Verilog or VHDL. Manufacturers have
started to investigate the possibility of using OpenCL to program FPGAs. FPGAs
allow several programs to execute truly in parallel without competition for shared
resources and may offer down to nanosecond response times for input-to-output
processing.

1.1.2 Formal Verification

Hybrid automata are formal models of CPSs, linking agent behavior in discrete and
continuous domains [2]. Henzinger identifies certain classes of automata,
specifically linear hybrid automata, which lend themselves to the fully automatic
application of various model-checking techniques. Indeed, to demonstrate the
potential of their approach, Henzinger et al. developed the symbolic model checker
HyTech for linear hybrid automata [3]. Hybrid programs are structured control
programs that can capture the discrete and continuous transitions of hybrid system.
It has been shown that the expressive power of hybrid programs is suitable to
represent hybrid system descriptions formulated as hybrid automata. The tool
Keymaera is a theorem prover that supports the definition of hybrid systems in
form of hybrid programs [4]. Platzer introduced Keymaera's specification and
verification language, the Dynamic Differential Logic (dL) and demonstrated its
utility by modeling and analyzing certain parts of the European Train Control
System.

1.2 Event data recorders in passenger cars

1.2.1 Motivation for EDR studies

Event Data Recorders (EDRs) have been equipped in select cars for many years and
are becoming more pervasive in over the road vehicles. Originally, EDRs were
developed as a tool to help automotive engineers understand crash dynamics in
order to make cars safer. For example, in 1992 General Motors (GM) installed crash
data recorders in Indy race cars. These devices provided information on the human
body’s tolerance to impact and velocity change; information which helped improve
the safety of both racing and passenger cars. In 1994, GM implemented recording

capable sensing diagnostic and modules (SDMs) to select passenger cars. These
devices recorded the change in longitudinal velocity (delta-v), allowing GM
engineers to study and improve the restraint system of their vehicles. By 1999
certain GM SDMs were able to record pre-crash data such as engine speed, vehicle
speed, brake switch status, and throttle pedal position. EDRs have continued to
develop over the years are now present in many cars. Most vehicle EDRs offer more
crash and pre-crash data than the GM 1999 SDMs. Although these devices were
originally intended for manufacturer studies to increase the safety of their
automobiles, EDR data is interesting to crash investigators and insurance
companies.

EDR data is used by accident reconstructionists and law enforcement to help
determine events leading to a crash. EDR data was used in criminal court in the
2002 Colorado vs. Cain case. Since then, EDR data has been used in over 19 state
courts and at the federal level.

The use of EDR data in court cases as scientific evidence places requirements on
EDR data and its validity. As established in Daubert, scientific data presented by an
expert witness is subject to review and must be "sufficiently established to have
general acceptance in the field to which it belongs.” The Daubert standard for
admissibility of scientific evidence requires that EDR data be verified using an
accepted peer reviewed method. Although methods exist for the analysis of EDR
data, these methods can be improved, particularly in reproducibility. Current
methods limit the ability to quantify data error ranges in a statistically significant
manner.

EDR data became standardized in passenger vehicles in September of 2012 through
part 563 of the NHTSA (National Highway Traffic Safety Administration) 49 Code of
Federal Regulations (CFR) ruling, which gives a minimum data set required if the
vehicle is equipped with an EDR [5]. Tables showing the minimum required are
given in Appendix A. Within the part 563 ruling the following standards have been
established for pre-crash data:

Table 1: Minimum EDR Data Required by NHTSA CFR 49 Part 563

Condition for Recording Time Data Sampling
Data Element Name | Requirement Interval (relative to | Rate (per second)
time zero)
Speed, Vehicle Required 5t00 2
Indicated
Engine Throttle (% full) _ 5
Accel Pedal Position Required -5t00
(%full)
Service Brake Required 5t0 0 2
(on/off)
Engine Speed If recorded -5t00 2

(RPM)

ABS Activity
(engagement/non- If recorded -5t00 2
engagement)

off, engaged)

Steering Input If recorded 5100 2
(degrees)

CFR 49, part 563, specifies that all manufactures must make EDR data available if
EDR data is recorded, whether that be through a dealership scanning tool or a third
party tool. The Bosch Crash Data Retrieval kit (CDR) is one such third party tool.
This device supports hundreds of cars and is able to harvest the EDR data from a
module. The Bosch CDR tool was used in this study.

Prior EDR testing methodologies required setting events in the airbag control
module of the vehicle during controlled driving. Duplicating events was nearly
impossible and it was difficult to determine differences in recorded speeds to
reference speeds based on measurement error, wheel slip, reporting time delays, or
data truncation within the EDR. Recording thresholds may have increased making
non-deployment and deployment events closer in magnitude, which increase the
risk of accidentally exceeding the deployment threshold while setting events.
Because of the shortcomings of existing methods of EDR data analysis a new method
of assessing the accuracy of EDR data was developed and is the subject of this
research.

The new methodology eliminates the risk of accidentally deploying airbags while
gathering external validation data and vehicle network data in the test vehicle. The
techniques presented in this work also allow data gathering without tampering with
the airbag control module, which reduces the potential liability to testers using
rental or borrowed test vehicles. The new methodology allows for repeatable
testing and mapping the transfer function between the vehicle CAN bus data and the
EDR data. Should a manufacturer make a design change to an EDR, identical inputs
can be given to the new EDR and changes in its behavior can be documented. This
methodology allows researchers the ability to re-create events of interest in a low-
cost, repeatable manner. As an example, the accuracy of the 2012 Honda CR-V and
2012 Honda Civic event data recorders were tested using this new two-part
methodology.

1.2.2 Literature Review

Alarge portion of this literature review is taken from a 2013 SAE World Congress
publication by Diacon et al. [6].

In 1983 Bosch began development of a networking system for cars, namely CAN
(controller area network). At the 1986 SAE World Congress Bosch presented CAN
and subsequently released all intellectual property concerning it, which resulted in

a drop in costs for its implementation [7]. Since 2008, most vehicles have
implemented some version of a CAN for on-board device communication. To briefly
describe the network of CAN itself; CAN is a multi-master broadcast serial bus with
anon-return to zero (NRZ) bit encoding and automatic collision detection and
message arbitration. Mueller, et al. presented a method for evaluating the accuracy
of CAN messages in Ref. [8]. In this paper CAN histories were compared to
professional grade measurements, allowing quantification of the accuracy of CAN
messages such as speed, and thus an analysis of EDR data. This means that some of
the EDR data depends on the CAN bus data.

The Bosch CDR tool help file and the Data Limitations section in CDR reports contain
useful information about accuracy limitations and EDR transfer functions. A section
of the 2012 Honda Data Limitations section is shown verbatim below.

The Bosch CDR tool help file and the Data Limitations section in CDR reports contain
useful information about accuracy limitations and EDR transfer functions. A section
of the 2012 Honda Data Limitations section is shown verbatim below.

“Data Limitations”

General Information:

These limitations are intended to assist you in reading the event data that has been imaged
from the vehicle’s SRS control unit. They are not intended to provide specific information
regarding the interpretation of this data. Event data should be considered in conjunction with
other available physical evidence from the vehicle and scene.

Honda and Acura passenger vehicles designated as 2013 or later model year production are
designed to be compatible with the Bosch CDR tool. However, due to production variations
during the 2012 model year, only certain 2012 model year vehicles are compatible with the
Bosch CDR tool.

Recorded Crash Events:

Data for front, side, rear and rollover events can be recorded as either non-deployment or
deployment events. Both types of events can contain precrash and crash data.

- A non-deployment event is recorded if the change in longitudinal or lateral velocity equals
or exceeds 8km/h over a 150ms timeframe or another type of non-reversible deployable
restraint device other than a front, side, or side curtain airbag (e.g. seatbelt pretensioner) is
commanded to deploy. Except as indicated below, non-deployment events are not locked into
memory and can be over-written by subsequent non-deployment or deployment events.

- A deployment event is recorded if front airbag(s), side airbag(s), or side curtain airbag(s)
are commanded to deploy. Deployment events are locked into memory and cannot be over-
written.

The SRS control unit typically records only one event. Two events can be recorded if the TO
(time zero) values for each event occur within 5 seconds of each other. TO is established by
whichever of the following occurs first: (1) the change in longitudinal velocity at the SRS
control unit equals or exceeds 0.8km/h over a 20ms timeframe; (2) the change in lateral
velocity at the SRS control unit equals or exceeds 0.8km/h over a 5ms timeframe; or (3) a
commanded deployment of any type of non-reversible deployable restraint device (e.g. airbag
or seatbelt pretensioner). Therefore, a non-deployment event can be recorded and locked if it
occurs within 5 seconds of a deployment event.

Data:

- Data recorded by the SRS control unit and imaged by the CDR tool is displayed relative to
TO, not the time at which the vehicle made contact with another vehicle or object.

- Pre-crash data is recorded at 2 samples per second starting 5 seconds before TO.

- Crash data is recorded at 100 samples per second from TO to 250 milliseconds or TO to
TEnd (end of event) plus 30 milliseconds, whichever is shorter. TEnd occurs when the
change in longitudinal and lateral velocity equals or falls below 0.8km/h over a 20ms
timeframe.

- All data is displayed in SAE J211 sign convention unless otherwise noted in this document.
- Delta V, longitudinal reflects the change in velocity that the SRS control unit experienced in
the longitudinal direction during the recorded portion of the event and is not the speed the
vehicle was traveling before the event.

- Depending on the severity of the event and the accelerometer characteristics, saturation of
the SRS control unit longitudinal or lateral accelerometers may occur, decreasing the
recorded Delta V value.

- Speed, vehicle indicated data accuracy can be affected by various factors, including but not
limited to the following:

- Significant changes in tire size from the factory setting

- Wheel lockup

- Accelerator pedal position, percent full is the ratio of accelerator pedal position compared to
the fully depressed position.

- PCM (Powertrain Control Module) derived accelerator pedal position, percent full may
differ from the accelerator pedal position, percent full under circumstances such as brake
override activation or cruise control system engagement. These circumstances are based on
vehicle equipment application and vary by model.

- Steering input angle is recorded in 5 degree increments (e.g. if actual steering input = 13.4
degrees, recorded value would be = 15 degrees).

- Side air bag suppression system status, right front passenger is recorded when the vehicle is
equipped with the Occupant Position Detection

System (OPDS).

- Occupant size classification, right front passenger airbag suppressed data is recorded as yes
(suppressed) if the front passenger seat weight sensor system determined the passenger seat
was empty or occupied by a child-size occupant.

- If power to the SRS control unit is lost during an event, all or part of the data may not be
recorded

While this data is helpful, actual test data is needed to verify and quantify their
claims, specifically concerning the issues of data resolution and truncation. Many
EDR accuracy studies have been conducted and are summarized below.

EDR pre-crash speed data was first recorded by General Motors beginning in some
1999 models and the first paper to address pre-crash EDR speed data accuracy was
by Chidester in 1999 [9]. Chidester’s team included General Motors personnel, and
the paper listed the accuracy of speed data as +/-4% of the recorded value, implying
that differences between EDR recorded values and ground speed may be higher at
greater speeds. This paper was written before the start of 1999 model-year
production, and the 4% articulated a design tolerance that could include tread wear,
tire pressure variations, and other design variations. Test data was not yet available.
The paper noted that the various data elements were recorded asynchronously,
raising the issue that the timing labels associated with pre-crash data may not be
precise regarding when the data was actually recorded. Data points labeled “-1” may
actually be recorded any time during the second before algorithm enable (AE).

In 2003, Lawrence [10] created artificial crash signals during normal driving and
published data finding the GM EDR speed to be under reported by 1.5 km/h (about
1 mph) at low speeds and over reported by 3.7 km/h (about 2.3 mph) at high speed
when compared to reference instrumentation, under steady state conditions. This
paper raised the concern that differences between recorded speed values and
speeds obtained with external instruments may not only have some relationship to
vehicle speed, but that there may be some type of offset since the sign of the
difference changed between low speed and high speed.

In 2005, Niehoff reported the recorded pre-crash speed from 28 NHTSA crash tests
of GM and Toyota vehicles [11]. The crash tests were at speeds of 48 and 64 km/h
(30 to 40 mph) and the data was reported as “within 1 mph”. The pre-crash EDR
data was typically reported in whole miles per hour and the reference
instrumentation was reported with either one decimal place or no decimal places.
Data was not reported as a percentage of speed, which was appropriate given the
combination of resolution of the data and the relatively low speed of the test.

In 2006, Wilkinson reported on the timing of EDR data in General Motors sensing
and diagnostic modules, indicating that the actual time between labeled data points
may vary from the interval suggested by the labels [12].In 2011, Bare et al. reported
on pre-crash data timing of the GM SDM-DS module, indicating that the timing of the
last data point recorded can vary from the label "-1" that is placed on that last data
point [13]. This work addresses some of the same type of timing issues as Wilkinson
but used more sophisticated instrumentation and was on a more recently designed
EDR. Bare also suggested that data timing was far closer to the reported "1 second"
interval than reported by Wilkinson.

In 2008, Gabler [14] reported on the accuracy of pre-crash speed data for 33 crash
tests ranging from 40 to 56 km/h (25 to 40 mph) on 2004-2007 model year
vehicles. 32 of the tests were on GM vehicles and one was on a Toyota. The paper
states that all of the speed data was within 3%, except for test 5310 on a 2005 Buick
Rendezvous that reported low by 22% (27 mph vs. 35mph actual). Gabler did not
explain the anomaly.

In 2008, Ruth [15] reported on the steady state speed data accuracy of Ford
Powertrain Control Module event data recorders at speeds from 48 km/h to 113
km/h (30 to 70 mph). For the 2005 Ford Crown Victoria, the data was accurate
within 1.0%. Similarly, Ruth et al. reported on Ford air bag control modules in Ref.
[16]

Takubo and Ishikawa et al. reported on Japanese New Car Assessment Program
(NCAP) tests and additional tests intended to mimic real world crashes [17] [18].
They published two SAE papers with each successive paper including some
additional tests. As such, the most complete data set as of this writing can be found
in the latest, though the earlier papers contain some minor details which are not
reproduced in the most recent paper. They reported that the cars were mostly 2007
and 2008 Toyota Corollas (00/02 EDR), and that “the pre-crash velocities [reported
by the] EDR were highly accurate and reliable but generally lower than the optically
derived velocities.” In 14 full overlap barrier tests the EDR speed data was - 2.0%
different than the reference instrumentation, with a range of - 6.3 to +1.9%, and an
RMS of 2.6%. For the 14 Offset Deformable Barrier (ODB) tests, the EDR averaged -
2.1% different than the reference instrumentation, with a range of - 4.1% to 0.0%
and an RMS of 2.7%. The negative average value is consistent with the CDR Data
Limitations, which state the speed data is truncated to the next lower even km/h
value.

In 2009, Ruth [19] reported on the speed data accuracy of Chrysler vehicles. In 113
km/h steady state conditions the 2008 Jeep Commander EDR reported from -1.18 to
+0.32 km/h different than GPS, and Dodge Dakota EDR reported from -3.09 to -0.98
km/h different from the GPS reference instrumentation, with the average error
being below zero due to truncation of any fractional km/h to the next lower whole
number in the EDR.

In 2010, Bortolin [20] reported that a 2008 Dodge Caravan EDR reported from -1.74
to +0.63 mph of GPS reference speeds from 11 to 61 mph

In 2010, Ruth reported on the accuracy of the 2009 Ford Crown Victoria Powertrain
Control Module (PCM) EDR in steady state and heavy braking [21]. The Crown
Victoria vehicle speed sensor is on the transmission output shaft, and during heavy
ABS controlled braking wheel slip results in the speed being under reported by an
average of 5% at 97 km/h. This recognized that the “vehicle indicated speed” on the
speedometer or CAN bus obtained from a sensor measuring proportional to wheel
speed might not represent the ground speed of the vehicle under heavy braking
conditions.

In 2011, NHTSA conducted an evaluation of Toyota pre-crash data accuracy [22].
The paper reports 28 staged events using two 2007 Camry’s (04/06 EDR) and a
2008 Highlander (04/06 EDR) as bullet vehicles striking the back of a 2006 Tacoma
(00/02 EDR) target vehicle with a 3 to 8 km/h (2-5 mph) closing speed in order to
create a non-deployment event the EDR would capture. NHTSA defined the vehicle
speed tolerance as +/- 2.3 km/h (1.5 mph), and was aware that the recorder
temporary buffer only refreshed speed data every 0.5 seconds. Around each EDR
data point they created a “window of acceptance” of +/- 2.3 km/h (1.5 mph) that
extended back in time 0.5 seconds. If the GPS speed data crossed anywhere in the
window, then it was deemed within the acceptable tolerance. NHTSA concluded that
100% of the pre-crash speed data fell within the tolerance and time window. The
+/-2.3 km/h window was wider than the +0/-2 km/h range expected from the data
resolution cited in the CDR Data Limitations.

In 2012, Ruth et al. [23] reported on 2010 and 2011 Toyota Camry EDR speed data.
Data limitations stated that the Toyota truncated speed data to the next lower even
number of km/h, such that the difference between EDR and GPS would be expected
to from -2.0 to 0 km/h in the absence of other calibration or random measurement
errors. For steady state conditions, differences for the 2011 Camry at 113 km/h (70
mph) ranged from -3.0 to -0.4 km/h (-1.9 to -0.2 mph). For the 2010 Camry, for the
113 km/h (70 mph) tests the difference ranged from -2.1km/h to +0.2 km/h. The
best fit line has a slight slope indicating a larger difference would be expected at a
higher speed, but the slope was not statistically significant. During maximum ABS
braking, Ruth identified that in addition to the wheel slip under reporting
phenomena, data recorded for the last point prior to impact may be up to 0.5
seconds old, resulting in over reporting speed. This research reinforced that for
speed at impact calculations, the timing of the last speed data point recorded was
important.

To summarize the literature, EDR speed data was first published at +/-4% in 1999
in a paper specifically addressing GM recorders. Since then specific GM, Ford,
Chrysler and Toyota EDR’s have been tested and the data has been found to be more
accurate than the previously published 4% under steady state conditions. Tests
have evaluated a vehicle at a point in time, and most indicate the EDR data is on
average under-reported due to some form of truncation of the raw data to the next
lower integer or even integer number. Tire wear over the life of the vehicle has not
been addressed since the original 1999 paper. The more recent literature also
documents that under maximum ABS braking conditions, the EDR will accurately
report the average drive wheel speed it is measuring, but it will under-report the
true ground speed. Tests on 2010/2011 Toyotas indicated the CAN bus updated
only every 0.5 seconds, and during braking the reporting delay could lead to the last
speed data point being over-reported.

1.3 Forensics of heavy truck ECMs

Thousands of trucks are involved in traffic accidents each year; in 2008, 380,000
trucks were involved in accidents [24]. Litigation connected with these crashes can
result in judgments in the millions of dollars. In recent years, this litigation has come
to depend more and more heavily on electronic event data recorded on the trucks'
engine control systems. This evidence includes speed records and other event data
that can help accident reconstructionists determine what transpired during the
event.

Like other evidence, heavy vehicle digital event data is held to a standard of forensic
soundness, which is a series of principles that ensure that forensic evidence is
handled in a secure manner that guards against misinterpretation and alteration,
whether intentional or unintentional.

Currently, evidence is extracted from heavy truck systems using software that was
not originally designed to be forensic software, and is not particularly suited to the
task. While evidence can be collected using this data in a forensically sound manner,
doing so requires diligence on the part of the investigator and mistakes can result in
evidence being dismissed. Additionally, the current methods by which data are
stored are not particularly resistant to tampering.

