What America's
 Users Spend
 On Illegal Drugs

An Office of National Drug Control Policy Technical Paper

 June 1991
What America's Users Spend On Illegal Drugs

Introduction

For years, we have been fighting the drug war without knowing its exact contours. Yes, there is much data on both the supply and demand of dnugs. For example, the National Household Survey on Dnag Abuse, the High School Senior Survey, and the Drug Abuse Waming Network provide a sense of the demand for drugs. Other information such as the National Narcotics Intelligence Consumers Committee Report and the international Narcotics Control Strategy Report estimate the amount of drugs produced worldwide.

Howcver, no onc has attempted to answer the simple question: what do Americans spend on illegal drugs? This paper, prepared by Abt Associates for the Office of National Drug Control Policy attempts - for the first time - to make such an estimate. In doing so, it goes much further. It takes the available data on use and the avallable data on supply and tries to reconcile them to determine if the information from these very divergent sources is, in fact, consistent.

We had the study prepared to give us some sense of the scope and scalc of the problem with which we are dealing. A measure, however imperfect, of the amount spent on drugs not only tells us where we are but gives us an indicator of how the prohlem is changing over time. Such an indicator is crucial to judging the effectiveness of public programs targeted to reduce drug use, to disrupt the drug trade, to reduce the amount of drugs sold and purchased through this anderground economy. and to reduce or eliminale the profits channeled to leaders and workers in that illegal industry. Further, for the Office of National Drug Control Policy, it defines the magnitude of the challenge that we face.

This paper is not the final word. In fact, it is only the first word. It is intended to provoke an open and construetive discussion. I fully expect that there will be many who disagree with its rationale, methodology, and
conclusions. I acknowledge that there are many problems inherent in the available data.

I further acknowledge that we don't know many of the things we ought. to know to make estinates of this nature with any degree of precision. For cxample, information on quantitics, trade patterns, and frequency of usage on drugs other than cocaine and marijuana is virtually noncxistent. But make estimates we must if we are to make policy decisions. The flaws and gaps in the data on which this paper is based point the way to the improvements needed to make better estimates in the future.

The paper is not intended for the scholar or rescarcher and may not meet their standards. In fact, the technical discussions were held to a minimum, though we would be pleased to discuss any technical aspects of the paper with those who contact this office. Rather, it is designed as a basis of action for policymakers. Federal officials, officials in State and local government, and the concerned citizens of our Nation.

As the findings show, there is more work to be done despite the dramatic and encouraging declines in overall drug use in this country. The market for illicit substances in the United States is immense and illicit drugs continue to be a major and unsavory industry. Therefore, our challenge remains: we nust reduce even further the level of illicit drug use in this country and stop dnug use before it slarts. This demands our continuing civil and political resolve.

We stand ready to engage in the debate that we expect will ensue as a result of this report and to use these estimates as a guide to policy action until better ones are made.

We thank various Federal agencies, and law enforement and Ireat. ment officials who have read drafts of the report and given us their comments and helpful suggestions, as well as Peter Reuter of IZAND Corporation and Mark Kleiman of Harvard University.

Executive Summary

This paper is part of an ongoing project to develop estimates of what. Americans spend on illegal drugs each year. This report focuses on the amount and retail sales value of cocaine. heroin, marijuana, and other illegal drugs consumed in 1988. 1989, and 1990.

We use two approaches to estimate the amount of illicit dougs consumed and available for consumption in America. Starting with drug consumers, we multiply estimates of the number of drug users by estimates of the average amount of drugs consumed. Then we examine the supply of drugs available for consumption by estimating the amount of drugs that enters the United States and escapes seizurc. Prevailing retail prices are used in both approaches toconvert drugamounts to dollar value when sold to final users.

According to our study of drug consumers, Americans spent approximately $\$ 18$ billion on cocaine, $\$ 12$ biltion on heroin, $\$ 9$ billion on marijuana, and $\$ 2$ billion on other illegal drugs in 1990. These estimates arc expressed in dollars, but may not have bcen payments in cash. payment for illicit drugs is often "income in kind" such as dealers keeping drugs for personal use, users helping dealers in exchange for drugs, and users performing sex for drugs (especially crack cocaine).

Although it is difficult to be precise about chatiges in the illicil drug market, trends seem to emerge. Retail sales of both cocaine and marijuana appear to have fallen by about 24 percent from 1988 to 1990. Retail sales of heroin during the same period seem to have fallen slightily less-about 22 percent. We are unable to compute trends for expenditures on other illegal drugs.

From the supply perspective, about 310,150 metric tons of coca lead crop were cultivated in South America during 1990. This leaf crop could yield a maximum of 873 metric tons of cocaine hydrochloride, but due to losses in shipment, only about $376-544$ metric tons were shipped to the United States. Of the cocaine aniving on Amenican shores. Federal authoritics seized abut 101-119 metric tons, leaving roughly 263-443 metric tons available for domestic consumption. The street value of this cocaine would be $\$ 26-\$ 44$ bilion-an estimate that we consider high.

Again, it is difficult to report trends in an illegal economy with absolute assurance. However, it appears that leaf crops and the anount of cocaine it would be possible to produce from those lear crops have increased by about 5 percent. Pcrhaps production increased to offset increases in foreign country seizures. These foreign seizures alone caused a 9 percent decrease in the amount of cocaine shipped to the United States. The amount of cocaine scized by United States authorities increased by 88 percent. The net effect of increases in both production and foreign and all seizures has been a 22 percent decrease in the amount of
cocaine available for consumption in the United States between 1988 and 1990.

We are unable to develop reliable supply-side estimates for heroin, primarily because the United States makes up such a small share of the world market for this drag. We are also unable to develop plausible supply-based estimates of marijuana sales given available data.

Table A summarizes our estimates for the retail sales valucs of all drugs: and Table B, our estimates for the production and distribution of cocaine. These estimates are not exact. Key data on users and their use patterns simply do not exist for most drugs. As a result, we must make major assumptions to piece together fragmentary and often conllicting evidence. Our calculations will be refined as better data become available. Our eslimates based on drug consumption are remarkably cluse to those hased on drug supply. From the consumption-based side. we estimate that \$17-23 billion dollars were spent annually on cocaine between 19881990 . Although this range is somewhat smaller than that derived from our supply-based estimates ($\$ 26-\$ 54$ billion dollars), this difference can be attributed to several rcasons: The United States itself may be a greater transshipment country to Europe than is assumed in our model; State and local seizures have not been accounted for in our model; and part of the supply of cocaine may be to replenish dealer stocks.

Although these estimates are imprecise, they are reliable enough to imply that the trade in illicit substances is immense-roughly $\$ 40$ biltion to $\$ 50$ billion. To put this amount into perspective, consider that Americans spend $\$ 44$ billion on alcohol products and another $\$ 37$ billion on tobacco products. Federal, State and local governments spend $\$ 46$ billion on the criminal justice system and $\$ 183$ billion on public elementary and secondary education.

The social costs from drug consumption greatly excecd the $\$ 40$ billion to $\$ 50$ billion spent on illicit drugs. Drug use fosters crime, both property crime to support consumption and violent crime to support drug distribution networks. Drug use intensifies catastrophic health problems, ranging from hepatitis and endocarditis to crack bables and AIDS. And drug use promotes general social disorganization as it disrupts or scvers personal, familial, and legitimate economic relationships. The public bears much of the burden of these indirect costs by financing the criminal jusuce response to drug-refated crime, maintaining a public treabnent systern, and educating the impressionable about the dangers of drug use. This research into the scope of drag use in the United States should help us to determine the wisest use of public fands and policies to combat drug use.

TABLE A
RETAIL VALUE OF ILLICIT DRUGS IN THE UNITED STATES
[in billions of dallars)

	$\underline{1988}$	$\underline{1989}$	$\underline{1990}$
Cocaine	$\$ 22.9$	$\$ 22.5$	$\$ 17.5$
Heroin	$\$ 15.8$	$\$ 15.5$	$\$ 12.3$
Marijuana	$\$ 11.1$	$\$ 10.0$	$\$ 8.8$
OUher Drugs	$\$ 1.8$	$\$ 1.8$	$\$ 1.8$
Total	$\$ 51.6$	$\$ 49.8$	$\$ 40.4$
$-\cdots$			

ESTIMATES OF PRODUCTION AND SUPPLY OF COCAINE

[in metric tons and billions of dolldars)

	1988	1989	1990
Coca Leal Crop	293,700 MT	298.090 MT	310.150 MT
Cocame HCL Produced	829 MT	836 MT	873 MT
Transshipment, Foretgn Seizures	38 MT	64 MT	92 MT
Cocaine Shipped to the United States	418-593 MT	388-557 MT	376-544 MT
Cocalne Seized by Federal Authorilies	57 MT	95 MT	101-113 MT
Cocaine Available for Consumption in the			
United States	$361-536 \mathrm{MT}$	293-462 МT	263-443 MT
Retall Value in the Uniled States	\$36-\$54 B	\$29-\$46 B	\$26-\$44 B

What America's Users Spend On Illegal Drugs

Developing estimates of the retail value of the United States market for illicit drugs and for licit drugs consumed illegally is a pressing problem. The size of the illicit drug market is a principal indicator of the need for a public response to combat the drug epidemic. It is also cssential to develop indicators of how this market is expandingor contracting over time. Such indicators are crucial to judging the eflectiveness of public programs targeted to dismpt the drug trade, to reduce the amount of drugs sold and purchased through this underground economy, and to reduce or eliminate the profits channeled to leaders and workers in that underground industry.

This paper reports estimates of the retail value of illicit drugs and licit drugs sold illegally in the United States for 1988 Lhrought 1990. The bulk of this paper describes our methodology. A concluding section summarizes our estimates.

In order to estimate the retail sales value of illicit drugs consumed in the United States, we examine both the demand for and the supply of drugs. The demand or consumption approach involves multiplying estimates of the number of drug consumers by estimates of the average amount of drugs used. The supply approach requires estimating the amount of base crop ralsed in producer countries reduced by the amounts lost. seized or consumed in other countries and the amount seized in or shipped through the United States. We describe these two approaches in greater detail in the following sections. The supply approach requires estimating the amount of base crop raised in producer countrics reduced hy the amount seized in or shipped through the United States. Both appnaches produce dollar amounts when the arnount consumed (amount supplied) is multiplied by prevailing retail prices. These dollar amounts are expressed as dollar equivalents because payment for illicit diugs is often "income in kind" such as dealers keeping drugs for personal use.
drug users helping dealers in exchange for drugs, and users performing sex for drugs. We describe the consumption and supply approaches in the following sections.

The yearly retail value of illicit drugs and legal prescription-type drugs procured and consumed illegally in the United States during 1988 1990 is an estimated $\$ 40$ to $\$ 50$ billion. This range is imprecise-this report explains its derivation-but its precision is sufliciently accurate to conclude that the United States market for illicit substances is immense. By comparison. Americans spend $\$ 44$ billion on alcohol products and another $\$ 37$ billion on tobacco products. Federal, State, and local governments spend $\$ 46$ billion on law enforcement and another $\$ 183$ billion on public education. ${ }^{1}$

Just as a polluting industry fouls its environment, creating social costs not borne by the purchasers of its products, the illicit drug industry generates costs not fully reflected in expenditures on cocaine, opiates, marijuana, and other drugs. Drug abuse fosters crime (some incidental to paying for drugs, some instrumental to distributing drugs), catastrophic heallh problems (ranging from drug-addicted bables to AIDS, and including a variety of illnesses such as hepatitis and endocarditis), and general social disorganization as drug abuse disrupts or severs personal, familial, and economic relationships. Much of this cost is borne by the public as it meets the challenge of drug abuse by enhancing the criminal justice response, expanding treatment services provided by publicly funded programs, and maklng a concerted effort to edncate the impressionable about the health risks of drug use and the financial and human costs of drug addiction. Added to these ohvious costs is the insidious intrusiveness of a $\$ 40$ to $\$ 50$ billion underground economy that breeds contempt for normal social, political, and economic intercourse.

