Since designers of electromuscular incapacitation devices need to know efficacy, i.e., which areas of nerve and muscle are stimulated and whether these areas are adequate to cause incapacitation, this paper focused on efficacy, which used a torso-sized finite element model with a mesh of about 5 mm.
To estimate the neuromuscular regions stimulated by the Taser® X26, calculations of electric current density and field strength values with 1 A inserted into the torso using the Utah 3D mesh were made. Field-times-duration values for given Taser stimulation were calculated. To estimate the neuromuscular regions stimulated by the Taser® X26, calculations of electric current density and field strength values with 1 A inserted into the torso using the Utah 3D mesh were made. Field-times-duration values for given Taser stimulation were calculated. Then the region where the motor nerve was stimulated by the Taser was estimated by using a field-times-duration threshold from Reilly (1998 Applied Bioelectricity: From Electrical Stimulation to Electropathology (New York: Springer)). Neuromuscular stimulation occurred up to about 19 cm away from the darts and included the spinal cord. The current density at the heart for dart separation less than 10 cm was smaller than for larger dart separation. Users of finite element computer models will find information for torso models and their creation, meshing and operation. (Publisher abstract provided)
Downloads
Similar Publications
- Racial Bias in School Discipline and Police Contact: Evidence From the Adolescent Brain Cognitive Development Social Development (ABCD-SD) Study
- Overdoses Involving Medetomidine Mixed with Opioids — Chicago, Illinois, May 2024
- Gas chromatography with dual cold electron ionization mass spectrometry and vacuum ultraviolet detection for the analysis of phenylethylamine analogues