1.3.1 Truck ECMs and Digital Evidence

Beginning in the early 1990s, truck engine manufacturers implemented electronic
engine control in order to meet more stringent emissions requirements placed on
large diesel vehicles. Over time, demand from fleet customers lead to
implementation of data logging within these engine control computers, including
fuel usage tracking and driver behavior. NHTSA requested the engine manufacturers
to investigate the implementation of event data recorder (EDR) functionality in
heavy truck ECMs. Shortly thereafter, manufacturers began offering this
functionality in their ECMs, first as add-on packages then as standard features.

Table 2: ECMs and associated software

ECM Family | Software

Caterpillar Caterpillar Electronic Technician (CatET)

Cumimins Cummins PowerSpec, Cummins Insite

Detroit Diesel | DDEC Reports, Detroit Diesel Diagnostic Link (DDDL)
Mack Proprietary to Mack and Volvo

Mercedes DDEC Reports, Detroit Diesel Diagnostic Link (DDDL)
Navistar ServiceMaxx

Paccar Cummins PowerSpec, Cummins Insite, or Paccar Davie
Volvo Mack and Volvo Proprietary

The evidence contained within the heavy truck ECMs is extracted using diagnostic
software provided by the manufacturer. Some popular manufacturers and the
associated software of forensic interest is listed in Table 2: ECMs and associated
software.

While it may be tempting to trust the interpretation of the OEM software, research
has shown that the interpretation of the data may be an issue. For example, in some
Cummins Sudden Deceleration events, speed data is reported in the report at one
sample per second; however, after comparing to external reference measurements,
it is discovered that the data actually is reported at 0.2 second intervals (5 Hz) [1].
Similarly, Austin and Farrell [25] showed that many Snapshot records from
Caterpillar are reported every 0.5 seconds instead of every second as represented in
the OEM software.

1.3.2 Heavy Vehicle Networks

In modern automobiles, the number of in-vehicle electronic devices that need to
communicate with one another has seen dramatic increases: engine control
modules, anti-lock brake system modules, transmission control modules, collision
detection systems, and even entertainment systems are examples of devices that
need to communicate. This leads to a combinatorial explosion of communication
links, that requires the use of a common multiple-access bus. Currently, almost all
functions in automobiles are carried out over the network. Notably, in-vehicle
networking has allowed external diagnostic connectors to receive diagnostic fault
codes through a port in the cab.

Heavy trucks are no different. Engine control computers monitor vehicle speed and
enforce pre-set speed limits. They also broadcast information for other modules to
use. For example, speedometer and tachometer displays on the instrument panel
display information received from the vehicle network. Telematics systems monitor
vehicle performance and behavior using the same data. Additionally, vehicle
diagnostic communications use this network. As crash evidence is extracted using
diagnostic programs, vehicle networks are of interest to anyone interested in
extracting crash information. There are two major vehicle network standards used

in heavy trucks published by the Society of Automotive Engineers, SAE J1708/1587
[26] [27] and SAE]J1939 [28].

1.3.3 Diagnostic Link Connector Hardware and Software

Engine control modules communicate over vehicle-specific networks, so diagnostic
software requires a device that can mediate between vehicle networks and
interfaces on desktop computers, such as RS-232 or USB. Those devices are known
as Diagnostic Link Connectors (DLCs). They connect to a computer via a common
interface and translate data to and from]J1708, J1939, CAN, and other standards.
During normal operation, a DLC is connected to the in-vehicle network via a
diagnostic port in the cab, either an older 6-pin or a newer 9-pin SAE J1939-13
connector, also known as a Deutsch connector.

Vehicle

Vehicle
Data-link
Adapter

Vendor
Application

RP1210
API/DLL

Figure 1: Diagram of RP1210 device and driver.

The standardization of heavy truck communication has allowed for enhanced
interoperation between different brands of products, and DLC standardization is no
different. All DLC manufacturers' drivers generally comply with an interface
standard dictated by the American Trucking Association's (ATA) Technical
Maintenance Council (TMC), known as TMC RP1210 [29]. The RP1210 interface
specifies a number of functions that compliant drivers must export, including
function names and formats for arguments. This allows a diagnostic program to
utilize any device from any manufacturer (Figure 1).

1.3.4 Current Practice

Information from a heavy truck vehicle is typically downloaded using the engine
manufacturer's diagnostic software. The normal use case for diagnostic software is
connecting to a diagnostic port in the cab of the truck using a diagnostic link
connector, and accessing the desired information with the maintenance software.

However, extracting crash information is not a normal use case. If the truck has been
in a high speed collision, the electrical connection between the cab and the engine
may have been severed, or the cab itself may be physically inaccessible. In these
cases, the engine control module must be removed and analyzed separately. This is
performed either by placing the ECM in a donor vehicle identical to the one in the
crash, or by connecting to the ECM directly using the manufacturer's engine flashing
harness.

Figure 2: Bench download from a Cummins ECM.

Whatever method was used to connect to the ECM, the investigator then proceeds to
extract the information using the manufacturer's diagnostic software. This includes
event data from the crash itself, mechanical fault information, engine tuning
parameters, and driver behavior information. This information is then recorded, in
most cases, by printing the data to a PDF file. However, in many instances the
software does not support printing data and so it must be captured using a
screenshot. All of the files resulting from the extraction are then stored on some
kind of removable media and produced to the client.

1.3.5 Forensic Soundness Requirements for ECMs

A heavy vehicle electronic control module (ECM) is a specialized process control
computer that may have data of interest to an investigator. While ECMs may not
have keyboards and monitors, they still are computers and have central processing
units, memory, storage, and a means of networking or communicating with external
devices. As such, many of the principles from computer forensics can be applied to
heavy vehicle ECMs.

The first litmus test that any forensic methodology must pass is the rules of
evidence for the legal system in which it is used. Here, we will focus on the laws of
the United States. The two primary standards to which evidence is held in the US are
the Daubert standard, established in the case Daubert v Merrell Dow
Pharmaceuticals, and the Federal Rules of Evidence Rule 702 on expert testimony
[30]. The following is a summary of the relevant criteria for the Daubert standard:
(i) testimony must be relevant and reliable, (ii) Judges have the task of ensuring that
expert testimony rests on a reliable foundation and is relevant and (iii) some or all
of certain specific factors, including testing, peer review, error rates, and
acceptability in the relevant scientific community, may prove helpful in determining
reliability of forensic testimony. Similarly, this is the summary of relevant

requirements according to Federal Rules of Evidence Rule 702: (i) method can be
and has been tested, (2) method has been subjected to peer review or publication
and (iii) method has a known error rate

A review of the rules of evidence as they relate to digital forensics may be found in
[31]. Any forensic evidence must meet these standards in order to be admissible.

In addition to the general rules of evidence, the digital forensics literature contains
many attempts to quantify the concept of forensic soundness. A Special Report
issued by the National Institute for Justice on Electronic Crime Scene Investigation
\cite{NIJ2008} highlights the following basic forensic principles applied to dealing
with digital evidence: (i) any process or procedure of collecting, transporting, or
storing of digital evidence should not incur any changes to the evidence, (ii) only
specifically trained experts should examine digital evidence and (iii) transparency
during the operations of acquisition, transportation, and storage of the evidence
should be maintained.

These basic tenets lay the foundation for the idea of forensic soundness. It is
important to understand the term “forensically sound” as it relates to digital
evidence. Many authors and professional organizations have attempted to
rigorously define this concept, including the National Institute for Standards and
Technology (NIST) [32], law enforcement entities such as the National Institute for
Justice (NIJ) [33], and academic bodies like the International Organization on
Computer Evidence [34]. The methods of extracting, analyzing, and presenting
digital evidence are forensically sound if they perform the task in a manner such
that the results can be used in legal proceedings with a high degree of confidence in
their admissibility. We refer to the process of extracting, interpreting, and
presenting evidence as the “forensic process.”

In addition to the NIJ report, McKemmish [35] enumerates the following
components of forensic soundness: (i) meaning (a term that denotes confidence in
the interpretation of extracted evidence data), (ii) error detection (denotes
processes for detecting or predicting errors in the forensic process), (iii)
transparency (the forensic process is documented, known, and verifiable) and (iv)
expertise is required for those investigators examining digital data.

Futhermore, Casey [36] defines 7 levels of certainty for digital evidence that dictate
how much weight should be given to the evidence in a case: CO (evidence
contradicts known facts), C1 (evidence is highly questionable), C2 (only one source
of evidence that is not protected against tampering), C3: (source(s) of evidence are
more difficult to tamper with but there is insufficient evidence for a firm conclusion,
or unexplained inconsistencies exist in available evidence, C4 (sole source evidence
is protected against tampering or multiple, independent sources of evidence agree
but the independent evidence is unprotected from tampering), C5 (agreement of
evidence from multiple, independent sources protected from tampering, but small
uncertainties exist) and C6 (the evidence is tamper proof and unquestionable.

While many of these levels include requirements that are encompassed by the
requirements of error detection and certainty of meaning specified by McKemmish,

this standard includes the principle of tamper resistance. In addition to protecting
the evidence from tampering, a system which can demonstrate the absence of
tampering also fulfills this requirement.

1.3.6 Shortcomings of current practices and the need for a new approach

Though several authors describe the concept of forensic soundness slightly
differently, the basic concepts remain the same. The evidence must be extracted in a
transparent, repeatable, and verifiable manner that alters or destroys as little data
as possible. There must be a high degree of certainty that the data is interpreted
correctly. There must be measures taken to ensure that the evidence has not been
tampered with.

Unfortunately, current practices fail to meet these standards in several respects.
First and foremost is that evidence extractions cannot be relied upon to leave the
data unaltered. Some engine maintenance software can, by default, clear trip data
after they are extracted from the engine. While this may be desirable behavior for
the software's typical use case, in a forensic context it is unacceptable. In addition, if
a bench download is being performed, the ECM is disconnected from all of the
various systems it was designed to monitor, causing spurious fault codes to be
created. With some manufacturers' products, especially Caterpillar, these can
overwrite fault codes of interest in a crash investigation. The damage is made worse
when repeated downloads are conducted.

In addition to data extraction, current practices lack in the forensic soundness of the
storage of data as well. No measures are taken to ensure that data have not been
tampered with. Data export formats, typically plaintext HTML or PDF documents,
can easily be altered with readily-available software. Some manufacturers' native
file formats are encrypted somewhat, though not strongly: Cummins' EIF format is
simply a password-protected ZIP archive, while Detroit Diesel's Drumroll files are
encrypted using a simple XOR cipher. Once decrypted, these files can be altered to
remove evidence and re-encrypted easily.

Due to the potential for destruction of the source evidence and alteration of
extracted data, it appears that current practice fails to pass the litmus test of
forensic soundness as currently accepted in the digital forensics community.

In reference [37], Johnson, Daily, and Kongs describe the current shortcomings of
heavy truck ECM forensics, reviewing the weaknesses previously enumerated in this
section. They also demonstrate a practical example of file modification of a DDEC
Reports data file, altering vehicle speed records.

The literature relating to the forensics of heavy truck ECM data is relatively
undeveloped. Most of the work to date, such as references [38], [39], and [25] deal
with the accuracy of data recorded on ECMs and causes of data loss. While these
works address the practical necessities of extracting data from ECMs and ensuring
that the data are correct, they do not consider the possibility of intentional
modification to data or corruption of data after it has been extracted.

2 Methods

2.1 Methods for Cyber Physical Systems

2.1.1 Logger Design and Evaluation

We evaluated three Arduino Can Logger (ACL) designs of increasing complexity and
computational power. The first ACL design constitutes an Arduino UNO and a CAN
bus shield. The second ACL design is based on the combination of the Arduino UNO,
the CAN bus shield, and the OpenLog chip. The third ACL design consists of an
Arduino Due (more powerful than the UNO), the CAN shield, and the OpenLog chip.

To evaluate the logging implementations, two methods are used 1.) FPGA
Deterministic CAN Message Generator 2.) Toyota RAV 4 CAN Traffic recording. The
first method utilizes the National Instruments CompactRio platform featuring an NI
9853 CAN module to send specifically timed CAN messages with predefined content.
The CompactRio is connected to a CAN infrastructure that includes an industrial-
strength Vector CANCaseXL CAN logger. 500 predefined CAN messages are
transmitted 35 times and the logging data generated by the two logging components
is then analyzed against defined performance characteristics. The second evaluation
method, features the replay of recorded 2009 Toyota RAV 4 CAN traffic via the
Compact Rio platform and a replay system specifically designed to enable
deterministic CAN replay analysis. The CAN messages, their content, and their
timing is representative of CAN traffic found in modern passenger vehicles. The
replay and recording procedure is performed 35 times and analyzed as before.

2.1.2 Real time Replay Methodology

Deterministic and faithful replay behavior is vital to reproducible experimentation
and testing since it permits reducing the difference in the observed time values
between original data logging and replay logging. This means that if the replay
algorithm produces deterministic time values in repeated replay sessions, it should
be possible to reduce the timing differential that might be caused by different
network topologies.

Figure 3 illustrates the Real Time Replay Methodology. Data collection is achieved
by a VectorCANcaseXL CAN logger. Data transformation involves adjusting
timestamps to calibrate and condition data with respect to performance
characteristics of the reference CAN logger. During replay, traffic is logged and its
temporal properties are compared against that of the original data. An acceptable
outcome in this comparison validates subsequent analysis, otherwise adjustments
are made to bring the replay in line with the original traffic and the process is
repeated.

¥

o Mgssage
Logging

Data Collection

l Acceptable At

Data Transformation

v

Yes

v

No
CAN Message Perform System
Replay Analysis
Adjust CANA t [— End

Figure 3: Real Time Replay Methodology.

2.1.3 Logger Evaluation

The Arduino-based solutions are compared against the CompactRio NI 9853 CAN
logger in the context to the Real-time replay process. The CAN replay evaluation of
the loggers uses the real-time replay system to send out recorded CAN traffic and to
compare the logfiles to reference data stored in the database for comparison. The
order and completeness criteria established before must be met perfectly by any
viable logging solution. The timing criteria does not have to be met perfectly, but
must be appropriate for the purpose of the cyber-physical system analysis. The
evaluation framework consists of the necessary CAN wiring harness/cables, the
CompactRio platform with a NI 9853 module and the respective logger under
evaluation.

2.1.4 System Characterization

The real time replay methodology is used in a system characterization and analysis
of a reference component on a vehicle CAN infrastructure. Specifically, a voltage
sensor for a Transmission Control Unit (TCU) is selected for characterization and
analysis. This process required profiling and deriving the pin out for the TCU of a
2009 VW Jetta. An internal voltage sensor measures voltage supplied to the TCU
(which should not exceed 12.5 V) and transmits that information in the form of a
CAN message.

To characterize the TCU supply voltage sensor and the CAN conversion process a
real-time characterization system was developed that: 1.) Monitors the supply
voltage provided to the TCU, 2.) queries the TCU supply voltage via OBD-II
compliant messages, and 3.) provides a means to compare both measurements. CAN

messages and voltage measurements are time-correlated via ‘tick count’ held in a
shared register.

The equipment used in the TCU voltage sensor characterization harness includes:
(1) Power supply: Meanwell NES - 100, (2) Voltage Measurement: CompactRio with
a National Instruments NI 9229 input module, and (3) CAN logger: CompactRio NI
9863 CAN 0 Logger.

Determining the voltage differential between measured and CAN logged voltages is
described as follows: 1.) select a CAN voltage reading, 2.) match the supply voltage
via tick count, and 3.) averaging the two closest supply voltage readings if no exact
tick count match is available. Factoring in an inferred conversion lag (5 ms is
suggested) uses the same process wherein CAN voltage readings have been adjusted
accordingly.

The final step in the system characterization and analysis process is the simulation
of the CAN voltage as generated by the TCU. In order to accomplish this, a highly-
deterministic TCU simulation system is designed that listens for incoming OBD-II
messages on the CAN bus and generates simulated CAN voltage messages matching
those of the physical TCU as closely as possible. This design uses the Vector
CANCcaseXL logger instead of the CompactRio. The software features parameters
accounting for the voltage underreporting, the CAN conversion lag, and the
maximum response frequency encountered during the analysis of the physical
device. The goal is to mimic TCU output, while providing adaptability that can be
useful to investigate alternative scenarios.

Upon receiving an OBDII query, the system converts the latest supply voltage
reading into a CAN message and sends it onto the CAN bus. The simulated TCU
cannot use the same CAN ID as the physical TCU and instead uses CAN ID 0x7EA for
disambiguation. The CAN messages sent out by the physical and simulated TCU are
captured by the CAN logger and arranged for chronological computation of
differential voltage.

2.1.5 Formal Verification Study

The investigation into formal verification techniques begins with an assessment of
various formal models for hybrid systems. These are evaluated against
expressiveness in modeling, potential for analysis, and tool support. A canonical
vehicular CPS element is used as the object of formal analysis, and studied using the
candidate system.

2.2 Passenger Car Event Data Recorder Research Methods

This study required the collection and interpretation of CAN data. In the
following chapter the devices and methods used to record and interpret CAN bus
traffic are explained and a brief overview of the study is given.

2.2.1 Methodology Overview

Fundamentally, the data stored on the Honda SRS module can come from one
of two places: 1. the internal sensor circuits or 2. the messages existing on the CAN
bus. The source for pre-crash information typically comes from the CAN messages
and the SRS internal accelerometer provides the data source for the delta-V data.
Therefore, if the CAN message data is known at the time of recording, then the data
storage mechanism can be systematically studied by comparing the retrieved event
data to the known data on the CAN bus. A graphical depiction of the basic
methodology used for this paper is presented in Figure 4 as a flow chart.

Record CAN bus traffic
during dynamic driving

|

Replay CAN traffic to
SRS module

|

Set a non-deployment
event on the SRS module

|

Compare EDR data to
Recorded CAN history

Figure 4: Methodology Overview

2.2.2 Driving Tests

Data was collected from the two test vehicles under a variety of driving conditions
including steady state, maximum ABS braking, acceleration, Figure 8’s, yaws, and
normal driving. For the maximum ABS braking condition, multiple test runs were
made from a highway speed (approximately 113 km/h or 70 mph) and multiple
runs from a lower starting speed (80 km/h or 50mph). These data were archived so
they could be used as sources to replay the data back to the SRS module in the lab.

Each car was instrumented with a Racelogic VBOX 3i and a Vector CANCaseXL
logging device. The VBOX was programmed to transmit 100 Hz GPS-based vehicle
speed on CAN ID 0x302 and time on CAN ID 0x301 over the vehicle’s CAN bus
according to the VBOX 3i User’s Manual. To ensure that no data would be lost
because of this transmission, CAN data was logged before the addition of the VBOX

and it was determined IDs 0x301 and 0x302 were not used by the Honda CAN
network, making them available for VBOX data. An example of CAN data from a
hard-brake test for the Honda Civic and Honda CR-V are shown in Figure 5 and
Figure 6. It contains CAN data that show the engine speed in RPM, indicated vehicle
speed, accelerator pedal position, and brake status. Additionally, it shows the VBOX
speed that was transmitted onto the CAN network. This is fundamental to this
research, because it enables all data to be synchronized by using the same data bus.
While injecting the VBOX data onto the CAN, the busload hovered around 40%, thus
no issues regarding normal CAN bus behavior and timing were suspected.