1. THE CONSUMPTION APPROACH

No single dala source presents a comprehensive view of drug use among Americans. Consequently, we categorize users into scven groups and use different approaches to eslimate the amount of drugs consumed by each group. Each of these groups varies as to frequency of use, the amotnt of drugs taken per session, the purity of drugs consumed, and the amount paid for those drugs. To derive a final aggregate figure, we sum drug consumption eslimates derived from separate calculations for each group.

[^0]The seven groups that entered these calculations are described in Figure 1. Drug users living in households are represented by a large circle, which overlaps with the circle representing drug uscrs involved with the criminal justice system (CJS). Information about this group comes from the National I Iousebold Survey on Drug Abuse. Drug users identified by the CIS are represented by a sccond circle. Some of the CJS-involved users may live in households, so these two circles intersect. A third group. college students, also overlaps with household members: some college students live in housebolds, and others live in domitonies and fraternity houses. Members of the fourth group, military personnel, live in households or in military barracks. A fifth group is the hometess, who are not represented in the Household Survey but a portion of whom are represented in the CJS-involved population. Members of the sixth group, drug uscrs in therapeutic communities and detoxification programs, are not members of households while they are housed in a residential treatment facility. Some members of this popolation are also involved with the Cads. High School students, a subset of the household population, form a seventh group.

Having recognized these seven groups, our methodology for estimating the amount of drugs consumed in the United States involves several steps:

- We estimate the number of people in each group who used drugs. ${ }^{2}$
- We estimate the frequency with which those identified as drug users antually consume drugs. ${ }^{3}$
- We cstimate the amount of drugs that are consumed per "session" of drug use. ${ }^{4}$
- We convert amount used per session into pure drug units. ${ }^{5}$

[^1]Figure 1 - Identification of Drug Users in the U.S.
(2)
Abt Associales, Inc.

- Using the results from the first four steps, we multiply users by frequency of use; we multiply the result by amount used per session; and we multiply that amount by purity. Results are reported as "pure amount of drugs consumed." Pure drug amounts are then multiplied by retail sales price. We sum the amount of dnags consumed by each group of drug users. ${ }^{\text {c }}$
- We use data about trends in drug consumption and the retail price of drugs to develop separate estimates of the retail sales value of drugs in 1988, 1989, and 1990. ${ }^{7}$
- We verify estimates by comparing our estimates with estimates from other studies.

The margin of crror when estimating drug use is wide. Drug users are difficult to locate for questioning, and when found, are often reluctant or unable to answer questions about their drug use. Even when data are obtainable, patterns of drug use vary markedly across the Nation, so information derived from limited geographic areas may misrepresent drug use in the Nation as a whole. Furlhermore, while researchers have devoted considerable time and eflori to identifying the number of drug users and the frequency with which those users consumedrugs, researchers have rarely inquired aboul the amounts consumed per session or purfty and cost of those drugs. The reported estimates are the best we could derive from available daia, but they should be considered to be accurate only within a broad (and unknown) band of confidence.

In addition, the trends in drug consumption reported here depend heavily on a presumed relationship between the number of heavy drug users and the number of emergency room admissions for drug-related problems, as reported in the Drug Abuse Warning Network (DAWN), for cocaine, heroin, and marijuana abusc. If this presumed relationship were nonexistent or if it were weaker than we have assumed, the trends we report could be largely spurious. We are unsure of the strength of this relationship. ${ }^{*}$ Furthermore, trends in drug consumption are especialiy

[^2]sensitive to errors when measuring drug consumption during individual years within the time-series. We are uncertain of how much confidence to place in the magnitude of changes in the retail valuc of drugs consumed.

These caveats notwithstanding, our estimates of the retail value of drug consumption are reasoned estimates based on the best available data. They stand in stark contrast to what have heretofore been informed opinions or outright guesses. Just as important, the assumptions and data involved in our calculations are explicit, meaning that they are open to criticism and improvement. We expect more precise estimates to evolve from these carly attempts.

Summary of Calculations

Drug use among those involved with the CJS. Heavy drug users are frequently in trouble with the law. Relying on interviews with over 20,000 intravenous drug users, we note that 29 percent had been in jail or prison during the six months prior to their interviews, that 52 percent had been in jall or prison during the two years prior to their interviews, that 62 percent had been in jail or prisond during the five years prior to their interriews, and that 83 percent had been in jail or prison at some time during their lives. ${ }^{4}$ Our own tabulations across a dozen sites indicate that about 25 percent of the respondents were on probation, parole, or pretrial release at the time of their interviews.

Because such a large number of drug users bocome enmeshed in the criminal juslice system, we began our estimation of the number of drug users with individuals who were identified and questioned through the Drug Use Forecasting System (DUF), a reporting system developed and sponsored by the National Institute of Justice and currenly operating in 23 cities.

The DUF sysiem gathers information at the point where the criminal justice net is widest-at arrest and booking. Arrestees are interviewed about their drigg use; they also provide urine samples for testing. However, several steps must be taken before statistics based on urine testing are useful for our purposes.

DUF data are available for samples of defendants in 22 cities. To extend DUF Пndings to other cities, we estimated statistical models bascd on the city's population size and region of the country. We then applied the results to estimate the percentage of all pcople who were arrested in each Arnerican city who would have tested positive for cocaine, heroin, marijuana, and other illicit substances had dnig testing been conducted

[^3]in every city. Special adjustments were required to project the relatively high drug use rate among urban arrestees to suburban and rural areas. ${ }^{10}$

At best, a positive dag test reveals recent use of drugs (within a few hours or days for most illicit substances except marijuana, which can be detected for weeks). A negative test indicates no recent usc, but does not identify a subject as a drug abstainer. To use the results from drug tesing to estimate the number of uscrs, we must employ estimates of the frequency with which those who test positive and those who test negative for illicit substances actually use drugs. Data about frequency of use patterns is sparse. The best current source of frequency data is available from interviews with over 20,000 intravenous drug users who were interviewed from across the country (our data for cocaine and heroin use are restricted to users in a dozen cities). "

[^4]Frequency of usc patterns based on these interviews overstate drug use among an arrcstee population, because intravenous drug uscrs undoubtedly use drugs more frequently than other drigg users do. ${ }^{12}$ To reduce the bias, we adjusted the usage rates reported by thesc intravenous drug users. The "no drug use" frequency was increased so that these intravenous drug users, when arrested, would produce positive urine tests at about the same rate as is observed in the DUF data collcction system. ${ }^{13}$ Furthermore, the frequencies for use of cocaine and for use of heroin were modified to conform more closely with reported patterns of cocaine and heroin use among arrestee populations. ${ }^{14}$ On balance, then, we considcr these use pattems to be representative of drug use by arrestees. ${ }^{15}$

FBI arrest data were tabulated to determine the number of arrests across standard metropolitan statistical areas. The number of arrests was

Abstract

${ }^{17}$ In DUF interviews, the ration of male: arresters who admit lo ever usting needles to male artestees who admit to usc of cocalne in the last 30 days is between 0.91 and 1.00 ; thr ratio of wornen arrestecs who ever used needtes Io wornen arrestees who admit to ever using cocasne is betweer 0.41 and 0.46 . We cllminated citles where 10 percent or more of male arcestess admit to the use of heroln because hervin use probably accounts for much of the needle use in those sites.) Comsequently, we do not consider these druguse paltems, which are bascd on theclrug use practices of those who used needles at some time during a six month reference period, to the extessively high. Furthermore, ware aware of rod oither large data base that describes dnug use by individuals who are in frequent contact with the criminal justice systern.

 toonsumed cocsane daily. Each of thesc would fave tested positive had they been arrested and their
 halfof these: users would have tested postive for cocaine had they been atrested and thetir urime tenterl for cocadne. Suppose that the dher 33 percent of [VDL's newer used cocanse. Then gwen the cocalne usage patterns of FVDL's, a typical IVDU would yielt a arinte test that was fosittve for coocaine about half of the: time (50 pereent).

Suppose., itt fact, that only 30 percent of all arrestees test positive for cocadne. Then we adjust the cocaine use patterns reported by IVDUs such that 66 percent of arrestees were presumed not to use cocame, 17 percent used esceatne ane ar wo times per week and 17 percent used cocaine danly. This new distribution preserves (1) the obsaerved 30 procert of drug-positive urines anmong arrestecs and (2) the yatlo of heavy users fdefined as daily users) formore monerate users (who use one or two times per wock) observed among [VDUs. As thes hypothetital example illusitates, usage patterns hy Foifs who usced drug x werc uscd to fnler usage pattems among artestecs who used drug x. Diff data were usexd simultancously to dnfer the number of users.

1'for reasons explained in Rhodes, Uling the Drug Use Forecasting Systen to extirnate the prevalenat of heswy cocaine and oplate use." we assume that about 50 percent of those cocaine users who test posilive: at the: time of artest are heasy uscrs-defmed as those who use cocaine more frequetily tham once per week-and that 75 percent of those opiate uscrs who test positlve at the tme of arrest are heavy users. The tespomses from ivilus were adjusted. generally by seducing the percentages of users who reported their frequency of use as more often than oner per woek. and by increasing the percentage of users who reported their frequetry of use as luss frexpuent than once per week, so that the 50 percent (cocaine) and 75 percent theroint usage patterns were preserved in the: diala.

[^5]multiplied by the frequency of drug use among arrestees, which was computed above.

Drug users cycle through Amcrican jails and prisons. Based on several data sources, we estimate that a drug user has roughly a 0.6 probability of being arrested during a reference ycar, and for those drug users who are arrested, an average of 1.5 arrests occur per year. ${ }^{16}$ To account for drug users who are not arrested during the reference year but who are likely to be arrested at some point in timel. we divide the estimate of the number of arrestees by 0.6 , and divide the result by 1.6 . Alter some other minor adjustments, we conclude that roughly 9.4 nillion unique people are arrested or (because of their eriminal behavior) are at risk of being arrested during the year.

Based on evidence provided by several ethnographers, researchers, and others (users and dealcrs), we translated use patterns into total amount consumed per session and annualized the results. Anount used per session depended on the route of administration: injecting, snorling. smoking, or ingesting, amount used per session also varied with the frequency with which the user consumed drugs. Purity of the drug also varied with the frequency and mode of consumption. These diferences were taken into account in our calculations.

In summary, we distributed the total number of arrested users over the assumed use patterns, multiplied by the amount of drugs consumed, multiplied by the purity of those drugs, and summed the results. Individuals who are involved with the criminal justice system consurned abou1 $329,000 \mathrm{kJlograms}(\mathrm{kg})$ of cocaine, $12,000 \mathrm{~kg}$ of heroin, and $257,000 \mathrm{~kg}$ of marijuana ${ }^{17}$ per year during 1989. Cocaine and heroin are measured at 100 percent purity. The total retail values are: cocaine, $\$ 20$ billion; heroin, $\$ 16$ billion; ${ }^{14}$ marijuana, $\$ 3$ bllion; and other illicit substances. $\$ 2$ bllion.

