This paper presents a classifier fusion algorithm based on Dempster Shafer theory that improves the performance of fingerprint verification.
The proposed fusion algorithm combines decision induced match scores of minutiae, ridge, fingercode, and pore-based fingerprint verification algorithms and provides an improvement of at least 8.1% in the verification accuracy compared to the individual algorithms. Further, proposed fusion algorithm outperforms by at least 2.52% when compared with existing fusion algorithms. The authors also found that the use of Dempster’s rule of conditioning reduces the training time by approximately 191 seconds. (Published Abstract Provided)
Similar Publications
- Assessing the value of bacteria, plants, fungi and arthropods characterized via DNA metabarcoding for separation of forensic-like surface soils at varied spatial scales
- Determination of the species identity of necrophagous insect puparial casings using field desorption mass spectrometry
- A Reflective Spectroscopy and Mineralogical Investigation of Cosmetic Blush (Wet‘N’Wild) Potentially for Forensic Investigations Related to Interpersonal Violence—An Experimental Feasibility Study