Civic 50 mph Run 1

__90 2000
3
5 20 1800
=
v
E 70 1600
=
1400
< 60
=4
o = Vehicle Indicated Speed (0x309) 1200
= 30 | __\BOX Speed (0x302) 1000 =
% 10 « Front Left Wheel Speed (0x1D0) =
S - - Brake Status (0x17C) 800
230 Accel Pedal Position (0x17C)
& + Engine Speed (0x17C) - 600
=
.._g 20 400
=
B 10 \k ik e —— || || | 200
@]
a '
R - 0
-6 -5 -4 -3 -2 -1 0
Time (s)
Figure 5: CAN data showing a hard brake on the Civic from 50 mph
CRV 75 mph Run 1
. 120 - - 2500
£
c
.0
2 100 -
S - 2000
w©
e
[+}]
& g0 -
§ = Vehicle Indicated Speed (0x309) 1 L 1500
e —VBOX Speed (0x302) g s
E 0 |+ Front Left Wheel Speed (0x1D0) o
.E_ - - Brake Status (0x17c) /\- L 1000
E 40 || - Accel Pedal Position
v + Engine Speed (0x17c)
=
= - 500
§_ 20 -
T
[O e T O " g Ay [Py s A Ry [y Py S B
Q
[=3
v
0 el SR A s e Sama s I~ 0

Time (s)

Figure 6: CAN data showing a hard-brake on the CR-V from 75.

All CAN data were logged to a Vector CANCaseXL Log device that recorded time,
message spacing, ID, Data Length Code, Data entries, and Bus statistics. These binary
files were converted to a text based log file and parsed to extract the data of interest.
Because these files contained all the CAN data, the file sizes were large. Therefore,
the runs used for replay were trimmed to nearly 7 seconds so the hard brake events
were captured along with the steady-state speed section proceeding as shown in
Figure 5 and Figure 6. Some of the non-interesting CAN messages were removed
from the dataset since they had no meaning to the SRS module. These data were
transformed and stored so they could be used repeatedly.

2.2.3

Interpretation of CAN Messages

CAN messages logged by the Vector CANCase XL Log were saved as a tab delimited
files in the format shown in Figure 7. To interpret these logged files two things must
be determined: message location (i.e. CAN ID and byte(s) comprising message) and

bit resolution of data.

©® oW N

g
10
11
12

13

;Timestamp [ns] Timediff[ps]

Trigger Type

on/Off— CAN

CAN
CAN
CAN
CAN
CAN
CAN

(83)

(4484)

ch:1

(496)
(498)
(498)
(498)
(497)
(498)

0 +13443689600000001s Realtime
0 +0ns Single Session Start

0 +0ps on/Off BUS INFO (4c2)

0 +0us on/Qff BUS INFO (84c2) ch:2
182297112000 +192297112us
192297444000 +332ps - On/Off
192297907000 +463ps - On/Off
192298155000 +248ps - On/Off
192298397000 +242ps-—On/Off
192298625000 +228ps - On/Off
182298850000 +225ps—On/Off
192293100000 +250ps - On/Off

CAN

(498)

ID:c0015b09ERimE

Event Type

Data
Tue Aug 07 19:49:20 2012

Data

Data

DataGRiAE

Baudrate:1441, Silent:0, Protoccl:0, Pre-Trigger:0, Post-Trigger]
Baudrate:1441, Silent:0, Protocol:0, Pre-Trigger:0, Post-Trigger]
data:00 a8 00 00 00 00 3b

(497)

RX
RX
RX
RX
RX
RX
RX

ch
ch

ch:

ch

ch:
ch:
ch:

01
01
1
i1
1
1
1

RX ch:1-Dlc:7

Dlc:
Dlc:
Dlc:
Dlc:
Dlc:
Dlc:
Dlc:

6

8
8
8
7
8
8

id:
id:
id:
id:
id:
id:
id:

156
91

la4
laa
1b0
1do
lea

id:305

data:
data:
data:
data:
data:
data:
data:

ff
80
00
Tt
00
49
00

do
00
00
ff
0f
bc
00

00
08
00
00
00
93
00

00
05
00
00
00
91
fa

07
fb
00
00
00
25
00

19
00 00 3c

00
00
00
32
00

00
66

09
03

od

4b
00

14
06

Figure 7: CAN Case XL Logger Exemplar File.

2.2.3.1 Determination of Message Location

To determine the message ID on the CAN network, human ability for pattern
recognition was utilized. To consider an example of this process a VBOX GPS speed
record is shown in Figure 8 for a hard-brake with speed plotted on the y-axis in
km/h and time plotted on the x-axis in seconds. For now, we will consider only the
shape of the curve.

Speed (km/hr)

0 1 2 3 4 5 & 7
Time (s)

Figure 8: Example VBox GPS Speed Record.

For this CAN history, plots were created for each CAN ID systematically for single
bytes and byte concatenations. The plots for ID 0x309 are shown below in Figure 9
and Figure 10. The shapes of CAN ID 0x309 bytes 4 and 5 in Figure 10 and the VBOX
speed plot above match, indicating bytes ID 0x309 bytes 4 and 5 as a good candidate
for the vehicle speed message. Other CAN histories were considered and this ID and
byte combination was determined to be vehicle speed.

ID 0x309 Byte 1

ID 0x309 Byte 2

% 1D 0x309 Byte 0 gé, % .
g 0.8 E 0.8 g 08
= Z =
3 s 2 0.6 3 o6
E 04 g 04 g 04
02 = 02 '_3“ 02
E o H o H o
0 3 timetss 10 15 0 5 Timets) 10 15 o 3 fimetsy 10 L
o ID 0x309 Byte 3 o ID 0x309 Byte 4 o ID 0x309 Byte 5
E E 25 5300
Z 03 = 20—?% 220 | va, Y o
=z =z z MRS ‘ b
2 06 3 15 7 ‘ § i:z Fete? % o
HE HES 3 HeS 2SS IR 2 5
g g : .im 8 gletel ¥ lee A,
o 3 Time (s) 10 15 0 3 Time(s) 10 13 o 5 Timefs) 10 13
% ID 0x309 Byte 6) ID 0x309 Byte 7
g 1 2
g 08 E
z 2
S os 3
; 02 E 50
[= I o 0 T T
e 5 Time (s) 10 13 ° > Time (s) 10 13
Figure 9: ID 0x309 Single Bytes plotted vs. time.
2 ID 0x309 Byte O and 1 8 ID 0x309 Byte 1 and 2 g ID 0x309 Byte 2 and 3
g H g
2 o038 2 os 2 o8
=z 4 =
3 os 3 os 3 os
g 0.4 g 0.4 g 0.4
g 0.2 g 0.2 g 0.2
a8 o g o & o
0 5 Time (s) 10 15 0 5 Timelsl 10 15 0 5 Time (s) 10 15
9 ID 0x309 Byte 3 and 4 v ID 0x309 Byte 4 and 5 ID 0x309 Byte 5 and 6
g 25 H & Booo
@ s e — 4
= 20 H < fooo +— 2 =
P —atlian H ISEEEI T
5 X + fJooo 3 SR rerad 1T o
El 5 fooo 3 fooo :::’ 3 §'-’-%’
3 2 g .
2 s L Zhooo 3 £ Rooo ’::5“ ”.g:
£, , 3 1 , N 1 R TABRE W
0 5 fimel 10 15 0 5 fime(y 10 15 0 5 Times) 10 15

ID 0x309 Byte 6 and 7

400 22, 008898 08, 2780 48245

T T
5 Time (s) 10 15

Figure 10: ID 0x309 concatenated bytes plotted with time.

To automate this plotting process a Python script was written to systematically
graph CAN data vs. time. The plots are generated with the most significant byte first.
For example, if byte 4 = 0x17 and byte 5 = 0xc4, the concatenated bytes would be
0x17c4. Since byte 4 appears first in the concatenated string the byte order follows
the big-endian or Motorola format.

2.2.3.2 Determination of Bit Resolution

To determine the bit resolution of ID 0x309 bytes 4 and 5, the VBOX GPS based
speed was divided by the decimal value of the CAN message providing a calibration
factor between the CAN decimal value and speed in km/hr. This methodology was
used to identify CAN messages that may serve as SRS sources and a summary of the
results is given in Table 1Table 3. In this table the likely conversion rate is given in
terms of the least significant bit (LSB). For example, take 0x17c4 as a speed
message. This value converted to decimal is 6084. If we multiply the decimal value
by 0.01 km/h, as given in Table 2.1, we have a resultant speed of 60.84 km /hr.

Table 3: Honda SRS Sources

. Likely Conversion | CAN Refresh

Quantity CAN ID Byte(s) Method Rate (s)
Speed Vehicle

Indicated 0x309 4and 5 0.01 km/h per LSB 0.1

Accelerator |17 0 0.5% per LSB 0.01

Pedal Position 270 P '
Engine RPM 0x17c 2and 3 1 rpm per LSB 0.01
Service Brake | 0x17c | Bit 0 of Byte 4 1=0n, 0=0ff 0.01

Steering -0.1 degree per LSB,
Wheel Angle Ox156 Oand1 signed integer 0.01

2.2.4 CAN Replay System Design

In this chapter the CAN replay system requirements and design will be explained.
The CAN replay system consists of the mechanical testing apparatus, the electrical
design which accompanies it, and the LabVIEW software implementation which
controls it.

2.2.4.1 Mechanical Design Requirements

The SRS modules need to experience an acceleration that will enable the
recording algorithm. According to the Data Limitations for Honda in Version 8.1 of
the Bosch CDR report: “A non-deployment event is recorded if the change in
longitudinal or lateral velocity equals or exceeds 8 km/h over a 150 ms
timeframe...” The CDR report also specifies, “A deployment event is recorded if
front airbag(s), side airbag(s), or side curtain airbag(s) are commanded to deploy.
Deployment events are locked into memory and cannot be over-written.” The
permanent writing of an event to a module renders that module useless for further
study. Thus deployment events must be avoided or only one data point may be
obtained per module. However, if non-deployment events are achieved, an SRS

module may be used for many tests. Since the achievement of non-deployment
events are essential to this study, a detailed description of the methods used to
ensure only non-deployment events would be generated are presented in the next
sections.

2.2.4.2 Mechanical Design

The event generation apparatus consists of a linear sled and a pneumatic
cylinder that was designed to provide a delta-V around 10 km/h in less than 150 ms.
This deceleration occurs as the carrier with the SRS module reaches the end of the
motion and comes to a stop. An external accelerometer was used to measure the
accelerations and independently determine the delta-Vs. An annotated photograph
of the test setup is shown in Figure 11, a schematic shown in Figure 12, and a
skeleton drawing shown in Figure 13.

Accelerometer

Figure 11: Mechanical test fixture.

49 in

13in
16.25in

15.5in

'K. SO, 0-5in 27in

14 in.

Figure 12: Non-deployment event generation skeleton drawing dimensions

Figure 13: Non-deployment event generation skeleton drawing variables defined

Since a repeatable acceleration profile was necessary to achieve non-deployment
events, a kinematic analysis of the apparatus was done. For this analysis loop
closure equations were written to predict the acceleration magnitude and duration
the EDR module would experience upon firing of the apparatus. Figure 13 provides
the definition of the variables used in the kinematic equations.

Once the testing apparatus was constructed the acceleration pulse was measured
using a Spectrum 15200B %35 g accelerometer sampled at 4000 Hz for various
solenoid pressures. Figure 14 shows an acceleration plot produced during a test. In
this figure the acceleration pulse is plotted as the solid line, the delta-v value from
20 ms is plotted with a dotted line, and the delta-v from ¢ty is plotted with the dashed
line. The delta-v from 20 msec data takes the delta-v from a 20 ms window while the
delta-v from t0 data plots the accumulative delta-v value. The delta-v values were
calculated using the trapezoid rule using different starting and ending criteria. The
to value referenced by this figure is the time at which the change in longitudinal
velocity equals or exceeds -0.8 km/h over a 20 ms timeframe. This trial produced a
non-deployment event and the corresponding pressure (65 psi) was used for
testing. Additional testing proved that the acceleration pulse was consistent and
that non-deployment events were achieved.

Acceleration (g), Delta-V (km/h)

Delta-V from 20 msec
: ‘ ‘ - - Delta-V from t0
—15 s s s PR Accelera‘non |

—-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (s)

Figure 14: Non-deployment apparatus acceleration pulse.

2.2.4.3 Electrical Design

The actuator is a pneumatic cylinder with a stroke of approximately 10 cm. The air
sent to the pneumatic cylinder was controlled using a pressure regulator in series
with a solenoid valve. This solenoid valve is normally closed and is opened in one of
two ways: 1.) a manual switch located near the rail or 2.) the output from the
National Instruments NI 9478 digital output (DO) module. The DO module switch is
controlled from the field programmable gate array (FPGA) program and was
engaged based on a user specified time, which enabled an event to be generated
during a specific section of the CAN history. Another switch was used as a start/stop

switch that began and ended the program. It ensured the cylinder was only actuated
when the user was ready and the area was safe.

A Spectrum 15200B +35 g accelerometer with a DC-400 Hz response was used to
measure the acceleration the SRS unit experienced. The acceleration trace was time
correlated to the CAN message transmission. This synchronization allows
Algorithm Enable (to) to be established in the external CAN data sent to the SRS
module.

The electronic communication schematic of the test apparatus is shown in Figure
16. The CAN network connects both CAN ports of the NI 9853 high speed CAN
module, OBD II port, SRS module, and the female banana plug test points. The CAN
information is transmitted from the CANO port of the high speed CAN module and
recorded by multiple devices (SRS module, CAN1 port, and possibly the banana plug
test points). The Honda SRS module requires an addition wire, the K-Line, to be
connected for communications with the Bosch CDR tool. The SRS connector pin-out
is shown in Table 3.1 and the SRS pin out is shown in Figure 15.

Table 4: 2012 Honda SRS Connector A and OBD-II pin out.
SRS Pin | Signal | OBD-II Pin

19 K-Line 7
20 CANH 6
21 CAN L 14
36 GND 1 5
37 GND 2 5

38 VBAT 1 16
39 VBAT 2 16

Jo=—OJo—0 [O==0
13]1]2]3]4 ﬁiﬁ 7]8]14]15
00| 00

8 [10)11]12]16]17]18]19]20|21]22]23| 24|25
26[27[28|29 (30131 32|33 |34|35{36|37| 38} 39

Figure 15: SRS Connector View Honda 2012 (Female)

Compressed Air
Supply

Air hose
4{ Pressure Regulator }—

12V 4‘; Safety Switch

__| Solenoid

1

L

1254 1 T3 o

2
fg\ Manual Switch ,]\ |—(Pneumatlc Cylinder
S o
Spectrum 152008 |
Accelerometer + 35g l- 4- CH GND
1-Analog Output 1+ |-=====ee-- SLTPRRN Toeere- 5-5IG GND
a-signal - peeeeeemeneenibioey i e — 6-CAN H
ST ' :
| : i 120 Ohm BTG
Cod : i — 14
NI 9478 vl LA : :M/j“ LACANL
_ e e N N B :
. N : , 16-VBAT
Digital Output o6 ||| i : o
P ; P OBD Il Port
-ACHO| femmme-- i ; P |
! 9205 HACH O] prmmemees i ’ | — 19Kine
Analog Input -ACH1 | t=-3 i i_____,—|~\ ____________ 5 T
+ACH1 "'\m ’ [— o 2-CANL
com H 36-GND 1
I 37-GND 2
, 7-CAN1L H| {==mmnsmmmmsmmmmsmmmmmmannmnanes |
High Speed CAN 5 caniLlF — — — — 1 Poor
NI 9853 7-CANO H |- ----- 1 ----- i 38-V BAT 1
2-CANO | (- — — — — — — — — -4 39-V BAT 2
P
NI cRIO 9014 °© o : 2012 Honda SRS
W 120 Ohm (Airbag Control
Ethernet test é ‘ Module)
points
CANH CANL
PC

BOSCH CDR Kit

Figure 16: SRS module replay system schematic.

2.2.4.4 Software Design

Figure 17 shows the general overview for the software implementation used in this
study. The implementation and devices will be described in the proceeding sections.

General Purpose PC Real-Time System FPGA
N Access CAN
, _L| Buffer CAN Data in FIFO
Manipulate Traffic 1)
CAN Histor .
STOTY i Retrieve Next
Formatting —=n At
lv Open Channel N
To FPGA No Wait for At
Send to wlr
Real-Time Transmit :
System Send Next
Data Message
v
Initiate FPGA All Sent?
Execution

Figure 17: CAN replay methodology overview refinement.

The NI 9853 High Speed CAN module requires the transmitted messages be
formatted into six unsigned 32-bit words: time high, time low, CAN ID, DLC, data 1,
and data 2. For transmission, the time high and time low are set to zero. In order to
comply with the standards required by this device a Python script was developed to
parse and convert the CAN Case XL Logger file into an acceptable format. The
program and process is described below.

To understand the Python script a screenshot of a raw vector file is shown in Figure
18 where arrows indicate tabs.

| Timestamp [ns] Timediff [ps] Trigger Type Event Type Data Data Data Data@Rifa

0 +13443639470000000us Realtime (83) Tue Aug 07 19:57:50 2012ERa
0-——+0ps Single—Session Start (4484) ID:c0015b09ERMa
0] +0ps on/0ff BUS INFC (4c2) ch:l Baudrate:1441, Silent:0, Protocol:0, Pre-Trigger:0, Post-T]

0] +0ps on/0ff BUS INFO (84c2) ch:2 Baudrate:1441, Silent:0, Protocol:0, Pre-Trigger:0, Post-T|
165538601000 +165538601us on/0ff —CAN (498) R¥X ch:1-Dlc:8 id:91 data:6d c0 07 31 e6 00 00
165538849000 +248ps —On/Off —~CAN (498) RX ch:1-Dlc:8 id:1a4 —~data:00 00 00 00 00 00 00 3¢ WM
8 165539092000 +243ps On/Off ~CAN (498) RX ch:1 Dlc: id:laa -data:7f ££ 00 00 00 00 €6 30 [
9 165539316000 +224ps —Oon/0ff —CAN (497) RX ch:1-Dlc: id:1b0 —data:00 0f 00 00 00 00 3a

10 165539546000 +230pus —On/Off CAN (498) RX ch:1 Dlc: id:1d0 data:13 82 29 ad 4c f8 a4 ec WM
11 165535732000 +186ns On/Off ~CAN (495) BX ch:1 Dlc: id:134 -data:29 00 02 08 38

Figure 18: CAN CaseXL Logger Format

[= ']

The CAN history was read into the Python program and each row was subsequently
split into separate entries using the . sp1it (‘\t’) function, providing an array of
data. Data was then appended to a one dimensional array according to its value. For
example, entries[6], which corresponds to the CAN ID, were appended to the
“IDs” array. However, entries[6] forline 7 of Figure 18 contains “id:1a4”.To
report only the desired data, “1a4”, entries[6] [3:] were appended to the IDs
array. A similar method was used for all data of interest in the CAN file.

The first data transformation necessary when using a CAN logger, like the Vector
CANCaseXL, is to compute the time differential At between sequential messages as
recorded by the logging hardware. This was achieved by simply subtracting the
timestamps of two sequential CAN messages that are replayed. Furthermore,
logging devices often captures data that was not conveyed via CAN messages and
that can be discarded since it is logger specific and has no relevance for the
temporal relationships. For example, the Vector CANCaseXL is capable of recording
information concerning bus load. Since this information is not native to the Honda
CAN network it can be stripped from the Vector log file to attain the Honda CAN
history without altering the temporal relationship of the recorded CAN messages.
The removal of superfluous data was achieved using lines 42-55 of the python script
shown in Figure 19. If the data in entries[6] is nota CAN ID that row is skipped
and not appended to the IDs array. Furthermore, only certain CAN IDs are needed
for replay to the SRS module, thus a blacklist was created. If the CAN ID is
blacklisted, it is skipped and not appended to the IDs array.

