This project examined the assumption that the heights of overlapping alleles from a minor contributor and stutter peaks from a major contributor are additive.
Peaks in an electropherogram could represent alleles, stutter product, or a combination of allele and stutter. Continuous probabilistic genotyping (PG) systems model the heights of peaks in an additive manner: for a shared or composite peak, PG models assume that the peak height is the sum of the allelic component and the stutter component. Any peak below the analytical threshold is considered unobserved; hence, in any dataset and particularly in low-template DNA profiles, some or many peaks may be unobserved or missing. Using simulation and empirical data, the current project determined that an additive model can explain the heights of overlapping alleles from a minor contributor and stutter peaks from a major contributor, as long as missing data are carefully considered. A naive method of imputation was used for the missing data, which appears to perform adequately in this case. If missing data are ignored then the sum of stutter and allelic peaks is expected to be an overestimate of the average height of the composite peaks, as was observed in this study. (publisher abstract modified)
Downloads
Similar Publications
- Randomized Clinical Trial Pilot Study of Prolonged Exposure Versus Present Fcentred affect regulation therapy for PTSD and anger problems with male military combat veterans
- Syndrome-informed Phenotyping Identifies a Polygenic Background for Achondroplasia-like Facial Variation in the General Population
- National Problem of Untested Sexual Assault Kits (SAKs): Scope, Causes, and Future Directions for Research, Policy, and Practice