Gas Chromatography-Vacuum UV Spectroscopy (GC-VUV) has seen increased attention in many areas; however, a statistical optimization of VUV method parameters has not been published, so this article presents the first statistical optimization of parameters influencing analytes such as cocaine in the VUV flow-cell.
Flow-cell temperature, make-up gas pressure, and carrier gas flow rate from the GC were examined and optimized for the detection of controlled substances. The accuracy, precision, linearity, and optimized detection limits for drugs such as cocaine (98.5%, 1.2%, 0.9998, 1.5 ng), heroin (99.3%, 0.94%, 0.9998, 2.0 ng), and fentanyl (98.5%, 1.7%, 0.9752, 9.7 ng) are reported. In general, the limits of detection for cocaine, heroin, fentanyl, and methamphetamine after optimization were comparable to gas chromatography-mass spectrometry (GC-MS) in “scan mode”, which had detection limits of 1.1–38 ng on column. The VUV absorption spectra of cocaine, PCP, lorazepam, and HU-210 are also reported. And three samples of “real world” cocaine are analyzed to demonstrate applicability to forensic drug analysis. (Publisher Abstract Provided)
Downloads
Similar Publications
- Analysis of Highly Degraded DNA from Bone Samples Using Probe Capture Enrichment of the Entire Mitochondrial Genome and Next Generation Sequencing
- Development of a Nuclear SNP Probe Capture Assay for Massively Parallel Sequencing of Degraded and Mixed DNA Samples
- Lineage Markers and Their Applications in Forensic DNA Analysis