42 o for line in lines[6:] : GIIAD

43 entries=line.split ("\t")

44 #print (entries) # (only for debugging) GRS
45 o try : @A

16 #build a list of IDs[ERAE

47 o if entries[€][2]!'="x":[=ifg

48 identifier=entries[6][3:] @A

49 o if identifier in blacklist:[@Ag
50 continue[@RNG

51 & else : [EINKT

52 IDs.append(identifier)

53 © else:

54 print('idx found... skipping') CEIS
55 continue@RiNg

Figure 19: Removal of logger specific data from CAN history file.

To ease data replay, all CAN messages can be stored in a flat file. The flat file
contains rows of data in which the first column comprises the integer message
spacing in microseconds, the next column is the decimal representation of the CAN
ID, column 3 is the Data Length Code, and columns 4 and 5 are the CAN data as
represented in decimal form using 32 bit words. In other words, column 4 contained
the first 4 bytes of the CAN message and column 5 contained the last 4 bytes of the
CAN message. If the data length code was less than 8, then the missing bytes were
filled in with zeros and converted. The creation of the described flat file was
achieved in lines 88-122 shown in Figure 20. In line 88 of this code the new file is
opened and in line 121 data is written to the new file. To format our data into two
U32 words (data 1 and data 2), lines 90-118 use byte shifting methods. For example,
in line 103 the “datal” (i.e. bytes 0-3) are defined by shifting the 64 bit (8 byte)
message, “bigData” 32 bits. This shift allows the less significant 32 bits to be stored.

g8 J] newFile=open (£[0:-4]14' ForlabVIEW CRV brute force.csv','w')Eila
89 [for delay,ID,DLC,hexMessage in zip(delays,IDs,DLCs, hexpayvloads) : @GR
90 #print (hexMessage) @D
91 data="'" G2z
92 H for h in hexMessage : @RA3
93 #print hiERNAI
94 I data+=h #Datal[0] is the MSEERMAI
95 4print (data) ERWI
96 #print len(data) /2CAMW3
97 bighata=int(data,l¢) ERA
93 #print bigDatzERMS
9% o if len(data)/2 == ¢:@E2A
100 dataZ=ctypes.c uint32(bigData).valucEDA3
101 #print (data?) @R
102 #print (hex(data2)) CRAA
= datal=bigData>>32ERlE
104 H if len(data)/2 == 7:@E2Aa
105 dataZhex=datal[-6:]+'00' E2HAS
106 data2=int (datazhex,16) DA
107 datalhex=datal:&] RS
108 [datal=int (datalhex,1¢) GRS
108 © if len(data)/2 == ¢:ERAS
110 data2hex=datal[-4:1+' 0000 "' CRAF
111 data2=int(datazhex,16) D3
112 datalhex=datal:?] @S
113 | datal=int (datalhex,1¢) DS
114 H if len(data)/2 == 5:E2AE
115 dataZhex=datal[-2:]+'000000" DA
116 dataZ=int (data2hex,1¢) GRS
117 datalhex=datal:&]ERAS
118 | datal=int(datalhex,1¢) DA
119 #print (datal) @R
120 4print (hex (datal)) CGRA3
121 [newFile.write('%1,%1,%1,%1,%1\n" %(delay,int(ID,16),1int (DLC) ,datal,dataz))
122 - newFile.close () GRM3

Figure 20: Python implementation of creating a flat file after data conversion.

2.2.4.5 Design Requirements for CAN Transmission

The challenge of the methodology is minimizing external effects on the replay
algorithm that could interfere with the temporal relationships contained in the
recorded CAN traffic. A simple replay implementation would be to use any general
purpose programming language to implement and execute a replay algorithm on a
general purpose PC. The problem with this approach is that most operating systems
used on general-purpose computers do not guarantee the timeliness when a certain
function within a program is executed. Furthermore, the relative execution timing
might vary depending on other processes currently using the system. Thus, there is
no guarantee that the replay algorithm is ready to send a CAN message at a specific
point in time, since the process might not currently have access to the CPU.
Additionally, repeating the replay algorithm is likely to generate significant
variation in the message timing since CPU load varies over time.

To minimize distortions in timing between messages the steps comprising the
overall CAN replay system were grouped according to the time sensitivity and

implemented on platforms that best meet their respective needs. A combination of a
general purpose PC (Windows 7 running LabVIEW 2011) and a real-time system
with field programmable gate array (FPGA) (National Instruments CompactRIO)
was suitable to achieve the goal of minimized temporal distortion.

2.2.4.6 Real-Time Operation System

A real-time operating system is a special-purpose operating system that imposes
rigid time requirements on process execution. Among real-time operating systems
two subcategories are frequently distinguished. A hard real-time system guarantees
that all delays within the system are bounded via an upper and a lower execution
time that must be met at all times. To achieve this, the set of available functions is
limited and algorithms using such systems must be designed to achieve their goals
with the available functions. A soft real-time system does have upper and lower
bounds for all functions but it assigns and manages varying levels of task priorities.

In this study, a hard real-time system was used to interface the messages stored in
the flat file and the FPGA. This was done because the FPGA was not able to store the
entire CAN file used for replay. Thus the real-time system was used to transmit the
CAN file into a FIFO (which acts as essentially a buffer) passing the flat file to the
FPGA allowing it to be replayed. This forwarding process is done without imposing a
strain on the timing between CAN messages.

2.2.4.7 Field Programmable Gate Array

A field programmable gate array (FPGA) is an integrated circuit that can be
configured via an appropriate hardware description language. [t combines
hardware-typical speed, determinism, and reliability with some of the flexibility of
general purpose programming languages. An FPGA allow several programs to
execute truly parallel without competition for shared resources and offer
nanosecond response times for input-to-output processing. Of course, offering such
a feature set comes at the expense of the complex FPGA operations, meaning that
not all algorithms are suitable for FPGA implementation and compile times are
longer. Due to the need for accurate timing and synchronization, the FPGA was used
as the core technology of the system.

2.2.5 Software Implementation

The software used to run the system was written in LabVIEW using the following
development targets: (1) Python programing on a PC, (2) real-time system, and (3)
a FPGA. The LabVIEW programming environment eases development and testing
across targets.

The tasks executed using Python are related to data processing and storage. First,
the log files created by the CAN message logger are processed to extract the relevant
message time stamps and the data conveyed via the CAN messages. Everything else
is ignored and only the relevant data is designated for storage. The CAN replay files
were prepared by placing them into a comma separated values table and uploaded
to the real-time controller using FTP (file transfer protocol). After the test was

finished, Python was used to post-process the data and produce values with
engineering units.

The main function of the real-time system included in the CompactRIO platform is to
provide the data prepared using Python to the FPGA. As described previously, the
FPGA does not have the necessary storage space for the CAN history files to be
stored. To overcome this limitation, the real-time system writes the CAN history of
interest to a FIFO (first in first out) which is shared by the FPGA. The bock diagram
of the real-time VI written for this project is shown in Figure 21 and Figure 22. In
the lower left section of Figure 21, we see the case structure window in which the
CAN history used for replay is selected. Using the FTP, we are able to upload
multiple CAN histories on the real-time system. The front panel of this VI has a
selection window in which a list of available CAN histories are given. Once the CAN
history has been selected, the length of the data file is determined (both time and
number of messages) and used to configure the CANDataFIFO. The data is then
written to the FIFO in the second window of the flat sequence of Figure 21. The
solenoid delay value, shown in the first flat sequence window of Figure 21 is
specified by the user in the front panel of this VI. The solenoid delay allows the user
to determine when the non-deployment event will be created in the CAN history.
Once the sum of the delays (time between synchronous messages) reaches the value
of the solenoid delay the NI 9478 DO module switches, providing the necessary
voltage to actuate the cylinder (rig schematic provided in Figure 3.7). The real-time
Vlis also used to write the output files of the experiment. As shown in Figure 22, the
real-time VI opens two new files: Accel.bin and TransmittedCAN.bin. These files
contain the acceleration record of the external accelerometer and the transmitted
CAN history. These files are rewritten every experiment and must be taken from the
real-time system following each experiment using WinZip. The values of these files
are generated in the FPGA and are transmitted to the real-time system using FIFOs.

D0 000 0 D 00 D 0 0 0 0 0 000 000 00000 0000000 0000000000000 0000000000000 00000000000000000000

[A52'SLASD AYD IAH M3IINGE 04 PIOI3Y NYD ePUOH INH\D g

saquinp uny
_ ﬂﬁﬁ w,xm m =
Iuap] uny

uny W OIIRANYD
_ - b -

- 6
Buiweway syuawapg Adwy
W. Buiureway syuswapg Adw3 "
L] (5ua) o3|
[Gr=uoq mun wem 4 %eQ 4 j
Lﬂu

e3eQ sjsuR] NYD

(i 057]
(s) pouag ydweg Py A (0000007} sabessapy NYD _ i
wdag

[pdag ¢+

| 3inBlyuoy 0 JlmePNY JPRRIIsURI | 3:nbijuoy OJI3#1RaNYD 53BessI NV

H C = — I
(s} £epQ prou3jog

'E —

X4 Ny dois

5) A[3Q pIoua|0g

P2y dogs

[

O 0000000 000000000000 0000000

D0 O D 0 O D 0 0O D 0 0 0 0 000 0D 000 00 0 D D 00 0 000 0000 0000 D00 D 000 00000 00000000000 00000000000 00000

Figure 21: LabView Real-Time VI: FTP Reading and FIFO Configuration

@
AFWIL RIS Y

-

weg

o« Buiewsay spuswiap3

Buiueway swwagg [#00y

(5] pnoaw |

RIS §0 ROWnp ¢
PEY Q4 PPV

IAIDE UOISSILSURI |

LN IS

a 729

[Ea— UILIFWRY SUWE[]
@ Bunewsy spawag i) [[e=l] ieQ
o R0 NV MaN et s o]
[° SIURLLIPT JO J2qQUUnpy o ..M B
4 Peay DLEIRPNY JPINIISURI | [521]

[X NvD dogs
|22y diogs
= LNYO25sius

r=

Figure 22: LabVIEW Real-Time VI - writing binary data files.

The LabVIEW program implemented for the FPGA is the core technology that
enables real-time processing. The block diagram for LabVIEW is shown in Figure 23
and comprises three distinct blocks. First the flat sequence on the top is used to
control the transmission of CAN messages from the FIFO established by the real-
time VI. The For Loop in the center of the sequence is timed to cycle to the nearest
microsecond according the delay measured between messages. These delays are
summed and the solenoid is fired once a user inputted delay has passed.

The second block is a recording loop for the CAN data that were transmitted. This
enables verification as to what the SRS module actually saw during the test.
Furthermore, it produces a timestamp that can tie to the accelerometer recording
function, synchronizing the CAN and accelerometer records. The loop executes
aperiodically according to the received CAN message and times are attributed from
the internal clock of the CAN module.

The third block, shown in the lower right of Figure 23 contains the acceleration
sampling. This is a timed loop that executes at a user specified value (every 0.00025
seconds or 4000Hz in this case). The raw accelerometer data is converted to
microvolts, combined with a timestamp from the CAN module, and sent to the real-
time controller as a signed integer through a FIFO. The LabVIEW implementation on
the FPGA enables the determinism in the timing needed to accomplish this research.

» saydwig ooy
R o - = o CTEET] I TR TS |
oy ooy dos = HIE
(50T FuL NYD PR T & [0 swuno) o pavaay
265 (su00T) WAL NY D P339 3
= Thg P 2 mzﬁ doxs
Vo] Ot NV XL FRETY +{o00r]
FE]
P ==X ﬁm TN /Po PR
(ogn) suny Py = ;
[395n] pouag Hdhwes RO In] two e

(-R-H-R-%-0-B-K-H-1-K-E-] [-H-R-K-E-0-E-0-E-K-E-T-]

Tzl
[5] fefag proumog)

ng

(39gn) passeg suay

BT UOISSIUSURI Mo E

.
R . E
I

-

Topooooooong

Figure 23: LabVIEW program implemented on the FPGA.

2.2.6 CAN Replay Experiments

A detailed overview of the experimental process is provided as a flow-chart in
Figure 24

Make flat file
» availabe to Real-
Time System (FTP)

Setup Vbox to
transmit data onto
vehicle CAN bus

¥

Set time to actuate
pneumatic cylinder

. h 4
Record CAN bus
traffic during . ¥
dynamic driving Send CAN traffic
) I i via deterministic |
FPGA CAN module l
¥) | Modify time to
Compute At actuate pneumnatic
between ¥ cylinder
messages Seta non- T
: deployment event
an the 5RS module Yes
¥ _ _ ¥ , P
Store CAN Co m:are EE;R d:?ta -,.
trafficin flat file ta CAN traffic with | < Repeat?
VBox
Mo
PR SN
p \
| Finish |
., .

Figure 24: Details of the experimental process.

The test setup and software implementation described in this and the previous
sections enables experiments to study the timing and accuracy of EDR data. The first
set of experiments is to assess the accuracy of the CAN data compared to external
references. To do this, the CAN messages were cataloged and characterized so
values shown in the CDR report can be attributed to the correct CAN messages. Once
some CAN messages were known, the CAN data can be compared to external
references to gain a sense of the CAN data accuracy. Finally, the timing and data
storage algorithms can be evaluated through reading SRS module data with the
Bosch CDR kit after repeatedly setting non-deployment events for the same set of
CAN message traffic.

Since determinism is paramount to this study two methods were used to verify the
timing engines were true to the original data. First, the loop timer in the FPGA was

updated for each message based on the delay. Therefore, if all delays are summed,
then the total run time is calculated. The predicted runtime can be compared to the
actual runtime to get a sense for the determinism of the replay.

120 Measured CAN vs. cRio Transmitted CAN

100
— -
| 9
~'E 80 A
=
= 60 A
° 4 Raw CAN a
Q 40)
a o » Transmitted CAN a

20 A

A A
0 i : : ‘ A
0 10 20 30 40 50
CAN time elapsed (s)

Figure 25: Chart of an example run from a 2012 Honda Civic showing a vehicle speed trace
from CAN messages.

For example, the raw CAN messages in Figure 25 were obtained using a Vector
CANCaseXL Log attached to the Honda Civic. The time between the first message
with ID 0x309 and the last message with ID 0x309 was reported to be 46.708596
seconds. The replayed CAN messages were obtained from the CAN1 port of the
National Instruments NI9853 that was used to record the messages sent during a
test run on the non-deployment apparatus. The time separation of the first and last
0x309 message was 46.708202, which is a difference of 394 microseconds over this
span. This suggests an average error rate on the replayed CAN message timing of
0.00084%.

Second, for each run the timing was verified by comparing the timestamp produced
by the VBOX during the driving test to the recorded CAN from the replay. The VBOX
3i message encoding the time was also transmitted during the tests using ID 0x301
bytes 2, 3, and 4. This 24-bit integer represents the number of 10 millisecond
intervals since midnight UTC according to the VBOX 3i user manual. If this time
value was replayed and recorded while setting a non-deployment event with an
accurate time base, then a graph of the VBOX time divided by 100 with respect to
time in seconds would have a slope of unity, meaning exact time correlation. A slope
of less than unity would indicate a delay in the replayed CAN messages and a slope
of greater that unity means the replayed CAN messages are seen by the SRS module
faster than the original messages in the vehicle. The standard deviation of the
residuals of the line fit gives a sense of the jitter in the timing engines of the VBOX

and CAN message replay hardware of the FPGA and NI9853 CAN module. The slope
of the VBOX time signal and the replayed timestamp are checked for unity for each
run. An example of this check is shown in Figure 26. Based on these verification
checks, the CAN replay system is representative of the actual CAN data transmitted
in the vehicle.

Timing Graph Plot0 g

VBox Time (s)

13380 T I I I I I I I I
-60-50-40-3.0-20-1000 10 2.0
Replayed CAM Time (5]

Figure 26: Timing verification graph that shows a slope of 1.00018.

2.3 Methods for Assessing Heavy Vehicle Event Data Recorders

Prior to developing and demonstrating the methodology, researchers outlined [37]
forensic soundness issues with current ECM data extraction techniques,
demonstrating avenues by which data may be intentionally altered or
unintentionally corrupted. The main requirements of a forensically sound ECM data
extraction technique are: data integrity, confidence in meaning of data, error
detection and mitigation, and transparency and trust. Our solution, we believe,
meets those requirements.

2.3.1 Requirements of a Solution

Regardless of the meaning of the digital data, it is necessary to present data in its
final form in such a way that is transparent of its handling to establish
trustworthiness.

According to the transparency principle of forensic soundness, actions taken by an
investigator should be available for later examination. Additionally, any error
conditions encountered by the software should be recorded so that the legal weight
of the evidence may be accurately considered. Audit trails are log files generated by
forensic software to meet these requirements, and should at least be an option in
any forensic solution. Any solution must be able to trust that the ECM is reporting
the data faithfully, be able to interpret the various protocols and message types
(used in a vehicle network), provide an authentication mechanism that can be used
to preserve data integrity, and preserve evidence even in cases where some data
elements are not permanent such as system clock values.

2.3.2 Proposed solution for forensically sound extraction of ECM data

The proposed solution is based on proven techniques used in the world of computer
forensics. The idea is relatively simple: make a low-level copy of the evidence drive
is made (this copy is known as the “disk image" and then perform all forensic
analysis on this disk image instead of the original disk (to minimize changes to the
original source evidence). A vehicle network is different than a typical computer
system and this idea or concept had to be extended to truck ECMs. This is done by
making sure the information would be extracted exactly one time, and then replayed
for further analysis. The replay traffic information would be stored securely to
prevent malicious tampering or accidental alteration.

Development of the forensic replay software requires the following steps: (i) record
the original information extraction process, (ii) decipher any encryption or
obfuscation mechanisms obscuring ECM data, (iii) store the evidence in a secure
manner and (iv) respond to information requests identically to the ECM.

There are a couple of differences between the proposed extraction replay method
and a forensic disk extraction. One is the difference in the amount of data that is
extracted. Rather than saving the entire contents of a disk, a replay of a software
extraction only extracts the information normally accessed during that data
extraction. It is possible that some relevant information exists on the ECM that is not
extracted. The other difference in that while protocols for accessing hard disks are
standardized, ECM data is often accessed with proprietary protocols, that vary from
manufacturer to manufacturer, over standard networks. Therefore, for each
individual manufacturer that will be supported, an understanding of the
manufacturer's proprietary protocol extensions is required.

2.3.2.1 Data extraction and recording

[t was determined that the best way to define the extraction process was to record
the messages sent by the maintenance software to the ECM. Recording these
messages could take place at two information boundaries, the network or the
diagnostic link connector driver.

Communication between the ECM and the maintenance software may be recorded
at the network level, but this method has some drawbacks: the need for a physical
connection, specialized network logging equipment and ability to interpret various
protocol (it is not uncommon for ECM communications to take place over both
J1708 and J1939), and the loss of meaning due to use of RP1210 (by maintenance
software) if only network-level observation is used.

The proposed solution uses an alternate method of recording information extraction
based on recording calls made to the RP1210 drivers by the maintenance software.
This has the advantage of not requiring additional hardware to record network
traffic, and it abstracts away the details of transport-layer operations of J1939.