[^6]What America's Users Spend on Illegal Drugs

The above steps cannot be replicated for 1988 and 1990 because the requisile data are unavailable. However, trend data are available from DAWN for 1988. 1989. and the first two quarters of 1990. Assuming that emergency room mentions of cocaine, heroin, and marijuana mirror patterms in the general use of those substances, the retall value of cocaine, heroin, and marijuana consumed by those involved with the criminal justice system is shown in Table 1.

TABLE 1			
RETAIL VALUE OF DRUGS CONSUMED BY THOSE IN THE CRIMINAL JUSTICE SYSTEM (in bijlions of dolars)			
	1988	1989	1990
Cocaine	\$20.5	\$20.2	\$15.4
Heroin	\$15.8	\$15.5	\$12.3
Marijuana	\$2.8	\$2.6	\$2.3
Other Drugs*	\$1.6	\$1.6	\$1.6
* DAWN data were unavaitable for "olher" drugs. so no trend is shown.			

Drug use among the homeless. Based on evidence from a major survey by the Urban Institute, ${ }^{19}$ it appears that few of the horneless who abuse drugs avoid contact with the criminal justice system. (This group is to be distinguished from the homeless whose lack of a residence is temporary. generally resulting from dissolution of a marriage or loss of employment.) Because the homeless who abuse drugs are already represented by arrestecs, we make no further adjustment for drug use among the homeless.

Drug use among high school students and dropouts. High school students are represented in the Household Survey. However, the High Sthool Senior Survey provides a better picture of drug use among high

[^7]school students, for at least threc reasons. First, more students are inierviewed for the High School Senior Survey than for the Houschold Survey, so that estimates based orn the High School Senior Survey are likely to be more accurate than those based on the Household Survey, Second, the High School Senior Survey provides a greater measure of privacy to its respondents than does the Household Survey. Third, the High School Senior Survey provides more precise measures of frequency of use and amount consumed per scssion than does the Household Survey. Consequently, we use results from the High Schooi Senior Survey in place of results from the Household Survey to estinnate drug use among students in grades 6-12.

The High School Senior Survey reports the frequency of drug use among seniors through categories "ncver." "once" and so on. The response " 40 or more times" presents some difliculties. While few seniors consume drugs at this frequency, those few account for most of the drugs consumed. Simply put, one person who uses cocaine 40 times consumes as much cocaine as 40 people who use cocainc only once. We needed a more precise measure for the response " 40 or more times." Based on the ques(ion assessing frequency over a 30 -day period, we substituted " 50 times" for the response " 40 or more times" in the following calculations.

The High School Senior Survey is asked of seniors only. To extend the responses of seniors 10 students in grades 6 through 11, we assumed that the distribution of responses on frequency of use by seniors who reported drug use during the ycar would have been the saine as the responses of drug-using students in the lower grades had those students been questioned. However, the percentage of students in the lower grades who were assumed to use drugs was reduced from that of responding seniors 1.0 reflect tabulations from the 1988 Househoid Survey regarding the yearly prevalence of drug use for students aged 12-18. ${ }^{20}$

Combining estimates for seriors and for students in grades 6-11, in 1988 high school students in the United States took cocaine during roughly 5 million sessions, marijuana during 46 million sessions, barbiturates during 2.0 million sessions, tranquilizers during 2.2 million sessions, amphetamines during 8.1 million sessions, and inhalants during 5.7 million sessions. By a "session," we mean a distinct time or times (such as once per day and three times per week) during which the respondent reported consuming dnags.

To estimate the quantily of crags consumed per scssion, we made judgmental estimates, based on the length of time that students report being under the influence, on limited information about drug consumplion from the IIousehold Survey, and from discussions with ethnographers.

[^8]During 1990, students in grades 6 through 12 consumed an estimated 2.800 kg of pure cocaine. They consumed 34.000 kg of manjuana and an insignificant amount of heroin. These students spent an estimated $\$ 276$ million on cocaine, $\$ 343$ million on marijuana, and $\$ 32$ million on other ilficil substances.

This estimation method was repeated for 1989. However, complete tabulations were unavailable for the 1990 High School Senior Survey. so we projected the 1989 result forward one year based on the ratio of percentage of high school seniors who reported using drug X (cocalne, marijuana, and other drugst during 1990 to the percentage who reported using drug X during 1989. The retail value of cocaine, heroin, and marijuana consumed by bigh school students is shown in Table 2.

TABLE 2			
RETAIL Value of drugs consumed BY HIGH SCHOOL STUDENTS (in nullons of dollars)			
	1988	1989	1990
Cocaine	\$303	\$299	\$276
Heroin		ficant	
Manijuana	\$360	\$358	\$343
Other	\$36	\$37	\$32

As for dropouts, roughly 15 percent of high school students drop out. When applied to the earlier estimates of drug use among high school students, this figure implies about 420 kg of cocaine consumed by schoolage dropouts during 1990. Direct estimates based on three years of Household Survey dafa suggest a figure of 392 kg . Because the estimate of 15 percent seems accurate for cocaine consumption (for which we have separate estimates from the Household Survey), we will use it for other drugs as well (for which we do not always have estimates from the Household Survey). Thus, we conclude that the retail value of cocaine, heroin, marijuana, and other drugs consumed by those who are high school dropouts is as shown in Table 3.

TABLE 3

RETAIL VALUE OF DRUGS CONSUMED BY HIGH SCHOOL DROPOUTS

(in millions of dollars)

	$\underline{1988}$	$\underline{1989}$	$\underline{1990}$
Cocaine	$\$ 45$	$\$ 45$	$\$ 41$
Heroin		INSIGNIFICANT	
Marijuana	$\$ 54$	$\$ 54$	$\$ 51$
Other	$\$ 5$	$\$ 5$	$\$ 5$

Drug use among college students. The Household Survey excludes drug use by college students who live in fraternities and dornitories, so for these young adults, the Household Survey's coverage is incomplete. The High School Senior Survey reports drug use by a sample of college students, and we use these data to make some calculations.

The High School Senior Survey does not report frequency of use by college students with sufficient delail for use in ourcalculations. We assumed Uhat college students who use drugs use them at the same frequency as high school sentiors who use drugs. Consequently, we applied frequency of use estimates for high school seniors to college students.

The High School Senior Survey reports the percentage of college students who use drugs. We multiplied this percentage by the number of college students and applied the frequency of use distribution to estimate that during 1988 college students consumed cocaine during 12 million sessions, marijuana during 61 million sessions, inhalants during 3.2 million sessions, amphetamines during 6.6 million sessions, barbiturates during 1.0 million sessions, and tranquiluers during 2.5 million sessions.

Otherwise making the same assumptlons as were made for high school students, we conclude that during 1988, college students consumed about $8,000 \mathrm{~kg}$ of pure cocaine ${ }^{21}$ and $46,000 \mathrm{~kg}$ of marjuana. Heroin use is rare arnong college students (0.1 percent during a 30 day period). We have excluded heroin consumed by college students from our calculations.

[^9]To extend the 1988 results to 1989 and 1990, we equated the trends for college students to the trends for high school students. The retail value of cocaine, heroin, manijuana, and other drugs consumed by college stuclents is shown in Table 4.

TABLE 4

RETALL VALUE OF DRUGS CONSUMED EY COLLEGE STUDENTS

(in milltons of dollars)

	$\underline{1988}$	$\underline{1989}$	$\underline{1990}$
Cocaine	$\$ 651$	$\$ 644$	$\$ 594$
Heroin		Insignificant	
Marijuana	$\$ 453$	$\$ 451$	$\$ 431$
Other	$\$ 22$	$\$ 23$	$\$ 20$

Drug use among military personnel. The military sponsors a semiannual survey of drug use among military personnel, including those who live in batracks, who are not represented in the Household Survey. According to the most recent survey, roughly 39,000 servicemen and scrvicewomen used cocaine sometime during 1988; 14,000 used cocaire within thirty days of the survey. ${ }^{32}$ (Estimates are revised to include only military personmel stationed in the United States.) Roughly 3.000 service personnel used heroin or other opiates during 1988; about 1,500 used beroin within 30 days of the interriew.

If we assume that military personnel who used heroin and cocaine, use those drugs at about the same rate as civilians who responded to the Household Survey, then military personnel consume about 83kg of pure cocaine and 0.2 kg of heroin. These amounts are almost insignificant. when compared to the amount of drugs consumed by other Americans. Consequently, we have notestimated the amounts of other dnugs consumed by military persommel.

Drug use among individuals in treatment. At the time of the Household Survey, some drug users are in therapeutic community residential settings or otherwise outside of households while undergoing treatment. However, sources at NIDA advise that drug use among this population is insignificant, so they are not included in our tabulations.

[^10]Drug use among members of households. ${ }^{23}$ The steps taken above allow us to estimate the number of drug users and the frequency at which drugs are used for six cohorts: individuals who are involved with the criminal justice system, the homeless, children who are in high school and grade school, dropouts, young adults who attend college, and military personnel. To these estimates, we add the estimates of drug use among other Americans as that drug use is represented by the IIouschold Survey.

Fron the Household Survey, we excluded respondents who were high school students, who were high school dropouts, who werc college students, or who indicated that their drug consumptions caused them to have problems with the criminal justice system. Remaining respondents were members of houscholds who have not been covered already by our calculations. ${ }^{24}$

Using the 1990 Household Survey. we tabulated responses for the question: "How much cocaine did you use during the last 30 days?" Using the number of responses as the base, we derived estimates of drag use by the household population. This involved multiplying the responses by 12 (to annualize them), applying sampling weights the data overrepresent some groups and underrepresent others), and computing an average. The average was multiplied by the number of Americans who admitted to using cocaine during the 30 days prior to the interview. ${ }^{25}$ Similar calculations

[^11]were made for matlyana consumption, except we deemed it necessary to adjust the reported responses for the amount of marijuana consumed during the 30 days prior to the interview. ${ }^{26}$

Also, because only about 70 percent of dnag use is likely to be reported on the Household Survey, we multiplied all estimates by 1.43. Thus, to the yet unmeasured part of the household population, we attribute 12.000 kg of cocaine and $242,000 \mathrm{~kg}$ of marijuana. Unfortunately, with the exception of cocaine and marijuana, the Iouschold Survey does not report patterns of drug consumption with more detail than "consumed in the lesst 30 days" and "consumed during the year." We adopted an expedient. to fill the remaining gap in our estimate of the household population's consumption. We used the Household Survey to determine the amount of other drugs that were consumed hy high school students, college students, and clropouts relative to the residual group. We found that the residual group the unmeasured part of the household population) consumed about 2.2 times as many drugs as the students and dropouts combincd. ${ }^{2 *}$ Consequently, we attributed to this residual group 2.2 times as much drug use as we had already atinibuted to the students and dropouts. We estimate that this population spent $\$ 1.2$ billion on cocaine, $\$ 2.4$ billion on marijuana, and $\$ 108$ million on other allicit substances.

