Researchers in this study tested learning-based sensor scheduling for event classification on embedded edge devices.
In this paper, researchers propose a reinforcement learning-based sensor scheduler that dynamically determines the sensing interval for each classification moment by learning the patterns of event classes. The initial results are promising compared to the existing scheduling approach. Incremental learning on embedded edge devices is feasible nowadays due to the increasing computational power of these devices and the reduction techniques applied to simplify the model. However, edge devices still require significant time to update the learning model and such time is hard to obtain due to other tasks, such as sensor data pulling, data preprocessing, and classification. In order to secure the time for incremental learning and to reduce energy consumption, researchers need to schedule sensing activities without missing any events in the environment. (Published Abstract Provided)
Similar Publications
- Prevalence Estimates and Correlates of Elder Abuse in the United States: The National Intimate Partner and Sexual Violence Survey
- Application of Silica-based Hyper-crosslinked Sulfonate-modified Reversed Stationary Phases for Separating Highly Hydrophilic Basic Compounds
- Deep Multi-factor Forensic Face Recognition