Recording calls made to these RP1210 drivers was accomplished using a technique
called API hooking [40]. A custom lightweight debugger was written using the
PyDBG tool. Upon attaching the debugger to the software in question, the debugger
searches process memory for any loaded RP1210 drivers. Upon discovering a
loaded RP1210 driver module, it places breakpoints on the following RP1210

function addresses: RP1210_ReadMessage, RP1210_SendMessage,
RP1210_ClientConnect, RP1210_SendCommand and RP1210_ClientDisconnect.
Record Here PC
N usB ~—* Diagnostic
ECM <« DLC ~ ®RP1210.DLL| Software
.‘\ ,4// - ﬁ
J1708/
J1939

Figure 27: Data recording for proposed solution

When execution hits one of these breakpoints, the debugger reads all arguments
passed to the function when it was called, and places a breakpoint on the function's
return address so that return values can be read as well. Using this approach, all
messages sent to and received from the ECM are recorded by the debugging
software (Figure 27: Data recording for proposed solution).

This approach has an advantage that it doesn't require any additional hardware.
Since the price of commercial vehicle network loggers can reach several hundred to
several thousand dollars, cost-effectiveness should not be overlooked. We consider
this an important contribution of this work. It also shows exactly which messages
the application receives, which aids in determining which messages are important.

2.3.2.2 Replaying an Extraction

In order to ensure that the method of evidence extraction was as general as
possible, evidence extraction was implemented by simply replaying requests
recorded during an actual information extraction. In the case of encrypted requests,
where the same request may be encrypted differently depending upon details of
individual sessions, a transformation function to decrypt the message and store it in
a plaintext format needs to be specified.

After each request is replayed, responses to that request are recorded. The
extraction data are stored as a list of key-value pairs, where the key is the request
(transformed to a plaintext format, if applicable) and the value is a list of all
messages that the ECM sends in response to that request. This list is then serialized

into a format that can be stored in a file on disk; this file is the logical equivalent of a
hard disk image.

As it has been observed that requests sent to the ECM may alter the state of the ECM,
the replay mechanism must be designed so that this is taken into account. The
stored replay data are treated as a circular queue, with a current index maintained
during the extraction. Upon receipt of a message, the index is advanced until a
matching response is found. If responses to requests depend on earlier messages,
receipt of the earlier messages will advance the index to the expected response.

Just as a transformation function may need to be specified for extraction of
encrypted information, such a transformation function may also need to be specified
during replay. A comparison function needs to be specified, as the message format
may preclude the use of straight comparison of request data.

The solution arrived at uses two separate threads of control, one handling
J1708/1587 communications and the other handling J1939 communications. Each
has its own protocol-specific response queue, though the two queues are both
stored in the same file for evidence storage and encryption.

2.3.2.3 Hardware

The replay mechanism hardware is built around a BeagleBone, a commercially
available ARM-based miniature computer produced by Texas Instruments [41]. The
most recent iteration of the design, the BeagleBone Black, retails for roughly $55
and has a 1GHz ARM processor, 512MB of RAM, and 4GB of onboard flash storage.
Weighing just a few ounces, it meets cost-effectiveness and portability requirements
(Figure 28: BeagleBone platform).

DC Power 10/100 Ethernet
PMIC Ethernet PHY

Sitara AM3358 USB Client

Serial Debug LEDS

12MBDDR3
512 Reset Button
eMMC
USB Host
' 5 2k 55 HDMI Framer
microHDOMI = =

uSD Boot Button

Figure 28: BeagleBone platform from the BeagleBone literature

One of the main reasons for adopting the BeagleBone platform is the capability to
add functionality using expansion boards, known as Capes. Commercially available
capes include a RS-485 cape and a CAN cape, supporting the physical layers of
J1708/]J1587 and J1939 with little to no modification.

As the currently available commercial options for RS-485 did not allow for
communicating both over J1708 and J1939 networks, a custom hardware solution
was required. A custom cape was designed for heavy vehicle communications based
on J1708.

The J1939 network interface required CAN transceiver hardware. The BeagleBone
includes CAN hardware on the board and driver support for CAN was already well-
documented in the BeagleBone. All we had to do was implement the]J1939
functionality on top of it. An existing implementation of J1939 for the Linux kernel
was found and compiled into the BeagleBone's kernel as a module. As the remainder
of the program was implemented in the Python programming language, the Python
socket module was also patched to work with J1939. Also, J1708 software drivers
for Linux were nonexistent, so new drivers had to be written.

2.3.2.4 Cryptographic Protection

In order to protect extracted data from alteration (or that would make it possible to
detect any attempt to alter the data), a cryptography-based system was designed.
The protection system was designed with the following requirements in mind: data
must be protected from alteration, data must be protected despite the fact that all
computation takes place on a device that is solely within the control of an unknown
person and others’ data must be secure even if a single device is compromised.

In traditional computer forensic investigations, a disk image is protected by
performing a cryptographic hash on it. Later on, the image is hashed again and the
two hashes are compared to confirm that the image has not changed.

In the case of ECM data records, however, the use case is somewhat different. The
data are frequently extracted in remote locations where it is not feasible to have all
parties to the case present. Therefore, the individual extracting the information has
total access to the information being extracted, likely for a significant length of time.
In this case, hashing alone may not offer the required protection as the data may just
be altered and the hash recomputed. While this is also a risk in hard drive
extractions, the possibility of having all parties present mitigates that somewhat.

Rather than attempting to protect the data from alteration, which is practically
impossible with the device in the physical control of a potentially malicious actor,
the solution is to strongly encrypt the data instead. If the data are strongly
encrypted, while altering the data may be possible, meaningfully altering the data
is practically impossible. By ensuring that an attacker will gain nothing by altering
the data, the data are effectively prevented from being altered.

We use the following encryption algorithm was developed to perform this task:

1. Anonce, to be used as a symmetric key, is randomly generated.

The nonce is used to encrypt the data.

A public key, stored on the device, is used to encrypt the key.

The encrypted key is stored alongside the encrypted disk image.

Later, the RSA private key, stored with a trusted third party, is used to
decrypt the symmetric key, which is then used to decrypt the data.

v W

This is an example of a hybrid cryptosystem as described in \cite{cramer2004}.
Cramer and Shoup prove that a hybrid cryptosystem of this type is secure so long as
the underlying algorithms are secure, and the padding scheme used for encrypting
the key is secure.

The symmetric algorithm chosen to protect the data is AES-128, as the AES
algorithm is the industry standard symmetric encryption algorithm, and it is
currently believed to be secure. The 128-bit key length was chosen because of
breaks discovered in the 256-bit key length [42].

The cryptographic hash function chosen is SHA-256. While a longer hash value may
yield better security, a longer hash may also make it more difficult to write down a
hash value for an investigator in the field. SHA-2 was chosen over SHA-1 because of
the widely-published attacks on SHA-1 [43].

In keeping with current security best practices, the symmetric keys are padded
according to the PKCS\#1-OAEP standard before encryption [44].

3 Results

3.1 Representative Cyber Physical System Analysis Results:

3.1.1 CAN Logging Design and Analysis

The performance evaluation was implemented by creating a CAN network
consisting of the deterministic message generator and the CAN loggers under
evaluation. The message generator generates 500 messages and forwards them
onto the CAN network. The loggers record the messages with a time stamp. The
Vector CANcaseXL logged all messages in order and preserved their content. Figure
29 illustrates that the vast majority of recorded messages mirrors the specified
inter-message timing of 20 and 40 milliseconds, but a number of messages were
recorded at +/-1 ms.

ACL #1: The first logging solution using only the Arduino UNO and CAN bus shield
was not able to meet any of the previously defined logging requirements. While
logging the first set of 500 messages the system began to drop messages. The time
stamps indicate that the system could not cope with the rate of incoming data.
Figure 30 illustrates that inter-message timings spiked several times above 200 ms.
The data stream was completely compromised after approximately 150 messages.

ACL #2: This design logged all messages in order and preserved their content.
Furthermore, the maximum inter-message timing offset was +/01 ms as shown in
Figure 31. The ACL showed greater variation more frequently than the Vector
logger. Nevertheless, logging all messages, preserving the order, and affecting the
same inter-message logging delay makes this Arduino logger design a viable
alternative to commercially available products in this scenario.

ACL #3: This design captures all messages, preserves the order and timing. Most of
the messages perfectly mirror the inter-message timing of 20 and 40 milliseconds,

but, similar to the Vector, a few messages were recorded at +/-1 ms as shown in
Figure 32.

3.1.2 Real time Replay Methodology: Logger Evaluation

The CAN replay evaluation of the loggers uses the real-time replay system to send
out recorded CAN traffic and to compare the log files to reference data stored in the
database for comparison. The order and completeness criteria established before
must be met perfectly by any viable logging solution. The timing criteria do not have
to be met perfectly, but must be appropriate for the purpose of the cyber-physical
system analysis. The evaluation framework consists of the necessary CAN wiring
harness/cables, the CompactRio platform with a NI 9853 module and the respective
logger under evaluation.

Vector CANCase XL: This logger records all messages in order while preserving the
message content. The inter-message timing is preserved very well with an average
absolute inter-message timing error of approximately 7micro s. The average
minimum absolute error timing is 0 micro s and the average maximum absolute
error timing is approximately 298 microseconds. Considering the fact that the
average inter-message timing of the reference data is approximately 1000 micro s,
this error is acceptable for the continued system evaluation. Furthermore, the inter-
message timing error does not indicate a slow/erroneous logging process since the
underlying CAN network is, of course, considerably different from the one in the car
that served as the data source. The overall inter-message timing error is depicted in
Figure 33.

ACL #1: Not tested due to insufficiency of preliminary performance characteristics.

ACL #2: Testing revealed that this logger cannot cope with the volume of data and
the transmission speed encountered during replay. The CAN shield receives all
messages in the correct order but the system is not capable of concurrent, loss-less
receiving, processing and logging. While the Toyota does not exhaust the
transmission capacity of its CAN infrastructure, the Arduino Logger is unable to
capture all messages during the evaluation and fails to meet the order and
completeness characteristics with regard to the produced log file; the CAN shield
meets the order and completeness characteristics but the log file output does not.
Exhaustive optimization to the Arduino implementation, including using a binary
log format, increased the logging accuracy to approximately 90%.

ACL #3: This system comprised of Arduino Due, Due CAN shield, and OpenLog chip
initially encountered the same problems as the Arduino Uno solution. However, the
Arduino Due features a USB port, which allows for much higher data transmission
rates than standard serial ports. Using the USB port - as opposed to the serial port --
the Arduino Due equipped with the custom CAN shield met the order and
completeness requirements during all 35 evaluations runs without any
optimizations to the Arduino solution. The inter-message timing of the original CAN
traffic is preserved well with an average absolute inter-message timing error of
approximately 478 micro s. The average minimum absolute error timing is 0 micro s

and the average maximum absolute error timing is approximately 4512 micro s. The
overall inter-message timing error is depicted in Figure 34.

3.1.3 Real-time Replay Methodology: System Characterization

Experimentation with the replay methodology applied CPS system characterization
focusing on the voltage sensor of a Transmission Control Unit (TCU). Continuously
recording the supply and the CAN voltage while manipulating the supply voltage at
the source enables the assessment of the lag between both measurements. The test
runs used in this analysis resulted in roughly 10000 CAN voltage readings recorded
at 5 ms intervals and 100000 voltage supply measurements recorded at 500 micro s
intervals. During the test run the voltage was initially held constant, then increased
quickly, and held at the new level. Since both log files include a common tick count
reading, the timing of the voltage change and the duration of the change can be
extracted.

Figure 35 illustrates the changes in both voltages and also hint at the TCU voltage
underreporting. The CAN voltage change lasts approximately 95 ms and covers a
voltage differential of 1.056 V. The supply voltage change takes approximately 78
ms and the recorded voltage differential is 1.044 V. The TCU generated CAN voltage
underreports the actual supply voltage very consistently by approximately 0.066 V.

The final aspect of system characterization explored was the potential for
simulation and corresponding analysis. Figure 36 shows that the simulated system
matches the TCU output behavior extremely well, resulting in very little differential.
The voltage differential between the two systems averaged over approximately
47,000 measurements is 0.000614 V with a maximum differential of 0.065 V and a
minimum of 0 V. Since the conversion delay of 5 ms and the underreporting of 0.066
V were integrated during the design of the simulated TCU, these parameters are
deemed confirmed.

3.1.4 Formal Verification Study

The Keymaera system using hybrid programs was selected as the candidate
formalism and tool set to apply to vehicle CPS. Investigative modeling and analysis
was pursued with the hypothetical voltage control system presented in Figure 37.
The control system must keep the supply voltage between 10 Vand 12 V. Once
started, the system enters state “ON" and the voltage, initially set to 10 V, grows at
increments of 0:1 V. The system stays in “ON" state as long as the voltage is <=12 V.
However, once 11:5 V is reached, the system may move into state “OFF". Enabling
the transition at 11:5V instead of 12V gives the system a chance to transition
without violating the conditions of state “ON". In state “OFF" the supply voltage
wanes at 0:2V decrements, potentially down to 10.4V. Once the voltage drops below
11V, the system has the option to transition to state “ON". During the transition
from “ON" to “OFF" the voltage increases by 0:1 V, during the transition from “OFF"
to “ON" the voltage decreases by 0:5 V. This model can be translated into a
Keymaera source file written in the Key language. Once loaded, Keymaera analyzes
the specified system and attempts to verify that the supply voltage it guaranteed to

remain between 10 V and 12 V. However, the transition from “OFF" to “ON" has the
potential to drop the voltage below 10 V and Keymaera is therefore unable to prove
the underlying assumption.

Figure 37 shows a modified voltage control system whose source code is available in
Appendix D. The modified control system features slightly changed state transitions
that allow Keymaera to prove that the supply voltage remains within the specified
boundaries. The actual output of the validation is shown in Figure 38.

Inter-Message Determinismn
Arduino + CAN Shield

sssssss

Figure 29: Arduino with CAN Shield Logging Results.

Inter-Message Determinismn
Arduino + CAN Shield +OpenlLog

Figure 30: ACL #2 Logging Results.

Inter-Message Determinismn
Arduino Due + Custom CAN Shield + OpenlLog

T e T EP T S Tt e R e e e S T
AR A

a5
£ 40
35
=

‘€ 30
= 25
o

mm
mm
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Figure 31: ACL #3 Logging Results.

Deterministic Real-Time Replay System
Vector CANCase XL Inter-Message TimingError

300 L

Timing Error [ps]

';‘;;. bl Yo T-oiOR TH, WS 0B PP SUTTGS P ,.a.‘;nx:s,.‘.:-;& MMJW\VQ«M ‘ﬁ:j’"‘
«mw‘»xnﬂfa LS AT 5 Voo D 0 1 kLI, DD

ol%’.l‘na .ft.O‘cQ 0% 80 Pt
L ° . . L8 oo LA XN

-200

-300
Messages

Figure 32: Vector CANCase XL Inter-message Timing Error.

Deterministic Real-Time Replay System
Arduino Due Inter-Message Timing Error

5000

4000

Tirning Error [ps]

-1000

2000
Messages

Figure 33: ACL #3: Inter-message Timing Error.

Supply Voltage vs CAN Voltage

138
156
154
132
13
128
126

124
495250000 495750000 496250000 495750000 457250000 497750000 495250000 495750000 495250000 499750000

Walta

a Q [s] [s] [s] [s) [+]

Tire [tick count]

e Supply Voltage O CAN Voltage

Figure 34: Supply/CAN Voltage Comparison.

Voltage Differential
Physical TCU- Simulated TCU
0.080
0060
0040

0.020

0.000

Voltage

-0.020

-0.040

-0.060

-0.080

Time [ms]

Figure 35: TCU vs. Simulated TCU Voltage Differential.

Hypothetical Voltage Control System 1

V>=11.5,V=V+0.1

[Sta rt

V<11, V=V-0.5

Figure 36: Keymaera Voltage Control System 1.

Hypothetical Voltage Control System 2

V=11.5, V=V+0.1

Lta rt

V=10.5, V=V-0.1

Figure 37: Keymaera Voltage Control System 2.

K3 Ke¥maera -- Prover
File View Proof Options

Start Prune Proof

Reuse

ONE

(e @]=]
About

Tasks
R voltage_controller key
& voltage_controller_2 key
& voltage_controller_2 key
Q’ voltage_controller_2 key

aw

-

Proof Search Strategy | Rules |

Proof | Hybrid Strategy

!

Goals

Proof

[Proof Tree
1:;compose
2v:=10
3:;,compose
4:on:=0
5:Update Simplification
6:;compose
7offi=1
8:Update Simplification
9:st:=on
10:Update Simplification
11:close equality
12:simplify true->
13:ind loop invariant
Invariant Initially Valid
B [Use Case
Body Preserves Invariant

Inner Node
i Proof closed E\
v @ Property proved!
v = 10 ; Statistics:
ORN= z Nodes: 94
off =1 7 Branches: 10
S3 :=on
U K st = on
== \f
((?st = on ;
(2v = 11.5 2
¥ o= (et O0d) 2
S = 0LKf)
U dvt = 002, v 12))
U (?st = off ;
(?v = 10.5 ;
Vo= = 0.2)
st := on)
B Hnt=ns0 2 e i gt}
\J (10 = v A v = 12))
Node Nr 1

tpcoming rule application:
modality split_right {
\ find (

=3

| Lmndaliti#allmniall

D]

[«]

KR Strategy: Applied 92 rules (0.1 sec), closed 10 goals, 0 remaining

Figure 38: Keymaera Voltage Control System Validation Result.

3.2 Passenger EDR Analysis Application to 2012 Honda Vehicles

The deterministic CAN replay system was used to evaluate 2012 Honda CR-V
and Civic SRS modules. This section will explain the study of the accuracy of the EDR
speed and steering data as well as the EDR transfer functions.

3.2.1 4.1 Identification of SRS Sources

[t is important to know which message IDs are sourcing the information to the SRS
module. To determine these messages, the data within a replayed CAN stream were
set to a specific value and examined on the CDR report. This was done by changing
the values of the byte(s) responsible for the SRS data. The CAN files were altered by
splitting the messages into bytes, filtering by ID, and changing the desired byte(s).
Figure 39 shows the CAN file split into bytes in columns D-K, and filtered by ID,
which is shown in Column B.

o 8

C D £ F G H | J K
1 Delay (uSec) ID DLC Byte O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
2 0 - 305 . 7 0 as 0 0 0 & 0 @ 2 &
3 256 309 8 0 0 0 0 ic 46 0 c0
4 256 309 8 0 0 0 0 ic 46 0 df
5 256 309 8 0 0 0 0 1c 456 0 ee
6 256 309 8 0 0 0 0 ic 46 0 fd
7 256 309 8 0 0 0 0 1c 46 0 c0

Figure 39: Screenshot of CAN message identification verification procedure.

ID 0x309 bytes 4 and 5, column H and I respectively, were set to constant value of
0x1c46 as shown in Figure 39. The modified CAN file was replayed to the recording
SRS module and the corresponding Bosch CDR report was generated as shown in
Table 6. The vehicle indicated speed remained constant in Table 6 where the
baseline data shown in Table 5 varied from 11 to 42 km/h. The altered file’s speed
remaining constant as opposed to the variable speed report for the un-altered CAN
report definitively identifies ID 309 bytes 4 and 5 as the SRS Vehicle Indicated Speed
source. Additionally, 0x1c46 has a decimal value of 7238, which represents the
number of 0.01 km/h increments, or a speed of 72.38 km/h. This verifies bytes 4
and 5 of CAN ID 0x309 are responsible for the SRS indicated vehicle speed pre-crash
data.

Table 5: Pre-crash data from the baseline CAN data replayed to the SRS module.