The above calculations were repeated using data from the 1988 Houschold Survey. To derive estimates for 1989, a year during which no national survey of drug use was conducted, we averaged the responses from 1988 and 1990. Thus, we conclude that the retail value (in billions) of cocaine, heroin, marijuana, and other dugss consumed by those members of households who are not students or dropouts is as shown in Table 5.

[^12]
TABLE 5

DRUGS CONSUMED BY MEMBERS OF HOUSEHOLDS WHO ARE NOT STUDENTS, DROPOUTS, OR CUS*-INVOLVED

	(in trillions of dollars)		
	1984	1989	1990
Cocaime	\$1.4	\$1.3	\$1.2
IIeroin		ANT	
Marijuana	83.5	\$3.0	\$2.4
Other	\$0.1	\$0.1	\$0.1
* Criminal Justice System			

Drug use totals. According to our consumption-based estimating procedure, during 1990 Americans spent approximately $\$ 18$ billion on cocaine, $\$ 12$ billion on heroin, $\$ 9$ bition on marijuara, and $\$ 2$ billion on other illegal drugs. Thesc estimates are expressed as dollar equivalents because payment for illicit drugs is often "income in kind" resulting from dealers retaining drugs for personal use, users helping dealer's in exchange for diugs. and users performing sex for dags (especially crack cocaine).

Although it is diflicult to be precise about changes over time, given the imprecision in estimates of amounts consumed and street prices for illogal drugs, trends seem to emerge. The retail value of cocaine appears to have fallen by about 24 percent from 1988 to 1990 . The retail value of heroln seems to have falleri by a smaller percentage-about 22 percent. Expenditures on marijuana consumption have fallen by 24 percent. From 1988 to 1990 . We were unable to compute trends for expenditures on other illegal drugs.

Estimates of Drug Users and Drug Use from Other Gowrees.

Our conde estimate is that in the United States duning 1990 there were between 1.7 and 1.8 million heavy cocaine users ${ }^{2 s}$ and approximately 0.7 million heroin addicts. ${ }^{29}$ (Heavy opiate and heavy cocaine users overlap.) Alhough we are not interested in estimates of the number of users, per se, the reasonablencss of these figures is important. Because a minoity of heavy drug users consume a disproportionately large amount of drugs, our estimates of the number of heavy drug users must be accurate.

[^13]Lending credence to these estimates are similar estimates by others based on different assumptions and data. Homer ${ }^{30}$ estimated somewhat fewer than two million weekly cocaine users for 1989. Although Clayton ${ }^{31}$ estimated only 500,000 compulsive users during 1982-84, his estimates predate the explosive growth in the use of crack cocaine, which has addictive properties exceeding that of powdered cocaine. Estimatcs developed for the National Institute of Justice find about two million heavy cocaine users during 1988-1989. ${ }^{32}$

Regarding heroin users. Brodsky, ${ }^{33}$ in a review of four approaches used to estimate the number of heroin addicts, reports estimates of $242,000-558,000$ for 1969 through 1975, 540,000-584,000 for 1974 through 1975, 420,000-523,000 for 1976 through 1980, and 434,000 through 496,000 for 1972 through 1982. Turner et al ${ }^{34}$-reporting for a Panel of the National Academy of Science-report NIDA cstimates of about 500,000 heroin addicts. Hamill and Coolcy ${ }^{35}$ estimate 853,000 heroin addicts in 1987 and projected about one million for 1989. figures that they consider to be high. Gerstein and Harwood ${ }^{36}$ provide estimates of the total number of drug users who are in need of treatment: 2.4 million were clearly in need of treatment, and 5.5 million were probably in need of treatment. Wcre we to consider heavy drug users as those who are in need of treatment. then the Gerstein and Harwood estimates seem to bracket our estimates for cocaine and heroirl abuse alone.

As Spencer ${ }^{-37}$ has argued, these statistics are not based on firm statistical knowledge, but they are probably the best available. They are consistent with the 1990 estimate of between 1.7 and 1.8 million heavy cocaine users and 0.7 million heroin users assumed for the calculations made in this report.

[^14]As a rough cross-check of the numbers presented earlier, if we assume that 1.9 million heavy users of cocaine consumed 80 percent of the cocaine that was sold during 1989, and if we assume that pure cocaine cost about $\$ 100$ per gram, a heavy user of cocaine consumed about 1.8 grams per week on average. The weekly cost was about $\$ 182$. If we assume that 0.7 million heavy users of herofn consumed 90 percent of the heroin that was consumed during 1989, and if we assume that heroin cost about $\$ 1.33$ per milligram, a heavy user of heroin consumed an average of 0.29 grams of pure heroin per week. The weekly cost was about $\$ 380$. These estimates are within the ranges that seem credible to many experienced drug researchers with whom we spoke. ${ }^{38}$

A rough cross-check for marijuana expenditures is less convincing. Based on responses to the Household Survey's question about the amount of marijuana used during the month preceding the survey, we would estimate that the average marijuana user consumes 15 grams per month. At a street price of $\$ 10$ per gram, this suggests that the average user spends $\$ 1,800$ per year for marijuana alone. Although we consider this estimate to be too high, it is useful as an upper bound.

About 10.2 million Americans admitted using marijuana during the month preceding their intervicw; about 2.6 million Americans tested positive for marijuana use at the time of their arrest. If each of these individuals spent $\$ 1,800$ per year, then alter climinating overlap between arrestees and household members, the retail salcs value of marijuana must be aboul $\$ 20$ billion dollars. In fact, we consider these estimates to be far too high, bui they do suggest that the estimate for the retail value of marijuana (\$5.6-\$7.3 billion when all the above uscr groups are considered) is too small. As a judgement estimate, we inflate the original 1989 estimate for marijuana ($\$ 6.3$ billion) to $\$ 10$ billion.

Some additional independent verification that our estimates are too small comes from a study by Kleiman. ${ }^{39}$ He estimates that during 1988 the marijuana market had a retail value of $\$ 3.5$ billion for domestic crops and $\$ 10.4$ billion for imported crops-for a total retill value of $\$ 14$ billion. The reviscd estimate is roughly consistent with Kleiman's estimate, espectally if we take into account survey results that show a recent decline in marijuana consumption.

[^15]
II. THE SUPPLY APPROACH

A sccond approach to estimating the retail sales value of illicit drugs consumed within the United States is to develop estimates not of consumers' demand but of the amomis supplied to the domestic markets. For reasons discussed below, the development of such estimates is practical only for cocaine. This section discusses the information and assumplions relied upon to estimate the supply of cocaine to the United States, and then discusses why the supply of heroin, marljuana, and other illegal dnugs cannot be estimated satisfactorily.

Cocaine. Efforts to determine the amount of cocaine available for consumption in the United States have typically relied upon estirnates of the maximum possible harvests of coca lear \ln South American countries. Such estimates are problematic for two reasons. The first is that information about these yiclds at cach of the various stages of coca cultivation and cocaine processing is imprecise, while estimates of annual cocaine production are dramatically affected by the assumptions one makes about these yiclds. The second problem is that estimates of maximum available supply cannot be translated readily into amounts actually avallable to United States consumers because some portion of the coca leal harvest and its denvative products-including cocaine-is taken out of the prodtiction "pipeline" by various means, including spoilage, seizures, and other losses. Cocaine is also sent to destinations other than the United States.

The steps in the processing of cocaine are illustrated in Figure 2. Coca bushes are cultivated in several zones of South America - principally in the Andean Nations. Some hushes are destroyed by government-sponsored eradication efforts. Coca leaf has long been consumed by the indigenous South American population for medicinal and dictary purposes, and some proportion of each year's crop continues to be consumed locally. What remains - and survives spoilage, seizure, and loss - is used to produce cocaine. This transformation occurs by chemically treating coca leaves to produce coca paste, which can then be treated further to create "base." Still another chernical process is used to turn base into cocaine hydrochloride (HCl), or purc cocalne. Each of these final and intermediate products may be consumed. lost, or seized, and thereby taken out of the pipeline. Trying to determine the amount of cocaine that this industry produces is complicated further by the fact that most cocaine is not manufactured in the same country in which coca leaves are grown. Instead, intermediate products and the chemicals needed for cocaine production are moved across borders to clandestine laboratories in a number of different countries.

Figure 2 - Cocaine Production Process

Once pure cocaine is produced, it enters a complex distribution network, and various transshipment poinils are used to facilitate undetected entry into the United States. At ihese transshipment points, some of the cocaine is taken out of the pipeline by local consumption and seizures by government authorities. Figure 3 illustrates the routes taken by coca leaves grown in Bolivia as they are transformed into intermediate products and ultimately into cocaine, which is then shipped to world markets. The routes indicated here are thought to be the principal ones: routes of lesser importance are omitted. The number of countries through which cocaine is shipped on its way to the main consumer countrics is also larger than shown here. Moreover, the proportion of cocalne shipped through each of the transshipment countries cannot be estimated reliably.

The Abt Associates Cocaine Supply Model: Information, Assumptions, and Findings. To integrate information about the cocaine pipeline, including both its manufacturing and transportation aspects, Abl Associates has developed a computer-assisted Cocaine Supply Model, which implements a preliminary version of a model of cocaine supply being developed by RAND for the Deparments of the Air Foree and the Army. ${ }^{40}$ This model computes the inputs and outputs at several different steps as coca leaves are processed into derivative products and then cocaine.

This model uses various kinds of information. These include estimates of: (1) land area under cultivation in known producer countries, (2) eradicated cultivation areas, (3) coca leal crop yield, (4) the efficiency of the process for converting leaf to intermediary products and then to cocainc. (5) losses, consumption, and seizures within producer and transshipment countries, (6) quantities destined for the United States and other markets, and (7) amounts seized by Federal authorities in or near the United States.

Figures 4,5 and 6 show a report derived from the model for each of three years: $1988,1989,1990$. Each of these figures traces estimates of the cultivation and manufacturing steps that result in the production of pure cocaine available for transport to potential consumers. Estimates of the amounts seized, consumed, and lost to and from transshipment countries, and of the amounts seized by United States authorities are not included in the figures. (Cells without information signify that data are not available to support an estimate, rather than indicating zero amounts.) Because data pertaining to transshipment are so inconsistently available. we are not able to model the complex transshipment process usefully. Known seizures are therefore computed scparately, in aggregate, for all transshipment countries combined. Using the model, we estimate that during 1990 approximately 594-696 metric tons of pure cocaine were produced and available for export to consuming countries, either directly or through transshipment countries. This compares to an estimated 582683 metric tons in 1989 and 595-697 metric tons in 1988. (The higher

[^16]
Figure 3 - The International Cocaine Network

Aht Associales, Intc.

Figure 4

Cultivation and Production of Cocaine HC1, 1988

Soures: INC'SR (99) ; memorandum from ONDCP; telephome conversations with Euteatu of latermationd Nateodics Matters, Department of Siate.

Figure 5 Cultivation and Production of Cocaine $\mathbf{H C l}, 1989$

Source: WCSR]Ggl: memorardum tron ONDCP: telejhhone conversations with Bureau of intermatiothal Narcothes Maters, Deparlment of State.

Figure 6
Cultivation and Production of Cocaine HCl, 1990

Soluce: [NCSR]991: DEA Whrldwide Cocalne Situalion. 1990 menoraudutn from ONDCF: telephont: conversiations with Burcais of Intertational Naticotics Matiers, Drpartulent of State.
boundary in each year's range is computed on the basis of data and assumptions shown in Figures 4 through 6. The lower boundaries reflect an assumption that consumption of coca leaf in Bolivia and Peru amounted to 66,000 metric tons rather than the 33,000 shown in the figures).

