U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Evaluation of mRNA Marker Specificity for the Identification of Five Human Body Fluids by Capillary Electrophoresis

NCJ Number
239563
Journal
Forensic Science International: Genetics Volume: 460 Issue: 452 Dated: July 2012 Pages: 452-460
Author(s)
Mara L. Lennard Richard; Kathryn A. Harper; Rhonda L. Craig; Anthony J. Onorato; James M. Robertson; Joseph Donfack
Date Published
July 2012
Length
9 pages
Annotation
Seven markers for the following genes were selected for evaluation in this study: histatin 3 (HTN3) and statherin (STATH) for saliva, mucin 4 (MUC4) for vaginal secretions, matrix metalloproteinase 7 (MMP7) for menstrual blood, delta-aminolevulinate synthase 2 (ALAS2) for peripheral blood, and protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen.
Abstract
The identification of forensically relevant human body fluids through messenger RNA (mRNA) profiling is of interest to the forensic community. Previous studies have proposed several tissue-specific mRNA markers to achieve this goal. Seven markers for the following genes were selected for evaluation in this study: histatin 3 (HTN3) and statherin (STATH) for saliva, mucin 4 (MUC4) for vaginal secretions, matrix metalloproteinase 7 (MMP7) for menstrual blood, delta-aminolevulinate synthase 2 (ALAS2) for peripheral blood, and protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen. The expression of these markers was examined in each body fluid. All mRNA markers were present in their target body fluids. Peripheral blood and saliva showed little cross-reactivity with the selected markers. However, a high level of cross-reactivity was observed between the vaginal secretion marker MUC4 and saliva stains. Semen showed a high level of cross-reactivity with the selected markers. Co-expression of the predicted body fluid markers was detected in menstrual blood and vaginal secretion stains. The expression pattern of these mRNA markers varied through the menstrual cycle time points tested. Differences in gene expression levels and marker cross-reactivity were observed in the donors tested. Despite the presence of cross-reactivity and co-expression, each of the body fluids examined have distinct gene expression profiles, allowing for body fluid identification based on mRNA profiling. (Published Abstract)