Pre-Crash Data -5 to 0 sec [2 samples/sec] (Event Record 1)

(the most recent sampled values are recorded prior to the event)

PCM
Derived
Speed, Accelerator Accelerator
Time Vehicle Pedal Service ABS Steering Pedal
Stamp Indicated Position, Brake Activity Stability Control Input Engine Position,
[sec) (MPH [km/h]) % full (On, Off) | (On, Off) (On, Off, Engaged) (deg) RPM % full
-5.0 7[11] 19 Off Off On Non-Engaged -35 1,600 19
-4.5 8[13] 25 Off Off On Non-Engaged 85 1,800 25
-4.0 9[15] 28 Off Off On Non-Engaged 130 1,900 28
-3.5 11[17] 48 Off Off On Non-Engaged 130 2,200 48
-3.0 12[20] 98 Off Off On Non-Engaged 115 2,700 98
2.5 15[24] 100 Off Off On Non-Engaged 85 3,000 100
-2.0 18 [29] 100 Off off On Non-Engaged 30 3,300 100
1.5 21[33] 100 Off Off On Non-Engaged 20 3,700 100
-1.0 23[37] 100 Off Off On Non-Engaged 10 4,100 100
-0.5 26 [42] 100 Off Off On Non-Engaged 5 4,500 100
00 aNial 100 Off Off On Non-Engaged 5 4,500 100

Table 6: ID 0x309 Bytes 4 and 5 were set to 0x1c46, which corresponds to 72.38 km/h.

Pre-Crash Data -5 to 0 sec [2 samples/sec] (Event Record 1)

(the most recent sampled values are recorded prior to the event)

PCM
Derived
Speed, Accelerator Accelerator
Time Vehicle Pedal Service ABS Steering Pedal
Stamp Indicated Position, Brake Activity Stability Control Input Engine Position,
(sec) (MPH [km/h]) % full (On, Off) | (On, Off) (On, Off, Engaged) (deg) RPM % full
50 45[72] 19 Off Off On Non-Engaged -95 1,700 19
45 45[72] 24 Off Off On Non-Engaged 65 1,700 24
40 45[72] 28 Off Off On Non-Engaged 120 1,900 28
35 45[72] 36 Off Off On Non-Engaged 125 2,100 36
30 45[72] 80 Off Off On Non-Engaged 115 2,600 80
25 45[72] 100 Off Off On Non-Engaged 95 2,900 100
20 45[72] 100 Off Off On Non-Engaged 45 3,200 100
-15 45[72] 100 Off Off On Non-Engaged 25 3,600 100
1.0 45[72] 100 Off Off On Non-Engaged 15 4,000 100
05 45[72] 100 Off Off On Non-Engaged 5 4,400 100
0.0 L 100 Off Off On Non-Engaged 5 4,600 100

Furthermore, bytes 4 and 5 of ID 0x309 were set to a value of 0x1c64 or 7268
(72.68 km/h) to determine if the SRS module truncates or rounds the speeds. After
this change the vehicle indicated speed remained 72 km/h indicating the module
truncates the decimals of the CAN speed record. Bytes 4 and 5 were then set to
0x1c83 or 7310 (73.1 km/h) which generated a record of 73 km/h, indicating that
the reported speed does not round to the nearest even km/h, but rather reports
only the CAN speed integer value. With the data processing algorithm established,
an accuracy assessment can commence by truncating CAN speed and comparing it
to the external reference speed.

To determine the steering translation, the Civic was taken through a series of lock-
to-lock turning maneuvers while CAN data was recorded. These maneuvers
produced maximum and minimum steering inputs of nearly +570° at the steering
wheel. The CAN data was decoded using a signed 16-bit integer. The lock points

along with (CAN decimal =0, steering angle =0°) were plotted and fit with a line to
determine the value of the least significant bit (LSB) of the CAN message for
steering. The resulting raw data is shown in Figure 40. All CAN IDs used for different
pre-crash data are shown in Table 7.

Lock to Lock Civic Steering Test

g8 B
8 8

CAN Steering Data (dec)
o

[

8
8

3
8
o -

2-0 40
Time (s)

Figure 40: Lock-to-lock Civic steering test data.

Table 7: SRS CAN ID Data Source

. Likely Conversion CAN
Quantity CAN ID Byte(s) Refresh
Method
Rate (s)
Speed Vehicle Indicated 0x309 4and 5 0.01 km/h per LSB 0.1
Accelerator Pedal Position | 0x17c 0 0.5% per LSB 0.01
Engine RPM 0x17c 2and 3 1 rpm per LSB 0.01
Service Brake oxi7c | Brtoof 1=0n, 0 = Off 0.01
Byte 4
Steering Wheel Angle 0x156 Oand 1 01 _degree: per LSB, 0.01
signed integer

The Civic front wheels were also placed on angle measuring plates and the steering
wheel was turned in 90 degree increments (as measured by a level) while
monitoring the CAN bus steering angle parameter. The CAN bus data accurately
reflected the steering wheel inputs. Honda EDR data limitations report that the
EDR reports steering angle with a resolution of 5 degrees and rounds CAN bus data
to the nearest 5 degrees. To test this, the SRS steering source, CAN ID 0x156 bytes 0
and 1, was set to three constant values: 12.9, 14.7, and -14.8 degrees. When these
values were broadcast, the SRS reported steering inputs of 10, 10, and -10 degrees

respectively. These results suggest that the SRS does not round the steering value,
but truncates it. The results of these tests are summarized in Table 8

Table 8: SRS Steering Truncation Test Results

Steering | ByteOand 1 Re?;;ste q Rounded
Broadcast | Corresponding Steering Steering
(deg) Hex ©))
12.9 FF7F 10 15
14.7 FF6D 10 15
-14.8 0094 -10 -15

3.2.2 Passenger Car EDR Speed Accuracy

The speed message, 0x309 bytes 4 and 5 (counting from zero), was also perceived to
track with the display on the digital speed indicator in the instrument cluster. The
graph shown in Figure 41 demonstrates that the indicated vehicle speed can be
nearly 0.8 seconds late in reporting the value. The front left wheel speed found from
the message 0x1DO0 bytes 0 and 1 show that wheel speed tracks the VBOX speed
appropriately during a tire slip with the ABS system engaged. Based on this
observation and the fact that the data were synchronized using the CAN bus, the
timing delays found in message 0x309 are real. Furthermore, the indicated vehicle
speed message updates every 0.1 seconds but changes value every 0.6 seconds in
this test. Therefore, it is expected that the Honda Civic will likely have a repeated
data point on the 0.5 second intervals shown in the EDR records. However, not all
data gathered show the 0.6 second wait to change, which suggests there may be
some other processing in the computer that transmits the message that takes
priority over updating the indicated speed.

The data shown in Figure 42 shows the CR-V indicated speed updates and changes
every 0.1 seconds. The speedometer on the CR-V used a needle as opposed to a
digital display. The wheel speed signal drops as the braking commences and periods
of higher slip are shown. The indicated speed tends to follow a subdued path when
the wheel speed drops, indicating an averaging effect for the indicated speed. With
no wheel slip, the indicated vehicle speed closely matches the VBOX speed.

Civic 50 mph Run 1
.90 2000
&
E 20 1800
=
v
E 70 1600
K
1400
& 60
=
o = Vehicle Indicated Speed (0x309) 1200
250 | —vBOX Speed (0x302) 1000 =
alof 40 *» Front Left Wheel Speed (0x1D0) =
% - - Brake Status (0x17C) 800
230 Accel Pedal Position (0x17C)
& + Engine Speed (0x17C) —— 600
£20 400
E
=
B 10 \&k i S | 200
a 1
& i
0 ‘mmmmmmmm e 0
-6 5 4 3 2 1 0
Time (s)
Figure 41: Civic hard brake data from 50 mph.
CRV 75 mph Run 1
__.120 B r 2500
£ I
c SEuas. —T anmEma
o)
G 100 -
S - 2000
©
pel
1]
& 80 -
ﬁ = Vehicle Indicated Speed (0x309) - 1500
et —VBOX Speed (0x302) s
E 60 I . Front Left Wheel Speed (0x1DO0) &
Aul - - Brake Status (0x17c) - 1000
v
2 40 | - Accel Pedal Position
@ + Engine Speed (0x17c)
N -
= - 500
E 0
-]
[Y Y Y I N Qg s [g s Ry [y gy S S A
1]
Q.]
w 1
0 0
-7 -6 -5 -4 -3 -2 -1 0 1
Time (s)

Figure 42: CR-V Hard-brake from 75mph

3.2.2.1 2012 CR-V Steady State Test

An instrumented 2012 Honda CR-V was driven on an expressway and 3 minutes of
CAN traffic for normal driving was recorded. Since the VBOX data was transmitted
on the CAN, the time synchronization of data was automatic. The speed record from
the VBOX and the indicated vehicle speed (0x309) are shown as lines in Figure 43.
Since the VBOX transmits data at 100 Hz and the indicated speed is updated at 10
Hz, the VBOX speed signals were smoothed using a moving average and resampled
to align with the less frequent CAN speed. This reduction by a factor of 10 resulted
in 1800 messages for comparison. Having learned the CAN bus to EDR transfer
function, the indicated vehicle speed (0x309) was truncated to the next lower whole
km/h to reflect the data that would be recorded in the SRS. This would produce an
expected error band of 0 to 1 km/h when the error is defined as the GPS speed -
EDR speed. This also allows a large sample size in comparison to what could be
achieved with actual EDR recordings.

120 T T T T T T T T
------- EDR (Truncated) Speed
115
115 || - Ind.Veh.Speed (0x309) | i i
— VBox GPS Speed
10 o S ST N — S SN — >,
o, |
Jout? f —
A : =
i Y : E
— 105 L._._. E s P Y 1.y S ol =
£ Uy Eg LRy =
E oy Ve | Pt 2
=3 12 -—EE-‘ irn et | a
heo] °3 2ol s :'g . E'..i ..‘E“ 0
2 100 Egsife W, ot a4 h
o L. 7 el 1. -'.“ L ¥ Byr-af [}
@ % X0 S 3 T O n
2 340 gl e o
L =3 : L I 'bl¢ 7]
< 9 r‘-% -------- o e R B e
> = SN o
M Lo e 0
: : A & T o
90 [S e A ©
85 |
' ' ' ' ' ’ ’ ’ 4-15
: : « » Speed Difference
80 i i i i i I I I
0 20 40 60 80 100 120 140 160 180

Time (s)
Figure 43: Speeds and speed differences for normal highway driving with a 2012 Honda CR-
V. The gray band indicates expected error bounds from data truncation.

To assess the accuracy of the speed data, the differences between the GPS speed and
the EDR theoretical speed were determined and plotted against the right axis of
Figure 43. The gray box behind the figure show the theoretical error bound from
truncation alone. The differences were between +/- 1.15 km/h with a mean of 0.033

km/h and standard deviation of 0.39 km/h. This suggests that the CR-V normal
driving speed data is accurate to about 1%.

3.2.2.2 2012 Civic Steady State Test

To assess the steady state accuracy of the EDR in the Honda Civic, the Civic was
driven starting at 80 km/h (50mph) on speed control and the speed control was
incremented by 1 mph approximately every 4 seconds up to a speed of 113 km/h
(70 mph). The vehicle had time to stabilize in between increments and the
acceleration to the next higher speed was gradual enough so as not to produce any
significant wheel slip. The CAN bus vehicle indicated speed was truncated to the
next lower whole km/h, which is the value that would be recorded in the EDR, and
the difference between the VBox GPS signal and the EDR value was calculated. These
difference data are plotted against the right axis of Figure 44.

For the 975 data points recorded, the mean difference was +0.22 km/h with a
standard deviation of 0.53km/h. The maximum difference ranged from -1.38 to
+1.95 km/h. Figure 44 plots the data for the VBOX GPS, the CAN bus vehicle
indicated speed, and the truncated speed that would be recorded by the EDR.
Differences between GPS and EDR are plotted as points relative to the scale on the
right side axis. The gray box shows the theoretical error limits from truncation only.
There was no evidence that the error was dependent on speed over the 80 to 113
km/h range.

115

EDR (Truncated) Speed
Ind. Veh. Speed (0x309)
— VBox GPS Speed

110 |-

105

100 f----5-- Sy ja e RIS o ;

=}
o

Vehicle Speed (km/h)
GPS Speed - EDR Speed (km/h)

v .
« + Speed Difference ‘

8o = ; ; ‘ ‘ : 4
0 20 40 60 80 100 120

Time (s)

Figure 44: Speeds and speed differences for driving by gradually incrementing the cruise
control with a 2012 Honda Civic. The gray band indicates expected error bounds from data
truncation.

3.2.2.3 2012 CR-V Accuracy During Maximum ABS Braking

The CAN bus data was played back to the ACM and events were set with the
non-deployment apparatus. The start time of the CAN bus file was incremented by
0.1 seconds each run for 10 runs to see the differences in the EDR data. When that
was completed the same CAN file was played with the same timing five times in a
row to demonstrate repeatability.

Both the recorded CAN data and the Bosch CDR reported data from the 2012
Honda CR-V are shown in Figure 45 through Figure 48. These graphs represent the
CAN data from driving tests and the acceleration data from the tests on the non-
deployment setting device.

The pre-crash information for two different test runs is shown in Figure 45
and Figure 47. The data in these graphs show the VBOX 3i as a solid line. The green
plus symbols represent the wheel speed for the left front wheel. Only a single wheel
speed is displayed; if multiple wheels are displayed the graph becomes too busy.
When the brakes were first applied, the wheel speed trace shows a sharp reduction
until the ABS system intervenes to relieve the brake pressure and allow the wheel to
rotate with a controlled slip. Wheel slip causing under reporting of ground speed
has been well documented in the literature (e.g. [20]) and will be acknowledged but
not analyzed extensively in this study. The interpretation of the wheel speed
message seems to slightly under-report the VBOX speed signal; however, the
messages for wheel speed slightly lead the VBOX signal in time. The blue diamonds

represent the indicated vehicle speed, which is the source for the EDR data. In all
cases, the diamonds must lead the squares representing the CDR reported speed
values. Since the EDR functionality truncates the speed values, the data must be
below the corresponding indicated speed message. The pre-crash graphs also show
the number of hundreds of RPM the engine was turning. The solid line represents
the CAN message value and the circles represent the RPM reported by the CDR tool,
which are truncated to the nearest 100 RPM. Finally, the acceleration trace from the
accelerometer mounted on the SRS sled. The acceleration trace enables
synchronization of the crash data to the pre-crash data and the establishment of t0.

Based on the data shown in Figure 45 and Figure 47, the SRS module may over
report vehicle indicated speeds during hard braking by as much as 10 km/h due to
reporting delays. The time delay can be seen where the hard brake corner extends
beyond that of the VBOX trace slightly. The CDR reported data for the CR-V is also
delayed, but not consistently. The delay from the EDR function can be examined by
repeating tests with the apparatus for this study.

The external accelerometer traces in Figure 45 and Figure 47 are examined with a
smaller time scale in Figure 46 and Figure 48, respectively. Effectively zooming in on
the non-deployment event enables analysis of the delta-V and acceleration data
reported in the Bosch CDR report. Figure 4.8 and Figure 4.10 show the raw
accelerometer data in g's sampled at 4000Hz as a solid line. The acceleration from
the CDR report is represented by the squares. The Data Limitations section of the
CDR report defines t0 as when a change in cumulative delta-V of -0.8 km/h over
0.020 seconds occurs. The location of t0 corresponds to the zero mark on the time
axis. To determine the delta-V, the previous 20 ms of the accelerometer signals were
integrated (summed and multiplied by the sampling period) in-place and converted
to units of km/h. The result of the respective Delta-V calculations is represented by
the broken lines in Figure 46 and Figure 48 and trend with the CDR reported delta-
V.

Once tp was established, a cumulative delta-V was calculated starting at to. This
calculation is shown as the blue dashed line in Figure 46 and Figure 48. The
corresponding CDR reported delta-v is represented as green circles on the graphs.
According to the Data Limitations, the recording of delta-V stops 30 ms after the
event is over (when the delta-V changes by less than -0.8 km/h in 20ms.
Examination of the record around 0.045 seconds shows the trace representing
delta-V from the previous 20 ms rises above -0.8 km/h. Therefore, 0.030 seconds or
3 samples more of recorded delta-V data are shown before reporting zeros, as
expected.

The data plotted in Figure 46 and Figure 48 is similar, yet unique. The external
accelerometer has a similar trace in each run but there is enough variation to show
different data samples on the CDR report. Since the external accelerometer and the
SRS accelerometer are different and the filtering mechanism and internal sampling
of the SRS accelerometer is not known, the accelerometer and delta-V data will
likely never match perfectly; however, the trends and patterns between the two
accelerometers correlate. This is important because it gives confidence to the

interpretation of the t0 mark and the assessments of any timing observations are
well founded.

80) ‘
M
+
.,,.-/'".\

60

40

20

—— External Accelerometer

¢ ¢ |ndicated Vehicle Speed (0x309)
— VBox GPS Speed

Engine RPM (0x17c)

+ LF Wheel Speed (0x1d0)

B ® CDR Reported Speed

-20 | ® @ CDR Reported RPM

-6 -5 -4 -3 -2 -1 0 1 2
Time (s)

Figure 45: Graph of the Pre-Crash data from the CDR report with the CAN messages for a
Honda CR-V at city street speed.

>. B B CDR Reported Acceleration
CDR Reported Delta-V

-10 Delta-V from 20 msec 5

——————— Delta-V from tO

—— Acceleration

Trigger, tO
-15 X X CDR Reported Max Delta-V -

1 1 1
-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (s)

Figure 46: Graph of the crash data corresponding to the CR-V data shown in Figure 45.

120 T T T T
'
100 Q 2
80
—— External Accelerometer
¢ ¢ |Indicated Vehicle Speed (0x309)
60 |-

| — VBox GPS Speed

— Engine RPM (0x17c)
4Ll T LF Wheel Speed (0x1d0)
CDR Reported Speed

CDR Reported RPM
20 = = ©

-20

-7 -6 -5 -4 -3 -2 -1 0 1
Time (s)

Figure 47: Graph showing pre-crash data for a Honda CR-V during hard braking at highway
speed.

5
° (e
B CDR Reported Acceleration
CDR Reported Delta-V
-10 Delta-V from 20 msec 5
——————— Delta-V from t0
—— Acceleration
¢ Trigger, tO
-15 X X CDR Reported Max Delta-V 8
1 1 1
-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (s)

Figure 48: Graph of the crash data corresponding to the CR-V data shown in Figure 47.

3.2.2.4 2012 Civic Accuracy During Maximum ABS Braking

Figure 49 and Figure 50 show a typical test run braking from 80km/h (50mph) and
Figure 51 and Figure 52 show the results of braking from 113 km/h (70 mph). The
odd number figures show the speeds and RPM versus time, the even numbered
figures show the details of the event triggering similar to the discussion on the CR-V
above. Note that the CAN bus vehicle indicated speed values repeat six times in a
row, finally changing at 0.6 second intervals. The resulting increased delays (versus
the CR-V) in the EDR reporting lead to over-reporting speed by as much as 20 km/h.
During maximum braking the reported speed should decrease with each new data
point, but in some cases an old speed value is repeated giving the false impression
that no vehicle speed reduction has occurred over the interval. The 0.6 second
change interval was consistent during the maximum braking runs conducted, but in
other tests involving normal driving the Civic updated more frequently.