Coca cultivatlon. Estimates of the amount of land under cultivation in the major coca producing countries-Penı, Bolivia, Colombia, and Ecuador ${ }^{41}$-are published annually in the Intemational Narcolics Control Strategy Report (INCSR) by the State Department's Bnreau of Intenlational Narcolics Matters. ${ }^{42}$ The Bureau's calculations of land under cultivation are reportedly based on "proven methods similar to those used to estimate the size of licit crops at home and abroad"-prineipally, from satellite photographs. ${ }^{43}$ However, the Royal Canadian Mounted Police report different estimates of the land under cultivation. ${ }^{44}$ Because we lack the ability to provide an independent assessment of the conflieting estimates, we rely upon the data in the INCSR for our modelling estimates. It should be noted, however, that making different assumptions about the amount of land under cultivation has substantial effects on our estimates of the amount of pure cocaine that is ultimately produced.

Because the yields in the various regions of the cultivating countries vary-resulting in widely different harvest estimates-the Abt model distinguishes among the various regions within certain countries. For example, the INCSR estimates that 65 percent of Peruvian coca cultivation occurs in the Huallaga Valley, and 70 percent of Bolivian coca cultivation occurs in the Chapare region. We estimate that approximately 220,850 hectares were under cultivation for coca leal during 1990, approximately the same as in 1989 (220,365), but higher than in 1988 (200,460 hectares).

Eradication efforts undertaken by the governments in producer counlries, sometimes with the cooperalion of the United States Government. result in a reduction of harvestable coca leaves. In 1990, 9,030 hectares- 4 percent of the total area reported under cultivation-were destroyed. ${ }^{45}$ Lacking information on the exact location of the eradicated areas, we assume for the purposes of the model that eradication is evenly distributed among all cultivated lands. Any diferent assumption would affect the estimates of leal harvest.

[^17]During 1990. approximately 211,820 hectares of land under cultivation for coca leaf were thought to remain after eradication efforts. This was slightly lower than the 1989 estimate of 215,850 hectares, but higher than the 1988 estimate of 193,565 .

Coca crop yields are difficult to determine because the process is aflected by various conditions, including drought and uncertainty regarding the yield polential of coca bushes. In the 1991 INCSR, assumptions about leaf harvests have changed substantially. Previously. the State Department catculated all coca leaf yiclds assuming that bushes are harvested once or twice a year. However, according to field research conducted in producer countries, mature coca plants-those two to fifteen years old-in the largest cultivating regions of Peru and Boliva can be harvested three or four times a year, whilc younger plants may not be harvested at allorare harvested Iess frequently. Using this new melhodologywhich produces "mature cultivation csimates"-the State Department has reanalyzed data for 1988 and 1989, increasing estimates it previously reported for those years. For cxample, the old methods estimated leaf yield in 1990 to be 244,926 metric tons, whereas the new procedures produced an estimate of 310,150 metric tons. In this report, and in the model, we adopt the estimates produced by the revised procedures.

Cocalne manufacturing. Converting the coca leaves into cocaine HCl is an involved process requiring laboratory equipment and large quantities of chemicals. Clandestine laboratories are located in the cultivating courltries and in Asgentina, Brazil, and Venezuela. Our knowledge of processing and of the network of clandestine laboratorics is based upon reports of laboratories destroyed and upon speculation about the production capabilities of laboratories in various countrics. ${ }^{66}$

The model takes into account, where data are available, the transfers of leaf and base to other countries. Unfortunatcly, most of the cells in the model's section pertaining to transfer are empty because data needed for these estimates are unavailable. Moreover, some of tbe estimates we have been able to make are quite speculative. For cxample, we estimate that 3.2 metric tons of base were available in Venczuela for conversion to cocaine HCl during 1990. Tbe government there reported seizing 1.7 metric tons, about half of the estimated supply. This may suggest tbat the estimate of the supply of base in Venezucla during 1990 is too conservative. However, the data needed to develop a more precise estimate are unavailable.

As law enforcement officials in producer countries increase their activities, more drug tralfickers may move thcir processing facilities to

[^18]the The Drg Enforcentent Adminislration reports seixures of eoraine ICl comversion latroratories in the Netherlands and Spain. Drag Enlorcement ddnindstration, Office of Intelligence. Worldwide Cocalne Situation. Washtngton. D.C.: January 1991, p. 34.
other countries. This possibility is limited for the initial stage of the process because of the spoilage rate of leaves. However, there are reports of paste/base to HCl laboratories in some consumer countries. ${ }^{47}$

The conversion process can vary widely from one location to another in the processing countries. According to information currently available from a variety of sources, the International Narcotics Control Strategy Report accurately reflects the conversion process in each of the producer countries. ${ }^{*}$ The report indicates that leaves are first converted into paste. Second. the paste can be further relined into washed coca paste, also known as base. ${ }^{49}$ Finally, the washed paste or base is converted to cocaine HCl . (The conversion ratios in the Abt model come from the INCSH.)

The first stage-leal to paste conversion-varles signilicantly from country to country because of difering alkaloid contents of the leaves grown in different countries. For example, Colombian coca leal has about one-ihird the alkaloid content of leaf from Peru or Bolivia. ${ }^{50}$ Whereas 330 kilograrns of leal can be converted into one kilogram of base in Bolivia, 500 kilograms of leal from Colombia are required to produce one kilogram of base.

The second stage-paste to base conversion-may not be followed in all regions. However, the process is relatively simple and increases the purity of the final product. By "washing" the coca paste in acetone beforc the final purification process, the purity level of the cocaine product can be enhamced. ${ }^{31}$ There are no clear data on the prevalence of this process. allhough the INCSR assumes its occumrence in its calculations of conversion in both Bolivia and Peru.

The final stage-base to cocaine HCl -requires acetone, ether, and hydrochlonic acid, which are produced in Brazil and other industrialized Nations. One unit of base yiclds an equal unft of cocaine HCl .

As noted above, the end result of this cultivation and manufacturing process was an estimated 594-696 metric tons of pure cocaine being made available in 1990 for shipment to the world markets. (The range reflects different assumptions about consumption of coca lear in Bolivia and Penu.) This estimate excludes amounts seized, lost, and consumed in the producer countrics. and losses and consumption in transshipment to world markets.

Losses from the manufacturing process. Consumption of leaf, pastc, base, and cocaine in South American countries substantially

[^19]reduces the potential cocaine supply. Extensive consumption of coca lcaves occurs in Bolivia and Penu and to a lesser extent in other countries where processing occurs. Consumption of intermediary products and cocafne HCl occurs to a lesser extent, but it is thought to be on the rise. Adjustments for the large volume of coca leaves consumed for dietary and medicinal purposes in Peru and Bolivia are made, following various medical and sociological studies that place the number of persons who chew coca leaves in these two countrics at three to four million. ${ }^{5 ?}$ Assuming thateach person who chews coca leaves ingests between 30 and 60 grams of dry coca leaves each day, ${ }^{53}$ between 33,000 and 66,000 metric tons of coca leaf are consumed in these two countries each year.

Consumption of paste occurs in many of the producer countries. Called "bazuco." coca paste is smoked in combination with tolacco. The prevalence and extent of this usage is difficult to estimate. Additionally, information about the consumption of base and cocaine is limited in the producer countrics by the limited ability of the local governments to survey their citizens on drug abusc.

Seizure of coca leaves and intermodiary products by local authorities furiher reduces the potential supply of cocaine to the world market. Unfortunately, information about seizures is of questionable reliability. An incentive exists to inllate reports of seizures bccause aid from the United States government is contingent upon countrics' progress in eradicating illicit drugs. Because confiscated coca is registered by different agencies within local govermment establishments, substantial opportunity exists for overcounling. Undercounting may also occur if corrupt law enforcement officials fail to report all of the seized cocaine and choose instead to sell it on the market for personal gain.

During 1990, approximately 420 metric tons of coca leaves, approxtmately .2 metric tons of paste, and 79 metric tons of base were reportedly seized in the producer countries. In the transshipment countries. approximately 80 tons of cocainc was reportedly seized by authorities. As discussed below, additional amounts of cocaine were seized by United States officials inside or near the United States borders.

Coca supply may be reduced significantly by the rapid spoilage that occurs in the hot and humid climate of South America. Losses also occur throughout the manufacturing process because of sloppy and inefficient use of chemicals. Entire batches of coca can be contaminated and thereby ruined. The amount of potential cocaine stupply lost in the course of manufacturing is difficult to estimate. Lacking information about losses, we make no assumptions about the amount lost in the cocaine manufacturing pipeline.

After accounting for available estimates for consumption of dry leal as well as seizures and losses of leaf and intermediate products, the

[^20]estimated total amount of cocaine HCl available for transshipment from producer countries in 1990 ranged from 594 to 696 metric tons.

The transportation pipeline. Some cocaine is shipped from manufacturing countries (such as Colombia) directly to the primary consumer countrics, principally the United States. Some is transshipped through other countries to clude detection. These countries include Caribbean Nations, as well as South and Central American countries. Some cocaine destined for the United States may come through Canada as well. Not all of this cocaine ultimately arrives in the principal consumer countries because some portion of it is seized, lost, and consumed in the countries through which it is shipped. Determining how much cocaine is consumed in South and Central America, the Caribbean, and Mexico is difficult; govenments in these countries lack the resources to adequately survey their citizens on drug abuse. Officials in the Bahamas, for example, report a "serious" drug abuse problenn stemming from the use of the country as a transshipment poini of cocaine HCl to the United States, but estimates of how much drug is taken out of the pipeline by consumption are not reported. Summing up all reported seizures of cocaine in transshipment countries, we estimate that approximately 80 metric tons of cocaine was eliminated from the pipeline during $1990 .{ }^{54}$ In addition to consumption and seizures, supply was reduced by losses of various sorts. Lacking data, we are not ahle to estimate the size of these losses.

From the transshipment countries, cocaine is smuggled into consumer countries by land. sea, and air routcs. The percentage of cocaine HCl shipped to consumer countries depends, to some extent, on the demand in each country. Changing demand for cocaine in Europe, Canada, and the Asian/Pacific regions may affect the amount of available cocaine in the United States. For example, cocaine use is reportedly increasing in Asia. As demand there increases, cocaine may be diverted to this region, which may in turn reduce the net amount available in the Unilud States. (Another possibility, however, is that supply will be increased to feed this new rnarkel, wilhout a concomitand reduction of supply to the United States.) The significant rise in seirures of cocaine HCl in Europe could indicate expansion of the cocaine market there ${ }^{55}$ Of the estimated total amount of cocaine HCl available after seizures in transshipment countries. an estimated 10 to 25 percent of the supply is diverted to consumer countries other than the United States. (This estimate lacks firm grounding, but is probably wide enough to capture the actual proportion consumed outside the United Slates.) Following these assumptions, the Abt model estimates the amount of cocaine entering United Slates jurisdictions for 1990 to be in the range of between 376 to 544 metric tons.

[^21]swortd Cocatint: Supply, 1991. Pr, 33-35.

