A novel Bayesian methodology has been developed to quantitatively assess handwriting evidence by means of a likelihood ratio (LR) designed for multivariate data.
This methodology is presented and its applicability is shown through a simulated case of a threatening anonymous text where a suspect is apprehended. The shape of handwritten characters a, d, o, and q of the threatening text was compared with characters of the true writer, and then with two other writers, one with similar and one with dissimilar characters shape compared to the true writer. In each of these three situations, 100 draws of characters were made and the resulting distributions of LR were established to consider the natural handwriting variation. LR values supported the correct hypothesis in every case. This original Bayesian methodology provides a coherent and rigorous tool for the assessment of handwriting evidence, contributing undoubtedly to integrate the field of handwriting examination into science. (Published Abstract)
Downloads
Similar Publications
- Using posterior probability informed thresholds to develop best practice recommendations for MorphoPASSE using the innominate, cranial, and combined traits
- Predicting thermal response of gypsum board under various heat flux Configurations: A three-dimensional mathematical model
- Evaluation of the Occurrence and Associative Value of NonIdentifiable Fingermarks on Unfired Ammunition in Handguns for Evidence Supporting Proof of Criminal Possession, Use and Intent