100 T T
—— External Accelerometer

¢ ¢ Ind. Veh. Speed (0x309)
— VBox GPS Speed a
— Engine RPM (0x17c)
LF Wheel Speed (0x1d0)
CDR Reported Speed n
CDR Reported RPM

600
40 E 3
whe
20 |
o ¢
o™
0
-20
-6 4 -2 0 2 4
Time (s)

Figure 49: Civic pre-crash data braking from 80 km/h (50 mph).

CDR Reported Acceleration

CDR Reported Delta-V
Delta-V from 20 msec

,,,,,,, Delta-V from t0
—— Acceleration

-15 o
—— Filtered Acceleration
Trigger, tO
X X CDR Reported Max Delta-V
-20 I 1 I
-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time (s)

Figure 50: Crash data for the Civic corresponding to Figure 49.

120

T T T
—— External Accelerometer
t ¢ ¢ Ind. Veh. Speed (0x309)
100 ¥ — VBox GPS Speed I
+
t — Engine RPM (0x17c)
80 t ™ LF Wheel Speed (0x1d0) |
CDR Reported Speed
+ CDR Reported RPM
60 i\ G0
\
40
ﬁ (w7l
20 [N
\\.\l,_w_gmm
0 i
20 ¢ 4 2 0 2 4

Time (s)

Figure 51: Civic pre-crash data braking from 113 km/h (70 mph).

CDR Reported Acceleration

CDR Reported Delta-V
Delta-V from 20 msec

Delta-V from t0
Acceleration

-15 o
—— Filtered Acceleration
Trigger, tO
X X CDR Reported Max Delta-V
-20 I 1 I
-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (s)

Figure 52: Crash data from the Civic corresponding to Figure 51.

3.2.2.5 Timing Between 0 and -0.5 Data Points in the Pre-Crash Data

Because the Honda pre-crash data points are labeled in 0.5 second increments, from
-5.0 to 0.0, it was originally assumed the spacing between data points was uniform
and plotted the data that way accordingly. However, after synchronizing the “0.0”
data point precisely at to, in several cases the -0.5 and earlier data points appeared
to change values before the CAN bus values did (see Figure 49, the red square at “-
2”). This is not possible; the EDR cannot anticipate changes in the CAN bus data, it
can only report them after the fact. After extensive analysis, the authors developed
a working theory that the data point labeled “0.0” is taken at or near algorithm wake
up, and can be anywhere between 0 and 0.5 seconds after the data point labeled “-
0.5”. This concept comes from observing Toyota EDR’s which take one last data
point at algorithm enable. Toyota resets a timer after each regular-interval data
point is written and reports the interval from the next to last data point to AE. The
Honda data limitations as of this writing offer no information about last data point
timing relative to the “-0.5” point.

EDR files from six 113 km/h (70 mph) hard braking runs were examined. After
synchronizing the “0.0” data point, both speed and RPM channels were examined
and the last 10 data points were shifted right to eliminate any “anticipation” by the
EDR data ahead of the CAN bus data. The revised time from “0.0” to “0.5” was 0.15,
0.15, 0.15, 0.2, 0.25, and 0.35 seconds. Other runs may need only a slight shift to
0.40 or 0.45 seconds and the need for the small shift is not that apparent.

3.2.2.6 Dynamic Steering Maneuvers

The CDR steering data of the 2012 CR-V was assessed via replay of dynamic steering
CAN messages shown in Figure 53. This graph also shows the CAN indicated speed
(0x309), speeds retrieved from the SRS, and the external accelerometer pulse
showing the location of Algorithm Enable (ty). The non-deployment event was
programmed to fire at the same time in the CAN history for 5 runs. From Figure 53,
it appears that the SRS steering data tracks the CAN data closely for aggressive
steering inputs. However, the scale on Figure 53 is such that differences between
CAN steering data and CDR reported data are difficult to detect. Therefore, the
difference between the data retrieved from the SRS and the CAN data are calculated
for each run and plotted in Figure 54. The data at time = -4.5 in Figure 54 shows a
possibility of a spread of 15 degrees for the case of transient steering maneuvers.
Most other data points retrieved from the SRS are within 5 degrees of the CAN data.

250

200 \\
150 ﬂ

100 /

50

| Q.
0 ‘) |
— CAN Steering

50 H 4 ¢ SRS Steering

—— External Accelerometer*10

100 H — vBox GPS Speed

¢ ¢ Indicated Vehicle Speed (0x309)

150 -'m m CDR Reported Speed
-6 5 z 3 2 -1 0 !

Time (s)

Figure 53: CR-V Pre-Crash Data Dynamic Steering Maneuver

SRS Steering Error

2 T T T T T T T
: : .
1] TR ,,,,,,,,,,,,,,,,,,,,,,,,, . ,,,,,, m. W L., _
é . =
< [T - - T -
L] ' :
-4 EUETTr =Py A nnno0aEa000ad | Jooocoo g
- : L]
g B he e P S S S S -
3
O _8 ..
A0k P e e e oserens i
A2k T SRRREE L TR _________ S b i
K7 - R e haaunaues RPN PR besnarsss Fe i
. 5 : P P
-1B]] 1 i 1] I 1 i
5 45 4 35 3 258 -2 45 1 05 0
SRS Time (s)

Figure 54: SRS steering data minus the CAN data for the CR-V.

250

200
150 /ﬁr\
100 / *”\

50 , #0004 9% §

IO

— CAN Steering
50 I/ ¢ ¢ SRS Steering
—— External Accelerometer*10

100 - — vBox GPS Speed

¢ ¢ |ndicated Vehicle Speed (0x309)
150 -'m ® cpDR Reported Speed

I I T T
-6 -5 -4 -3 -2 -1 0 1

Time (s)

Figure 55: Civic Pre-Crash Data from a dynamic steering maneuver.

Similarly, the Civic SRS steering data was assessed through the CAN replay of a
dynamic steering CAN messages which are shown in Figure 55. There are two
significant sources for differences in the steering signal. The first is a value or
truncation error that manifests itself as a vertical difference on a time history plot
like the ones shown in Figure 54. The second error source is from a recording delay
or difference along the horizontal (time) axis. The important observation from these
tests is that the steering appears to truncate the CAN value and the SRS data
provides a rough estimate of steering input.

3.2.3 Passenger Car EDR testing based on Simulation

Through use of simulation output we aim to generate CAN messages specific to the
2012 Honda Vehicles used in this study. The methodology used to achieve this is
summarized in Figure 56 as a flow chart. HVE is a physics simulation program sold
by Engineering Dynamics Corporation for modeling vehicle dynamics and traffic
crashes.

Generation Encoding Transmission Verification
Translation Replay HVE Bosch
Physmal Of Physical CAN CDR Kit
Data Values to Messages For Verification
Honda CAN To EDR Of Transmission
Messages

Figure 56: HVE to CAN Transcription Overview

3.2.3.1 An Introduction to HVE

NHTSA sponsored a project in the early 1970's to develop a uniform and accurate
program to interpret physical crash data, from which McHenry published
Simulation Model of Automobile Collisions (SMAC) in 1971 [45]. This program
operates in a two dimensional environment with 3 degrees of freedom (x, y, and
yaw). The development of SMAC was limited in the 70's by the lack of computer
memory space and expense. The increase in computer power along with further
research of automobile dynamics has allowed simulation models to become more
robust over the years. Currently, Engineering Dynamics Corporation (EDC)
produces a simulation and reconstruction software package called HVE (Human
Vehicle Environment). HVE models vehicle dynamics, simulates damage done
during collisions, car trajectories pre and post collision, initial speeds, yaw rates, etc.
HVE offers multiple algorithms to produce the simulation outputs, namely
EDSMAC4, SIMON, EDCRASH, EDSVS, EDVDS, and EDCRASH4. The SIMON
(SImulation MOdel Non-linear) algorithm will be used in this paper. EDC has
published multiple papers through SAE validating the accuracy of the HVE SIMON
algorithm [46]. SIMON is a 3D physics based algorithm which allows for six degrees
of freedom (x, y, z, roll, pitch, and yaw). The SIMON algorithm takes user specified

input values and use a time forward Runge-Kutta integration method to predict
simulation outputs.

3.2.3.2 Purpose for Simulations

The EDR testing methodology presented in this paper requires a CAN history for the
dynamic event intended to be studied be available (e.g. a maximum ABS braking or
high speed dynamic steering). Having such records is not common. For example, one
must have the vehicle of interest and appropriate testing equipment to gather such
data. Translating HVE output into CAN messages removes the need to gather highly
dynamic CAN histories for replay. If both the message location and bit resolution of
the EDR CAN data is known, the simulation output may be translated into CAN
messages. This transcription process would allow researchers to simulate the event,
translate it to CAN messages, replay the event to the EDR module, and compare the
simulated EDR history to that of the actual EDR history. This translation process
may make the results of an accident reconstruction simulation more convincing by
allowing the reconstructionist to account for unknown errors in the transfer
functions of the EDR itself. This ability would also aid in the evaluation of EDR data
by allowing more potentially dangerous maneuvers to be studied (e.g. 100mph
maximum ABS breaking or 70mph dynamic steering tests) giving us a better
understanding of the performance of such devices at higher speeds. There are, as
will be demonstrated in the proceeding sections, complications that may arise in
this process.

3.2.3.3 HVE Simulation

A dynamic steering maneuver was simulated in HVE. In this simulation a SUV
traveling with an initial velocity of 34.67 mph was made to steer with a constant
210° input on a flat asphalt surface. The specific user inputs concerning this
simulation as well as a pictorial summary of the simulation are given by Figure 57
though Figure 62. This simulation uses a Ford Escape as the test vehicle since the
Honda CR-V was not available in the HVE vehicle library and both cars have similar
geometries. The weight of the Ford was altered, as shown in Figure 60 to the weight
of a stock 2012 Honda CR-V.

Figure 57: Graphical output from HVE showing a hard steering maneuver.

Steer | Brake | Throttle | HVE Driver |

Table : IPd Steering Wheel Vl

Steering Wheel Angle vs Time

Steering ﬂ

time Angle

[sc) [dea)

0.0000 210.00
1.0000 210.00
2.0000 210.00
3.0000 210,00
4.0000 210,00
5.0000 210.00
£.0000 210,00
7.0000 210.00

=]

I~ Use Ackemann Steering

0K | Cancel I Copy Fow | Copy Cell | Help I

Figure 58: HVE driver controls showing steering input.

Fath Location ; I Iritial

Position

= [ft] 0.00 Foll [deq]:

Y[R -50.00 Pitch [deq):
£ [ft]: 233 “aw [deg]:

W Welocity is Assigned

Welocity

Tatal [mph): 34 67 Sidezlip [deq] :
u [mph]: lw Roll [deglzec):
w [mph] : lw Fitch [degrzec) :
v [mph] : lw Yaw [degdzec]:

Apply |

Figure 59: HVE Initial Position/Velocity Inputs

— Total

—Sprung——

wieight [Ib) : | 3304.999

2107.002

M azs [b-zec™24n) ; 2.5531

8.0409

Ratational Inertia (b-zec”24n) - Rol : | 438575

437291

Fitch . | 232B6.93

216733

Yaw: | 2397415
#Z Product OF Inertia

2203691

0.00

¥ Auto Update Inertia *When Weight Changes

ak. | Cancel Apply

Figure 60: HVE Vehicle Inertial Data

Object Mame ; |Surface

Type : |Road -

Qverlay : |Surface -

taterial Mame ; |Azphalt, Mew
Friction Factar : {1.000
{+ |0.000

~

M aterial Edit. | Apply

-:I -'_\-'il
onll

Figure 61: HVE Environment Surface Data

3.2.3.4 HVE Simulation Playback Results

Upon replaying the converted HVE CAN file to the SRS module an unexpected result
was found. There appears to be a checksum which validates the data accepted by the
SRS module and if that checksum is not correct the SRS module will hold the
previously accepted value. In this Figure, the solid line which has the values of 0 and
210 corresponds to transmitted CAN steering, the blue diamonds, which have values
of only 0 and 210, represent the SRS reported steering, the green diamonds
represent the CAN speed, the red squares represent the CDR reported speed, and
the acceleration pulse of the apparatus is marked by the blue spike at approximately
t=0. The test corresponding to Figure 62 was done using the CR-V SRS module. As
previously shown, the CR-V module both refreshes and updates speed values every
0.1 s. However, this record clearly shows a large delay in the updating of the speed
value (approximately 1.5s). To ensure that the testing apparatus and python
translation script were functioning properly, the transmitted HVE CAN data was
logged during a test. This test showed that the transmitted HVE CAN messages were
appropriately transferred in regards to message timing and message value. Upon
further inspection it was found that if byte 7 of CAN ID 0x309 is removed from the
CAN record no speed values will be updated to the SRS module (remember that only
bytes 4 and 5 of 0x309 are responsible for the speed value). These test have led to
the conclusion that byte 7 of 0x309 may function as a checksum. It was attempted to
discover the checksum method without success. This checksum is believed to be
present for all SRS CAN sources as the steering was also not updated for 2.5s, which
is much longer than its 0.01s refresh rate.

The discovery of the checksum makes falsifying EDR records much more difficult
and adds a layer of security to the validity of the reported data.

Steering Input (degrees)

250

SO RIS BN o sresrvessevee sesseesrsvsrs sssmeeesrses ———
150_ ..
LOO [b

—50f| — CAN Steering ... P]
¢+ ¢ SRS Steering :
-1001-| — External Accelerometer*10 SRS R BRI
¢ Indicated Vehicle Speed (0x309)|
—-150r-|m m CDR Reported Speed [P
-6 5 - =3 =) 0 1
Time (s)

Figure 62: HVE CAN SRS Playback Results

3.3 Heavy Vehicle EDR Forensic Extraction Results

3.3.1 Forensically sound data extraction from a Caterpillar ECM

Our proposed solution was implemented and validated by performing a data
extraction and replay test on a Caterpillar ECM. The underlying design requirements
were written in such a way that our solution could be easily used for other
manufacturers.

The information stored on the CAT ECMs under study include warranty report
information and snapshot information. The warranty report contains the identity of
the ECM, historical usage information such as engine use histogram, logged fault
codes, and engine configuration information.

“Snapshots” are a freeze-frame of the state of the truck at the time a critical fault is
detected. These snapshots include everything from wheel speed to engine speed. As
a bench download can lead to new snapshots being created, overwriting existing
snapshot information, logging and replaying snapshot information is critical to any
forensic solution for Caterpillar ECMs.

Observation of RP1210 calls made by the Caterpillar ET software showed that all
requests sent by, and all responses to those requests, were made using extensions to
the J1708/]1587 and J1939 protocols proprietary to Caterpillar. As requests and
responses changed significantly between extractions, with no change in data
displayed, it was determined that some session-based encryption mechanism was
used.

The names of the functions obviously suggest that much of the message traffic is
encrypted. Analysis revealed that Caterpillar follows these steps:

1. CAT ET sends a session key to the ECM using a SecuritySetup message.

2. The ECM sends a session key to CAT ET using a SecuritySetup message.

3. For each encrypted message, an individual key is generated by summing the
current session key and the second nibble of the proprietary PID.

4. Each message is passed to a native DLL along with its key for decryption.

5. The key is an index into an array of bytes; the relevant byte is XOR'd with
each byte in the message to encrypt/decrypt it.

With the algorithm that encrypted ECM communications was known, the
information contained in those messages could be observed to determine how that
information should be extracted and replayed. The API hooking tool was extended
to decrypt ECM communications on-the-fly and log them when they were
intercepted. It was discovered that the protocols followed a specific pattern (see
Figure 63: Example exchange in the CAT ATA Protocol).

86

MID PID DST EncryptedReadRequest

/
AC | FE 80 @5 F3

MID PID DST

80 FE AC @ @ 00 00

EncryptedReadWriteResponse Data

Figure 63: Example exchange in the CAT ATA Protocol

Armed with this information, it was now possible to extract the information. A
manual extraction was performed according to a checklist for a crash information
extraction, and the RP1210 API calls were logged.

Figure 64: Two CAT ECMs used for testing.

Each request was logged in a plaintext format as it was sent. It should be noted that
the storage format preserves the opcode of the message. After the message was sent,
proprietary responses with matching PIDs were recorded in the key-value pair. It
was observed that some responses were split over several messages, so this was
accounted for in the extraction software.

In order to ensure that the method of information extraction was reliable, replays
from the ECM were tested against actual extractions from CAT ECMs. The ECMs
tested were evidence ECMs that were already used, and thus had been pre-
populated with data. The procedure was used for extraction and replaying in two
CAT ECMs (Figure 64: Two CAT ECMs used for testing).

Using the following procedure, we were able to validate our solution:

1. Perform one extraction of test ECM according to checklist while recording
APl calls. Save Warranty Report information and record snapshot
information.

2. Repeat step one twice more, each time saving Warranty Reports and
recording snapshots.

3. Extract ECM data using logged RP1210 calls obtained in step 1.

87

Perform 3 replayed extractions, using data extracted in step 3.
Compare ECM extractions to find differences in data contained therein.
Compare replayed extractions to find differences in data.

7. Compare consistency of ECM extractions and replayed extractions.

A

In addition, snapshot data can be recorded manually and comparisons were then
carried out by hand. Warranty report information, however, is stored in a plain-text
XML format. Accordingly, the data contained in these files was compared using a
suite of tools developed by Adrian Mouat [47] for XML comparison. Tests were also
conducted to ensure that our cryptographic protection mechanism detects any
changes made to extracted data.

4 Conclusions

4.1 Conclusions Regarding Cyber Physical System Analysis

4.1.1 CAN Logging Design and Analysis

ACL #2 and ACL #3 adequately captured CAN traffic, preserving order and content,
while satisfying temporal fidelity within acceptable ranges of tolerance. The
inclusion of an OpenLog Chip in both solutions appeared to play a factor in freeing
the Arduino main processor from logging tasks, allowing it to dedicate resources to
perform data acquisition and transceiver tasks. These solutions represent
inexpensive and practical alternatives for logging CAN traffic on vehicles.

4.1.2 Real time Replay Methodology: Logger Evaluation

Of the logger solutions evaluated using the Real time replay methodology, only ACL
#3 (the Arduino Due solution) performed adequately, and only after a modification
that replaced the serial interface with a built-in USB port. Still, considering that the
Arduino Due solution costs under $100, it is an ideal solution for many CAN
research projects. If necessary, optimizing the presented Arduino solutions, e.g.
binary data transmission, should help to improve the Arduino Due solution even
more and make it possible to handle CAN transmission speeds over 500 kB/s.

4.1.3 Real-time Replay Methodology: System Characterization

System characterization of an internal voltage sensor for a Transmission Control
Unit demonstrated the utility and fidelity of the real-time replay methodology and
framework. Testing the TCU voltage sensor revealed a systematic underreporting of
voltage by the sensor. It was further determined that the inferred conversion delay
does not have a significant impact on observed measurements. More importantly,
the testing process and methodology is readily applied to other sensors and CAN
components. Finally, results from the TCU were compared against a simulated TCU,
demonstrating the potential role of simulation in CAN experimentation under real
time replay.

88

4.1.4 Formal Verification Study

Experimentation with Keymaera and hybrid programs exposed fundamental issues
with applied formal methods for hybrid systems. Any system must be fully
describable with the specification to be suitable for formal analysis. The
idiosyncrasies of the system under analysis must be completely captured within the
mathematical definitions of the model specification or they will not be considered.

This is not a shortcoming of Keymaera but rather a framing requirement of the
underlying formal model theory and is acceptable when studying or designing well-
defined systems. The proprietary nature of the TCU voltage system characterized
and analyzed above, as well as the use of the Controller Area Network technology as
a communication infrastructure formal modeling and analysis remains an extreme
challenge.