Federal interdiction efforts succeed in capturing some of the cocaine headed for United States markets. Determining the prectse amount scized prior to 1989 is difficult because passing seizod drugs from one agency to another (e.g., from the Coast Guard or Customs to the Drug Enforcement Adminisiration) has resulted in some double- and even triple-counting. In 1989, the Federel-Wide Drug Seizure System (FDSS) was instituted, so that a single number is registered and passed along witt the captured drugs to climinate double-counling. During that year. Federal agencies seized 95 netric tons of cocaine. Preliminary estimates for 1990 place the amount at 101-113 metric tons. For 1988, the pre-FDSS amount was 57 metric tons.

State and local law enforcement officers also seize cocaine, but no Federal system exists for counting and reporting stuch seizures. No data exist upon which to base an estimate.

Accounting for the amounts seized by Fedcral authorities within the jurisdiction of the United States, we estimate the amount of pure cocaine penetrating the United States border and theoretically available for domestic consumption to be approximately 263 to 443 metric tons during 1990, compared to 293 to 462 during 1989 and 361 to 536 duning $1988 .{ }^{56}$

Assurning that a gram of pure cocaine costs about $\$ 100$ (estimate from the Drug Enforcement Administration, discussions with strect ethnographers, and reports from the Community Epidemiolofy Work Group), the total retail value of 340 to 443 metric tons is between $\$ 26$ and $\$ 44$ billon for 1990 . Not all of the available supply of cocaine imported to the United States need be consumed in a given year-it may go into inventory orstockpiles inan etfort to maintain or increase prices. For carlier years, comparable ranges are $\$ 29$ to $\$ 46$ bilion (1989) and $\$ 36$ to $\$ 54$ billion (1988).

Summary. From the supply-side perspective, during 1990, about 310,150 metric tons of coca leaf crop was cultivated. This leal crop could yield a maximum of 873 metric tons of cocaine HCl, but due to losses in shipment, about 376-544 metric tons were shipped to the United States. Of the cocaine arriving on American shores, Federal authorities scized about 101-113 metric tons, leaving 340-443 metric tons available for domestic consumption. The street value of this cocaine is $\$ 26-\$ 44$ billion-an estimate that we consider high.

Again, estimating trends is subject to considerable error, but based on the midpoints of our supply-based estimates for 1988 and 1990, we estimate that leaf crops and the maximum amount of cocaine produced from those leaf crops have increased by about 5 percent. Perhaps this increasc in production was partly to offsel increases in foreign country seizures. Because of increases in foreign seizures, shipments to the

[^22]United States fell by about 9 percent. The amount of cocaine seized by United States authoritles increased by 88 pereent. The net effect of increases in both production and foreign and domestic seizures has been a 13 percent decrease in the amount of cocaine available for consumption in the United States between 1988 and 1990 (see Table 6).

Heroin. Estimates of heroin supply available for United States consumption cannot be calculated with any degree of confidence given the available data. Estimates are available for opium yields worldwide. Conversion ratios of opium to morphine to heroin are known, but no accurate estimates exist for consumption within producer countries and other bansshipment countries. (Various sources estimate only the number of addicts/users in these countries and not the estimated amounts consumed.) Moreover, the market for heroin and opium is more widespread than for cocaine. Whereas the majority of cocaine is probahly consumed by United States residents, the United States market share is much smaller for heroin. Consequently, changes in assumptions about the size of that share have dramatic effects on the estimates of available domestic supply in the United States.

Mardjuana. Developing an estimate of the size of the retail markel for marijuana in the United States from estimates of availahle supply is also fraught with dificulties. Users in the United States are able to grow small amounts of their own marijuana for personal use, and the amount of drug so cultivated is impossible to estimate. A large amount is also grown within the borders of the United States for the domestic market. The Drug, Enforcement. Λ dministration estimates that approximately 5,000 to 6,000 metric tons of eannabis were cultivated domestically during 1989, an increase over 1988 estimates ($4,350-4,850$ metric tons) ${ }^{57}$

Cannabis is also grown in dozens of countries in South and Central America, the Caribbean, Asia, North Alrica and the Middle East. The amount of cannabis available worldwide for export to the United States and other consumer countries during 1989 was thought to be 49.281 to 51.281 metric tons, after accounting for estimated losses, seizures and consumption within producer countries, as well as selzures within the United States ${ }^{58}$ (This includes the estimated amounts cultivated within the Unitetl States.) Comparable figures for carlicr years are considered unreliable by the United States intelligence community because Mexican production-which in 1989 was thought to account for 87 percent of worldwide production-was undercstimated dramatically, by a factor of nearly ten. According to estimates by the State Deparment's Bureau of International Narcotics Matters, worldwide production was roughly the same during 1990 (allhough different estimating methods and data and the lack of an estimate for domestic United States production make it difficult to compare this estimate with the 1989 figure cited above). ${ }^{59}$

[^23]
TABLE 6

SUMMARY TRENDS IN COCAINE SUPPLY

(In metric tons unless otherwise naled)

	1988	1989	1990
Coca Lear Crop ${ }^{60}$	293,700	298,090	310,150
Cocaine IICl Produced	829	836	873
Transshipped to or Seized in Foreign Countries ${ }^{\text {id }}$	38	64	92^{62}
Shipped to the United States	418-593	388-557	376-544
Seized by Federal Authorities ${ }^{89}$	57	95	101-113 ${ }^{64}$
Available for Consumption in United States	361-536	293-462	340-443
Retail Value in the United States (5n billions of dollatis)	\$36-\$54	\$29-\$46	\$26-\$44

[^24]Because marijuana and hashish consumption are prevalent throughout many parts of the world, it is difficult to estimate the size of the market sharc that United States consumers constitute. If we assume that none of the domestically-grown marijuana is exported, that 75 percent of all Mexican marijuana is imported into the United States, and that all marijuana produced elsewhere is exported to other countries (all of which are conservative assumptions), and if the DEA/NNICC Report estimates are reasonably accurate, approximately 36,700-37,700 metric tons would have been available to United States consumers during 1989. At an average cost of $\$ 10$ per gram, the retail value of this amount of marijuana would have been $\$ 367$ - $\$ 377$ hillion dollars. If the average price were closer to $\$ 5$ pergram, the rctail value would have been half that large.

These estimates are implausibly large. During 1989, approximately $\$ 269$ billion was spend on all public education, at all levels. During 1988. expenditures for alcohol totalled $\$ 44$ billion, and for Lobacco, $\$ 37$ billion. ${ }^{65}$ That expernditures for marijuana exceeded all these amounts combined is impossible to believe. Because the average retail cost of marijuana was probably within the $\$ 5-\$ 10$ range, this suggests that cither the estimates of worldwide cultivation and production are wildly overinflated, that seizures, losses, and consumption within producer countries have been underestimated by an equal amount, or that the United States share of the worldwide manijuana consumer market is much smaller than we suggest here. Unfortunately, the data needed to develop better estimates of all these factors are not available, and we have no independent ability to assess the reliability of the marijuana cultivation estimates. We are, therefore, unable to develop a plausible supply-based estimate of the retail value of the marijuana market in the United States.

Comparison with Other Gources. The range for supply-bascd cstimates is necessanily wide. As we have emphasized throughout this section, the data upon which these cstimates are based are too imprecise to produce a narrower range of estimates. The fact that we have excluded some losses of cocaine and its raw ingredients from the model (because of lack of data) probably means that this range is too high-that is, given our current knowledge of cocaine use and price, it is highly unlikely that the retail sales expenditure on cocaine approaches $\$ 46$ biltion dollars.

Nevertheless, estinuates far in excess of $\$ 46$ billion exist. According to the Latin American Weekly Report, ${ }^{\text {ti6 }}$ the United States drug market was close to $\$ 200$ billion, most of this apparenily attributable to cocaine. Supposing that all $\$ 200$ billion was attributable to cocaine, and that 1.9 million heavy cocaine users consume 80 percent of the available cocaine, then each user would be required to spend $\$ 84,000$ per year on cocaine. In contrast, a heroin addict has beerl estimated to spend $\$ 300-\$ 400$ per

[^25]week on his or her habit-less than $\$ 20,000$ per year. Even if only $\$ 100$ billion is attributable to the cocaine market, a heavy user of cocaine (more frequently than once per week) would have to consume about eight grams of pure cocaine every week. This far exceeds the two pure grams per week that we assume as the upper limit that can be consumed by the most compulsive user of cocaine. In short, estimates from the Latin American Weekly Report are not credible.

In contrast to these competing estimates, our consumption-based estimates are remarkably close to our supply-based estimates. From the consumption-based side, we estimate that $\$ 17-\$ 23$ billion dollars were spent annually on cocaine between 1988-1990. Although this range is somewhat smaller than that derived from our supply-based estimates ($\$ 26-\$ 54$ billion dollars), this difference can be attributed to scveral reasons: The United States itself may be a greater transshipment country to Europe than is assumed in our model; State and local seizures have not been accounted for in our model: and part of the supply of cocaine may be to replenish dealer stocks. We also note that the supply-side estimates follow the same general trends as the demand-side estimates. From the supply-side, minimum estimates for cocaine fall from $\$ 36$ billion in 1988 to $\$ 34$ billion in 1990; maximum estimates fall from $\$ 54$ billion to $\$ 44$ billion. Similarly, demand-side estimates fall from $\$ 23$ billion in 1988 to $\$ 17$ billion in 1990.

I. CONCLUSIONS

We estimate that Americans spend roughly $\$ 40$ to $\$ 50$ billion per year on illicit drugs (see Table 7). The \$40-\$50 billion range is not a traditional confidence band. The accuracy of the components of the calculations used to develop these estimates is uncertain. For example, cocaine consumption is affected heavily by the number of consumers who use cocaine at least once per week. We previously eslimated that figure as 1.75 million, but based on sensitivity analyses, we reported that 1.5 to 2.2 million is a reasonable range for heavy use. Based on our analysis of STRIDE data and our inspection of reports from the Community Epidemiology Work Group (CEWG) and Dagg Enforcernent Administration, we know that the price and purity of cocaine and olher drugs vary markedly over time and across cities. For example, the latest CEWG report indicates that the street price of cocaine ranges between $\$ 50$ and $\$ 125$ per gram across 15 cities, while purity ranges between 10 percent and 96 perceni. in six cities. Our assumption of $\$ 100$ per gram for 50 percent purity cocainc. which is a rellection of these reported prices and purity levels, only approximates what is likely to be the true price and purity of cocaine sold at the retail level. The same is true for other drugs. Similar
uncertainty exists regarding the amourit of drugs consumed per drugusing scssion, an estimate that we derived from discussions with strect cthnographers, dealers, and users. We offer the $\$ 40$ - $\$ 50$ billion range as our best estimate given current data. Thus, the range of $\$ 40$ to $\$ 50$ billion is not firm. Data are too sketchy to allow precise measurements. Nevertheless, everi if this figure is only approximate, its magnitude is daunting. Besides the untold misery of those who are captured within the morass of drug addiction, society in gencral sulfers from the sequelae of drug abuse: crime and the costs of criminal justice. broken farnilies and addicted newborns, disrupted social and economic relationships, the spread of communicable discase, and the costs of dnag treatment.

Beyond the provision of an estimate of the retail value of drugs consumed, we have devcloped two methods-one based on the consumption of drugs and the other based on the supply of drugs-for estimating the retail value of drugs consumed. The meihods clarify what information is needed to cstimate the retail value of drugs consumed in America; our application of these methods highlights the deficiencies of available information. The utility of idenlifying needs and deficiencies is to indicate how future estimates can be improved.

Extant data that were unavailable to us (and unknown to us) might be used to sharpen our estimates. New data might be developed. especially where our ignorance of the patterns of drug use are the greatest, such as the amount used per session and the retail price of drugs. Ideally, both extant data will emerge, and new data will bc gathered, so that future estimates will be based on a firmer empirical basis. This study is one important step on the path to developing better estimates of the amount of illicit dnugs and the retail valuc of those drugs consumed in America.

TABLE 7
RETAIL VALUE OF ILLICIT DRUGS IN THE UNITED STATES
[fn bilifons of dollars]

	$\underline{1988}$	$\underline{1989}$	$\underline{1990}$
Cocaine	$\$ 22.9$	$\$ 22.5$	$\$ 17.5$
Heroin	$\$ 15.8$	$\$ 15.5$	$\$ 12.3$
Marijuana	$\$ 11.1$	$\$ 10.0$	$\$ 8.8$
Other Drugs	$\$ 1.8$	$\$ 1.8$	$\$ 1.8$
Total	$\$ 51.6$	$\$ 49.8$	$\$ 40.4$

[^0]: 'Source: Statistical Abstrace of the Unitied States, 1990 . The figure for alcohol tis from p. 780. Chart \# 1376 : for tobacco from p. 430. Chart \#698; for the erimind justice systern from p. 180. Char \#307: and tor public education (elementary and secondary) from p. 129, Chart \#io8.

[^1]: ${ }^{2}$ Fiere we chaw on several sources, ineluding the 1985, 1988. and 1990 Household Survey, the 1988. r989, and 1990 High School semior Survey, and 1988 and 1989 data from the Drug Use Forewstitug System \{DUF].

 We drav om reports of use patterns from the NDS Inldal assessmanl. questionalre, the Hausehodt Surveys, the High School Staior Surveys, and a range of sturlies of special populations. sur:h as people incarcerated in jails and prisons.
 ${ }^{1}$ Published infortation in thls area is sparse. Wecorisulted with experts - principally with street elthotraphers and other researchers, but also with sone users and doalters - regarding usnge paltums. frorder tomontordrug consimpliori patterns, several of the nation"s researchers oadnain nomacts with users and dealers of illinit substances. These relatlonships betweem researchers, users. and dealers are recoppixed by law enforcement authontles. who value hether understanding markets for illeclt substances. Otwitously, users and dealers are promised confidentiality, and these promises are routhely backed byy federal guarantees that the uscrs and dealers will not be identified.
 sGome information concerring utits used per session ls available from the Drug Enforement Administration \{DEA), but DEA ruports were supplemented to achiewe a more complete estimateSupplementary data came from strent ethrographers, recovering users, and dealers.

[^2]: ${ }^{6}$ Gources for price data were the 19rug Entoreement Administration's IPonestic Monitor Irogram. the dune 1990 report of the Comomatity Epidemioldgy Whork Group. 5 treet elhnographers. other rese:archers, users and dealers.

 The Houschotrl Surwey and the Hiph School Sendor Survey repor lrends from 1988 through 19 fr . Otherwist, we reled an reports from the Dng Abuse Waming Network.
 *Although we art dware of no studics that examine what types of drug users seck services in emergertyy romens, it apptars that those users who are drugdependent predominate. Based on Tables 11-4a and $11-4 b$ of the 1989 DAWN refort, in 72 percent of ernergency raon admissions where cocaine: was the drug of aluse the patient was elassified as "dependert". For heroinfonorphine. the figure was 83 pricent; for matijuana, fi was 55 perment. The predominduce of dependerit users among hose seeking emergency roon treationt is evidence in support of assumithg that tremds in the DAWN data morror lrends in drug use among heavy user populations.

[^3]: Decause of the way the question was pasid, the responstes understate contact whth the law. Respondents were asked how frequenlly they ware im jall fior three days or longer; lence. tany arrests that resulted in booking add releast: would twexcluded fron the responses. These tabulations wers: based on the first 20,000 re:sponses to the ADDS [mitial Assessment Interview, provicled by NOVA Research.

[^4]: ${ }^{10}$ These regressions and adjustrnents are described in detal in Ruodes, "Using the Drug Use Forecasting systern to estimate the prevalence of heavy cocaine and oplate use," a drati report to the National Institute of, Sustice. submithed ApHl 3. 1991. Esscntially. regressions were Iimited to 22 elty cores that participated in the DuF systern during 1988 and 1989 . Separate segressions were estimated for males and fomales: 5eparate regressions were extimated for cach of six types of crimes;
 to project utne test results to other corecity artas. To dhthemine postive urine test ratesfor sulburban areas, we used the ratlo of drug-law related arrests in mobat core areas to drug law related arrests in suburban areas to extend drug lest results from core cldies to suburban areas. Results for rural areas wer: inlen'ed from the ratioddrug-law related arrents in rural areas todrug-laws relleted arrests in the rest of the counlry.
 "The Natlonal Institute on Drug Abuse has furnded projects in 57 citiess to irrtervente in the lives of indivtuals at hiph risk of infection front HFV. To parliclpate, a subject nust have injected drugs at some: time during the stx month perick priar to entering the project. (For our purposes, we dignore other project pautlelpants, who are not IV-drug users.) Profect participants are required to anmwer a delaiked. monfictital questlonnaire about their recemt drug usc. Because subjects are generally pald for thetr time, they have an inducentert to partiespate, and data reliability appears to be acceptable. (Sec Mycrs. M. . Snyder. F.. Bryant, E. and Young, P. Report on reliability of the AIDS initial assessmert questionnaire. Washington, 19.C.; NOVA. 1990.

 NOVA Research Corporation has been contranled by NIDA to assemohle a national data filte from interviews provided by the indivdual projects. NOVA has completed tabulations on the first 20,000 participarats, mosh of whom are [V-dngg uners. [n addition, for purposes of this repor, we have conducted tabulations thom data provided by researeturs in a dozert sites.

 The strength of the NOVA data is apparent: detauled fucstions have been asked of heavy drug users, who are dffficult to rearth in convertional surveys. The weakness of the NOVA data is cquadly apparcut: the sample is a conventence sample rather than a random sample, and lt is limfted to dtug users who have used a moedle during the last six months.

 Furthermore, the NOVA data provtde resporises tor the general question shout how frequently respondents used cocainc land other drugel but no queston is asked about how much cocane is used per sessiom. We had to make assimplions atont the amount of tomane consumted per session.

 To illustrate, we assumed that a person who answered that he or sthe used cocaifie " $2-3$ titmes pur day" used 3.5 grams per weck. We assumed further that this eocaine was 50 percent pure. so this user would consume 1.75 grams of pure cocaine pur week. Cornsutring coocatite al this rate is 50 phystologically demanding and puts the uscrat such risk of arrest and mearceration that we assumed that this level of eonsumption mould be maintained only half the time. yielding about 46 grams of cocaine consumed per year. We note, however, that individuals who use crack "2-3 times prer day" probably consimane elosere to 82 grams of pure cocalne peryear. Sfnular assumptions were nade about other usage patterns and other albused drugs.

[^5]: ${ }^{13}$ Hy representative. we do not mean accurate. As the two previous notes indicalt, it was necressary to use threc explicit assumptions land several Impletl assumptions about the relation ship belweern drag use. heing arrested, and testing poaltive for drug use] to draw conclusions about drug use among the arrestere prpulation. kvery one of these assumptlons is bascd on limited date and the assumptions wilt likely charige as data somrees are improved.

[^6]: ${ }^{16}$ gee Rhodes, 1991. These statistics apply to drug usits who are involved with the criminal justice system because of cominal activly that grow heyomd the consumption of ilifet drags per 5 e. Members of households who consume dings but who fail to come to the attention of the criminat justice system because of an otherwise convertlomal life-style are not anchuded in these statistics.
 'Throufhout this report, wh have assumed that one joint contains $1 / 4$ gram of marijuana. More recent miderne indicates that $1 / 2$ gram may be more ateurate. Because our calculatons are based primarly on jom nes consumed, and we have assinned that a joint cost $\$ 2.50$. our c:stimates of ammunt consumed (in kilogrames) is independent of our cstimates of cost of this consumption (in dollars).
 ${ }^{3 s}[t$ is usefult to approach calculations for heroin users from different assumptions. According to our thestigations, heavy heroin users spert about $\$ 300$ per week for their habits. This figure: takes into account the fac: that heroin users sometimes are unable to purchase trugs. Assuming that there exist beween 500:000 and 700.000 heroin addicts, and that a milligram of purc heroin has a relail price of about $\$ 1.33$ (bintud dn composite figures derved from a variety of sourcess including the Drug Enforcement Adminisuratlon's Domestic Monitor l'rogram, the dure 1990 report of the Community Epidemology Work Group, strect t:thnographers, other researchers, users and desler:i) we esthmate that between 6.000 and 8.000 kg of heroin $i 5$ consumed. Assuming that there are about 250,000 heroin users who are not addictod fited in Thster, et al., ADDS: Sexual Behavior and Inlravenopus [Dagg Use, Washington, b.C.: Natiunal Acadeny Press. 1989. p. 229), and that the:se accasional users spend

[^7]: $\$ 50$ per week on herotn, an additional 489 kg might be added to thetere figures, for a total of $6,000 \mathrm{~kg}$ to 9.000 kg . A recent report for NIDA (Hamill and Cooley, National estmates of heroin prevalence
 estimated that here are closer to 1 million heroin addicts, so even $9,000 \mathrm{ks}$ may underestimate the amount of hermin consunated in the United Stale:s.
 ${ }^{19} \mathrm{BuH}, \mathrm{M}$, and Coben. B. America's homeless: Numbers, characteristics, and programs that scrve them. Washington. D.U.; The Urban institule Pres5. 1989.

[^8]: ${ }^{20}$ Using the Houschold Survey data for 1988 and 1990 , we computed the percentage of students who said they had used drug x durimg the year. by year (1988 and 1990) and by age (12 through 18). We assumed that drug prevalence for senior's was the reporled average for respondents who were 17 or 18. that daug prevaleme for junions was the reponted average for respontents who were 16 or 17 , and so on. For 1989 , we used the average for 1988 and 1990 . The taluulations were conducted separately for coucaine, for marljuana. and for "any drug."

[^9]: ${ }^{2}$ Separate cstimates based on the Household Survey Indicate that college studems consume about 10. $000 \mathrm{k} \frac{1}{5}$ of pure cocainc. Because the Household Survey excludes college students who lived in donditorics arnd fratimities, the ligure based on the Houschold Survey is surpisingly higher theur the figure based on the figgh School Senior Survey. This difference is espectadly notable, because according to the HIgh Scloool Sentur Survey. ithut 43 purcent of college students lived in dormitorics
 about twice as large as those based on the Household Survey. The figuri: based om the Humsebold Survicy is considered unreliable, however. because calculation of the average amount of eacaine consinmed was induly influcnced by a tew responses of unreasonably high smounts.

[^10]: ${ }^{22}$ Bray, R., et ad. 1988 Wortdwide Surwey of Sutsitance Abuse and Healld Behaviors among Military Personnel. RT1/4000/02FR. Decemutuer I988.