4.1.5 Implications for policy and practice:

The analytical framework presented offers a collection of tools and processes by
which to conduct practical study of vehicle CPSs operating over a CAN
infrastructure. Inexpensive alternatives for CAN logging may create new
opportunities for technology innovation. The real time replay methodology may
encourage more validation and greater system assurance as it offers new economies
of scale for testing. It also prescribes an integrated view of empirical analysis,
simulation and formal verification.

4.2 Passenger Vehicle Data Accuracy and Testing

There are two major contributions of this line of research in this report: 1) a new
methodology to non-destructively and repeatedly test the accuracy of different pre-
crash data elements in an event data recorder and 2) applying those techniques to
two 2012 Honda vehicles.

The new methodology eliminates the risk of accidentally deploying airbags while
gathering GPS and CAN bus data in the test vehicle. The techniques presented in this
paper allows gathering of data in vehicle without tampering with the airbag control
module. The new methodology allows for repeatable testing and mapping the
transfer functions between the vehicle CAN bus data and the EDR. Should a
manufacturer make a design change to an air bag based EDR, identical inputs can be
given to exemplar control modules from before and after the changes to document
any change in the transfer function. This methodology allows researchers the ability
to recreate events of interest in a low-cost, repeatable manner.

4.2.1 2012 CR-V Speed Data

Under normal driving conditions that included moderate acceleration and braking,
the 2012 Honda CR-V vehicle speed CAN bus message (speed, vehicle indicated)
accurately represented the vehicle ground speed. The difference between the VBOX
GPS speed and the CAN bus speed was not dependent on vehicle speed, which
indicates that the vehicle was properly calibrated. The EDR truncated the speed to
the next lower whole km/h. Recalling that the sign convention used was Error = GPS

89

speed - EDR speed, the truncation increased the average difference by
approximately 0.5km/h. The resulting EDR to VBOX differences were between +/-
1.15 km/h with a mean of +0.033 km/h and standard deviation of 0.39 km/h. This
suggests that the CR-V normal driving speed data is accurate to about 1% at speeds
near 100 km/h as tested with new, minimally worn tires.

Under dynamic hard braking conditions, as expected, the wheel speeds under report
the GPS ground speed due to wheel slip. The CAN bus vehicle indicated speed data
updated approximately every 0.1 seconds, but under hard braking conditions the
reporting lags the ground speed. This reporting delay results in reporting an earlier,
higher speed than the current actual speed by up to 10km/h, and more than offsets
the under reporting effects of wheel slip.

4.2.2 2012 Civic Speed Data

Under steady state conditions the 2012 Honda CR-V vehicle speed CAN bus message
(speed, vehicle indicated) accurately represented the vehicle ground speed. The
difference between the VBOX GPS speed and the CAN bus speed was not dependent
on vehicle speed, which indicates that the vehicle was properly calibrated. The EDR
truncated the CAN speed to the next lower whole km/h, resulting in the average
GPS-EDR difference being higher by approximately 0.5km/h, to a mean of +0.22
km/h with a standard deviation of 0.33 km/h. The range was from -1.38 km/h to
+1.95 km/h. This corresponds to accuracy within about 2% at speeds near
100km/h as tested with new, minimally worn tires.

Under dynamic hard braking conditions, as expected, the wheel speed under-
reported GPS measured ground speed due to wheel slip. The CAN bus vehicle
indicated speed lagged the true ground speed. While a CAN bus vehicle speed
message was transmitted every 0.1 seconds, under some circumstances the value
only updated every 0.6 seconds. This significant reporting delay results in reporting
an earlier, higher speed than the current actual speed, by up to 20km/h, which more
than offsets the under reporting effects of wheel slip.

4.2.3 Other SRS Reported Data

The steering angle recorded in the SRS module is truncated with a resolution of 5
degrees. For negative steering angles, the truncation is towards zero. No anomalies
were observed in other parameters such as accelerator pedal position, brake on/off,
or engine speed.

4.3 Conclusions Regarding Heavy Vehicle EDR Forensics

One of the goals of the project was the development of a methodology for
forensically sound extraction of ECM data. While the field of digital forensics has
well defined and accepted methods in the IT world, mostly through the imaging and
protection of hard drives, the world of digital forensics in heavy vehicle systems is
still in its infancy and it not nearly as strong and robust as it should be. We have also
illustrated the weaknesses associated with current practices and developed a new
methodology that could have a significant impact on this domain.

90

Our verification results show that using our solution, the original evidence is
modified less by using forensic replay than it is by repeatedly extracting the
information by traditional means. Even if no additional faults are created during a
bench download, the ECM running time is better preserved by imaging and
replaying the ECM data rather than repeated downloads.

The expertise requirement is not totally alleviated by the extraction and replay
process; an investigator still has to know how to connect to the ECM and power it up
properly. However, the main advantage of the forensic extraction and replay
process is that all information extraction is automated; no knowledge of diagnostic
software or the steps required to gather pertinent crash information is needed. This
is an advantage in a law enforcement context where training time is at a premium.

A solution was also implemented, demonstrated and validated by performing tests
on two CAT ECMs. By default, the CAT ECM extraction process is almost completely
opaque. Unless certain data are not available on the ECM, or an error occurs during
the download process, there is no record kept of the traffic other than its final
interpretation by the maintenance software. Our solution addresses that problem by
using a forensic replay method that records network traffic. This traffic can be
examined after the fact to verify the extraction and replay process.

5 Bibliography

[1] R. Bortolin, S. v. Nooten, M. Scodeller and D. e. al., "Validating Speed Data from
Cummins Engine Sudden Deceleration Data Reports," SAE International Journal
of Passenger Cars - Mechanical Systems, vol. 2, pp. 970-982, 2009.

[2] T. Henzinger, "The theory of hybrid automata," in 11th Annual IEEE Symposium
on Logic in Computer Science, Washington, DC, 1996.

[3] T. A. Henzinger, P.-H. Ho and H. Wong-Toi, "Hytech: A model checker for hybrid
systems," Software Tools for Technology Transfer, vol. 1, pp. 460-463, 1997.

[4] A. Platzer, "Keymaera: A hybrid theorem prover for hybrid systems," 2013.
[Online]. Available: http://symbolaris.com/info/KeYmaera.html. [Accessed 5
July 2014].

[5] NHTSA, "49 CFR Part 563, Event Data Recorders, Final Rule," [Online]. Available:
http://www.nhtsa.gov/DOT/NHTSA/Rulemaking/Rules/Associated%20Files/E
DRFinalRule_Aug2006.pdf. [Accessed 28 Sept 2014].

[6] A. Diacon, |. Daily, R. Ruth and C. and Mueller, "Accuracy and Characteristics of
2012 Honda Event Data Recorders from Real-Time Replay of Controller Area

91

http://www.nhtsa.gov/DOT/NHTSA/Rulemaking/Rules/Associated%20Files/E
http://symbolaris.com/info/KeYmaera.html

Network (CAN) Traffic," SAE Int.]. Trans. Safety, vol. 1, no. 2, pp. 399-419, 2013.

[7] Robert Bosch, GmbH, "Controller Area Network (CAN) Specfication, Version 2.0,"

1991. [Online]. Available: http://www.bosch-
semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf. [Accessed 29 Sept
2014].

[8] C. Mueller and J. P. M. Daily, "Assessing the Accuracy of Vehicle Event Data Based

on CAN Messages," in SAE Technical Paper 2012-01-1000, doi:10.4271/2012-01-
1000, 2012.

[9] A. Chidester,]. Hinch, T. Mercer and K. Schutz, "Recording automotive crash

event data," in International Symposium on Transportation Recorders, Arlington,
VA, 1999.

1 J.Lawrence, C. Wilkinson, B. Heinrichs and G. and Siegmund, "The Accuracy of

Pre-Crash Speed Captured by Event Data Recorders," in SAE Technical Paper
2003-01-0889, d0i:10.4271/2003-01-0889, 2003.

1 P. Niehoff, H. Gabler, J. Brophy, A. Chidester, J. Hinch and C. Ragland, "Evaluation

of Event Data Recorders in Full Systems Crash Tests," in 19th International
Technical Conference on the Enhances Safety of Vehicles, Washington, DC, 2005.

C. Wilkinson, J. Lawrence, B. Heinrichs and D. and King, "The Timing of Pre-
Crash Data Recorded in General Motors Sensing and Diagnostic Modules," in SAE
Technical Paper 2006-01-1397, d0i:10.4271/2006-01-1397, 2006.

C. Bare, B. Everest, D. Floyd and D. and Nunan, "Analysis of Pre-Crash Data
Transferred over the Serial Data Bus and Utilized by the SDM-DS Module," SAE
Int. J. Passeng. Cars - Mech. Syst., vol. 4, no. 1, pp. 648-664, 2011.

H. Gabler, C. Thor and J. Hinch, "Preliminary Evaluation of Advanced Air Bag
Field Performance Using Event Data Recorders,” DOT HS 811 015, 2008.

R. Ruth, 0. West,]. Engle and T. and Reust, "Accuracy of Powertrain Control
Module (PCM) Event Data Recorders," in SAE Technical Paper 2008-01-0162,
doi:10.4271/2008-01-0162, 2008.

1 R.Ruth, 0. West and H. and Nasrallah, "Accuracy of Selected 2008 Ford Restraint

Control Module Event Data Recorders," SAE Int. . Passeng. Cars - Mech. Syst., vol.
2,no.1, pp.991-1001, 2009.

1 N. Takubo, H. Ishikawa, K. Kato and T. Okuno, "Study on Characteristics of Event

Data Recorders in Japan," in SAE Technical Paper 2009-01-0883,

92

http://www.bosch

doi:10.4271/2009-01-0883, 2009.

N. Takubo, T. Hiromitsu, K. Kato and K. Hagita, "Study on Characteristics of Event
Data Recorders in Japan; Analysis of]-NCAP and Thirteen Crash Tests," SAE Int. J.
Passeng. Cars - Mech. Syst., vol. 4, no. 1, pp. 665-676, 2011.

1 R.Ruth and T. Reust, "Accuracy of Selected 2008 Chrysler Airbag Control Module

Event Data Recorders," SAE Int. J. Passeng. Cars - Mech. Syst., vol. 2, no. 1, pp. 983-
990, 2009.

2 R.Bortolin, B. Gilbert,]. Gervais and]. and Hrycay, "Chrysler Airbag Control

Module (ACM) Data Reliability," SAE Int. J. Passeng. Cars - Mech. Syst., vol. 3, no. 1,
pp. 653-674,2010.

2 R.Ruth and T. Brown, "2009 Crown Victoria PCM EDR Accuracy in Steady State

and ABS Braking Conditions," in SAE Technical Paper 2010-01-1000,
doi:10.4271/2010-01-1000, 2010.

2 National Highway Traffic Safety Administration, "Event Data Recorder - Pre

Crash Sata Validation of Toyota Products,” VRTC Report DCD9157-1WDC, 2011.

2 R.Ruth, W. Bartlett and J. and Daily, "Accuracy of Event Data in the 2010 and

2011 Toyota Camry During Steady State and Braking Conditions," SAE Int. J.
Passeng. Cars - Electron. Electr. Syst., vol. 5, no. 1, pp. 358-372, 2012.

2 National Center for Statistics and Analysis, "Traffic Safety Facts 2008 Data,"

National Highway Traffic Safety Administration, 2009.

T. Austin and M. Farrell, "An Examination of Snapshot Data in Caterpillar
Electronic Control Modules," SAE International Journal of Passenger Cars -
Mechanical Systems, vol. 1, p. 1, 2011.

"Serial Data Communications Between Microcomputer Systems in Heavy Duty
Vehicle Applications J1708".

SAE International, "Electronic Data Interchange Between Microcomputer
Systems in Heavy-Duty Vehicle Applications,” Society of Automotive Engineers.

2 SAE International, "Vehicle Application Layer J1939-71".

"Windows Communication API TMC RP1210".

93

Federal Rules of Evidence Rule 702: Testimony By Expert Witnesses.

M. Meyers and M. Rogers, "Meeting the Challenges of Scientific Evidence," 2005.

3 NIST, "Disk Imaging Tool Specification,” 2001.

N. S. Report, "Electronic Crime Scene Investigation: A Guide for First
Responders," 2008.

International Standards Organization, "Guidelines for Best Practice in the
Forensic Examination of Digital Technology," 2002.

R. McKemmish, "When Is Digital Evidence Forensically Sound?," Advances in
Digital Forensics, vol. 4, pp. 3-15, 2008.

E. Casey, "Error, Uncertainty, and Loss in Digital Evidence," International Journal
of Digital Evidence, vol. 1, p. 1, 2002.

J. Johnson, A. Kongs and J. Daily, "On The Digital Forensics of Heavy Truck
Electronic Control Modules," 2014.

T. Reust,]. Morgan and P. Smith, "Method to Determine Vehicle Speed During
ABS Brake Events Using Heavy Vehicle Event Data Recorder Speed,” SAE
International Journal of Passenger Cars - Mechanical Systems, vol. 3, pp. 644-652,
2010.

J. Steiner, T. Cheek and S. Hinkson, "Data Sources and Analysis of a Heavy Vehicle
Event Data Recorder - V-MAC 111," SAE International Journal of Commercial
Vehicles, vol. 6, pp. 209-228, 2013.

J. Berdajs and Z. Bosnic, "Extending Applications using an advanced approach to
DLL injection and API hooking," Software: Practice and Experience, vol. 40, pp.
567-584, 2010.

BeagleBoard.org Foundation, "BeagleBone Black," [Online]. Available:
http://beagleboard.org/black. [Accessed 28 Sept 2014].

A. Biryukov, D. Khovratovich and I. Nikolic, "Distinguisher and Related-Key
Attack on the Full AES-256," 2009.

S. Manuel, "Classification and generation of disturbance vectors for collision

94

4

—

attacks against SHA-1," Designs, Codes and Cryptography, vol. 59, no. 1-3, pp.
247-263,2011.

M. Bellare and P. Rogaway, "Optimal Asymmetric Encryption -- How to encrypt
with RSA - Eurocrypt '94 Proceedings," 1995.

R. McHenry, "Development of a Computer Program to Aid in the Investigation of
Highway Accidents," Calspan Report V3-2979-V-1, Buffalo, NY, 1971.

4 T.Day, "Validation of the SIMON Model for Vehicle Handling and Collision

Simulation - Comparison of Results with Experiments and Other Models," in SAE
Technical Paper 2004-01-1207, d0i:10.4271/2004-01-1207, 2004.

A. Mouat, "XML Diff and Patch Utilities," 2002.

4 R.Ruth and J. Daily, "Accuracy of Event Data Recorder in 2010 Ford Flex During

Steady State and Braking Conditions," SAE Int. J. Passeng. Cars — Mech. Syst., vol.
4,no. 1, pp. 677-699, 2011.

4 B. Schneier, Applied Cryptography, x, Ed., Joh Wiley \ & Sons, 1996.

T. Reust, "The Accuracy of Speed Captured by Commercial Vehicle Event Data
Recorders," 2004.

S.v. Nooten and J. Hrycay, "The Application and Reliability of Commercial
Vehicle Event Data Recorders for Accident Investigation and Analysis," 2005.

5 NIST, "Hardware Write Blocker Device (HWB) Specification,” 2004.

C. Miller and C. Valasek, "Adventures in Automotive Networks and Control
Units," 2013.

J. Lyle, "A Strategy For Testing Hardware Write Block Devices," Digital
Investigation, vol. 3, pp. 3-9, 2006.

U. Larson and D. Nilsson, "Securing Vehicles Against Cyber Attacks," 2008.

5 K Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.

Kantor, D. Anderson, H. Shacham and S. Savage, "Experimental Security Analysis
of a Modern Automobile," 2010.

95

P. Koopman and T. Chakravarty, "Cyclic Redundancy Code (CRC) Polynomial
Selection For Embedded Networks," 2004.

T. Kohno, "Attacking and Repairing the WinZip Encryption Scheme," 2011.
Z. Gutterman, B. Pinkas and T. Reinman, "Analysis of the Linux Random Number
Generator," 2006.

J. Day and H. Zimmerman, "The OSI reference model," Proceedings of the IEEE,
vol. 71, pp. 1334-1340, 1983.

R. Cramer and V. Shoup, "Design and Analysis of Practical Public-Key Encryption
Schemes Secure Against Adaptive Chosen Ciphertext Attack," SIAM Journal on
Computing, vol. 33, pp. 167-226, 2004.

6 U.S. Court, Daubert v. Merrell Dow Pharmaceuticals, 1993.

6 S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K.

Koscher, A. Czeskis, F. Roesner and T. Kohno, "Comprehensive Experimental
Analyses of Automotive Attack Surfaces," Usenix Security, vol. 1, p. 1, 2011.

6 N. N. Center and Analysis, "Traffic Safety Facts 2008 Data," 2008.

B. Carrier, File System Forensic Analysis, x, Ed., Addison Wesley, 2005.

B. Carrier, "Defining Forensic Examination and Analysis Tools Using Abstraction
Layers," International Journal of Digital Evidence, vol. 1, p. 1, 2003.

M. Breeuwsma, M. deJongh, C. Klaver, R. v. der and M. Roeloffs, "Forensic Data
Recovery From Flash Memory," Small Scale Digital Device Forensics Journal, vol.
1,p.1,2007.

6 E.B.Barker and]. M. Kelsey, "SP 800-90A. Recommendation for Random

Number Generation Using Deterministic Random Bit Generators," National
Institute of Standards \ & Technology, 2012.

P. Amini, PyDbg: A pure Python win32 debugging abstraction class.

E. A. Lee, "Cyber physical Systems: Design challenges," University of California,

96

[7
5]

[7
6]

[7
7]

—

6

Berkeley, 2008.

7 R.Ruth and]. Daily, "Accuracy and Timing of 2013 Ford Flex Event Data

Recorders," in SAE Technical Paper 2014-01-0504, 2014.

7 T. Austin and W. Messerschmidt, "Electronic Control Module Quick Reference

Guide," 2012.

7 SAE International, "Heavy Vehicle Event Data Recorder (HVEDR) Standard - Tier

1," 2008.

F. Goichon, C. Lauradoux, G. Salagnac and T. Vuillemin, "Entropy transfers in the
Linux Random Number Generator," 2012.

W. Messerschmidt, T. Austin, P. Smith, T. Cheek and e. al., "Simulating the Effect
of Collision-Related Power Loss on the Event Data Recorders of Heavy Trucks,"
in SAE Technical Paper 2010-01-1004, doi:10.4271/2010-01-1004, 2010.

W. Messerschmidt, "DDEC Reports Version 8.02: Analysis of Daily Engine Usage
Data," in Illinois Association of Technical Accident Investigators, Peoria, IL, 2013.

D. Plant, T. Cheek, T. Austin and e. al,, "Timing and Synchronization of the Event
Data Recorded by the Electronic Control Modules of Commerical Motor Vehicles
- DDECV," SAE International Journal of Commercial Vehicles, vol. 6, pp. 209-228,
2013.

7 K. Drew, S. van Nooten, R. Bortolin and J. Gervais, "The Reliability of Snapshot

Data from Caterpillar Engines for Accident Investigation and Analysis," in SAE
Technical Paper 2008-01-2708, doi:10.4271/2008-01-2708, 2008.

Dissemination of Research Findings

Publications and presentations resulting from this award are cited as references [6],
[8],[23],[37], and [48]. Additionally, A U.S. Patent application was submitted under
application number 61/811,004.

Additionally, some of the contents on http://tucrrc.utulsa.edu were generated using
support from this award.

97

http://tucrrc.utulsa.edu

	Structure Bookmarks