[^11]: ${ }^{23}$ we could cstimate drug consumption bases on the Houschold Survey alone. To illusbate. the 1990 Househerlel Survey indicates that, of about 200 mitlion Americans who were age 12 or older.
 interview. According to our calculations, which were based on the flousehtuld Survey data, thust: people who consumed cocaine during the reference period consumed abwut vine gram per cututh 12 grams when anmualized. Assuming that diese drugs had a strect standord purity of 50 percent. the Household Survey imples that Americans consumed about $19,000 \mathrm{~kg}$ of cocalne during 1990. Estimates presented later in this report indicate that 19.000 kg is. in fact, less cocadne than is consumed in Annerica.

 Three factors explain why eslimates based on the Household Survey understate dang usc: 11) Many heavy doug users do not live in houscholds. so these drug users are not represented by the Household Gurvey. Fien those heavy dagg users who live in housutholds may be andereounted.
 they may be reluctant to bit interviewed. 12) Betaluse druguse is illegal, drag users may refuse to reveal or may undersiate thetr dag use to the mervewer, promises of confidentiallty notwithstanding. (3) The minority of drug consunters whe are addictive or compulsive users receive tho special representaLion in the survey. Consequently, while the Household Survey provides an indspensable picture of drug use among members of the household population, it carnot prowde a complete picture of totad drag tise by all Anzericans. both those who live in households and those who live outside households.
 ${ }^{20}$ The residual group probably contadns a significant number of individuals who are already intuluded in the group of armstecs lecause the variable used to exclude frople involved with the criminal justlce system was not comprehensive. Dundng 1985. sespondents were asked whetherdag abuse hatl resulted tratarrest. Thrs question was mot asked in 1988and l990. As an approximation, we excluded from the restdual group the same percentage of respondents who were involved with the crimbetal justice system aceomeding to the 1985 survey datal
 ${ }^{29}$ Not ilf respondents whoadmitted to drus use during the to days prior to the intervew answered the quest on about the amount consumed during that dme frame. Consequently, we had to cstimate an average based on the available responses and then multiply this average by the number admilling to use. In 1985. menbers of the restita group used olmose 1 gram of cocaine on average per month. In 1988 and 1990 , the figure was about 0.9 grams. We assume these repurted amounts wert about 50 percent pure.

[^12]: 2"Respondents are asked a ducstion ahant how much marijuana they consumed during the tast 3t) days. Allowable responses are $1-10$ jonts, $11-20$ joints. 1 Dunce, 2 aumees, and so on. We first assumed that $1-10$ joints muant 5 jeirts, that $15-20$ meant 15 joints, and that ounces were the moidgnint when reportexi asa range. Assuming hither that ajoint was 0.25 gramsiand that matijuana cost $\$ 10$ per gram. we derived estinates of amount tonnsumed that were unceasonably lage when compared to other sources, including results based on DLFF and the High School Senier Siumety. Further investugation revealed that the question about amoum tarnsumech yielded results that were inconslstent with the: responsts from other questions in the Household Survey, such as questionts shout frequency of use. Our conctusion was that respondents did rol answer the question about amount of use with sufficiert acturacy to be eredible. However, we were willng to believe that responses of $1-10$ joints and 15-20 joints were accurate: all other respuases wire trialed as "more than 20 joints." The distributhon of resiparsits applased io be roughly consistent with ar exponentiad distribulion. We estimated the parameters for thts distrlbutlon first based ot the percertagests of 1 10 jolnts and second based on the peraemtages of $11-20$ joints. The average value ol those two parameler mitrates was used to inter that the average member of the residual group comsumed 3 grams of marijuana per month roughly 12 joints.
 "The adjustment figure of 2.2 was drivisd by computing the amount of cocatne consumed by menbers of the restduad gioup relative to studentsatud drop-ants for cath ycar 1985. 1988, and 1990 (three estimates). The calculacions were repeated for warijuana (thres estimates). The six estumates were averaged. Friot to computing the estimates, we doubled the amoum af ding comsumption at1rimutable to college students by the Household Survey to adjusc for the fact that reugly 50 percent of toblesege studerats do not live in houscholds as defined for purposes of the lfousehold Survey.

[^13]: ${ }^{24}$ abl Associatits, [rit: Ileay cocine use in the United States: thet number of users. Paper prepared far the Oftice of National Drug Control Policy, dated A]ril 2. 199].
 ${ }^{3}$ Rhodes, W. Using the Drug Use Fotecasting system to cstimate the prevalence of heavy cocainte

[^14]: ${ }^{30} \mathrm{Homer}, \mathrm{d}$. A systern dymamics strmulation model of cocaine prevalence. University of Southent Califormia. J990, unpublished paper.
 ${ }^{31}$ Clayton. R . Cocaine use in the United States: in a bllzzard or just betng snowed? in Kozel, N . and Adams. E. Cocalne usc in America: eptdemiological and clinical perspectives. Washington. D.C.: U.S. Government Printing Office. NIDA rescarch monotraph 61, 1985.
 ${ }^{32}$ Khodes, W. Using the Drug Cise Forecasting system to estimate the prevalence of heavy cocidne atul opiate usi.: Draft report submiterd to the Nationa Institute of Justice. Apतl 3, 1991.
 ${ }^{33}$ Hrodsky, M. History of heroin prevalence estimation techniques. In Rouse. B., Kozel. N. and Riu:hards, I. (eds.) ©ell report methods of estimating drug usc: meeting chalenges to validity. NIDA research motugraph 57. 1985.
 wilurter, C. Miller, H. and Moses. Le (cds.) AlDS: Sexual Behavior and Intravenous Drug Use. Washinglon, D.C.: National Accackemy Press. 1989.
 ${ }^{35}$ Flamill and Codey. National estimates of heroin prevalence 1980-1987: Results from analysls of DAMN emergency ruour data. Jit? technical report. 1990.
 ${ }^{36}$ Cierstein, I). and Harwood. H. (eds.l Treating drug problems: Volume l. Vatlonal Academy Press. 1990.
 ${ }^{37}$ Spencer. B. The accuracy of estimates of numbers of intravenous drug users. In Turmer, C., Meller, Fi. atud Moses.s. 3. (f.dsi.) A[l)S: Sexual Behavior and Indravenous Drug Use. National Academy Press, 1989. pp. 429-446.

[^15]: ${ }^{34}$ All experienced drug researcher's are reluctant to describe a typical heavy uscr. parly because: drug consumption is volatile. Cocalne is often consumed in binges. The user mey go days or werks with no consumption and then use cocaine for several days at an extremely high rale: After this bluge. he or slie may recuperate prior to beginning a new cycle of use. The two gratus per vietk slould be considered as an average over long periods of Lime fluring which thu user's pattern of use fluctuates greatiy.
 ${ }^{3}$ Klemmen, M.A.R. Marduana: Costs of Abuse. Costs of Control. New York: Greerword Prets. 1989, pp. 43-44.

[^16]: VThe final version of the model. authored by Susan Re:seciar, will be publisherd by RAN13; at that (itne: haNI) will also tnake available a disk with the data antr the model.

[^17]: ${ }^{*}$ Coca is reportediy cultivaturd th Brazil and Venezucla. but estimates; of tee:Lares under cultivation are not available.
 ${ }^{12}$ Bureau of International Natcotits Matters. Intermational Nascotics Contol Stratergy Report. Washinglon. D.C.: Departmert of Siete Publicatlons, March 1991.
 ${ }^{1}$ (llid. . p. 7.
 ${ }^{1.1}$ Ruyal Camallam Mounted Police. National 19ng Yratelligence Estimate 1988/1989. OLtawa, Ontaris: Drug Euforcement Directorate. p. 45.
 ${ }^{15}$ International Narcotics Control Strategy Nepart. 199], p. 21 .

[^18]: ${ }^{+4}$]n the model, we estimate that 5 percent of Dolivian leaf is transferred io Argentira based on "International Narcotics Control Strategy Report" estituates of Argentinears produrtion cadjabilitfer: International Narcotics Control Strategy Report. 1991. p. 79.

[^19]: ${ }^{44}$ James A. Inciardi, The War ar [Dags. Jalo, Allo, CA: Mayfeld Publishing Company. 1986, pp. 71-89: Royal Canadian Mounted Pulice, National Inag intelligence Estimate. 1988/1989, Ottawa, Ontardo: Drıọ, Enforcement Directorate. p. 45; amd telephome interviews with bitmundo Morales. Ph.D., West Chester Unweralty, PA. Dr. Morales has studied corame realtivation and presecssing in Andean nations.
 ${ }^{19}$ Edmundo Morales indicates thas process is not recturatal bit is becoming more common because it improyes the purty of the final product

 EEdoturnder Morales.
 "MAnturandum from R. Flynn. dated January 24, 1991.

[^20]: Mextiv:at arid Sucielogieal Aspects of Coca and Cocaune.

[^21]: ${ }^{51}$ [nternatiorta] Narcolime ControlStrategy Report.]991, anci data prowided by the United Wations [alermational Narcolises Control Ebatd amd the: Koyal Canadian Mounter police. These data conflicts with the data lat Ue DEA "Wortd Cocaine Supply, E991" report.

[^22]: *The low end of thls range was conputed by subtracting the maximum of the staure rathge (113) from the mintmum of the cocaine shipped range (376 . whleh yjelds 263 metric totis. The high end of this range was computed by subtracting the minimum of the sclatre range 101 if fom the maximum of the ecetaine: sbipped range: (544), which yields 443 metric tons.

[^23]: ${ }^{4}$ Reported la the National Narcolics Inlelligence Consumers Conumaten (WNLCC). The NNJCC Report 1989: The Supply of Illicit Drugs to the United States. Washington, D.C.: National Natcotics Intelligence Consumers Committee, June 1990, pp. 55-56.

[^24]: sxtbld. pp. 55-56.
 striternaUonal Narcoties Control Strategy Report 1990. This report estinates worldwide produrtion, not counting the U.S., to have yielded 45.559 metrie cons in 1990 . Subtracting estimates for amounts selzed (843 netric tons), the net production wasestimated to be 44.706 metric tons. Thls would have to be reduced still further to Include estimates of consumption In producer countrics and seizutres by U.S. authorides.
 ${ }^{6}$ Intemational Naucolics Control Stratery Reporl. 1991. p. 2z.
 E:International Xarcotics ConlrolStrategy Reporl, 1991, and data provited by the United Nation 5 Intemational Narcolics Conlrol Boad and the Royal Canadian Mounted folice.
 monls figure includes 12 metre tons selzed in Europe during the lirst half of 1990 . World cocainc Supply, 1991, pp. 33-35.
 ${ }^{4}$ Drug Enforcement Admintstratlon, Domestic Statistleal Summary. undated copy. Methors of counting selzed amounts changed in 1989. The figure for 1988 reflects the conventional methoul, which involved some double-counting of seized dnegs by different forderal agencies. Figures for 1989 and 1990 are from the new Federad-Wide Drag Selzure Systern, deslened to minimize overeountlig.
 ertils range is tron the DEA Federad-Wide Drug Seizure System reported in a telephont conversation whin DEA offects on ApHll 9. 1991. The tinal figure. to be reteased shorly. could vary from the range given.

[^25]: ${ }^{65}$ Statistical Athitrat: of the United States 1990. Pp. 129, 780, 430.
 ${ }^{65}$ Latin Arererian Weekly Report. Wk-91-12, Mareh 28. 1991.

